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1. Introduction

We consider a differential operator D of Dirac or Laplace type acting on sections of a Hermitian vector bundle on a 
complete Riemannian manifold M . We assume the operator is invariant under the action of a discrete group of symme-
tries G . According to Definition 4.1 a spectral interval for D is an interval in R whose endpoints are located in spectral gaps 
of D . The spectral projection E D(I) associated to a bounded spectral interval I is an element of the G-invariant Roe algebra 
C G(M) associated to the underlying coarse space of M , see Proposition 5.2.

We now consider a subset Z with smooth boundary ∂∞ Z which are both preserved by the action of a subgroup K
of G . If we define a selfadjoint extension of the restriction D Z to Z using K -invariant elliptic local boundary conditions at 
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∂∞ Z , then for a bounded spectral interval I , E D Z (I) is an element of the K -invariant Roe algebra C K (Z) associated to the 
underlying coarse space of Z , see Proposition 5.2.

The operator D Z is “locally G-invariant” as a differential operator, but as a functional analytic object its invariance is 
distorted by the boundary condition near ∂∞ Z . However, it turns out that the influence of this distortion on the spec-
tral projections decays with the distance from ∂∞ Z . In particular, they become “more and more G-invariant” if we move 
far away from the boundary. In order to capture this behavior in a precise manner, under a wideness assumption (see 
Definition 3.2) on Z in Theorem 3.3 we introduce an extension of Roe algebras

0 → C K (∂ Z) → C G,K (M, Z)
σ→ C G(M) → 0 , (1.1)

where C K (∂ Z) is the subalgebra of C K (Z) generated by K -invariant operators supported near ∂∞ Z , and C G,K (M, Z) is a 
certain subalgebra of C K (Z) consisting of asymptotically G-invariant operators. In the special case that K is trivial, this 
extension has previously been considered in [20]. The precise statement is now that E D Z (I) (apriori belonging to C K (Z)) 
belongs to the subalgebra C G,K (M, Z), and that

σ(E D Z (I)) = E D(I) , (1.2)

see Proposition 5.3.
Applying K -theory to the exact sequence (1.1) of C∗-algebras we get a long exact sequence

· · · → K∗(C G,K (M, Z))
K (σ )→ K∗(C G(M))

δ→ K∗−1(C K (∂ Z)) → ·· · (1.3)

of K -theory groups. A projection P in a C∗-algebra represents a K -theory class [P ] in the degree zero K -theory group. 
As first observed in [20, Thm. 3.4] (see also [25, §2.2.3]), the exactness of (1.3) has the following simple consequence (see 
Proposition 6.5).

Corollary 1.1. If I is a spectral interval of D and δ[E D(I)] �= 0, then I is not a spectral interval of D Z .

Note that the conclusion of the corollary means that at least one of the endpoints of I belongs to the spectrum of D Z . The 
corollary can therefore be employed to show that certain numbers must belong to the spectrum of D Z . Such statements are 
important in the theory of topological insulators, where one is interested in the existence of certain “boundary-localised” 
states that arise precisely from a spectral gap in the bulk Hamiltonian that is filled when introducing a boundary. For a 
coarse geometric discussion of these phenomena, see [14], [25], [20] and [19].

We will demonstrate this sort of application in the case of magnetic Hamiltonians in Corollary 7.4.
In order to apply Corollary 1.1 we must be able to calculate the boundary operator δ of the long exact sequence in (1.3). 

The main idea of the present paper is to consider the construction of the sequence (1.3) as a special case of a general 
construction in equivariant coarse homotopy theory.

The main objects of coarse homotopy theory as developed in [8] are equivariant coarse homology theories

EG : GBornCoarse → C ,

where GBornCoarse is the category of G-bornological coarse spaces and the target C is some stable ∞-category such as the 
category of spectra. We consider a G-bornological coarse space X with a K -invariant subset Z . In Definition 2.4 we define 
the obstruction morphism

r : EG(X)
c∗→ E K (ResG

K (X))
δM V→ �E K (∂ Z) .

Here ResG
K (X) is the space X considered as a K -bornological coarse space via the restriction along K → G . The symbol E K

denotes the K -equivariant coarse homology theory which is naturally derived from EG using a transfer structure, see (2.1). 
The map δM V is the Mayer-Vietoris boundary map associated to the decomposition of X into Z and its complement {X \ Z}, 
the big family consisting of the coarse thickenings of X \ Z . Finally, the big family ∂ Z := Z ∩ {X \ Z} is the coarse version 
of the boundary of Z (we refer [8] for the basic definitions from equivariant coarse homotopy theory). Since C is a stable 
∞-category we can extend the obstruction morphism r to a fiber sequence

EG,K (X, Z) → EG(X)
r→ E K (∂ Z) (1.4)

defining the relative object EG,K (X, Z), see Definition 2.2.
We can apply these constructions to the equivariant coarse K -homology KX G introduced in [6] in place of EG and the 

manifold M from above in place of X . Except for degenerate cases we have natural isomorphisms of K -theory groups

KX G∗ (M) ∼= K∗(C G(M)) , KX K∗ (∂ Z) ∼= K∗(C K (∂ Z)) ,

see [3, Thm. 6.1]. The following theorem is a reformulation of Theorem 3.4 in terms of homotopy groups.
2
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Theorem 1.2. There exists a canonical isomorphism of long exact sequences

K∗(C G,K (M, Z))

∼=

K∗(C G(M))

∼=

δ K∗−1(C K (∂ Z))

∼=

KX G,K∗ (M, Z) KX G∗ (M)
r∗ KX K∗−1(∂ Z)

We interpret this theorem and in particular the commutativity of the right square as a kind of index theorem relating 
the purely analytic construction of δ in terms of Roe algebras with the purely homotopy theoretic construction of r∗ . The 
theorem reduces the calculation of δ to the calculation of the obstruction morphism r.

Acknowledgments: U. Bunke and M. Ludewig were supported by the SFB 1085 “Higher Invariants” funded by the Deutsche Forschungs-
gemeinschaft DFG.

2. A homotopy theoretic construction

We consider a group G . Coarse geometry was invented by J. Roe [22], [23] as a way to capture the large-scale geometry 
of metric spaces with an isometric G-action. In the present paper we use the formalization in terms of G-bornological 
coarse spaces introduced in [8], see [11] for an overview. A G-bornological coarse space is a G-set X with a G-coarse 
structure consisting of a collection of subsets U of X × X , called coarse entourages, and a compatible G-invariant bornology 
determining the collection of bounded subsets of X . Morphisms between G-bornological coarse spaces are G-invariant 
maps which are controlled in the sense that they send coarse entourages to coarse entourages and proper in the sense that 
preimages of bounded sets are bounded. The category of G-bornological coarse spaces and invariant controlled and proper 
maps is called the category of G-bornological coarse spaces, denoted GBornCoarse.

Typical examples of G-bornological coarse spaces are the group G itself with the left-action on itself, the minimal 
bornology and the minimal or the canonical G-coarse structures, denoted by Gmin,min and Gcan,min , respectively. Here the 
canonical coarse structure is the smallest G-coarse structures containing all enourages {(g, g′)} for pairs g, g′ in G .

A basic tool to construct coarse invariants of G-bornological coarse spaces are equivariant coarse homology theories. In 
the present paper we use the axiomatization introduced in [8], see also [11]. A G-equivariant coarse homology theory is a 
functor

EG : GBornCoarse → C

to some cocomplete stable ∞-category C which is coarsely invariant, excisive, annihilates flasques, and is u-continuous. 
For a detailed description of these properties we refer to [8]. For the present paper the most important example is the 
equivariant coarse K -homology KX G constructed in [6].

Given a G-equivariant coarse homology theory EG and a G-bornological coarse space X , in the present section we 
describe a construction which may produce information about EG(X) by breaking the symmetry. Our main result is the 
construction of the relative object EG,K (X, Z) in Definition 2.2 and the fiber sequence (2.7).

