
www.ecography.org

ECOGRAPHY

Ecography

Page 1 of 8

This is an open access article under the terms of the Creative Commons
Attribution License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited.

Subject Editor:
F. Guillaume Blanchet
Editor-in-Chief: Miguel Araújo
Accepted 20 February 2024

doi: 10.1111/ecog.07143

00

1–8

2024: e07143

© 2024 The Authors. Ecography published by John Wiley & Sons Ltd on behalf of Nordic Society
Oikos

Deep neural networks (DNN) have become a central method in ecology. To build
and train DNNs in deep learning (DL) applications, most users rely on one of the
major deep learning frameworks, in particular PyTorch or TensorFlow. Using these
frameworks, however, requires substantial experience and time. Here, we present ‘cito’,
a user-friendly R package for DL that allows specifying DNNs in the familiar for-
mula syntax used by many R packages. To fit the models, ‘cito’ takes advantage of the
numerically optimized ‘torch’ library, including the ability to switch between training
models on the CPU or the graphics processing unit (GPU) which allows the efficient
training of large DNNs. Moreover, ‘cito’ includes many user-friendly functions for
model plotting and analysis, including explainable AI (xAI) metrics for effect sizes
and variable importance. All xAI metrics as well as predictions can optionally be boot-
strapped to generate confidence intervals, including p-values. To showcase a typical
analysis pipeline using ‘cito’, with its built-in xAI features, we built a species distri-
bution model of the African elephant. We hope that by providing a user-friendly R
framework to specify, deploy and interpret DNNs, ‘cito’ will make this interesting class
of models more accessible to ecological data analysis. A stable version of ‘cito’ can be
installed from the comprehensive R archive network (CRAN).

Keywords: classification, machine learning, R language, regression, species
distribution model, causal inference, predictive modelling, deep learning

Introduction

Deep neural networks (DNN) are increasingly used in ecology and evolution for
regression and classification tasks such as species distribution models, image classifica-
tion or sound analysis (Christin et al. 2019, Joseph 2020, Strydom et al. 2021, Pichler
and Hartig 2023a). State-of-the-art DNNs are almost exclusively implemented and
trained in specialized deep learning (DL) frameworks such as PyTorch or Tensorflow
(Abadi et al. 2016, Paszke et al. 2019). These frameworks, most of which are imple-
mented in Python, provide flexible and performant functions and classes that allow
users to implement and train complex DL architectures, such as large language models
(e.g. GPT-3 (Brown et al. 2020); RoBERTA (Liu et al. 2019)) or complex object

‘cito’: an R package for training neural networks using ‘torch’

Christian Amesöder 1,2, Florian Hartig 1 and Maximilian Pichler ✉1

1Theoretical Ecology, University of Regensburg, Regensburg, Germany
2Information Systems, University of Regensburg, Regensburg, Germany

Correspondence: Maximilian Pichler (maximilian.pichler@biologie.uni-regensburg.de)

Software Note

8

https://doi.org/10.1111/ecog.07143
http://orcid.org/0000-0002-1668-8351
http://orcid.org/0000-0002-6255-9059
http://orcid.org/0000-0003-2252-8327
mailto:maximilian.pichler@biologie.uni-regensburg.de
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fecog.07143&domain=pdf&date_stamp=2024-05-06

Page 2 of 8

detection models (e.g. Mask R-CNN (He et al. 2017);
DeepVit (Zhou et al. 2021)). Their high level of flexibility is
appealing to ‘power users’, but the complexity of these frame-
works can be prohibitive or at least repelling for scientists
with limited knowledge in the field, and who merely want to
use neural networks in standard applications.

In response to this problem, several simplified frontends
for the major DL frameworks have been developed. Many of
these are also available in R (www.r-project.org), the language
used by most ecologists for practical data analysis. Well-
known examples are ‘Keras’ for TensorFlow and luz for ‘torch’
(Allaire and Chollet 2022, Falbel 2022). Although easier to
use, these frontends still follow the syntax of Python rather
than the formula-based approach of R used by popular pack-
ages such as ‘ranger’ for training random forests or ‘lme4’
for fitting mixed-effects models (Bates et al. 2015, Wright
and Ziegler 2017). Moreover, DL frontends such as ‘Keras’
or ‘luz’ mainly focus on model fitting and include only a
very limited set of plots and convenience functions which
are common to most R packages. As a result, working with
these frontends still requires a considerable amount of train-
ing, especially because users have to use additional packages
or program code for downstream tasks such as bootstrapping,
plots or explainable AI (xAI) metrics by hand.

