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Abstract

We study the homogenization of the Dirichlet problem for the Stokes equations
in R

3 perforated by m spherical particles. We assume the positions and velocities of
the particles to be identically and independently distributed random variables. In the
critical regime, when the radii of the particles are of order m−1, the homogenization
limit u is given as the solution to the Brinkman equations. We provide optimal rates
for the convergence um → u in L2, namely m−β for all β < 1/2. Moreover, we
consider the fluctuations. In the central limit scaling, we show that these converge
to a Gaussian field, locally in L2(R3), with an explicit covariance. Our analysis is
based on explicit approximations for the solutions um in terms of u as well as the
particle positions and their velocities. These are shown to be accurate in Ḣ1(R3) to
order m−β for all β < 1. Our results also apply to the analogous problem regarding
the homogenization of the Poisson equations.
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1. Introduction

Numerous applications regarding the dynamics of suspensions and aerosols
call for macro- and mesoscopic models which couple the particle evolution to
the fluid. One of the most well-known models are the so-called Vlasov–Navier–
Stokes equations for spherical, non-Brownian inertial particles. If the fluid inertia
is neglected, they reduce to the so-called Vlasov–Stokes equations which take the
dimensionless form

⎧
⎨

⎩

∂t f + v · ∇x f + div((u − v) f ) = 0,

−�u + ∇ p + ρu − j = h, div u = 0,

ρ = ´
f dv, j = ´

v f dv,

(1.1)

where f (t, x, v) is the particle density and h is some external force acting on the
fluid. For questions regarding modeling and applications of this system, we refer
the reader to [4] and the references therein.

The rigorous derivation of these equations from a microscopic system is a wide
open problem. The main difficulty lies in the nature of the interaction of the particles
which is only implicitly given through the fluid. Moreover it is singular and long
range. A natural preliminary step towards the rigorous derivation of the Vlasov(–
Navier)–Stokes equations consists in the derivation of the limit fluid equations in
(1.1) without taking into account the particle evolution. These are the so-called
Brinkman equations. The additional term ρu − j describes the effective drag force
that the particles exert on the fluid: the drag force of a single particle in a Stokes
flow is given by

Fi = 6π R(Vi − ui ),

where R is the particle radius, Vi its velocity and ui is the unperturbed fluid velocity
at the position of the particle. Therefore, the total drag will be of order one if the
number of particles m (in a finite volume) times their radius Rm is of order one. By
making the convenient choice

Rm = 1

6πm
, (1.2)

the Brinkman equations in the form above arise based on a superposition principle
for the drag forces.

The rigorous derivation of the Brinkman equations has attracted increasing
attention over the last years, with results both in the cases of zero and non-zero
particle velocities, see e.g. [2,5,12,17,18,22], respectively. The most recent results
focus on the derivation under very mild assumptions for (random) particle configu-
rations. Such investigations seem compulsory in order to eventually accomplish the
rigorous derivation of the Vlasov(–Navier)–Stokes equations. In this regard, it is
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also desirable to develop very accurate explicit approximations for the microscopic
solution um and to characterize its convergence rate to the limit u as well as the
associated fluctuations. In our paper, we focus on these aspects.

1.1. Statement of the Main Result

We consider the perforated domain

�m = R
3\

m⋃

i=1

Bi ,

where the particles are given by Bi = BRm (Xi ) with Rm as in (1.2). The particle
positions X1, . . . , Xm as well as their velocities V1, . . . , Vm are random variables
in R

3. For h ∈ Ḣ−1(R3), we study the solution um to the Stokes equations

{−�um + ∇ pm = h, div um = 0 in �m,

um = Vi in Bi , i = 1, . . . , m.
(1.3)

We consider the case when Zi = (Xi , Vi ) are i.i.d. according to f ∈ P(R3 ×R
3).

We impose the following hypotheses on f :

(H1)
´
R3×R3 |v|2 f (dx, dv) < ∞;

(H2) the distribution of the centers ρ(·) := ´
R3 f (·, dv) ∈ W 1,∞(R3) is compactly

supported;
(H3) j (·) := ´

R3 v f (·, dv) ∈ H1(R3).

We remark that we in particular allow to choose f (dx, dv) = ρ(x) dxδv=0
which means that all particle velocities are zero.

We note that it is classical that the Stokes equations (1.3) are well-posed if
the particles do not overlap in the sense that there exists a unique weak solution
um ∈ Ḣ1(R3). As stated in the following lemma overlapping of particles does not
occur with probability approaching 1 as m → ∞. The lemma is a standard result
that can for example be found in [21, Proposition A.3].

Lemma 1.1. For ν � 0, L > 0 let

Om,ν,L =
{

(Zi )
m
i=1 = ((Xi , Vi ))

m
i=1 : min

i �= j
|Xi − X j | > Lmν Rm

}

.

Then, for all 0 � ν < 1/3 and all L > 0, there exists m0 > 0 such that for all
m � m0

P
(Oc

m,ν,L

)
� C Lmν−1/3,

where C depends only on ρ.
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For overcoming the problem of the ill-posedness of (1.3) for overlapping par-
ticles, we could restrict ourselves to configurations of non-overlapping particles.
However, this results in the loss of the independence of the particle positions.
Thus, for technical reasons, we prefer to define um to be the solution to (1.3) for
(Zi )

m
i=1 ∈ Om,0,2 and um = u for (Zi )

m
i=1 /∈ Om,0,2.

For the statement of our main result, we introduce u ∈ Ḣ1(R3) as the unique
weak solution to the Brinkman equations

−�u + (ρu − j) + ∇ p = h, div u = 0 in R
3. (1.4)

We remark that this problem is well-posed due to the assumptions (H2) and (H3)
(note that j also has compact support and hence j ∈ Ḣ−1(R3)).

Moreover, we introduce the solution operator A for the Brinkman equations
with vanishing flux j . More precisely, A, which depends on ρ, maps g to to the
solution w of the equation

−�w + ρw + ∇ p = g, div w = 0 in R
3. (1.5)

Theorem 1.2. Let h ∈ Ḣ−1(R3) and let um ∈ Ḣ1(R3) and u ∈ Ḣ1(R3) be the
unique weak solutions to (1.3) and (1.4). Then,

(i) For any β < 1/2 and any compact set K ⊆ R
3,

mβ‖um − u‖L2(K ) −→ 0 in probability;

(ii) For every g ∈ L2(R3) with compact support,

m1/2(g, um − u) −→ ξ [g]
in distribution, where ξ is a Gaussian field with mean zero and covariance

E[ξ [g1]ξ [g2]] =
ˆ

R3×R3

(
(u(x) − v) · (Ag1)(x)

)(
(u(x) − v) · (Ag2)(x)

)
f (dx, dv)

− (ρu − j, Ag1)L2 (ρu − j, Ag2)L2

(1.6)

for all g1, g2 ∈ L2(R3) with compact support.

Remark 1.3. (i) The analogous result holds when the Stokes equations are replaced
by the Poisson equation. Also for the Poisson equation, the result is new, see the
discussion in Sect. 1.2. For the sake of conciseness, we do not state the result in
a separate theorem but only point out the necessary adaptations: Instead of the
Stokes equations (1.3), (1.4) and (1.5) we consider Poisson equations and the
quantities Vi become scalars as well as um, u, h, j , etc. Moreover, reflecting
that the capacity of a ball of radius R is 4π R, one should replace (1.2) by

Rm = 1

4πm
. (1.7)
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(ii) For the proof, we will show the following statement that implies (ii), see Theo-
rem 3.1 and Propositions 3.2–3.3: Denoting � the underlying probability space,
let σm ∈ L2(�; L2

loc(R
3)) be the i.i.d. random fields (cf. (2.21)) given by

σi = m−1/2 (A(ρu − j) − (A(u(Xi ) − Vi )δXi )
)

(1.8)

and τm :=∑m
i=1 σi . Then, for all β < 1/2

m1/β‖m1/2(um − u) − τm‖L2(K ) → 0 in probability. (1.9)

The assertion then follows from a standard CLT upon computing the covariance
of σ1. In classical stochastic homogenization of elliptic PDEs with oscillating
coefficients, the analogue of the convergence (1.9) is known as pathwise struc-
ture of fluctuations (see e.g. [11]). A heuristic explanation for this pathwise
structure will be given in Sect. 2.

(iii) Formally, we can write ξ = Aζ , where ζ accounts for the fluctuations of the
drag force j −ρu. The appearance of the second term on the right-hand side of
(1.6) is classical for the fluctuations in m-particle systems, see e.g. [3], and is
supposed to disappear if we modeled the particles by a Poisson Point Process
instead. In particular, one can expect in this case, at least formally, ξ = Aζ with

ζ =
(ˆ

(v − u) ⊗ (v − u) f (·, dv)

) 1
2

W,

where W is space white noise. This (and also the form of σi in (1.8)) means that
the fluctuations are solely caused by the fluctuations of the effective particle
drag forces Vi − u(Xi ) due to the fluctuations of the positions and velocities
of the particles. No other information on the Dirichlet boundary conditions is
retained. The fluctuations of the drag force are then transferred to fluctuations
of the fluid velocity u via the long-range solution operator A of the Brinkman
equations.

(iv) The rate of convergence in part (i) of Theorem 1.2 is optimal in view of part
(ii). More precisely, since ξ �= 0 in general, part (i) cannot hold for β = 1/2.
By interpolating the estimate in part (i) with the energy bound, one obtains a
convergence in Hs

loc for any s < 1 with rate m−β+s/2 for any β < 1/2, though.
This might not be optimal, though. Indeed, we will show that the fluctuations
m1/2(um − u) are bounded in Hs

loc, s < 1/2 (cf. Proposition 3.3).

Possible Generalizations We briefly comment on three aspects of possible gener-
alizations and improvements of our main result. We address: (1) random radii of the
particles; (2) more general distributions of particle positions; (3) space dimensions
different from d = 3; (4) different notions of probabilistic convergence in part (i)
of the main theorem.

1. Indeed, it is not difficult to extend the above result to the case where the radii
of the particles are also random. More precisely, assume that the radius of each
particle is Rm

i = ri Rm with Rm as in (1.2), respectively. Assume that the radii ri

are independent bounded random variables, also independent of the positions,



   50 Page 6 of 52 Arch. Rational Mech. Anal.          (2024) 248:50 

with expectation Er = 1. Then, the assertions of Theorem 1.2 still hold with
an additional factor Er2 in front of the first term on the right-hand side of
the covariance. In order not to further burden the presentation, we restrict our
attention to the case of identical radii.

2. For the sake of simplicity, we restrict our analysis to m i.i.d. particles. As
mentioned in Remark 1.3 (iii), we expect the result to extend to (inhomo-
geneous) Poisson Point Processes. Moreover, we expect similar results for
sufficiently mixing processes. For instance, assume that the m particles are
identically distibuted with Vi = 0 for all 1 � i � m, i.e. f = ρ ⊗ δ0
and let ρ2 denote the 2-particle correlation function, i.e., E(g(X1, X2)) =´
R3×R3 g(x1, x2) dρ2(x1, x2). Assume that the process is mixing in the sense

of

∣
∣
∣ρ2

( x1

m1/3 ,
x2

m1/3

)
− ρ

( x1

m1/3

)
ρ
( x2

m1/3

)∣
∣
∣ �

(

1 + |x1 − x2|
m1/3

)−β

for some β > 3. Then, τm = ∑m
i=1 σi with σi as in (1.8) still has a bounded

variance which seems necessary for the fluctuations to be of order m−1/2. We
point out, that the condition β > 3 corresponds to the one under which the
fluctuations have been shown to obey the central limit scaling in [7] in the
case of oscillating coefficients. However, the probabilistic estimates in Sect. 5
involve expressions with up to 5 different particles. Hence, more assumptions
on the particle correlations are likely to be necessary when the particles are not
independently distributed.

3. Regarding the space dimension, our analysis is restricted to the physically most
relevant three-dimensional case. Applying the same techniques in dimension
d = 2 seems possible with additional technicalities due the usual issues regard-
ing the capacity of a set in d = 2.

We emphasize though that, for d � 4, we do not expect Theorem 1.2 to continue to
hold without structural changes. More precisely, we expect that in higher dimen-
sions, the fluctuations occur at a higher rate (than m−1/2). Moreover, at leading
order, we expect local effects to dominate rather than the long range fluctuations
caused by the the fluctuations of the drag force in d = 3 (cf. Remark 1.3 (iii)).
The reason for this is that the volume occupied by the particles becomes too big.
Indeed, in order for the homogenized equation (1.4) to remain the Brinkman equa-
tions, the critical scaling of the radius of m spherical particles in dimension d � 3
is Rm ∼ m−1/(d−2). The results cited above ensure that under this scaling we still
have um ⇀ u weakly in Ḣ1(Rd). However, in the case when the particle velocities
are all zero, i.e. f = ρ ⊗ δ0, we obtain as a trivial upper bound for the rate of
convergence in L p

loc

‖um − u‖L p
loc(R

3) �‖um − u‖L p(∪m
i=1 Bi ) = ‖u‖L p(∪m

i=1 Bi ) ∼
(

L d

(
m⋃

i=1

Bi

)) 1
p

∼ m− 2
p(d−2) .
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This shows that Theorem 1.2 cannot hold in this form for d � 5. Moreover, in
dimension d = 4, this error is of critical order, which suggests that the analysis of
the fluctuations is much more delicate. One might expect, though, that the result
remains true in d ∈ {4, 5} by changing the space L2

loc to L p
loc for p sufficiently

small such that ‖1∪m
i=1 Bi }‖L p � m−1/2. However, inspecting more carefully that

the effect of the Dirichlet condition at the particles decays like the inverse distance
and that the typical particle distance is m−1/d , reveals that (with overwhelming
probability)

‖um − u‖L p
loc(R

3) � m− 2
d

for all p < d
d−2 (such that the fundamental solution of the Stokes equations is in

L p
loc).

We do not only believe that the scaling of the fluctuations change but also their
nature. Indeed, the long-range fluctuations caused by the fluctuations of the drag
force in d = 3 (cf. (1.8)) is not adapted to locally correct the failure of the Dirichlet
boundary condition at the particles. Roughly speaking, the fluctuations in d = 3 at a
given point is to leading order a collective long range effect due to the fluctuations of
all particle positions and velocities. In d � 5, however, we expect the fluctuation to
leading order to be a short range effect due to the fluctuation of the nearest particle
position and its velocity. For d = 4, we expect both effects to be of the same order.

4. Instead of convergence in probability, one could aim for convergence in L p. Fol-
lowing the proof of the theorem reveals that we actually prove

Em[1Om,0,5‖um − u‖2
L2

loc
] � Cm−1. (1.10)

This implies Em[‖um − u‖L2
loc

] � Cm−1/6 by Lemma 1.1, provided an a priori

bound Em[‖um − u‖2
L2

loc
] � C . Such a bound has been obtained in [5]. Although

different particle distributions are considered in [5], one readily checks that [5,
Lemma 3.4] also implies such an a priori estimate in our setting. Again, the power
m−1/6 is presumably not optimal and one could aim for an estimate Em[‖um −
u‖2

L2
loc

] � Cm−1. Following our present approach, one would need to adapt the

approximation that we use for um in the set Om,0,5. The adaptation needs to take
into account in a more precise way the geometry of the particle configuration and
one could take inspiration from the proof of [5, Lemma 3.4]. However, it seems
unavoidable that this approach would drastically increase the technical part of our
proof.

Comments on Assumption (H1)–(H3) The second moment bound in the first
assumption, (H1), is very natural. It ensures that the solution um is bounded in
L2(�; Ḣ1(R3)), where � denotes the probability space. Moreover, the covariance
of the fluctuations provided in Theorem 1.2 involves this second moment.

The regularity assumptions on ρ and j , (H2)–(H3), are of more technical nature:
they ensure that both j and ρu, which appear in the Brinkman equations (1.4), lie
in Ḣ1(R3)∩ Ḣ−1(R3). The Ḣ−1 property will be very useful to treat those terms as
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source terms of the Stokes equations. On the other hand, the H1-regularity allows
us to quantify the differences of those terms to some discrete and averaged versions
involved in the setup of appropriate approximations for um that we detail in Sect. 2.

