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The pervasive use of information technologies (IT) has tremendously benefited our daily lives. 
However, unpredicted technical breakdowns and errors can lead to the experience of stress, which 
has been termed technostress. It remains poorly understood how people dynamically respond to 
unpredicted system runtime errors occurring while interacting with the IT systems on a behavioral and 
neuronal level. To elucidate the mechanisms underlying such processes, we conducted a functional 
magnetic resonance imaging (fMRI) study in which 15 young adults solved arithmetic problems of 
three difficulty levels (easy, medium and hard) while two types of system runtime errors (problem 
errors and feedback errors) occurred in an unexpected manner. The problem error condition consisted 
of apparently defective displays of the arithmetic problem and the feedback error condition involved 
erroneous feedback. We found that the problem errors positively influenced participants’ problem-
solving performance at the high difficulty level (i.e., hard tasks) at the initial stage of the session, while 
feedback errors disturbed their performance. These dynamic behavioral changes are mainly associated 
with brain activation changes in the posterior cingulate and the default mode network, including the 
posterior cingulate cortex, the mPFC, the retrosplenial cortex and the parahippocampal gyrus. Our 
study illustrates the regulatory role of the posterior cingulate in coping with unpredicted errors as well 
as with dynamic changes in the environment.

As new developments in information technologies (IT) increasingly pervade people’s daily lives, both benefits 
and challenges arise from our routine interactions with IT products. Technostress has emerged and been studied 
in recent years as a phenomenon to describe such challenges. Technostress is defined as an IT user’s experience 
of stress when interacting with technologies1,2. Such experiences can induce negative consequences on both 
behavioral and physiological responses2–11. Technostress can be separated into different sub-types, depending 
on the factors (techno-stressors) and sub-processes (challenge/hindrance/threat stress or eustress/distress) that 
induce the stressful experiences1,8,12–14.

One of the less studied but likely most encountered hindrance techno-stressors is techno-unreliability4,13,15,16. 
It refers to the lack of dependability and consistency of an IT system4. Techno-unreliability describes the phe-
nomena when IT users “face system malfunctions and other IT hassles”13, p.1462. Common issues of unreliability 
are runtime errors (referred to as spontaneous runtime errors that occur during the execution of the computer 
codes), quality problems, or IT system breakdowns4,17. Techno-unreliability has been reported to lead to frustra-
tion and strain18 and hinder task performance13,17. Previous studies have used functional magnetic resonance 
imaging (fMRI) to describe participants’ brain responses to repetitively occurring and interruptive security 
warning messages19–21. Participants showed decreased neural responses to warning messages in the ventral 
visual pathways and the visual attention networks (inferior temporal gyrus, the inferior frontal gyrus and the 
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dorsal medial prefrontal cortex) over repeated presentation of these messages19,20. They also showed increased 
neural responses in the medial prefrontal cortex and the retrosplenial cortex as part of the habituation process19. 
Moreover, Vance and colleagues21 have shown that the neural responses in the medial temporal lobe to disre-
garded warning messages can be modulated by the task difficulty levels.

While these studies focused on participants’ neural and physiological responses related to the presentation 
and habituation of error messages, it is largely unknown how such errors or system breakdowns dynamically 
influence people’s decision-making process to regulate their responses to achieve better behavioral performance. 
Furthermore, there is also a lack of systematic understanding of the underlying neural mechanisms associated 
with these dynamic processes while people attempt to cope with the unpredicted IT system breakdowns.

Two networks22,23 have been identified that are thought to play a role in the modulation of the decision-
making process under uncertainty and stress: the executive network including the dorsolateral prefrontal cortex 
(DLPFC) and the basal ganglia24–29 and the default mode network centered around the posterior cingulate cortex 
(PCC) involving the retrosplenial cortex (RSC), the parahippocampal gyrus (PHG) and the medial prefrontal 
cortex (mPFC)30–36. Previous studies have proposed that the default mode network in particular the dorsal pos-
terior cingulate cortex (dPCC) might play a significant role in representing different contexts and constraints 
for the decision-making environment37–40. The dPCC has also been found to be associated with environment 
or context uncertainty41,42 as well as the allocation of attention under uncertainty43. On the other hand, the 
executive control network might play a more important role in modulating each individual decision under a 
certain context40. While both networks can modulate how people respond to changes in the environment and 
dynamically adjust their strategies it is unclear which network plays a major role in the modulation of coping with 
unpredicted errors while interacting with IT products. Specifically, it is unclear whether responses to unpredicted 
errors were modulated based on individual situations (executive control network dominant) or based on the 
context in which the errors occurred (default mode network dominant).

Therefore, to address how technostress responses evoked by IT-system breakdown are modulated dynami-
cally on a behavioral and neuronal level, we performed an fMRI experiment during which participants solved 
arithmetic problems of different difficulty levels while system runtime errors were inserted in an unpredictable 
manner during the problem presentation or the feedback phase following the participant’s response. Our results 
showed that participants’ performance was positively influenced for the hard tasks when a runtime error occurred 
at the problem presentation phase, while their performance was adversely affected on the hard tasks when an 
error occurred during the feedback phase. Moreover, blood-oxygen-level-dependent (BOLD) signals showed 
that the default mode network played a significant role in participants’ modulation of performance. These results 
shed light upon the decision-making and neuronal modulation processes underlying people’s responses to IT 
system breakdowns.

