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Abstract 

Metric multidimensional scaling is one of the classical methods for embedding data into low-dimensional 
Euclidean space. It creates the low-dimensional embedding by approximately preserving the pairwise distances 
between the input points. However, current state-of-the-art approaches only scale to a few thousand data points. 
For larger data sets such as those occurring in single-cell RNA sequencing experiments, the running time becomes 
prohibitively large and thus alternative methods such as PCA are widely used instead. Here, we propose a simple 
neural network-based approach for solving the metric multidimensional scaling problem that is orders of magnitude 
faster than previous state-of-the-art approaches, and hence scales to data sets with up to a few million cells. At 
the same time, it provides a non-linear mapping between high- and low-dimensional space that can place previously 
unseen cells in the same embedding.

Keywords Metric multidimensional scaling, Neural networks, Large-scale data, Dimensionality reduction, Single-cell 
RNA-seq, Clustering

Background
Single-cell RNA sequencing (scRNA-seq) experiments 
provide quantitative measurements for thousands of 
genes across tens to hundreds of thousands or even mil-
lions of cells. The high-dimensionality as well as the sheer 
size of scRNA-seq data sets pose particular challenges 
for downstream analysis methods such as clustering and 
trajectory inference methods. An essential step in single-
cell data processing is the reduction of data dimensional-
ity to remove noise in gene expression measurements [1]. 
One of the most popular methods for dimensional-
ity reduction of single-cell data is principle component 

analysis (PCA). PCA aims to maximize the variance in 
the reduced space and can be computed efficiently by 
a singular value decomposition. The existence of effi-
cient implementations  [2] has contributed to its routine 
application to large single-cell data sets. PCA is used, 
for example, in state-of-the-art clustering methods Seu-
rat [3], SC3 [4], and CIDR [5], and cell lineage inference 
methods such as TSCAN [6] and Waterfall [7].

Metric Multidimensional Scaling (metric MDS), 
on the other hand, aims to find an embedding that 
preserves pairwise distances between points, which can 
improve the accuracy of various types of downstream 
analyses of single-cell data compared to, e.g., PCA. 
In a comprehensive comparison of 18 dimensionality 
reduction methods on 30 scRNA-seq datasets, MDS 
often outperformed other methods or achieved 
comparable results  [1]. The evaluation in Sun et  al. [1] 
included approaches developed specifically for scRNA-
seq, such as deep-learning based methods scScope  [8] 
and DCA  [9]. MDS yielded accurate and highly stable 
clusterings for both low and high number of embedding 
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dimensions, and performed well when inferring lineages 
using Monocle3 [10].

The high computational cost of metric MDS has hindered 
its wide application to single-cell data sets. In PHATE [11], 
for example, metric MDS is paired with a sampling-based 
approach to cope with its computational complexity. In the 
experiments in Sun et al. [1], however, most dimensionality 
reduction methods, including MDS, showed a performance 
loss when combined with a sub-sampling procedure.

Surprisingly, no algorithm is known that can solve metric 
MDS efficiently with more than a few thousand cells. Here, 
we provide the first such algorithm. Our contributions are 
two-fold: First, we provide a simple two-layer neural net-
work approach that can solve the metric MDS problem for 
(single-cell) data sets with up to a few million data points 
(cells). This is orders of magnitude larger than current 
state-of-the-art methods can handle. Second, our approach 
for the first time learns a non-linear mapping of the high-
dimensional points into the low-dimensional space, which 
can be used to place previously unseen cells in the same 
low-dimensional embedding.

Preliminaries
MDS comes in three different versions: (1) classical 
MDS, (2) metric MDS, and (3) non-metric MDS, aka 
ordinal scaling. While we focus here on metric MDS, it 
is important to understand all three methods and their 
differences.

Suppose we are given n data points xi ∈ R
m that 

we want to embed into Rk where k < m . Let yi be the 
corresponding point of xi in the low-dimensional space 
R
k.
Classical MDS Classical MDS tries to map these data 

points into Rk while trying to preserve the pairwise inner 
products 〈xi, xj〉 . Specifically, it solves the optimization 
problem

Metric MDS Metric MDS tries to preserve the 
pairwise distances between the points, i.e., it solves the 
optimization problem

where ‖.‖ denotes the Euclidean norm and wij ≥ 0 are 
some given weights.

Non-metric MDS Non-metric MDS embeds the data 
into low-dimensional Euclidean space by preserving only 
the relative distance ordering, i.e, it solves the optimiza-
tion problem

min
y1,y2,...,yn∈Rk

∑

i,j

(〈

xi, xj
〉

−
〈

yi, yj
〉)2

miny1,y2,...,yn∈Rk

∑

i,j

wij

(∥

∥xi − xj
∥

∥−
∥

∥yi − yj
∥

∥

)2
,

where f is a monotonically increasing function. Note, only 
the ordering of the pairwise distances is important here 
which should be preserved and not the actual distances.

