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A B S T R A C T   

Objectives: This study aims to explore and discuss recent advancements in tooth reconstruction utilizing deep 
learning (DL) techniques. A review on new DL methodologies in partial and full tooth reconstruction is 
conducted. 

Data/Sources: PubMed, Google Scholar, and IEEE Xplore databases were searched for articles from 2003 to 
2023. 

Study selection: The review includes 9 articles published from 2018 to 2023. The selected articles showcase 
novel DL approaches for tooth reconstruction, while those concentrating solely on the application or review of DL 
methods are excluded. The review shows that data is acquired via intraoral scans or laboratory scans of dental 
plaster models. Common data representations are depth maps, point clouds, and voxelized point clouds. Re
constructions focus on single teeth, using data from adjacent teeth or the entire jaw. Some articles include 
antagonist teeth data and features like occlusal grooves and gap distance. Primary network architectures include 
Generative Adversarial Networks (GANs) and Transformers. Compared to conventional digital methods, DL- 
based tooth reconstruction reports error rates approximately two times lower. 

Conclusions: Generative DL models analyze dental datasets to reconstruct missing teeth by extracting insights 
into patterns and structures. Through specialized application, these models reconstruct morphologically and 
functionally sound dental structures, leveraging information from the existing teeth. The reported advancements 
facilitate the feasibility of DL-based dental crown reconstruction. Beyond GANs and Transformers with point 
clouds or voxels, recent studies indicate promising outcomes with diffusion-based architectures and innovative 
data representations like wavelets for 3D shape completion and inference problems. 

Clinical significance: Generative network architectures employed in the analysis and reconstruction of dental 
structures demonstrate notable proficiency. The enhanced accuracy and efficiency of DL-based frameworks hold 
the potential to enhance clinical outcomes and increase patient satisfaction. The reduced reconstruction times 
and diminished requirement for manual intervention may lead to cost savings and improved accessibility of 
dental services.   

1. Introduction 

In recent years, computer aided design (CAD) and computer aided 
manufacturing (CAM) technologies have gained wide adoption in digital 
systems for dental restorations [1,2]. In contrast to conventional manual 
restoration methods, CAD/CAM systems introduce a significant reduc
tion in labor intensity for both technicians and dentists as well as an 
improvement in reconstruction quality. Fully integrated chairside sys
tems facilitate an end-to-end, in-house process for smaller restorations, 
involving intraoral scanning of the patient’s dentition, the design of the 

fixed dental prosthesis (FDP), as well as the final fabrication. 
The dental technician initiates the process by utilizing a proposal 

generated by the CAD software. Subsequently, they engage in a 
comprehensive re-design, re-adaptation, or re-modeling of the restora
tion. This intricate task involves considering prosthetic needs, address
ing specific requests related to the case, and drawing upon years of 
accumulated experience. A crucial aspect of the restoration process in
volves preserving the proper function of the masticatory system. This 
includes dynamic contacts during excursive movements of the lower jaw 
with teeth in contact and static contacts in terminal occlusion. Motion- 
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tracking technologies allow for dynamic registration of mandible 
movements to capture the patient-specific function and hence simulate 
individual articulation [3,4]. Integration of the individual mandible 
movements in the used CAD software enables the assessment of occlusal 
contacts and further manual geometry adaptation to refine the restora
tion and ensure optimal results. 

The manual adjustment of the restoration is susceptible to errors due 
to the complexity and individuality of the masticatory system. Conse
quently, restorations may induce occlusal discomfort, potentially 
causing temporomandibular disorders or the failure of the FDP [5,6]. 
Adaptation and reworking by the dentist are often necessary, resulting in 
increased treatment cost and duration. A reduction in overall stability 
due to the partial weakening of the material leads to increased rough
ness, surface damage, and the potential occurrence of fractures within 
the FDP. 

The development of a completely automated reconstruction process 
using DL holds promise in addressing these issues and eliminating the 
necessity for dedicated motion-tracking systems. This premise relies on 
the assumption that the patient’s individual function is implicitly 
evident in the intraoral scan data of the current clinical situation and can 
be captured by DL-based methods. 

The aim of this study was to review and discuss recent advances in 
tooth reconstruction using DL techniques. An overview of DL methods in 
partial and full tooth reconstruction is provided. 

2. Materials and methods 

This section outlines the methodology employed for the review. The 
eligibility criteria, search strategy, data collection process, and out
comes are shown. 

2.1. Eligibility criteria 

The review process included articles published from 2003 to 2023. 
Eligible articles showcase novel approaches for tooth reconstruction. 
Those concentrating solely on the application or review of these 
methods are excluded. The review encompasses both conventional 
digital and DL-based approaches. The focus is on DL-based methods, as 
they represent the most recent advancements in the field. 

2.2. Search strategy 

The search was conducted in PubMed, Google Scholar, and IEEE 
Xplore databases. Ten search groups were used to build search queries. 
Each of the groups contained synonyms or related terms for the 
respective topic. These terms were concatenated with the boolean 
operator ”OR”. Different combinations of the search groups were 
concatenated with the boolean operator ”AND”. 

The search groups were: Prosthesis, Implant, Dentistry, Artificial 
Intelligence, Machine Learning, Generative Architectures, Generative 
Architectures (short terms), Generative [Title], Reconstruction [Title], 
Method [Title/Abstract]. Square brackets in the search group title 
indicate that the terms are used as title or title/abstract search terms. 

The articles were screened for eligibility based on title and abstract. 
Articles were then evaluated based on full text. The search was extended 
by screening the references as well as articles by the same first or last 
authors. 

2.3. Data collection process 

The following information was extracted from each DL study and 
collected in a database: year, title, dimension (2D/3D), network archi
tecture type, training datatype, participant criteria, data acquisition 
method, raw datatype, preprocessing, network and loss function struc
ture (reconstruction framework), amounts of data: (training data, vali
dation data, testing data), reconstruction datatype, postprocessing, 

metrics, quantitative results. 
Conventional digital methods were included with year, title, quan

titative results, and a summary of their methodology. 