Methods
Participants
A total of 15 healthy young adults (10 female, 5 male; mean age 24.4 yrs; age range from 19 to 31 yrs) participated 
in the study. The number of participants is comparable to that used in previous studies investigating technostress 
using neuroimaging methods17,21,44. All participants were pre-screened for psychiatric and neurological disor-
ders and were not taking psychoactive medication at the time of study. All participants were evaluated to meet 
the criteria for MRI safety and they had normal or corrected-to-normal vision. All but one were right-handed. 
Participants received monetary compensation. Prior to the experiment, participants were told that their compen-
sation was contingent on the number of correct answers recorded during the session. However, all participants 
received the full (maximum possible) compensation of 14.40 Euro after the experiment. Participants gave writ-
ten informed consent before participating in the study. The study was approved by the ethics committee at the 
University of Regensburg in accordance with the Declaration of Helsinki.

Experimental procedure
Participants were requested to solve additive arithmetic problems of three difficulty levels throughout the experi-
ment. The easy problems required adding two two-digit numbers, the moderately challenging (medium) prob-
lems involved adding one two-digit and one three-digit number, and the hard problems required adding two 
three-digit numbers. A standard trial (control condition) consisted of three phases: the problem presentation 
phase, the response selection phase, and the feedback phase. Each trial began with a 7-s problem presentation 
phase (5 secs problem presentation and 2 secs response option presentation) followed by a 2-s response selection 
phase, in which participants were instructed to choose one option from three alternatives by pressing the cor-
responding button with their index, middle or ring finger (Fig. 1A). The feedback phase followed the response 
selection phase after a jittered inter-stimulus-interval (ISI) of 1.5, 2.5 or 3.5 secs and lasted 2 secs. During the 
feedback phase, the participants’ choice was shown together with the correct answer. Each trial commenced 
with a blank inter-trial-interval (ITI) that was also jittered in duration, i.e., of either 1.5, 2.5 or 3.5 secs. The use 
of this temporal jitter increased the statistical separation of the effects of the regressors entered into the general 
linear model (GLM). The length of the intervals was pseudorandomly selected and counterbalanced across the 
trials and across participants. Participants were offered a monetary bonus (10 cent) as a reward for each cor-
rectly solved problem and the accumulated reward amount (i.e., bonus) was constantly displayed throughout 
the trials (Fig. 1D).

We included the unreliability of the IT system as a potential source of technostress. Unreliability was opera-
tionalized by two different system malfunctions. Some trials had either a problem error or a feedback error. 
During the problem error trials, participants were presented with an image indicative of a system error in the 
computer program (Fig. 1B,E), which made the numbers illegible. After the presentation of the error image, the 
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Figure 1.   Experimental procedure. Arithmetic problems of three difficulty levels were presented in 3 sub-
blocks corresponding to 3 conditions: (A) The control condition. Each block consisted of 6 trials. Each trial 
consisted of a 7-s problem presentation phase, 2-s selection phase, a 2-s feedback phase, an ISI of 1.5, 2.5 or 
3.5 secs before and after the feedback phase. (B) The problem error condition. Same as (A), but 3 trials in the 
condition contained a problem error. (C) The feedback error condition. Same as (A), but 3 trials in the condition 
contained a feedback error. (D) Example of a standard control trial without errors. Participants’ response choices 
were underlined in the response selection stage. The correct responses were highlighted in green along with the 
feedback (the German words ‘Richtig’ corresponds to correct in the upper panel and ‘FALSCH’ corresponds to 
false in the lower panel). Participants’ accumulated reward for each correct trial was presented throughout the 
trials (shown in ‘Kontostand’). (E) Example of a trial with a problem error. A system error image was presented 
during the problem presentation stage. Otherwise, the same as (D). (F) Example of a trial with a feedback error. 
The system falsely repeated the participants’ choices and provided the wrong feedback. Otherwise, the same as 
(D).
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response options were presented normally as if no error had occurred. Participants were instructed to attempt 
to solve each problem and they received feedback as in the control condition. During feedback-error trials 
(Fig. 1C,F), the program showed the correct answer to the problem, but falsely repeated the choice of the par-
ticipant in the feedback phase suggesting that the program misrecorded the participant’s choice. The trial was 
counted incorrect even when participants had responded correctly (Fig. 1F).

The experiment consisted of 8 blocks separated into two runs, where each block consisted of 3 sub-blocks 
corresponding to 3 conditions: the control condition, the problem error condition and the feedback error condi-
tion (see, Fig. 1A–C). A 18 s baseline period was presented between the blocks. Participants solved a total of 6 
arithmetic problems of all the three difficulty levels for each sub-block. Half of the trials (3 trials) in the problem 
error sub-block contained an error during the problem presentation phase as shown in Fig. 1B. Half of the trials 
(3 trials) in the feedback error condition consisted of a feedback error (Fig. 1C). In total 18 trials (3 sub-blocks × 6 
trials) made up a block and 72 trials (4 blocks × 18 trials) made up a run and the first and second run were sepa-
rated by a brief pause in MRI data acquisition. The order of the difficulty levels and the order of the conditions 
were counterbalanced and pseudorandomized for each block and across the participants.

Participants practiced the task for two repetitions of the control condition (with no errors) before the experi-
ment started and they were not informed that an error might occur during the experiment. Finally, a high-
resolution structural scan lasting about 10 min was conducted after completion of the two fMRI runs.

