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Abstract 
Background.  Growing research demonstrates the ability to predict histology or genetic information of various 
malignancies using radiomic features extracted from imaging data. This study aimed to investigate MRI-based 
radiomics in predicting the primary tumor of brain metastases through internal and external validation, using over-
sampling techniques to address the class imbalance.
Methods.  This IRB-approved retrospective multicenter study included brain metastases from lung cancer, mel-
anoma, breast cancer, colorectal cancer, and a combined heterogenous group of other primary entities (5-class 
classification). Local data were acquired between 2003 and 2021 from 231 patients (545 metastases). External 
validation was performed with 82 patients (280 metastases) and 258 patients (809 metastases) from the publicly 
available Stanford BrainMetShare and the University of California San Francisco Brain Metastases Stereotactic 
Radiosurgery datasets, respectively. Preprocessing included brain extraction, bias correction, coregistration, in-
tensity normalization, and semi-manual binary tumor segmentation. Two-thousand five hundred and twenty-eight 
radiomic features were extracted from T1w (± contrast), fluid-attenuated inversion recovery (FLAIR), and wavelet 
transforms for each sequence (8 decompositions). Random forest classifiers were trained with selected features on 
original and oversampled data (5-fold cross-validation) and evaluated on internal/external holdout test sets using 
accuracy, precision, recall, F1 score, and area under the receiver-operating characteristic curve (AUC).
Results.  Oversampling did not improve the overall unsatisfactory performance on the internal and external test 
sets. Incorrect data partitioning (oversampling before train/validation/test split) leads to a massive overestimation 
of model performance.
Conclusions.  Radiomics models’ capability to predict histologic or genomic data from imaging should be critically 
assessed; external validation is essential.

Key Points

•  MRI radiomics capability in predicting primary tumor histology of brain metastases is 
limited.

•  Oversampling techniques did not improve classification performance.

•  Incorrect data partitioning leads to a massive overestimation of model performance.

Limited capability of MRI radiomics to predict primary 
tumor histology of brain metastases in external 
validation  
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 2 Strotzer et al.: MRI radiomics brain metastases classification

Brain metastases resemble the most common intracranial tu-
mors in adults.1 12.1% of patients with metastasized cancer 
were found to have brain metastases at diagnosis, frequently 
being the primary cause of morbidity and mortality.2 Often, 
brain metastases are the initial manifestation of an unknown 
systemic malignancy.1,2 However, targeted therapies are sig-
nificantly more beneficial than treating cancer of unknown 
primary.3 Therefore, knowledge of primary tumor histology is 
of utmost importance. This is usually achieved by invasive bi-
opsy, posing the risk of morbidity and mortality.

Artificial intelligence (AI) methods seem suitable for 
obtaining relevant information from noninvasively ac-
quired imaging data. Few promising models to predict the 
primary tumor histology from MRI have been presented.4–6 
Using conventional radiomics, where lesion classifica-
tion is based on quantitative imaging features, Kniep et 
al. reported areas under the receiver-operating charac-
teristic curve (AUC) between 0.61 (for breast cancer) and 
0.80 (for melanoma) when training only on imaging fea-
tures. Another recently proposed, sophisticated approach 
yielded an AUC of 0.88 using a transformer-based deep 
learning model.5 Although promising, no external valida-
tion using independent datasets was performed; thereby, 
the generalizability of the models cannot be assessed, lim-
iting a potential clinical application.

One could argue that suboptimal prediction results are 
due to the skewed distribution of primary tumors in the 
datasets used for model development. Imbalanced label 
distributions pose a major challenge in machine learning 
applications, particularly in medical domains where mi-
nority classes can be critical for accurate diagnosis and 
treatment. The histological distribution of primary tumor 
type of patients with brain metastases is highly unbal-
anced, although exact numbers vary. In a cohort of 729 
patients with brain metastases, the most frequent primary 
tumors found were lung (39%), breast (17%), melanoma 
(11%), kidney (6%), and gastrointestinal cancer (6%).7

Data oversampling techniques, such as the Synthetic 
Minority Oversampling Technique (SMOTE) have emerged 
as effective solutions to address this issue.8 If applied cor-
rectly, the method can improve classification accuracy and 
reduce bias in datasets with imbalanced label distribu-
tions.9 However, incorrectly using such methods can lead 
to overfitting and a dangerous overestimation of model 
performance.10 For example, suppose oversampling is 
done before the train/test split. In that case, the test set 
may contain instances that were generated through over-
sampling techniques and, therefore, seen by the model 
during training (data leakage).