Besides the mentioned frontends to the large DL frame-
works, some specialized R packages for training DNNs exist
that more closely adhere to the user interface of other popular
R packages, and that use in particular the R formula syntax
to specify the model structure. However, these more user-
friendly packages often lack crucial functionalities, and most
of them do not make use of state-of-the-art DL frameworks
for model fitting. For example, R packages such as ‘nnet’ or
‘neuralnet’ do not support modern DL techniques, such as
advanced regularization techniques (e.g. dropout) to con-
trol the bias-variance tradeoff (Venables and Ripley 2002,
Fritsch et al. 2019), modern training techniques such as early
stopping or learning rate schedulers that help to achieve con-
vergence, or the ability to train large models on GPUs, which
can make training inefficient. The ‘h2o’ package comes with
its own Java backend, and while it allows specifying models
with the formula syntax, its use in R is cumbersome due to
its inability to work with standard R objects (LeDell et al.
2022). The ‘brulee’ R package (Kuhn and Falbel 2022),
which uses ‘torch’ to train the DNNs specified in standard
R syntax, is very similar to the package presented here, but
still lacks some features that we consider critical (see section
‘Design of the ‘cito’ package’).

Here, we present ‘cito’, an R package based on the ‘torch’
DL framework for training fully connected neural networks.
‘cito’ allows flexible specification of neural networks architec-
tures using the standard R formula syntax for model specifi-
cation, supports many modern DL techniques (e.g. dropout
and elastic net regularization, learning rate schedulers), can
take advantage of CPU and GPU hardware for parallelization
and, despite its simple user interface, optionally offers a high
degree of customization such as user-defined loss functions.
Moreover, ‘cito’ supports many downstream functionalities,

such as the possibility to continue the training of existing
DNNs with modified training parameters for fine-tuning, or
the application of xAI methods to interpret the trained mod-
els. As such, ‘cito’ provides a user-friendly but nevertheless
complete analysis pipeline for building neural networks in R.

In the remainder of the paper, we introduce the design
principles of ‘cito’ in more detail, show validation and perfor-
mance analysis, and showcase the application of ‘cito’ using it
to model the distribution of the African elephant.

Design of the ‘cito’ package

‘torch’ backend

‘cito’ uses ‘torch’, a variant of PyTorch, as its backend to rep-
resent and train the specified neural networks. Until recently,
R users who wanted to use PyTorch and Tensorflow had to
call their Python bindings through the ‘reticulate’ package.
R packages that relied on this pipeline were thus dependent
on appropriate Python installations (e.g. Pichler and Hartig
2021), which often created dependency issues. This issue
was solved with the release of ‘torch’, a native implementa-
tion of the ‘torch’ libraries with an R frontend (Falbel and
Luraschi 2022).

Building and training neural networks in ‘cito’

With ‘torch’, R users can essentially use PyTorch functions
natively in R, which solves dependency issues, but not the
problem that specifying a DNN with ‘torch’ is complex.

‘cito’ addresses this problem by providing a simple func-
tion, dnn(), which combines everything needed to build and
train a fully connected neural network in one line of code (see
function vignette(‘A_Introduction_to_cito’) for more details).
The dnn() function includes options to modify the network
architecture and training process.

After fitting the model, the dnn() function returns the
trained model as an S3 object that can be used in various
ways. One option is the continue_training() function, which
continues the training for additional epochs (iterations)
with the same or modified training hyperparameters or data.
Moreover, many standard R functions such as summary(),
predict() or residuals() are implemented for the trained mod-
els, and additional specialized xAI functions are available for
interpreting the fitted networks. More details on these and
other functions are available in the R function vignettes pro-
vided with the ‘cito’ package.