Apparatus
The experiment was controlled and presented via the Presentation® software (Neurobehavioral Systems, Inc., 
Berkeley, CA, www.​neuro​bs.​com). The visual display was projected onto a translucent screen located in the scan-
ner via a PROPixx projector (VPixx Technologies, Saint-Bruno-de-Montarville, Canada). The projected image 
had a resolution of 1024 × 768 pixels with a refresh rate of 60 Hz. Participants viewed the visual display via a 
headcoil-mounted mirror. Participants made their responses with an MRI-compatible button box (Psychology 
Software Tools, Pittsburgh, PA, United States).

MRI parameters
All participants were scanned in a 3 T Siemens Prisma scanner (Siemens Healthineers, Erlangen, Germany) at 
the University of Regensburg with a 64-channel head coil. A T1-weighted MPRAGE sequence (176 sagittal slices, 
field of view: 256 × 240 mm2, voxel size: 1 × 1 × 1 mm3, repetition time: 2300 ms, echo time: 2.98 ms, flip angle: 
9°) was acquired for each fMRI session. The parameters were adapted from the Alzheimer’s disease Neuroimag-
ing project (Laboratory for Neuro Imaging, UCLA, Los Angeles, CA). Functional MRI runs were acquired with 
a multi-band T2*-weighted gradient-echo sequence with echoplanar read-out (repetition time: 2000 ms, echo 
time: 30 ms, flip angle: 90°, voxel size: 2 × 2 × 2 mm3, field of view: 212 × 204 mm2, multi-band factor: 2) along 
64 axial slices covering the whole brain.

Data processing
Behavioral data processing
Participants’ response accuracy data were recorded and analyzed in the fMRI experiment. First, we averaged 
participants’ response accuracy for each of the three difficulty levels and for each condition separately for each 
experimental run. The trials in which a problem error was presented were not included in the calculation of 
each participant’s accuracy. The trials before the occurrence of the first error trials in the problem error and the 
feedback error condition were excluded from the accuracy calculation. ~ 3.66 trials were excluded for each par-
ticipant. Moreover, in order to balance the number of trials for different conditions, we randomly selected trials 
in the control and the feedback error conditions for 10,000 times and calculate the accuracy scores by averaging 
the random selected trials. This calculation yielded 9 accuracy scores (3 conditions × 3 difficulty levels) for each 
block. Secondly, we averaged the individual accuracy score according to two different time intervals: the first 
experimental run (the 1st–4th block) and the second experimental run (the 5th–8th block). The time intervals 
were chosen such that we were capable of detecting participants’ performance and strategy change during the 
evolution of the session. We hypothesized that participants would be the most surprised during the first interval 
and slowly adjusted to the occurrence of errors during the first half of the session (first run). During the second 
half of the session (second run), participants’ performance should become stabilized as they get ’accustomed’ 
to the runtime errors.

fMRI data processing
Preprocessing
The structural and functional MRI runs were preprocessed using the Freesurfer Software package (Version 4.5) 
and the FSFast toolbox45,46 together with Matlab (version R2020b, The MathWorks Inc., Natick, MA, United 
States). The high-resolution structural run was reconstructed and inflated for each participant as described in 
previous studies47. The images from the fMRI runs were motion-corrected and realigned to the first volume of 
the first run, based on which a template was created. The template was co-registered to the reconstructed high-
resolution structural scan of each individual participant. The images from the fMRI runs were then slice-time 
corrected, intensity normalized, and spatially smoothed with a three-dimensional Gaussian kernel (full-width-
half-maximum: 5 mm).

Analysis of fMRI runs
To examine the change in BOLD responses that were specifically related to participants’ decision-making process, 
which corresponds to the problem presentation phase, we analyzed the preprocessed signals in the fMRI runs in 
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an event-related manner for the first level analysis. Two general linear models (GLM) assuming a gamma-shaped 
hemodynamic response function (HRF) with a delay of 2.25 s and a dispersion of 1.25 s were fitted separately for 
each preprocessed fMRI run so that the BOLD signal analyses shared similar time intervals as in the behavioral 
data processing. The GLM included 6 regressors-of-interest as well as nuisance regressors-of-no-interest cor-
responding to motion correction parameters and linear scanner drift. The 6 regressors-of-interest corresponded 
to the problem presentation phase of the three types of trials (standard control trial, with problem error, and with 
feedback error). The additional 3 regressors-of-interest corresponded to the feedback phase of the three types of 
trials. The signals during the selection stage and the standard trials before the first occurrence of error trials in 
the problem error and feedback error condition were fitted as two additional regressors-of-no-interest to obtain 
the BOLD responses targeting the processes underlying participants’ problem-solving phase. Contrasts (problem 
error versus feedback error; problem error versus control) were obtained for each subject. For the second level 
analysis, the contrasts were concatenated to calculate the group-level significance through one-sample t-tests on 
the voxels of the whole brain. Multiple comparisons were corrected for false discovery rate at p = 0.01. The BOLD 
activations were extracted from each of the ROIs (see Definition of ROIs), averaged across the two hemispheres 
and normalized to the activation baseline to acquire the BOLD percent signal change.