We aimed to test whether the primary tumor entity 
can be inferred from MRI-derived radiomic features and 
whether the results can be maintained on unseen data 
from an external test set. We further test different over-
sampling techniques to mitigate class imbalance and show 
how incorrect data partitioning leads to overestimating 
classifier performance.

Materials and Methods

The study followed the Declaration of Helsinki and relevant 
guidelines and regulations.11–13 The institutional review 
board waived written informed consent and approved this 
retrospective, multicenter study (approval no. 21-2607-
104). The source code is available from https://github.com/
qstro/Brainmet-Radiomics.

Datasets

Local dataset: We included consecutive patients with brain 
metastases who received oncological care at a univer-
sity hospital or a tertiary care center between 2003 and 
2021. Inclusion criteria were the availability of histolog-
ical workup and routine MRI with T1w (±contrast agent; 
T1wCE) and fluid-attenuated inversion recovery (FLAIR) 
sequences. We only included the first available study after 
diagnosis of brain metastases and removed patients with 
incomplete data and segmentations of metastases directly 
targeted by surgery or stereotactic radiation.

The 2 external datasets consist of the T1w, T1wCE, and 
FLAIR sequences of a subset of the Stanford University 
Center for Artificial Intelligence in Medicine and Imaging’s 
BrainMetShare dataset (aimi.stanford.edu/brainmetshare; 
hereafter: Stanford dataset)14 and the Brain Tumor 
Segmentation (BraTS) Challenge version of the University 
of California San Francisco Brain Metastases Stereotactic 
Radiosurgery (UCSF-BMSR) MRI Dataset (imagingdatasets.
ucsf.edu/dataset/1; hereafter: UCSF dataset).15

Imaging Data Preprocessing

Local dataset.—Images were de-identified and con-
verted to Neuroimaging Informatics Technology Initiative 
file format (NIFTI) using the dcm2niix tool (v1..20210317; 
github.com/rordenlab/dcm2niix)16 and transferred to 
an on-site Linux Ubuntu (v2.04; Canonical Foundation) 

Importance of the Study

This externally validated study highlights the limitations 
of radiomics models in predicting the primary tumor 
histology of brain metastases from MRI. The study 
emphasizes another significant issue: improper data 
partitioning can lead to massively inflated assessments 
of a model’s effectiveness, a problem only discernible 
through external validation. Methodological errors 

and a lack of external validation often fuel false hope 
regarding model performance. Therefore, the method-
ology of studies that use artificial intelligence should be 
thoroughly evaluated, and the capability of radiomics 
models to predict histologic or genomic data from im-
aging should be critically assessed. D
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workstation. A custom Python routine was imple-
mented for further processing (v3.8.12; Python Software 
Foundation).

Brain extraction was performed using HD-BET (v1.0; 
github.com/MIC-DKFZ/HD-BET),17 removing skull and 
nonbrain soft tissue. This contributes to anonymization by 
eliminating the possibility of identifying patients from 3D 
reconstructions. Volumes were automatically cropped to 
a bounding box containing the brain. N4 Bias Correction 
was performed with the SimpleITK N4BiasFieldCorrecti
onImageFilter (v2.1.0).18 All sequences were nonlinearly 
coregistered to the T1wCE acquisition by rigid, affine, and 
symmetric diffeomorphic registration using the Advanced 
Normalization Tools (ANTs; v2.3.5; stnava.github.io/
ANTs).19 Data were subsequently Z-score normalized using 
a brain mask as recommended in the literature.12,20

The metastases were automatically voxel-wise seg-
mented into a nonenhancing/necrotic part, an enhancing 
part, and the surrounding edema using a pretrained 
nnU-Net.21 All segmentations were visually verified 
and manually corrected using ITK-SNAP (v3.8.0).22 
Final segmentations were independently approved by 
3 board- certified radiologists with 6, 7, and 13 years of 
neuroradiological experience (A.S., I.W., and C.W.) using 
a custom-made visual verification tool (QuickSegViewer 
v1.0; https://github.com/qstro/QuickSegViewer). In case of 
multiple metastases per patient, segmentations were auto-
matically split into multiple masks using a connected com-
ponents approach.