1.2. Discussion of Related Results

Previous Results on the Derivation of the Brinkman Equations As indicated at
the beginning of this introduction, there is a huge literature on the derivation of the
Brinkman equations and corresponding results for the Poisson equation where one
could mention for instance [6,9,19,26–28]. For a more complete list and discussion
of this literature, we refer the reader to [18,19].

In [5,18], the Brinkman equations have been derived under very mild assump-
tions on the particle configurations. In [18], the authors considered zero particle
velocities. The particle positions can be distributed to rather general stationary pro-
cesses, and the radii are i.i.d. with only a (1 + β) moment bound. This allows
for many clusters of overlapping particles. A corresponding result for the Poisson
equation has been obtained in [19].

On the other hand, in [5], the particle radii are identical but their velocities
are not necessarily zero. The authors consider more general particle distributions
than i.i.d. configurations. The Brinkman equations are derived in this setting under
assumptions including a 5th moment bound of the velocities. The result in [5] comes
with an estimate of the convergence rate um → u in L2

loc. However, this does not
allow to deduce convergence faster than m−β with β < 1/95.

Results About Explicit Approximations for um A widespread approach to ho-
mogenization of the Poisson and Stokes equations in perforated domains with ho-
mogeneous Dirichlet boundary conditions is the so-called method of oscillating
test functions which is used for instance in [2,6]. An oscillating test function wm

is constructed in such a way that it vanishes in the particles and converges to 1
weakly in H1

loc. This function wm carries the information of the capacity (or re-
sistance) of the particles. A natural question is then, how well wmu approximates
um . Since the function wm is usually constructed explicitly, this allows for an ex-
plicit approximation for um . In [2,25] it is shown that for periodic configurations
‖um − wmu‖Ḣ1 � Cm−1/3. This error is of the order of the particle distance and
thus the optimal error that one can expect due to the discretization. Similar results
have been obtained in [20] for the random configurations studied in [19], with a
larger error due to particle clusters.

In the recent papers [13,14], higher order approximations for the Poisson and
the Stokes equations in periodically perforated domains are analyzed.

In the present paper, we do not work with oscillating test functions. However,
we derive equally explicit approximations for um which we will denote by ũm (see
Sect. 2). As we will show in Theorem 3.1, we have ‖um − ũm‖Ḣ1 � Cm−β for all
β < 1. This error is much smaller than the one obtained in [2,25]. The reason for
that is twofold. First, we take into account the leading order discretization error in
terms of fluctuations. Second, we benefit from the randomness which reduces the
higher order dicretization errors on average. We believe that Theorem 3.1 could be of
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independent interest. In particular concerning the rigorous derivation of the Vlasov–
Stokes equations (1.1), such explicit accurate approximations of um in good norms
seem essential. Indeed, for the related derivation of the transport-Stokes system for
inertialess suspensions in [23], corresponding approximations have been crucial.

Related Results Concerning Fluctuations and Preliminary Comments on Our
Proof In the classical theory of stochastic homogenization of elliptic equations
with oscillating coefficients, the study of fluctuations has been a very active research
field in recent years. Of the vast literature, one could mention for example [1,7,10,
11].

Regarding the homogenization in perforated domains, the literature is much
more sparse. In the recent paper [8], the authors were able to adapt some of the
techniques of quantitative stochastic homogenization of elliptic equations with os-
cillating coefficients to the Stokes equations in perforated domains with sedimen-
tation boundary conditions which are different from the ones considered here.

Related results to Theorem 1.2 have been obtained in [15] for the Poisson
equation and in [29] for the Stokes equations. However, in these papers, the authors
were only able to treat the Poisson and the Stokes equations corresponding to (1.3)
with an additional large massive term λum : they obtained a result corresponding to
Theorem 1.2 provided that λ is sufficiently large (depending on ρ).

The approach in [15,29] follows the approximation of the solution um by the so-
called method of reflections. The idea behind this method is to express the solution
operator of the problem in the perforated domain in terms of the solutions operators
when only one of the particles is present. More precisely, let v0 be the solution of the
problem in the whole space without any particles. Then, define v1 = v0 +∑i v1,i

in such a way that v0 + v1,i solves the problem if i was the only particle. Since
v1,i induces an error in B j for j �= i , one adds further functions v2,i , this time
starting from v1. Iterating this procedure yields a sequence vk . In general, vk is not
convergent. With the additional massive term though, one can show that the method
of reflections does converge, provided that λ is sufficiently large.

In [24], the first author and Velázquez showed how the method of reflections can
be modified to ensure convergence without a massive term and how this modified
method can be used to obtain convergence results for the homogenization of the
Poisson and Stokes equations. In order to study the fluctuations, a high accuracy of
the approximation of um is needed. This would make it necessary to analyze many
of the terms arising from the modified method of reflections which we were allowed
to disregard for the qualitative convergence result of um in [24]. It seems very hard
to control sufficiently well these additional terms which either do not arise or are
of higher order for the (unmodified) method of reflections used in [15,29].

Thus, in the present paper, we do not use the method of reflections but follow
an alternative approach to obtain an approximation for um . Again, we approximate
um by ũm = w0 +∑i wi , where wi solves the homogeneous Stokes equations
outside of Bi . However, we do not take wi as in the method of reflections, where
it is expressed in terms of w0. Instead wi will depend on u, exploiting that we
already know that um converges to u. In contrast to the approximation obtained
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from the method of reflections, we will be able to choose wi in such a way that the
approximation ũm = w0 +∑i wi is sufficient to capture the fluctuations.

A related approach has recently been used in a parallel work byGérard-Varet
in [17] to give a very short proof of the homogenization result um ⇀ u weakly in
Ḣ1 under rather mild assumptions on the positions of the particles. However, since
we study the fluctuations in this paper, we need a more refined approximation than
the one used in [17]. More precisely, to leading order, the function wi will only
depend on Vi and the value of u at Bi . However, wi will also include a lower-order
term which is still relevant for the fluctuations. As we will see, this lower-order
term will depend in some way on the fluctuations of the positions of all the other
particles.

1.3. Organization of the Paper

The rest of the paper is devoted to the proof of the main result, Theorem 1.2.
In Sect. 2, we give a precise definition of the approximation ũm = w0 +∑i wi ,

outlined in the paragraph above, as well as a heuristic explanation for this choice.
In Sect. 3, we state three key estimates regarding this approximation and show

how the proof of Theorem 1.2 follows from these estimates.
The proof of these key estimates contains a purely analytic part as well as a

stochastic part which are given in Sects. 4 and 5, respectively.

2. The Approximation for the Microscopic Solution um

2.1. Notation

We introduce the following notation that is used throughout the paper.
We denote by G : Ḣ−1(R3) → Ḣ1(R3) the solution operator for the Stokes

equations. This operator is explicitly given as a convolution operator with kernel
g, the fundamental solution to the Stokes equations, i.e.,

g(x) = 1

8π

(
Id

|x | + x ⊗ x

|x |3
)

. (2.1)

We recall from Theorem 1.2 that A : Ḣ−1(R3) → Ḣ1(R3) is the solution
operator for the limit problem (1.5). We observe the identities

(1 + Gρ)A = G, A(1 + ρG) = G, A = G − AρG. (2.2)

We remark that multiplication by ρ maps from Ḣ1(R3) to H1(R3) ∩ Ḣ−1(R3).
Indeed, this follows from ρ ∈ W 1,∞(R3) with compact support and the fact that
Ḣ1(R3) ⊆ L6(R3) which implies L6/5(R3) ⊆ Ḣ−1(R3). Furthermore, observe
that A and G are bounded operators from L2(R3)∩H−1(R3) to C0,α(R3), α � 1/2,
and from H1(R3)∩ H−1(R3) to W 1,∞(R3). In particular, Aρ and Gρ are bounded
operators from L2(supp ρ) (and in particular from Ḣ1(R3)) to L∞(R3) and from
Ḣ1(R3) to W 1,∞(R3).
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We denote G−1 = −�. Then we have GG−1 = G−1G = Pσ , where Pσ

is the projection to the divergence free functions. In fact, we will use G−1 in the
expression AG−1 only. We observe that A = APσ and thus

AG−1G = A.

We denote by Bm(x) = BRm (x) and the normalized Hausdorff measure on the
sphere ∂ Bm(x) by

δm
x := H2|∂ Bm (x)

H2(∂ Bm(x))
,

and write δm
i := δm

Xi
.

Moreover, we denote for any function ϕ ∈ L1(Bm(x)) the average on Bm(x)

by (ϕ)x , i.e.

(ϕ)x :=
 

Bm (x)

ϕ(y) dy := 1

|Bm(x)|
ˆ

Bm (x)

ϕ(y) dy,

and we abbreviate (ϕ)i := (ϕ)Xi .
We will need a cut-off version of the fundamental solution. To this end, let

η ∈ C∞
c (B3(0)) with 1B2(0) � η � 1B3(0) and ηm(x) := η(x/Rm). Now consider

g̃m = (1 − ηm)g. We need an additional term in order to make g̃m divergence free.
This is obtained through the classical Bogovski operator (see e.g. [16, Theorem 3.1])
which provides the existence of a sequence ψm ∈ C∞

c (B3Rm \B2Rm ) such that
div ψm = div(ηm g) and

‖∇kψm‖L p(R3) � C(p, k)‖∇k−1 div(ηm g)‖L p(R3) (2.3)

for all 1 < p < ∞ and all k � 1. By scaling considerations, the constant C is
independent of m. Then, we define Gm as the convolution operator with kernel

gm = (1 − ηm)g + ψm . (2.4)

2.2. Approximation of um Using Monopoles Induced by u

To find a good approximation for um , we observe that um satisfies

−�um + ∇ p = h1�m +
∑

i

hi , in R
3 (2.5)

for some functions hi ∈ Ḣ−1(R3), each supported in Bi , which are the force
distributions induced in the particles due to the Dirichlet boundary conditions.

We begin by observing that for most of the configurations of particles, the par-
ticles are sufficiently separated which allows us to determine good approximations
for hi by ignoring its direct interaction with another particle. As we will see, our
approximation for hi will only incorporate the effect of the other particles through
the limit u.
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To be more precise, let 0 < ν < 1/3. Then, by Lemma 1.1, we know that, for
most of the particles, Bmν Rm (Xi ) only contains the particle Bi . In this case, hi is
uniquely determined by the problem

⎧
⎨

⎩

−�vi + ∇ p = h in Bmν Rm (Xi )\Bi ,

vi = Vi in Bi ,

vi = um on ∂ Bmν Rm (Xi ).

(2.6)

We simplify this problem to derive an approximation for hi . First, we drop the
right-hand side h in (2.6). Its contribution is expected to be negligible, since the
volume of Bmν Rm (Xi )\Bi is small compared to the difference of the boundary data
at ∂ Bi and ∂ Bmν Rm (Xi ) which is typically of order 1. Next, we know that typically
∂ Bmν Rm (Xi ) is very far from any particle. Since um ⇀ u in Ḣ1(R3), we therefore
replace (2.6) by

⎧
⎨

⎩

−�vi + ∇ p = 0 in R
3\Bi ,

vi = Vi in Bi ,

vi (x) → (u)i as |x − Xi | → ∞.

(2.7)

Here, we could also have chosen u(Xi ) instead of (u)i . The precise choice that we
make will turn out to be convenient later. By our choice of Rm in (1.2), the explicit
solution of (2.7) is given by vi which solves −�vi + ∇ p = hi in R

3 with

hi = Vi − (u)i

m
δm

i .

Therefore, resorting to (2.5), we are led to approximate um by

ũm := G

[

h − 1

m

m∑

i=1

((u)i − Vi )δ
m
i

]

. (2.8)

We emphasize that for this approximation it is not important to know the function
u. We only used that um ⇀ u in Ḣ1(R3) which is always true for a subsequence
by standard energy estimates. On the contrary, we can now identify the limit u.
Indeed, if we believe that ũm approximates um sufficiently well,

u ↼ um ≈ ũm = G

[

h − 1

m

m∑

i=1

((u)i − Vi )δ
m
i

]

⇀ G[h + j − ρu], (2.9)

which shows that u indeed solves (1.4).
This approximation ũm cannot fully capture the fluctuations, though. In the next

subsection we thus show how to refine this approximation.
We end this subsection by comparing this approximation to the one used in

[15,29] through the method of reflections. The first order approximation of the
method of reflections is given by ũm as defined in (2.8) but with Gh instead of u on
the right-hand side. Since this is a much cruder approximation, one needs to iterate
the approximation scheme. This only yields a convergent series in [15,29] due to
the additional large massive term. On the other hand, this series then approximates
um sufficiently well without the refinement that we introduce in the next subsection.
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2.3. Refined Approximation to Capture the Fluctuations

We make the ansatz that, macroscopically,

um = u + m− 1
2 ξm + o

(
m− 1

2
)
, (2.10)

where ξm is a random function which needs to be determined. We assume that the
fluctuations ξm are in some sense macroscopic, just as u, such that we can follow
the same approximation scheme as in the previous subsection.

More precisely, we adjust the Dirichlet problem (2.7) by adding m− 1
2 (ξm)i on

the right-hand side of the third line. This leads to the definition

ũm := G

[

h − 1

m

m∑

i=1

(
u − Vi + m− 1

2 ξm

)

i
δm

i

]

. (2.11)

We have not defined ξm yet. To make a good choice for ξm , the idea is to use
a similar argument as in (2.9) but only to take the limit m → ∞ in terms which
are of lower order. More precisely, we observe, again taking for granted that ũm

approximates um sufficiently well and using u = G(h + j − ρu),

u + m−1/2ξm ≈ um ≈ ũm = G

[

h − 1

m

m∑

i=1

(
u − Vi + m− 1

2 ξm

)

i
δm

i

]

= u + G

[

ρu − j − 1

m

m∑

i=1

(
(u)i − Vi

)
δm

i

]

− G

[
1

m

m∑

i=1

(
m− 1

2 ξm

)

i
δm

i

]

.

(2.12)
We expect

G

⎡

⎣
∑

j �=i

m− 1
2 (ξm) j

m
δm

j

⎤

⎦ = G
(
ρm− 1

2 ξm

)
+ O(m−1). (2.13)

Inserting this into (2.12), leads to

m−1/2ξm + G
(
ρm− 1

2 ξm
) ≈ G

[

ρu − j − 1

m

m∑

i=1

((u)i − Vi )δ
m
i

]

. (2.14)

This equation could be used as a definition of ξm . Although this turns out to be
a good approximation on the level of equation (2.10), we will now argue that this is
not the case for the definition of ũm in (2.11). Indeed, the right-hand side of (2.14)
is equal to (u)i − Vi in Bi to leading order. Hence, (m−1/2ξm)i would be of the
same order which would yield a contribution to ũm through ξm of order 1 instead
of order m−1/2.

Therefore, we need to be more careful and go back to microscopic considera-
tions: Since um = Vi in Bi and ũm ≈ um , we want to define ξm in such a way that
ũm ≈ Vi in Bi . Thus we want to compute ũm in Bi in order to find a good definition
of ξm . Since we expect ũm = ũm(Xi ) + O(m−1) in Bi (at least on average), we
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only compute ũm(Xi ), and by the same reasoning, we replace any average (ξm)i

by ξm(Xi ) at will. Then, we find, using again u = G(h + j − ρu),

ũm(Xi ) ≈ u(Xi ) + (G(ρu − j))(Xi ) − u(Xi ) + Vi − m− 1
2 ξm(Xi )

− G

⎡

⎣
1

m

∑

j �=i

(
u − Vj + m− 1

2 ξm
)

j δ
m
j

⎤

⎦ (Xi )

= Vi − m− 1
2 ξm(Xi ) + G

⎡

⎣ρu − j − 1

m

∑

j �=i

(
(u) j − Vj + m− 1

2 ξm
)

j

)
δm

j

⎤

⎦ (Xi ).

(2.15)
Requiring ũm(Xi ) = Vi yields

m− 1
2 ξm(Xi ) + G

⎡

⎣
1

m

∑

j �=i

m− 1
2 (ξm) j δ

m
j

⎤

⎦ (Xi ) = G

⎡

⎣ρu − j − 1

m

∑

j �=i

((u) j − Vj )δ
m
j

⎤

⎦ (Xi ).