Definition of ROIs
We selected ROIs that are mainly involved in the default mode network with the posterior cingulate cortex as a 
hub48,49: the dorsal posterior cingulate cortex (dPCC;43,50), the ventral posterior cingulate cortex (vPCC;32), the 
retrosplenial cortex (RSC), the parahippocampal gyrus (PHG) and the medial prefrontal cortex (mPFC). We also 
selected ROIs that are mainly involved in the executive network48: the dorsolateral prefrontal cortex (DLPFC), 
the dorsal striatum (caudate and putamen), and the ventral striatum (pallidum). It has been suggested that the 
inferior and superior parietal cortices51,52 as well as the angular and supermarginal gyri53 are involved in the 
processes of numerical computation itself. To avoid confounding the numerical computation and the processes 
underlying the modulation of unpredicted technical errors, we did not select the above-mentioned cortices in 
the ROI analyses. We defined each participant’s cortical ROIs by using the parcellation of the human cerebral 
cortex proposed by Glasser and colleagues54. The subcortical nuclei were defined using the ‘aseg’ segmentation 
from Freesurfer55,56. Specifically, we have delineated the dorsal PCC using the areas 23d, d23ab, 31a of the Glasser 
atlas. The ventral PCC consisted of area v23ab, area 31 pd and area 31pv. These ROIs of the PCC correspond to 
those in previous publications32,37,43,50,60. The ROIs mPFC and DLPFC were delineated with the area 9a and 46 
respectively. The MNI coordinates of the center of mass of the ROIs are described in Table 1. The locations of 
the ROIs of a representative participant are shown in Fig. 2.

Granger causality (GC) analysis
In order to further investigate how the five ROIs (dPCC, vPCC, RSC, mPFC and PHG) involved in the default 
network influenced each other with the dPCC as a hub, effective connectivity was examined using the multi-
variate Granger causality toolbox57. This analysis allowed us to describe how the BOLD time series in one ROI 
influenced the BOLD time series in another ROI in the selected network of ROIs58–60.It is assumed that the time 

Table 1.   Description of the regions-of-interest analyzed in this study. MNI coordinates (X, Y, Z) show the 
mean center of mass position in native space across all participants. In addition, standard deviations are 
shown. The size is listed in voxels (8 mm3) in the native space.

X Y Z Size

The default mode network

Left dPCC  − 3 ± 2.7  − 20 ± 12.5 33 ± 10.8 995 ± 139

Right dPCC 7 ± 3.0  − 20 ± 12.7 34 ± 10.7 1009 ± 116

Left vPCC  − 7 ± 3.1  − 35 ± 12.1 24 ± 11.9 1203 ± 139

Right vPCC 2.3 ± 3.2  − 35 ± 12.0 25 ± 11.6 1276 ± 120

Left RSC  − 5 ± 2.7  − 20 ± 11.6 20 ± 11.0 602 ± 69

Right RSC 7 ± 2.5  − 18 ± 11.4 21 ± 10.9 667 ± 60

Left PHG  − 22 ± 3.4  − 16 ± 11.4  − 9 ± 11.1 466 ± 48

Right PHG 20 ± 3.2  − 14 ± 10.4  − 11 ± 10.7 375 ± 45

Left mPFC  − 8 ± 3.0 61 ± 12.7 36 ± 9.4 1169 ± 147

Right mPFC 8 ± 2.7 62 ± 12.0 33 ± 9.5 1477 ± 128

The executive network

Left DLPFC  − 32 ± 3.0 44 ± 12.8 40 ± 10.1 1311 ± 177

Right DLPFC 32 ± 3.4 46 ± 12.0 37 ± 10.1 1402 ± 182

Left Caudate  − 11 ± 2.2 23 ± 11.7 17 ± 9.9 3788 ± 402

Right Caudate 12 ± 1.8 25 ± 11.6 17 ± 9.7 3959 ± 398

Left Pallidum  − 19 ± 1.8 12 ± 11.0 6 ± 10.2 2098 ± 179

Right Pallidum 19 ± 1.7 13 ± 11.0 5 ± 10.0 1942 ± 154

Left Putamen  − 24 ± 2.0 17 ± 11.5 8 ± 10.1 5345 ± 677

Right Putamen 24 ± 1.8 19 ± 11.0 7 ± 9.8 5474 ± 506
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series that causes changes in other time series must precede and assist the prediction of the other time series. For 
instance, if the past in the time series in PCC contains information that enhances the prediction of the future 
of the time series in RSC, in addition to the information that has already existed in the past of the time series in 
RSC, PCC can be described as ‘Granger-causing’ RSC61. Thus, to measure such relationships in the default mode 
network, we performed paired-wise GC analysis among the three ROIs. First, we preprocessed the first fMRI 
run with motion-correction, slice-time correction, intensity normalization and spatial smoothing with a three-
dimensional Gaussian kernel (full-width-half-maximum: 5 mm). Second, we computed variance-of-no-interest 
which consists of the white matter, ventricles and the cerebrospinal fluid. Third, a GLM was fitted to the fMRI 
time series with this variance-of-no-interest as well as motion correction parameters and linear scanner drift 
as nuisance regressors. Fourth, we extracted the residual of the GLM from each of the five ROIs. The residual 
corresponds to the fMRI time series with these sources of variance-of-no-interest accounted for and removed 
from further analyses. Fifth, we averaged the residual across the voxels in the five ROIs. These time-series data 
included the signals from all of the experimental stages, as the GC analysis required continuous time-series data. 
Finally, we fitted multivariate autoregressive models (MVAR) to the averaged time-series signals, which were used 
as inputs to compute the GC coefficients. The GC coefficients were Fisher-transformed, and the significance of 
the GC coefficients was multiple-corrected by controlling the false discovery rate (FDR) at p = 0.05.