Stanford dataset.—Each slice is available as a .png file, 
with brain extraction and segmentation already per-
formed. Data was converted to NIFTI using the SimpleITK 
Python library per the acquisition parameters mentioned 
in the accompanying paper.14 The remaining steps (bias 
correction, coregistration, normalization, and splitting of 
segmentation masks) were performed as described above.

UCSF dataset.—Provided data are skull-stripped, 
coregistered, and segmented.15 We performed bias cor-
rection, normalization, and splitting of the segmentation 
masks.

Radiomic Feature Extraction

Before feature extraction, the enhancing and 
nonenhancing/necrotic tissue segmentations were com-
bined into a single binarized mask representing the 
tumor core. Radiomic features were extracted separately 
from each metastasis using the pyradiomics python 
package (v3.1; github.com/AIM-Harvard/pyradiomics) 
from the FLAIR, T1w, and T1wCE sequences.23 Datasets 
were resampled to an in-plane resolution of 1 mm and a 
through-plane resolution of 5 mm. The large section thick-
ness results from the different acquisition protocols and 
our objective of only minimally altering the data using 
interpolation methods. Fourteen 3D shape-based fea-
tures were extracted. Furthermore, for each sequence 
and its wavelet transforms (8 decompositions resulting 
from applying either a high or a low pass filter in each of 

the 3 dimensions), 18 first-order statistics, 24 gray level 
co-occurrences matrix, 16 gray level run length matrix, 16 
gray level size zone matrix, 5 neighboring gray-tone differ-
ence matrix, and 14 gray level dependence matrix features 
were extracted.

It has been suggested that the spatial distribution varies be-
tween primary tumors.24 Therefore, we also included the rel-
ative location of each metastasis on the x-, y-, and z-axes as 
3 independent features. We computed the metastases’ center 
of mass and divided it by the shape of the cropped image 
array, resulting in values between 0 and 1 for each axis.

Dataset Combinations

We created combinations of the 3 datasets for model 
training, validation, and testing to assess performance 
variations due to different study collectives or acquisition 
protocols. We ensured that the test data always consisted 
of unseen internal (same study collective) or external data 
(from other study collectives). The dataset combinations 
can be obtained from Table 1.

Data Partitioning

The training partition was split into a train/validation set 
(80%; internal train/validation set) and a holdout test set 
(20%; internal test set) using a label stratified train/test split 
with nonoverlapping groups as implemented in scikit-learn 
(v1.0.2).25 Data leakage was prevented by assigning all me-
tastases of a patient either to the internal train/validation or 
the internal test partition.

Label Selection

Ground truth for the primary tumor entity (label or target 
variable) was determined from tissue specimens obtained 
by open surgery or stereotactic biopsy. Histopathological 
workup was performed according to general standards 
using conventional staining methods (H&E and PAS/alcian 
blue where applicable) and immunohistochemistry.

We selected the 4 most common entities, lung cancer, 
breast cancer, melanoma, and colorectal cancer and 
grouped the remaining metastases into a heterogeneous 
category (others) as this classification would be of the 
largest clinical benefit. In the local dataset, this category 
includes approximately 20 histological entities, such as 
kidney and prostate cancer (see Supplementary Figure 1). 
Metastases with a volume smaller than 125 mm3 were re-
moved from further analyses.4

Oversampling

To test different oversampling strategies, we trained a model 
without oversampling (baseline) and models after applying 
random oversampling (ROS; randomly duplicating examples 
in the minority classes) and SMOTE (interjecting datapoints 
between observations of the minority classes) to the train/
validation partition of the internal dataset. Oversampling was 
done with the scikit-learn-based imbalanced-learn Python 
library (imblearn v0.11.0; github.com/scikit-learn-contrib/
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imbalanced-learn).26 Subsequently, each class had the same 
number of samples as the most frequent histological entity. 
Test sets were not oversampled.

