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A B S T R A C T   

In Germany (similar to other countries), 30 % of students demonstrate insufficient spelling skills at the end of 
primary school – partly owing to the challenge for teachers to manage a variety of students’ learning needs. 
Digital tools using Machine Learning can enable teachers to individualise students’ learning. However, there are 
still no suitable approaches for demographics of students who are not yet proficient in spelling. 

With an aim to adapt Machine Learning for students of all proficiencies, we investigate how accurately specific 
spelling errors can be predicted across different skill levels, and what the content-related reasons for incorrect 
predictions are. 

To that end, we developed a web application to record the spelling efforts of N = 685 first- and second-graders 
in Bavaria, Germany. A total of 18,133 different misspellings were recorded. Using this dataset, we trained six 
Machine Learning models and compared their performances to predict misspellings. 

Comparing all Machine Learning models employed in this work, the Random Forest performed best on average 
as a predictor of spelling errors. Errors at the syllable- and morpheme-levels were predicted best, and errors at 
the basic phoneme-grapheme-level were predicted slightly less accurately. Confusions often concerned cases that 
are considered linguistically ambiguous or occurred in complex error entanglements. The implications of these 
results are discussed.   

1. Introduction 

Approximately 130 million people speak German as their first or 
second language, making it the most-spoken native language in the 
European Union and one of the most-spoken languages worldwide 
(German Federal Statistical Office, 2022). The acquisition of skills in 
reading and writing in this language (just as in most other languages) is 
critical for educational success and successful participation in modern 
society (Göpferich & Neumann, 2016). In particular, the acquisition of 
spelling is a very demanding task, where a large proportion of children 
lag behind the skill level that would be expected for a given age. For 
example, a 2016 study from the Institute for Educational Quality 
Improvement (IQB) examining trends in student achievement shows 
that on average in Germany, more than 22 % of children (including 6 % 
of children with officially stated special needs) achieve neither the 
normal standard nor the minimum standard by the end of fourth grade 
(Stanat, Schipolowski, Rjosk, Weirich, & Haag, 2017). Results from the 

more recent 2021 IQB study (Stanat et al., 2022) show that this pro-
portion increased to over 30 %. According to the authors, it is likely that 
the worsening is not exclusively the result of the COVID-19 pandemic. 
One reason for the poor performance in Germany is seen in the great 
diversity of the students’ prerequisites for learning, which can result in a 
variety of different learning needs (Stanat, Schipolowski, Rjosk, Weir-
ich, & Haag, 2017). 

Primary school teachers are challenged to identify the learning needs 
of their students and to provide adaptive learning opportunities for all of 
them in terms of formative assessment (for the construct, see Black & 
Wiliam, 2009; for empirical evidence, see Hebbecker & Souvignier, 
2018). This not only poses an issue of time, but also requires strong 
diagnostic skills (Black & Wiliam, 2009; for an overview, see Kärner, 
Warwas, & Schumann, 2021). International findings show that teachers 
often lack knowledge of basic language constructs for this purpose (for 
Canada, England, New Zealand and the USA, see Washburn, 
Binks-Cantrell, Joshi, Martin-Chang, & Arrow, 2016; for Finland, see 
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Aro & Björn, 2016; for Germany, see Corvacho del Toro, 2013) and that 
the accuracy of their diagnostic judgments is limited (for an overview, 
see Kärner et al., 2021). 

A successful start in literacy acquisition has a positive long-term ef-
fect on later performance, and early deficits are difficult to make up for 
later (see longitudinal study by Sparks, Patton, & Murdoch, 2014). 
Moreover, students who show early signs of lagging behind can benefit 
from individualised exercises to improve their spelling. To that end, 
procedures to diagnose students’ individual spelling abilities may help 
identify individual spelling deficits and, thus, facilitate appropriate 
application of such exercises (c.f., Lee, Chung, Zhang, Abedi, & War-
schauer, 2020). 

In this context, approaches from the field of Artificial Intelligence in 
Education (AIED) aiming to improve learning processes have been dis-
cussed and tested since the early 1980s (Holmes, Bialik, & Fadel, 2019). 
One such approach is the development of Intelligent Tutoring Systems 
(ITSs), which provide students with tailored tasks, support, and feed-
back, as well as provide teachers with diagnostic information. These are 
key components of formative assessment (Black & Wiliam, 2009). 
However, despite the potential of these approaches to enhance the 
learning process, their influence in the field of education and educa-
tional research has, to date, been rather minimal (cf., Hilbert et al., 
2021). 

2. Machine learning in the educational sciences 

Parts of the computer-assisted learning processes described above 
are directly related to Machine Learning (ML). Likewise, the statistical 
approach in our study is inseparably connected to this long-existing 
field. However, the approach taken here utilises a combination of 
computer-supported learning, inclusion of knowledge and theories from 
educational psychology, and ML techniques for the analysis of learning 
processes. Thus, this work can be placed within the realm of learning 
analytics (even though there are some points of contact with AIED, as 
mentioned above, as well as educational data mining). For an overview 
of the similarities and distinctions between these fields, see the review of 
Rienties, Køhler Simonsen, and Herodotou (2020). For simplicity, we 
will refer to the analytical approach taken here as ML and discuss its role 
in the educational sciences, particularly with regard to quantitative data 
analysis in research. 

Even though ML as an analysis tool in research has been embraced by 
many fields of behavioural sciences – such as psychology (Stachl et al., 
2020) or the health sciences (Chen, Liu, & Peng, 2019) – the use of ML 
models in the educational sciences has to date been much sparser. This is 
currently changing, as we observe an immense increase in available 
digital data on all levels of the educational system (Jarke & Breiter, 
2019), which in turn has made the use of data-intensive models much 
more feasible within the last decade. Innovative research on reading and 
writing acquisition has also resulted in a variety of ML-based models and 
tools, such as for the prediction of reading comprehension through 
lexical and syntactic features (Sinclair, 2020) or readability formulas 
(François & Miltsakaki, 2012). 

Moreover, growing fields of research concerning the use of ML 
techniques for retention prediction (e.g., Delen, 2010; Jimenez, Paoletti, 
Sanchez, & Sciavicco, 2019) and automated essay scoring (AES) have 
evolved substantially. In particular, AES has received increased atten-
tion and resulted in a wide range of useful applications (Chai & Gibson, 
2015; Ke & Ng, 2019), which is partially attributable to the close rela-
tionship to the field of Natural Language Processing (NLP) and its role in 
education (see Alhawiti, 2014). 

Recent ML approaches have used deep learning algorithms, due to 
their superior capability to handle unstructured data, such as texts. 
Prominent examples are translation engines like DeepL or Google 
Translate, which are based on neural networks and use deep learning 
models to solve their tasks. Additionally, neural networks can learn a 
similarity mapping of, e.g., words into the real number space – or a so- 

called embedding. One example is the Word-to-Vector embedding 
(Word2Vec; Mikolov, Sutskever, Chen, Corrado, & Dean, 2013), which 
consists of a pre-trained two-layer neural network to detect not only 
similarities between words but also connections between them – for 
example, if they frequently appear close together within a sentence. This 
approach transforms each word into a single numeric vector, where the 
numerical distances of related word vectors are close together. Another 
popular algorithm is Global Vectors for Word Representations (GloVe; 
Pennington, Socher, & Manning, 2014), which uses co-occurrences of 
words for training. Both approaches are context-free, meaning that a 
single word, such as ‘fall’, will have only a single representation. Newer 
approaches, such as the popular Generative Pre-trained Transformer (GPT; 
Brown et al., 2020) or Bidirectional Encoder Representations from Trans-
formers (BERT; Devlin, Chang, Lee, & Toutanova, 2018) provide 
contextual embeddings, so that ‘it was a hard fall’ will have a different 
embedding than ‘the leaves turn orange in fall’. Transformer models 
have also been adapted to solve more specialised tasks, such as pre-
dicting typos (e.g., CharacterBERT; see Boukkouri et al., 2020). 

Depending on the task and algorithm, different transformations must 
be applied to the raw data. For example, automatic translation between 
languages often requires a more nuanced approach than a simple word- 
for-word translation, largely due to different language grammar struc-
tures. Rather, content and context are key elements to achieve a natural- 
sounding result. Hence, not only must the learning algorithm be capable 
of recognising complex patterns and their dependency structures, but 
the text data (converted to numeric values) must not lose these struc-
tures through conversion. One way to achieve this is by mapping both 
single words as well as combinations of several words as sentence 
components. These sentence components are so-called n-grams, where n 
equals an arbitrary natural number. While 1-grams reflect a one-word- 
one-number vocabulary, 2-grams decompose a sentence into all word 
pairs contained in it. The sentence “I like writing a lot.” results in the 
following possible n-grams, up to 3-grams. 

1-grams: I – like – writing – a – lot. 
2-grams: I like – like writing – writing a – a lot. 
3-grams: I like writing – like writing a – writing a lot. 

Despite strong connections to this field, the use of ML for the analysis 
of spelling acquisition presents unique challenges, as we show in the 
following section with regard to modelling requirements. 