Statistical analyses
Statistical analyses were conducted using Matlab (R2020b) and the SPSS software (IBM; version 24). The nor-
mality of the data was tested with the Shapiro–Wilk test. All the data were normally distributed, and parametric 
statistical tests were thus conducted. ANOVAs were conducted for within-group comparisons between different 
conditions, and post-hoc tests were performed with two-tailed paired sample t-tests. Effect sizes were reported as 
partial η2 and Cohen’s d, respectively, for ANOVAs and t-tests. Multiple comparisons were corrected by control-
ling the false discovery rate for the behavioral, neural and Granger causality analyses. The significance level was 
set at p = 0.05 for the behavioral, ROI and Granger causality analyses. The significance level for the group-level 
whole-brain analyses was set at p = 0.01. Corrected p-values are reported below.

Results
Behavioral data
Participants’ accuracy in performing the arithmetic operation was obtained separately for each of the difficulty 
levels (easy, medium and difficult), for each condition (control, problem error and feedback error), and for each 
run separately (Fig. 3) after removing the trials with a problem error, trials preceding an error in the problem and 
feedback error conditions and the number of trials balanced across conditions (see “Methods” section for details).

In order to better evaluate how participants’ performance evolved over time, we separated participants’ 
accuracy scores into two time intervals (see “Methods” for details): the 1st–4th block (the first fMRI run) and 
the 5th–8th block (the second fMRI run) (Fig. 4A,B). For each time interval, we performed a repeated-measure 
ANOVA for each difficulty level with ‘Condition’ as the within-subject factor. During the first interval, the 
ANOVA yielded a significant difference only at the hard level [F(2, 28) = 5.286, p = 0.033, partial η2 = 0.274] and no 
significant difference at the other two difficulty levels [F(2, 28) = 2.667, p = 0.130] and [F(2, 28) = 0.056, p = 0.945] 
as shown in Fig. 4A. Post-hoc t-tests showed that the accuracy score for the problem error condition was signifi-
cantly higher than the feedback error condition[t(14) = 3.492, p = 0.011, Cohen’s d = 0.902]. The accuracy score 
for the problem error condition did not differ significantly from the control condition [t(14) = 1.871, p = 0.203]. 

Figure 2.   Location of ROIs on the left hemisphere of a representative participant. (A) ROIs of the default mode 
network on the inflated left hemisphere of the representative participant (dark gray: sulci; light grey: gyri) (B) 
mPFC (the anterior view) and DLPFC (the medial view) on the inflated left hemisphere. (C) subcortical ROIs 
of the executive network (sagittal view, red = gray matter, other colors = other subcortical regions that are not 
analyzed in our study).
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Moreover, the accuracy score for the feedback error condition was not significantly different from that in the 
control condition [t(14) = 1.333, p = 0.203]. The ANOVAs during the second time interval yielded no significant 
differences among the different conditions over all three difficulty levels, as shown in Fig. 4B [all ps > 0.05].

Furthermore, we evaluated whether participants’ performance changed from the first to the second interval 
for each condition. We found a significant performance improvement on hard trials for the control [t(14) = 2.348, 
p = 0.049, Cohen ’d = 0.610] and the feedback error [t(14) = 3.341, p = 0.014, Cohen ’d = 0.863] conditions. Moreo-
ver, participants’ performance remained unchanged over time for the problem error condition [t(14) = 0.756, 
p = 0.462]. Additionally, participants improved on the medium-difficult trials for the control condition as well 
[t(14) = 2.870, p = 0.011, Cohen ’d = 0.903].

fMRI data
Whole‑brain analyses
To describe the brain activations between the different conditions on a group level, we performed a whole-brain 
analysis for the first and second time interval with the following contrasts: problem error versus control, prob-
lem error versus feedback error and feedback error versus control. The whole-brain analysis showed significant 
contrasts only during the first interval. The brain activations for the contrasts, problem error versus control and 
problem error versus feedback error were shown in Fig. 5A and B. There was no significant brain activation differ-
ence for the contrast feedback error versus control. For the problem error condition, there were significant neural 
activities in the dorsal and ventral posterior cingulate cortex, the medial prefrontal cortex, the angular gyrus, 
and the anterior and middle temporal gyrus. The neural activations are more pronounced in the dorsolateral 
prefrontal cortex, intraparietal sulcus and the precentral sulcus for the feedback error and the control conditions.