Let K be a subgroup of G and consider the induction functor

IndG
K : K BornCoarse → GBornCoarse

sending a K -bornological coarse space X to the G-set G ×K X with the appropriate coarse and bornological structures [8, 
Sec. 6.5]. We define an associated K -equivariant coarse homology E K by

E K := EG ◦ IndG
K : K BornCoarse → C (2.1)

[9, Lemma 4.19]. In the case of the trivial group K = {1} we will write simply E instead of E K . In this case the induction 
functor is given in terms of the symmetric monoidal structure of GBornCoarse by IndG(X) ∼= Gmin,min ⊗ ResG(X), where 
ResG equips the bornological coarse space X with the trivial G-action. We therefore have the equivalence

E(X) � EG(Gmin,min ⊗ ResG(X)) . (2.2)

Remark 2.1. Often we are in the situation that we already have a family of equivariant coarse homology theories (E H )H

(with a fixed target) for all groups H , which at first sight clashes with the notation (2.1). However, in all relevant examples 
the homology theory EG ◦ IndG

K derived from the member EG of the family using (2.1) is equivalent to the member of the 
family denoted by the same symbol E K . In this situation we will say that the family has induction equivalences.
3
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Examples of families with induction equivalences are the family of equivariant coarse ordinary homology theories 
(HX H )H [8, Prop. 7.12] and the family of coarse algebraic K -theories (K AX H )H associated to an additive category A (with 
trivial action) [8, Prop. 8.27]. For the present paper, the relevant example is the coarse topological K -homology associated to 
a C∗-category with a G-action obtained in [6, Thm. 6.3] (for the K -theory of C∗-categories in place of homological functor 
Hg), see Section 3. That this example has induction equivalences has been shown in [6, Cor. 10.5.1]. �

We also have a restriction functor

ResG
K : GBornCoarse → K BornCoarse

which sends a G-bornological space X to the K -bornological space obtained by restricting the action from G to K . If X is a 
G-bornological coarse space, then we have a natural map of coarse spaces

c X : G ×K X → X , [g, x] �→ gx . (2.3)

In general this morphism in GCoarse is not proper (and hence not a morphism in GBornCoarse), but it is a bounded 
covering [7, Def. 2.14].

We now assume that EG admits transfers [7, Def. 1.2]. This means that EG has a contravariant functoriality with re-
spect to bounded coverings in addition to the covariant functoriality for morphisms in GBornCoarse. The compatibility of 
these operations is encoded in the category GBornCoarsetr of G-bornological coarse spaces with transfers introduced in [7, 
Sec.2.2]. The family of bounded coverings c = (c X ) can be considered as natural transformation of functors

c : IndG
K ◦ResG

K → ι : GBornCoarse → GBornCoarsetr , (2.4)

where ι : GBornCoarse → GBornCoarsetr is the canonical embedding [7, Sec.2.33]. Applying EG , we obtain a natural trans-
formation

cG
K : EG → EG ◦ IndG

K ◦ResG
K

(2.1)� E K ◦ ResG
K . (2.5)

For a K -invariant subset Y of X we let {Y } := (U [Y ])U∈CK
X

denote the K -invariant big family [8, Def. 3.5] consisting of 
all of U -thickenings of Y for K -invariant coarse entourages U in CK

X . Let now Z be a K -invariant subset of X with the 
induced K -bornological coarse structure. Observe that X \ Z is also K -invariant. We get a K -invariant complementary pair 
(Z , {X \ Z}) on ResG

K (X) [8, Def. 3.7]. We let i : E K (Z) → E K (ResG
K (X)) and j : E K ({X \ Z}) → E K (ResG

K (X)) denote the maps 
induced by the canonical inclusions.

Definition 2.2. We define the object EG,K (X, Z) in C by the pull-back

EG,K (X, Z) E K (Z) ⊕ E K ({X \ Z})

EG(X) E K (ResG
K (X)) .

e Z ⊕e X\Z

s i+ j

cG
K

�

We consider the big family

∂ Z := Z ∩ {X \ Z} (2.6)

defined by intersecting the members of the K -invariant big family {X \ Z} with Z . It plays the coarse geometric role of the 
boundary of Z , hence the notation.

Lemma 2.3. We have a canonical fiber sequence

· · · → E K (∂ Z) → EG,K (X, Z)
s→ EG(X)

r→ �E K (∂ Z) → . . . (2.7)

Proof. Since (Z , {X \ Z}) is a K -invariant complementary pair on ResG
K (X), by the excision axiom for E K [8, Def. 3.10 (2)], 

we have a cartesian square

E K (∂ Z) E K (Z)

E K ({X \ Z}) E K (ResG
K (X)),

i

j

4
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leading to

E K (∂ Z) → E K (Z) ⊕ E K ({X \ Z}) → E K (ResG
K (X))

δ→ �E K (∂ Z) (2.8)

in C. Equivalently, the right square in the following diagram is cartesian:

EG,K (X, Z) E K (Z) ⊕ E K ({X \ Z}) 0

EG(X) E K (ResG
K (X)) �E K (∂ Z).

e Z ⊕e X\Z

s i+ j

cG
K δ

(2.9)

Since the left square of (2.9) is cartesian by Definition 2.2 we conclude that the outer square is cartesian. This is the desired 
fiber sequence (2.7), defining r as the composition of the two bottom horizontal maps. �

Definition 2.4. We define the obstruction morphism as the composition

r � δ ◦ cG
K : EG(X) → �E K (∂ Z) . � (2.10)

Let f : X ′ → X be a morphism of G-bornological coarse spaces and define the K -invariant subset Z ′ := f −1(Z) of X ′ .

Lemma 2.5. There exists a morphism

f̃∗ : EG,K (X ′, Z ′) −→ EG,K (X, Z)

fitting into a morphism of fiber sequences

. . . E K (∂ Z ′) EG,K (X ′, Z ′) EG(X ′) �E K (∂ Z ′) . . .

. . . E K (∂ Z) EG,K (X, Z) EG(X) �E K (∂ Z) . . .

∂ f∗

s′

f̃∗ f∗

r′

∂ f∗
s r

(2.11)

Proof. First of all, the map f induces morphisms f∗ : EG(X ′) → EG(X) and ResG
K ( f )∗ : E K (ResG

K (X ′)) → E K (ResG
K (X)), and 

the square

EG(X ′) E K (ResG
K (X ′))

EG(X) E K (ResG
K (X))

f∗

cG
K

ResG
K ( f )∗

cG
K

(2.12)

commutes by naturality of the transfer.
Moreover, since f (X ′ \ Z ′) ⊆ X \ Z , for every U ′ in CG

X ′ we have f (U ′[X ′ \ Z ′]) ⊆ f (U ′)[X \ Z ] and f (Z ′ ∩ U ′[X ′ \ Z ′]) ⊆
Z ∩ f (U ′)[X \ Z ]. Therefore f induces morphisms of big families f X ′\Z ′ : {X ′ \ Z ′} → {X \ Z} and ∂ f : ∂ Z ′ → ∂ Z , and the 
diagram

E K (Z ′) ⊕ E K ({X ′ \ Z ′}) i′+ j′

f Z ′,∗⊕ f X ′\Z ′,∗

E K (ResG
K (X ′))

ResG
K ( f )∗

δ
�E K (∂ Z ′)

∂ f∗

E K (Z) ⊕ E K ({X \ Z}) i+ j
E K (ResG

K (X))
δ

�E K (∂ Z)

(2.13)

commutes by the naturality of the Mayer-Vietoris fiber sequence. The horizontal concatenation of the square in (2.12) and 
the right square in (2.13) yields the rightmost commutative square in (2.11), which extends to the desired morphism (2.11)
of fiber sequences. �

Lemma 2.6. If ∂ Z ′ consists of empty sets, then the composition r ◦ f∗ : EG(X ′) → EG(X) → E K (∂ Z) vanishes.

Proof. Since ∂ Z ′ consists of empty sets, we have E K (∂ Z ′) � 0, hence r′ � 0. The commutativity of the right square in (2.11)
implies the assertion. �
5
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Example 2.7. If X ′ is obtained from X by replacing the coarse structure by a smaller one, then the identity map is a 
morphism X ′ → X . In particular, we can take X ′ = Xdisc, the bornological coarse space with the same underlying space and 
bornology as X but the minimal coarse structure, generated by the empty set. This means that all entourages U of X ′ are 
subsets of the diagonal, so that U [X \ Z ] ⊆ X \ Z . This implies Z ∩ U [X \ Z ] =∅ for each entourage U of Xdisc, so ∂ Z = {∅}, 
the condition of Lemma 2.6. �

Example 2.8. The following idea is inspired by [16, Sec. 3.2]. Let a : Y → Z be the embedding of a K -invariant subset of Z . 
Following [16, Def. 3.9] we could call Y coarsely E K -negligible if the map E K (a) : E K (Y ) → E K (Z) is zero. The following 
more restrictive notion captures a reason for this triviality.