All three formulations differ only in the objective 
functions that are minimized. While this seems like 
a minor difference, it has a substantial impact on its 
computability. It can be shown that classical MDS is 
equivalent to PCA when the input points are given 
explicitly and hence can be solved efficiently by a 
singular value decomposition. Thus, it can be solved 
efficiently for large data sets, having millions of cells. 
The computational complexity of metric MDS is 
fundamentally different. It has been shown that metric 
MDS is NP-hard when the target dimension is one [12] 
and it is believed that it is NP-hard in general. Hence, 
no efficient algorithm is likely to exist for solving this 
problem optimally. However, even finding a local minima 
is very time consuming. The most popular algorithm 
for solving this problem is the SMACOF algorithm [13]. 
However, its running time grows quadratically in the 
number of data points n. It can only be applied to solve 
this problem with up to a few thousand data points.

There is one more important difference between 
classical MDS and metric MDS; it can be shown that 
in classical MDS the optimal solution corresponds to 
a linear mapping of the high-dimensional space Rn into 
the low-dimensional Euclidean space Rk . This is not true 
for metric MDS. The optimal solution for metric MDS 
does not correspond to a linear mapping. Asking for a 
linear mapping leads to suboptimal solutions. Having a 
mapping from the input space Rm into the output space 
R
k is important for new, unseen data points. For instance, 

one can compute the mapping on a training set and apply 
the same mapping to the test set as it is common practice 
for other low-dimensional embedding and preprocessing 
methods like PCA. The SMACOF algorithm does not 
provide such a mapping.

Often, the input points are not given explicitly, but 
instead, their pairwise distances or pairwise scalar 
products are given. In this case, such a mapping cannot 
be provided.

Related work
Multidimensional scaling has a long history [14]. Clas-
sical MDS was first studied by Torgerson [15] and 
independently by Gower [16]. They used an eigenvec-
tor decomposition to solve the problem. Later, Kruskal 
[17] defined the problem of metric MDS as an optimi-
zation problem and used a steepest descent approach 
for solving it. Leeuw [13] improved the running time 

miny1,y2,...,yn∈Rk ,f

∑

i,j

wij(f
(∥

∥xi − xj
∥

∥−
∥

∥yi − yj
∥

∥

)2
,
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of Kruskal’s algorithm by using an iterative majorization 
approach. This algorithm is referred to as SMACOF algo-
rithm. Surprisingly, it still represents the state-of-the-art 
for solving the metric MDS problem. The non-metric MDS 
problem was introduced by Kruskal [17] and Guttman [18]. 
It is mainly used in the psychometric area.

The research on MDS can be split up into two branches; 
improving statistical performance and improving speed. 
Here, we focus on the latter one. The books by Cox and 
Cox [19], and Borg and Groenen [20] provide an in-depth 
coverage on the statistical properties and applications of 
MDS. See also the book by Burges [21] for a comparison 
of MDS to other embedding techniques.

When the input points are given explicitly, then classical 
MDS can be shown to be equivalent to PCA. Hence, com-
putational speed is no issue in this case. When the input is 
instead a distance matrix, Qu and Cai [22] and Yang et al. 
[23] used a divide-and-conquer approach for scaling up clas-
sical MDS to larger data sets. However, their approach only 
works for the classical MDS problem.

A technique called landmark MDS was introduced by 
Silva and Tenenbaum [24]. The idea behind this approach 
is to select only a subset of the input points, called land-
marks, compute the distance matrix between these 
points, and use only these points for the embedding. 
Hence, it can scale to larger data sets at the expense of 
ignoring the majority of the input points in the embed-
ding process. This approach is also used in Isomap by 
Tenenbaum et al. [25]. Williams [26] provided a similar-
ity between kernel PCA and metric MDS. However, they 
are both similar but not equivalent due to their computa-
tional complexity (P vs. NP).

As already stated, classical MDS can be solved 
to optimality via a linear mapping. This is not true 
for the metric MDS. Sammon [27] set the weights 
wij = 1/�xi − xj� in the metric MDS problem and used 
a steepest descent algorithm for embedding the data. 
However, unlike the title suggests, it does not provide a 
mapping from the input space Rm to the target space Rk.