Incorrect approach.—To illustrate how incorrect 
partitioning leads to model overestimation, we trained 
a model with a slight variation where oversampling oc-
curred before the train/validation/test split. Therefore, the 
internal test set was also oversampled. The external test 
set remained imbalanced.

Machine Learning Pipeline

As a first step, we tested various combinations of possible 
modules for the machine learning pipeline using the scikit-
learn and imbalanced-learn Python libraries and the train/
validation partition of the local dataset.

Since radiomic features should be normalized to avoid 
feature selection being biased by different orders of mag-
nitude of the variables, we tested Z-score normalization 
(setting the mean of feature values to 0 and the standard 
deviation to 1) and min–max normalization (scaling all fea-
tures to lie between 0 and 1).

For machine learning classifiers, reducing the feature 
space and keeping only relevant features while controlling 
for the redundancy within these features is essential. This 
improves model performance, reduces overfitting, and in-
creases interpretability. We tested Maximum Relevance 
and Minimum Redundancy, Least Absolute Shrinkage and 
Selection Operator Regression (LASSO), and an ANOVA-
based K-Best algorithm for dimensionality reduction and 
included the 5 best-performing features.

We tested various groups of supervised machine learning 
classifiers, including linear models (logistic regression), 
support vector machines (linear and nonlinear), ensemble 
models (random forest classifier, AdaBoost classifier, 

and gradient boosting classifier), clustering algorithms 
(K-nearest neighbors), Bayesian classifiers (Gaussian Naïve 
Bayes), and neural networks (multilayer perceptron).

In the second step, we used a forward feature selection 
method to optimize the number of included features using 
the best-performing pipeline from step 1. To achieve this, 
we trained multiple iterations of the same pipeline, each 
time adding the next most important feature as selected by 
the feature selection algorithm (starting with 1 feature, up 
to 1% of the initial 2528 features). The cutoff value where 
the performance stopped increasing was determined as 
the optimal number of features for the radiomics signature.

To avoid biasing the pipeline toward a single oversam-
pling strategy, we trained versions using no oversampling, 
ROS, and SMOTE and averaged their results.

Final Model Training

We finally trained the selected pipeline using the different 
oversampling strategies based on the internal train/vali-
dation partitions of the different dataset combinations for 
hyperparameter tuning (max features, no. estimators). 
Feature and label selection models were fitted only with 
the train/validation partition to prevent data leakage. 
Normalization was then applied to the train/validation 
and the internal and external test partitions. The resulting 
models were assessed with the internal and the external 
holdout test sets. Figure 1 visualizes all data processing 
steps.

Statistical Analysis

Tests were performed using the SciPy library (v1.9.1; 
github.com/scipy/scipy).27 Clinical data were compared by 
descriptive statistics, t-tests for continuous data, Mood’s 
median tests for ordinal data, and Fisher’s exact tests for 
categorical data. We report continuous data as mean and 
standard deviation and ordinal data as median and range. 
Two-tailed tests with a significance level of 0.05 were used. 
Model evaluation metrics were AUC, accuracy, F1 score, 
precision, and recall. We used macro-averages of the met-
rics (averaging the per-class results) as this does not weigh 
the scores towards the majority class. Ninety-five percent 
confidence intervals were calculated using a bootstrapping 
technique with 1000 iterations.

We used a 5-fold cross-validation strategy for all model 
training steps, optimizing the F1 score for model selection. 
As the harmonic mean of precision and recall, this metric 
considers the type of errors the classifier makes, making it 
robust for evaluating model performance when class dis-
tribution is skewed.