Arguments that configure the architecture and influence
training are called hyperparameters (Table 1). While they can
be crucial to prevent overfitting by controlling the functional
complexity of the DNN via regularization, they can also pre-
vent convergence if set to the wrong values. For example,
hyperparameters such as the learning rate depend on the scale
of the response variable in regression tasks, where inappropri-
ate learning rates can lead to inefficient training. We have tried
to find reasonable default values for all hyperparameters in

 16000587, 2024, 6, D
ow

nloaded from
 https://nsojournals.onlinelibrary.w

iley.com
/doi/10.1111/ecog.07143 by U

niversitaet R
egensburg, W

iley O
nline L

ibrary on [04/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

www.r-project.org

Page 3 of 8

the dnn() function that should be able to handle many data-
sets, but there is no guarantee that this will always work. In
this case, the user must manually adjust the hyperparameters
(e.g. the learning rate) as needed. Once convergence issues are
solved, hyperparameters are ideally tuned under cross-valida-
tion to find the regularization strength that optimizes the bias-
variance trade-off (e.g. Pichler and Hartig 2023a).

To help users detect problems with non-convergence or
overfitting, ‘cito’ provides detailed visual feedback on train-
ing and validation loss. Unlike other packages (Table 2), we
provide a baseline loss (intercept-only model) which can be
compared to the training loss to detect poor convergence.
The vignette(‘B-Training_neural_networks’) explains in detail
how to detect and fix such problems.

The lack of uncertainties (standard errors) is an often raised
concern for DNNs (Gawlikowski et al. 2021). In ‘cito’, we
provide an option to automatically calculate confidence inter-
vals for all outputs (including xAI metrics and predictions)

using bootstrapping. Bootstrapping can be enabled in the
dnn() function setting, e.g. dnn(… ,bootstrap = 50). Bootstrap
standard errors are then automatically propagated through all
downstream methods and are also used to generate p-values
wherever obvious null hypotheses exist. As bootstrapping can
be computationally expensive, we recommend training first
without bootstrapping (which is the default) to optimize the
training procedure (Fig. 1) and to then enable the bootstrap for
the final model after the training pipeline has been finalized.

Performance comparison and validation of
‘cito’

After explaining the design of ‘cito’, we brief﻿ly compare its
performance and functionality with other packages for imple-
menting neural networks in R. In particular, we consider
‘nnet’ and ‘neuralnet’, which each have their own backend

Table 1: Arguments, including hyperparameters that control the learning process and the architecture of the final network, and their default
values in dnn(). The defaults for all arguments are set to reasonable values; however, hyperparameters (e.g. learning rate, hidden, activation,
bias, epochs, batchsize, lr, lambda, and alpha) typically need to be tuned. Detailed guidance on this can be found in the help file of the
dnn() function or in the ‘cito’ R package vignette(‘Training_neural_networks’).

Name Explanation Default

Architecture
  hidden Quantity and size of hidden layers (50, 50)
  activation Activation function for hidden layers ‘selu’
  bias Should hidden nodes have bias TRUE
Training
  validation Split data into training and validation set to monitor training 0
  epochs Number of training iterations 100
  device Set to ‘cuda’ to train on GPU ‘cpu’
  plot Visualize loss during training TRUE
  batchsize Number of samples used for each training step 32
  shuffle Shuffle batches in between epochs TRUE
  lr Learning rate 0.01
  early_stopping Stops training early based on validation loss FALSE
  bootstrap Number of bootstrap samples FALSE
Controlling bias-variance trade-off (regularization)
  lambda Strength of elastic net regularization 0
  alpha Split of L1 and L2 regularization 0.5
  dropout Dropout probability of a node 0

Table 2. Feature comparison of R packages used to build fully connected neural networks.

‘cito’ ‘brulee’ ‘h2o’ ‘neuralnet’ ‘nnet’

Customizable network architecture X X X X
Fit a probability distribution X X
GPU support X
Regularization X X X X X
Custom loss function X X
Optimization of additional user-defined parameters X
Continue training X
Class weights for imbalanced data X
Learning rate scheduler X X X
Feature importance (xAI) X X
Partial dependency plots (xAI) X
Accumulated local effect plots (xAI) X
Uncertainty (confidence intervals and p-values for xAI

metrics and predictions)
X

Baseline loss (to help with the convergence) X

 16000587, 2024, 6, D
ow

nloaded from
 https://nsojournals.onlinelibrary.w

iley.com
/doi/10.1111/ecog.07143 by U

niversitaet R
egensburg, W

iley O
nline L

ibrary on [04/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Page 4 of 8

and are not based on modern DL frameworks (Venables and
Ripley 2002, Fritsch et al. 2019), ‘h2o’, which has a much
broader toolkit for training neural networks than the previ-
ous two packages (LeDell et al. 2022) and ‘brulee’ (Kuhn
and Falbel 2022) which, similar to ‘cito’, uses the ‘torch’ DL
framework as a backend.