(2.16)
In order to define ξm from this equation, we want the sum on the right-hand side to
include i such that the function is the same for every i . To this end, we notice that
by Lemma 1.1, with high probability, we have for all i and all W ∈ R

3

Gmδm
i W = 0 in Bi , Gδm

j W = Gmδm
j W in Bi for all j �= i, (2.17)

where Gm is the operator introduced at the end of Sect. 2.1. Hence, we replace the
right-hand side of (2.16) by

m− 1
2 �m := G(ρu − j) − 1

m

m∑

i=1

Gm (((u)i − Vi )δ
m
i

)
. (2.18)

We expect �m ∼ 1 since the right-hand side of (2.18) represents the fluctuations
of the discrete approximation of G(ρu − j). As before, we replace the sum on the
left-hand side of (2.16) by ρξm . Combining these approximations leads to

m− 1
2 (1 + Gρ)ξm = m− 1

2 �m . (2.19)

In view of (2.2), it holds (1+Gρ)AG−1 = Pσ . Since, �m is divergence free, (2.19)
leads to define ξm to be the solution of

ξm = AG−1�m . (2.20)

Note that the only difference between this definition of ξm and (2.14) is the replace-
ment of G by Gm . As mentioned above, we expect that, on a macroscopic scale,
the operators G and Gm are almost the same (we will make this argument rigorous
in Lemma 5.4). Therefore, in equation (2.10), we expect, that it does not play a
role (in L2

loc(R
3)) whether we take G or Gm . Consequently, as an approximation

for ξm , we introduce

τm := AG−1�̃m,

m−1/2�̃m := G(ρu − j) − 1

m

m∑

i=1

G((u(Xi ) − Vi )δXi ). (2.21)



Arch. Rational Mech. Anal.          (2024) 248:50 Page 15 of 52    50 

This function bears the advantage that it is the sum of i.i.d. random variables. Hence,
it is straightforward to study the limit properties of τm[g] := (g, τm). Notice that
we both replaced the average (u)i by the value in the center of the ball u(Xi ) and
δm

i by δXi . Since u ∈ Ḣ1(R3), τm is not defined for every realization of particles.
However, as we will see, it is well-defined as an L2-function on the probability
space with values in L2

loc(R
3).

3. Proof of the Main Result

The first step of the proof is to rigorously justify the approximation of um by
ũm , defined in (2.11) with ξm and �m as in (2.20) and (2.18).

Theorem 3.1. For all ε > 0 and all β < 1,

lim
m→∞Pm

[
mβ‖um − ũm‖Ḣ1(R3) > ε

]
→ 0.

The next step is to show that we actually have

ũm = u + m−1/2ξm + o(m−1/2),

which was the starting point of our heuristics, i.e. ξm indeed describes the fluc-
tuations of ũm around u. In contrast to Theorem 3.1, we can only expect local
L2-estimates since not even um − u is small in the strong topology of Ḣ1(R3).

Proposition 3.2. For all ε > 0, all bounded sets K ′ ⊆ R
3 and all β < 1,

lim
m→∞Pm

[
mβ‖ũm − u − m−1/2ξm‖L2(K ′) > ε

]
→ 0.

Combining Propositions 3.1 and 3.2, we observe that we only have to prove
the statements of Theorem 1.2 with um − u replaced by m−1/2ξm . We postpone the
proofs of Theorem 3.1 and Proposition 3.2 to Sect. 4.

The next proposition shows that, instead of ξm , we can actually consider τm

introduced in the previous section.

Proposition 3.3. For any bounded set K ′ ⊆ R
3 and every 0 � s < 1

2 there is a
constant Cs(K ′) > 0 independent of m such that

Em
[‖ξm‖2

Hs (K ′)
]

� Cs(K ′).

Let τm be defined by (2.21). Then,

lim sup
m→∞

m1−2s
Em

[
‖ξm − τm‖2

Hs (K ′)

]
� Cs(K ′).

We postpone the proof of Proposition 3.3 to Sect. 5.2.
Note that for s = 0, these estimates include the case L2(K ′) which we will use

now in order to prove Theorem 1.2. Indeed, Theorem 1.2 is a direct consequence
of the above results together with the classical Central Limit Theorem.
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Proof of Theorem 1.2. Due to the uniform bound on Em[‖ξm‖2
L2(K )

] from Propo-
sition 3.3, assertion (i) of the main theorem follows immediately from Theorem 3.1
and Proposition 3.2 since Ḣ1(R3) embeds into L2

loc(R
3).

Since convergence in probability implies convergence in distribution, Theorem
3.1 and Propositions 3.2 and 3.3 imply that it suffices to prove assertion (ii) of
Theorem 1.2 with ξm[g] replaced by τm[g] := (g, τm)L2(R3), i.e we need to prove
that

τm[g] → ξ [g]
in distribution for any g ∈ L2(R3) with compact support. Since τm[g] is a sum
of independent random variables, this is a direct consequence of the Central Limit
Theorem and the following computation for covariances: letting g1, g2 ∈ L2(R3)

with compact support, then

Em [τm[g1]τm[g2]]

= m−1
Em

⎡

⎣

(

g1,

m∑

i=1

A
(
ρu − j − (u(Xi ) − Vi )δXi

)
)

L2(R3)

(

g2,

m∑

k=1

A
(
ρu − j − (u(Xk) − Vk)δXk

)
)

L2(R3)

⎤

⎦

=
ˆ

R3×R3
(g1, A(ρu − j − (u(x) − v)δx ))L2(R3)

(g2, A(ρu − j − (u(x) − v)δx ))L2(R3) f (dx, dv)

=
ˆ

R3×R3
(g1, A((u(x) − v)δx ))L2(R3) (g2, A((u(x) − v)δx ))L2(R3) f (dx, dv)

− (Ag1, ρu − j)L2(R3)(Ag2, ρu − j)L2(R3)

=
ˆ

R3×R3
((u(x) − v) · (Ag1)(x))((u(x) − v) · (Ag2)(x)) f (dx, dv)

− (ρu − j, Ag1)L2(R3) (ρu − j, Ag2)L2(R3) .

Here we used that Aδx ∈ L2
loc(R

3) (see Lemma 5.3) and that A is a symmetric
operator on L2(R3). This finishes the proof. ��

4. Proof of Theorem 3.1 and Proposition 3.2

In this section, we will reduce the proof of Theorem 3.1 and Proposition 3.2 to
proving the following single probabilistic lemma. The proof of this lemma, which
is given in Sect. 5.3, is the main technical part of this paper. It makes rigorous the
heuristic equation (2.13).

As we discussed in the heuristic arguments, we will exploit in what follows that
the probability of having very close particles is vanishing, as stated in Lemma 1.1.
In the notation of this lemma, we abbreviate as follows:

Om = Om,0,5.
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Lemma 4.1. Let �m,�m, �m and �̃m be defined by

�m := (Gm − G)

(
1

m

∑

i

((u)i − Vi )δ
m
i

)

,

�m := Gm

[
∑

i

(u)i − Vi

m
δm

i

]

+ G(ρm− 1
2 ξm),

�m := G(ρm− 1
2 ξm) − Gm

[
∑

i

m− 1
2 (ξm)i

m
δm

i

]

,

�̃m := G(ρm− 1
2 ξm) − G

[
∑

i

m− 1
2 (ξm)i

m
δm

i

]

.

Then,

lim sup
m→∞

m2
Em

[
1Om ‖∇ (Gh + �m + �m) ‖2

L2(∪i Bi )

]
< ∞,

lim sup
m→∞

m4
Em

[
1Om ‖�m‖2

L2(∪i Bi )

]
< ∞,

lim sup
m→∞

m2
Em

[
1Om ‖�̃m + �m‖2

L2
loc(R

3)

]
< ∞.

The proof of this lemma is the main technical work of the present paper. We
postpone it to Sect. 5.3.

Proof of Proposition 3.2. Recall the definition of ũm from (2.11). We compute
using u = G(h − ρu + j) and ξm = AG−1�m = �m − Gρξm (cf. (2.2)) and the
definition of �m from (2.18)

ũm − u − m−1/2ξm = G

(

h − 1

m

∑

i

(u − Vi + m−1/2ξm)iδ
m
i

)

− u − m−1/2ξm

= G

(

ρu − j − 1

m

∑

i

(u − Vi + m−1/2ξm)iδ
m
i

)

− m−1/2�m + m−1/2Gρξm

= m−1/2G

(

ρξm − 1

m

∑

i

(ξm)iδ
m
i

)

+ (Gm − G)

(
1

m

∑

i

((u)i − Vi )δ
m
i

)

= �̃m + �m .

Hence,

Pm

[
mβ‖ũm − u − m−1/2ξm‖L2(K ′) > ε

]

� Pm[Oc
m] + Cε−2m2β

Em

[
1Om ‖�̃m + �m‖2

L2(K ′)

]

and we now conclude by Lemmas 1.1 and 4.1. ��
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Proof of Theorem 3.1. We observe that the assertion follows from the following
claim: There exists a universal constant C such that for all (X1, . . . , Xm) ∈ Om

and all m sufficiently large

‖ũm − um‖2
Ḣ1(R3)

� C‖∇(u + G(ρu − j)) + ∇�m‖2
L2(∪i Bi )

+ ‖∇�m‖2
L2(∪i Bi )

+ Cm2‖�m‖2
L2(∪i Bi )

. (4.1)

Indeed, accepting the claim for the moment, let β < 1 and ε > 0. Then, using
again u = G(h − ρu + j)

Pm

[
mβ‖ũm − um‖Ḣ1(R3) > ε

]

� Pm [Oc
m ] + Cε−2m2β

Em

[
1Om

(
‖∇ (Gh + �m + �m) ‖2

L2(∪i Bi )
+ m2‖�m‖2

L2(∪i Bi )

)]
.

Thus, the assertion follows again from Lemmas 1.1 and 4.1.
It remains to prove the claim above. It follows from the fact that um − ũm solves

the homogeneous Stokes equations outside of the particles.
Let (X1, . . . Xm) ∈ Om . Then, by definition of this set, the balls B2Rm (Xi ) are

disjoint for m sufficiently large and we may assume in the following that this is
satisfied.

By definition of um and ũm , we have −�(ũm − um) + ∇ p = 0 in R
3\ ∪i Bi .

By classical arguments which we include for convenience, this implies

‖ũm − um‖2
Ḣ1(R3)

� C

(

‖∇ũm‖2
L2(∪i Bi )

+ 1

m

∑

i

(ũm − Vi )
2
i

)

. (4.2)

Indeed, ũm − um minimizes the Ḣ1(R3)-norm among all divergence free func-
tions w with w = ũm − um = ũm − Vi in ∪i Bi . Thus, to show (4.2), it suffices
to construct a divergence free function w with w = ũm − Vi in ∪i Bi such that
‖w‖Ḣ1(R3) is bounded by the right-hand side of (4.2). Since the balls B2Rm (Xi )

are disjoint as (X1, . . . , Xm) ∈ Om , we only need to construct divergence free
functions wi such that wi ∈ H1

0 (B2Rm (Xi )), wi = ũm − Vi in Bi and

‖wi‖2
Ḣ1(R3)

� C

(

‖∇ũm‖2
L2(Bi )

+ 1

m
(ũm − Vi )

2
i

)

.

It is not difficult to see that such functions wi exist. For the convenience of the
reader, we state this result in Lemma 4.2 below. Thus, the estimate (4.2) holds.

It remains to prove that the right-hand side of (4.2) is bounded by the right-hand
side of (4.1). To this end, let x ∈ Bi for some 1 � i � m. We resort to the definition
of ũm in (2.11) to deduce, analogously as in (2.15), that

ũm(x) = u(x) − (u)i + Vi − m− 1
2 (ξm)i + G(ρu − j)(x)

− G

⎡

⎣
∑

j �=i

(u) j − Vj

m
δm

j

⎤

⎦ (x) − G

⎡

⎣
∑

j �=i

m− 1
2 (ξm) j

m
δm

j

⎤

⎦ (x).
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Recalling the definitions of ξm and �m from (2.20) and (2.18), the identity ξm =
�m − Gρξm implies that for all y ∈ Bi

m− 1
2 ξm(y) =G(ρu − j)(y) − G

⎡

⎣
∑

j �=i

(u) j − Vj

m
δm

j

⎤

⎦ (y) − G(ρm− 1
2 ξm)(y),

where we used that (X1, . . . , Xm) ∈ Om to replace Gm by G. Thus,

ũm(x) − Vi = u(x) − (u)i + G(ρu − j)(x) − (G(ρu − j))i +
⎛

⎝G

⎡

⎣
∑

j �=i

(u) j − Vj

m
δm

j

⎤

⎦

⎞

⎠

i

− G

⎡

⎣
∑

j �=i

(u) j − Vj

m
δm

j

⎤

⎦ (x) + (G(ρm− 1
2 ξm))i − G

⎡

⎣
∑

j �=i

m− 1
2 (ξm) j

m
δm

j

⎤

⎦ (x)

= (u + G(ρu − j))(x) − (u + G(ρu − j))i + �m(x) − (�m)i + �m(x).

To conclude the proof, we again use (X1, . . . , Xm) ∈ Om to replace G by Gm

appropriately. Finally, we combine this identity with (4.2) and the estimate (�m)2
i �

Cm3‖�m‖2
L2(Bi )

. ��

Lemma 4.2. Let x ∈ R
3, R > 0 and w ∈ H1(BR(x)) be divergence free. Then,

there exists a divergence free function ϕ ∈ H1
0 (B2R(x)) with ϕ = w in BR(x) and

‖ϕ‖2
Ḣ1(R3)

� C
(
‖∇w‖2

L2(BR(x))
+ R(w)2

x,R

)
,

where (w)x,R = ffl
BR(x)

w dx and C is a universal constant.

Proof. We write w = w − (w)x,R + (w)x,R . By a classical extension result for
Sobolev functions, there exists ϕ1 ∈ H1

0 (B2R(x)) such that ϕ1 = w − (w)x,R in
BR(x) and

‖∇ϕ1‖L2(R3) � C‖∇w‖L2(BR(x)).

By scaling, the constant C does not depend on R.
Furthermore, we take ϕ2 = (w)x,RθR where θR ∈ C∞

c (B2R(x)) is a cut-off
function with θR = 1 in BR(x) and ‖∇θR‖∞ � C R−1. Then,

‖∇ϕ2‖2
L2(R3)

� C R(w)2
x,R .

Finally, applying a standard Bogovski operator, there exists a function ϕ3 ∈
H1

0 (B2r (x)\BR(x)) such that div ϕ3 = − div(ϕ1 + ϕ2) and

‖∇ϕ3‖L2(R3) � C‖ div(ϕ1 + ϕ2)‖L2(R3).

Again, the constant C is independent of R by scaling considerations.
Choosing ϕ = ϕ1 + ϕ2 + ϕ3 finishes the proof. ��
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5. Proof of Probabilistic Statements

This section contains the main technical part of the proof of our main result,
the probabilistic estimates stated in Proposition 3.3 and Lemma 4.1. The strategy
that we will use to estimate all these terms is to expand the square of sums over the
particles and then to use independence of the positions of the particles to calculate
the expectations, distinguishing between terms where different particles appear
and where one or more particles appear more than once. Then, it will remain to
observe that combinatorially relevant terms cancel and that the remaining terms can
be bounded sufficiently well, uniformly in m. This proof is quite lengthy. Indeed,
expanding the square will lead to terms with up to 5 indices, thus giving rise to a
huge number of cases that need to be distinguished.

However, there are only relatively few and basic analytic tools that we will rely
on to obtain these cancellations and estimates. These are collected in the following
subsection. Their proofs are postponed to the appendix.

Some of those estimates concern expressions that will recurrently appear when
we take expectations. Indeed, since many of the terms in Lemma 4.1 contain L2-
norms in the particles Bi , we will often deal with terms of the form

Em

[
1Bm

i
(x)
]

=
ˆ

R3×R3
1Bm

y
(x) f (dy, dv) =

ˆ

R3
1Bm

y
(x)ρ(y) dy = m−3(ρ)x .

Another term that recurrently appears due to the definitions of ũm and ξm is

(Rw)(x) := Em
[
(w)iδ

m
i

]
(x) =

ˆ

R3
ρ(y)(w)yδ

m
y (x) dy =

 

∂ Bm
x

ρ(y)(w)y dy.