There have also been some early attempts on solving 
the metric MDS problem using neural networks. This 
includes works by Mao and Jain [28] and Ridder and Duin 
[29]. However, their approaches scaled to very small data 
sets with up to a few hundred data points only. While the 
neural network approach later was used for other non-
linear embedding and dimensionality reduction methods 
and gave rise to autoencoders, see, e.g., the seminal work 
by Hinto and Salakhutdinov [30], they have never been 
used successfully for solving reasonably-sized metric 
MDS problems. Wezel et al. [31] used a neural network 
approach for classical MDS and considered non-metric 
MDS in Wezel and Kosters [32]. However, they did not 
consider the metric MDS problem.

Multidimensional scaling and linear mappings
In this section we will introduce projected metric MDS 
as an intermediate version of MDS that combines the 
optimization objective of metric MDS with the linear 
mapping obtained from classical MDS.

When applying MDS to a given input set, it is often 
important to also obtain the corresponding mapping, 
i.e., the mapping that maps the whole input space Rm 
to the output space Rk . This is for instance necessary 
when MDS is used as a preprocessing step. One usually 
computes the embedding on the given training data 
set and applies the same mapping to the test data set, 
i.e., to new, unseen data points without recomputing 
the whole problem again. This is common practice in 
preprocessing steps like PCA and also necessary in 
order to not induce a shift in the distribution of the test 
data. Hence, it is important to obtain such a mapping 
along with the actual embedding.

Let X ∈ R
n×m be the matrix where the ith row is 

the ith input point xi ∈ R
m . We define the distance 

matrix DX ∈ R
n×n as (DX )ij = �xi − xj� . Let D2

X 
be the elementwise squared distance matrix, i.e., 
(D2

X )ij = �xi − xj�2 . Let Y and DY  be defined accordingly 
for the output points yi.

Classical MDS minimizes the error on the pairwise 
scalar products, i.e., 

∑

i,j(�xi, xj� − �yi, yj�)2 . It has 
been shown that the optimal solution leads to a linear 
mapping which is obtained by the top-k eigenvectors 
of the Gram matrix X⊤X . The following computation 
shows that classical MDS can be translated into an 
optimization problem where approximately the error 
on the squared distances is minimized.

The objective function of classical MDS can be 
rewritten in matrix notation as

It holds that X⊤X = − 1
2HD

2
XH , where H = I− 1

nee
⊤ is 

a centering matrix with I being the identity matrix and 
e ∈ R

n the all-ones vector.
Hence, the objective function of classical MDS can be 

rewritten as

Note, this is very similar, however not equivalent to

i.e., to the problem of minimizing the error on the 
squared distances. Compare this to the metric MDS 
problem that solves

min
Y

�X⊤X − Y⊤Y �2F .

min
Y

1

2

∥

∥

∥H
(

D2
X − D2

Y

)

H
∥

∥

∥

2

F
.

min
Y

1

2
�D2

X − D2
Y �2F ,
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Hence, classical MDS can be seen as approximately 
minimizing the error of the squared distances while 
metric MDS tries to minimize the error of the distances. 
Thus, classical MDS can be a bit more sensitive to outliers 
in the data. One could then ask for an intermediate 
approach between classical and metric MDS; one could 
try to minimize the error on the distances while asking 
for a linear mapping. This gives rise to the projected 
metric MDS problem.

Definition 1 (projected metric MDS) Given some input 
data X ∈ R

n×m , projected metric MDS solves the follow-
ing optimization problem

Matrix P ∈ R
m×d along with the constraint forces the 

mapping to be linear. The following theorem relates 
the optimal solution of projected metric MDS to the 
optimal solution of metric MDS.

Theorem  1 Let X ∈ R
n×m be an input data matrix 

with centered rows, Y ∗ ∈ R
n×k the solution of metric MDS 

and P∗ ∈ R
m×k the solution of the projected metric MDS. 

Then, the following inequality holds:

where r = rank(X).

In order to prove the theorem, we will need two 
technical lemmas (Lemma  1 and Lemma  2) and 
Proposition  1, where we show how to compute a 
projection matrix P such that the projected points are 
close to the given ones in a least-square sense. We show 
that this optimization problem has a closed formula 
solution and use this result as a way to generate 
a feasible solution for the projected metric MDS 
instance. After this we are ready to state the proof of 
Theorem 1.

Definition 2 We say that rows of data matrix X are 
centered if

Lemma 1 If X ∈ R
n×m is centered, then for each 

P ∈ R
m×k matrix XP is centered.

min
Y

1

2
�DX − DY �2F .

min
P,Y

�DX − DY �2F
st. Y = XP.

�DX − DXP∗�F − �DX − DY ∗�F
�DY ∗�F

≤
√
n− r + 2,

(1)
n

∑

i=1

xij = 0, ∀j ∈ {1, . . . , d}.