We applied a 2-component nonlinear principal compo-
nent analysis (RBF kernel) to visualize changes to the fea-
ture space by different overestimation techniques. Feature 
importance analysis was conducted to test which radiomic 
features contribute most to the output. The scikit-learn per-
mutation test score was used to assess whether the models 
genuinely learned from the data. This function compares 
the cross-validation score against multiple model versions 
trained with random permutations (n = 100) of the labels, 

Table 1. Dataset Combinations

Combination No. Training Partition Testing Partition

1 Local Stanford + UCSF

2 Stanford Local + UCSF

3 UCSF Local + Stanford

4 Local + Stanford UCSF

5 Local + UCSF Stanford

6 Stanford + UCSF Local

7 Local Stanford

8 Local USCF

9 Stanford Local

10 Stanford UCSF

11 UCSF Local

12 UCSF Stanford

Note: All combinations of the included datasets are listed. The training 
partition is further split into train and validation subsets.
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calculating the P-value against the null hypothesis that fea-
tures and targets are independent.

Results

For 231 patients (111 females) in the local dataset, imaging 
data (T1w, T1wCE, and FLAIR) were available (primarily 
2D acquisitions). Primary tumor histology was available 
for all patients; however, in 9 cases (10 metastases), it re-
mained a cancer of unknown primary. See Supplementary 
Figure 1 for the distribution of all primary entities and 
Supplementary Table 1 for clinical parameters.

Imaging data originated from fifteen different MRI 
scanner models, including both internally acquired MRI 
(1.5T Magnetom Avanto, 3.0T Magnetom Skyra, 1.5T 
Magnetom Symphony, 1.5T Magnetom Aera; all Siemens 
Healthineers) and external data acquired at 1.0T, 1.5T, and 
3.0T scanners. See Supplementary Figures 2 and 3 for 
scanning details.

Thresholding at a volume of 125 mm3 reduced the 
number of patients (metastases) from 231 (647) to 231 (545) 
for the local, from 107 (1509) to 82 (280) for the Stanford 
and from 324 (3349) to 258 (809) for the UCSF datasets. See 
Figure 2 for the label distribution.

The final model pipeline included Z-score normalization, 
LASSO feature selection with 21 features, and a random 
forest classifier (advantages include high predictive ac-
curacy, robustness against overfitting, and the capacity 
to assess feature importance) as this setup yielded the 
highest F1 scores on the local train-validation set. See 
Supplementary Tables 2 and 3 for the results of the model 
selection process.

Nonlinear principal component analysis showed no clear 
separability of the individual groups in a 2-dimensional 
setting. The permutation test returned P-values < .01 for all 
model combinations, indicating that all models performed 
better than chance during cross-validation.

Among all tested dataset combinations, dataset com-
bination 5 (training = Local + UCSF, testing = Stanford) 
showed the highest F1 score on the external dataset and 
yielded the most consistent internal and external valida-
tion performance (see Supplementary Tables 4 and 5 for 
detailed results for all dataset combinations). However, 
even this model did not show convincing classification 
results with evaluation metrics that were only marginally 
better than random chance. Table 2 lists the evaluation 
metrics (macro-averages and per-label) for the base-
line model (no oversampling applied) and after ROS and 
SMOTE (correct and incorrect oversampling approaches). 
Oversampling did not noticeably improve performance 

Raw
Data

DICOM-NIFTI
Conversion

Machine Learning
Pipeline
Creation

Train/Validation
/Test Split

Train/Validation
/Test Split

Feature
Normalization

Feature
Selection

Oversampling

Oversampling

Classifier
Training

Evaluation

Feature
Selection

Feature
Normalization

Brain
Extraction

A)

B)

Crop To
Bounding Box

N4-Bias-
Correction

Co-Registration
Intensity

Normalization
Segmentation

Feature
Extraction

Texture

Histogram

Shape

Figure 1. Data processing workflow. The flowchart visualizes the main preprocessing steps. The segmentation depicts the nonenhancing/ne-
crotic part and the enhancing part of the metastasis, as well as the surrounding edema. Note that features were only extracted from the tumor 
core consisting of enhancing and nonenhancing tumor. (A) Correct approach: oversampling performed after partitioning, normalization, and 
feature selection. (B) Incorrect approach: oversampling performed before dataset partitioning.