(5.1)

To justify this formal computation one tests the expression with a function ϕ ∈
C∞

c (R3) and performs some changes of variables.
For the sake of a more compact notation, we introduce

Wi := (u)i − Vi , (5.2)

F := ρu − j, (5.3)

F(x) := Em
[
Wiδ

m
i

]
(x) =

ˆ

R3×R3
((u)y − v)δm

y (x) f (dy, dv)

=
 

∂ Bm
x

ρ(y)(u)y − j (y) dH2(y). (5.4)
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5.1. Some Analytic Estimates

In this subsection, we collect some auxiliary observations and estimates for
future reference. All the proofs of the results in this subsection can be found in
Sect. A of the appendix.

In what follows, we denote by K the bounded set defined by

K := {x ∈ R
3 : dist(x, supp ρ) � 1}. (5.5)

Note that Bi ⊆ K almost surely for all 1 � i � m and all m � 1.

Lemma 5.1. (i) For all 1 � p � ∞ and all w ∈ L p(R3)

‖(w)·‖L p(R3) � ‖w‖L p(R3). (5.6)

(ii) For all α > 0, all 1 � p � ∞, and all w ∈ L p(K ), we have

‖ρα(w)·‖L p(R3) � C‖w‖L p(K ), (5.7)

where the constant C depends only on ρ, p and α.
(iii) For all w ∈ Ḣ1(R3)

‖w − (w)‖L2(R3) � m−1‖w‖Ḣ1(R3). (5.8)

(iv) The operator R defined in (5.1) is a bounded operator from L2(K ) to L2(R3)∩
Ḣ−1(R3) and from H1(K ) to H1(R3). Moreover, there is a constant C depend-
ing only on ρ such that

‖(R − ρ)w‖L2(R3) � Cm−1‖w‖H1(K ), (5.9)

‖(R − ρ)w‖Ḣ−1(R3) � Cm−1‖w‖L2(K ). (5.10)

(v) We have

sup
m

‖F‖Ḣ−1(R3) + ‖F‖Ḣ−1(R3) + ‖F‖L2(R3) + ‖F‖L2(R3) + Em[W 2
1 ] < ∞,

(5.11)

and there is a constant C depending only on ρ and j such that

‖F − F‖L2(R3) + ‖F − F‖Ḣ−1(R3) � Cm−1 (‖u‖H1(K ) + ‖ j‖H1(R3)

)
.

(5.12)

Lemma 5.2. There exists a constant C such that for all x, y ∈ R
3 and all m � 1,

we have

|Gδm
y |(x) � C

1

|x − y| + m−1 , (5.13)

|Aδm
y |(x) � C

(

1 + 1

|x − y| + m−1

)

, (5.14)

|∇Gδm
y |(x) � C

1

|x − y|2 + m−2 . (5.15)
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In particular, for any bounded set K ′

sup
y∈R3

(
‖Gδm

y ‖L2(K ′) + ‖Aδm
y ‖L2(K ′)

)
� C(K ′). (5.16)

Moreover, for all m � 1 and y ∈ R
3, it holds

‖δm
y ‖Ḣ−1(R3) � Cm1/2, (5.17)

with a constant independent of y and m.

Lemma 5.3. For every 0 � s < 1
2 and every bounded set K ′

sup
y∈R3

‖Aδy‖Hs (K ′) + ‖Gδy‖Hs (K ′) � Cs(K ′). (5.18)

Furthermore, for every 0 < ε � 1
2

‖δm
y − δy‖H−3/2−ε(K ′) � C(K ′)m−ε. (5.19)

Lemma 5.4. For any k ∈ N, Gm is a bounded operator from Ḣk(R3) to Ḣ k+2(R3).
Moreover, there is a constant C that depends only on k such that

‖G − Gm‖Ḣ k (R3)→Ḣ k(R3) � Cm−2, (5.20)

‖G − Gm‖Ḣ k (R3)→Ḣ k+1(R3) � Cm−1. (5.21)

5.2. Proof of Proposition 3.3

For the proof of Proposition 3.3, we first introduce another function, σm , inter-
mediate between τm and ξm . We first show that ξm is close to σm in the following
lemma, which we will also use in the proof of Lemma 4.1.

From now on, we will use the notation A � B for scalar quantities A and B
whenever there is a constant C > 0 such that A � C B and where C depends
neither directly nor indirectly on m.

Lemma 5.5. Using the notation from (5.2) and (5.3), let σm be defined by

σm := AG−1�̂m,

m−1/2�̂m := G F − 1

m

m∑

i=1

G
(
Wiδ

m
i

)
. (5.22)

Then, for every bounded K ′ ⊆ R
3

Em

[
‖ξm − σm‖2

L2(K ′)

]
� Cm−1

and

Em

[
‖∇ξm − ∇σm‖2

L2(R3)

]
� Cm.
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Proof. Let K be the set defined in (5.5). We argue that AG−1 satisfies

‖AG−1w‖L2(K ′) � ‖w‖L2(K ′) (5.23)

for any K ′ ⊃ K and any (divergence free) w ∈ L2(K ′). Indeed, by (2.2), we
observe that

AG−1 = (1 − Aρ)Pσ ,

and therefore (5.23) follows from the regularity of Aρ discussed after (2.2).
We recall that both G and Gm (cf. (2.4)) map to divergence free functions. Thus,

by (5.23), we have for any bounded set K ′ ⊃ K

Em

[
‖ξm − σm‖2

L2(K ′)

]
= 1

m
Em

⎡

⎣

∥
∥
∥
∥
∥

∑

i

AG−1(G − Gm)
(
Wiδ

m
i

)
∥
∥
∥
∥
∥

2

L2(K ′)

⎤

⎦

� 1

m
Em

⎡

⎣
∑

i

∑

j �=i

ˆ

K ′

(
AG−1(G − Gm)

(
Wiδ

m
i

))(
AG−1(G − Gm)

(
W jδ

m
j

))
⎤

⎦

+ 1

m
Em

[
∑

i

ˆ

K ′

∣
∣(G − Gm)

(
Wiδ

m
i

)∣
∣2

]

=: I1 + I2.

Recalling the notation (5.4) and using (5.20), we deduce

I1 = (m − 1)‖AG−1(G − Gm)F‖2
L2(K ′) � (m − 1)‖(G − Gm)F‖2

L2(K ′)

� m−3‖F‖2
L2(R3)

� m−3

due to (5.11). It remains to bound I2. By combining (5.21) with (5.17), we obtain
∥
∥(G − Gm)

(
δm

y

)∥
∥2

L2(R3)
� m−2

∥
∥δm

y

∥
∥2

Ḣ−1(R3)
� m−1.

Thus, by (5.11)

I2 � m−1
Em
[
W1
]2 � m−1.

For the gradient estimate, we can argue similarly: Since AG−1 is bounded from
Ḣ1(R3) to Ḣ1(R3)

Em

[
‖∇(ξm − σm)‖2

L2(R3)

]
= 1

m
Em

⎡

⎣

∥
∥
∥
∥
∥

m∑

i=1

∇ AG−1(G − Gm)
(
Wi δ

m
i

)
∥
∥
∥
∥
∥

2

L2(R3)

⎤

⎦

� 1

m
Em

⎡

⎣
m∑

i=1

∑

j �=i

ˆ

R3

(
∇ AG−1(G − Gm)

(
Wi δ

m
i

))(∇ AG−1(G − Gm)
(
W j δ

m
j

))
⎤

⎦

+ 1

m
Em

[
m∑

i=1

ˆ

R3

∣
∣∇(G − Gm)

(
Wi δ

m
i

)∣
∣2

]

=: I1 + I2.
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Using (5.21), we deduce

I1 = (m − 1)‖∇ AG−1(G − Gm)F‖2
L2(R3)

� (m − 1)‖∇(G − Gm)F‖2
L2(R3)

� m−1‖F‖2
L2(R3)

� m−1.

It remains to bound I2.
Using that both Gm and G are bounded operators from H−1 to Ḣ1, we find

with (5.17)

‖∇(G − Gm)
(
δm

y

)‖2
L2(R3)

� ‖δm
y ‖2

Ḣ−1(R3)
� m.

Thus,

I2 � mEm[W 2
1 ] � m.

This finishes the proof. ��
Corollary 5.6. For every 0 � s < 1

2 and every K ′ ⊆ R
3 bounded, there is a

constant Cs(K ′) > 0 independent of m such that

Em

[
‖ξm − σm‖2

Hs (K ′)

]
� Cs(K ′)m−1+2s .

Proof. This follows from Lemma 5.5 and the interpolation inequality

Em

[
‖ξm − σm‖2

Hs (K ′)

]
� Em

[
‖ξm − σm‖2(1−s)

L2(K ′)‖∇ξm − ∇σm‖2s
L2(K ′)

]

� Em

[
‖ξm − σm‖2

L2(K ′)

]1−s
Em

[
‖∇ξm − ∇σm‖2

L2(K ′)

]s

� m−1+2s .

This finishes the proof. ��
Proof of Proposition 3.3. By Lemma 5.5, it suffices to prove

Em

[
‖σm − τm‖2

Hs (K ′)

]
� Cm−1+2s

Em

[
‖τm‖2

Ḣ s (K ′)

]
� Cs(K ′) (5.24)

for every 0 � s < 1
2 . We introduce W̃i := u(Xi ) − Vi . It is easily seen that

Em[W̃ 2
1 ] � C and Em[|W1 − W̃1|] � 1

m uniformly in m. Since W̃iδXi are indepen-
dent identically distributed random variables, we obtain

Em

[
‖τm‖Ḣ s (K ′)

]
= 1

m
Em

⎡

⎣

∥
∥
∥
∥
∥

m∑

i=1

AF − AW̃iδXi

∥
∥
∥
∥
∥

2

Ḣ s (K ′)

⎤

⎦

= Em

[∥
∥
∥AF − AW̃1δX1

∥
∥
∥

2

Ḣ s (K ′)

]

� Cs(K ′)
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by (5.18).
Finally, we have to estimate σm − τm :

Em

[
‖σm − τm‖2

Ḣ s (K ′)

]
= 1

m
Em

⎡

⎣

∥
∥
∥
∥
∥

m∑

i=1

A
(
Wiδ

m
i − W̃iδXi

)
∥
∥
∥
∥
∥

2

Ḣ s (K ′)

⎤

⎦

� 1

m

m∑

i, j=1

Em

[∥
∥
∥A
(
Wiδ

m
i − W̃iδXi

)∥∥
∥

Ḣ s (K ′)

∥
∥
∥A
(
W jδ

m
j − W̃ jδX j

)∥∥
∥

Ḣ s (K ′)

]

= 1

m

m∑

j �=i=1

Em

[∥
∥
∥A
(
Wiδ

m
i − W̃iδXi

)∥∥
∥

Ḣ s (K ′)

∥
∥
∥A
(
W jδ

m
j − W̃ jδX j

)∥∥
∥

Ḣ s (K ′)

]

+ 1

m

m∑

i=1

Em

[∥
∥
∥A
(
Wiδ

m
i − W̃iδXi

)∥∥
∥

2

Ḣ s (K ′)

]

= I1 + I2.

For I1, notice that by (5.12)

I1 = (m − 1)‖A(F − F̃)‖2
Ḣ s (K ′)

� (m − 1)‖A(F − F̃)‖2
H1(K ′)

� m−1.

For I2, we estimate

∥
∥A
(
Wi δ

m
i − W̃i δXi

)∥
∥

Ḣ s (K ′) �
∥
∥
∥A
(
Wi − W̃i

)
δm

i

∥
∥
∥

Ḣ s (K ′)
+
∥
∥
∥AW̃i

(
δm

i − δXi

)∥∥
∥

Ḣ s (K ′)
� |Wi − W̃i |‖Aδm

i ‖Ḣ s (K ′) + |W̃i |
∥
∥A
(
δm

i − δXi

)∥
∥

Ḣ s (K ′)

� |Wi − W̃i | + ms− 1
2 |W̃i |

by (5.18) and by combining (5.19) with the fact that A is a bounded operator from
Ḣ s−2(K ′) to Ḣ s(K ′). Inserting this above, we find that

I2 � 1

m

m∑

i=1

Em

[(|Wi − W̃i | + ms− 1
2 |W̃i |

)2
]

� Em

[
|Wi − W̃i |2

]
+ m−1+2s

Em

[
|W̃i |2

]

� m−1+2s .

Combining the estimates for I1 and I2 yields (5.24) which finishes the proof. ��
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5.3. Proof of Lemma 4.1

We begin the proof of Lemma 4.1 by observing that we have actually already
proved the required estimate for �m . Indeed, �m = m−1/2(�m−�̂m) with �̂m as in
Lemma 5.5. Moreover, in the proof of Lemma 5.5, we showed ‖�m−�̂m‖2

L2
loc(R

3)
�

m−1.
We divide the rest of proof of Lemma 4.1 into three steps corresponding to the

three terms

I1 := Em

[
1Om ‖∇(u + G(ρu − j))‖2

L2(∪i Bi )

]
,

I2 := Em

[
1Om ‖∇�m‖2

L2(∪i Bi )

]
,

I3 := m2
Em

[
1Om ‖�m‖2

L2(∪i Bi )

]
+ Em

[
1Om ‖�̃m‖2

L2(K ′)

]

+ Em

[
1Om ‖∇�m‖2

L2(∪i Bi )

]
, (5.25)

where K ′ is a bounded set. We need to prove Ik � Cm−2 for k = 1, 2, 3, uniformly
in m with a constant depending only on h, ρ and K ′.

Step 1: Estimate of I1. Since ∇Gh ∈ L2(R3) is deterministic and the positions
of the particles Bi are independent, we estimate

I1 = Em

[
1Om ‖∇Gh‖2

L2(∪i Bi )

]
� Em

[
‖∇Gh‖2

L2(∪i Bi )

]
= m−2

ˆ

R3
(ρ)x |∇Gh|2 dx

� m−2‖∇Gh‖2
L2(R3)

� m−2.

Here we used (5.6) together with ρ ∈ L∞(R3).

Step 2: Estimate of I2. Since �m depends on m, the computation is more involved.
According to the definition of �, we split I2 again. More precisely, it suffices to
estimate

I2,1 := Em

⎡

⎢
⎣

∥
∥
∥
∥
∥
∥
∇G

⎡

⎣
∑

j �=i

(u) j − Vj

m
δm

j

⎤

⎦

∥
∥
∥
∥
∥
∥

2

L2(∪i Bi )

⎤

⎥
⎦ ,

I2,2 := Em

[
‖∇G(ρm− 1

2 ξm)‖2
L2(∪i Bi )

]
.

In the first term, we used that for (Z1, . . . , Zm) ∈ Om we can replace Gm by G
according to (2.17).

We first consider I2,1. We expand the square to obtain for any fixed i

I2,1 = mEm

⎡

⎣

ˆ

Bi

⎛

⎝∇G

⎡

⎣
1

m

∑

j �=i

(u) j − Vj

m
δm

j

⎤

⎦

⎞

⎠ (x)

⎛

⎝∇G

⎡

⎣
1

m

∑

k �=i

(u)k − Vk

m
δm

k

⎤

⎦

⎞

⎠ (x)

⎤

⎦

=: 1

m

∑

j �=i

∑

k �=i

I j,k
2,1 .
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We distinguish the cases j �= k and j = k. In the case j �= k, we apply a similar
reasoning as for I1: due to the independence of Zi , Z j , Zk , we have with F as in
(5.4)

I jk
2,1 = m−4

ˆ

R3
(ρ)x

(ˆ

R3×R3
∇G

[(
(u)y − v

)
δm

y

]
(x) f (dy, dv)

)2

dx

= m−4
ˆ

R3
(ρ)x (∇G[F](x))2 dx � m−4‖∇G[F]‖2

L2(R3)
,

where we used again (5.6). Since by (5.11),F is bounded in Ḣ−1(R3), we therefore
conclude that

∑

j �=i

∑

k �∈{i, j}
I jk
2,1 � m−2.

It remains to estimate I j j
2,1. We compute

I j j
2,1 = m−4

ˆ

R3
(ρ)x

ˆ

R3×R3

(
∇G

[(
(u)y − v

)
δm

y

]
(x)
)2

f (dy, dv) dx

� m−4
ˆ

R3×R3

(
(u)y − v

)2 ‖∇Gδm
y ‖2

L2(R3)
f (dy, dv).