2.4. Outcomes 

The search queries resulted in 613 articles. The review finally in
cludes 9 DL articles published from 2018 to 2023 and 15 conventional 
digital articles published from 2004 to 2017. 

3. Results 

3.1. Computer aided tooth reconstruction 

This section provides an overview of existing methods for the 
computer-aided reconstruction of a crown, outlining conventional dig
ital and the more recent DL-based approaches. 

3.1.1. Conventional digital approaches 
Over the last two decades, numerous approaches for conventional 

digital tooth reconstruction have been proposed. These methods either 
rely on the calculation of a statistical morphable tooth model, mirroring 
symmetrical teeth, or deforming a standard tooth from a template 
library. 

Statistical morphable tooth model 
Mehl et al. [7] laid the foundation for many subsequent studies 

[8–13] by introducing an average tooth model. This morphable model of 
a tooth is based on the vector space representation of the average de
viations that a set of identically classified teeth exhibit w.r.t. a reference 
tooth. The algorithm is rooted in optical flow analysis [14], initially 
intended for image processing. 

Building upon the representation of an average tooth, Mehl et al. [9] 
proposed the statistical biogeneric tooth model. This model provides an 
approximation of an infinite set of different teeth based on deviations 
from the average tooth. The level and direction of these deviations are 
defined by a principal component analysis (PCA) of the vector space 
representation of all deviations [7]. Specifically, the weighted principal 
components are used to deform the average tooth. The reconstruction of 
a missing tooth involves calculating the weights of the principal com
ponents of the PCA for the known features of the target tooth. The 
missing points are then reconstructed by a linear combination of the 
average tooth and the weighted principal components based on a 
reduced number of feature points. 

Blanz et al. [8] employed a similar approach, emphasizing the 
mathematical solution to efficiently calculate the optimum for the pro
posed reconstruction problem. Subsequent studies, such as Mehl et al. 
[10] and Richter et al. [11], adapted the biogeneric tooth model. Vari
ations of the biogeneric tooth model with additional modifications, such 
as a collision detection mechanism [12] or the inclusion of occlusal 
spatial constraints [13], were proposed. 

Mirroring 
The second approach is based on the mirroring of symmetrical teeth 

[15,16]. This method relies on the assumption that the teeth of the upper 
and lower jaw are symmetrical. The reconstruction of a missing tooth is 
achieved by mirroring the corresponding tooth on the opposite side of 
the jaw. Subsequently, the mirrored tooth is aligned w.r.t. the new 
spatial occlusal constraints [15]. Zhang et al. [16] refined this approach 
by employing a semi-automatic method for the segmentation of the jaw 
and matching of symmetrical teeth. The pose (position and orientation) 
of the mirrored tooth is then optimized to match the target, and dental 
alignment is performed by a digital dental occlusion reestablishment 
algorithm [17] with the reconstructed complete dental model. 

Standard tooth deformation 
The following studies [18–23] center around the deformation of a 

standard tooth derived from a template library. In this process, the 
standard tooth is adjusted to match the configuration of the target tooth. 
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Song et al. [18] described the standard tooth utilizing a non-uniform 
rational B-spline (NURBS) surface fitting technique [24], a widely 
employed method in CAD applications for the creation of smooth sur
faces. Subsequently, the outcome is locally fine-tuned to adhere to the 
new spatial constraints. Yoo et al. [19] employed 3D mesh deformation 
through direct manipulation of free-form deformation [25] and multiple 
wires deformation [26]. Their approach incorporated a functionally 
guided plane to account for the occlusion of the patient. Steinbrecher 
et al. [20] introduced Laplacian surface editing [27] for the construction 
of inlays and onlays. The extraction of the cavity line on the target tooth, 
essential for constructing the boundaries of the inlay, involved a hybrid 
approach combining a 2D mask image with ray collisions. Jiang et al. 
[22] extended the same methodology to full crowns. Preceding the 
deformation, salient features were extracted using a Morse function 
[28]. Zheng et al. [21] established pairs of feature points to establish a 
spatial mapping between the template tooth and the prepared target 
tooth. A radial basis function was then employed to achieve the defor
mation of the tooth surface. Zhang et al. [23] outlined a four-step pro
cess for their inlay reconstruction. Initially, a heuristic searching 
algorithm was utilized to extract the cavity contour. Subsequently, the 
tooth surface was segmented into the inside and outside of the cavity. 
Following this, the occlusal surface was reconstructed using a 
dual-factor constrained deformation. Finally, the inlay was modeled by 
merging the inner surface and the occlusal surface. 

3.1.2. Deep learning based approaches 
In contrast to the conventional digital methodologies, DL-based ap

proaches refrain from the explicit definition of a tooth model or a 
template tooth. Instead, they leverage a deep neural network model to 
discern the inherent tooth morphology from a designated set of training 
data. Generative DL models, in particular, aim to capture the details 
within a given dataset by acquiring knowledge about the underlying 
patterns, structures, and statistical properties. These models can pro
duce new samples that closely resemble the training data, thereby 
implicitly learning the distinctive features inherent in the dataset. The 
generative capabilities of the models extend beyond reconstructing the 
training data, enabling the generation and reconstruction of previously 
unseen samples. It is noteworthy that the initial training process from 
scratch demands a significantly larger volume of data compared to 
conventional digital methods. The application of transfer learning, 
which involves fine-tuning certain sections of a pre-trained network, can 
mitigate the requirement for extensive amounts of data. 

Recent advances in general generative DL underscore the potential of 
this approach in both 2D applications [29–32] and, more recently, in the 
realm of 3D applications [33–39]. These advances have led to the 
emergence of generative DL-based approaches for the solution to the 
tooth reconstruction problem [40–49]. The following sections provide a 
detailed overview of these studies, including used data, data processing, 
and results. Table 1 provides a comprehensive comparison of all 

DL-based methods that will be discussed in this review article. 

