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Deep neural networks (DNN) have become a central method in ecology. To build 
and train DNNs in deep learning (DL) applications, most users rely on one of the 
major deep learning frameworks, in particular PyTorch or TensorFlow. Using these 
frameworks, however, requires substantial experience and time. Here, we present ‘cito’, 
a user-friendly R package for DL that allows specifying DNNs in the familiar for-
mula syntax used by many R packages. To fit the models, ‘cito’ takes advantage of the 
numerically optimized ‘torch’ library, including the ability to switch between training 
models on the CPU or the graphics processing unit (GPU) which allows the efficient 
training of large DNNs. Moreover, ‘cito’ includes many user-friendly functions for 
model plotting and analysis, including explainable AI (xAI) metrics for effect sizes 
and variable importance. All xAI metrics as well as predictions can optionally be boot-
strapped to generate confidence intervals, including p-values. To showcase a typical 
analysis pipeline using ‘cito’, with its built-in xAI features, we built a species distri-
bution model of the African elephant. We hope that by providing a user-friendly R 
framework to specify, deploy and interpret DNNs, ‘cito’ will make this interesting class 
of models more accessible to ecological data analysis. A stable version of ‘cito’ can be 
installed from the comprehensive R archive network (CRAN).

Keywords: classification, machine learning, R language, regression, species 
distribution model, causal inference, predictive modelling, deep learning

Introduction

Deep neural networks (DNN) are increasingly used in ecology and evolution for 
regression and classification tasks such as species distribution models, image classifica-
tion or sound analysis (Christin et al. 2019, Joseph 2020, Strydom et al. 2021, Pichler 
and Hartig 2023a). State-of-the-art DNNs are almost exclusively implemented and 
trained in specialized deep learning (DL) frameworks such as PyTorch or Tensorflow 
(Abadi et al. 2016, Paszke et al. 2019). These frameworks, most of which are imple-
mented in Python, provide flexible and performant functions and classes that allow 
users to implement and train complex DL architectures, such as large language models 
(e.g. GPT-3 (Brown  et  al. 2020); RoBERTA (Liu  et  al. 2019)) or complex object 
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detection models (e.g. Mask R-CNN (He  et  al. 2017); 
DeepVit (Zhou et al. 2021)). Their high level of flexibility is 
appealing to ‘power users’, but the complexity of these frame-
works can be prohibitive or at least repelling for scientists 
with limited knowledge in the field, and who merely want to 
use neural networks in standard applications.

In response to this problem, several simplified frontends 
for the major DL frameworks have been developed. Many of 
these are also available in R (www.r-project.org), the language 
used by most ecologists for practical data analysis. Well-
known examples are ‘Keras’ for TensorFlow and luz for ‘torch’ 
(Allaire and Chollet 2022, Falbel 2022). Although easier to 
use, these frontends still follow the syntax of Python rather 
than the formula-based approach of R used by popular pack-
ages such as ‘ranger’ for training random forests or ‘lme4’ 
for fitting mixed-effects models (Bates  et  al. 2015, Wright 
and Ziegler 2017). Moreover, DL frontends such as ‘Keras’ 
or ‘luz’ mainly focus on model fitting and include only a 
very limited set of plots and convenience functions which 
are common to most R packages. As a result, working with 
these frontends still requires a considerable amount of train-
ing, especially because users have to use additional packages 
or program code for downstream tasks such as bootstrapping, 
plots or explainable AI (xAI) metrics by hand.

Besides the mentioned frontends to the large DL frame-
works, some specialized R packages for training DNNs exist 
that more closely adhere to the user interface of other popular 
R packages, and that use in particular the R formula syntax 
to specify the model structure. However, these more user-
friendly packages often lack crucial functionalities, and most 
of them do not make use of state-of-the-art DL frameworks 
for model fitting. For example, R packages such as ‘nnet’ or 
‘neuralnet’ do not support modern DL techniques, such as 
advanced regularization techniques (e.g. dropout) to con-
trol the bias-variance tradeoff (Venables and Ripley 2002, 
Fritsch et al. 2019), modern training techniques such as early 
stopping or learning rate schedulers that help to achieve con-
vergence, or the ability to train large models on GPUs, which 
can make training inefficient. The ‘h2o’ package comes with 
its own Java backend, and while it allows specifying models 
with the formula syntax, its use in R is cumbersome due to 
its inability to work with standard R objects (LeDell  et  al. 
2022). The ‘brulee’ R package (Kuhn and Falbel 2022), 
which uses ‘torch’ to train the DNNs specified in standard 
R syntax, is very similar to the package presented here, but 
still lacks some features that we consider critical (see section 
‘Design of the ‘cito’ package’).