Our comparison shows that ‘cito’ implements more func-
tionalities than other packages, in particular GPU support,
the possibility to continue training and custom loss functions

and, most importantly, tools to interpret the trained DNN
models (Table 2).

Looking at the computational performance, measured by
the time it takes to train the networks, we find that some
of the older packages, in particular ‘neuralnet’, perform bet-
ter than the ‘torch’-based packages (‘brulee’ and ‘cito’) for
small networks (Fig. 2). This is probably due to the smaller
overhead of these more specialized packages. However,
when moving to larger networks (large and especially wide

Figure 1. Workflow of building, training and analyzing DNNs with ‘cito’. Example workflow and analyses for (multi) species distribution
models are available as a vignette (vignette(‘C -Example_Species_distribution_modeling’)) or at https://citoverse.github.io/cito/articles.

Figure 2. Comparison of runtime and predictive performance of different R deep learning software packages (‘brulee’, ‘h2o’, ‘neuralnet’ and
‘cito’ (CPU and GPU)). Panel (A) shows the runtime of each package on different network sizes on an Intel Xeon Gold 6246R and a Nvidia
RTX A5000. The networks consist of five equally sized layers (50 to 1000 nodes with a step size of 50) and were trained on a simulated
dataset of 1000 observations. Panel (B) shows the average root mean square error (RMSE) of the models on a holdout of size 1000 observa-
tions (RMSE was averaged over different network sizes). Each network was trained 20 times (the dataset was resampled each time).

 16000587, 2024, 6, D
ow

nloaded from
 https://nsojournals.onlinelibrary.w

iley.com
/doi/10.1111/ecog.07143 by U

niversitaet R
egensburg, W

iley O
nline L

ibrary on [04/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://citoverse.github.io/cito/articles

Page 5 of 8

networks are often beneficial for achieving low generalization
errors (Belkin et al. 2019)), ‘cito’ can play out one of the
main advantage of modern DL frameworks, which is GPU
support. On a GPU, training time in ‘cito’ for our simulated
datasets (1000 observations and 20 predictors) is practically
independent of the size of the network, confirming the con-
sensus that training large networks requires GPU resources.
On a CPU, ‘cito’ performs on a par with ‘brulee’, the other
‘torch’-based package, but somewhat worse than ‘neuralnet’.
We interpret these results as showing that, for a simple prob-
lem, there is still some overhead in using ‘torch’ as opposed
to a native C implementation. Nevertheless, we would argue
that the added flexibility and functionality of ‘cito’ outweighs
this advantage of ‘neuralnet’. Moreover, our results suggest
that the difference between the ‘torch’-based packages (‘bru-
lee’ and ‘cito’) and ‘neuralnet’ lies mainly in the constant
overhead needed to set up the models. For large models, their
performance is about the same.

Workflow and case study

So far, we have mainly discussed the model training process,
which is arguably the core of any machine learning project.
Now, we want to comment on the entire workflow when using
‘cito’ to build and interpret a predictive model. This workflow
usually consists of model specification, training, and inter-
pretation and predictions (Fig. 1). To make the discussion of
the workflow more accessible to the reader, we illustrate this
workflow with the example (following Ryo et al. (2021)) of
building a species distribution model (SDM) for the African
elephant Loxodonta africana.

SDMs are niche models that correlate environment
with species occurrence data (Elith and Leathwick 2009).
As a case study we used African elephant records used by
Ryo et al. (2021) and originally gathered by Angelov (2020),
which were compiled from different studies available on
the Global Biodiversity Information Facility (Musila et al.
2019, Jlegind 2021, INaturalist Contributors 2022, Navarro
2022). These presence-only data were supplemented by
Angelov (2020) with randomly sampled background points

(pseudo-absences) to generate a presence-absence signal for
the classifier. While it is common in statistical modeling
to sample more pseudo-absences than presences (Barbet-
Massin et al. 2012), such imbalanced class numbers can be
harmful for ML algorithms (Steen et al. 2021). We therefore
randomly undersampled pseudo-absences to match the num-
ber of observations. As predictors, we used all 19 bioclimatic
variables from WorldClim ver. 2 (Fourcade et al. 2018),
which were centered and standardized.