BOLD activations in the default mode network
To measure the differences in BOLD activations between the different conditions, we performed a one-way 
repeated-measures ANOVA with ‘Condition’ separately for each of the two time intervals in the dPCC, vPCC, 
the retrosplenial cortex (RSC), and the parahippocampal gyrus (PHG) and the medial prefrontal cortex (mPFC). 
During the first time interval (the 1st to 4th block), there was a significant difference in both the dorsal [F(2, 
28) = 10.709, p = 0.002, partial η2 = 0.433] and ventral PCC [F(2, 28) = 9.005, p = 0.003, partial η2 = 0.391] among 
the three levels of difficulty. Post-hoc t-tests in the dPCC revealed that the BOLD percent signal changes in 
the problem error condition were significantly higher than that in the control [t(14) = 4.800, p < 0.001, Cohen’s 
d = 1.240] and the feedback error condition [t(14) = 2.556, p = 0.035, Cohen’s d = 0.660] condition (Fig. 6A). There 
was significant BOLD percent signal change difference between the problem error and the control condition 

Figure 3.   Behavioral performance for each block for (A) the control condition (blue), (B) the problem error 
condition (orange), (C) the feedback error condition (yellow). The easy problems are represented with solid 
lines, the moderately challenging (medium) problems with dashed lines, and the hard problems with dotted 
lines. The 8 blocks of 18 trials each were separated into two time intervals: the 1st–4th block, and 5th–8th block 
as the first and second intervals. The solid gray line represents chance level response at 33.3%.
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[t(14) = 24.493, p = 0.001, Cohen’s d = 1.160] in the vPCC (Fig. 6B). Significant within-subject effects were found 
during the first time-interval in both the ROIs: the RSC, [F(2, 28) = 6.224, p = 0.006 partial η2 = 0.308] and the 
mPFC [F(2, 28) = 18.397, p < 0.001, partial η2 = 0.568]. A marginal significant effect of ‘Condition’ was found in 
the PHG [F(2, 28) = 3.867, p = 0.059, partial η2 = 0.216]. During this time interval, the RSC showed significantly 
higher BOLD percent signal change in the problem error condition [t(14) = 3.570, p = 0.009, Cohen’s d = 0.921] in 
comparison to the control condition (Fig. 6C). Post-hoc t-tests in the mPFC revealed that the BOLD percent sig-
nal changes in the problem error condition were significantly higher than that found in the control [t(14) = 6.824, 
p < 0.001, Cohen’s d = 1.762] and in the feedback error conditions [t(14) = 2.832, p = 0.013, Cohen’s d = 0.731], 
and the feedback error condition has a higher BOLD percent signal change compared to the control condition 
[t(14) = 2.974, p = 0.013, Cohen’s d = 0.768] (Fig. 6E). Additionally, the BOLD percent signal change of the prob-
lem error condition is marginally higher than that of the control condition in the PHG t(14) = 2.239, p = 0.063, 
Cohen’s d = 0.578] and marginally higher than that of the feedback error condition in the RSC t(14) = 2.420, 
p = 0.063, Cohen’s d = 0.591] and the PHG t(14) = 2.448, p = 0.063, Cohen’s d = 0.632]. Similar to the behavior 
analysis, the ANOVAs performed during the second time interval in the dPCC, the other ROIs in the default 
mode network did not reveal any significant within-subject effects (Fig. 6, all ps > 0.05). We found no correla-
tions between the differences in BOLD activations in the problem-error and feedback-error conditions and the 
differences in behavior performances for the respective conditions.

Figure 4.   Behavioral performance for two different time intervals. In panels (A) and (B) the accuracy scores 
for the first and second time-interval are presented, respectively. Different colors represent the three conditions, 
as in Fig. 3. The three difficulty levels are presented in separate panels, and the results are highlighted by solid, 
dashed and dotted outlines as in Fig. 2. *p < 0.05. Perr problem error condition, FBerr feedback error condition.
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BOLD activations in the executive network
We performed a one-way repeated measures ANOVA for the ROIs of the executive network as for the posterior 
cingulate network. The within-subject effect was only significant during the first time interval for the cau-
date nuclei [F(2, 28) = 4.277, p = 0.002, partial η2 = 0.450] (Fig. 7A). In contrast to the BOLD activations in the 
PCC, the BOLD percent signal change in the problem error condition was significantly lower than that in the 
control condition [t(14) = 4.277, p = 0.002, Cohen’s d = 1.104] and the feedback error condition [t(14) = 3.890, 
p = 0.003, Cohen’s d = 1.00]. Although the ANOVA was significant for the DLPFC [F(2, 28) = 8.290, p = 0.003, 
partial η2 = 0.371], post-hoc tests did not reveal significant differences across conditions. The other ANOVAs 
performed for the DLPFC, the putamen and the pallidum, as well as the ANOVAs during the second time interval 
in the caudate, did not show any significant effects (Fig. 7B–D). We found no correlations between the differ-
ences in BOLD activations in the problem-error and feedback-error conditions and the differences in behavior 
performances for the respective conditions.

BOLD activation differences between time intervals
To assess whether the BOLD percent signal changed from the first to the second time interval similarly as that 
found for the behavioral performance, we conducted pair-wise t-tests for each condition in each of the selected 
ROIs. The BOLD percent signal change was enhanced in the ROIs: dPCC, vPCC for all of the three conditions. 
The BOLD activations were enhanced in the PHG for the control and feedback error conditions. Moreover, the 

Figure 5.   Whole-brain group analyses during the first time interval for the contrast problem error (A) versus 
control and problem error versus feedback error (B). FDR corrected at p = 0.01. DLPFC dorsolateral prefrontal 
cortex, PreCS precentral sulcus, IPS intraparietal sulcus, AG angular gyrus, ATL anterior temporal lobe, SFG 
superior frontal gyrus,dPCC dorsal posterior cingulate cortex, vPCC ventral posterior cingulate cortex, mPFC 
medial prefrontal cortex, ACC​ anterior cingulate cortex.
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BOLD percent signal change decreased for all of the ROIs in the executive network (DLPFC, caudate nuclei, 
putamen and pallidum). The statistics and p-values for the above mentioned comparisons were summarized 
in Table 2.