Here, we present ‘cito’, an R package based on the ‘torch’ 
DL framework for training fully connected neural networks. 
‘cito’ allows flexible specification of neural networks architec-
tures using the standard R formula syntax for model specifi-
cation, supports many modern DL techniques (e.g. dropout 
and elastic net regularization, learning rate schedulers), can 
take advantage of CPU and GPU hardware for parallelization 
and, despite its simple user interface, optionally offers a high 
degree of customization such as user-defined loss functions. 
Moreover, ‘cito’ supports many downstream functionalities, 

such as the possibility to continue the training of existing 
DNNs with modified training parameters for fine-tuning, or 
the application of xAI methods to interpret the trained mod-
els. As such, ‘cito’ provides a user-friendly but nevertheless 
complete analysis pipeline for building neural networks in R.

In the remainder of the paper, we introduce the design 
principles of ‘cito’ in more detail, show validation and perfor-
mance analysis, and showcase the application of ‘cito’ using it 
to model the distribution of the African elephant.

Design of the ‘cito’ package

‘torch’ backend

‘cito’ uses ‘torch’, a variant of PyTorch, as its backend to rep-
resent and train the specified neural networks. Until recently, 
R users who wanted to use PyTorch and Tensorflow had to 
call their Python bindings through the ‘reticulate’ package. 
R packages that relied on this pipeline were thus dependent 
on appropriate Python installations (e.g. Pichler and Hartig 
2021), which often created dependency issues. This issue 
was solved with the release of ‘torch’, a native implementa-
tion of the ‘torch’ libraries with an R frontend (Falbel and 
Luraschi 2022).

Building and training neural networks in ‘cito’

With ‘torch’, R users can essentially use PyTorch functions 
natively in R, which solves dependency issues, but not the 
problem that specifying a DNN with ‘torch’ is complex.

‘cito’ addresses this problem by providing a simple func-
tion, dnn(), which combines everything needed to build and 
train a fully connected neural network in one line of code (see 
function vignette(‘A_Introduction_to_cito’) for more details). 
The dnn() function includes options to modify the network 
architecture and training process.

After fitting the model, the dnn() function returns the 
trained model as an S3 object that can be used in various 
ways. One option is the continue_training() function, which 
continues the training for additional epochs (iterations) 
with the same or modified training hyperparameters or data. 
Moreover, many standard R functions such as summary(), 
predict() or residuals() are implemented for the trained mod-
els, and additional specialized xAI functions are available for 
interpreting the fitted networks. More details on these and 
other functions are available in the R function vignettes pro-
vided with the ‘cito’ package.

Arguments that configure the architecture and influence 
training are called hyperparameters (Table 1). While they can 
be crucial to prevent overfitting by controlling the functional 
complexity of the DNN via regularization, they can also pre-
vent convergence if set to the wrong values. For example, 
hyperparameters such as the learning rate depend on the scale 
of the response variable in regression tasks, where inappropri-
ate learning rates can lead to inefficient training. We have tried 
to find reasonable default values for all hyperparameters in 
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the dnn() function that should be able to handle many data-
sets, but there is no guarantee that this will always work. In 
this case, the user must manually adjust the hyperparameters 
(e.g. the learning rate) as needed. Once convergence issues are 
solved, hyperparameters are ideally tuned under cross-valida-
tion to find the regularization strength that optimizes the bias-
variance trade-off (e.g. Pichler and Hartig 2023a).

To help users detect problems with non-convergence or 
overfitting, ‘cito’ provides detailed visual feedback on train-
ing and validation loss. Unlike other packages (Table 2), we 
provide a baseline loss (intercept-only model) which can be 
compared to the training loss to detect poor convergence. 
The vignette(‘B-Training_neural_networks’) explains in detail 
how to detect and fix such problems.