Building and training a species-distribution model based
on a fully connected neural network with three hidden lay-
ers of 50, 50 and 50 nodes and trains it for 50 epochs can be
done in a single line of code:

nn.fit <- dnn(label~.,
       data = data,
       hidden = c(50, 50, 50),
       loss = ‘binomial’,
       epochs = 50,
       lr = 0.1,
       batchsize = 300,
       validation = 0.1,
       shuffle = TRUE,
       alpha = 0.5,
       lambda = 0.005,
       early_stopping = 10,
       boostrap = 30)
During training (without bootstrapping), a plot is dis-

played in R that monitors the training, validation and baseline
loss. This plot can be used to diagnose convergence problems,
for example if the training loss does not decrease over time
or does not fall below the baseline loss. In this case, it would
be advisable to abort and restart the training with different
hyperparameters (e.g. lower learning rate), use a learning rate
scheduler or perform a systematic hyperparameter tuning. We
provide extensive help on this topic in the documentation and
in a vignette (vignette(‘B-Training_neural_networks’)). Here we
show an example where we restart the training with a lower
learning rate and a learning rate scheduler that automatically
reduces the learning rate if the loss does not decrease in 8 con-
tinuous epochs (patience = 8) to achieve a better fit:

Figure 3. Predictions and standard errors of prediction for the African elephant from a DNN trained by ‘cito’. Panel (A) shows the predicted
probability of occurrence of the African elephant. Panel (B) shows the standard error for the predicted probabilities (confidence interval).

 16000587, 2024, 6, D
ow

nloaded from
 https://nsojournals.onlinelibrary.w

iley.com
/doi/10.1111/ecog.07143 by U

niversitaet R
egensburg, W

iley O
nline L

ibrary on [04/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Page 6 of 8

   nn.fit <- continue_training(nn.fit,
              epochs = 150,
              changed_params = list(lr = 0.05,
                       lr_scheduler = config_lr_scheduler(‘reduce_on_plateau’),
                       patience = 8,
                       factor = 0.8))

The trained models can be used with a range of in-built
functions. The predict() function can be used to predict the
occurrence probability of the elephant (Fig. 3A). The sum-
mary() function provides an overview about influential vari-
ables by calculating their importances (Fisher et al. 2019)
as well as average conditional effects (which are an approxi-
mation of linear effects, Scholbeck et al. 2022, Pichler and
Hartig 2023b, Fig. 4A). Partial dependency plots (PDP) and
averaged local effect plots (ALE) functions can be used to
display the effect of specific features on the response, in this
case the occurrence probability of the elephant (Fig. 4B–C).
If bootstrapping is enabled, ‘cito’ automatically uses the

bootstrap samples to calculate confidence intervals (CI)
for the predictions (Fig. 3B, where CI are presented using
standard errors for visualization), CIs and p-values for the
xAI metrics (Fig. 4A) and CIs for the PDP and ALE plots
(Fig. 4B–C).

Conclusion

In conclusion, ‘cito’ is a powerful and versatile R package for
building and training fully connected neural networks with the
formula syntax. The package seamlessly integrates into the R

Figure 4. xAI metrics with bootstrapped confidence intervals (+/- 1 standard errors) from the model trained by ‘cito’. Panel (A) shows (per-
mutation) feature importances and average conditional effects (approximation of linear effects) from the summary() output for the 19
Bioclim variables. Panels (B) and (C) show the accumulated local effect plots (ALE); that is, the change of the predicted occurrence prob-
ability, for the Bioclim variables 3 (isothermality) and 4 (temperature seasonality).

 16000587, 2024, 6, D
ow

nloaded from
 https://nsojournals.onlinelibrary.w

iley.com
/doi/10.1111/ecog.07143 by U

niversitaet R
egensburg, W

iley O
nline L

ibrary on [04/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Page 7 of 8

regression ecosystem and removes many hurdles in using neu-
ral networks for inexperienced users, but also saves program-
ming time for experienced users who just want to build simple
neural networks. The unique combination of features provided
by ‘cito’, such as training on a GPU, using custom loss func-
tions, baseline loss, confidence intervals, modern DL training
techniques such as continuing training, learning rate scheduler
or early stopping, cannot be found in other packages.