Proof Since X is centered, we have

where 1 ∈ R
n is vector of ones. From associativity of 

matrix multiplication we have that

which implies that XP is centered.   �

Lemma 2 Let X ∈ R
n×m be a matrix with centered 

rows. Then

Proof Since

and rows of X are centered, we have

  �

Proposition 1 Let X ∈ R
n×m be an input data matrix, 

Ỹ ∈ R
n×k for some k < m , and a singular value decompo-

sition of X given by the following:

where U = [U1 U2] , U1 ∈ R
n×r , U2 ∈ R

n×(n−r) 
and V = [V1 V2] , V1 ∈ R

m×r , V2 ∈ R
m×(m−r) are 

orthogonal matrices. �̃ ∈ R
r×r is a diagonal matrix 

that contains r non-zero singular values such that 
σ1 ≥ σ2 ≥ . . . ≥ σr > 0 , where r is a rank of matrix X.

The solution of the following optimization problem

1TX = 0,

0 = 1
TX =

(

1
TX

)

P = 1
T (XP),

�DX�2F = 2n�X�2F .

(DX )
2

ij =
(

xi − xj
)T (

xi − xj
)

= xTi xi + xTj xj − 2xTi xj

n
�

i=1

n
�

j=1

(DX )
2

ij =
n

�

i=1

n
�

j=1

�

xTi xi + xTj xj − 2xTi xj

�

=
n

�

i=1

n
�

j=1

xTi xi +
n

�

i=1

n
�

j=1

xTj xj

− 2

�

n
�

i=1

xi

�T




n
�

j=1

xj





= 2n�X�2F .

(2)X =
[

U1 U2

]

[

�̃ 0
0 0

][

VT
1

VT
2

]
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is given by

whose objective value is

Proof The objective function in (3) can be rewritten as 
follows:

(3)min
P

�Ỹ − XP�2F

(4)P̃ = V1�̃
−1UT

1 Ỹ ,

(5)�Ỹ − XP̃�2F = �UT
2 Ỹ �2F .

where last equality follows from unitary invariance of 
Frobenius norm. We introduce substitution

such that the objective in (7) is

where UT
1 Ỹ − �̃Z1 can be set to zero matrix when Z1 is a 

solution of the following equation:

(6)

∥

∥

∥Ỹ − XP
∥

∥

∥

2

F
=

∥

∥

∥
Ỹ −U�VTP

∥

∥

∥

2

F

=
∥

∥

∥UT
(

Ỹ − U�VTP
)∥

∥

∥

2

F

(7)= �UT Ỹ −�VTP�2F ,

(8)
[

Z1

Z2

]

=
[

VT
1 P

VT
2 P

]

,

�Ỹ − XP�2F =
∥

∥

∥

∥

[

UT
1 Ỹ

UT
2 Ỹ

]

−
[

�̃Z1

0

]∥

∥

∥

∥

2

F

=
∥

∥

∥

∥

[

UT
1 Ỹ − �̃Z1

UT
2 Ỹ

]∥

∥

∥

∥

2

F

,

Indeed, Z1 = �̃−1UT
1 Ỹ  , while Z2 can be set to 0 since 

it does not affect the objective value. Substitution of Z1 
from (8) gives the solution (4) whose objective value is 
given in (5).

  �

Now we are ready to state the proof of Theorem 1

Proof of Theorem 1 In order to prove the inequality, we 
first bound (DỸ − DXP̃)

2
ij.

Now, from Cauchy-Schwartz inequality follows that 
ỹTi ỹj ≤ |ỹTi ỹj| ≤ �ỹi�2�ỹj�2 which gives

and analogously

From (9), (10), and (11) follows that

�̃Z1 = UT
1 Ỹ .

(9)

(

DỸ − DXP̃

)2

ij
=

(

(

DỸ

)

ij
−

(

DXP̃

)

ij

)2

=
(

DỸ

)2

ij
− 2

(

DỸ

)

ij

(

DXP̃

)

ij
+

(

DXP̃

)2

ij

=
∥

∥ỹi
∥

∥

2

2
− 2ỹTi ỹj +

∥

∥ỹj
∥

∥

2

2

+
∥

∥

∥P̃T xi

∥

∥

∥

2

2

− 2xTi P̃P̃
T xj +

∥

∥

∥P̃T xj

∥

∥

∥

2

2

− 2

√

∥

∥ỹi
∥

∥

2

2
− 2ỹTi ỹj +

∥

∥ỹj
∥

∥

2

2
·
√

∥

∥

∥P̃T xi

∥

∥

∥

2

2

− 2xTi P̃P̃
T xj +

∥

∥

∥P̃T xj

∥

∥

∥

2

2

(10)