D
ow

nloaded from
 https://academ

ic.oup.com
/noa/article/6/1/vdae060/7655335 by U

niversitaet R
egensburg user on 12 June 2024

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae060#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae060#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae060#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae060#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae060#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae060#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae060#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae060#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae060#supplementary-data


 6 Strotzer et al.: MRI radiomics brain metastases classification

and it did not shift the focus toward the less frequently 
represented classes.

Differences between correct and incorrect data 
partitioning are clearly illustrated by the substantial perfor-
mance differences between internal and external test sets 
in Figure 3. Here, the false impression of an almost perfect 
result is given. When looking at the external dataset, it be-
comes apparent that this performance is not real but the 
result of an oversampled classifier due to data leakage.

Due to the suboptimal capability to predict the primary en-
tity, the interpretability of feature importance is very limited. 
The top 5 selected features for dataset combination 5 (base-
line model) were all wavelet features and included 2 features 
extracted from the T1w scans (LLH-firstorder_Maximum, 
HHL-firstorder_Kurtosis), 2 T1wCE-features (HLH_firstorder_
Kurtosis, LHL-firstorder_10Percentile) and 1 FLAIR-feature 
(LHL-firstorder_RobustMeanAbsoluteDeviation).

Discussion

Using our local and 2 external datasets, we could not 
convincingly predict the primary tumor histology of 
brain metastases using MRI-derived radiomic features 
in an imbalanced classification task. Oversampling did 
not improve results and did not shift the focus towards 
less represented entities. We further showed how in-
correct data partitioning can lead to substantial model 
overestimation.

Several strategies exist to minimize class imbalance. 
The favored option, obtaining additional examples from 
minority classes, is not always reasonably achievable, es-
pecially in the medical field where the epidemiology of 
a given disease is a limiting factor. As a solution, gener-
ative models are increasingly used to inflate the number 
of minority-class training cases. For imaging data, gen-
erative adversarial networks can synthesize missing 

MRI sequences. Considering tabular data like extracted 
radiomic features, ROS and SMOTE are well-established 
oversampling techniques.

Justified criticism of oversampling techniques exists. 
For example, it is said that SMOTE hardly affects most 
classifiers trained on high-dimensional data and is not 
beneficial for discriminant analysis classifiers, even in the 
low-dimensional setting.28 In our case, oversampling did 
not improve overall results and made models more prone 
to overfitting especially when testing classifiers more com-
plex than random forests.

Few studies applying conventional radiomics (manually 
engineered features) exist trying to predict the primaries 
of brain metastases using MRI-based radiomic features. 
Ortiz-Ramón et al. report a multiclass AUC of 0.87 in a 
3-class task based on 67 brain metastases.6 They report 
unsatisfactory results in distinguishing between breast 
cancer and melanoma metastases in a one-on-one ap-
proach (AUC = 0.61). Comparability to our results is lim-
ited, partly because their data came from only 1 scanner, 
they included only 3 classes, and they chose not to assign 
metastases from a single patient to either training or test 
cohorts (potential for data leakage). Our approach more 
closely resembles that of Kniep et al., who reported AUCs 
between 0.61 (for breast cancer) and 0.80 (for melanoma) 
using only imaging features (macro-average AUC,0.69). 
Their slightly better results may be attributed to the lower 
heterogeneity of their data. It must be noted that neither 
study provided results for external test data. Therefore, 
they do not allow drawing any conclusions regarding gen-
eralizability and real-world efficacy.

It is frequently encountered that models performed much 
worse on external, independent datasets.29 This can be due 
to various reasons, eg differences in the studied collectives 
or scanning protocols. A non-negligible factor, however, is 
methodological errors misleading authors into dangerous 
overestimations of their developed models. Incorrect data 
partitioning, in our case, performing oversampling before 
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Figure 2. Label Distribution. Number of metastases for each class of the 3 datasets after thresholding at a volume of 125 mm3.
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Figure 3. Comparison of correct and incorrect partitioning results. Results for correct (left column) and incorrect (right column) partitioning 
results are depicted for dataset combination 5 using the random oversampling technique (train = local + UCSF, test = Stanford). Receiver-
operating characteristic curves for the internal (A) and external (B) test sets. Line colors: breast cancer (red), colorectal cancer (light blue), lung 
cancer (purple), melanoma (gray), other (yellow), and macro-average (dotted dark blue). Random guess (AUC = 0.5) depicted by diagonal dotted 
lines. The AUC values can be obtained from Table 2. Confusion matrices for internal (C) and external (D) test sets show the number of true and 
predicted labels from each class.
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dataset splitting, leads to a massive overestimation of the 
developed classifiers in an overall unsatisfactory classifi-
cation task. In most cases, however, independent external 
validation is not performed; thus, these problems remain 
unnoticed.