Definition 2.9. Y admits a flasque exit in Z if the embedding a : Y → Z extends to a morphism h : [0, ∞) ⊗ Y → Z in 
K BornCoarse such that h|{0}×Y = a. �

For example, if K = {1}, Y is U -bounded for some entourage U of X and there exists a coarse ray in Z (a map from 
[0, ∞) to Z ) starting in a point of Y , then Y admits a flasque exit in Z [16, Prop. 3.10].

If Y admits a flasque exit in Z , then the inclusion induces a zero map in coarse homology,

0 � E K (a) : E K (Y ) → E K (Z) .

This follows from the fact that vanishing on flasque spaces is one of the defining properties of an equivariant coarse homol-
ogy theory [8, Definition 3.10]. Indeed, E K (a) factorizes as E K (Y ) → E K ([0,∞) ⊗ Y )

h∗→ E K (Z), and E K ([0, ∞) ⊗ Y ) � 0 by 
flasqueness of [0, ∞) ⊗ Y . So the choice of h provides a preferred choice of an equivalence 0 � E K (a).

Definition 2.10. We say that the big family ∂ Z admits a two-sided flasque exit, if for every U in CK
X the member Z ∩U [X \ Z ]

of ∂ Z admits a flasque exit in both Z and U [X \ Z ]. �

If ∂ Z admits a two-sided flasque exit, then the fiber sequence (2.8) splits. We therefore get a decomposition

E K (ResG
K (X)) � E K (Z) ⊕ E K ({X \ Z}) ⊕ �E K (∂ Z),

where δ corresponds to the projection onto the last summand. �

Example 2.11. In this example we describe a situation where ∂ Z has a two-sided flasque exit. Let m, n be in N and consider 
the group G := Zm+n . Then X := Rm+n is a Zm+n-bornological coarse space with the structures induced by the standard 
metric with the usual action by translations. We let K := Zm be the first summand of Zm+n ∼= Zm ⊕Zn . We furthermore 
take the Zm-invariant subset

Z := Rm+n+ := {(x, y) ∈Rm+n | y ∈ [0,∞)n} ,

where identify Rm+n ∼=Rm ×Rn in order to write its elements as pairs. Note that ∂ Z admits a two-sided flasque exit (see 
Definition 2.10).

But actually in this case the situation is even simpler. Namely, Z and all members of {X \ Z} are flasque. This implies 
that the boundary map δ in the cofibre sequence (2.8) is an equivalence. The obstruction morphism

r : EZ
m+n

(Rm+n) −→ �EZ
m
(∂ Z)

in the fiber sequence (2.7) is therefore equivalent to the transfer morphism

cZ
m+n

Zm : EZ
m+n

(Rm+n) → EZ
m
(ResZ

m+n

Zm (Rm+n)). �

3. Topological coarse K -homology

If C is a C∗-category with strict G-action admitting all orthogonal AV-sums [2, Def. 7.1], then we have the equivariant 
coarse K -homology functor

KX G
C : GBornCoarse → Sp

with transfers [6, Def. 6.2.1 & Thm. 6.3 & 9.7] (with K -theory functor for C∗-categories [2, Def. 14.3] in place of Hg). If we 
specialize this construction to the category C = Hilbc(C) of Hilbert spaces and compact operators with the trivial G-action, 
then the resulting functor will be denoted by KX G . For simplicity, in the present paper we will stick to this example.

On very proper G-bornological coarse spaces represented by locally compact metric spaces with isometric G-action 
this is the usual equivariant coarse K -theory. Its value on such a space is the K -theory of the equivariant Roe algebra 
6
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associated to this space [3, Thm. 6.1], see also (3.2). For C = Hilbc(A) the C∗-category of Hilbert C∗-modules of a C∗-algebra 
A with G-action and compact operators the functor KX G

C is related to the topological equivariant K -homology functor with 
coefficients in A

K G
A : GOrb → Sp

constructed by [12] (see also [18]) appearing in the Baum-Connes conjecture by

K G
A (S) � KX G

C (Smin,max ⊗ Gcan,min) , S ∈ GOrb .

Here Smin,max is the G-bornological coarse space given by the transitive G-set S equipped with the minimal coarse structure 
and the maximal bornology. For the trivial group the coarse homology theory KX constitutes the target of the coarse 
assembly map featuring the coarse Baum-Connes conjecture and should not be confused with the domain of this assembly 
map which is the coarsification of the locally finite K -homology theory represented by the spectrum K U [5, Sec. 7] and [4].

Note that by [6, Thm. 6.3] the family (KX G )G of equivariant coarse homology theories has induction equivalences in the 
sense explained in Remark 2.1.

We now apply the constructions described in Section 2 to the equivariant coarse homology theory with transfers KX G .
In particular, for a subgroup K of G and a K -invariant subset Z of X we can construct the spectrum KX G,K (X, Z) as in 

Definition 2.2 and obtain the fiber sequence (2.7):

· · · → KX K (∂ Z) → KX G,K (X, Z) → KX G(X)
r→ �KX K (∂ Z) → . . . . (3.1)

Under certain restrictions on G and X the values of KX G(X) can be described in terms of the topological K -theory of 
Roe algebras. The main result of the present subsection is a presentation of KX G,K (X, Z) and the sequence (3.1) in terms 
of C∗-algebras. This interpretation will be used for application to the spectral theory of differential operators in Section 5.

We assume that G is countable. We furthermore assume that the G-bornological coarse space X is very proper [3, Def. 
3.7]. Very properness is a technical condition which is e.g. satisfied for G-bornological coarse space represented by complete 
Riemannian manifolds with a proper isometric G-action. It ensures by [3, Prop. 4.2] the existence of ample equivariant X-
controlled Hilbert space (H, φ) [3, Def. 4.1]. Here H is a complex Hilbert space with G-action and φ is an invariant, finitely 
additive projection-valued measure on X defined on all subsets. For any such equivariant X-controlled Hilbert space one 
can define the Roe algebra C(X, H, φ) (see Definitions 2.3, 3.6 & 3.8 of [3]).

By [3, Thm. 6.1] we have a canonical (up to equivalence) morphism of spectra

K (C(X, H, φ))
κ(X,H,φ)� KX G(X) . (3.2)

Note that the assumption that X is very proper as a G-bornological coarse space implies that ResG
K (X) is a very proper 

K -bornological coarse space. If we assume that Z is a nice subset of ResG
K (X) for some K -invariant entourage of X [3, Def. 

8.2], then Z is a very proper K -bornological coarse space [3, Prop. 8.3].
We consider the subspace H Z := φ(Z)(H) of H , and we let φZ denote the restriction of the projection-valued measure 

φ to subsets of Z and H Z . Then (H Z , φZ ) is a K -equivariant Z -controlled Hilbert space. It is easy to check that it is ample.
The localized Roe algebra is the subalgebra C(∂ Z , H Z , φZ ) of C(Z , H Z , φZ ) generated by operators supported on the 

members of the big family ∂ Z (2.6). It is a closed ideal [5, Lem. 7.57]. We define a linear map

q : C(X, H, φ) → C(Z , H Z , φZ ) , q(A) := φ(Z)Aφ(Z) .

This map is ∗-preserving, but in general q is not a homomorphism of C∗-algebras.

Definition 3.1. We define the C∗-algebra C G,K (X, Z) as the sub-C∗-algebra of C(Z , H Z , φZ ) generated by C(∂ Z , H Z , φZ ) and 
im(q). �

Recall that for an entourage U of X , a subset B of X is called U -bounded, if B × B ⊆ U [5, Def. 2.15].

Definition 3.2. We call Z wide if for every entourage U of X and each U -bounded subset Y of X , there exists g in G such 
that gY ⊆ Z \ U [X \ Z ]. �

Theorem 3.3. If Z is wide, then we have a short exact sequence of C∗-algebras

0 → C(∂ Z , H Z , φZ )
ι→ C G,K (X, Z)

σ→ C(X, H, φ) → 0 , (3.3)

where the map ι is the natural inclusion.
7
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Proof. Since C(∂ Z , H Z , φZ ) is a closed ideal in C(Z , H Z , φZ ) it is also a closed ideal in C G,K (X, Z).
We need to construct the map σ . As in the proof of [5, Lemma 7.58], one shows that for A, A′ in C(X, H, φ) we have

q(A)q(A′) − q(A A′) ∈ C(∂ Z , H Z , φZ ) . (3.4)

Since q is ∗-preserving, it then follows that C(∂ Z , H Z , φZ ) + im(q) is a ∗-subalgebra of C(Z , H Z , φZ ), and that the compo-
sition

q̄ : C(X, H, φ)
q→ C G,K (X, Z) → C G,K (X, Z)/C(∂ Z , H Z , φZ )

is a homomorphism of C∗-algebras. We claim that q̄ is injective. Assuming the claim, since q̄ has dense range by construc-
tion, it is an isomorphism. Hence we can define σ as the composition

σ : C G,K (X, Z) → C G,K (X, Z)/C(∂ Z , H Z , φZ )
q̄−1

→ C(X, H, φ)

and obtain the desired exact sequence (3.3).
We now show the claim. Let A be in C(X, H, φ) and assume that q̄(A) = 0, i.e., that

q(A) = φ(Z)Aφ(Z) ∈ C(∂ Z , H Z , φZ ) .