A downside of the simple user interface of ‘cito’ is that users
can only choose between selected architectures. Currently,
‘cito’ only supports fully connected neural networks, a struc-
ture best suitable for tabular data, as in our SDM example.
However, the development branch of ‘cito’ already includes
an extension for convolutional neural networks (CNN) that
are often used for image and sound recognition in ecology
(Christin et al. 2019). While it may be possible to also offer
support for some advanced architectures such as recurrent
neural networks (RNN), we anticipate that expanding ‘cito’
to a general set of complex architectures while maintaining
our simple user interface will be challenging.

Moreover, despite the simplicity of our interface, it is
important to note that the models currently implemented in
‘cito’ are still complex compared to a linear regression, and
users should make sure of understanding the effects of model
assumptions and hyperparameter settings. For example, while
we provide bootstrap CIs and p-values for all inferential out-
puts in ‘cito’, it is not automatically guaranteed that these will
respect standard statistical expectations such as controlled
type I error or nominal coverage. The reason is that algorith-
mic structure and hyperparameters in ML algorithms such as
DNNs regularize functional complexity and will thus create
simplicity biases on predictions and xAI metrics (Shah et al.
2020, Pichler and Hartig 2023b). The performance of the
provided metrics should therefore ideally be tested for any
specific combination of data and hyperparameters. Future
development of ‘cito’ will aim at supporting users in these
tasks by implementing additional functionalities such as
internal cross-validation for hyperparameter optimization,
gradient-based methods for hyperparameter tuning, and by
increasing the statistical reliability of the xAI.

To cite ‘cito’ or acknowledge its use, cite this Software note
as follows, substituting the version of the application that you
used for ‘version 1.0.2’:

Amesöder, C., Hartig, F. and Pichler, M. 2024. ‘cito’: an R package
for training neural networks using ‘torch’. – Ecography 2024:
e07143 (ver. 1.0.2).

Acknowledgements – We would like to thank Isabelle Halbhuber, Daniel
Maar, and Armin Schenk, as well as Guillaume Blanchet and two
anonymous reviewers for their valuable comments and suggestions.
Open Access funding enabled and organized by Projekt DEAL.

Author contributions

Christian Amesöder: Conceptualization (supporting);
Investigation (equal); Methodology (equal); Software (equal);

Visualization (equal); Writing – original draft (lead). Florian
Hartig: Conceptualization (equal); Investigation (equal);
Methodology (equal); Supervision (equal); Visualization
(equal); Writing – review and editing (supporting). Maximilian
Pichler: Conceptualization (equal); Investigation (equal);
Methodology (equal); Software (equal); Supervision (equal);
Visualization (equal); Writing – review and editing (lead).

Transparent peer review

The peer review history for this article is available at https://
publons.com/publon/10.1111/ecog.07143.

Data availability statement

The processed datasets for the species distribution model
(African elephant) are available from Angelov (2020). We
used version 1.0.2 of the ‘cito’ package. The ‘cito’ package
can be downloaded from CRAN. Documentation and ren-
dered vignettes (under articles) can be found on https://cito-
verse.github.io/cito/or on the CRAN website of the package
at https://cran.r-project.org/web/packages/cito/index.html.

Data are available from the Zenodo Digital Repository:
https://zenodo.org/records/10853334 (Amesöder et al. 2024).

References

naturgucker_de 2020. naturgucker. – www.gbif.org/
dataset/6ac3f774-d9fb-4796-b3e9-92bf6c81c084, accessed 30
May 2020.

Abadi, M. et al. 2016. Tensorflow: large-scale machine learning on
heterogeneous distributed systems. – ArXiv Prepr.
ArXiv160304467, https://www.tensorflow.org/about/bib.

Allaire, J. J. and Chollet, F. 2022. keras: R Interface to “Keras”. –
https://cran.r-project.org/web/packages/keras/index.html.

Amesöder, C., Hartig, H. and Pichler, M. 2024 Data from: ‘cito’: an
R package for training neural networks using ‘torch’. – Zenodo
Digital Repository, https://zenodo.org/records/10853334.

Angelov, B. 2020. boyanangelov/interpretable_sdm: reproducibility
fix. – https://zenodo.org/records/4048271.

Barbet‐Massin, M., Jiguet, F., Albert, C. H. and Thuiller, W. 2012.
Selecting pseudo‐absences for species distribution models: how,
where and how many? – Methods Ecol. Evol. 3: 327–338.

Bates, D., Mächler, M., Bolker, B. and Walker, S. 2015. Fitting lin-
ear mixed-effects models using lme4. – J. Stat. Softw. 67: 1–48.