∥

∥ỹi
∥

∥

2

2
− 2ỹTi ỹj +

∥

∥ỹj
∥

∥

2

2
≥
∥

∥ỹi
∥

∥

2

2
+

∥

∥ỹj
∥

∥

2

2

− 2
∥

∥ỹi
∥

∥

2

∥

∥ỹj
∥

∥

2

=
(∥

∥ỹi
∥

∥

2
−

∥

∥ỹj
∥

∥

2

)2
,

(11)

∥

∥

∥
P̃T xi

∥

∥

∥

2

2

− 2xTi P̃P̃
T xj +

∥

∥

∥
P̃T xj

∥

∥

∥

2

2

≥
(∥

∥

∥P̃T xi

∥

∥

∥

2

−
∥

∥

∥P̃T xj

∥

∥

∥

2

)2

.
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(12)

(

DỸ − DXP̃

)2

ij
≤
∥

∥ỹi
∥

∥

2

2
− 2ỹTi ỹj +

∥

∥ỹj
∥

∥

2

2
+

∥

∥

∥
P̃T xi

∥

∥

∥

2

2
− 2xTi P̃P̃

T xj

+
∥

∥

∥P̃T xj

∥

∥

∥

2

2
− 2

√

(∥

∥ỹi
∥

∥

2
−

∥

∥ỹj
∥

∥

2

)2

√

(∥

∥

∥P̃T xi

∥

∥

∥

2
−

∥

∥

∥P̃T xj

∥

∥

∥

2

)2

=
∥

∥ỹi
∥

∥

2

2
− 2ỹTi ỹj +

∥

∥ỹj
∥

∥

2

2
+

∥

∥

∥P̃T xi

∥

∥

∥

2

2
− 2xTi P̃P̃

T xj

+
∥

∥

∥
P̃T xj

∥

∥

∥

2

2
− 2

∣

∣

∥

∥ỹi
∥

∥

2
−

∥

∥ỹj
∥

∥

2

∣

∣

∣

∣

∣

∥

∥

∥
P̃T xi

∥

∥

∥

2
−

∥

∥

∥
P̃T xj

∥

∥

∥

2

∣

∣

∣

≤
∥

∥ỹi
∥

∥

2

2
− 2ỹTi ỹj +

∥

∥ỹj
∥

∥

2

2
+

∥

∥

∥P̃T xi

∥

∥

∥

2

2
− 2xTi P̃P̃

T xj

+
∥

∥

∥P̃T xj

∥

∥

∥

2

2
− 2

(∥

∥ỹi
∥

∥

2
−

∥

∥ỹj
∥

∥

2

)

(∥

∥

∥P̃T xi

∥

∥

∥

2
−

∥

∥

∥P̃T xj

∥

∥

∥

2

)

≤
∥

∥ỹi
∥

∥

2

2
− 2

∥

∥ỹi
∥

∥

2

∥

∥

∥
P̃T xi

∥

∥

∥

2
+

∥

∥

∥
P̃T xi

∥

∥

∥

2

2

+
∥

∥ỹj
∥

∥

2

2
− 2

∥

∥ỹj
∥

∥

2

∥

∥

∥P̃T xj

∥

∥

∥

2
+

∥

∥

∥P̃T xj

∥

∥

∥

2

2
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(a) An open box mani-
fold.

(b) PCA cannot unfold
the open box.

(c) Projected metric
MDS behaves similar to
PCA due to its linear
nature.

(d) Metric MDS tries to
unwind the open box.

Fig. 1 We use an open box example (a) in order to illustrate the power of nonlinear mapping, such as metric MDS (d), over the linear mapping, 
such as PCA (b) and projected metric MDS (c)
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which after summing up both sides gives

Now, from |�x� − �y�| ≤ �x − y� and Lemma 1 we obtain 
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While the theorem proves that the objective function 
values of projected metric MDS and metric MDS do not 

differ too much, in practice they still might provide sub-
stantially different solutions. See Fig.  1 for an example. 
Hence, we conclude that it is really necessary to have a 
nonlinear mapping between the input and the output 
space. This motivates the neural network approach intro-
duced below.

The neural network approach
Here we will describe the neural network architecture that 
we used as well as the algorithm for computing the metric 
MDS mapping. We use a simple fully-connected neural 
network with a single hidden layer and a tanh activation 
function. The size of the input layer corresponds to the 
dimension of the input data n, while the size of the output 
layer corresponds to the dimension k of the output data. 
The size of the hidden layer is chosen as an estimate of the 
intrinsic dimension of the input data set. In practice, we 
estimated the intrinsic dimension by computing a SVD of 
the input data and selecting the top k singular values that 
retain at least 95% of the data variance.