Then for every ε in (0, ∞) we can then choose an entourage U and a U -bounded subset Y of X such that the following 
two inequalities are satisfied:

‖φ(Y )Aφ(Y )‖ ≥ 1

2
‖A‖ , ‖φ(Z \ U [X \ Z ])Aφ(Z \ U [X \ Z ])‖ < ε .

Since Z is wide we can choose an element g in G such that gY ⊆ Z \ U [X \ Z ]. Then using the equality

φ(Z \ U [X \ Z ])φ(gY ) = φ((Z \ U [X \ Z ]) ∩ gY ) = φ(gY ) ,

the equivariance φ(Y ) = gφ(gY )g−1 of φ and the equivariance g−1 Ag = A of A we get

φ(Y )Aφ(Y ) = gφ(gY )g−1 Agφ(gY )g−1 = gφ(gY )Aφ(gY )g−1

= gφ(gY )φ(Z \ U [X \ Z ])Aφ(Z \ U [X \ Z ])φ(gY )g−1

Hence

1

2
‖A‖ ≤ ‖φ(Y )Aφ(Y )‖ ≤ ε .

Since ε is arbitrary this implies that A = 0. �

The sequence of C∗-algebras (3.3) induces a fiber sequence of K -theory spectra

· · · K (C(∂ Z , H Z , φZ )) K (C G,K (X, Z)) K (C(X, H, φ))

�K (C(∂ Z , H Z , φZ )) · · · .

δC∗ (3.5)

The following is the main theorem of this section.

Theorem 3.4. The fiber sequences (3.5) and (3.1) are canonically equivalent.

Proof. We use the comparison maps κ• as in (3.2) and consider the following diagram:

K (C G,K (X, H, φ))
σ∗

�

K (C(X, H, φ))
δC∗

� κ(X,H,φ)

�K (C(∂ Z , H Z , φZ ))

� κ(∂ Z ,H Z ,φZ )

KX G,K (X, Z)
s KX G(X)

r
�KX K (∂ Z)

. (3.6)

It suffices to show that the right square commutes. Then we use the universal properties of the fiber sequences in order to 
obtain the dotted arrow and the fact that it is an equivalence.
8
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We expand the right square as follows:

K (C(X, H, φ))
K (i)

δC∗

� κ(X,H,φ)

K (C(ResG
K (X, H, φ)))

� κ
ResG

K (X,H,φ)

δM V
�K (C(∂ Z , H Z , φZ ))

� κ(∂ Z ,H Z ,φZ )

KX G(X)
cG

K KX K (ResG
K (X))

δ
�KX K (∂ Z)

(3.7)

In order to see that the right square and the upper triangle commute, we consider the following morphisms of short 
exact sequences of C∗-algebras

0 C(∂ Z , H Z , φZ ) C G,K (X, Z) C(X, H, φ) 0

0 C(∂ Z , H Z , φZ ) C(Z , H Z , φZ )
C(Z ,H Z ,φZ )

C(∂ Z ,H Z ,φZ )
0

0 C({X \ Z}, H X\Z , φX\Z ) C(ResG
K (X, H, φ))

C(ResG
K (X,H,φ))

C({X\Z},H X\Z ,φX\Z )
0

ι σ

i

q

p

b∼=
a

(3.8)

The vertical maps are induced by the natural inclusions.
Applying the K -theory functor for C∗-algebras to this diagram and extending to the right, we get a morphism of fiber

sequences

K (C G,K (X, Z) K (C(X, H, φ)) �K (C(∂ Z , H Z , φZ ))

K (C(Z , H Z , φZ ) K (
C(Z ,H Z ,φZ )

C(∂ Z ,H Z ,φZ )
) �K (C(∂ Z , H Z , φZ ))

K (C(ResG
K (X, H, φ))) K

( C(ResG
K (X,H,φ))

C({X\Z},H X\Z ,φX\Z )

)
�K (C({X \ Z}, H X\Z , φX\Z )) .

K (σ ) δC∗

K (i) K (q)

K (p) δC∗′

K (b)�
K (a)

δM V

δC∗′′

(3.9)

By definition, the Mayer-Vietoris boundary map for the complementary pair (Z , {X \ Z}) on X is given by

δM V := δC∗′ ◦ K (b)−1 ◦ K (a) : K (C(ResG
K (X, H, φ))) → �K (C(∂ Z , H Z , φZ )) . (3.10)

Similarly, the boundary map δ is obtained from the diagram

KX K (Z)
KX K (Z)

KX H (∂ Z)
�KX K (∂ Z)

KX K (ResG
K (X))

KX K (ResG
K (X))

KX K ({X\Z}) �KX K ({X \ Z})

δ′

b′ �

a′

δ

δ′′

(3.11)

as

δ := δ′ ◦ (b′)−1 ◦ a′ : KX K (ResG
K (X)) → �KX H (∂ Z) .

Here we write cofibres as quotients. In view of [3, Thm. 6.1] the transformation κ• induces a morphism from the lower 
two rows of the diagram (3.9) to the diagram (3.11). Now the right square of (3.7) is contained in the commutative cube 
obtained this way and hence commutative.

The boundary map δC∗
is induced by the first sequence in (3.8). The naturality of the boundary maps for the map from 

the first to the second sequence in (3.8) and the existence of the dotted lift therefore imply that the upper triangle in (3.7)
commutes.

Finally, the left square in (3.7) commutes in view of [6, Rem. 10.6]. �
9
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4. Operators in Roe algebras

Assume that A is a selfadjoint operator in some C∗-algebra A with spectrum σ(A), and let I be an interval in R.

Definition 4.1. We say that I is a spectral interval of A if ∂ I ∩ σ(A) =∅. �

If I is a spectral interval for A, then the spectral projection E A(I) also belongs to A, where E A is the spectral measure of 
A and hence defines a class [E A(I)] in K0(A). The point here is that under the assumption of Definition 4.1, we can write 
E A(I) as a continuous function of A instead of using the characteristic function.

As in Section 3 we consider a countable group G and let X be a very proper G-bornological coarse space. We choose 
an X-controlled ample Hilbert space (H, φ). We furthermore consider a subgroup K and a wide K -invariant subset Z of X
(see Definition 3.2).

We consider operators A in C(X, H, φ) and B in C(Z , H Z , φZ ). In the following we use the maps

p : C(Z , H Z , φZ ) → C(Z , HU , φZ )

C(∂ Z , H Z , φZ )
, q : C(X, H, φ) → C(Z , HU , φZ )

C(∂ Z , H Z , φZ )

from the diagram (3.8).

Definition 4.2. We say that A and B are affiliated if q(A) = p(B). �

Using κ(X,H,φ) in (3.2) we consider [E A(I)] as a class in KX G(X). In order to shorten the notation we will drop the 
identification (3.2) from the notation. Recall the obstruction morphism r : KX G(X) → KX K (∂ Z) from (3.1).

Proposition 4.3. Assume:

(1) A and B are affiliated.
(2) I is a spectral interval for both A and B.

Then r([E A(I)]) = 0.

Proof. We have the equality

p(E B(I)) = E p(B)(I) = Eq(A)(I) = q(E A(I)) . (4.1)

Recall the boundary map δC∗′ in (3.9). We calculate

r([E A(I)]) (3.6)= δC∗
([E A(I)]) (3.7)= δM V (K (i)([E A(I)]))

(3.10)= δC∗′(K (b−1)(K (a)(K (i)([E A(I)])))) (3.8)= δC∗′(K (q)([E A(I)]))
(4.1)= δC∗′(K (p)([E B(I)])) = 0 .

The last equivalence follows from δC∗′ ◦ K (p) � 0 since the upper horizontal part in (3.9) is a segment of a fiber sequence. �

Proposition 4.3 gives a K -theoretic condition for checking that certain elements in the resolvent set of A belong to the 
spectrum of B . More precisely we have the following corollary.