3. German orthography and acquisition processes that must be 
modelled 

Given a sufficiently large database, NLP can function almost 
completely unsupervised and bottom-up. In contrast, theoretical 
knowledge and a comprehensive set of rules are almost inevitably 
necessary for ML-based prediction of spelling errors in children. These 
requirements arise from the nature of the data source: Beginners both (1) 
produce less data and they, quite naturally, (2) produce a large number 
of incorrect spellings, with different frequencies of errors, from different 
areas with different realisations, and for different developmental 
reasons. 

Spelling acquisition requires that children learn to associate written 
symbols with spoken language – neither of which carries inherent 
meaning. Depending on the language, the symbols represent different 
units, such as consonants (as in Arabic or Hebrew), syllables (as in 
Japanese), or so-called phonemes, i.e., speech sounds (as in German, 
English or Spanish). Written languages belonging to the latter group are 
alphabetic scripts. 

A characteristic of alphabetic scripts is that a so-called grapheme – 
which is a single letter (e.g., 〈h〉 for /h/ as in Hut, /huːt/, Eng. hat) or a set 
of letters (in German the maximum is three, e.g., 〈sch〉 for /ʃ/ as in Schule, 
/′ʃuːlə/, Eng. school) – corresponds to a phoneme (alphabetic principle). 
However, languages differ in the consistency of this mapping: For 
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example, while the mapping of graphemes to phonemes (i.e., the writing 
direction – hearing a phoneme and associating it with a grapheme) and 
phonemes to graphemes (i.e., the reading direction – recognising a 
grapheme and associating it with a phoneme) is relatively consistent in 
Spanish, English has several inconsistencies in both reading and writing 
directions.2 In turn, German is relatively consistent in the reading di-
rection, but has some inconsistencies in the writing direction (cf., Kargl 
& Landerl, 2018). These inconsistencies in German result largely from 
syllable-based reading aids (syllabic principle) and a tendency towards 
greater morpheme-based form consistency in the written language than 
in the spoken language (morphemic principle), among other causes. A 
large fraction of spellings – based on the syllabic principle, the mor-
phemic principle, or other principles – can be systematically derived 
with the help of corresponding strategies. For example, the plural word 
Hunde (/′hʊndə/, Eng. dogs) can be used to infer that the singular word is 
not *Hunt but Hund, although the audible final phoneme is /t/ (/hʊnt/) 
(i.e., the morphemic principle). 

At the beginning of their spelling acquisition in school, children 
mainly use the alphabetic strategy, where words are written as they are 
heard. As children progress, they use a growing number of strategies and 
can apply these strategies with increasing flexibility. This manifests not 
only in the quantity but also in the quality of spelling errors. For 
example, the following spellings show a continuous improvement, even 
if they all deviate orthographically from the target word Fahrrad (/′fa:
ra:t/, Eng. bicycle): FT – Fart – Farat – Farad – Fahrad (example taken 
from May, 2013, p. 18). 

Such development-related errors and the underlying strategies are 
described for many alphabetic scripts in developmental models (for 
English, see e.g., Frith, 1985; for German, see e.g., Günther, 1986, or 
Scheerer-Neumann, 2015). The basic stages are shown in Table 1. 

Spelling development begins in early childhood when children are 
first confronted with script and continues beyond primary school age. 
However, most strategies should be mastered by the end of primary 
school (for Germany, by the end of grade 4 at the age of 10, see Standing 
Conference of the Ministers of Education and Cultural Affairs of the 
States in the Federal Republic of Germany, 2005). 

Since spelling errors can be related to the mastery of particular 
spelling rules, spelling errors are an excellent setup for supervised ML 
techniques. Nevertheless, the approaches described in Section 2 are of 
limited use for spelling acquisition, as the following unique challenges 
must be addressed:  

1. Words are produced by individuals not yet proficient in writing (or, 
in the case of second-language acquisition, even speaking) the lan-
guage. Consequently, the models must learn not only the errors, but 
also the structures and processes involved in the acquisition. So far, 
related research has only been carried out on language acquisition in 
early childhood (e.g., Stella, 2019) and second-language acquisition 
(e.g., Crossley, 2013; Garcia & Pena, 2011). However, because of the 
specific processes involved, this research is not directly transferable 
to spelling acquisition.  

2. The training must be performed at the character/grapheme-level. 
However, common models are typically constructed for the word- 
or sentence-level. Several deterministic approaches have been pre-
viously developed – for example, algorithms for sequence compari-
sons, such as those proposed by MacKenzie and Soukoreff (2002) or 
Wobbrock and Myers (2006). Typically, these methods attempt to 
categorise the errors into a manageable number of predefined error 
categories. Yet manual derivation of classification rules quickly be-
comes infeasible when considering more than a dozen different error 
categories (as is required here).  

3. The present application is not a typical multi-class classification task 
(with a single possible outcome for each observation). Instead, it 
concerns a multi-label problem, where several errors can be made (or 
avoided) simultaneously without a fixed upper limit. There are only 
a few algorithms that naturally support multi-label classification 
tasks. 

This paper addresses these challenges in the existing approaches and 
develops a novel ML-based approach for analysing spelling acquisition. 
To obtain a systematic insight into the predictive accuracy of specific 
errors that first- and second-graders produce in their spelling acquisition 
process, we train several ML models – including Logistic Regression 
(LR), a Convolutional Neural Network (CNN), a Random Forest (RF), 
and others – and compare their performances in a benchmark experi-
ment. It thus provides a potential vantage point for future investigations. 

3.1. Summary and research gap 

In the sense of the “Matthew Effect” (cf., Stanovich, 1986; Walberg & 
Tsai, 1983), a fast and successful start in spelling acquisition is crucial, 
as it has a positive long-term effect on later achievement (Sparks et al., 
2014). However, it is challenging for teachers to provide an adaptive 
schedule for all students based on their very different learning needs 
(Hebbecker & Souvignier, 2018). As a result, a significant proportion of 
students have insufficient spelling skills at the end of primary school 
(Stanat et al., 2017, 2022). 

Some ML approaches for reading and writing have already proven to 
be useful in supporting teachers to individualise students’ learning (e.g., 
Sinclair, 2020). However, these approaches are mostly limited to 

Table 1 
Stage model of basal spelling development (based on Scheerer-Neumann, 2015).  

Spelling strategy Description of the strategy Approx. time of occurrence 

1 logographic 
Writing “as if”, doodling, drawing individual letters, but no insight into the alphabetic principle yet – e.g., * for Eis 

(/a s/, Eng. ice) 

pre-school 

2a alphabetic First insight into the alphabetic principle, spelling of easily distinguishable sounds (skeleton-like spelling) – e.g., *LP for 
Lampe (/′lampə/, Eng. lamp) 

first 3 months in 1st grade 

2b Advanced insight into the alphabetic principle, for almost every sound a (set of) letter(s) is assigned – e.g., *BUME for Blume 
(/’blu:mə/, Eng. flower) 

until the end of 1st grade 

2c Fully developed insight into the alphabetic principle, for each sound a (set of) letter(s) is assigned – e.g., *ROLA for Roller 
(/’rɔlɐ/, Eng. scooter) 

from the 2nd half of 1st grade 
onwards 

3a orthographic First insight into the orthographic and morphemic structure of words, (over-generalised) use of syllabic and morphemic 
strategies – e.g., *belld for bellt (/bεlt/, Eng. [the dog] barks) 

from 2nd grade onwards 

3b Increasingly comprehensive insight into the orthographic and morphemic structure of words – e.g., Roller for Roller (/’rɔlɐ/, 
Eng. scooter) 

from 3rd grade onwards  

2 For example, in English, the phoneme /k/ can be represented by the 
graphemes 〈k〉 (kind), 〈c〉 (cat), 〈ck〉 (back), 〈ch〉 (chord) and 〈cc〉 (account) (Fry, 
2004, pp. 91–92). The grapheme 〈ea〉 can be assigned to the phonemes /e/ 
(bear), /a/ (heart), /eɪ/ (break), /ε/ (head), /i:/ (eat), /ɜ/ (earth) (Fry, 2004, 
pp. 88–90). 
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addressing sentence-level deficiencies in student demographics who are 
already proficiently literate. So far, no applications have been developed 
and tested specifically for spelling acquisition at the (initial) primary 
school level. In the context of a strong variation in spelling errors and 
their realisations (which depend on the children’s development), it is 
necessary to investigate how accurately error matching succeeds across 
different developmental stages and to what extent the error categories 
can be mapped as such. 

To that end, the work presented here focuses on the comparison 
between the normative regulation of the target words and the discrim-
inatory power of the corresponding misspellings. This is of practical 
importance for ML diagnostics and the individualisation of learning 
opportunities. With the present contribution, we aim to close this 
research gap. 

4. Research questions 

The study addresses the following research questions. 

Question 1. How accurate is the prediction of error categories with 
different ML algorithms? 

This question arises because there is no research to date on how well 
ML algorithms can predict spelling errors within words of primary 
school students. As it is vital that digital tools (such as ITSs) utilise 
proven methods, only very reliable algorithms should be integrated to 
offer students more individualised spelling support (e.g., by assess-
ments, feedback, and task selection). 