3.2. Data 

This section gives a comprehensive examination of the data 
employed in the reviewed studies, offering insights into the differences 
in the data acquisition process and the final data types. The acquisition 
of data stands as a pivotal phase in the preparation for the training 
process of DL models. 

3.2.1. Data acquisition 
The selection criteria for participants exhibit variation across 

different studies. Raw analog data typically manifests in two forms: 
either as a plaster model representing the patient’s dentition [43–45,47] 
or as the patient’s dentition itself [40,46,48]. 

Plaster models undergo scanning using laboratory grade 3D scanners 
[43–45,47]. The resulting digital data is subsequently processed to 
generate a 3D mesh object. In contrast, the patient’s dentition is directly 
digitalized with intraoral 3D scanners [48]. Although certain articles 
omit specifics about the analog data type and scanner employed [41,49], 
the provided information and figures suggest a scanning process 
occurred, leading to the presumption that the raw digital data format in 
all studies is a 3D mesh object. 

Selection criteria for suitable patients are not consistently detailed 
across studies [40,44,46,49]. Some studies base participant selection on 
age [43,45], the presence of specific teeth, and the absence of diseases 
affecting the specified teeth, as well as their antagonists and adjacent 
teeth [41,48]. Notably, Chau et al. [47] define precise inclusion and 
exclusion criteria at both participant and tooth levels. The total number 
of samples utilized for training, validation, and testing for each study 
ranges from 169 [47] to 6109 [46]. It is noteworthy that the quantity of 
teeth each sample encompasses varies across the studies and ranges from 
three teeth to a whole jaw. The total count of healthy teeth included in 
each dataset, and hence the complexity of acquiring such a dataset, is 
not directly analogous. 

3.2.2. Data type 
Originating from a 3D mesh object as the primary input format, the 

typical transformation involves converting the data into a format that is 
suited as a direct input to the reconstruction network. 

2D approach 
The prevalence and accessibility of 2D generative network archi

tectures designed for image inference [29–32] have led to the adoption 
of a 2D depth map representation for the data [40,41,43–45]. Never
theless, the suitability of the 2D depth map representation is constrained 
by the inherent characteristics of the data, limiting its applicability to a 
specific maximum quantity of teeth prevalent in the input data. Spe
cifically, studies employing 2D data have focused on reconstructing the 
occlusal surface of a single tooth with a maximum of three teeth per 

Table 1 
Comparison of the DL methodologies. The teeth are numbered according to FDI.   

Dimension Network Data aquisition Data representation ntrain nval ntest Input Teeth Target Tooth 

Hwang et al.  
[40] 

2D GAN intraoral scan depth map ∈ Rw×h 1500 1570 243 35-37 ∧ 25-27 36 

Yuan et al. [41] 2D GAN n/a depth map ∈ Rw×h 500 n/a 100 35-37 ∧ 25-27 36 
Tian et al. [43] 2D GAN plaster model 

scan 
depth map ∈ R256×256 750 n/a 80 35-37 ∧ 25-27, 45-47 ∧ 15- 

17 
36, 46 (4 inlays, 1 
onlay) 

Tian et al. [45] 2D GAN plaster model 
scan 

depth map ∈ R256×256 850 90 60 35-37 ∧ 25-27, 45-47 ∧ 15- 
17 

36, 46 

Tian et al. [44] 2D GAN plaster model 
scan 

depth map ∈ R256×256 700 n/a 80 35-37 ∧ 25-27, 45-47 ∧ 15- 
17 

36, 46 

Zhu et al. [46] 3D Transformer intraoral scan point cloud ∈ R3×2048 5469 n/a 640 upper jaw, lower jaw arbitrary 
Chau et al. [47] 3D GAN plaster model 

scan 
voxel ∈ {0, 1}x × y × z 159 n/a 10 upper jaw 16 

Ding et al. [48] 3D GAN intraoral scan voxel ∈ {0, 1}x × y × z 600 n/a 12 44-46 45 
Feng et al. [49] 3D Transformer n/a point cloud ∈ R3×1024 480 n/a 120 11-13 ∧ 21-23 11-13, 21-23  
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input image. Examples include studies targeting the molar 36 [40,41] or 
36, 46 [43–45]. Tian et al. [43] concentrated on partial reconstructions 
involving four types of inlays and one type of onlay. All employed 
methods are limited to the reconstruction of one tooth at a time. The 
target tooth preparations were complemented by their two adjacent 
teeth in the same depth map, along with their antagonists and the gap 
distance between the two jaws in terminal occlusion [40,41,43]. Each 
added feature is depicted in a separate image. Tian et al. [44,45] 
expanded the input data by incorporating extracted dental biological 
morphology, such as the occlusal groove and the occlusal fingerprint 
[50]. The ground truth (GT) in these studies comprised single crowns 
designed by a technician. In cases where the input data encompasses a 
substantial quantity of teeth, such as an entire upper or lower jaw, the 
2D representation becomes impractical due to inherent data loss. This 
loss is attributed to undercuts in the data that cannot be adequately 
captured through projection with a plane. 

3D approach 
Consequently, 3D representation becomes essential. While Zhu et al. 

[46] and Feng et al. [49] explicitly specify the use of 3D point clouds as 
the data format, Chau et al. [47] and Ding et al. [48] only indicate the 
use of 3D data. The employed 3D-GAN architecture [51] necessitates 
voxelized point data as its input and is therefore assumed to be the used 
data format. The teeth selected for reconstruction vary from an arbitrary 
tooth [46] to specific molars [47,48] or incisors [49]. In contrast to the 
2D methods, the input data is no longer confined to the occlusal surfaces 
of a limited number of teeth but allows for encompassment of the entire 
upper or lower jaw [46,47]. Ding et al. [48] did not increase the amount 
of data compared to the 2D methods. Feng et al. [49] expanded the 
dataset to include eight incisors. No study has utilized the entire upper 
and lower jaw as input data, resulting in information containment 
limited to the teeth that are included in the dataset. The reconstruction 
process is likely to derive advantages from incorporating additional 
teeth as the network can leverage the information contained in the 
remaining teeth to reconstruct the target tooth. 