Corollary 4.4. Assume:

(1) A and B are affiliated.
(2) I is a spectral interval for A.
(3) r([E A(I)]) �= 0.

Then ∂ I ∩ σ(B) �=∅.

5. Differential operators

Let M be a complete Riemannian manifold with an isometric action of G . Let furthermore D be an elliptic selfadjoint 
differential operator on M acting on sections of some equivariant Hermitian vector bundle E → M . We will consider the 
following two cases simultaneously.
10
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Assumption 5.1.

(1) (Dirac case:) D is a first order Dirac type operator of degree n. The degree is implemented by a grading and the action 
an appropriate Clifford algebra. We will hide both structures from the notation, see [3, Sec. 7] for details.

(2) (Laplace case): D is a second order Laplace type operator with non-negative spectrum.
�

We consider M as a bornological coarse space with the metric coarse structure and the minimal compatible bornology. 
We consider the Hilbert space H0 := L2(M, E) with the control φ0 as described in [3, Sec. 9]. We can assume that (H0, φ0)

embeds into an ample M-controlled Hilbert space (H, φ). Using this embedding we can and will view the Roe algebras 
associated to (H0, φ0) as subalgebras of the corresponding Roe algebras associated to (H, φ).

We now assume that Z is a K -invariant codimension-zero submanifold of M with smooth boundary1 ∂∞ Z . We further 
assume that D ′ is a selfadjoint extension of the restriction of D to Z determined by imposing a local K -invariant elliptic 
boundary condition at ∂∞ Z . In detail this means in the Dirac case that D ′ is the closure of the unbounded operator 
(D |Z , dom(D |Z )) on L2(Z , E |Z ) with domain the K -invariant subspace

dom(D |Z ) := {φ ∈ C∞
c (Z , E |Z )|(Pφ)|∂ Z∞ = 0}

determined by a K -invariant section P in C∞(Z , Hom(E, F )) for some auxiliary K -equivariant vector bundle F on Z . Thereby 
P must be such that (D |Z , dom(D |Z )) is essentially selfadjoint and (for ellipticity) such that the Lopatinski-Shapiro condition 
is satisfied. The Laplace operator case is similar, except that P is now allowed to be a first order differential operator.

In the Dirac case we assume that this boundary condition is in addition compatible with the grading and the Clifford 
action, while in the Laplace case we assume that D ′ is still non-negative.

In the Laplace case the typical examples are Dirichlet and Neumann boundary conditions, while typical examples in the 
Dirac case are the absolute and relative boundary conditions for the Euler operator, i.e., the Dirac operator associated to the 
de Rham complex with the even/odd grading. Note that in the Dirac case such local elliptic selfadjoint boundary conditions 
do not always exist (e.g. for the Spinc -Dirac operator) in contrast to the non-local Atiyah-Patodi-Singer boundary condition 
[1].

Let ϕ ∈ C0(R).

Proposition 5.2. We have ϕ(D) ∈ C(M, H, φ) and ϕ(D ′) ∈ C(Z , H Z , φZ ).

Proof. For the Dirac case the assertion ϕ(D) ∈ C(M, H0, φ0) is [17, Prop. 10.5.6]. The case of D ′ has the same proof taking 
into account that the wave equation still has finite propagation speed in view of the locality of the boundary condition.

For the Laplace case, by positivity of D and D ′ we can assume that ϕ is even. We then use the finite propagation speed 
of the wave operator family cos(t

√
D) and argue similarly as in the Dirac case (see e.g., Lemma 1.7 in [19]). �

Proposition 5.3. The operators ϕ(D) and ϕ(D ′) are affiliated.

Proof. In the Laplace case we set ϕ1 := ϕ , and in the Dirac case we use ϕ1(t) := ϕ(t2). It suffices to show the assertion for 
ϕ1 in C0(R) with ϕ̂1 ∈ Cc(R). This implies the general case since these functions are dense in C0(R).

Let U R := {d ≤ R} be the metric entourage of size R on M . If supp(ϕ̂1) ⊆ [−R, R], then φ(D) and φ(D ′) are U R -controlled 
and

φ(Z)(ϕ(D) − ϕ(D ′))φ(Z \ U R [X \ Z ]) = 0 .

It follows that

φ(Z)ϕ(D)φ(Z) − ϕ(D ′) = φ(Z)ϕ(D)φ(Z ∩ U R [X \ Z ])−ϕ(D ′)φ(Z ∩ U R [X \ Z ]) .

Both summands on the right-hand side belong to C(∂ Z , H Z , φZ ). Consequently q(ϕ(D)) = p(ϕ(D ′)). �

Let σ(D) denote the spectrum of D . Let λ be in R \ σ(D).

Proposition 5.4. Assume that D is of Laplace type.

(1) We have E D(−1, λ) ∈ C(M, H, φ).
(2) If r([E D(−1, λ)]) �= 0, then λ ∈ σ(D ′).

1 We add a superscript ∞ in order to distinguish this boundary from the coarse boundary of Z introduced above.
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Proof. The assertions are obvious if λ is negative. In the following we assume that λ is non-negative. We can choose ϕ in 
C0(R) such that it is strictly monotonously decreasing on [−1, ∞). Since D is positive, by the spectral mapping theorem 
we have the equality

E D(−1, λ) = Eϕ(D)((ϕ(λ),ϕ(−1)) .

Since ϕ(−1) and ϕ(λ) are not in the spectrum of ϕ(D), the interval (ϕ(λ), ϕ(−1)) is a spectral interval for ϕ(D). Hence 
Eϕ(D)((ϕ(λ), ϕ(−1)) ∈ C(M, H, φ). This implies (1).

In order to show (2) we assume by contradiction that λ �∈ σ(D ′). Then similarly as above (ϕ(λ), ϕ(−1)) is a spectral 
interval for ϕ(D ′), too. We conclude by Proposition 4.3 that rX,Z ([E D(−1, λ)]) = 0 which contradicts our Assumption (2). �

If D is of Dirac type (of degree n), then we have an index class indexG(D) in KX G
n (M).

Proposition 5.5. We assume that D is of Dirac type. If D ′ exists, then we have r(index(D)) = 0.

Proof. The index class indexG(D) is represented by the homomorphism

C0(R) � ϕ �→ ϕ(D) ∈ C(M, H, φ) ,

where we use the homomorphism picture of K -theory, see e.g. [27, Sec. 4.1]. Similarly, if D ′ exists, then indexK (D ′) in 
KX K

n (Z) is represented by the homomorphism

C0(R) � ϕ �→ ϕ(D ′) ∈ C(Z , H Z , φZ ) .

Since q(ϕ(D)) = p(ϕ(D ′)) by Proposition 5.3 we conclude that q(indexG(D)) = p(indexK (D ′)). The assertion now follows 
from the long exact sequence associated to the pair (Z , ∂ Z), see also the proof of Proposition 4.3. �

Corollary 5.6. If r(indexG(D)) �= 0, then D ′ does not admit a K -invariant, local, selfadjoint, elliptic boundary condition which is 
compatible with the Clifford action.

For G-equivariant Dirac operators /D we can calculate r(indexG( /D)) as follows. The choice of Z induces an orientation 
and hence trivialization of the normal bundle of ∂∞ Z by the out-going normal. The Dirac operator /D then naturally induces 
a K -invariant Dirac operator ∂ /D on ∂∞ Z which is well-defined up to zero order perturbations (if we would require a 
geometric product structure, then the operator would be canonical). This restriction procedure works such that if /D is the 
Dirac operator on M associated to a Spinc-structure or Spin-structure, then ∂ /D is the Dirac operator associated to the 
induced Spinc- or Spin-structure induced on ∂∞ Z .

The following result is well-known and an equivariant version of Roe’s partitioned manifold index theorem, see e.g. [26], 
[21].

Lemma 5.7. We have r(indexG( /D)) = indexK (∂ /D).

Proof. We will sketch a version of Zeidler’s proof [26] using the formalism developed in [10]. Using the coarse cone con-
struction O∞ [8, Sec. 9.1] and the (equivariant version of) [4, Lemma 9.6] we define the closed local homology functor 
KX GO∞ : GUBC → Sp satisfying (equivariant generalizations of) the axioms in [4, 3.12]. By [10, Def. 4.14] the Dirac opera-
tor /D has a symbol class σ( /D) in �−1 KX GO∞(M). The symbol class determines the index via

∂σ G( /D) = indexG( /D) , (5.1)

where ∂ is the cone boundary, see [4, (9.1]. One can compare the Mayer-Vietoris boundary δ for KX GO∞ applied to M and 
the decomposition (Z , M \ int(Z)) with that for R ⊗ Z and ((−∞, 0] ⊗ Z , [0, ∞) ⊗ Z). Using the relative index theorem and 
the suspension formula [3, Th, 10.4 & Thm. 11.1] we get2 the equality

σ G(∂ /D) = δ ResG
K σ G( /D) .