Question 2. Which error categories can be predicted most accurately 
(and which least accurately) with the best-performing model? 

Just as different models have different prediction accuracies, it can 
also be assumed that the prediction accuracies of one model are different 
for the individual error categories. As they are linked to the stages of 
spelling development, this information is essential to know at which 
stage a particular algorithm can be used effectively. 

Question 3. In terms of content, what reasons can be identified for the 
varying predictive accuracy? 

On the one hand, it can be assumed that the linguistic foundations for 
the different prediction accuracies for the individual error categories are 
starting points for further improvements of the classifications in the 
context of supervised learning. On the other hand, the linguistic foun-
dations provide information on the implications for the pedagogical 
practice when it comes to possible misclassifications. 

5. Methods 

5.1. Materials 

5.1.1. Web application for spelling 
To investigate the research questions defined above, we developed a 

web application (app) which allows students to write automatically- 
given words trough dictation and logs the input online. The app was 
developed using Apple’s Swift programming language and administered 
via GitHub. When using the app, all student inputs were logged online. 

Fig. 1 gives an overview of the functional components and the app’s 
workflow, which we describe in more detail below. 

Before starting the spelling task, students completed a registration 
process. In the first step of the registration, students set a selected 
picture-password combination so that the next time they logged in, they 
could continue working on the task where they left off. In the second 
step, students provided information about their demographic data. This 
included their gender, age, and grade attended, as well as their first 
learned language and the language spoken at home. Subsequently, stu-
dents completed a keyboarding and spelling test in the form of a dicta-
tion and transcription. The keyboarding test was designed to provide 
information about typing speed and typing precision. For this purpose, 
we adapted the graphomotor test developed by Abbott and Berninger 
(1993), which was later used for both handwriting and typewriting 
(Berninger, Abbott, Augsburger, & Garcia, 2009; Berninger et al., 2006). 
In the test, students were asked to type dictated target letters as quickly 
as possible. The spelling test served as a baseline and contained 12 
words. The input was logged with timestamps. After the registration 
process, the spelling task started automatically. 

When designing the app, we aimed to consider the diverse learning 
needs of students in primary schools under the maxim of simple 
handling. For example, we developed a custom virtual keyboard 
featuring only the letters needed to spell the given words. To minimise 
the risk of stereotype threats (see e.g., Cadinu, Maass, Rosabianca, & 
Kiesner, 2005), the user interface was designed to be diversity-sensitive 
(see Fig. 2). 

In the app, the respective target word was displayed as a picture 
(Fig. 2, A) and could be played aurally as often as necessary via headset – 
as a single word (Fig. 2, A), as well as in a contextualising sentence 
(Fig. 2, B). Students were tasked with spelling the target word correctly 
(Fig. 2, C). If the input was incorrect in at least one position, the entire 
incorrect input was displayed (Fig. 2, D), and, for scaffolding, the 
incorrect position was marked with a blank space (Fig. 2, E). Students 
were given a maximum of three attempts to spell each target word 

Fig. 1. Model of the functional components and the workflow of the developed app.  
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correctly. Before the third attempt, for didactic reasons, the correct 
spelling was shown for 3 sec. In addition, on the third attempt, the 
virtual keyboard displayed only the letters needed to write the target 
word (Fig. 2, F). This way, we intended to achieve a high hit rate in order 
not to overwhelm the students and, thereby, demotivate them. 

Students received feedback and badges in the form of stars and 
planets, corresponding to the number of words they had already spelt 
correctly (Fig. 2, G and H). Additionally, a spelling game was presented 
at regular intervals (see Appendix C, Fig. 7). Both elements served to 
increase student engagement, which in turn has been shown to increase 
learning activity (cf., Clark, Tanner-Smith, & Killingsworth, 2016). 

A vocabulary generally recognised as relevant for primary school 
students does not exist (Blumenthal, Sikora, & Mahlau, 2021). Instead, 
the scientific community has defined criteria that such a vocabulary 
should fulfil. These criteria include that the vocabulary should contain 
words with a characteristic structure concerning the orthographic 
principles. In addition, a relevant vocabulary should cover 
high-frequency words that are individually meaningful for children 
(Hoffmann-Erz, 2019). 

Working with such a vocabulary is mandatory in some German 
federal states, such as Bavaria. For this reason, we chose the spelling 
vocabulary compiled by the Bavarian school authorities (State Institute 
for School Quality and Educational Research [ISB], 2017, pp. 272 et 
seq.), and selected 461 words therefrom. The spelling of 90 % of the 
words in the vocabulary can be explained using orthographic principles. 
It also contains 59 of primary school students’ 100 most frequently used 
words (see corpus analysis by Siekmann, 2023). 

5.1.2. Categories of spelling errors 
In order to classify various spelling errors, we developed an instru-

ment for recording spelling errors on a single-grapheme basis. Further-
more, linguistics and primary education experts validated the 
instrument’s content according to the procedure proposed by Koller, 
Levenson, and Glück (2017). We distinguish 15 error categories that 
refer to strategies to tackle characteristic spelling phenomena. As 
depicted in Table 2, these categories, in turn, can be clustered to the 

principles described in Section 3. When categorising errors, we distin-
guish between systematic and unsystematic errors. Systematic errors are 
misspelt graphemes that indicate that a student has not used the 
required strategy or has applied a spelling rule in a position not covered 
by that specific rule (a so-called overgeneralisation). These are error 
categories 1 to 14. Unsystematic errors (category 15) are those not due 
to overgeneralisation or the phonological structure of a particular word. 
These include spellings that deviate considerably from the target word. 
Possible causes for error category 15 spellings can be, for example, (un-) 
intentional misspellings, unintentional pressing of the Enter key, or 
barely comprehensible concatenations of errors. 

A more detailed explanation of the error categories as well as their 
underlying orthographic rules can be found in Appendix A. 

5.2. Procedure 

We contacted the principals of both urban and rural schools in 
Bavaria by email, who in turn informed the relevant teachers of the 
opportunity for voluntary participation in the study. We provided all 
interested schools that did not have tablets and headsets themselves 
with these tools for the survey period, which lasted about five weeks. We 
made the app available to the schools via Testflight – an Apple app for 
the iOS operating system that allowed us to install the spelling app on 
tablets without publishing it in the App Store. On the first day of the 
survey, trained test leaders presented the app to students following a 
standardised presentation scheme. The students had the opportunity to 
familiarise themselves with the app’s functions. Subsequently, they 
undertook the registration process, which included the completion of 
the keyboarding and spelling tests. The presentation and the registration 
could typically be completed in 45 min. After this period, the teachers 
were given a detailed explanation of the app’s functions. They were then 
free to decide how and how often they wanted to integrate the app into 
their lessons. From this point on, we supported the use of the app 
remotely. We collected data both from the registration on the first day of 
the study and throughout the phase when teachers used the app inde-
pendently in class. All data from both the registration and regular 

Fig. 2. Spelling task in the app using the example word Onkel (/’ɔŋk /, Eng. uncle).  
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implementation by teachers was factored into the ML training and 
analysis. 

5.3. Participants 

The app was used by N = 685 students (50.5 % female; 49.5 % male; 
age in years: M = 8.0; SD = 0.7; min = 6.3; max = 10.0) in 40 classes at 
11 schools in Bavaria at the end of the school year. Of these, n1 = 280 
students were first-graders (divided into 15 classes), n2 = 245 students 
were second-graders (divided into 14 classes), and n1/2 = 160 students 
attended a mixed first- and second-grade class (divided into 11 classes). 
75 % of the students spoke German as their first language, and 84 % 
mainly spoke German at home. The remaining 16 % spoke more than 16 
other languages at home, with Russian (3 %) and Turkish (2 %) being 
the largest groups. 

According to the teachers at 6 of the 11 participating schools, tablets 
were already used regularly in class. Regardless, all students had basic 
experience using tablets in their private lives. 

5.4. Analysis 

We carried out the analysis following the standard ML procedure in 
the context of educational sciences (see Hilbert et al., 2021). The stan-
dard procedure includes data preprocessing for the spelling errors as 
targets and as the input data, modelling of different ML models, and 
evaluation of their performances. We conducted the evaluation by 
10-fold cross-validation. For simplicity with regard to computational 
power and time, we did not optimise the hyperparameters of each 
learning algorithm, with this matter instead remaining an open point for 
further research. We describe each step in more detail below. 

5.4.1. Preprocessing 

5.4.1.1. Preprocessing of the target variables. Since we are presented 
with a multi-label problem when analysing misspelt words, a linguistics 
expert prepared the misspelt words in the first step by classifying errors 
according to the error categories described in Section 5.1.2, with a bi-
nary code indicating if an error was present (1) or absent (0). Thus, if 
several graphemes are misspelt in a word, several error categories were 
assigned to the word, as exemplified in Table 3 and described thereafter. 

The exemplary spelling attempt *schpikl contains the following five 

errors, two of which belong to the same error category: 

• The rule that nouns are capitalised was not considered (error cate-
gory 12: capitalisation). 

• The rule on the phoneme-grapheme correspondence in the connec-
tion of /ʃp/ was not considered (error category 2: basic phoneme- 
grapheme correspondence with additional rule).  