3.3. Data processing 

The data processing steps can be divided into preprocessing, recon
struction framework, and postprocessing (Fig. 1). The preprocessing 
steps (1) are defined as the steps required to transform the raw data into 
the input format for the learning-based reconstruction methods. The 
reconstruction framework (2) refers to the architecture of the employed 
network, including the utilized loss functions. The postprocessing steps 
(3) are defined as the steps required to transform the output of the 

network back to a properly positioned and aligned 3D mesh. The mesh 
can be used for further processing or fabrication. 

3.3.1. Preprocessing 
2D approach 
For 2D methods, the outcome is consistently a 2D depth map of the 

input. The general approach in most studies involves orienting the data 
and projecting it onto a plane with a fixed grid (Fig. 2). However, the 
exact methodology behind the dimensionality reduction step is not al
ways explicitly stated [40]. 

Yuan et al. [41] define the plane as parallel to the occlusal plane of 
the partial jaw, with a distance threshold dthresh to exclude points beyond 
this threshold. The grid is fixed at 256× 256, corresponding to the pixel 
count of the final image. The height resolution of the projection, rep
resented by the grayscale pixel values, ranges from 0 to 255 (8-bit). This 
grid size and image bit depth remain constant across most studies uti
lizing 2D data [43–45]. Tian et al. [43,45] specify the orientation of the 
projection plane w.r.t. the data as parallel to its bounding box. The 
bounding box, a cuboid with minimal volume encompassing all object 
points, is orientation-invariant. Tian et al. [45] further refine the 
orientation of the plane through additional steps. They define a feature 
point pfeat,i ∀ i ∈ {0,1, 2} for each tooth and calculate the normal vector 
n1= (pfeat,1 - pfeat,0) × (pfeat,2 - pfeat,0). Subsequently, the object is 

Fig. 1. DL data processing. (1) Preprocessing to transform the raw data (mesh) into the input format (point cloud, depth map) for the learning-based reconstruction 
methods. (2) Reconstruction framework. (3) Postprocessing to transform the output of the network back to a properly positioned and aligned 3D mesh. (The quantity 
of teeth displayed is not indicative of all methods and is provided merely for illustrative purposes.) 

Fig. 2. 2D projection of 3D scan data. A projection plane with a fixed grid is 
defined to be parallel to the data’s bounding box. Each point on the tooth is 
projected onto a 2D depth map with values ranging from 0 to 255 (8-bit). The 
height of each point determines its value on the depth map. A brighter value 
corresponds to higher areas on the 3D data. 
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repositioned such that pfeat,1 = [0, 0,0]T and n1 is aligned with the global 
z0-axis. After calculating the bounding box of the body, the object is 
rotated around the z0-axis, aligning the global y0-axis with the yb-axis of 
the bounding box. The projection plane is then aligned parallel to the 
bounding box. The specific parameters for the projection are adjusted to 
maximize the entropy of the resulting image. 

3D approach 
In the case of 3D methods, data preprocessing is performed to 

streamline the training process. There is no necessity for dimensionality 
reduction. In the study by Chau et al. [47], where the entire upper or 
lower jaw serves as input data, alignment was achieved by orienting the 
respective occlusal planes parallel to one of the reference coordinate 
system planes. The specific definition of the occlusal plane is not further 
elucidated. Zhu et al. [46] and Ding et al. [48] do not provide details 
regarding the preprocessing of their data. Nevertheless, the 3D-GAN 
architecture [51] they employed necessitates voxelized point data as 
its input, implying that voxelization is likely part of the preprocessing. 
The voxelization process involves dividing 3D space into a grid of 
equally sized cubes (voxels) and assigning a binary value to each voxel. 
The resulting voxelized point cloud is a 3D matrix Pvox ∈ {0,1}x × y × z 

with x, y, z dimensions corresponding to the grid. 
In the work of Feng et al. [49], the requirement for decoupled fea

tures, specifically position and orientation, is essential for their recon
struction framework. The points PO,B are defined as a transformation of 
the object’s points represented in its own body OB-coordinate system to 
the global OO-coordinate system. This transformation is expressed as 
PO,B = TO,BPB,B. The transformation TO,B is determined using the sin
gular value decomposition (SVD) of the covariance matrix of the object 
points PO,B, i.e. the PCA. The eigenvectors span a new body coordinate 
system OB. Subsequently, the transformation TO,B is defined as the 
transformation matrix from the OB-coordinate system to the global 
OO-coordinate system. The transformation is defined with 3 Euler angles 
and a 3D translation vector. This reduces the number of variables from 
16 to 6. 

3.3.2. Reconstruction framework 
The subsequent section offers a detailed overview of the network 

architectures utilized in the studies. Existing architectures for the 
reconstruction and generation of non-dental images and 3D shapes have 
shown promising results. Given the complex characteristics of the 
human dentition, the reconstruction of occlusal surfaces presents unique 
challenges. The morphology of the restoration is not only governed by 
explicit spatial requirements dictated by its antagonist, gap distance, 
and two adjacent teeth but also by implicit functional requirements 
derived from the data of the remaining teeth. 

2D approach 

While all 2D architectures [40,41,43–45] are rooted in the general 
concept of a GAN [52], some studies explicitly state the use of the 
pix2pix [31] Conditional Generative Adversarial Network (CGAN) ar
chitecture in their frameworks [40–43]. GANs are composed of two 
adversarial networks: a generator and a discriminator. The generator 
aims to produce samples that resemble the training data, while the 
discriminator’s goal is to distinguish between the generator’s output and 
the actual training data (Fig. 3). 