Since the cone boundary is a morphism of local homology theories it is compatible with the Mayer-Vietoris boundaries. We 
conclude that

r(indexG( /D)) = δ(ResG
K (indexG( /D))) = δ ResG

K ∂σ G( /D) = δ∂ ResG
K σ G( /D)

= ∂δ ResG
K σ G( /D) = ∂σ K (∂ /D) = indexK (∂ /D) ,

as claimed. �

2 This is the sketchy step of the argument.
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Example 5.8. Assume that D is of Laplace type and given by D = /D2 for some graded Dirac operator. Then we can decom-
pose D = D+ + D− , and we have the equality

[E D+(−1, λ)] − [E D−(−1, λ)] = indexG( /D) . (5.2)

In this case we can use Lemma 5.7 in order to calculate at least the image of the difference [E D+ (−1, λ)] − [E D− (−1, λ)]
under r. �

Example 5.9. We assume that /D is the Dirac operator associated to a spin structure on M . By the Schrödinger-Lichenerowicz 
formula we have

/D2 = ∇∗∇ + 1

4
s ,

where s in C∞(M) is the scalar curvature function.

Corollary 5.10. If indexK (∂ /D) �= 0, then infZ s ≤ 0.

Proof. Assume that c := infZ s > 0. Then the spectra of the Dirichlet extensions of D ′,± are bounded below by c. Then 
c/2 �∈ σ(D ′,±) and by Proposition 5.4(2) this implies r([E D± (−1, c/2)]) = 0. From (5.2) we conclude that r(indexG( /D)) = 0. 
By Lemma 5.7 we get indexK (∂ /D) = 0. �

In view of indexK (∂ /D) = ∂σ K ( /D) we see that indexK (∂ /D) only depends on the K -uniform bornological coarse struc-
ture associated to the K -invariant metric on ∂ Z . If indexK (∂ /D) �= 0, then by Corollary 5.10 there does not exist a complete 
G-invariant metric on M whose restriction to Z has uniformly positive scalar curvature and induces the given K -uniform 
bornological coarse structure on Z . �

Remark 5.11. In this remark we explain the relation of Example 5.9 with the classical codimension-one obstruction against 
positive scalar curvature in the version of [26, Thm. 1.7].

We let M̄ be a connected closed n-dimensional spin manifold with a connected codimension-one submanifold N̄ with 
trivialized normal bundle such that π1(N̄) → π1(M̄) is injective. We then set G := π1(M̄) and K := π1(N̄). We let M be the 
universal covering of M̄ . For ∂∞ Z we choose a connected component of the preimage of N̄ under the projection M → M̄ . 
Since the normal bundle of ∂∞ Z is trivial, the submanifold ∂∞ Z separates M into two components, and we let Z be the 
component such that the normal vectors are outward pointing. The subgroup K preserves Z .

Since G acts freely and cocompactly on M , and similarly, K acts freely and cocompactly on N , we have equivalences

KX G(M) � KX G(Gcan,min) � K (Cr(G)) , (5.3)

KX K (∂∞ Z) � KX K (Kcan,min) � K (Cr(K )) .

In the first line, the first equivalence is induced by the coarse equivalence Gcan,min → M induced by the map G → M , 
g �→ gm, for any choice of a base point m in M , and the second equivalence is [6, Prop. 8.2]. The second line is analogous. 
The αG -invariant αG(M̄) of M̄ in Kn(Cr(G)) is defined as the image of indexG( /D M) under the identification (5.3), where 
/D M is the spin Dirac operator. Similarly, αG(N̄) in Kn−1(Cr(G)) is the image of indexK ( /D∂ Z ) under (5.3). Under the 
identifications (5.3) the map

r∗ : KX G∗ (M) → KX K∗−1(∂ Z)

corresponds to the map

� : K∗(Cr(G)) → K∗−1(Cr(K ))

from the proof of [26, Thm. 1.7], and the equality

�(αG(M̄)) = αK (N̄)

shown in this reference is a special case of Lemma 5.7.
Note that [26] has also a version for the maximal group C∗-algebras which at the moment is not accessible by our 

general coarse methods. �
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6. Incorporating local positivity

Let M and D be as in Section 5. Let P be a G-invariant subset of M .

Definition 6.1. We say that D is uniformly locally positive on P if there exists a c in (0, ∞) such that the following holds.

(1) (Dirac case) We have D2 = ∇∗∇ + R for some selfadjoint bundle endomorphism R such that R(m) ≥ c2 for all m in P .
(2) (Laplace case) D = ∇∗∇ + R for some selfadjoint bundle endomorphism R such that R(m) ≥ c for all m in P .

The constant c is called the positivity bound. �

We let M P denote the G-bornological coarse space M with the metric coarse structure and the bornology

BP := {B ⊆ M | B ∩ (M \ P ) is bounded} .

In this subsection we let Z P be the K -invariant subset Z of M with the induced K -bornological coarse structure from M P .

Proposition 6.2. For every ϕ in C0((−c, c)) we have ϕ(D) ∈ C(M P , H, φ) and ϕ(D ′) ∈ C(Z P , H Z , φZ ).

Proof. For the Dirac case the assertion ϕ(D) ∈ C({M \ P }, H, φ) is [24, Lemma 2.3]. We now use the obvious inclusion

C({M \ P }, H, φ) ⊆ C(M P , H, φ) .

Again the case of D ′ has the same proof.
For the Laplace case, by positivity of D and D ′ we can assume that ϕ is even. We then use the finite propagation speed 

of the wave operator family cos(t
√

D) and argue similarly as in the Dirac case. �

Proposition 6.3. For every ϕ in C0((−c, c)) the operators ϕ(D) and ϕ(D ′) are affiliated.

Proof. The proof is the same as for Proposition 5.3. �

In the following we use the notation rP : KX G(M P ) → �KX K (∂ Z P ) for the obstruction morphism (2.10) with the new 
bornology incorporated, where ∂ Z P is the big family ∂ Z whose members have the bornological coarse structure induced 
from M P . The identity maps of the underlying sets of M and the members of the family induce the vertical maps in the 
following commutative diagram

KX G(M P )
rP

�KX K (∂ Z P )

KX G(M)
r

�KX K (∂ Z)

.

Let σ(D) denote the spectrum of D . Let λ be in (−∞, c) \ σ(D).

Proposition 6.4. Assume that D is of Laplace type.

(1) We have E D(−1, λ) ∈ C(M P , H, φ).
(2) If rP ([E D(−1, λ)]) �= 0, then λ ∈ σ(D ′).

Proof. Again this has the same proof as Proposition 5.4. �

If D is of Dirac type, then we have an index class indexG(D) in KX G
n (M P ).

Proposition 6.5. We assume that D is of Dirac type. If D ′ exists, then we have rP (indexG(D)) = 0.

Proof. The index class indexG(D) is represented by the homomorphism

C0((−c, c)) � ϕ �→ ϕ(D) ∈ C(M P , H, φ) .

Similarly, if D ′ exists, then indexK (D ′) in KX K
n (Z P ) is represented by the homomorphism

C0((−c, c)) � ϕ �→ ϕ(D ′) ∈ C(Z P , H Z , φZ ) .
14
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Since q(ϕ(D)) = p(ϕ(D ′)) by Proposition 6.3 we conclude that q(indexG(D)) = p(indexK (D ′)). We now argue as in the 
proof of Proposition 5.5. �

Corollary 6.6. If rP (indexG(D)) �= 0, then D ′ does not admit a local selfadjoint elliptic boundary condition which is compatible with 
the Clifford action.

Since in general the map KX K∗ (∂ Z P ) → KX K∗ (∂ Z) may have a kernel, the condition rP (...) �= 0 in Proposition 6.4, Propo-
sition 6.5, and Corollary 6.6 is expected to be satisfied in more cases than the condition r(...) �= 0.

7. Spectral projections of magnetic Laplacians

In this section we discuss the example of the two-dimensional magnetic Laplacian.
We consider the smooth manifold R2 with coordinates (x, y) and the standard Riemannian metric dx2 + dy2. The group 

Z2 acts on R2 by translations

((m,n), (x, y)) �→ (x + m, y + n) .