The lack of uncertainties (standard errors) is an often raised 
concern for DNNs (Gawlikowski  et  al. 2021). In ‘cito’, we 
provide an option to automatically calculate confidence inter-
vals for all outputs (including xAI metrics and predictions) 

using bootstrapping. Bootstrapping can be enabled in the 
dnn() function setting, e.g. dnn(… ,bootstrap = 50). Bootstrap 
standard errors are then automatically propagated through all 
downstream methods and are also used to generate p-values 
wherever obvious null hypotheses exist. As bootstrapping can 
be computationally expensive, we recommend training first 
without bootstrapping (which is the default) to optimize the 
training procedure (Fig. 1) and to then enable the bootstrap for 
the final model after the training pipeline has been finalized.

Performance comparison and validation of 
‘cito’

After explaining the design of ‘cito’, we brief﻿ly compare its 
performance and functionality with other packages for imple-
menting neural networks in R. In particular, we consider 
‘nnet’ and ‘neuralnet’, which each have their own backend 

Table 1: Arguments, including hyperparameters that control the learning process and the architecture of the final network, and their default 
values in dnn(). The defaults for all arguments are set to reasonable values; however, hyperparameters (e.g. learning rate, hidden, activation, 
bias, epochs, batchsize, lr, lambda, and alpha) typically need to be tuned. Detailed guidance on this can be found in the help file of the 
dnn() function or in the ‘cito’ R package vignette(‘Training_neural_networks’).

Name Explanation Default

Architecture
  hidden Quantity and size of hidden layers (50, 50)
  activation Activation function for hidden layers ‘selu’
  bias Should hidden nodes have bias TRUE
Training
  validation Split data into training and validation set to monitor training 0
  epochs Number of training iterations 100
  device Set to ‘cuda’ to train on GPU ‘cpu’
  plot Visualize loss during training TRUE
  batchsize Number of samples used for each training step 32
  shuffle Shuffle batches in between epochs TRUE
  lr Learning rate 0.01
  early_stopping Stops training early based on validation loss FALSE
  bootstrap Number of bootstrap samples FALSE
Controlling bias-variance trade-off (regularization)
  lambda Strength of elastic net regularization 0
  alpha Split of L1 and L2 regularization 0.5
  dropout Dropout probability of a node 0

Table 2. Feature comparison of R packages used to build fully connected neural networks.

‘cito’ ‘brulee’ ‘h2o’ ‘neuralnet’ ‘nnet’

Customizable network architecture X X X X
Fit a probability distribution X X
GPU support X
Regularization X X X X X
Custom loss function X X
Optimization of additional user-defined parameters X
Continue training X
Class weights for imbalanced data X
Learning rate scheduler X X X
Feature importance (xAI) X X
Partial dependency plots (xAI) X
Accumulated local effect plots (xAI) X
Uncertainty (confidence intervals and p-values for xAI 

metrics and predictions)
X

Baseline loss (to help with the convergence) X
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and are not based on modern DL frameworks (Venables and 
Ripley 2002, Fritsch et al. 2019), ‘h2o’, which has a much 
broader toolkit for training neural networks than the previ-
ous two packages (LeDell  et  al. 2022) and ‘brulee’ (Kuhn 
and Falbel 2022) which, similar to ‘cito’, uses the ‘torch’ DL 
framework as a backend.

Our comparison shows that ‘cito’ implements more func-
tionalities than other packages, in particular GPU support, 
the possibility to continue training and custom loss functions 

and, most importantly, tools to interpret the trained DNN 
models (Table 2).

Looking at the computational performance, measured by 
the time it takes to train the networks, we find that some 
of the older packages, in particular ‘neuralnet’, perform bet-
ter than the ‘torch’-based packages (‘brulee’ and ‘cito’) for 
small networks (Fig. 2). This is probably due to the smaller 
overhead of these more specialized packages. However, 
when moving to larger networks (large and especially wide 

Figure 1. Workflow of building, training and analyzing DNNs with ‘cito’. Example workflow and analyses for (multi) species distribution 
models are available as a vignette (vignette(‘C -Example_Species_distribution_modeling’)) or at https://citoverse.github.io/cito/articles.