Hwang et al. [40] extended the loss term of the pix2pix architecture 
by incorporating a spatially invariant functionality or histogram loss Lhist 

specifically designed for the reconstruction of the occlusal surface. The 
loss is calculated as the mean sum of all bin values in a histogram rep
resenting the error distances di between the GT and the generated image. 
The GT refers to a technician-designed crown. The loss is further 
enhanced by assigning variable weights to the bins. This ensures the 
generation of functional occlusal surfaces. Collisions, represented by 
negative distances di ≤ 0, are therefore heavily penalized. Furthermore, 
the minimal 5% of distances are used to emphasize geometry deemed 
highly important for biting and chewing according to the authors. The 
final loss term is defined as the default CGAN-loss Lcgan, incorporating 
the additional histogram loss Lhist and an L1-loss LL1 between the GT and 
the generated image. The antagonist teeth and the gap distance between 
the two partial jaws serve as the conditional inputs to the network. 

Although Yuan et al. [41] based their framework on the same ar
chitecture, they enhanced it by introducing new data and losses. To 
incorporate occlusal grooves, they implemented an occlusal groove filter 
network trained to extract these features from a full crown. The training 
data comprises both the original crowns and the occlusal grooves 
extracted by a technician. Similar to Hwang et al. [40], the pix2pix [31] 
loss is extended to include the L1-loss LL1 between the GT and the 
generated image. A perceptual loss Lper is introduced, utilizing the 
feature deviation of certain hidden layers of the discriminator as a 
quality measure. The inclusion of occlusal grooves into the loss term 
involves adding an L1-loss LL1,groove between the extracted occlusal 
grooves and the occlusal grooves calculated by the occlusal groove filter 
network. The final loss term is defined as the sum of the pix2pix loss 
Lcgan, perceptual loss Lper, L1-loss LL1, and groove L1-loss LL1,groove. The 
antagonist teeth serve as conditional inputs to the network, while the 
prepared partial jaw is used as the direct input to the generator. 

Similar to Yuan et al. [41], Tian et al. [43] expanded their framework 
by introducing an occlusal groove filter network called GroNet to 
leverage the deviation of occlusal grooves as a quality metric LL1,groove. 
Additionally, they adopted a dual discriminator approach. The local 
discriminator takes only the defective teeth as its input, while the global 
discriminator includes both the defective teeth and the adjacent teeth. 
Since the framework was designed for inlay generation, a certain 

Fig. 3. Schematic training process of a GAN. This architecture consists of two competing networks: a generator and a discriminator. The generator network takes 
random noise as input and tries to generate data samples that resemble the real data as closely as possible. The discriminator network is trained to distinguish 
between real data samples from the dataset and fake data samples generated by the generator. It learns to differentiate between real and generated data. The 
discriminator’s decision (data is fake/real) during the training process is used as the loss term for the optimizer to train both networks. 
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amount of the target tooth is retained. The rationale behind the dual 
discriminator approach is to ensure that the generated inlay surface is 
not only realistic but also consistent with the residual tooth surface and 
adjacent teeth. As mentioned earlier [41], the loss of the local discrim
inator was extended by a perceptual loss Lper to penalize the deviation of 
high-dimensional features. The objective function of the adversarial 
architecture was changed from the original Jensen-Shannon divergence 
[52] to the Wasserstein distance [53]. Finally, the histogram loss Lhist, 
introduced by Hwang et al. [40], is now included, resulting in a total of 
four new loss terms Lper,Lhist,LL1, and LL1,groove. 

Tian et al. [45] maintained the dual discriminator approach [43] for 
the restoration of crowns. However, despite still utilizing occlusal 
grooves as inputs to the discriminators and the generator, the GroNet is 
no longer part of the framework, leading to the exclusion of the occlusal 
groove loss LL1,groove. Additionally, the gap distance is no longer 
explicitly used in a dedicated loss term Lhist but is instead directly 
employed as an input to the framework. Similar to the previous 
approach, the local discriminator processes only the preparation tooth, 
the corresponding target crown, the antagonist, and the occlusal groove 
with an L1 loss LL1 and a newly introduced mean squared error term 
Lmse. The global discriminator includes the preparation tooth along with 
its adjacent teeth, the gap distance between the two jaws, the antagonist 
teeth, the occlusal groove, as well as the occlusal fingerprint [50]. This is 
done with the previously used perceptual loss Lper and the L1 loss LL1. 
While the overall architectural approach remains similar to Tian et al. 
[43], the loss terms are reduced to Lper,LL1, and Lmse. 

The final 2D approach by Tian et al. [44] reintegrates the GroNet 
[43] into their newly proposed multi-stage framework. This framework 
is constructed upon a dual serialized CGAN approach. The first stage 
establishes the basic shape of an occlusal surface that satisfies spatial 
positional relationships, implementing the previously discussed L1-loss 
LL1 and perceptual loss Lper from its respective discriminator. The 
preparation tooth, the antagonist, the tooth type label, and the target 
crown excluding the occlusal fingerprint are used in conjunction with 
the gap distance as constraints to ensure a certain occlusal spatial rela
tionship. The first stage results are then used to train the GroNet, which 
is fixed for the second stage. The second stage of the framework relies on 
the output of stage one as its input and aims to enhance the functional 
characteristics of the crown. Consequently, the second stage generator 
takes the stage one results and the occlusal fingerprint [50] as its input 
to generate the final crown. The loss terms of the second stage include 
the L1-loss LL1 and the GroNet loss LGroNet. 

3D approach 
Similar to the 2D reconstruction case, GANs are also used as the 

foundation for 3D reconstruction frameworks [47,48]. The reported 
GAN architecture [51] is tailored for use with voxelized 3D data. 
However, no further details regarding the structure of the are provided. 
Other 3D methods [46,49] adopted a transformer network with a dy
namic graph convolutional neural network (DGCNN) [54] for their 
multi-stage frameworks. 