In this way R2 becomes a Z2-bornological coarse space. The embedding Z2 → R2 induces an equivalence of Z2-
bornological coarse spaces Z2

can,min → R2. By [6, Prop. 8.2] for any group G we have an equivalence KX G(Gcan,min) �
K (C∗

r (G)), where C∗
r (G) denotes the reduced group C∗-algebra of G . The case of G = Z2 gives the second equivalence in 

the following chain

KXZ2
(R2)

�← KXZ2
(Z2

can,min) � K (C∗
r (Z2))

Fourier� K (C(T̂ 2))

Serre
Swan� K U T̂ 2

, (7.1)

where T̂ 2 denotes the dual group of Z2. The decomposition �∞+ T̂ 2 � S ⊕�S ⊕�S ⊕�2 S (where S is the sphere spectrum) 
provides the decomposition

K U T̂ 2 � K U ⊕ �−1 K U ⊕ �−1 K U ⊕ �−2 K U . (7.2)

If we combine (7.1) and (7.2) and apply π0, then we get an isomorphism

(dim, c1) : KXZ2

0 (R2) ∼= Z⊕Z , (7.3)

where dim corresponds to the summand Z ∼= π0(K U ) contributed by the first summand in (7.2), and c1 corresponds to the 
summand Z ∼= π0(�

−2 K U ) contributed by the fourth summand in (7.2).
For a natural number k ≥ 1 we let Z2 act on the total space of the trivial line bundle R2 ×C →R2 by

((m,n), (x, y, z)) �→ (x + m, y + n, e2π ik(my−nx)z) . (7.4)

Let W in C∞(R2)Z
2

be a real periodic function and set w := ‖W ‖∞ . Then the partial differential operator

Dk := � − 4π ik(y∂x − x∂y) + 4π2k2(x2 + y2) − 4πk + W (7.5)

is invariant under this action, where � := −(∂2
x + ∂2

y).
Assertion (1) in the following proposition states that Dk + w is an example of an operator satisfying Assumption 5.1. 2. 

The following has also been shown in [13].

Proposition 7.1.

(1) The operator Dk is of Laplace type, formally selfadjoint, and lower bounded by −w.
(2) For every λ ∈ (w,8πk − w) the interval (−w−1, λ) is a spectral interval for Dk.
(3) For every λ ∈ (w,8πk − w) we have [E Dk (−w−1, λ)] = (2k, −1) under the identification (7.3).

Remark 7.2. In particular, if W = 0, then the spectrum of Dk has {0} as isolated point (it is an eigenvalue of infinite multi-
plicity), while the open interval (0, 8πk) is a spectral gap. With a bootstrap argument (see [19, §2.3]) one can in fact show 
that the entire spectrum is the set {8πkn | n = 0, 1, . . . }, with each spectral value being an eigenvalue of infinite multiplic-
ity. Of course, the introduction of W will change this spectrum. However, by bounded perturbation theory, the perturbed 
spectrum will still be contained in the set of all points with distance at most w from the unperturbed spectrum. �

Proof. The idea is to identify Dk with /D2,+
L + W for a Z2-invariant Dirac-type operator /D L on R2. The assertions are then 

deduced from the Weizenboeck formula for /D L and the index theorem. Note that Dk is designed such that this interpretation 
exists.
15
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We trivialize the spinor bundle of R2 so that

S(R2) ∼= R2 ×C2 .

We let c(∂x) and c(∂y) be the Clifford multiplications on S2(R2), and we let

z := ic(∂x)c(∂y) (7.6)

be the Z/2Z-grading operator. Then S2(R2)± denote the ±1-eigenbundles of z. They are both one-dimensional.
We let Z2 act on S(R2) by (m, n)(x, y, v) �→ (x + m, y + n, v). By taking the quotient we obtain the spinor bundle 

S(T 2) → T 2 associated to the Spin structure in which this bundle is trivialized.
The Dirac operator on S2(R2) is given by

/D = c(∂x)∂x + c(∂y)∂y . (7.7)

We will obtain a generalized Dirac operator /D L by twisting /D with an equivariant Hermitian line bundle L → R2 with 
connection ∇ L . The underlying equivariant Hermitian vector bundle is the trivial bundle R2 ×C → R2 with action of Z2

given by (7.4). The invariant connection is given by the formula

∇ L := d − 2π ik(xdy − ydx) . (7.8)

Its curvature form is

R∇ L = −4π ikdx ∧ dy . (7.9)

One furthermore calculates that the connection Laplacian is given by

∇ L,∗∇ L = � − 4π ik(y∂x − x∂y) + 4π2k2(x2 + y2) . (7.10)

We now form the twisted Dirac operator

/DL := c(∂x)∇ L
∂x

+ c(∂y)∇ L
∂y

. (7.11)

The Weizenboeck formula states

/D2
L = ∇ L,∗∇ L + c(∂x)c(∂y)R∇ L

(∂x, ∂y) .

Using the explicit calculation (7.9) of the curvature R∇ and the definition of the grading (7.6) we can rewrite the Weizen-
boeck term as

c(∂x)c(∂y)R∇ L
(∂x, ∂y) = −4πkz

and get

/D2
L = ∇ L,∗∇ L − 4πkz . (7.12)

The operator /D2
L commutes with z, and we let /D2,±

L be the restrictions to the ±1-eigenbundles of z. By combining (7.10)
and (7.12) we see that under the canonical identification of S2(R2)± with trivial complex line bundles, we have

/D2,+
L = Dk − W ,

/D2,−
L = Dk − W + 8kπ.

It is clear that Dk
∼= /D2,+

L + W is lower bounded by −w . In view of (7.12) it is of Laplace type. This shows assertion (1).
Since /D L anticommutes with z we have a bijection

σ( /D2,+
L ) \ {0} = σ( /D2,−

L ) \ {0} .

Since /D2,+
L ≥ 0 we have /D2,−

L ≥ 8πk. Consequently, the interval (0, 8πk) belongs to the resolvent set of /D2,+
L By bounded 

perturbation theory, this implies that (w, 8πk − w) belongs to the resolvent set of Dk = /D2,+
L + W . Hence we conclude 

assertion (2).
We further conclude that 0 is an isolated eigenvalue of /D2,+

L . Using perturbation theory we conclude that

[E Dk (−w−1, λ)] = [E /D2,+
L

({0})]

in KXZ2
(R2) for all λ in (w, 8πk − w).
0

16
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In order show assertion (3) we must calculate the K -theory class of the representation of C∗
r (Z2) on ker( /D2,+

L ). Under 
the Fourier transformation isomorphism C∗

r (Z2) ∼= C(T 2) this representation corresponds to the representation of C(T 2) on 
the space of sections of the kernel bundle of a family of Dirac operators parametrized by T 2 which we will describe the 
following.

The Z2-Hilbert space L2(R2, S(R2) ⊗ L) can be identified with a direct integral∫
T̂ 2

Vχdχ

for the continuous field of Hilbert spaces ((Vχ )χ∈T̂ , V). Here Vχ is the subspace of L2
loc(R

2, S(R2) ⊗ L) of functions on 
which Z2 acts with character χ , i.e., of sections f of S(R2) such that

e2π ik(my−nx) f (x − m, y − n) = χ(m,n) f (x, y)

for all (m, n) in Z2, with the scalar product given by the L2-scalar product of the restriction to a fundamental domain. The 
continuous structure is given by the subspace V of sections g : T̂ 2 � χ �→ g(χ) ∈ Vχ such that the section 

∫
T̂ 2 g(χ)χ of 

S(R2 ⊗ L) is smooth with compact support.
The operator /D L is the given by a family of operators ( /D L,χ )χ∈T̂ 2 , where /DL,χ acts on Vχ by the formula (7.11). Since 

/D L preserves smooth compactly supported sections the family ( /D L,χ )χ∈T̂ 2 preserves the subspace V . We must calculate the 
kernel bundle of this family.

We will now describe this family of operators as a family of twisted Dirac operators. To this end we consider the Poincaré 
bundle P̄ → T 2 × T̂ 2. We let (s, t) be coordinates on T̂ 2 such that

χ(s, t) : Z2 → U (1) , χ(s, t)(m,n) = e2π i(sm+tn) .

The bundle P̄ → T 2 × T̂ 2 is obtained as quotient of the trivial bundle P :=R2 × T̂ 2 ×C →R2 × T̂ 2 by Z2, where Z2 acts 
on the domain by

ψ(m,n)(x, y, s, t, z) := (x + m, y + n, s, t, e2π i(sm+tn)z) .