By (5.17)

‖∇Gδm
y ‖2

L2(R3)
� m.

Combining this with (5.7), we conclude

∑

j �=i

I j j
2,1 � m−2

ˆ

R3×R3

(
(u)y − v

)2
f ( dy, dv)

� m−2
(

‖ρ1/2(u)·‖2
L2(R3)

+
ˆ

R3×R3
|v|2 f (dy, dv)

)

� m−2
(

‖u‖2
L2(K )

+
ˆ

R3×R3
|v|2 f (dy, dv)

)

� m−2,

by assumption (H1).
We now turn to I2,2. We estimate

I2,2 � Em

[
‖∇G(ρm− 1

2 σm)‖2
L2(∪i Bi )

]
+ Em

[
‖∇G(ρm− 1

2 (ξm − σm)‖2
L2(∪i Bi )

]
,

with σm from Lemma 5.5. Using this lemma and the fact that Gρ is a bounded
operator from Ḣ1(R3) to W 1,∞(R3), we find

Em

[
‖∇G(ρm− 1

2 (ξm − σm))‖2
L2(∪i Bi )

]
� m−2‖m− 1

2 (ξm − σm)‖2
Ḣ1(R3)

� m−2.
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Recalling the definition of σm from Lemma 5.5, we have

Em

[
‖∇G(ρm− 1

2 σm)‖2
L2(∪i Bi )

]
�

m∑

i=1

Em

⎡

⎢
⎣

∥
∥
∥
∥
∥
∥
∇G

⎛

⎝ρ A

⎡

⎣F − 1

m

m∑

j=1

W j δ
m
j

⎤

⎦

⎞

⎠

∥
∥
∥
∥
∥
∥

2

L2(Bi )

⎤

⎥
⎦

�
m∑

i=1

Em

[
‖∇G (ρ AF)‖2

L2(Bi )

]

+
m∑

i=1

Em

⎡

⎢
⎣

∥
∥
∥
∥
∥
∥
∇G

⎛

⎝ρ A

⎡

⎣
1

m

m∑

j=1

[
W j δ

m
j

]

⎤

⎦

⎞

⎠

∥
∥
∥
∥
∥
∥

2

L2(Bi )

⎤

⎥
⎦

=: I2,2,1 + I2,2,2.

This is a very rough estimate, since we actually expect cancellations from the
difference. However, these cancellations are not needed here for the desired bound.
Indeed, since Gρ A is a bounded operator from Ḣ−1(R3) to Ḣ1(R3), I2,2,1 is
controlled analogously as I1.

It remains to estimate I2,2,2. We expand the square again and write

I2,2,2 =
m∑

i=1

Em

⎡

⎣

ˆ

Bi

⎛

⎝∇G

⎛

⎝ρ A

⎡

⎣
1

m

m∑

j=1

W j δ
m
j

⎤

⎦

⎞

⎠

⎞

⎠ ·
(

∇G

(

ρ A

[
1

m

m∑

k=1

Wkδ
m
k

]))

dx

⎤

⎦

=:
m∑

i=1

m∑

j=1

m∑

k=1

I i, j,k
2,2,2.

We have to distinguish the cases where all i, j, k are distinct, the case where
j = k but j �= i , the case where i = j or i = k but j �= k, and, finally, the case
where i = j = k.

In the first case, we can proceed analogously as for I j,k
2,1 . In particular, we use

the definition of F to deduce

m∑

i=1

∑

j �=i

∑

k �∈{i, j}
I i, j,k
2,2,2 = m−3 m(m − 1)(m − 2)

m2

ˆ

R3
(ρ)x (∇Gρ AF)2 dx

� m−2‖∇Gρ AF‖2
L2(R3)

� m−2‖F‖2
Ḣ−1(R3)

� m−2,

since Gρ A is also bounded from Ḣ−1(R3) to Ḣ1(R3).

Next, we estimate I i, j, j
2,2,2. Analogously as for I j, j

2,1 , we obtain

m∑

i=1

∑

j �=i

I i, j, j
2,2,2 = m−3 m(m − 1)

m2

ˆ

R3
(ρ)x

ˆ

R3

(
∇Gρ A((u)y − v)δm

y (x)
)2

f (dy, dv) dx

� m−3
ˆ

R3
((u)y − v)2

∥
∥
∥∇Gρ Aδm

y (x)

∥
∥
∥

2

L2
x (R3)

f (dy, dv).
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Since ∇GV is a bounded operator from Ḣ1(R3) to L2(R3), we obtain by (5.17)
combined with (5.7) and using (H1)

m∑

i=1

∑

j �=i

I i, j, j
2,2,2 � m−2

(

‖ρ1/2(u)‖2
L2(R3)

+
ˆ

R3×R3
|v|2 f (dy, dv)

)

� m−2.

The third estimate concerns I i,i,k
2,2,2. By symmetry, I i, j,i

2,2,2 is dealt with analogously.
We have, using (5.17), (5.11), and (5.7) together with (5.6),

m∑

i=1

∑

k �=i

I i,i,k
2,2,2 = m(m − 1)

m2

ˆ

R3
Em
[
1Bi ∇G

(
ρ A
[
Wi δ

m
i

])]∇G (ρ A [F]) dx

� ‖∇Gρ AF‖L2(R3)

∥
∥
∥
∥

ˆ

R3×R3
1Bm (y)∇G

(
ρ A
[
((u)y − v)δm

y

])
f (dy, dv)

∥
∥
∥
∥

L2(R3)

� sup
y∈R3

‖∇Gρ Aδm
y ‖L∞(R3)

∥
∥
∥
∥

ˆ

R3×R3
((u)y − v)1Bm (y) f (dy, dv)

∥
∥
∥
∥

L2(R3)

� m1/2m−3‖(ρ(u)· − j)·‖L2(R3) � m−5/2.

We also used that the operator ∇Gρ A maps Ḣ−1(R3) into L∞(R3), as well as
j ∈ L2(R3) by assumption (H3).

Finally, we estimate I i,i,i
2,2,2. Using (5.17) and (5.7), we obtain

m∑

i=1

I i,i,i
2,2,2 = m

m2

ˆ

R3
Em

[
1Bi

∣
∣∇G

(
ρ A
[
Wi δ

m
i
])∣
∣2)
]

dx

= 1

m

ˆ

R3

ˆ

R3×R3
1Bm (y)

∣
∣
∣∇G

(
ρ A
[
((u)y − v)δm

y

])∣
∣
∣
2

f (dy, dv) dx

� 1

m
sup

y∈R3
‖∇Gρ Aδm

y ‖2
L∞(R3)

ˆ

R3

ˆ

R3×R3
1Bm (y)

(
(u)y − v

)2 f (dy, dv) dx

�
ˆ

R3

ˆ

R3×R3
1Bm (y)

(
|(u)y |2 + |v|2

)
f (dy, dv) dx

� m−3
(ˆ

R3
ρ(y)|(u)y |2 dy dx +

ˆ

R3×R3
|v|2 f (dy, dv)

)

� m−3.

This finishes the estimate of I2,2,2. Therefore, the estimate of I2,2 is complete,
which also finishes the estimate of I2.

Step 3: Estimate of I3. We recall from (5.25) that I3 consists of three terms,
which we denote by J1, J2 and J3. We will focus on the proof on J1 as this is the
most difficult term. We will comment on the adjustments needed to treat J2 and J3
along the estimates for J1. Roughly speaking, the main difference between J1 and
J2 is that one considers L2(∪i Bi ) for J1 and L2

loc(R
3) for J2. Naively, J1 should

therefore be better by a factor | ∪i Bi | ∼ m−2, which is exactly the estimate we
obtain. Moreover, J3 concerns the gradient of the terms in J1. Since we may loose
a factor m−2 going from J1 to J3, it will not be difficult to adapt the estimates for
J1 to J3 using the gradient estimates in Sect. 5.1. For the sake of completeness we
detail the estimates for J3 in the appendix.
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Step 3.1: Expansion of the Terms As in the previous step, we first want to replace
all occurrences of Gm by G. Note that Gm is present both explicitly in the definition
of �m and also implicitly through ξm . By (2.17) and independence of the position
of the particles, it holds

m2
Em

[
1Om ‖�m‖2

L2(∪i Bi )

]

� m2
Em

⎡

⎢
⎣1Om

m∑

i=1

ˆ

Bi

∣
∣
∣
∣
∣
∣
G(ρm− 1

2 ξm) − G

⎡

⎣
∑

j �=i

m− 1
2 (ξm) j

m
δm

j

⎤

⎦

∣
∣
∣
∣
∣
∣

2

dx

⎤

⎥
⎦

= m3
Em

⎡

⎢
⎣1Om

ˆ

Bi

∣
∣
∣
∣
∣
∣
G(ρm− 1

2 ξm) − G

⎡

⎣
∑

j �=i

m− 1
2 (ξm) j

m
δm

j

⎤

⎦

∣
∣
∣
∣
∣
∣

2

dx

⎤

⎥
⎦

� m3
Em

[ˆ

Bi

∣
∣
∣G(ρm−1/2(ξm − σm))

∣
∣
∣
2

dx

]

+ m3
Em

⎡

⎢
⎣1Om

ˆ

Bi

∣
∣
∣
∣
∣
∣
G(V m− 1

2 σm) − G

⎡

⎣
∑

j �=i

m− 1
2 (ξm) j

m
δm

j

⎤

⎦

∣
∣
∣
∣
∣
∣

2

dx

⎤

⎥
⎦ ,

where on the right-hand side, i is any of the m identically distributed particles.
We use that Gρ is a bounded operator from L2(K ) to L∞(Bi ) and Lemma 5.5 to
deduce

m3
Em

[ˆ

Bi

∣
∣
∣G(ρm−1/2(ξm − σm))

∣
∣
∣
2
]

� Em

[∥
∥
∥G(ρm−1/2(ξm − σm))

∥
∥
∥

2

L∞(Bi )

]

� mEm

[∥
∥
∥m−1/2(ξm − σm)

∥
∥
∥

2

L2(K )

]

� m−2.

This implies, that for the estimate of J1, it suffices to show that

J1 := Em

⎡

⎢
⎣1Om

ˆ

Bi

∣
∣
∣
∣
∣
∣
G(ρm− 1

2 σm) − G

⎡

⎣
∑

j �=i

m− 1
2 (ξm) j

m
δm

j

⎤

⎦

∣
∣
∣
∣
∣
∣

2

dx

⎤

⎥
⎦ � m−5.

By the definitions of m− 1
2 ξm and m− 1

2 ρm (cf. (2.20) and (5.22)) together with
(2.17), we have in Om

G(ρm− 1
2 σm) − G

⎡

⎣
∑

j �=i

m− 1
2 (ξm) j

m
δm

j

⎤

⎦ = 1

m

m∑

k=1

m∑

j=1

� j,k,

� j,k(x) := G
[
ρ A
(
F − Wkδ

m
k

)]− (1 − δi j )G
[(

A
(
F − (1 − δ jk)Wkδ

m
k

))

j δm
j

]
.

(5.26)
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(Strictly speaking � j,k depends on i , but we omit this dependence for the ease of
notation.)

Thus,

J1 � m−1
m∑

j=1

m∑

k=1

m∑

n=1

m∑

�=1

I i, j,k,n,�
3 ,

I i, j,k,n,�
3 := Em

[ˆ

Bi

� j,k(x)�n,�(x) dx

]

.

Similarly, we have the estimate

J3 � Em

[ˆ

∪i Bi

∣
∣
∣∇G(ρm− 1

2 (ξm − σm))

∣
∣
∣
2
]

+ J3 � m−2 + J3,

J3 := m−3
m∑

j=1

m∑

k=1

m∑

n=1

m∑

�=1

Em

[ˆ

Bi

∇� j,k(x)∇�n,�(x) dx

]

, (5.27)

with the same proof as before using that ∇Gρ is a bounded operator from Ḣ1(R3)

to W 1,∞(R3) and the second part of Lemma 5.5.
Furthermore,

J2 � Em

[∥
∥
∥G(ρm− 1

2 (ξm − σm))

∥
∥
∥

2

L2(K ′)

]

+ J2 � m−2 + J2,

J2 := m−4
m∑

j=1

m∑

k=1

m∑

n=1

m∑

�=1

ˆ

K ′
Em

[
�̃ j,k(x)�̃n,�(x)

]
dx,

where �̃ j,k denotes the function that is obtained by omitting the factor (1 − δi j ) in
(5.26).

Relying on this structure enables us to make more precise the argument why the
estimate for J1 is most difficult compared to J2 and J3. Indeed, for the estimate for
J3, one just follows the same argument as for J1. The relevant estimates in Sect. 5.1
show that whenever ∇G instead of G appears, we loose (at most) a factor m−1. For
completeness, we provide the proof of the estimates regarding J3 in the appendix.

On the other hand, for J2, we can use the estimates that we will prove for the
terms of J1 in the case when the index i is different from all the other indices.
Indeed, in those cases, � j,k = �̃ j,k , and we will always estimate

∣
∣I i, j,k,n,�

3

∣
∣ =

∣
∣
∣
∣m

−3
ˆ

R3
(ρ)xEm

[
� j,k�n,�

]
dx

∣
∣
∣
∣ � m−3 ∥∥Em

[
� j,k(x)�n,�(x)

]∥
∥

L1
loc(R

3)
.

Thus, the bound for J2 is a direct consequence of the estimates we will derive to
bound J1.

Recall that we need to prove |J1| � m−2. We will split the sum into the cases
#{i, j, k, n, �} = α, α = 1, . . . , 5. Then, since i is fixed, there will be mα−1

summands for the case #{i, j, k, n, �} = α. Thus, it is enough to show that in each
of these cases

|I i, j,k,n,�
3 | � m−α, α = #{i, j, k, n, �}.
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To prove this estimate, we have to rely on cancellations between the terms that
� j,k is composed of. To this end, we denote the first part of � j,k by

�
(1)
k := �(1,1) + �

(1,2)
k := G

[
ρ AF − ρ A

[
Wkδ

m
k

]]
,

and the second part by

�
(2)
j,k := �

(2,1)
j + �

(2,2)
j,k := (1 − δi j )G

[(
A
(
F − (1 − δ jk)Wkδ

m
k

))

j δm
j

]
.

We observe that

Em[�(1,1)] = Gρ AF,

Em[�(1,2)
k ] = Gρ AF ,

Em[�(2,1)
j ] = (1 − δi j )GRAF,

Em[�(2,2)
j,k ] = (1 − δi j )(1 − δ jk)GRAF .

(5.28)

Step 3.2: The Cases in Which at Most 2 Indices are Equal In many cases, we
can rely on cancellations within �

(1)
k and �

(2)
j,k . Indeed, we will prove the following

lemma:

Lemma 5.7. Let K ′ ⊆ R
3 be bounded. Then,

∥
∥
∥Em

[
�

(1)
k

]∥
∥
∥

L2(K ′)
� m−1, (5.29)

∥
∥
∥Em

[
�

(2)
j,k

]∥
∥
∥

L2(K ′)
� m−1 if j �= k. (5.30)

There are only three cases (up to symmetry), where we have to rely on can-
cellations between �

(1)
k and �

(2)
j,k to estimate I i, j,k,n,�

3 . These are the cross terms,
when either j = n, or k = �, or j = �, and all the other indices are different. In
these cases, we will rely on the following lemma:

Lemma 5.8. Let K ′ ⊆ R
3 be bounded. Then,

‖Em
[
� j,k� j,�

] ‖L1(K ′) � m−2 if #{i, j, k, �} = 4, (5.31)

‖Em
[
� j,k�n,k

] ‖L1(K ′) � m−2 if #{i, j, k, n} = 4, (5.32)

‖Em
[
� j,k�n, j

] ‖L1(K ′) � m−2 if #{i, j, k, n} = 4. (5.33)

Finally, we obtain the following estimates, useful in particular for the cases in
which i = k:

Lemma 5.9. Let K ′ ⊆ R
3 be bounded. Then, for any i, j, k,

∥
∥
∥Em

[
�(1,1)

]∥∥
∥

L2(K ′)
+
∥
∥
∥Em

[
�

(1,2)
k

]∥∥
∥

L2(K ′)
+
∥
∥
∥Em

[
�

(2,1)
j

]∥∥
∥

L2(K ′)
+
∥
∥
∥Em

[
�

(2,2)
j,k

]∥∥
∥

L2(K ′)
� 1.