The motivation for our simple neural network 
architecture comes from the fact that any feedforward 
neural network with only a single hidden layer and any 
infinitely differentiable sigmoidal activation function, 
i.e., a function that retains the “S” shape can uniformly 
approximate any continuous function on a compact 
set, see, e.g., [33]. Furthermore, any mapping from the 
input points to the output points can be extended to a 
continuous mapping from Rn to Rk , provided that the set 
of input points is finite and no two input points share the 
same coordinates, i.e., xi  = xj for i  = j . Hence, a neural 
network should be able to approximate that mapping 
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arbitrarily well. Due to the simplicity, differentiability, 
and the small number of parameters compared to the 
number of input points and features, there is little chance 
of overfitting. As can be seen in the experiments, the 
found mapping generalizes well on test data.

Algorithm 1 NN approach for metric MDS problem

We adopt the standard batch stochastic gradient 
descent approach and partition the input data set into 
a set of batches. We optimize the weights in our simple 
neural network following the idea of the Siamese neural 
network approach, see, e.g., [34]. The basic idea of this 
approach is that in each learning step the neural net is 
shown two points, say xi and xj . The outputs are stored 
for both points, say yi and yj respectively and the dis-
tance �yi − yj� between the output vectors are calculated. 
A loss function is defined in terms of the squared differ-
ence of this distance and the distance between the points 
in the input space �xi − xj� , for all pairs of input points 
in the current batch. The weights of the neural network 
are updated using the Adam optimizer. Since the data is 
shuffled after each epoch, we sample the input distance 
matrix uniformly at random which provides an unbiased 

(a) USPS train data. (b) USPS test data. (c) CIFAR10 train data. (d) CIFAR10 test data.

(e) SVHN train data. (f) SVHN test data. (g) MNIST train data. (h) MNIST test data.
Fig. 2 The loss of the metric MDS problem for different values of the target dimension for train and test data sets. The loss function is displayed 
on a logarithmic scale. Due to its quadratic running time, SMACOF was run only on the smallest USPS data set

(a) Glove.6B data set with 400000
data points.

(b) FastText data set with 1M data
points.

(c) Glove.840B data set with 2.1M
data points.

Fig. 3 Comparison of the loss function of the metric MDS problem for random projections (RP), PCA, and our neural network (NN) approach
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estimate of it. We set the batch size to 256 points which 
provides a good tradeoff between memory consumption 
and number of iterations needed to converge. All the 
steps of our simple but efficient approach are summa-
rized in Algorithm 1.

Experiments
We implemented the neural network (NN) approach and 
compared it to other methods for solving MDS.1 
Specifically, we compared it to the SMACOF algorithm 
which still represents the state-of-the-art for solving the 
metric MDS problem. However, due to its inherent 
quadratic runtime and space complexity, it is prohibitive 
to run it on data sets with more than a few thousand data 
points. To still assess the quality of our neural network 
approach, we also compared it to a random projection 
(RP) approach. In the random projection approach, a 
random Gaussian matrix is used for projecting the points 
into a low-dimensional Euclidean space. The well-known 
Johnson-Lindenstrauss lemma  [35] states that such a 
random projection can embed any n-point data set into a 
low-dimensional Euclidean space of dimension at most 
O
(

log n

ε2

)

 while incurring a multiplicative distortion error 
of no more than 1+ ε for any small ε > 0 in the worst 
case. Dasgupta [36] showed that in general this approach 
works surprisingly well when trying to embed a data set 
while preserving inter-cluster distances. We also 
compared our neural network approach to PCA to 

demonstrate that the preservation of distances as explic-
itly optimized for in mMDS cannot be obtained as a by-
product of a much simpler optimization model (here 
classical MDS). Finally, we also compared it to the 
projected metric MDS problem that we have defined 
above. We solved the projected metric MDS problem 
using a quasi-Newton method combined with a 
smoothing technique. Note that this approach also does 
not scale well to large data sets.

We ran the experiments on a Ryzen 9 3900X CPU with 
12 cores running at 3.8 GHz, 64 GB DDR4 RAM and a 
RTX 2080 graphics card using an Ubuntu 19.10. operat-
ing system. All implementations were done in Python 3.7. 
We used PyTorch 1.5.1 for the neural network approach. 
We used the implementation of the random projection, 
PCA, and SMACOF algorithm from scikit-learn 0.22.1.