• The rule that the long vowel /i:/ usually corresponds with the 
grapheme 〈ie〉 was not considered (error category 2: basic phoneme- 
grapheme correspondence with additional rule).  

• The phoneme /g/ was not recognised correctly (error category 1: 
basic phoneme-grapheme correspondence without additional rule).  

• The rule on the obligatory vowel in each syllable was not considered 
(error category 3: unstressed syllables). 

5.4.1.2. Preprocessing of the input data. To be processed by an ML 
model, the raw text input data must be transformed into a numeric 
space. To model spelling errors within words, we transferred the prin-
ciple of n-grams from the sentence-level to the character-level. In order 
to reproduce graphemes, which in German can consist of 1, 2 or 3 letters, 
we have used 1-, 2-, and 3-grams. Table 4 shows such a decomposition 
using the aforementioned example word Spiegel and the error word 
schpikl. 

As outlined above, the errors refer to the following graphemes or 
grapheme combinations:  

• Capital letter 〈S〉 instead of lowercase letter 〈s〉 when the word is a 
noun (error category 12)  

• Grapheme 〈S〉 instead of grapheme 〈sch〉 when followed by grapheme 
〈p〉 (error category 2)  

• Grapheme 〈ie〉 instead of grapheme 〈i〉 when the phoneme is a long 
vowel (error category 2) 

Table 2 
Error categories, abbreviations of the error categories, and typical errors clustered according to orthographic principles.  

No. Error category Abbreviation of the error category Typical error 

Alphabetic principle 
1 Basic phoneme-grapheme correspondence (without additional rule) PGC *Hs for Haus 
2 Basic phoneme-grapheme correspondence (with additional rule) PGCandRule *Schport for Sport 

Syllabic principle 
3 Unstressed syllable SylUnst *Spiegl for Spiegel 
4 Doubling of consonants (gemination) Gemin *Mate for Matte 
5 Silent h in intervocalic position Hvocal *Rue for Ruhe 
6 Vowel length marker with silent h Hlong *Zal for Zahl 
7 Vowel length marker with German grapheme ß βlong *Strase for Straße 

Morphemic principle 
8 German Umlaut graphemes ä and äu UmlÄ *Beume for Bäume 
9 Final-obstruent desonorisation Desonor *Hunt for Hund 
10 Morpheme connector MorphC *entarnen for enttarnen 

Lexical principle 
11 Compound spelling Comp *Apfel Saft for Apfelsaft 
12 Capitalisation Capital *haus for Haus 
13 Irregularities Irreg *Fater for Vater 

Other 
14 Overgeneralisation Overgen *Däcke for Decke 
15 Unsystematic errors Unsys *solllllllll for soll 

Note. For the sake of simplicity, only the addressed error is modelled in each of the examples. 

Table 3 
Scheme of error categorisation using the example word Spiegel (/′ʃpiːɡ /; Eng. 
mirror).  

target word graphemes student’s attempt error categories (15 elements) 

Spiegel S,p,ie,g,el schpikl 1,1,1,0,0,0,0,0,0,0,0,1,0,0,0 

Note. Each digit in the binary code corresponds sequentially to the presence or 
absence of errors 1 through 15. 
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• Grapheme 〈g〉 instead of grapheme 〈k〉 when the phoneme is a /g/ 
(error category 1)  

• Grapheme 〈el〉 instead of grapheme 〈l〉 when the syllable is unstressed 
(error category 3) 

All variants are included in the vocabulary listed in Table 4. How-
ever, this is only because we employed 1-, 2- and 3-grams. Thus, the 
example shows that all three n-grams are necessary to represent ortho-
graphic rules and errors in German. 

5.4.2. Modelling 
As only a few algorithms naturally support multi-label classification 

tasks, we have decomposed the whole error composition problem into 
individual binary classification tasks for each error category. In effect, 
this allowed us to apply any ML algorithm capable of handling binary 
classification. 

Due to the word-to-n-grams transformation of the input space and 
the binary classification task decomposition, several standard ML 
models could be trained to perform a benchmark experiment investi-
gating their different performances. As a baseline, we included LR. 
Furthermore, we trained models for the k Nearest Neighbours (KNN), a 
Support Vector Machine (SVM), a glmnet, and a RF. Detailed in-
troductions on most of the included model classes can be found in Hil-
bert et al. (2021). 

Following Zhang, Zhao, and LeCun (2015), we also included a CNN 
in our benchmark, consisting of an embedding layer and three 1D-con-
volutional layers following three further hidden layers. Using 
cross-entropy loss, the CNN naturally handles the multi-label task and 
delivers independent probabilities for each error category. 

We performed the benchmark using the mlr3 ecosystem by Lang 
et al. (2019), which is based on the programming language R. We have 
taken the ML models (except the CNN) from the mlr3learners package 
using the default hyperparameter setting. One exception is the KNN 
algorithm, whose number of considered neighbours have been set to 10 
(default is 7). We used the package mlr3multioutput as an extension to 
solve multi-label tasks with the mlr3 framework. Moreover, we exclu-
sively included the CNN within this framework using keras and 
TensorFlow. 

5.4.3. Evaluation 
We evaluated the performances of each algorithm included in the 

benchmark experiment by 10-fold cross-validation: Here, the dataset is 
split into ten disjunct folds (i.e., parts), while each fold serves as a test set 
in one iteration, the other nine folds combined are used for model 
training. To assure comparability, folds are the same for all models. Each 
test set is necessary to compare their performances on new data yet 
unseen during training. The error made on the test set is an estimate of 
the model’s generalisability. 

Due to the naturally varying frequency of spelling rules and errors, 
the classes in the present dataset are highly imbalanced. To adequately 
evaluate the performance of predicting the error categories, we calculate 
F1 scores and the Area Under the Receiver Operating Characteristic 

Curve ([ROC] AUC), as suggested for such cases and described in detail 
by Hilbert et al. (2021). The F1 measure is based on the actual class 
labels, reflecting the harmonic mean of the precision and recall. The best 
possible value of 1 indicates perfect precision and recall, while a score of 
0 indicates either precision or recall must be null. Meanwhile, the AUC 
measure is based on probabilities and shows a binary classifier’s 
discrimination ability described by its resulting ROC curve. A score of 
0.5 reflects the score of random labelling using prior class probabilities, 
while 1 indicates a perfect classifier. 

For a more detailed analysis of the best-performing model and to 
reflect the nature of the underlying multi-label task, we additionally 
describe the joint confusion matrix for all 15 error categories considered 
together. This becomes helpful for multi-label tasks, where (in contrast 
to multi-class classification problems) a correctly predicted class does 
not necessarily mean that all other classes cannot be present. Conse-
quently, following Heydarian, Doyle, and Samavi (2022), we show a 
multi-label confusion matrix and describe the confusions in terms of 
content. 

6. Results 

We begin with reporting the descriptive statistics (see Section 6.1). 
We then discuss the results of the research questions. First, we compare 
the performance of all six ML models included in the analysis (research 
question 1, see Section 6.2). Then, we briefly describe which error cat-
egories are best and worst predicted by the best model (research ques-
tion 2, see Section 6.3). Finally, we show the above-mentioned multi- 
label confusion matrix based on the best model and describe the con-
fusions from a linguistic perspective using representative sets of exam-
ples (research question 3, see Section 6.4). 

6.1. Number of errors and correlations 

As depicted in Fig. 3, test words were spelt correctly on the first 
attempt in 67.6 % of cases. 10.9 % were spelt correctly on the second 
attempt, 10.7 % were spelt correctly on the third attempt, and another 
10.8 % were spelt incorrectly on the third attempt. Across all spelling 
attempts, this resulted in 112,480 errors in 79,576 misspelt words. We 
identified 18,133 different misspellings. 

All students had basic experience of using tablets from their private 
lives, and tablets were already being used regularly in 6 of the 11 
schools. We found a statistically significant correlation between age and 
typing speed (ρ = 0.294, p < 0.001) as well as between typing speed and 
spelling performance (ρ = 0.280, p < 0.001). According to Cohen 
(1992), these correlations can be classified as small to medium. In 
contrast, age and typing accuracy (ρ = 0.002, p = 0.952) as well as 
typing accuracy and spelling performance (ρ = 0.019, p = 0.621) are not 
significantly correlated. 

6.2. Prediction accuracy of the 15 error categories with different ML 
models 

With respect to research question 1, and as illustrated in Fig. 4, the 
AUC scores revealed a noteworthy pattern across all 15 error categories 
regarding the performances of each model. 

With an average AUC of 0.9849 on the 10 cross-validation test folds, 
the RF performed best overall, demonstrating a slight advantage over 
the CNN with an average score of 0.9810. In contrast, the LR (serving as 
a baseline) performed worst with an average score of 0.6100. The SVM, 
KNN (k = 10), and glmnet performed significantly worse than the CNN 
and the RF (but better than the LR), with respective average scores of 
0.9089, 0.9454, and 0.8233. 