(5.34)
∥
∥
∥Em

[
1Bm

i
�(1,1)

]∥∥
∥

L2(R3)
+
∥
∥
∥Em

[
1Bm

i
�

(1,2)
k

]∥∥
∥

L2(R3)
+
∥
∥
∥Em

[
1Bm

i
�

(2,1)
j

]∥∥
∥

L2(R3)

+
∥
∥
∥Em

[
1Bm

i
�

(2,2)
k, j

]∥∥
∥

L2(R3)

� m−3. (5.35)
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Combining these lemmas allows us to estimate I i, j,k,n,�
3 in all the cases when

α = #{i, j, k, n, �} � 4.

Corollary 5.10. The following estimates hold true where the implicit constants are
independent of m:

1. If #{i, j, k, n, �} = 5, then

∣
∣I i, j,k,n,�

3

∣
∣ � m−5.

2. If #{i, j, k, n, �} = 4, then

∣
∣I i, j,k,n,�

3

∣
∣ � m−4.

Proof. If #{i, j, k, n, �} = 5, then by independence, the Hölder inequality and
Lemma 5.7
∣
∣
∣I

i, j,k,n,�
3

∣
∣
∣ �

∥
∥
∥Em

[
1B 1

m
(wi )

]∥
∥
∥

L∞(R3)

∥
∥Em

[
� j,k

]∥
∥

L2(K )

∥
∥Em

[
�n,�

]∥
∥

L2(K )

� m−3m−1m−1 = m−5.

If #{i, j, k, n, �} = 4, we need to distinguish all the possible combinations of
two indices being equal. Depending on which indices coincide, we split the product
by independence of the other indices. If j = n, k = � or j = � (or k = n which
is the same), we rely on Lemma 5.8 and gain an additional factor m−3 from the
expectation of 1Bm

i
.

If j = k (or analogously n = �), the expectation completely factorizes into
Em[1Bm

i
]Em[� j j ]Em[�n�] and we can apply (5.34) for the second factor and

Lemma 5.7 for the third factor.
Finally, in all the other cases we can, without loss of generality, split the expec-

tation into Em[1Bm
i
� jk]Em[�n�] and apply (5.35) for the first factor and Lemma

5.7 for the second factor. ��

We finish this step by giving the proofs of Lemmas 5.7, 5.8 and 5.9.

Proof of Lemma 5.7. By (5.28), we have

Em[�(1)
k ] = Gρ A(F − F),

and using (5.12) yields (5.29). Similarly, for j �= k, i �= j ,

Em[�(2)
j,k ] = GRA(F − F).

Using again (5.12) and recalling from Lemma 5.1 that R is a bounded operator
from L2(K ) to Ḣ−1(R3) yields (5.30). For i = j , �

(2)
j,k = 0 and there is nothing

to prove. ��
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Proof of Lemma 5.8. Regarding (5.31), we have

Em
[
� j,k� j,�

] =
˚ (

G
[
ρ A
(

F − ((u)y2 − v2
)
δm

y2

)]

−G

[(

A
(

F − ((u)y2 − v2
)
δm

y2

))

y1

δm
y1

])

(

G
[
ρ A
(

F − ((u)y3 − v3
)
δm

y3

)]
− G

[(

A
(

F − ((u)y3 − v3
)
δm

y3

))

y1

δm
y1

])

f (dy1, dv1) f (dy2, dv2) f (dy3, dv3)

=
ˆ

ρ(y1)
(

Gρ A(F − F) − (A(F − F))y1 Gδm
y1

)2
dy1.

We obtain

∥
∥Em

[
� j,k� j,�

] ∥
∥

L1(K ′) � ‖Gρ A(F − F)‖2
L2(K ′) +

ˆ
ρ(y)(A(F − F))2

y‖Gδm
y ‖2

L2(K )
dy

� m−2 + ‖A(F − F)‖2
L2(K ′) � m−2,

where we used (5.12) for both terms and (5.16) and (5.7) for the second term.
Regarding (5.32), we compute

Em
[
� j,k�n,k

] =
˚ (

G
[
ρ A
(

F − ((u)y2 − v2
)
δm

y2

)]

−G

[(

A
(

F − ((u)y2 − v2
)
δm

y2

))

y1

δm
y1

])

(

G
[
ρ A
(

F − ((u)y2 − v2
)
δm

y2

)]
− G

[(

A
(

F − ((u)y2 − v2
)
δm

y2

))

y3

δm
y3

])

f (dy1, dv1) f (dy2, dv2) f (dy3, dv3)

=
ˆ

ρ(y2)
(

G(ρ − R)AF − ((u)y2 − v2
)
G(ρ − R)Aδm

y2

)2
f (dy2, dv2).

Thus, we obtain

∥
∥Em

[
� j,k�n,k

] ∥
∥

L1(K ′) � ‖G(ρ − R)AF‖2
L2(K ′) + sup

z
‖G(ρ − R)Aδm

z ‖2
L2(K ′)

ˆ
((u)z − v)2 f (dz, dv)

� m−2,

where we used (5.16) for both terms and (5.7) and (H1) for the second term.
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Finally, to prove (5.33), we just apply Young’s inequality to reduce to the pre-
vious two estimates. Indeed,

Em
[
� j,k�n, j

] =
ˆ (

Gρ A(F − F) − (A(F − F)u)y Gδm
y

)

(
G(ρ − R)AF − ((u)y − v

)
G(ρ − R)Aδm

y

)
f (dy, dv)

�
ˆ

ρ(y)
(

Gρ A(F − F) − (A(F − F)u)y Gδm
y

)2
dy

+
ˆ
(
G(ρ − R)AF − ((u)y − v

)
G(ρ − R)Aδm)2 f (dy, dv).

These two terms are exactly the ones we have estimated in the previous two steps.
��
Proof of Lemma 5.9. The first estimate, (5.34), follows directly from (5.28) and
(5.11) together with the fact that the operators Gρ A Gρ A GRA and GRA are
bounded from Ḣ1(R3) to L2

loc(R
3).

Regarding (5.35), we first observe that these estimates follow directly from
(5.34) in the cases, when i �= k. Indeed, if i is different from both j and k, the
expectation factorizes. Moreover, the case i = j is trivial, since the terms with
index j vanish for i = j .

If i = k, we only need to consider those terms, where k appears, i.e. �(1,2)
k and

�
(2,2)
j,k . Again, we only need to consider the case j �= k = i .

We have for �
(1,2)
k

∥
∥Em

[
1Bm

i
�

(1,2)
i

]∥
∥

L2(R3)
=
∥
∥
∥
∥

ˆ
1Bm (y)Gρ A

[(
(u)y − v

)
δm

y

]
f (dy, dv)

∥
∥
∥
∥

L2(R3)

� sup
y∈R3

‖Gρ Aδm
y ‖L∞(R3)

∥
∥
∥
∥

ˆ
(
(u)y − v

)
1Bm (y) f (dy, dv)

∥
∥
∥
∥

L2(R3)

� m−3‖(ρ(u)· − j)·‖L2(R3) � m−3,

where we used (5.16), (5.6) and (5.7). Since for j �= i ,

Em

[
1Bm

i
�

(2,2)
j,i

]
=
ˆ

1Bm (y)GRA
[(

(u)y − v
)
δm

y

]
f (dy, dv),

the estimate of this term is analogous. ��

Step 3.3: The Cases in Which the Number of Different Indices is 3 or Less
It remains to estimate |I i, j,k,n,�

3 |, when #{i, j, k, n, �} � 3. We will show that

|I i, j,k,n,�
3 | � m−3 for #{i, j, k, n, �} = 3, and |I i, j,k,n,l

3 | � m−2 for #{i, j, k, n, �} �
2. Formally, a factor m−3 can be expected to come from the term 1Bm

i
, so that can-

cellations are not needed for the estimates of those term. We will see that this
strategy works for all the terms except for I i, j,i, j,�

3 with i, j, � mutually distinct.
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Thus, in all cases except I i, j,i, j,�
3 with i, j, � mutually distinct, we just brutally

estimate the product � j,k�n,� via the triangle inequality

∣
∣
∣I

i, j,k,n,�
3

∣
∣
∣ �

2∑

α,β,γ,δ=1

ˆ ∣
∣
∣Em

[
1Bm

i
�

(α,β)
j,k �

(γ,δ)

n,�

]∣
∣
∣ ,

with the convention that �
(1,1)
j,k = �(1,1), and similarly for �

(1,2)
j,k and �

(2,1)
j,k .

We now consider all possible cases of (α, β, γ, δ) ∈ {1, 2}4 and #{i, j, k, n, �} �
3. Since �(1,1) does not depend on any index and both �

(1,2)
k and �

(2,1)
j only de-

pend on one index (not taking into account the dependence of i since �
(2,1)
i = 0

anyway), the number of cases to be considered considerably reduces for these terms.
In order to exploit this in the sequel, we introduce the following slightly abusive

notation. When considering the term Em[1Bm
i
�

(α,β)
j,k �

(γ,δ)

n,� ] for fixed α, β, γ, δ,
we define the notion of relevant indices to be the subset of indices {i, j, k, n, �}
appearing in this product after replacing �

(1,1)
j,k by �(1,1) and similarly for �

(1,2)
j,k ,

�
(2,1)
j,k and for the indices n, �.

To further reduce the number of cases that we have to consider, we next argue
that we do not have to consider the cases { j, k, n, �} with J ∩ { j, k} ∩ {n, �} = ∅,
where J is the set of relevant indices. Indeed, in all these cases, the expectation
factorizes, and we conclude by the bounds provided by Lemma 5.9. In particular,
we do not have to consider any case where �(1,1) appears.

Moreover, if j is a relevant index and i = j , then �
(2,2)
j,k = �

(2,1)
j = 0, and

therefore, there is nothing to estimate. If j and k are both relevant indices and
j = k, then �

(2,2)
j, j = 0, and therefore, there is nothing to estimate either. The same

reasoning applies to the cases where i = n and n = �, respectively.
We now list all the cases that are left to consider. Cases that are equivalent

by symmetry we list only once. We use the convention here, that we only specify
which relevant indices coincide; relevant indices which are not explicitly denoted
as equal are assumed to be different. The indices which are not relevant may take
any number, in particular coinciding with each other or with relevant indices.

1. (α, β, γ, δ) = (2, 2, 2, 2): Relevant indices: {i, j, k, n, �}. Since all the indices
are relevant, we only have to consider cases where at least two pairs or three
indices coincide. All the other cases are already covered when we have estimated
I i, j,k,n,� with #{i, j, k, n, �} � 4. The cases left to consider are
(a) i = k, j = n,
(b) i = k, j = �,
(c) i = k = �,
(d) j = n, k = �,
(e) j = �, k = n,
(f) i = k = �, j = n.

2. (α, β, γ, δ) = (2, 1, 2, 2): Relevant indices: {i, j, n, �}. Cases to consider:
(a) j = n,
(b) j = �,
(c) i = �, j = n.
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3. (α, β, γ, δ) = (2, 1, 2, 1): Relevant indices: {i, j, n}. Only case to consider:
j = n.

4. (α, β, γ, δ) = (1, 2, 2, 2): Relevant indices: {i, k, n, �}. Cases to consider:
(a) i = k = �,
(b) i = �, k = n,
(c) k = n.

5. (α, β, γ, δ) = (1, 2, 2, 1): Relevant indices: {i, k, n}. Only case to consider:
k = n.

6. (α, β, γ, δ) = (1, 2, 1, 2): Relevant indices: {i, k, �}. Cases to consider:
(a) k = �,
(b) i = k = �.

In order to conclude the proof of the lemma, it now remains to give estimates
for the cases listed above.

The case (1a): As mentioned at the beginning of Step 3.3, this is the case, where
we rely on cancellations with �(2,1) coming from case (2c). We estimate

Em

[
1Bm

i
(x)�

(2,2)
j,i (x)

(
�

(2,1)
j� − �

(2,2)
j�

)
(x)
]

=
¨

1Bm (y1)(x)G

[(
A
[(

(u)y1 − v1
)
δm

y1

])

y2
δm

y2

]

(x)G
[
(A (F − F))y2

δm
y2

]
(x)

f (dy1, dv1) f (dy2, dv2)

=
¨

ρ(y2)1Bm (y1)(x)
(

A
[(

(u)y1 − v1
)
δm

y1

])

y2

(
Gδm

y2

)2
(x) (A(F − F))y2

f (dy1, dv1) dy2.

Hence, since A maps L2(R3) ∩ Ḣ−1(R3) to L∞(R3) and by (5.12)

ˆ ∣
∣
∣Em

[
1Bm

i
�

(2,2)
j i

(
�

(2,1)
j� − �

(2,2)
j�

)]∣
∣
∣ dx

� m−1
˚

ρ(y2)1Bm (y1)(x)

∣
∣
∣
∣

(
A
[(

(u)y1 − v1
)
δm

y1

])

y2

∣
∣
∣
∣

(
Gδm

y2

)2
(x) f (dy1, dv1) dy2 dx .

By (5.13)

ˆ
1Bm (y1)(x)

(
Gδm

y2

)2
(x) dx � m−3 1

|y2 − y1|2 + m−2 . (5.36)

Combining this with the pointwise estimate (5.14) yields

ˆ ∣
∣
∣Em

[
1Bm

i
�

(2,2)
j i

(
�

(2,1)
j� − �

(2,2)
j�

)]∣
∣
∣ dx

� m−4
¨

ρ(y2)|(u)y1 − v1| 1

|y2 − y1|2 + m−2

(

1 + 1

|y2 − y1| + m−1

)

f (dy1, dv1) dy2

� m−4 log m
ˆ

|(u)y1 − v1| f (dy1, dv1) � m−4 log m,

where we used (5.7) and (H1).
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The case (1b) is similar. However, it turns out to be easier, since the singularity
is subcritical, so we do not need to take into account cancellations. Indeed,

Em

[
1Bm

i
(x)�

(2,2)
j i (x)�

(2,2)
nj (x)

]

=
¨

1Bm (y1)(x)G

[(
A
[(

(u)y1 − v1
)
δm

y1

])

y2
δm

y2

]

(x)

· G

[ˆ (
A
[(

(u)y2 − v2
)
δm

y2

])

y3
δm

y3
f (dy3, dv3)]

]

(x) f (dy1, dv1) f (dy2, dv2)

=
¨
(
(u)y1 − v1

)(
(u)y2 − v2

)
1Bm (y1)(x)

(
Aδm

y1

)

y2

(
Gδm

y2

)
(x)
(

GRAδm
y2

)
(x)

f (dy1, dv1) f (dy2, dv2).

Thus, since GR maps L2(K ) to L∞(R3) and by (5.16)
ˆ ∣
∣
∣Em

[
1Bm

i
�

(2,2)
j i �

(2,2)
nj

]∣
∣
∣ dx

�
¨
(
(u)y1 − v1

)(
(u)y2 − v2

)
1Bm (y1)(x)

∣
∣
∣
∣

(
Aδm

y1

)

y2

∣
∣
∣
∣

∣
∣
∣
(
Gδm

y2

)∣∣
∣ (x) f (dy1, dv1) f (dy2, dv2).

(5.37)

Now we proceed as in the previous case to estimate
ˆ ∣
∣
∣Em

[
1Bm

i
�

(2,2)
j i �

(2,2)
nj

]∣
∣
∣ dx

� m−3
¨ ((

(u)y1 − v1
)2 + ((u)y2 − v2

)2
) 1 + 1

|y2−y1|+m−1

|y2 − y1| + m−1 f (dy1, dv1) f (dy2, dv2)

� m−3.

The case (1c): We have

Em

[
1Bm

i
(x)�

(2,2)
j i (x)�

(2,2)
ni (x)

]

=
ˆ

1Bm (y1)(x)

(

G

[ˆ
ρ(y2)

(
A
[(

(u)y1 − v1
)
δm

y1

])

y2
δm

y2
dz

])

(x)2 f (dy1, dv1)

=
ˆ
(
(u)y1 − v1

)21Bm (y1)(x)
(

GRAδm
y1

)
(x)2 f (dy1, dv1).