Granger causality (GC) in the posterior cingulate network
The BOLD analyses indicated that the default mode network with the posterior cingulate as a hub might play 
a more pronounced role in modulating participants’ strategies throughout the task. In order to describe the 
interactive relationships within this network, we performed GC analysis. The Fisher transformed GC coefficient 
of the region ‘granger-causing’ the activities in the other ROIs are reported in parentheses below. The analysis 
(Fig. 8) revealed significant pairwise GC among the BOLD time courses in dPCC (vPCC: Fisher-transformed 
GC coefficient: 0.019, p < 0.0001; mPFC: Fisher-transformed GC coefficient: 0.014, p < 0.0001), vPCC (dPCC: 

Figure 6.   BOLD percent signal change for two different time intervals in the five ROIs in the default mode 
network. In panels (A–E), the BOLD percent signal change for the dPCC, the vPCC, the RSC the PHG and the 
mPFC are presented. The color codes and x-axis labels are the same as in Fig. 4. Difficulty levels are collapsed 
within each condition. +p < 0.01, *p < 0.05, **p < 0.01, ***p < 0.001.



11

Vol.:(0123456789)

Scientific Reports |        (2024) 14:13467  | https://doi.org/10.1038/s41598-024-64409-6

www.nature.com/scientificreports/

Figure 7.   BOLD percent signal change for two different time intervals in the ROIs in the executive network. 
Each figure (A–D) represents the BOLD percent signal change for the DLPFC, the caudate nuclei, the putamen, 
and the pallidum. Otherwise, the same as Fig. 6.

Table 2.   Statistics and p-values for the significant difference of BOLD percent signal change across time 
intervals. Perr Problem error, FBerr feedback error. p-values are FDR-corrected.

t(14) p Cohen’d

The default mode network

dPCC—Perr 2.381 0.041 0.615

dPCC—FBerr 3.808 0.004 0.983

dPCC—Control 4.180 0.002 1.079

vPCC—Perr 2.667 0.026 0.689

vPCC—FBerr 4.469 0.002 1.154

The executive network

vPCC—Control 3.683 0.002 0.951

PHG—FBerr 4.259 0.002 1.099

PHG—Control 2.776 0.022 0.716

DLPFC—Perr 3.865 0.004 0.998

DLPFC—FBerr 5.530  < 0.001 1.430

DLPFC—Control 4.810  < 0.001 1.241

Caudate—Perr 4.820 0.005 1.244

Caudate—FBerr 5.824  < 0.001 1.504

Caudate—Control 6.299  < 0.001 1.628

Putamen—Perr 3.377 0.006 0.872

Putamen—FBerr 4.076 0.002 1.053

Putamen—Control 4.213 0.002 1.088

Pallidum—Perr 4.165 0.002 1.075

Pallidum—FBerr 5.686  < 0.001 1.468

Pallidum—Control 5.795  < 0.001 1.496
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Fisher-transformed GC coefficient: 0.001, p = 0.019; mPFC: Fisher-transformed GC coefficient: 0.0105, p < 0.0001) 
and mPFC (dPCC: Fisher-transformed GC coefficient: 0.015, p < 0.0001; vPCC: Fisher-transformed GC coef-
ficient: 0.011, p < 0.0001). These three regions also granger-causally influence the time courses both the PHG 
(dPCC: Fisher-transformed GC coefficient: 0.001, p = 0.001; vPCC: Fisher-transformed GC coefficient: 0.003, 
p < 0.0001; mPFC: Fisher-transformed GC coefficient: 0.002, p < 0.0001) and the RSC (dPCC: Fisher-transformed 
GC coefficient: 0.001, p = 0.008; vPCC: Fisher-transformed GC coefficient: 0.016, p < 0.0001; mPFC: Fisher-
transformed GC coefficient: 0.007, p < 0.0001). Moreover, the BOLD time courses in the PHG additionally 
‘Granger-causes’ those in the RSC (Fisher-transformed GC coefficient: 0.004, p < 0.0001) and dPCC (Fisher-
transformed GC coefficient: 0.002, p < 0.0001). The BOLD time courses in the RSC causally influence the activi-
ties in dPCC (Fisher-transformed GC coefficient: 0.001, p = 0.01), the vPCC (Fisher-transformed GC coefficient: 
0.001, p < 0.0001) and the mPFC (Fisher-transformed GC coefficient: 0.004, p < 0.0001). The GC analyses in the 
other directions between these regions did not show significant relationships, all ps > 0.05 after FDR correction.

Discussion
In this study, we examined how unpredicted IT system errors dynamically influence people’s performance in 
solving problems of varying difficulty levels, as well as the underlying neural mechanisms that modulate such 
processes. Surprisingly, we found that an unpredicted error at the problem presentation phase could positively 
influence participants’ performance at the most difficult task level from the initial stage of the experiment. On 
the other hand, the influence of an error during the feedback phase on participants’ performance was negative 
for the hard arithmetic tasks during the first stage of the experiment. Furthermore, while a problem error could 
immediately affect participants’ performance and be coped with in an early stage of the experiment, the effect of a 
feedback error evolved over time. Participants’ performance recovered from the influence of feedback errors at a 
later stage of the experiment. One possible explanation for this difference is that problem errors are more salient 
and easier to detect than feedback errors. Moreover, participants could rely more extensively on feedback when 
they were solving hard arithmetic problems compared to when they were solving easy or moderately challenging 
arithmetic problems, in which self-generated feedback provided sufficient confidence in their decision-making 
processes. In association with the observed dynamic behavior change, we found that the default mode network, 
including the dorsal and ventral PCC, the mPFC, the PHG and the RSC rather than the executive network, is 
largely involved in the modulation of participants’ performance.