Zhu et al. [46] used furthest point sampling (FPS) [55] for the initial 
processing of the point cloud data of the target jaw with an arbitrary 
missing tooth, aiming to equalize the number of points for each jaw. The 
DGCNN [54] is utilized to group the point data and extract local fea
tures. Comprising graph convolutional layers that extract features from 
a point cloud, the DGCNN is a neural network architecture specifically 
designed for point cloud processing. These features are used to generate 
a latent representation of the point cloud. Two different multilayer 
perceptrons (MLPs) equalize the dimensions of the point sets and fea
tures, preparing them for input into the transformer network. The 
geometry-aware transformer network [56] extracts the latent vectors 
describing the geometry of the missing tooth. Another MLP generates a 
set of coarse tooth points Pcoarse which is concatenated with the latent 
vectors, serving as input to the final multiscale generator network. This 
generator constructs a fine point cloud Pfine of the missing tooth in a 

coarse-to-fine manner. The final prediction is a combination of the 
coarse points Pcoarse and the fine points Pfine. Due to the unordered nature 
of a point cloud, a permutation invariant metric is needed for a final 
quality assessment of the generated crown. The reconstruction loss is 
calculated as the weighted sum of the chamfer distance (CD) [57] be
tween Pcoarse, Pfine, and the GT crown respectively. The weights are uti
lized to focus on the generation of tooth surfaces with logical feature 
points. 

Feng et al. [49] introduced a novel approach to the reconstruction 
problem by decoupling the shape and pose of the input data. The 
framework comprises two networks: the pose estimation network (PEN) 
and the shape estimation network (SEN). The input data for the frame
work is always based on the seven existing incisors to reconstruct the 
missing tooth. The PEN functions as a regression network responsible for 
estimating the crown pose, utilizing a MLP. The six features of the data, 
representing their orientation with three Euler angles and position with 
a 3D translation vector, are extracted in advance. These features for the 
remaining teeth are then separately input into the same network with 
different weights to predict the position and orientation of the missing 
crown. The input dimension for the network is 21, with an output 
dimension of 3. During the training process, the loss LL1 of PEN is 
calculated based on the L1-norm. The SEN relies on a transformer 
encoder-decoder architecture and is employed to estimate the initial 
crown point cloud. It takes the pose-decoupled shapes PB,B of the 
remaining teeth in their respective body coordinate systems as input, 
ordered according to their position in the jaw. Additionally, a unit 
sphere representing the missing tooth and the mirrored crown point 
cloud of the corresponding tooth on the opposite side are input into the 
network. This results in a total of nine sequenced point clouds. The loss 
of SEN is calculated based on the CD between the generated point cloud 
and the GT point cloud. 

3.3.3. Postprocessing 
2D approach 
All 2D methods share a common final processing step. Although, this 

step is not always explicitly specified [40,41,44,45]. To create a 3D 
mesh object for further processing, an inverse of the employed 2D pro
jection method must be applied to the generated 2D depth maps. Facing 
specific challenges in the fit of inlay restorations, Tian et al. [43] 
detailed a postprocessing routine to ensure a continuous transition be
tween the generated inlay and the tooth preparation. This routine in
volves the back projection of the partial occlusal surface of the target 
tooth into 3D. The back projection is carried out using distance-gray 
mapping, which is inversely performed during preprocessing (Fig. 2), 
along with region growing. The outer segmented surface of the gener
ated inlay is then merged with the internal segmented preparation area 
of the target tooth. The internal surface is offset by a given tolerance to 
simulate the adhesive/cement layer. To ensure a consistent distance 
between the internal surface boundary and its corresponding occlusal 
surface boundary, Laplacian deformation [58] is applied. The final inlay 
is then obtained by merging the occlusal surface and the internal surface 
using mesh stitching [20]. 

3D approach 
The 3D methods [46–49] also require postprocessing to generate an 

adequately positioned and oriented 3D mesh object from the raw output 
point clouds. For this purpose, the studies employ different methods. 
Zhu et al. [46] outlined a four-step point cloud surface reconstruction 
process. The process commences with mean sampling of the points to 
prevent redundant meshes. The k-nearest-neighbors for each point are 
then utilized to create the initial mesh triangles, which are stored as a 
signed distance field representation of the surface in an octree format. 
The isosurface with a signed distance of zero is subsequently extracted 
from the octree yielding the final mesh surface object. Chau et al. [47] 
and Ding et al. [48] did not provide information about the mesh con
version process. They specified the use of superimposition to align the 
generated data with the target jaw. Chau et al. [47] detailed the process 
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by declaring four occlusal landmarks used for the alignment process. 
These landmarks were set as the mesiobuccal, mesiolingual, and dis
tobuccal cusp tips, as well as the distolingual cusp ridge. Due to the 
structure of their network architecture, Feng et al. [49] do not require an 
dedicated alignment process. The final position of the reconstruction in 
its body coordinate system is obtained by transforming the generated 
point cloud into the global coordinate system using the pose estimated 
by PEN. An iterative method is then used to form a mesh object based on 
the oriented and positioned point cloud. 

3.4. Performance metrics and quantitative results 

All studies evaluated the performance of their respective methods. 
The following section provides an overview of the utilized metrics and 
evaluation methods. 

3.4.1. Metrics 
The metrics used to evaluate the performance of the methods can be 

categorized into general and 3D-only metrics. Unlike the ordered nature 
of 2D images, 3D point clouds are unordered, necessitating permutation- 
invariant metrics for their evaluation. While two images can be 
compared pixel by pixel, the same is not possible for two point clouds. 
Consequently, the metrics used to evaluate the 2D methods are not 
directly applicable to the unordered data representations. Due to the 
wide variety of metrics used in the reviewed studies, Table 2 and Table 3 
provide a brief overview. The function behind each metric, the purpose 
of its use, and its direction are described. 

3.4.2. Quantitative results 
Table 4 presents the quantitative outcomes of the metrics presented 

in Section 3.4.1. The results for 2D and 3D methods are presented 
independently. They are not suitable for direct comparison due to the 
diverse nature of the respective metrics. Proprietary metrics are notably 
isolated, as they are not conducive to comparison with other metrics. 