Thus, using first that ‖GRAδm
y1

‖L∞(R3) � 1 as above, (H1) and (5.6) together with
(5.7).
ˆ ∣
∣
∣Em

[
1Bm

i
�

(2,2)
j i �

(2,2)
ni

]∣
∣
∣ dx �

ˆ ˆ
(
(u)y1 − v1

)21Bm (y1)(x) f (dy1, dv1) dx � m−3.

The case (1d): We compute

Em

[
1Bm

i
(x)�

(2,2)
jk (x)�

(2,2)
jk (x)

]

= m−3
¨

(ρ)xρ(y2)

(

G

[(
A
[(

(u)y1 − v1
)
δm

y1

])

y2
δm

y2

]

(x)

)2

f (dy1, dv1) dy2

= m−3
¨

(ρ)xρ(y2)
(
(u)y1 − v1

)2
(

Aδm
y1

)2

y2

(
Gδm

y2

)2
(x) f (dy1, dv1) dy2.
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Using (5.16) twice, (5.7) together with (H2) and (H1), we can successively estimate
the integral in x , y2 and (y1, v1) to deduce

ˆ ∣
∣
∣Em

[
1Bm

i
�

(2,2)
jk �

(2,2)
jk

]∣
∣
∣ dx � m−3

ˆ
ρ(y2)

(
(u)y1 − v1

)2
(

A
[
δm

y1

])2

y2
f (dy1, dv1) dy2

� m−3
ˆ
(
(u)y1 − v1

)2 f (dy1, dv1) � m−3.

The case (1e): We just observe that by Young’s inequality
ˆ ∣
∣
∣Em

[
1Bm

i
�

(2,2)
jk �

(2,2)
k j

]∣
∣
∣ dx �

ˆ
Em

[

1Bm
i

((
�

(2,2)
jk

)2 +
(
�

(2,2)
k j

)2
)]

dx .

Thus, this case is reduced to case (1d).
The case (1f). Note that #{i, j, k, n, �} = 2. Hence, we only need a bound m−2.

We have

Em

[
1Bm

i
(x)�

(2,2)
j i (x)�

(2,2)
j i (x)

]

=
¨

ρ(y2)1Bm(y1)(x)

(

G

[(
A
[(

(u)y1 − v1
)
δm

y1

])

y2
δm

y2

]

(x)

)2
f (dy1, dv1) dy2

=
¨

ρ(y2)
(
(u)y1 − v1

)21Bm (y1)(x)
(

Aδm
y1

)2

y2

(
Gδm

y2

)2
(x) f (dy1, dv1) dy2.

We can estimate the integral in x using again (5.36)
ˆ ∣
∣
∣Em

[
1Bm

i
�

(2,2)
j i �

(2,2)
j i

]∣
∣
∣ dx

�
ˆ

ρ(y2)
(
(u)y1 − v1

)21Bm (y1)(x)
(

Aδm
y1

)2

y2

(
Gδm

y2

)2
(x) f (dy1, dv1) dy2 dx

� m−3
ˆ

ρ(y2)
(
(u)y1 − v1

)2
(

Aδm
y1

)2

y2

1

|y2 − y1|2 + m−2 f (dy1, dv1) dy2.

Moreover, using (5.14), we find
ˆ ∣
∣
∣Em

[
1Bm

i
�

(2,2)
j i �

(2,2)
j i

]∣
∣
∣ dx

� m−3
ˆ

ρ(y2)
(
(u)y1 − v1

)2
(

1

|y2 − y1|2 + m−2 + 1

|y2 − y1|4 + m−4

)

f (dy1, dv1) dy2

� m−2
ˆ
(
(u)y1 − v1

)2
f (dy1, dv1) � m−2,

where we used (5.7) and (H1) in the last estimate. Note that this estimate is sufficient,
since the number of different indices in this case is only 2.

The cases (2a) and (2b) are reduced to the cases (3) and (1d) by Young’s in-
equality, analogously as in the case (1e).

The case (2c) was estimated together with the case (1a) if k is different from
the other indices.

If k coincides with one of the other indices, the number of different indices is
2 and we can reduce the case to the cases (3) and (1f) by Young’s inequality.
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The case (3): In this case we get a factor m−3 from 1Bm
i

and thus the desired
estimate follows from

∥
∥Em

[∣
∣�

(2,1)
j

∣
∣2
]∥
∥

L1(K )
�
ˆ

ρ(y1)|(AF)y1 |2‖Gδm
y1

‖2
L2(K )

dy1 � 1,

where we used (5.16) and (5.7).
The case (4a) is estimated by an analogous computation as the one at the end

of the proof of Lemma 5.9, relying on the fact that
∥
∥�

(1,2)
k

∥
∥

L∞(R3)
� |(u)k − Vk |, (5.38)

which is a direct consequence of (5.16) and the fact that Gρ is bounded from L2(K )

to L∞(R3). Since the index n is free, a similar bound can be used for �
(2,2)
n,� . More

precisely,

∣
∣
∣Em

[
1Bm

i
�

(1,2)
i �

(2,2)
n,i

]∣
∣
∣ �

ˆ
1Bm (y1)

∣
∣
∣GRA

[(
(u)y1 − v1

)
δm

y1

]∣
∣
∣

∣
∣
∣Gρ A

[(
(u)y1 − v1

)
δm

y1

]∣
∣
∣

f (dy1, dv1)

�
ˆ

1Bm (y1)|(u)y1 − v1|2 f (dy1, dv1),

since GR and Gρ map L2(K ) to L∞(R3) and using again (5.16). As before,
integrating in x yields a factor m−3.

The case (4b): Using (5.38) yields
∣
∣
∣Em

[
1Bm

i
�

(1,2)
k �

(2,2)
k,i

]∣
∣
∣ �

ˆ
1Bm (y1)|(u)y1 − v1||(u)y2 − v2|

∣
∣G
[
δm

y2

]∣
∣
∣
∣
(

Aδm
y1

)

y2

∣
∣

f (dy1, dv1) f (dy2, dv2),

which is the same as (5.37) which we have already estimated.
The case (4c) is reduced to the cases (6a) and (1d) by Young’s inequality.
The case (5) is reduced to the cases (6a) and (3) by Young’s inequality.
The cases (6a) and (6b) are estimated by an analogous computation as the one

at the end of the proof of Lemma 5.9, relying on (5.38) again.
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A. Appendix

A.1. Proofs of the Auxiliary Estimates from Sect.5.1

Proof of Lemma 5.1. (i) Define

[w](x) =
 

∂ Bm
x

w(y) dH2(y).

We observe that for w ∈ W 1,p(R3), 1 � p < ∞
‖[w]‖p

L p(R3)
=
ˆ

R3

∣
∣
∣
∣

 

∂ Bm (x)

w(y) dH2(y)

∣
∣
∣
∣

p

dx �
ˆ

R3

 

R3
1|x−y|=m−1 |w(y)|p dH2(y) dx

=
ˆ

R3

 

R3
1|y′ |=m−1 |w(y′ + x)|p dH2(y′) dx

=
ˆ

R3

 

R3
1|y′ |=m−1 |w(x ′)|p dH2(y′) dx ′

= ‖w‖p
L p(R3)

.

By density, the operator [·] is defined on L p(R3). Using an analogous argument
also for the average (·) over the full ball yields (5.6).
(ii) If w ∈ L p(K ), the fact that ρ ∈ L∞ has compact support in K implies (5.7).
(iii) To prove (5.8), we first establish the following inequality:
Let R > 0 and ϕ ∈ L1(R3) with ϕ � 0, supp ϕ ⊆ BR(0) and ‖ϕ‖L1 = 1. Let
w ∈ Ḣ1(R3), then

‖ϕ ∗ w − w‖L2(R3) � R‖∇w‖L2(R3). (A.1)

There are several ways to prove this. By scaling, it is enough to consider the case
R = 1. We can use the Fourier transform: observe that ϕ̂ ∈ C∞(R3) with

|∇ϕ̂| = |F(xϕ)| ∈ L∞(R3).

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Since ϕ̂(0) = 1, this shows that there is a constant C > 0 such that |(1 − ϕ̂)(k)| �
C |k|. Hence,

‖ϕ ∗ w − w‖2
L2(R3)

= ‖(1 − ϕ̂)ŵ‖2
L2(R3)

� C‖kŵ‖2
L2(R3)

� C‖∇w‖2
L2(R3)

.

Now, (5.8) follows by choosing ϕ(x) = 1Bm (0)(x).
(iv) We note that Rw = [ρ(w)·]. Thus, R is a bounded operator from L2(K )

to L2(R3) ∩ Ḣ−1(R3) and from H1(K ) to H1(R3) by the previous estimates,
together with the assumption that ρ ∈ W 1,∞ with compact support and L6/5(R3) ⊆
Ḣ−1(R3).
For the estimate (5.9), we compute, for w ∈ Ḣ1(R3),

‖Rw − ρw‖L2(R3)

=
∥
∥
∥
∥

 

∂ Bm (x)

ρ(y)(w)y dH2(y) − ρ(x)w(x)

∥
∥
∥
∥

L2(R3)

�
∥
∥
∥
∥

 

∂ Bm (x)

(ρ(y) − ρ(x)) (w)y dH2(y)

∥
∥
∥
∥

L2(R3)

+
∥
∥
∥
∥

 

∂ Bm (x)

ρ(x)
(
(w)y − w(x)

)
dH2(y)

∥
∥
∥
∥

L2(R3)

=: J1 + J2.

Further, it is by Jensen’s inequality

J 2
1 =

ˆ

R3

∣
∣
∣
∣

 

∂ Bm (x)

(ρ(y) − ρ(x)) (w)y dH2(y)

∣
∣
∣
∣

2

dx

�
ˆ

R3

 

∂ Bm (x)

|ρ(y) − ρ(x)|2 |(w)y |2 dH2(y) dx

� m−2‖∇ρ‖2
L∞(R3)

‖w‖2
L2(R3)

,

where we used (5.6). Moreover,

J 2
2 =

ˆ

R3

∣
∣
∣
∣

 

∂ Bm (x)

ρ(x)

 

Bm (y)

w(z) − w(x) dz dy

∣
∣
∣
∣

2

dx

� ‖ρ‖2
L∞

ˆ

R3

∣
∣
∣
∣

 

∂ Bm (x)

 

Bm (y)

w(z) dz dy − w(x)

∣
∣
∣
∣

2

dx

= ‖ρ‖2
L∞

ˆ

R3

∣
∣
∣
∣

ˆ

R3

( 

∂ Bm (x)

|Bm |−11|y−z|�Rm
dy

)

(w(z)) dz − w(x)

∣
∣
∣
∣

2

dx

= ‖ρ‖2
L∞

ˆ

R3

∣
∣
∣
∣

ˆ

R3
ϕ(x − z)w(z) dz − w(x)

∣
∣
∣
∣

2

dx,

with the choice

ϕ(x) =
 

∂ Bm (x)

|Bm |−11|y|�Rm
dy.
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Using Fubini, we easily see that ϕ satisfies the assumptions to apply (A.1). Hence

J 2
2 � Cm−2‖ρ‖2

L∞(R3)
‖∇w‖2

L2(R3)
.

This proves (5.9). Finally, estimate (5.10) follows from testing with ψ ∈ Ḣ1(R3)

〈ρw − Rw,ψ〉 = 〈w, ρψ − Rψ〉 � m−1‖w‖L2(R3)‖ρ‖W 1,∞(R3)‖ψ‖Ḣ1(R3).

To justify the first line, observe that

ˆ

R3
(Rw)(x)ψ(x) dx =

ˆ
ρ(x)(w)x

 

∂ Bm (x)
ψ(y) dH2(y) dx

=
ˆ

ρ(x)

( 

R3
1|x−z|�1/mw(z) dz

)  

∂ Bm (x)
ψ(y) dH2(y) dx

=
ˆ

R3
w(z)

( 

R3
1|x−z|�1/mρ(x)

 

∂ Bm (x)
ψ(y) dH2(y) dx

)

dz

=
ˆ

R3
w(z)(Rψ)(z) dz.

(v) Recall that F = ρu − j . Since ρ ∈ L∞ has compact support and u ∈ Ḣ1(R3),
we have ρu ∈ L2(R3). Furthermore, from hypotheses (H3) we have j ∈ L2(R3).
Since F = Ru − [ j] and u ∈ L2(K ), we have F ∈ L2(R3). Finally, we have with
W1 = (u)1 − V1

Em[W 2
1 ] =

ˆ

R3×R3
|(u)x − v|2 f (dx, dv) � 2

ˆ

R3
ρ(x)|(u)x |2 dx

+ 2
ˆ

R3×R3
|v|2 f (dx, dv) � C‖u‖L2(K ) + 2

ˆ

R3×R3
|v|2 f (dx, dv)

which is uniformly bounded by (5.7) and (H1).
To prove (5.12), we first focus on estimating the L2-norm. Note that

F − F = ρu − j − (Ru − [ j]) .

Hence, it is

‖F − F‖L2(R3) � ‖ρu − Ru‖L2(R3) + ‖ j − [ j]‖L2(R3) .

Using (5.9), it is enough to see

‖w − [w]‖L2(R3) � m−1 ‖w‖Ḣ1(R3) for all w ∈ Ḣ1(R3).
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First, let w ∈ S(R3). Then

‖w − [w]‖2
L2(R3)

=
ˆ

R3

∣
∣
∣
∣

 

∂ Bm (x)

w(x) − w(y) dH2(y)

∣
∣
∣
∣

2

dx

�
ˆ

R3

 

∂ Bm (x)

|w(x) − w(y)|2 dH2(y) dx

�
ˆ

R3

 

∂ Bm (x)

ˆ 1

0
|∇w(x + t (y − x))|2|x − y|2 dt dH2(y) dx

� m−2
 

∂ Bm (x)

ˆ 1

0
‖∇w‖2

L2(R3)
dt dH2(y)

= m−2‖w‖2
Ḣ1(R3)

,

where we used Jensen’s inequality twice and the fundamental theorem of calculus.
Now by density of S(R3) in Ḣ1(R3), we obtain the estimate of the L2-norm in
(5.12). To estimate the Ḣ−1-norm in (5.12), we again argue by testing with ψ ∈
Ḣ1(R3). By (5.10), it is enough to see

|〈 j − [ j], ψ〉| = |〈 j, ψ − [ψ]〉| � ‖ j‖L2(R3)‖ψ − [ψ]‖L2(R3) � m−1‖ψ‖Ḣ1(R3).

This finishes the proof. ��

Proof of Lemma 5.2. Recalling the definition of Bm(y) = BRm (y) and (1.7), it is
well-known that

Gδm
y (x) =

{
mId x ∈ Bm(y)

g(x − y) − R2
m

6 �g(x − y) x ∈ R
3\Bm(y),

with g as in (2.1). Then (5.13), (5.15) and (5.16) follow immediately. (5.15) implies
that ‖Gδ‖Ḣ1(R3) � m1/2 and, since G is an isometry from Ḣ−1(R3) to Ḣ1(R3),
this proves (5.17). The bounds for A follow by using the identity A = G − AρG
and that Aρ maps L2

loc(R
3) to L∞(R3) ��

Proof of Lemma 5.3. To deduce the bound for Gδy in Hs
loc(R

3), note for example
that e−|x−y|Gδy = e−|x−y|/(4π |x − y|) ∈ Hs(R3) (e.g. by Fourier). The corre-
sponding estimate for A follows from the identity A = G − AρG (cf. (2.2)) and
the fact that Aρ maps Hs

loc to Hs
loc.

For the second estimate, observe that H3/2+ε(K ′) embeds into the space of ε-Hölder
continuous functions on K ′. Hence, we may estimate, for every w ∈ H3/2+ε(K ′)

〈δm
y − δy , w〉 �

 

Bm (y)
|w(x) − w(y)| dH2(x) � m−ε‖w‖Cε(K ′) � Cm−ε‖w‖H3/2+ε(K ′).

This concludes the proof. ��
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Proof of Lemma 5.4. By (2.4), G − Gm is a convolution operator with convolution
kernel

ḡm := ηm g − ψm .

Thus, to prove (5.20) and (5.21), it suffices to show that

‖∇l ḡm‖L1(R3) � m−2+l (A.2)

for l = 0, 1. Moreover, (A.2) for l = 2 implies that Gm is a bounded operator from
Ḣ l(R3) to Ḣ l+2(R3) since we know that G is a bounded operator from Ḣ l(R3) to
Ḣ l+2(R3).
By definition of ηm , we have for all l ∈ N

|∇l(ηm g)| � m1+l1B3Rm (0)\B2Rm (0).