On P we consider the invariant connection

∇ P := d + 2π i(xds + ydt) .

It induces a connection ∇ P̄ on the quotient P̄ . Its curvature is given by

R∇ P = 2π i(dx ∧ ds + dy ∧ dt) . (7.13)

We let L̄ → T 2 be the quotient of the bundle L → R2, and /D L̄ be the resulting twisted Dirac operator on T 2. We can 
consider this operator as a constant family on the bundle T 2 × T̂ 2 → T̂ 2. We now form the non-constant family /D L̄⊗ P̄ by 
twisting /D L̄ further with P̄ . On the fiber over χ in T̂ 2 the operator /DL̄⊗ P̄ identifies with /D L,χ . Hence the index bundle of 
/D L̄⊗ P̄ equals the kernel bundle of the family ( /D L,χ )χ∈T̂ 2 .

We can now apply the Atiyah-Singer index theorem for families in order to calculate the Chern character of the index 
bundle ch(index( /D L̄⊗ P̄ )) in H∗(T̂ 2) of this family. We get

ch(index( /DL̄⊗ P̄ )) =
∫

T 2×T̂ 2/T̂ 2

ch(L̄ ⊗ P̄ ) .

We calculate in de Rham cohomology. Using the formulas for the curvatures (7.9) and (7.13) and the formulas c1(∇) = i
2π R∇

and ch(∇) = ec1(∇) for a line bundle we have

ch(∇ L ⊗ ∇ P ) = 1 + 2k(dx ∧ dy) − (dx ∧ ds + dy ∧ dt)

−(dx ∧ dy ∧ ds ∧ dt) .

We conclude that∫
T 2×T̂ 2/T̂ 2

ch(L̄ ⊗ P̄ ) = 2k − [ds ∧ dt] .

This implies assertion (3). �
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In the remainder of this subsection we show that the magnetic Laplacian Dk provides a non-trivial example for the 
theory developed in Section 5. We consider a codimension-zero submanifold Z of R2 with smooth boundary ∂ Z such that 
Z and R2 \ Z are flasque, e.g., a half space. We then consider the morphism r : KXZ2

(R2) → KX (∂ Z) from (2.4) for the 
trivial group K .

Lemma 7.3. For λ in (w, 8πk − w) we have r([E Dk (−w−1, λ)]) �= 0.

Proof. By our flasqueness assumption on Z and R2 \ Z the Mayer-Vietoris boundary δ in (2.8) is an equivalence. It follows 
that r is equivalent to the transfer map

cZ
2 : KXZ2

(R2) → KX (ResZ
2
(R2)) . (7.14)

It thus suffices to show that the image of the class [E Dk (−w−1, λ)] in KXZ2

0 (R2) under (7.14) is non-trivial.
In principle this immediately follows from Proposition 7.1. 3 and the isomorphism (7.3) if one could identify the transfer 

morphism with the component c1 up to sign. This fact is actually not completely obvious but could be deduced a posteriori 
from our calculations. We prefer to give an argument which is independent of the calculation in Proposition 7.1. 3 and is 
also applicable in other situations.

The first equality in the chain

[E Dk (−w−1, λ)] = [E /D2,+
L

({0})] != indexZ
2
( /DL)

has been shown in the proof of Proposition 7.1. The symbol indexZ2
( /D L) denotes the equivariant coarse index in 

KXZ2

0 (R2) of the Dirac operator /D L on R2 as in [3, Def. 9.5] (with full support). For the equality marked by ! note 
that, as seen in the proof of (7.1), the operator /D2,−

L is invertible and 0 is an isolated point of the spectrum of /D L . We 
also use Bott periodicity in order to identify the index of the Dirac operator which is a K -theory class in degree 2 with the 
degree-0 class represented by the spectral projection.

The transfer map (7.14) sends indexZ2
( /D L) to the index index( /D L) in KX (ResZ

2
(R2)) of the same operator /D L

without equivariance, see [6, Rem. 10.6]. In order to show that index( /D L) �= 0 we argue that

index( /D L) = index( /D) (7.15)

with /D as in (7.7) and then use the fact index( /D) is a generator of KX2(R2) ∼=Z.
The idea for showing the equality (7.15) is that index( /D L) is the image of the symbol of /D L under the coarse assembly 

map, and that the symbol classes of /D L and /D coincide as these operators are lower order perturbations of each other. Since 
R2 is non-compact some care is needed in the details. The problem is that /D L − /D is zero order, but unbounded. Therefore 
it is not clear that the linear interpolation between them preserves the index. We will give a completely formal argument 
using the coarse interpretation of index theory developed in [10, Def. 4.14]. Alternatively one could argue as in [19, Lem. 
3.2].

In the following we omit the symbol ResZ
2
. We will use the local homology theory KXO∞ : UBC → Sp from [4, Lem. 

9.6], where UBC is the category of uniform bornological coarse spaces. This theory is well-defined since KX is strong by [6, 
Prop. 6.4]. The cone boundary

∂ : �−1 KXO∞ → KX

(see [4, (9.1)]) is a natural transformation of local homology theories, where we consider �−1 KX as a local homology via 
the forget functor UBC → BornCoarse. According to [10, Def. 4.14] any generalized Dirac operator /D ′ on R2 gives rise to a 
symbol class σ( /D ′

) in π1(KXO∞(R2)) such that index( /D ′
) = ∂(σ ( /D ′

)). By [4, Prop. 11.23] the functor KXO∞ behaves 
on finite-dimensional manifolds like a locally finite homology theory. In particular, if B is the unit ball in R2, then the 
canonical map

e : KXO∞(R2) → KXO∞(R2,R2 \ B) � Cofib(KXO∞(R2 \ B) → KXO∞(R2)) (7.16)

is an equivalence.
Note that σ( /D L) is given by the index of a Dirac operator on a geometric version of the cone which is locally derived 

from /D L . By the coarse relative index theorem [3, Thm. 10.4] the class e(σ ( /D L)) only depends on the restriction of /D L to 
B . Let ψ be in Cc(R2) such that ψ|B = 1 and ψ|R2\2B = 0. Then we consider the family of connections (compare with (7.8))

∇ L
t := d − (1 − tψ(x, y))2π ik(xdy − ydx)

and the associated Dirac operator /D Lt . We have /D L0 = /D L and ( /D L1 )|B = /D |B . Since the family D Lt is constant outside of 
the compact subset 2B this perturbation does not alter the coarse index, i.e. we have index( /D Lt ) = index( /D L) for all t in 
18
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[0, 1]. On the other hand, e(σ ( /D L1)) = e(σ ( /D)) and hence σ( /D L1) = σ( /D) by the injectivity of e in (7.16). This implies the 
equality (7.15) in view of the chain

index( /D L) = index( /DL1) = ∂σ ( /DL1) = ∂σ ( /D) = index( /D) . �

Combining Proposition 7.1, Lemma 7.3 and Proposition 5.4 we can now conclude:

Corollary 7.4. If D ′
k is the Dirichlet extension (or any other selfadjoint extension determined by a local boundary condition) of the 

restriction of Dk to Z , then [w, 8πk − w] ⊆ σ(D ′
k).

Examples for Z are half spaces or spaces of the form {(x, y) | y ≤ f (x)} for some smooth function f : R → R. Further-
more, we can allow any bounded perturbation of a space of this form, e.g. the half space {(x, y) | y ≤ 0} together with the 
union of 1/3-balls at all points (n, k) for all n in N and fixed k in N .

Example 7.5. We provide another example of a K -theory class which can be detected using the restriction morphism. 
The unitary u in C∗

r (Z2) given by the element (1, 0) of Z2 represents a class [u] ∈ K1(C∗
r (Z2)) � KXZ2

1 (Z2
can,min). We 

consider the group Z as a subgroup of Z2 embedded by n �→ (0, n) and the Z-invariant subspace Z = {(n, m) | n ≥ 0} of 
Z2

can,min . The inclusion Zcan,min → ResZ
2

Z (Z2
can,min) induces an equivalence KXZ(Zcan,min) � KXZ(∂ Z). The morphism r

from Definition 2.4 can therefore be interpreted as a morphism

r : K (C∗
r (Z2)) � KXZ2

(Z2
can,min) → �KXZ(∂ Z) � �KXZ(Zcan,min) .

One can now check by an explicit calculation that r([u]) is a generator of the cyclic group KXZ
0 (Zcan,min).

This idea can be expanded in order to obtain a coarse-geometric proof of the fact shown in [15] that for a general group 
G the canonical map Gab → K1(C∗

r (G)) is injective. �
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