Comparison of loss and running time of metric MDS
Figure  2 shows the metric MDS loss achieved by the 
different methods on the USPS, MNIST, CIFAR10, and 
SVHN data sets for different embedding dimension k. For 
each data set, we computed the embedding on the train 
data set and then applied the mapping of the input space 
to the lower-dimensional output space provided by each 
method (except SMACOF) to new, unseen data points 
from the test data set. Since the SMACOF algorithm 
does not provide such a mapping we recomputed the 
embedding of combined train data and test data and 
reported the loss of SMACOF on the test data set 
in Fig.  2b. On the smallest USPS data set our neural 
network approach is typically at least as good as the 
SMACOF algorithm, which we could not run on other 
(larger) data sets due to its prohibitive running time. As 
expected, both methods yielded substantially smaller 
loss across data sets than the remaining methods that 
do not explicitly optimize the same objective. Note that 
the metric MDS loss function is plotted on a logarithmic 
scale.

Figure  3 shows consistent results on three word 
embedding data sets that represent words as vectors 
that geometrically capture the semantics of the words. 
More precisely, the Glove data set consists of 2 data 
sets: glove.6B learned word vectors on Wikipedia 

Table 1 Running times of SMACOF and our neural network based  
approach on data sets of different size

The dimension of the output space k was fixed to 12 in this experiment. Times 
are presented in format hh:mm:ss. Missing values indicate that the solver did not 
finish within 24 h

Dataset Size n SMACOF NN

USPS 7291 256 0:11:28 0:05:14

MNIST_5 5000 784 0:21:41 0:03:43

MNIST_10 10000 784 1:22:12 0:04:09

MNIST_15 15000 784 3:05:47 0:05:47

MNIST_20 20000 784 5:38:38 0:07:11

MNIST_25 25000 784 8:47:28 0:08:53

MNIST_30 30000 784 12:40:55 0:10:20

MNIST 60000 784 – 0:21:21

CIFAR10 50000 3072 – 0:27:45

SVHN 73257 3072 – 0:50:56

FastText 999994 300 – 2:52:18

Glove.6B 400000 100 – 1:02:32

Glove.840B 2196016 300 – 6:07:24

Table 2 Average scores of ARI and NMI metrics across 5 real data 
sets

Clusterings are obtained from embeddings computed by mMDS using 
correlation, cosine and euclidean distance

Metrics Correlation Cosine Euclidean Seurat (PCA)

ARI 0.9177 0.9179 0.8681 0.8180

NMI 0.9325 0.9302 0.8880 0.8757

1 The source code is publicly available via https:// github. com/ dmati jev/ 
nnMDS. git.

https://github.com/dmatijev/nnMDS.git
https://github.com/dmatijev/nnMDS.git
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2014 dump (size 400 K), and glove.840B learned word 
vectors on Common Crawl corpus (size 2.2.M). The 
FastText data set wiki-news-300d-1 M holds 1 M word 
vectors trained on Wikipedia 2017 dump, UMBC 
webbase corpus and statml.org news dataset. We had 
to exclude SMACOF from this comparison due to its 
quadratic running time.

We also report the running time of our approach 
in Table  1 and compare it to the running time of the 
SMACOF algorithm when embedding the different data 
sets into dimension k = 12 . We observed that neither the 
running time of SMACOF nor of our approach depends 
on the dimension k. Since the SMACOF algorithm can 
handle only small data sets we subsampled the MNIST 
data set. We always ran our approach for 1000 epochs on 
all data sets. Table 1 shows that the running time of the 
SMACOF algorithm grows quadratically in the number 
of data points. In contrast, our approach shows an 
approximately linear dependence, which allows it to be 
applied to large data sets where it is orders of magnitude 
faster than the current state-of-the-art approach.

Metric MDS based clustering of scRNA‑seq data
A comprehensive comparison of method for clustering 
single-cell RNA sequencing (scRNA-seq) data based on 
generic as well as scRNA-seq specific dimensionality 
reduction methods, including classical MDS, has been 
performed in Sun et  al. [1]. Here, we demonstrate the 
utility of metric MDS for the clustering of scRNA-seq 
data. The unsupervised clustering of scRNA-seq data 
allows to identify known as well as novel cell types 
based on the cell’s transcriptomes. Seurat  [37] is the 
most widely used computational method for clustering 
of scRNA-seq. It is based on the Louvain clustering 
algorithm and relies on a prior preprocessing of the 
data that includes, among others, a dimensionality 
reduction step using principle component analysis 
(PCA). A major advantage of metric MDS over PCA 

is its flexibility with respect to the distance metric 
that is used in the underlying optimization problem. 
We therefore compared the standard Seurat clustering 
pipeline to a pipeline in which we replaced the PCA 
step by our metric MDS approach but kept all other 
computational steps identical. In metric MDS we 
experimented with 3 different distance metrics, the 
Euclidean, cosine, and correlation based distance.