The general pattern of these results remains the same when consid-
ering the F1 score for performance evaluation. There is only a small 
significant difference in overall ranking, with the CNN performing best 
with an average F1 score of 0.9770, compared to an average score of 

Table 4 
Scheme of n-gram integer mapping (up to 3-grams) using the example word 
Spiegel (/′ʃpiːɡ /; Eng. mirror).  

word n n-grams text representation n-grams integer mapping 

Spiegel 1 S – p – i – e − g – e − l 1 – 2 – 3 – 4 – 5 – 4 – 6 
2 Sp – pi – ie – eg – ge – el 7 – 8 – 9 – 10 – 11 – 12 
3 Spi – pie – ieg – ege – gel 13 – 14 – 15 – 16 – 17 

schpikl 1 s – c – h – p – i – k – l 18 – 19 – 20 – 2 – 3 – 21 – 6 
2 sc – ch – hp – pi – ik – kl 22 – 23 – 24 – 8 – 25 – 26 
3 sch – chp – hpi – pik – ikl 27 – 28 – 29 – 30 – 31 

Vocabulary: 1:S, 2:p, 3:i, 4:e, 5:g, 6:l, 7:Sp, 8:pi, 9:ie, 10:eg, 11:ge, 12:el, 13:Spi, 14: 
pie, 15:ieg, 16:ege, 17:gel, 18:s, 19:c, 20:h, 21:k, 22:sc, 23:ch, 24:hp, 25:ik, 26:kl, 
27:sch, 28:chp, 29:hpi, 30:pik, 31:ikl  
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0.9732 of the RF. Fig. 5 (Appendix B) shows the boxplots for the cross- 
validated results for all models. As shown, the CNN and RF models tend 
to outperform all other learning algorithms – frequently by a wide 
margin in many error categories. 

6.3. Best- and worst-predicted error categories by the best-performing ML 
model 

As noted in Section 6.1, the RF is the overall best-performing ML 
model. For this reason, and according to research question 2, we now 
highlight the performance of this model in a detailed analysis. Table 5 
shows that error categories 5, 7, and 10 have AUC scores of > 0.9990, 
and are thus best predicted. Additionally, error categories 2, 3, 4, 6, 8, 9, 
11, and 13 also show satisfactory performances with AUC scores of >
0.9900. Notably, this includes all error categories that can be assigned to 
the syllabic or morphemic strategy (see Table 2). In contrast, errors 1, 
12, 14, and 15 have AUC scores of < 0.9900 and, thus, are predicted 
slightly less accurately. 

6.4. Description of the errors confounded by the best ML model 

Table 6 shows the multi-label confusion matrix. The grey boxes in the 
table correspond to the number of correctly predicted errors per cate-
gory. The white boxes represent the error categories that were incor-
rectly predicted. It is noteworthy that there are very few 
misclassifications for most categories, which is also reflected in the high 
AUC scores described above. Most of the confusions are between error 1 
and other categories, likely owing in part to the high number of errors 
made in this category. 

Following research question 3, we now provide deeper insights into 
the nature of these confusions. We focus on errors 1, 12, 14 and 15, 
which were the least accurately predicted errors by the algorithm (see 
Section 6.3). We describe two representative sets of examples, each for 
error 1 as a true label, and error 1 as a predicted label. In addition to 
error 1, we describe two sets of examples with a higher number of 
confusions. We refer to the errors highlighted in the confusion matrix. 

In the confusion of error 1 as the true label with error 15 as the 
predicted label, it is notable that in the majority of the 309 cases, there 
are only a few graphemes assigned to phonemes of the respective target 
word (as demonstrated in the examples in Table 7). Several phoneme- 
grapheme mappings are still missing, resulting in skeleton-like spell-
ings. However, the confusion does not include any cases with error 
words that evidently have intentional misspellings, although error 
category 15 does contain those as well. The complexity of the distinction 
between these two categories becomes apparent with, for example, the 
error word 〈gst〉 for 〈Gespenst〉 (error 1) in opposition to an actual error 
of category 15 such as 〈gffs〉 for 〈scheinen〉: Here, the transition from a 
meaningful categorisation of the individual errors (in the sense of error 
category 1) to a word structure that is no longer clearly recognisable (in 

the sense of error category 15) is fluid. 
In the case of error 1 as the true label being confused with error 2 as 

the predicted label, almost all of the 27 error words show transpositions 
of letters or alphabetic errors (as in the examples shown in Table 8) such 
that they belong to error category 1. However, in all cases, these errors 
occur at positions where an additional rule (in the sense of error cate-
gory 2) must be considered. For example, in the word 〈Spaβ〉, the student 
wrote the grapheme 〈b〉, which represents the voiced plosive /b/, 
whereas an unvoiced plosive /p/ (〈p〉) was required (error category 1). 
However, in the case of the phoneme compound /ʃp/, an additional rule 
must be observed: this compound is always written with 〈sp〉 instead of 
〈schp〉 at the beginning of a syllable (error category 2). Thus, it is a 
complex combination of errors. 

A total of 561 confusions occurred between category 14 as a true 
label and category 1 as a predicted label. These primarily concerned 
cases that, from a linguistic perspective, cannot be clearly assigned to 
one or the other category. On the one hand, this is because different 
causes can have the same symptoms and are thus linguistically ambig-
uous. On the other hand, it is because spelling errors sometimes occur in 
complex error entanglements, as is the case in the previous example (see 
Table 8). For instance, with the target word 〈backen〉 in Table 9 – and 
more precisely, with the graphemes 〈a〉 and 〈ck〉 – the starting question is 
whether the student, firstly, can recognise the short vowel and, sec-
ondly, can distinguish the voiceless plosive /k/ from the voiced plosive 
/g/. If the problem can be found here (e.g., due to dialectal influences), 
it is indeed an error that would have to be assigned to error category 1. If 
the error is instead in the use of the correct orthographic strategy (which 
we assume here), then the error would necessarily be assigned to error 
category 14. Thus, this kind of error can justifiably be assigned to both 
categories and can only be clearly classified with consideration for the 
context, as well as errors in other written words. 

Furthermore, a large proportion of the words actually contain cate-
gory 1 errors (such as in all examples of the target words 〈Gespenst〉 and 
〈läuft〉 [exception: *läufd]), so that it is less a case of confusion than of 
cases in which only parts of the overall error composition were 
recognised. 

In addition, as exemplified in Table 9, the overgeneralisation of 
capitalisation was often assigned to error category 1. Even if such cases 
are not ambiguous from a linguistic perspective, it must be taken into 
account that upper-case letters represent fundamentally different sym-
bols for the algorithm than lower-case letters. In this context, there is a 
similarity between error categories 14 and 1: error category 1 also 
concerns confusion of letters (or sounds), but for phonological reasons 
rather than lexical reasons. 

The 248 confusions between error 12 as the true label and error 1 as 
the predicted label (see examples in Table 10) are similar to the last case 
mentioned above. In 70 % of the spellings with this type of confusion, 
only lower-case letters instead of an upper-case first letter were used 
(corresponding to category 12). The remaining 30 % of the spellings 

Fig. 3. Proportion of (in)correct children’s spellings, broken down by attempt 1, 2 and 3.  
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Fig. 4. Boxplots of AUC model scores of six ML models (RF, LR, glmnet, SVM, KNN, CNN) for each error category based on 10-fold cross-validation.  

R. Boehme et al.                                                                                                                                                                                                                                



Computers and Education: Artificial Intelligence 6 (2024) 100233

10

contain additional errors. This indicates that the use of the lower-case 
letter was incorrectly recognised as a letter transposition (correspond-
ing to category 1), which is presumably because the algorithm treats 
capital letters as fundamentally different symbols from their corre-
sponding lower-case letters. 

The confusion of error 14 as the true label and error 7 as the pre-
dicted label can be described similarly to the above-mentioned confu-
sion of error 14 and error 1. All 71 cases of this confusion follow the 
same logic as the example error word 〈fliessen〉 shown in Table 11. This 
spelling error is in a complex entanglement with the other error cate-
gory, legitimising both categories. On the one hand, the grapheme 〈ss〉, 
which according to the orthographic rule may only be written when 

preceded by a short vowel, was written after a long vowel. This repre-
sents an overgeneralisation of the rule (corresponding to error category 
14). On the other hand, the grapheme 〈ß〉 was not used (corresponding to 
error category 7). This indicates that the student is not yet using the 
strategy correctly. 

In the confusion of error 7 as the true label with error 11 as the 
predicted label, it is striking that all 33 cases are composites (which is a 
core element of error category 11), where one of the constituents should 
have ended with the grapheme 〈ß〉 but was written with 〈s〉 (error cate-
gory 7). If the predicted label of error 11 were correct, the error words in 
Table 12 would be 〈Fuβ ball〉, 〈Gieβ kanne〉, Reiβ verschluss〉, 〈Fuβ boden〉

and 〈Fuβ ballmannschaft〉. Thus, as the two errors occur in the same 

Table 5 
Mean scores of the RF model evaluated by 10-fold cross-validation for each error category and mean score 
over all error categories for the AUC measure. 

Note. The grey boxes correspond to the best-predicted errors (AUC scores >0.9900), and the framed boxes 
correspond to the worst-predicted errors (AUC scores <0.9900); descriptions of the abbreviations are pro-
vided in Table 2. 