It is crucial to highlight that all displayed results are as reported 
directly by the authors. It is evident that RMSE, both variations of SSIM, 
PSNR, and FSIM are the most commonly utilized 2D metrics. Hwang 
et al. [40] stand out by incorporating metrics specifically tailored to the 
dental use case. The reported RMSE values across three of five studies 
are in the vicinity of approximately 0.07 mm. Tian et al. [45] introduce 
an RMSE that adversely deviates from the other methods by a factor of 
approximately 3, while also consistently reporting higher values for the 
other metrics. Tian et al. [43] also show a deviation from the other 
studies in the reported RMSE with a factor of approximately 2. These 
discrepancies are likely attributed to the utilization of a distinct data 
representation for the calculation of the metrics. A noteworthy factor 
contributing to this divergence can be the proportional size of the crown 
w.r.t. the entire image. The authors of the best-performing 2D studies 
report overall similar results. 

A direct comparison of the 3D results is not feasible at this point due 
to a lack of overlap in the employed evaluation metrics. Nevertheless, 
the inclusion of all results serves the purpose of completeness, providing 
a comprehensive overview for future research endeavors. 

4. Discussion 

The review shows that the primary architectures employed to 
address the problem are GANs and Transformers. In the 2D domain, 
GANs are exclusively utilized. The data acquisition methods are roughly 
evenly split between intraoral scans and laboratory scans of dental 
plaster models. The total sample sizes range from 169 to 6109, encom
passing training, validation, and test data. Regarding data representa
tion, 2D methods exclusively use depth maps, while 3D methods employ 
point clouds and voxelized point clouds equally. For detailed represen
tation and memory-efficient storage of the data, point clouds are favored 
due to locally specific resolution. 

In all cases, the size of the input data is larger than the output data. 
The reconstruction target is consistently limited to a single tooth, with 
six out of nine cases focusing on molar teeth. One case includes incisors, 
and only one method allows for the reconstruction of an arbitrary tooth. 
The reconstruction input data for all methods comprises a minimum of 
the target tooth’s adjacent teeth, with a maximum of the whole 
respective upper or lower jaw. In three cases, antagonist teeth are 
included in both training and reconstruction data. Moreover, the data in 
four cases extends beyond the sole geometry of the teeth to include 
features such as occlusal grooves, occlusal fingerprints, and gap dis
tance. There is no method that utilizes the entire dentition for the 
reconstruction process, thus benefiting from the full contextual infor
mation of the data. 

The quantitative results demonstrate a high degree of similarity be
tween the best performing 2D methods, with an RMSE in the near vi
cinity of 0.07 mm. In comparison to the MAE of the conventional digital 
methods for inlay restoration (0.125 mm to 0.15 mm [9,11]), the 
GAN-based 2D methods show an improvement in reconstruction quality. 
These conventional digital methods, akin to the 2D DL methods, utilized 
the occlusal surface of molar teeth. The reconstruction area for the inlay 
restorations was not explicitly reported, but even full crown 

Table 2 
Summary of general and 3D evaluation metrics. ↓↑ indicate the direction of the 
metric, signifying whether a higher or lower value is advantageous.  

Metric Function Purpose 

General metrics 

Root Mean Square 
Error (RMSE)  
[62] ↓ 

Measures average difference 
between corresponding pixel 
values in predicted and true 
images. 

Suitable for applications 
where accurate pixel-wise 
reconstruction is critical. 

Structural 
Similarity Index 
(SSIM) [63] ↑ 

Evaluates structural 
information, luminance, and 
contrast similarity between 
images. 

Reflects human perception of 
image quality, useful for 
compression or distortion 
assessment. 

Multi-Scale SSIM 
(MS-SSIM) [64] 
↑ 

Extends structural similarity 
index measure (SSIM) to 
multiple scales, capturing 
nuanced variations in image 
quality. 

Useful for evaluating impact 
of image processing across 
different resolutions or 
scales. 

Peak Signal-to- 
Noise Ratio 
(PSNR) [65] ↑ 

Measures image quality by 
comparing peak signal value 
to noise level. 

Widely used for lossy image 
compression, provides 
intuitive measure of 
reconstruction fidelity. 

Feature Similarity 
Index (FSIM)  
[66] ↑ 

Incorporates structural 
information for perceptually 
relevant image similarity. 

Useful when structural 
content is crucial, e.g., in 
medical imaging or object 
recognition. 

F-score [67] ↑ Combines precision and 
recall to quantify accuracy of 
object detection. 

Commonly used in computer 
vision tasks for evaluating 
object detection algorithms. 

Intersection over 
Union (IoU)  
[40] ↑ 

Measures the overlap of two 
objects with their respective 
bounding boxes. 

Evaluates the localization 
and segmentation accuracy in 
computer vision tasks. 

Mean Absolute 
Error (MAE)  
[49] ↓ 

Measures the average 
absolute deviation between 
the generated data and the 
GT. 

Evaluates the overall 
accuracy of the generated 
data.  

3D metrics 

Chamfer 
Distance (CD) 

[57] ↓ 

Measures nearest average 
squared distance between 
points in predicted and true 
3D point clouds. 

Valuable for evaluating spatial 
alignment and accuracy of 
reconstructed 3D structures. 

Earth Mover’s 
Distance 
(EMD) [68] ↓ 

Quantifies dissimilarity 
between two point clouds by 
considering minimum cost of 
transformation. 

Useful for comparing complex 
3D shapes where direct point- 
to-point correspondence may 
not be straightforward. 

Hausdorff 
Distance 
(HD) [69] ↓ 

Measures maximum distance 
between points in one point 
cloud to nearest point in the 
other. 