Belkin, M., Hsu, D., Ma, S. and Mandal, S. 2019. Reconciling
modern machine-learning practice and the classical bias–vari-
ance trade-off. – Proc. Natl Acad. Sci. USA 116: 15849–15854.

Brown, T. et al. 2020. Language models are few-shot learners. –
Adv. Neural Inf. Process. Syst. 33: 1877–1901.

Christin, S., Hervet, É. and Lecomte, N. 2019. Applications for
deep learning in ecology. – Methods Ecol. Evol. 10: 1632–1644.

Elith, J. R. and Leathwick, J. R. 2009. Species distribution models:
ecological explanation and prediction across space and time. –
Annu. Rev. Ecol. Evol. Syst. 40: 677–697.

Falbel, D. 2022. luz: higher level “API” for “torch.” – https://
CRAN.R-project.org/package=luz.

Falbel, D. and Luraschi, J. 2022. torch: tensors and neural networks
with “GPU” acceleration. – https://CRAN.R-project.org/
package=torch.

 16000587, 2024, 6, D
ow

nloaded from
 https://nsojournals.onlinelibrary.w

iley.com
/doi/10.1111/ecog.07143 by U

niversitaet R
egensburg, W

iley O
nline L

ibrary on [04/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://publons.com/publon/10.1111/ecog.07143
https://publons.com/publon/10.1111/ecog.07143
https://citoverse.github.io/cito/or
https://citoverse.github.io/cito/or
https://cran.r-project.org/web/packages/cito/index.html
https://zenodo.org/records/10853334
www.gbif.org/dataset/6ac3f774-d9fb-4796-b3e9-92bf6c81c084
www.gbif.org/dataset/6ac3f774-d9fb-4796-b3e9-92bf6c81c084
https://www.tensorflow.org/about/bib
https://cran.r-project.org/web/packages/keras/index.html
https://zenodo.org/records/10853334.
https://zenodo.org/records/4048271
https://CRAN.R-project.org/package=luz
https://CRAN.R-project.org/package=luz
https://CRAN.R-project.org/package=torch
https://CRAN.R-project.org/package=torch

Page 8 of 8

Fisher, A., Rudin, C. and Dominici, F. 2019. All models are wrong,
but many are useful: learning a variable’s importance by study-
ing an entire class of prediction models simultaneously. – J.
Mach. Learn. Res. 20: 1–81.

Fourcade, Y., Besnard, A. G. and Secondi, J. 2018. Paintings predict
the distribution of species, or the challenge of selecting envi-
ronmental predictors and evaluation statistics. – Global Ecol.
Biogeogr. 27: 245–256.

Fritsch, S., Guenther, F. and Wright, M. N. 2019. neuralnet: training
of neural networks. – https://CRAN.R-project.org/package=torch.

Gawlikowski, J., Tassi, C. R. N., Ali, M., Lee, J., Humt, M., Feng,
J., Kruspe, A., Triebel, R., Jung, P., Roscher, R., Shahzad, M.,
Yang, W., Bamler, R. and Zhu, X. X. 2021. A survey of uncer-
tainty in deep neural networks. – arXiv preprint
arXiv:2107.03342, https://link.springer.com/article/10.1007/
s10462-023-10562-9.

He, K., Gkioxari, G., Dollar, P. and Girshick, R. 2017. Mask
R-CNN. Presented at the Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pp. 2961–2969,
https://arxiv.org/abs/1703.06870.

INaturalist Contributors. 2022. iNaturalist research-grade observa-
tions. – https://www.gbif.org/dataset/50c9509d-22c7-4a22-
a47d-8c48425ef4a7.

Jlegind 2021. Earth guardians weekly feed. – Questagame.
Joseph, M. B. 2020. Neural hierarchical models of ecological pop-

ulations. – Ecol. Lett. 23: 734–747.
Kuhn, M. and Falbel, D. 2022. brulee: high-level modeling functions

with “torch”. – https://CRAN.R-project.org/package=brulee.
LeDell, E., Gill, N., Aiello, S., Fu, A., Candel, A., Click, C., Kralje-

vic, T., Nykodym, T., Aboyoun, P., Kurka, M. and Malohlava,
M. 2022. h2o: R interface for the “H2O” scalable machine
learning platform. – https://CRAN.R-project.org/package=h2o.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O.,
Lewis, M., Zettlemoyer, L. and Stoyanov, V. 2019. RoBERTa:
a robustly optimized BERT pretraining approach. – https://
arxiv.org/abs/1907.11692.