A systematic review evaluating AI models for the radi-
ological assessment of COVID-19 demonstrated the wide-
spread prevalence of methodological flaws. The authors 
concluded that none of the presented models are appli-
cable in clinical practice due to methodological errors 
and biased training data.30 Another review examining the 
methodological quality of developed AI models from a 
wide range of disciplines concluded that a significant pro-
portion of developers do not separate train/validation from 
test sets during preprocessing, leading to data leakage.31

Various reporting guidelines have been introduced to 
ensure correct data processing, machine learning model 
handling, and the integrity of elementary information in 
the manuscript. Adherence to these checklists warrants 
the high quality of the developed models, possible as-
sessment of model generalizability, and reproducibility 
of the results. Of these tools, a combination of an appro-
priate scoring system (eg RQS—Radiomics Quality Score 
or METRICS—METhodological RadiomICs Score)11,32 and 
a dedicated checklist (eg CLEAR—CheckList for EvaluAtion 
of Radiomics research or CLAIM—Checklist for Artificial 
Intelligence in Medical Imaging)33,34 seems to be suitable 
for studies like the one presented here as this combina-
tion ensures detailed reporting of segmentations, features, 
data preparation, partitioning, and model architecture. The 
alignment with appropriate guidelines benefits all stake-
holders: authors, reviewers, readers, and most impor-
tantly, patients and professional healthcare providers, who 
can benefit from more reliable models.

With 571 patients (1634 metastases) from 3 inde-
pendent collectives, our study is the largest to utilize 
conventional MRI radiomics to predict primary tumor 
histology of brain metastases (and the only one to be 
externally validated). It, however, also has several limi-
tations. The multi-scanner, multi-vendor, and multi-site 
setup could improve generalizability but may decrease 
cross-validation performance due to inter-scanner and 
scanning protocol-based variation in radiomic features. 
Feature robustness could not be tested as per the retro-
spective nature of the datasets. For the local dataset, we 
only included the first available study after diagnosis of 
brain metastases and did not include segmentations di-
rectly targeted by radiotherapy or surgery, trying only 
to include treatment-naïve patients. However, some pa-
tients may have already received systemic therapy at the 
time of the scan. The Stanford dataset is provided in 8-bit. 
png slices (intensity values, 0–255), possibly causing in-
formation loss. Also, acquisition parameters between the 
local (primarily 2D protocols) and external datasets (3D 
acquisitions) differ considerably and down sampling the 
through-plane resolution to 5 mm may remove valuable 
information.

The literature regarding radiomics vs. deep learning 
approaches is inconclusive. Some applications favor 
deep learning, namely in breast cancer imaging.35,36 
Good results in differentiating brain metastases from 
pathological lung cancer types were found for both 

approaches.37 According to another study, the radiomics 
approach dominated in differentiating thymic epithelial 
tumors from other prevascular mediastinal tumors on 
chest CT.38 The preference thus appears to be dependent 
on the question at hand, which is why we will investigate 
these different approaches concerning brain metastases 
in the future.

Conclusions

Our externally validated study highlights the limitations 
of MRI-derived radiomics in predicting primary tumor 
histology of brain metastases. It underscores the crit-
ical role of correct study design and external validation, 
as data leakage can lead to a massive overestimation of 
model performance. Concerning the unbalanced label dis-
tribution, oversampling techniques did not improve clas-
sification results. Ultimately, we strongly recommend a 
comprehensive evaluation of radiomics’ capability to infer 
histologic or genomic data from imaging studies.

Supplementary material

Supplementary material is available online at Neuro-
Oncology (https://academic.oup.com/neuro-oncology).
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