Offers comprehensive measure 
of dissimilarity, relevant in 
medical imaging and shape 
matching.  
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reconstructions of the DL methods exhibit an improvement over the 
error for inlay restorations. The RMSE is sensitive to higher errors due to 
the squaring operation before taking the mean. Therefore, the RMSE 
would yield a higher value for the conventional digital methods, further 
enhancing the DL-based results. The MAE of the conventional digital 
methods was calculated based on 3D models of teeth, in contrast to the 
depth maps used by the DL-based methods. Feng et al. [49] reported an 
MAE of 0.13 mm for their full incisor 3D reconstruction method, sur
passing the 2D and conventional digital methodologies that solely used 

occlusal surfaces in terms of reconstruction volume. 
The similarity in errors among the 2D methods suggests that these 

methods may have reached a local equilibrium. Although the results 
show an improvement compared to existing conventional digital 
methods, there is still room for optimization. The limited amount of 
employable data underscores the need for further research, especially in 
the realm of 3D methodologies. Standardizing metrics for the compari
son of different 3D methods is crucial for quantitative comparisons. A 
comparison is therefore currently not feasible. 

While AI-based commercial software for dental crown restoration is 
emerging, further research is still needed. In particular, the incorpora
tion of as much patient data as possible is essential. Clinical trials are 
needed to assess the performance of the methods in a real world setting. 
Restorations have to be generated based on a real patient’s data and 
subsequently tested for fit and functionality. The results of these tests 
can then be used to further improve the methods. 

With the current state of the art, the use of DL for dental crown 
reconstruction is feasible. The increasing adoption of digital techniques 
in dentistry will expand the available data, allowing for the training of 
more complex models and improving reconstruction quality. Further
more, the application of DL for dental crown reconstruction is not 
confined to GANs and Transformers in combination with point clouds or 
voxels. Recent studies suggest promising results using diffusion-based 
architectures and data representations such as wavelets for 3D shape 
completion and inference problems [59–61]. 

5. Conclusions 

The key insights derived from the analyzed articles are as follows: 

• Acquisition of data is performed through intraoral scans or labora
tory scans of dental plaster models.  

• Sample sizes range from 169 to 6109.  
• The reconstruction problem is approached from a 2D and 3D 

perspective. 
• Depth maps, point clouds, and voxelized point clouds are the prev

alent data representations. 

Table 3 
Summary of propriatary evaluation metrics. ↓↑ indicate the direction of the 
metric, signifying whether a higher or lower value is advantageous. A heu
ristically determined ideal value for the metric is indicated by an =!. The ideal 
values are based on the results of technician designed crowns.  

Metric Function Purpose 
Propriatary metrics 

Penetration Rate 
(PR) [40] ↓ 

Measures relative amount of 
cases where the minimal gap 
distance was smaller than 
zero. 

Comparison of the functional 
quality w.r.t. collisions. 

Maximum 
Penetration 
Rate (MP) [40] 
↓ 

Measures penetration depth 
for all cases where the gap 
distance was smaller than 
zero. 

Comparison of the functional 
quality w.r.t. collisions. 

Penetration Area 
(PA) [40] ↓ 

Measures the area where the 
gap distance is smaller than 
zero. 

Comparison of the functional 
quality w.r.t. collisions. 

Number of 
Clusters (NC)  
[40] =! 4.15 

Measures the number of 
regions with neighboring 
pixels within a distance of 
two pixels. 

Reflect the biting and 
chewing quality. 

Spread (SPD) [40] 
=! 11.01 

Measures the spatial standard 
deviation of critical pixels in a 
crown 

Evaluates the contact points 
of the teeth. The contact 
points should not focus on 
one region. 

Mean +/- 
Deviation 
(MPD/MND)  
[48] ↓ 

Measures the respective mean 
deviation between the 
generated and the GT point 
cloud. 

Evaluates the overall 
accuracy of the generated 
point cloud.  

Table 4 
Quantitative results of the DL methods. The shown mean results are rounded to three decimal places. If available, the standard deviation is shown in parentheses. The 
pixel value RMSE by Tian et al. [43] is converted to mm by multiplication with 7/255 mm to conform with the other studies. The ordered voxel representation of Ding 
et al. [48] allows for the calculation of the RMSE in 3D. ↓↑ indicate the direction of the metric, signifying whether a higher or lower value is advantageous.  

2D approach 

General metrics  

RMSE (mm) ↓ SSIM ↑ MS-SSIM ↑ PSNR ↑ FSIM ↑ F-score ↑ IoU ↑ 

Hwang [40] 0.066 n/a n/a n/a n/a 0.942 0.920 
Yuan [41] 0.070 n/a 0.813 23.304 0.879 n/a n/a 
Tian [43] 0.196 n/a 0.820 29.250 0.890 n/a n/a 
Tian [45] 0.135 (0.117) 0.985 (0.005) n/a 34.264 (1.228) 0.993 (0.008) n/a n/a 
Tian [44] 0.068 (0.008) 0.845 (0.005) n/a 23.304 (0.168) 0.887 (0.007) n/a n/a 

Propriatary metrics  

PR ↓ MP ↓ PA ↓ NC =! 4.15 SPD =! 11.01   

Hwang [40] 9.470 2.300 10.0 3.140 9.630   

3D approach 

General metrics  

RMSE (mm) ↓ CD-L1 (mm) ↓ CD-L2 (mm) ↓ EMD (mm) ↓ HD (mm) ↓   
Zhu [46] n/a 4.473× 10− 3 0.055× 10− 3 0.019 n/a   
Chau [47] n/a n/a n/a n/a 0.633 (0.961)   
Ding [48] 0.361 (0.116) n/a n/a n/a n/a   

Propriatary metrics  

MAE (mm) ↓ MPD (mm) ↓ MND (mm) ↓     

Ding [48] n/a 0.250 (0.050) 0.311 (0.122)     
Feng [49] 0.130 n/a n/a      
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• The focus of reconstructions is on individual teeth, leveraging data 
from neighboring teeth or the entire jaw.  

• The number of teeth contained in the input data is larger than the 
number of reconstructed teeth. 

• Only some studies incorporate data from antagonist teeth and fea
tures such as occlusal grooves and gap distance.  

• The primary network architectures utilized are GANs and 
Transformers. 

• When compared to conventional digital methods, tooth reconstruc
tion using DL shows approximately half the error rate. 
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