Table 6 
Multi-label confusion matrix with the number of true and false predictions for the 15 error categories based on the RF model. 

Note. NTL = situations with no true label; NPL = situations where no label was predicted; fields with a grey background correspond to the true positives; confusions 
in the framed boxes are examples for a closer examination; descriptions of the abbreviations are provided in Table 2. 

Table 7 
Confusion of error 1 (true label) and error 15 (predicted label).  

Example of target word Example of incorrect spelling 

Gespenst (/ɡə′ʃpεnst/, Eng. ghost) gst, gest, gstp 
Zähne (/′ εːnə/, Eng. teeth) zne, cne, zen 
Spiegel (/′ʃpiːɡ /, Eng. mirror) spe, schpi, stge 

Sätze (/′zε ə/, Eng. sentences) ses 

Turnschuhe (/′tʊʁnˌʃuːə/, Eng. trainers) tusue  

Table 8 
Confusion of error 1 (true label) and error 2 (predicted label).  

Example of target word Example of incorrect spelling 

Spaβ (/ʃpaːs/, Eng. fun) schbahs 
Stoβ (/ʃtoːs/, Eng. knock) schdohs, schdos 
Quelle (/′kvεlə/, Eng. source) gwele, kwejee 
Quatsch (/kva /, Eng. nonsense) gwatsch 
aussteigen (/′a sˌʃta ɡ /, Eng. to exit)   auschdaigen, auschdaign  
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position, it can be inferred that the algorithm has recognised central 
elements of both error categories. Nevertheless, the error (which in this 
case is not ambiguous) is incorrectly predicted. However, when 
considering the total number of errors made across all categories, con-
fusions of this nature are very rare. 

7. Discussion 

When comparing six ML models, we found that two of them – the 
CNN and the RF – achieved satisfying results with AUC scores close to 
0.99, with the RF performing best on average. Further analysis of the RF 
showed that the prediction accuracies differed notably for the various 
error categories. While errors related to basic phoneme-grapheme cor-
respondence were confused in some cases with the categories related to 
capitalisation, overgeneralisation, or unsystematic errors, errors related 
to syllable- and morpheme-levels of spelling were predicted with 
notable reliability. The two latter levels represent the core area of 
spelling acquisition at primary school age (see Kargl & Landerl, 2018; 
Scheerer-Neumann, 2015). Thus, the RF algorithm seems particularly 
suitable for detecting spelling deficiencies in children who have already 
mastered the alphabetic strategy (i.e., when they write one [set of] letter 
[s] for each sound). 

It is striking that most errors recorded in this study related to basic 
phoneme-grapheme correspondence. Due to the typical spelling skills of 
the chosen demographic of first- and second-graders, the emergence of 

some of these errors was expected (see Table 1). However, errors of this 
type should predominantly occur in the first three months of the first 
school year (see Scheerer-Neumann, 2015). Consequently, the students’ 
overall spelling performance seems to lag behind expected spelling 
acquisition for this age group. These results are consistent with the IQB 
trend studies from 2017 and 2022, which showed that students (still) 
struggle with spelling at the end of primary school. Stanat and col-
leagues attribute the low performance in these studies to the fact that 
students have diverse prerequisites and learning needs, making it chal-
lenging for teachers to manage. We also found various prerequisites in 
the present study – at least with regard to the languages in use. For 
example, 25 % of the sample spoke German as a second language and 
spoke more than 16 other first languages combined – an example of 
“linguistic super-diversity” (Gogolin, 2010; see also Gogolin & Duarte, 
2017). 

Since early deficits are difficult to make up for later (Sparks et al., 
2014), the spelling performances shown here and in the IQB trend 
studies is a cause for concern. There is a need to focus more on the 
students’ learning needs. As a possible means to better identify the 
learning needs of individual students, the algorithm can serve as a key 
enabler for more individualised support for primary school children’s 
acquisition of spelling (as suggested by Hilbert et al., 2021). This can be 
done in various practical ways. For example, the algorithm could be 
implemented in ITSs to provide students with continuous elaborated 
feedback in the learning process. This seems promising, as feedback is 
one of the most important measures for improving students’ perfor-
mance (Hattie, 2008). The algorithm could also provide teachers with 
differentiated diagnostic information about the learning process. Both is 
now possible with the developed instrument consisting of 15 different 
categories and the precise algorithm. 

It may be assumed that the algorithm is not only more accurate, but 
also provides more differentiated results than what some teachers are 
able to provide. Considering that teachers must be experts in many areas 
of education, it is not surprising that they can only meet these expec-
tations to a limited extent. For example, previous findings indicate there 
may be knowledge gaps in the area of basic language constructs (see Aro 
& Björn, 2016; Corvacho del Toro, 2013; Washburn et al., 2016) as well 
as limited accuracy in teachers’ diagnostic judgements (Kärner et al., 
2021). 

Aro and Björn (2016) found that teachers’ knowledge of morphology 
was significantly lower than for phonology and phonics. However, the 
inverse was observed for the best-performing algorithm examined here 
(RF): while morphemic errors were predicted particularly well, the RF 
algorithm apparently predicted basic phoneme-grapheme correspon-
dence (without an additional rule) slightly less accurately. One reason is 
that the algorithm is less capable of distinguishing whether it is still an 
unsystematic transcription without a clearly recognisable word struc-
ture or already a meaningful transcription. 

Furthermore, the algorithm is evidently less able to distinguish be-
tween (i) upper- and lower-case letters as identical representatives of the 
same phoneme and (ii) graphemes representing different phonemes. 
Upper-case letters have a one-to-one relationship with lower-case let-
ters, and only one error category is possible for each case of confusion 
between upper-case and lower-case letters (upper-case instead of lower- 
case: overgeneralisation of capitalisation; lower-case instead of upper- 
case: disregarding of capitalisation). However, the steps of data pre-
processing employed do not seem sufficient for this error category, even 
though we included 1-grams within the data (which should reflect those 
one-to-one relationships). 

For other error categories, confusions are often plausible because 
these are cases of linguistic ambiguity, error entanglements, etc. For 
example, this may be observed when confusing error category 1 “basic 
phoneme-grapheme correspondence without additional rule” with error 
category 12 “capitalisation”, error category 14 “overgeneralisation”, or 
error category 15 “unsystematic errors”. This illustrates the specific 
challenges for the algorithm described in a similar vein by Stella (2019) 

Table 9 
Confusion of error 14 (true label) and error 1 (predicted label).  

Example of target word Example of incorrect spelling 

backen (/′bak /, Eng. to bake) Bagn, Baggen, Bacen 
Ente (/′εntə/, Eng. duck) Änte, änte 
läuft (/lɔ ft/, Eng. he/she/it goes) lövt, lüfd, Fäuft, läufd 
Kaiser (/′ka zɐ/, Eng. emperor) keihser, Kheiser 
Gespenst (/ɡə′ʃpεnst/, Eng. ghost) Geschpänz, geschbenc, gäspänt  

Table 10 
Confusion of error 12 (true label) and error 1 (predicted label).  

Example of target word Example of incorrect spelling 

Taxi (/′taksi/, Eng. taxi) taxi 
Buch (/buːx/, Eng. book) buch 
Quatsch (/kva /, Eng. nonsense) quatsch, kwhatsch 
Onkel (/′ɔŋk /, Eng. uncle) ongkel 
Brot (/bʁoːt/, Eng. bread) brot, brood  

Table 11 
Confusion of error 14 (true label) and error 7 (predicted label).  

Example of target word Example of incorrect spelling 

flieβen (/′fliːs /, Eng. to flow) fliessen 
Spieβ (/ʃpiːs/, Eng. skewer) Spiess 
fleiβig (/′fla sɪç/, Eng. diligent) fleissig 
Spaβ (/ʃpaːs/, Eng. fun) Spass, spass 
Grüße (/′ɡʁyːsə/, Eng. greetings) Grüsse  

Table 12 
Confusion of error 7 (true label) and error 11 (predicted label).  

Example of target word Example of incorrect spelling 

Fuβball (/′fuːsˌbal/, Eng. football) Fusball, vusball 
Gieβkanne (/′ɡiːsˌkanə/, Eng. watering can) Giskane, giskane, Geiskane, 

gieskannä 
Reiβverschluss (/′ʁa sfε ˌʃlʊs/, Eng. zip) Raisverschluss, Raisferschluss, 

Reisverschluss 
Fuβboden (/′fuːsˌboːd /, Eng. floor) Vusboden, vusboden, Fusbodn, 

fusbodn 
Fuβballmannschaft (/′fuːsbalˌmanʃaft/, Eng. 

football team) 
fusbalmanschaft  
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for language acquisition in early childhood. 
We note that in this study, each word was examined individually and 

independently of other words. However, in pedagogical settings, a 
greater focus is given to the students’ spelling behaviour in the learning 
process, taking into account the context, analysing the number of specific 
errors, and relating them to other specific errors. This enables educators 
to identify the key aspects in the errors made, so that these can be further 
improved upon and be practised (cf., Schründer-Lenzen, 2013). Under 
this condition, the results can be enriched with contextual information 
by considering and reporting correlation structures between the 
different error categories. In turn, these results can then be further 
processed – depending on the context of the application. The perfor-
mance of the RF achieved is thus overall satisfactory. 