We compared the PCA and metric MDS based clus-
tering approaches on all but one real data sets that were 
used in Duò et al. [38] to benchmark clustering meth-
ods using cell phenotypes defined independently of 
scRNA-seq. Following [38], we labeled cell types based 
on FACS sorting in the Koh data set, and grouped cells 
according to genetic perturbation and growth medium 
in the Kumar data set. In data set Zhengmix4eq 
(Zhengmix4uneq), the authors in Duò et  al. [38] ran-
domly mixed equal (unequal) proportions of presorted 
B cells, naive cytotoxic T cells, CD14 monocytes, and 
regulatory T cells. Data set Zhengmix8eq additionally 
included equal proportions of CD56 NK cells, naive 
T cells, memory T cells, and CD4 T helper cells. We 
excluded a single data set in which ground truth labels 

(a) Comparison of metric MDS using different distance
metrics and PCA in scRNA-seq clustering on 5 real data
sets. Abbreviation: Zhengmix (Z).

(b) Visualizations of two-dimensional embeddings com-
puted by PCA (left) and correlation based metric MDS
(right) on Zhengmix4eq data set.

Fig. 4 Comparison of metric MDS and PCA

Fig. 5 Accuracy of spatial domain detection by methods CCST 
and SpaGCN when pre-processing 10x Visium data either using 
metric MDS or PCA
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correspond to collection time points that all methods 
in Duò et  al. [38] failed to reconstruct. In agreement 
with recent clustering benchmarks  [38, 39] we used 
the Adjusted Rand Index (ARI)  [40] and Normalized 
Mutual Information (NMI) [41] to quantify the similar-
ity of inferred to ground truth clusterings.

On average, metric MDS yielded more accurate 
clusterings than when applying PCA, independent of 
the specific distance metric used (Table 2). Clusterings 
obtained from embeddings computed by metric MDS 
using correlation or cosine based distances were most 
accurate, and achieved a substantial improvement 
compared to PCA on the three most difficult (with 
respect to PCA performance) data sets (Fig.  4a). 
Performance metric NMI provided a consistent 
picture of method performance. A visualization of the 
two embeddings highlights the better separation of 
cell types by metric MDS compared to PCA on data 
set Zhengmix4eq (Fig.  4b), especially between naive 
cytotoxic and regulatory T cells. Note that this is 
consistent with findings in Sun et  al. [1] where MDS 
performed well in clustering visualization compared to, 
e.g., PCA and t-SNE.

mMDS can improve spatial domain detection
In addition to measuring gene expression in single 
cells, spatially resolved transcriptomics (SRT) provides 
information about the relative location of cells in a tis-
sue section [42]. Compared to clustering (non-spatial) 
scRNA-seq data, spatial clustering can reveal higher-
order tissue structures, i.e. spatial domains, which 
inform many downstream tasks such as marker gene 
detection and the comparison of health and disease 
states [43]. Many existing computational approaches 
to identify spatial domains rely on PCA to pre-process 
SRT data. Here, we used 12 tissue sections from the 
human dorsolateral prefrontal cortex assayed with 
the 10x Visium platform [44] to illustrate the utility of 
mMDS compared to commonly used PCA in pre-pro-
cessing SRT data. We compared the spatial domains 
inferred by methods CCST [45] and SpaGCN [46] to the 
six cortical layers and white matter that were manually 
annotated in the original publication. Both methods rely 
on PCA for initial dimensionality reduction, which we 
have replaced in a separate run by mMDS using identi-
cal target dimensions (200 for CCST, 50 for SpaGCN). 
Figure  5 quantifies the similarity of inferred and true 
clusterings using the Adjusted Rand Index. Both meth-
ods detect cortical layers more accurately when using 
our mMDS approach in place of PCA.

Conclusion
We presented a two-layer neural network approach for 
solving the metric multidimensional scaling problem. 
Our approach provides two advantages over previous 
state-of-the-art approaches; it is orders of magnitude 
faster and scales to much larger data sets with up to a 
few million data points and may thus represent a viable 
alternative to the widely used PCA in single-cell analysis. 
At the same time it provides a mapping of the input 
space to the output space. This allows to apply the same 
embedding to new, unseen data, which prevents inducing 
a shift in the data distribution for test data.

On datasets used in a previous benchmark study, 
we demonstrated the utility and flexibility of metric 
MDS in the analysis of scRNA-seq data. Our algorithm 
allows for the first time to apply metric MDS to 
large scRNA-seq data sets produced by the highest-
throughput sequencing technologies. It thus provides 
a powerful alternative to methods routinely used to 
represent noisy gene expression measurements in a 
low-dimensional subspace useful for the exploration 
and analysis of scRNA-seq data.
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