Figure 2. Comparison of runtime and predictive performance of different R deep learning software packages (‘brulee’, ‘h2o’, ‘neuralnet’ and 
‘cito’ (CPU and GPU)). Panel (A) shows the runtime of each package on different network sizes on an Intel Xeon Gold 6246R and a Nvidia 
RTX A5000. The networks consist of five equally sized layers (50 to 1000 nodes with a step size of 50) and were trained on a simulated 
dataset of 1000 observations. Panel (B) shows the average root mean square error (RMSE) of the models on a holdout of size 1000 observa-
tions (RMSE was averaged over different network sizes). Each network was trained 20 times (the dataset was resampled each time).
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networks are often beneficial for achieving low generalization 
errors (Belkin  et  al. 2019)), ‘cito’ can play out one of the 
main advantage of modern DL frameworks, which is GPU 
support. On a GPU, training time in ‘cito’ for our simulated 
datasets (1000 observations and 20 predictors) is practically 
independent of the size of the network, confirming the con-
sensus that training large networks requires GPU resources. 
On a CPU, ‘cito’ performs on a par with ‘brulee’, the other 
‘torch’-based package, but somewhat worse than ‘neuralnet’. 
We interpret these results as showing that, for a simple prob-
lem, there is still some overhead in using ‘torch’ as opposed 
to a native C implementation. Nevertheless, we would argue 
that the added flexibility and functionality of ‘cito’ outweighs 
this advantage of ‘neuralnet’. Moreover, our results suggest 
that the difference between the ‘torch’-based packages (‘bru-
lee’ and ‘cito’) and ‘neuralnet’ lies mainly in the constant 
overhead needed to set up the models. For large models, their 
performance is about the same.

Workflow and case study

So far, we have mainly discussed the model training process, 
which is arguably the core of any machine learning project. 
Now, we want to comment on the entire workflow when using 
‘cito’ to build and interpret a predictive model. This workflow 
usually consists of model specification, training, and inter-
pretation and predictions (Fig. 1). To make the discussion of 
the workflow more accessible to the reader, we illustrate this 
workflow with the example (following Ryo et al. (2021)) of 
building a species distribution model (SDM) for the African 
elephant Loxodonta africana.

SDMs are niche models that correlate environment 
with species occurrence data (Elith and Leathwick 2009). 
As a case study we used African elephant records used by 
Ryo et al. (2021) and originally gathered by Angelov (2020), 
which were compiled from different studies available on 
the Global Biodiversity Information Facility (Musila  et  al. 
2019, Jlegind 2021, INaturalist Contributors 2022, Navarro 
2022). These presence-only data were supplemented by 
Angelov (2020) with randomly sampled background points 

(pseudo-absences) to generate a presence-absence signal for 
the classifier. While it is common in statistical modeling 
to sample more pseudo-absences than presences (Barbet-
Massin et al. 2012), such imbalanced class numbers can be 
harmful for ML algorithms (Steen et al. 2021). We therefore 
randomly undersampled pseudo-absences to match the num-
ber of observations. As predictors, we used all 19 bioclimatic 
variables from WorldClim ver. 2 (Fourcade  et  al. 2018), 
which were centered and standardized.

Building and training a species-distribution model based 
on a fully connected neural network with three hidden lay-
ers of 50, 50 and 50 nodes and trains it for 50 epochs can be 
done in a single line of code:

nn.fit <- dnn(label~., 
            data = data,
            hidden = c(50, 50, 50), 
            loss = ‘binomial’,
            epochs = 50, 
            lr = 0.1,
            batchsize = 300,
            validation = 0.1, 
            shuffle = TRUE,
            alpha = 0.5, 
            lambda = 0.005,
            early_stopping = 10,
            boostrap = 30)
During training (without bootstrapping), a plot is dis-

played in R that monitors the training, validation and baseline 
loss. This plot can be used to diagnose convergence problems, 
for example if the training loss does not decrease over time 
or does not fall below the baseline loss. In this case, it would 
be advisable to abort and restart the training with different 
hyperparameters (e.g. lower learning rate), use a learning rate 
scheduler or perform a systematic hyperparameter tuning. We 
provide extensive help on this topic in the documentation and 
in a vignette (vignette(‘B-Training_neural_networks’)). Here we 
show an example where we restart the training with a lower 
learning rate and a learning rate scheduler that automatically 
reduces the learning rate if the loss does not decrease in 8 con-
tinuous epochs (patience = 8) to achieve a better fit:

Figure 3. Predictions and standard errors of prediction for the African elephant from a DNN trained by ‘cito’. Panel (A) shows the predicted 
probability of occurrence of the African elephant. Panel (B) shows the standard error for the predicted probabilities (confidence interval).
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    nn.fit <- continue_training(nn.fit,
                           epochs = 150,
                           changed_params = list(lr = 0.05,
                                            lr_scheduler = config_lr_scheduler(‘reduce_on_plateau’), 
                                            patience = 8,
                                            factor = 0.8))

The trained models can be used with a range of in-built 
functions. The predict() function can be used to predict the 
occurrence probability of the elephant (Fig. 3A). The sum-
mary() function provides an overview about influential vari-
ables by calculating their importances (Fisher  et  al. 2019) 
as well as average conditional effects (which are an approxi-
mation of linear effects, Scholbeck et al. 2022, Pichler and 
Hartig 2023b, Fig. 4A). Partial dependency plots (PDP) and 
averaged local effect plots (ALE) functions can be used to 
display the effect of specific features on the response, in this 
case the occurrence probability of the elephant (Fig. 4B–C). 
If bootstrapping is enabled, ‘cito’ automatically uses the 

bootstrap samples to calculate confidence intervals (CI) 
for the predictions (Fig. 3B, where CI are presented using 
standard errors for visualization), CIs and p-values for the 
xAI metrics (Fig. 4A) and CIs for the PDP and ALE plots 
(Fig. 4B–C).

Conclusion

In conclusion, ‘cito’ is a powerful and versatile R package for 
building and training fully connected neural networks with the 
formula syntax. The package seamlessly integrates into the R 

Figure 4. xAI metrics with bootstrapped confidence intervals (+/- 1 standard errors) from the model trained by ‘cito’. Panel (A) shows (per-
mutation) feature importances and average conditional effects (approximation of linear effects) from the summary() output for the 19 
Bioclim variables. Panels (B) and (C) show the accumulated local effect plots (ALE); that is, the change of the predicted occurrence prob-
ability, for the Bioclim variables 3 (isothermality) and 4 (temperature seasonality).
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regression ecosystem and removes many hurdles in using neu-
ral networks for inexperienced users, but also saves program-
ming time for experienced users who just want to build simple 
neural networks. The unique combination of features provided 
by ‘cito’, such as training on a GPU, using custom loss func-
tions, baseline loss, confidence intervals, modern DL training 
techniques such as continuing training, learning rate scheduler 
or early stopping, cannot be found in other packages.

A downside of the simple user interface of ‘cito’ is that users 
can only choose between selected architectures. Currently, 
‘cito’ only supports fully connected neural networks, a struc-
ture best suitable for tabular data, as in our SDM example. 
However, the development branch of ‘cito’ already includes 
an extension for convolutional neural networks (CNN) that 
are often used for image and sound recognition in ecology 
(Christin et al. 2019). While it may be possible to also offer 
support for some advanced architectures such as recurrent 
neural networks (RNN), we anticipate that expanding ‘cito’ 
to a general set of complex architectures while maintaining 
our simple user interface will be challenging.

Moreover, despite the simplicity of our interface, it is 
important to note that the models currently implemented in 
‘cito’ are still complex compared to a linear regression, and 
users should make sure of understanding the effects of model 
assumptions and hyperparameter settings. For example, while 
we provide bootstrap CIs and p-values for all inferential out-
puts in ‘cito’, it is not automatically guaranteed that these will 
respect standard statistical expectations such as controlled 
type I error or nominal coverage. The reason is that algorith-
mic structure and hyperparameters in ML algorithms such as 
DNNs regularize functional complexity and will thus create 
simplicity biases on predictions and xAI metrics (Shah et al. 
2020, Pichler and Hartig 2023b). The performance of the 
provided metrics should therefore ideally be tested for any 
specific combination of data and hyperparameters. Future 
development of ‘cito’ will aim at supporting users in these 
tasks by implementing additional functionalities such as 
internal cross-validation for hyperparameter optimization, 
gradient-based methods for hyperparameter tuning, and by 
increasing the statistical reliability of the xAI.

To cite ‘cito’ or acknowledge its use, cite this Software note 
as follows, substituting the version of the application that you 
used for ‘version 1.0.2’:

Amesöder, C., Hartig, F. and Pichler, M. 2024. ‘cito’: an R package 
for training neural networks using ‘torch’. – Ecography 2024: 
e07143 (ver. 1.0.2).
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