Coinciding with the time intervals in which performance was enhanced for the problem and feedback error 
condition, the BOLD percent signal changes in the default mode network with the PCC as a hub increased dur-
ing the 1st–4th blocks only in the problem error condition, when the error was initially detected and coped with 
by the participants. At the second time interval (5th–8th block), when the performance for feedback error and 
the control condition was enhanced, the BOLD signal percent changes in the default mode network increased 
accordingly in both the control and the feedback error condition. Unlike in the default mode network, the neural 
activities in the executive network play a less important role for the dynamic neural modulation processes. Dur-
ing the first time interval, there was a decrease of BOLD percent signal change for the problem error condition 
only in the caudate nuclei. During the second time interval, the BOLD percent signal changes for all of the ROIs 
in the executive network were close to baseline level.

The default mode network appears to modulate participants’ dynamic responses to unpredicted technical 
errors through the activation and coactivation of different highly connected brain regions. The dPCC, vPCC and 

Figure 8.   Granger causality (GC) in the posterior cingulate network among the dorsal and ventral posterior 
cingulate cortex (dPCC and vPCC), the retrosplenial cortex (RSC), the medial prefrontal cortex and the 
parahippocampal cortex (PHG). Solid white arrows represent significant GC, and dashed gray arrows represent 
non-significant GC. The direction of the arrow represents the direction of the ‘granger-causal’ influence. The 
colors represent different ROIs, as in Fig. 2A and B. The ROIs are displayed on frontal and medial views of the 
left hemisphere of the inflated brain of a representative participant.
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the mPFC appear to be the hub of the network, with extensive connections with the RSC and PHG. While the 
RSC is closely connected with the vPCC, the PHG is mainly associated with the dPCC. The ‘causal’ relationship 
of BOLD activations among these regions, as described by the GC causality analysis (see Fig. 8), suggests a similar 
dependency among the three regions, with the PCC and mPFC serving as the network controller.

Our finding is in agreement with recent theories about the cognitive functions of the default mode network 
and the posterior cingulate cortex that have been established using both human and animal models32,38,39,41–43,62–64. 
The neuronal activities in the posterior cingulate cortex can reflect the detection of rapid changes in the environ-
ment (in our case, unpredicted runtime errors) as well as change in the context of the demanding task (e.g. the 
block in which the error occurred) to promote the search for new strategies and policies to maximize partici-
pants’ behavioral outcomes. It is also worth noting that both the behavioral accuracy and neuronal activities in 
the PCC and PHG were also enhanced for the control condition as the experiment proceeded, suggesting that 
the PCC and PHG might not only be involved in the processing of unexpected errors but also in evaluating and 
generalizing their strategies across conditions (context) in the experimental environment. The roles of the PCC 
and PHG might be involved in evaluating the task environment, adjusting strategies and allocating resources 
to perform the task across trials and conditions37,38,43. As participants progressed through the experiment, they 
could familiarize themselves with the timing of when an error might occur. Consequently, they have reallocated 
their resources to prioritize their performance of the task when no errors would occur, in particular for the 
control condition. Accordingly, we observed performance enhancement for the control condition on both the 
medium and hard trials.

The lack of modulation from the executive control network might be related to how the error conditions have 
been constructed in our study. The occurrence of errors in our study were predictive of the blocks or context 
the participants were experiencing. The occurrence of errors did not provide information about the upcoming 
trials, which would have allowed the participants to conduct a trial-by-trial update of the information they have 
accumulated over the course of performing the arithmetric tasks as done in many previous studies27,29,42. It is 
possible that the change in environmental context are more closely related to the PCC and the default mode 
network rather than the DLPFC and the basal ganglia nuclei in the executive control network.

While the design of our study has allowed us to measure the neuronal and behavioral responses to unpredicted 
runtime errors, we could not determine how these neuronal changes are related to participants’ stress states. Thus, 
our study could benefit from additional physiological measurements, including heart rate and cortisol levels, to 
quantitively measure the corresponding stress responses of the participants. Our study would also benefit from 
psychophysiological correlations between the trial-by-trial performance of the participants and the pattern of 
BOLD responses they exhibit in the above-described cortical networks.

One potential limitation of our study is the small number of participants. Although similar to previous pub-
lications, the statistical power of the results and the generalizability of our interpretation of the study could be 
significantly improved with a larger sample size.

To conclude, our study suggests that the posterior cingulate cortex system is largely involved in modulating 
the dynamic behavioral outcomes in response to unpredicted technical errors in human–computer interac-
tions (i.e., technostress arising from techno-unreliability). Our study helps promote the understanding of how 
technical breakdowns of pervasive information technologies might be associated with stress and public health 
consequences.

Data availability
The datasets and scripts used in this study are available from the corresponding author upon reasonable request.
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