In particular, for all 1 � p � ∞ and all l ∈ N

‖∇l(ηm g)‖L p(R3) � m1+l−3/p. (A.3)

In view of (2.3), this implies

‖∇l(ηm g)‖L p(R3) � m1+l−3/p, (A.4)

for all l � 1 and all 1 < p < ∞. By the Hölder inequality, this bound also holds
for p = 1 and by the Poincaré inequality also for l = 0. Combining (A.3) and
(A.4) yields (A.2). ��

A.2. Estimates for J3

In this part of the appendix, we detail the estimates of J3 from (5.27). We follow
the same strategy as for J1 described in Steps 3.2 and 3.3 of the proof of Lemma
4.1. Therefore, we just name and prove the relevant lemmas. Observe that we need
weaker bounds. If we want to show |J3| � m−2, this requires

∣
∣I i, j,k,l

3,∇
∣
∣ =

∣
∣
∣
∣Em

[ˆ

Bi

∇� j,k(x)∇�n,�(x) dx

]∣
∣
∣
∣ � m−α+2, α = #{i, j, k, n, �}.

As before, we write ∇� j,l = ∇�
(1)
k + ∇�

(2)
j,l , where

∇�
(1)
k := ∇�(1,1) + ∇�

(1,2)
k := ∇G

[
ρ A
(
F − Wkδ

m
k

)]
,

and

∇�
(2)
j,k := ∇�

(2,1)
j + ∇�

(2,2)
j,k := (1 − δi j )∇G

[(

A
(
F − Wkδ

m
k

)
)

j
δm

j

]

.

Recall that Wk = (u)k − Vk and F = ρu − j .



   50 Page 46 of 52 Arch. Rational Mech. Anal.          (2024) 248:50 

We observe that

Em
[∇�(1,1)

] = ∇Gρ AF,

Em
[∇�

(1,2)
k

] = ∇Gρ AF ,

Em
[∇�

(2,1)
j

] = (1 − δi j )∇GRAF,

Em
[∇�

(2,2)
j,k

] = (1 − δi j )(1 − δ jk)∇GRAF .

(A.5)

Furthermore, we observe that the only difference to the discussion of J1 is that the
outmost G is replaced by ∇G. Hence, we we will apply the same strategy as before
using the analogous auxiliary estimates for the gradient.
We start by giving the corresponding lemmas in the case #{i, j, k, n, �} � 4.

Lemma A.1.
∥
∥
∥Em

[∇�
(1)
k

]∥∥
∥

L2(R3)
� m−1, (A.6)

∥
∥
∥Em

[∇�
(2)
j,k

]∥∥
∥

L2(R3)
� m−1 if j �= k. (A.7)

Lemma A.2.

‖Em
[∇� j,k∇� j,�

] ‖L1(R3) � m−1 if #{i, j, k, �} = 4, (A.8)

‖Em
[∇� j,k∇�n,k

] ‖L1(R3) � m−1 if #{i, j, k, n} = 4, (A.9)

‖Em
[∇� j,k∇�n, j

] ‖L1(R3) � m−1 if #{i, j, k, n} = 4. (A.10)

Lemma A.3. We have for any i, j, k
∥
∥
∥Em

[
∇�(1,1)

]∥
∥
∥

L2(R3)
+
∥
∥
∥Em

[
∇�

(1,2)
k

]∥
∥
∥

L2(R3)

+
∥
∥
∥Em

[
∇�

(2,1)
j

]∥
∥
∥

L2(R3)
+
∥
∥
∥Em

[
∇�

(2,2)
j,k

]∥
∥
∥

L2(R3)
� m. (A.11)

∥
∥
∥Em

[
1Bm

i
∇�(1,1)

]∥
∥
∥

L2(R3)
+
∥
∥
∥Em

[
1Bm

i
∇�

(1,2)
k

]∥
∥
∥

L2(R3)

+
∥
∥
∥Em

[
1Bm

i
∇�

(2,1)
j

]∥
∥
∥

L2(R3)
+
∥
∥
∥Em

[
1Bm

i
∇�

(2,2)
j,k

]∥
∥
∥

L2(R3)
� m−5/2.

(A.12)

Proof of Lemma A.1. By (A.5), we have

Em

[
�

(1)
k

]
= ∇Gρ A(F − F).

Using (5.12) yields (A.6).
Similarly, for j �= k, i �= j ,

Em

[
�

(2)
j,k

]
= ∇GRA(F − F).

Using again (5.12) yields (A.7). ��
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Proof of Lemma A.2. Regarding (A.8), we have

Em
[∇� j,k∇� j,�

] =
ˆ

ρ(y1)
(
∇Gρ A(F − F) − (A(F − F))y1

∇Gδm
y1

)2
dy1,

and hence

∥
∥Em

[∇� j,k∇� j,�
]∥
∥

L1(R3)

� ‖∇Gρ A(F − F)‖2
L2(R3)

+
ˆ

ρ(y1) (A(F − F))y1
‖∇Gδm

y1
‖2

L2(K )
dy1

� m−2 + m−1

� m−1,

where we used (5.12) for both terms and (5.17) for the second term.
Regarding (A.9), we compute

Em
[∇� j,k∇�n,k

] =
ˆ

ρ(y1)
(
∇G(ρ − R)AF − ((u)y2 − v2

)∇G(ρ − R)Aδm
y2

)2

f (dy2, dv2).

Hence, we obtain

∥
∥Em

[∇� j,k∇�n,k
]∥
∥

L1(R3)

� ‖∇G(ρ − R)Aρu‖2
L2(R3)

+ sup
y1

‖∇G(ρ − R)Aδm
y1

‖2
L2(R3)

ˆ
(
(u)y2 − v2

)2
f (dy2, dv2)

� m−1,

where we used (5.10) for both terms and (5.16) and (H1) for the second term.
Finally, (A.10) follows from (A.8) and (A.9) via Young’s inequality. ��
Proof of Lemma A.3. The first estimate, (A.11), follows directly from (A.5) and
(5.11) together with the fact that the operators ∇Gρ A ∇Gρ A ∇GRA and ∇GRA
are bounded operators from Ḣ−1(R3) to Ḣ1(R3).
Regarding (A.12), these estimates follow from (A.11) if i �= k. If i = k, we only
need to consider those terms, in which k appears, i.e. ∇�

(1,2)
k and ∇�

(2,2)
j,k . Again,

we only need to consider the case j �= k = i .
Then

∥
∥
∥Em

[
1Bm

i
∇�

(1,2)
j,i

]∥
∥
∥

L2(R3)
=
∥
∥
∥
∥

ˆ
1Bm

y1
∇Gρ A[((u)y1 − v1

)
δm

y1
] f (dy1, dv1)

∥
∥
∥
∥

L2(R3)

� sup
y1∈R3

‖∇Gρ Aδm
y1

‖L∞(R3)

∥
∥
∥
∥

ˆ
(
(u)y1 − v1

)
1Bm

y1
f (dy1, dv1)

∥
∥
∥
∥

L2(R3)

� m−5/2.
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Here, we used (5.17) and that Gρ maps Ḣ1(R3) to W 1,∞(R3) for the first term,
and (H1) as well as (5.6) followed by (5.7) for the second. Since for j �= i ,

Em[1Bm
i
∇�

(2,2)
j,i ] =

ˆ
1Bm (y1)∇GRA

[(
(u)y1 − v1

)
δm

y1

]
f (dy1, dv1),

the estimate of this term is analogous. ��
This finishes the cases in which at most 2 indices are equal. For the remaining
cases, we can again follow the same strategy as for J1. We provide here only the
necessary estimates. All the other estimates follow by applying Young’s inequality
and reducing the proofs to the estimates given here, just as in the proof for J1.

Lemma A.4. The corresponding estimates in the case (α, β, γ, δ) = (2, 2, 2, 2)

are:

i = k, j = n :
ˆ ∣
∣
∣Em

[
1Bm

i
∇�

(2,2)
j,i

(∇�
(2,1)
j − ∇�

(2,2)
j,�

)]∣∣
∣ dx � m−2.

(A.13)

i = k, j = � :
ˆ ∣
∣
∣Em

[
1Bm

i
∇�

(2,2)
j,i ∇�

(2,2)
n, j

]∣
∣
∣ dx � m−2. (A.14)

i = k = � :
ˆ ∣
∣
∣Em

[
1Bm

i
∇�

(2,2)
j,i ∇�

(2,2)
n,i

]∣
∣
∣ dx � m−2. (A.15)

j = n, k = � :
ˆ ∣
∣
∣
∣Em

[

1Bm
i

∣
∣
∣∇�

(2,2)
j,k

∣
∣
∣
2
]∣
∣
∣
∣ dx � m−2. (A.16)

i = k = �, j = n :
ˆ ∣
∣
∣
∣Em

[

1Bm
i

∣
∣
∣∇�

(2,2)
j,i

∣
∣
∣
2
]∣
∣
∣
∣ dx � 1. (A.17)

The corresponding estimate in the case (α, β, γ, δ) = (2, 1, 2, 1) is:

j = n :
ˆ ∣
∣
∣
∣Em

[

1Bm
i

∣
∣
∣∇�

(2,1)
j

∣
∣
∣
2
]∣
∣
∣
∣ dx � m−2. (A.18)

The corresponding estimates in the case (α, β, γ, δ) = (1, 2, 2, 2) are:

i = k = � :
ˆ ∣
∣
∣Em

[
1Bm

i
∇�

(1,2)
i ∇�

(2,2)
n,i

]∣
∣
∣ dx � m−2. (A.19)

i = �, k = n :
ˆ ∣
∣
∣Em

[
1Bm

i
∇�

(1,2)
k ∇�

(2,2)
k,i

]∣
∣
∣ dx � m−1. (A.20)

Proof of Lemma A.4. For (A.13), it is

Em

[
1Bm

i
∇�

(2,2)
j,i

(∇�
(2,1)
j,� − ∇�

(2,2)
j,�

)]

=
¨

ρ(y2)1Bm
y1

(x)
(

A
[(

(u)y1 − v1
)
δm

y1

])

y2

(∇Gδm
y2

)2
(x) (A(F − F))y2

f (dy1, dv1)dy2.
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By (5.15), it holds
ˆ

1Bm
y1

(x)
(∇Gδm

y2

)2
(x) dx � m−3 1

|y2 − y1|4 + m−4 , (A.21)

and thus analogously as in the corresponding term for J1 using (5.14)

ˆ ∣
∣
∣Em

[
1Bm

i
∇�

(2,2)
j,i

(∇�
(2,1)
j,� − ∇�

(2,2)
j,�

)]∣∣
∣ dx

� m−4
¨

ρ(y2)|(u)y1 − v1| 1

|y2 − y1|4 + m−4

(

1 + 1

|y2 − y1| + m−1

)

f (dy1, dv1) dy2

� m−2.

Regarding (A.14), we compute

Em

[
1Bm

i
(x)∇�

(2,2)
j i (x)∇�

(2,2)
nj (x)

]

=
¨
(
(u)y1 − v1

)(
(u)y2 − v2

)
1Bm (y1)(x)

(
Aδm

y1

)

y2

(∇Gδm
y2

)
(x)
(
∇GRAδm

y2

)
(x)

f (dy1, dv1) f (dy2, dv2).

Now we use that GR maps Ḣ1(R3) to W 1,∞(R3) to deduce, as in the previous
case, that

ˆ ∣
∣
∣Em

[
1Bm

i
(x)∇�

(2,2)
j i (x)∇�

(2,2)
nj (x)

]∣
∣
∣ dx

� m1/2m−3
ˆ ((

(u)y1 − v1
)2 + ((u)y1 − v1

)2
)

·
1 + 1

|y2−y1|+m−1

|y2 − y1|2 + m−2 f (dy1, dv1) f (dy2, dv2)

� m−5/2 log m.

For (A.15), we get

Em

[
1Bm

i
(x)∇�

(2,2)
j i (x)∇�

(2,2)
ni (x)

]

=
ˆ
(
(u)y1 − v1

)21Bm
y1

(x)
(
∇GRAδm

y1

)
(x)2 f (dy1, dv1).

Thus by (5.16), (5.7) and (H1), it is
ˆ ∣
∣
∣Em

[
1Bm

i
(x)∇�

(2,2)
j i (x)∇�

(2,2)
ni (x)

]∣
∣
∣ dx � m−2.

The case (A.16):

Em

[
1Bm

i
(x)∇�

(2,2)
jk (x)∇�

(2,2)
jk (x)

]

= m−3
¨

(ρ)xρ(y2)
(
(u)y1 − v1

)2
(

Aδm
y1

)2

y2

(∇Gδm
y2

)2
(x) f (dy1, dv1) dy2.
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Using (5.17),(5.16), (5.7) and (H1), we get
ˆ ∣
∣
∣Em

[
1Bm

i
�

(2,2)
jk �

(2,2)
jk

]∣
∣
∣ dx � m−2

ˆ
ρ(y2)

(
(u)y1 − v1

)2
(

Aδm
y1

)2

y2

f (dy1, dv1) dy2 � m−2.

For the next estimate (A.17), we get

Em

[
1Bm

i
(x)∇�

(2,2)
j i (x)∇�

(2,2)
j i (x)

]

=
¨

ρ(y2)
(
(u)y1 − v1

)21Bm
y1

(x)
(

Aδm
y1

)2

y2

(∇Gδm
y2

)2
(x) f (dy1, dv1) dy2.

By using again (A.21) and (5.14), we get
ˆ ∣
∣
∣Em

[
1Bm

i
∇�

(2,2)
j i ∇�

(2,2)
j i

]∣
∣
∣ dx

� m−3
ˆ

ρ(y2)
(
(u)y1 − v1

)2
(

1

|y2 − y1|4 + m−4 + 1

|y2 − y1|6 + m−6

)

f (dy1, dv1) dy2

�
ˆ
(
(u)y1 − v1

)2
f (dy1, dv1) � 1.

To estimate (A.18), observe

Em

[

1Bm
i

∣
∣
∣∇�

(2,1)
j

∣
∣
∣
2
]

� m−3
ˆ

(ρ)xρ(y1)(AF)2
y1

|∇Gδm
y1

|(x)2 dy1,

and hence by (5.17), it holds
ˆ

Em

[

1Bm
i

∣
∣
∣∇�

(2,1)
j

∣
∣
∣
2
]

dx � m−2
ˆ

ρ(y1)(AV u)2
y1

dy1 � m−2.

For (A.19), it holds

|Em

[
1Bm

i
∇�

(1,2)
i ∇�

(2,2)
n,i

]
| �

ˆ
1Bm

y1

∣
∣
∣∇GRA

[(
(u)y1 − v1

)
δm

y1

]∣
∣
∣

∣
∣
∣∇Gρ A

[(
(u)y1 − v1

)
δm

y1

]∣
∣
∣ f (dy1, dv1)

� m
ˆ

1Bm
y1

(
(u)y1 − v1

)2
f (dy1, dv1),

where we used (5.17). Thus
ˆ

|Em

[
1Bm

i
∇�

(1,2)
i ∇�

(2,2)
n,i

]
| dx � m−2.

Finally for (A.20), it is
∣
∣
∣Em

[
1Bm

i
∇�

(1,2)
k ∇�

(2,2)
k,i

]∣
∣
∣ �

ˆ
1Bm

y1
ρ(y1)

∣
∣(u)y2 − v2

∣
∣2
∣
∣
∣∇Gρ Aδm

y2

∣
∣
∣

∣
∣
∣(Aδm

y1
)y2

∣
∣
∣

∣
∣
∣∇Gδm

y2

∣
∣
∣ dy1 f (dy2, dv2)

� m1/2
ˆ

1Bm
y1

ρ(y1)
∣
∣(u)y1 − v1

∣
∣2
∣
∣
∣
(

Aδm
y1

)

y2

∣
∣
∣

∣
∣
∣∇Gδm

y2

∣
∣
∣ dy1 f (dy2, dv2),
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where we used (5.16). This is estimated as in (A.14) to get

ˆ ∣
∣
∣Em

[
1Bm

i
∇�

(1,2)
k ∇�

(2,2)
k,i

]∣
∣
∣ dx � m−1.

This finishes the proof. ��
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