Musila, S., Syingi, R., Mutavi, D., Odhiambo, K. and Masinde, S.
2019. Occurrence records of mammal species in Tana River
Basin. – National Museums of Kenya.

Navarro, R. 2022. Kenya virtual museum records. – FitzPatrick
Institute of African Ornithology.

Paszke, A. et al. 2019. PyTorch: an imperative style, high-perfor-
mance deep learning library. – Adv. Neural Inf. Process. Syst.
32, https://arxiv.org/abs/1912.01703.

Pichler, M. and Hartig, F. 2021. A new joint species distribution
model for faster and more accurate inference of species associa-
tions from big community data. – Methods Ecol. Evol. 12:
2159–2173.

Pichler, M. and Hartig, F. 2023a. Machine learning and deep learn-
ing—a review for ecologists. – Methods Ecol. Evol. 14: 994–1016.

Pichler, M. and Hartig, F. 2023b. Can predictive models be used
for causal inference? – https://arxiv.org/abs/2306.10551.

Ryo, M., Angelov, B., Mammola, S., Kass, J. M., Benito, B. M.
and Hartig, F. 2021. Explainable artificial intelligence enhances
the ecological interpretability of black‐box species distribution
models. – Ecography 44: 199–205.

Scholbeck, C. A., Casalicchio, G., Molnar, C., Bischl, B. and Heu-
mann, C. 2022. Marginal effects for non-linear prediction func-
tions. – arXiv preprint arXiv:2201.08837, https://link.springer.
com/article/10.1007/s10618-023-00993-x.

Shah, H., Tamuly, K., Raghunathan, A., Jain, P. and Netrapalli, P.
2020. The pitfalls of simplicity bias in neural networks. – Adv.
Neural Inf. Process. Syst. 33: 9573–9585.

Steen, V. A., Tingley, M. W., Paton, P. W. C. and Elphick, C. S.
2021. Spatial thinning and class balancing: key choices lead
to variation in the performance of species distribution mod-
els with citizen science data. – Methods Ecol. Evol. 12:
216–226.

Strydom, T., Catchen, M. D., Banville, F., Caron, D., Dansereau,
G., Desjardins-Proulx, P., Forero-Muñoz, N. R., Higino, G.,
Mercier, B., Gonzalez, A., Gravel, D., Pollock, L. and Poisot,
T. 2021. A roadmap towards predicting species interaction net-
works (across space and time). – Philos. Trans. R. Soc. B. 376:
20210063.

Venables, W. N. and Ripley, B. D. 2002. Modern applied statistics
with S, 4th edn. – Springer.

Wright, M. N. and Ziegler, A. 2017. ranger: a fast implementation
of random forests for high dimensional data in C++ and R. – J.
Stat. Softw. 77: 1–17.

Zhou, D., Kang, B., Jin, X., Yang, L., Lian, X., Jiang, Z., Hou, Q.
and Feng, J. 2021. DeepViT: towards deeper vision transformer.
– https://arxiv.org/abs/2103.11886.

 16000587, 2024, 6, D
ow

nloaded from
 https://nsojournals.onlinelibrary.w

iley.com
/doi/10.1111/ecog.07143 by U

niversitaet R
egensburg, W

iley O
nline L

ibrary on [04/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://CRAN.R-project.org/package=torch
https://link.springer.com/article/10.1007/s10462-023-10562-9
https://link.springer.com/article/10.1007/s10462-023-10562-9
https://arxiv.org/abs/1703.06870
https://www.gbif.org/dataset/50c9509d-22c7-4a22-a47d-8c48425ef4a7
https://www.gbif.org/dataset/50c9509d-22c7-4a22-a47d-8c48425ef4a7
https://CRAN.R-project.org/package=brulee
https://CRAN.R-project.org/package=h2o
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/2306.10551
https://link.springer.com/article/10.1007/s10618-023-00993-x
https://link.springer.com/article/10.1007/s10618-023-00993-x
https://arxiv.org/abs/2103.11886

	Introduction
	Design of the ‘cito’ package
	‘torch’ backend
	Building and training neural networks in ‘cito’

	Performance comparison and validation of ‘cito’
	Workflow and case study
	Conclusion
	Author contributions
	Transparent peer review
	Data availability statement

	References