8. Limitations and implications for future research 

Since we concluded that the computationally heavy multi-label 
learning approach is already appropriate and sufficient for its current 
purposes, we decided not to perform Hyperparameter Optimisation 
(HPO). However, if the ML algorithm were to be used for major decisions 
(e.g., to support diagnostic decisions, like for dyslexia), the algorithm 
would need further optimisation. There are several possibilities to 
improve our current approach. Naturally, the first would be to perform 
thorough HPO and subsequently compare model performances. As a 
next step, models that heavily rely on HPO, such as tree boosting (e.g., 
xgboost), could be included. Furthermore, more advanced neural net-
works should be able to improve the current performances even more. 
Those could include recurrent neural networks, as well as the use of 
advanced pre-trained models, such as BERT. In this case, transformer 
models constructed for modelling at the character/grapheme-level 
within words would be necessary. However, only models for the 
sentence-level are available so far (including CharacterBERT, despite its 
name). As stated above, further improvements could be achieved by 
more advanced preprocessing of the input text data, which would be of 
particular use for errors related to capitalisation. 

Regardless of the model’s eventual performance, if the errors are 
intended to be analysed even more precisely, the 15 error categories 
used in this study would need to be further subdivided. We have already 
made such a subdivision to cover a total of 79 side factors. This concerns, 
for example, conjugated verbs like geht (/ɡeːt/, Eng. he/she/it goes), 
where the silent h that is inserted in the infinitive gehen (/′ɡeːən/) to 
avoid a visual vowel clash (error category 5) is also retained in the 
conjugated form due to morpheme consistency. Therefore, the infinitive 
must first be formed to derive the silent h in geht. However, in order to 
train an ML algorithm on this basis, a significantly larger sample of 
students or a larger pool of error words would be necessary. 

With regard to the sample, it must also be noted that we only 
collected data from first- and second-graders in Bavaria. Therefore, 
students in higher grades may produce different entanglements of 
spelling errors, so the algorithm’s performance may differ slightly for 
this demographic. This is possible even though the number of errors 
decreases throughout educational development, and errors made at 
higher skill levels are more likely to occur on the syllabic and morphe-
mic levels (Scheerer-Neumann, 2015; see also Table 1) – errors that were 
predicted particularly well by the RF algorithm. Moreover, we have only 
referred to the standard pronunciation (cf., Krech, Stock, Hirschfeld, & 
Anders, 2009) and the orthography in use in Germany (Dudenredaktion, 
2016). Therefore, some spelling errors from students of other 
German-speaking regions may not be recorded or may be classified 

incorrectly. For example, this is most likely with error category 7 “vowel 
length marker with German grapheme ß”, which does not exist in Swiss 
orthography. 

Nevertheless, the present study has shown that the obtained error 
classification algorithm is very accurate. These results support the po-
tential for this algorithm to provide diagnostic information to teachers 
and feedback to students – for example, through integration into existing 
tools, such as ITSs. Although there is still little empirical evidence on the 
predictive validity of data-informed teaching, a positive effect on stu-
dents’ performance has been found for teachers’ use of data in the field 
of literacy acquisition (Wayman, Shaw, & Cho, 2017). 

Moreover, teachers need specific diagnostic competencies to analyse 
the data (Zeuch, Förster, & Souvignier, 2017). In this context, it should 
be noted that diagnostic competencies do not become less important 
through the use of ML-based digital tools. On the contrary, evidence 
suggests that diagnostic competencies should be reinforced in (pre-ser-
vice) teacher training (cf., Böhme, Brühl, Reisemann, Munser-Kiefer, & 
Hilbert, 2023). 

With regard to feedback presented in a machine-automated way, it 
should be noted that there is still little and inconclusive evidence on the 
specific effects. For example, Meurers, Kuthy, Nuxoll, Rudzewitz, and 
Ziai (2019) found improved performance using elaborated feedback in 
digital textbooks at the secondary school level, while Vasalou et al. 
(2021) showed that children with reading difficulties struggle to un-
derstand elaborate game-based feedback at the primary school level. 
Therefore, the question arises of how machine-automated feedback can 
be designed to be beneficial for children in spelling classes and to 
individualise learning in a practical way. 

Finally, the algorithm learned to classify spelling errors according to 
labels assigned by human experts – an approach also known as super-
vised ML (see Hilbert et al., 2021). Therefore, the algorithm learned to 
mimic human classification, but this classification may have contained 
mistakes (i.e., “human error”). Considering that a key prerequisite for 
the algorithm’s usefulness is that the classification on which it was 
trained is correct, it is possible that the algorithm’s performance reflects 
such underlying “human errors”. 

9. Conclusion 

The aim of the present study was to investigate how accurately 
spelling errors at different stages of development can be predicted using 
different ML models, which specific errors are predicted best (and which 
worst), and what the content-related reasons for these prediction per-
formances may be. 

Comparing six ML models, the RF performed best on average, espe-
cially at the syllable- and the morpheme-levels. Errors at the basic 
phoneme-grapheme level were predicted slightly less accurately. Con-
fusions often concerned linguistically ambiguous cases or occurred in 
complex error entanglements. 

These results indicate that ML approaches are not only useful for 
demographics who are already proficiently literate (as shown in previ-
ous works), but that they also may be useful tools to investigate specific 
spelling deficiencies (within words) in a differentiated way, support 
diagnosis of deficient spelling behaviour, and help individualise stu-
dents’ learning. 

10. Statements on open data and ethics 
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AIED Artificial Intelligence in Education 
BERT Bidirectional Encoder Representations from Transformers 
CNN Convolutional Neural Network 
GloVe Global Vectors for Word Representations 
GPT Generative Pre-trained Transformer 
HPO Hyperparameter Optimisation 
IQB Institute for Educational Quality Improvement (Institut zur Qualitätsentwicklung im Bildungswesen) 
ISB State Institute for School Quality and Educational Research (Staatsinstitut für Schulqualität und Bildungsforschung) 
ITS Intelligent Tutoring System 
KMK Standing Conference of the Ministers of Education and Cultural Affairs of the States in the Federal Republic of Germany 

(Kultusministerkonferenz) 
KNN k Nearest Neighbours 
LR Logistic Regression 
ML Machine Learning 
NLP Natural Language Processing 
RF Random Forest 
(ROC) AUC Area Under the Receiver Operating Characteristic Curve 
SVM Support Vector Machine 
Word2Vec Word-to-Vector 

Appendix A. Categories of spelling errors 

The following explanations of spelling errors are based, on the one hand, on graphemic regularities reflected in the orthographic rules of German 
(for an overview, see Dudenredaktion, 2016). On the other hand, they are based on common didactic considerations for teaching spelling rules (for an 
overview, see Schründer-Lenzen, 2013). 

Alphabetic principle 

The majority of German graphemes can correctly be written following the alphabetic principle. Thus, students can apply the following basic 
strategy: “Write one (set of) letter(s) for each sound.” 
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1. Basic phoneme-grapheme correspondence (without additional rule) 

Many graphemes in German words follow the alphabetic principle without any further rules to be observed (e.g., Auto, /′a to/, Eng. car; Tomate, 
/to′maːtə/, Eng. tomato; Zelt, / εlt/, Eng. tent). However, to write these words correctly, students need the awareness to recognise individual pho-
nemes in the spoken language. At the beginning of literacy acquisition, phoneme awareness is still poorly developed (Pfost, Blatter, Artelt, Stanat, & 
Schneider, 2019), which at this stage frequently leads to errors such as transpositions, omissions or additions of graphemes. Example: Haus (/ha s/, 
Eng. house); typical error: *Hs.3  

2. Basic phoneme-grapheme correspondence (with additional rule) 

Some German words contain graphemes, that deviate from the basic phoneme-grapheme correspondence shown above (error category 1). Hence, 
the memorisation of said grapheme compounds and the conditions of their use are a basic requirement for the correct spelling of these words. They 
then can be applied to almost all words because the rule is very regular. For example, the sh sound /ʃ/ is always represented by the grapheme 〈s〉 if it is 
the first letter of a syllable and followed by a /p/ or /t/. Example: Sport (/ʃpɔrt/, Eng. sport); typical error: *Schport. 

Syllabic principle 

In German, vowels are obligatory elements of each syllable. They vary in quantity and stress. German words typically follow a Trochaic meter with 
most two-syllabled words carrying stress on their first syllable. Therefore, students can follow another basic strategy: “Divide the word into syllables 
and pay attention to the vowels.”  

3. Unstressed syllables 

In German, unstressed syllables are subject to vowel reduction, depending on the precision of articulation. For example, the schwa sound /ə/ (as in 
given) is reduced in some cases when it is followed by a /l/, /m/ or /n/. Since vowels are obligatory elements of each syllable, students should make 
sure to assign a vowel to each syllable, even if they cannot hear it. Example: Spiegel (/′ʃpiːɡ /, Eng. mirror); typical error: *Spiegl.  

4. Doubling of consonants (gemination) 

Short vowels in stressed syllables trigger the closing of that syllable with a consonant. If there is only one consonant between the first and the 
second syllable, a gemination of said consonant is required. Example: Matte (/′matə/, Eng. mat); typical error: *Mate.  

5. Silent h in intervocalic position 

If one syllable ends with a vowel and the next syllable begins with a vowel, then a visual vowel clash is typically avoided by the insertion of a silent 
h. This serves as a reading aid. Example: Ruhe (/′ruːə/, Eng. silence); typical error: *Rue.  

6. Vowel length marker silent h 

Long vowels are orthographically marked in German in some phonological environments, most commonly by the insertion of silent h, which serves 
as a reading aid. This rule applies only if the long vowel is followed by an l, m, n or r. However, since numerous exceptions exist to this rule, the 
corresponding words are often not introduced systematically in class and have to be memorised instead. Example: Zahl (/ aːl/, Eng. number); typical 
error: *Zal.  

7. Vowel length marker German grapheme ß 

Another marker of vowel length is the German ß. It is used exclusively in cases where, in the basic form of a word, one syllable ends with a long 
vowel and the next begins with a voiceless /s/. Example: Straße (/′ʃtraːsə/, Eng. street); typical error: *Strase. 

Morphemic principle 

The German script is characterised by a rich inflectional morphology (cf., Kargl & Landerl, 2018). This means that there is a strong tendency to 
mark the morphological relation between words by consistent spelling, even if they differ in pronunciation. Therefore, students can derive spellings 
using the following strategy: “Break words down into their significant units, identify word stems and derive the spelling from these.”  

8. German Umlaut graphemes ä and äu 

The German Umlaut graphemes ä and äu represent the e sound /ε/ and the oy sound /ɔ /. They are used in most cases to maintain morpheme 
consistency and to indicate correct phonological articulation. In particular, they are used for plural formation. Example: Baum – Bäume (/ba m/ – 
/′bɔ mə/, Eng. tree – trees); typical error: Baum – *Beume. 

3 For the sake of simplicity, only the addressed error is modelled in each of the examples. 
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9. Final-obstruent desonorisation 

Obstruents in syllabic offsets are always voiceless in German (such as /t/ in helped – /hεlpt/). Voiced obstruents are subject to the so-called final- 
obstruent desonorisation, a process in which they lose their sonorant qualities. However, following the principle of morpheme consistency, the 
spelling is retained in the written language. Example: Hund – Hunde (/hʊnt/ – /′hʊndə/, Eng. dog – dogs); typical error: *Hunt – Hunde.  

10. Morpheme connector 

The last sound of a morpheme can be similar (or even identical) to the initial sound of the following morpheme. While in articulation, these two 
single, yet identical sounds are typically reduced to one sound – depending on the precision of articulation – both corresponding graphemes remain in 
spelling. Example: enttarnen (/εn′tarnən/, Eng. to unmask); typical error: *entarnen. 

Lexical principle 

German has a few special characteristics in spelling at the word level. The semantic and morpho-syntactic dimensions (word class) influence the 
orthographic dimension. Consequently, students must apply the following basic strategy: “For spelling, take into account the meaning of the word and 
the context of content.”  

11. Compound spelling 

Compared to other languages, writing compound words as one unit is a very productive word-formation pattern in German, which can lead to 
particularly long words. The individual compounds are synthesised into one word or connected with a hyphen for better readability. However, they 
are not written as separate words as in English. In some cases, this serves to reduce ambiguity on a semantic level. For example, wiederkehren means to 
come back and wieder kehren means to sweep again. Another example: Apfelsaft (/′a ˌzaft/, Eng. apple juice); typical error: *Apfel Saft.  

12. Capitalisation 

As in English, words at the beginning of sentences are capitalised. In addition, to compensate for the high flexibility of word order in German 
syntax, nouns are systematically capitalised so that the reader can easily identify them as nominalised elements at any position. Example: Haus (/ha s/ 
, Eng. house); typical error: *haus.  

13. Irregularities 

Beyond the rules and strategies presented so far, there are some words whose spelling is irregular and must be memorised. Some of them serve to 
distinguish so-called homophones, i.e., words that sound identical but have different meanings (e.g., Lied, /liːt/, Eng. song, and Lid, /liːt/, Eng. eyelid). 
Others are completely irregular, for instance, words that contain the grapheme 〈v〉. Example: Vater (/faːtɐ/, Eng. father); typical error: *Fater. 

Other 

All the above categories are based on German spelling principles. The following categories are subordinate to these and refer to developmental 
errors on the one hand and unsystematic errors on the other.  

14. Overgeneralisation 

Children’s spelling develops in stages (see Table 1). It is typical for children at certain stages to use spelling rules even in positions where the 
respective rule does not apply. This is called overgeneralisation. It can often be observed, for example, that children who have recently gained insight 
into the morphemic strategy write the e sound /ε/ with the 〈ä〉 grapheme, although morpheme consistency does not apply (cf., error category 8). 
Example: Decke – Decken (/′dεkə/ – /′dεk /, Eng. blanket – blankets); typical error: *Däcke – *Däcken.  

15. Unsystematic errors 

Spellings that deviate too much from the target word were excluded. Reasons can be, for example, (un-)intentional misspellings, unintentional 
pressing of the Enter key or hardly comprehensible concatenations of errors. Example: soll (/zɔl/, Eng. should); typical error: *sollllllll (as an intentional 
misspelling). 
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Appendix B. Results

Fig. 5. Boxplots of F1 model scores of six ML models (RF, LR, glmnet, SVM, KNN, CNN) for each error category based on 10-fold cross-validation.   

R. Boehme et al.                                                                                                                                                                                                                                



ComputersandEducation:ArtificialIntelligence6(2024)100233

17

Table 13 
Mean scores of six ML models (RF, LR, glmnet, SVM, KNN, CNN) evaluated by 10-fold cross-validation for each error category and mean score over all error categories for the AUC and F1 measures.  

Model Measure Error 1 Error 2 Error 3 Error 4 Error 5 Error 6 Error 7 Error 8 Error 9 Error 10 Error 11 Error 12 Error 13 Error 14 Error 15 Mean Score 

PGC PGC andRule SylUnst Gemin Hvocal Hlong βlong UmlÄ Desonor MorphC Comp Capital Irreg Overgen Unsys 

RF AUC 0.9400 0.9944 0.9954 0.9949 0.9995 0.9940 0.9994 0.9985 0.9951 1.0000 0.9944 0.9677 0.9978 0.9206 0.9816 0.9849 
CNN AUC 0.9153 0.9854 0.9815 0.9830 0.9928 0.9793 0.9997 0.9982 0.9835 0.9996 0.9843 0.9955 0.9799 0.9607 0.9752 0.9809 
KNN AUC 0.8470 0.9584 0.9521 0.9675 0.9774 0.9470 0.9943 0.9761 0.9644 0.9998 0.9773 0.8540 0.9838 0.8342 0.9480 0.9454 
SVM AUC 0.7435 0.8798 0.9129 0.9373 0.9733 0.9304 0.9776 0.9668 0.9181 0.9829 0.9662 0.8311 0.9562 0.7873 0.8690 0.9088 
glmnet AUC 0.6332 0.7463 0.8141 0.8406 0.9649 0.7907 0.8674 0.8937 0.7675 0.9649 0.9494 0.7796 0.8927 0.6841 0.7608 0.8233 
LR AUC 0.5401 0.5438 0.6337 0.5981 0.5825 0.5897 0.6650 0.5528 0.5545 0.7871 0.6363 0.6411 0.6280 0.5985 0.5983 0.6100 
RF F1 0.8749 0.9853 0.9877 0.9921 0.9987 0.9944 0.9975 0.9966 0.9904 0.9999 0.9954 0.9572 0.9954 0.8935 0.9396 0.9732 
CNN F1 0.8470 0.9861 0.9864 0.9885 0.9982 0.9946 0.9978 0.9973 0.9905 0.9988 0.9946 0.9898 0.9933 0.9380 0.9541 0.9770 
KNN F1 0.7750 0.9748 0.9779 0.9822 0.9971 0.9920 0.9930 0.9919 0.9860 0.9988 0.9949 0.8929 0.9935 0.8308 0.9205 0.9534 
SVM F1 0.6964 0.9695 0.9724 0.9759 0.9959 0.9923 0.9901 0.9905 0.9802 0.9976 0.9958 0.9162 0.9916 0.8258 0.8975 0.9459 
glmnet F1 0.6514 0.9569 0.9673 0.9727 0.9955 0.9915 0.9747 0.9857 0.9784 0.9934 0.9955 0.9071 0.9896 0.8047 0.8609 0.9350 
LR F1 0.5412 0.9387 0.9620 0.9550 0.9941 0.9898 0.9304 0.9815 0.9689 0.9910 0.9943 0.8727 0.9850 0.7678 0.6481 0.9014 

Note. Descriptions of the abbreviations are provided in Table 2.  
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Appendix C. App screenshots

Fig. 6. Welcome page with registration, login and exercise area.  

Fig. 7. Spelling game.   
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Fig. 8. Space where points can be collected.  
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