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Zusammenfassung: 

Hintergrund: Die koronare Computertomographiean-

giographie (CCTA) ist ein wesentlicher Bestandteil 

der Diagnose des chronischen Koronarsyndroms 

(CCS) bei Patienten mit einer niedrigen bis interme-

diären Vortestwahrscheinlichkeit. Minimale techni-

sche Anforderung für die CCTA ist eine 64-Zeilen-

Multidetektor-CT (64-MDCT), die zwar aufgrund ihrer 

Verfügbarkeit häufig Anwendung findet jedoch durch 

ihre begrenzte zeitliche Auflösung und z-Abdeckung 

anfällig für Bewegungsartefakte ist. In dieser Studie 

bewerten wir das Potenzial eines auf Deep Learning 

basierenden Bewegungskorrekturalgorithmus 

(MCA), um diese Bewegungsartefakte zu eliminie-

ren. 

Methoden: In dieser Studie wurden 124 mit einer 64-

MDCT durchgeführten CCTA-Untersuchungen mit 

zumindest geringfügigen Bewegungsartefakten aus-

gewertet. Die Bilder wurden unter Verwendung eines 

konventionellen Rekonstruktionsalgorithmus (CA) 

und eines MCA rekonstruiert. Die Bildqualität (IQ) 

wurde gemäß einer fünfstufigen Likert-Skala pro 
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Segment, pro Arterie und pro Patient bewertet und 

mit potenziell Störfaktoren (Herzfrequenz (HR), intra-

zyklische HR-Veränderungen (ΔHR), Body mass in-

dex (BMI), Alter und Geschlecht) korreliert. Auf sta-

tistische Signifikanz wurde mittels Wilcoxon-Vorzei-

chen-Rang-Test und auf Korrelation mittels Spe-

arman's Rho getestet. 

Ergebnisse: Pro Patient nahm der Anteil der CCTA-

Untersuchungen mit unzureichender IQ um 5,26% 

ab, und der mit ausreichender IQ stieg um 9,66% mit 

MCA. Pro Arterie nahm der Anteil mit unzureichender 

IQ der rechten Koronararterie (RCA) um 18,18% ab, 

und der mit ausreichender IQ stieg um 27,27%. Pro 

Segment nahm der Anteil mit unzureichender IQ in 

den Segmenten 1 und 2 um 11,51% bzw. 24,78% ab, 

und der mit ausreichender IQ stieg um 10,62% bzw. 

18,58%. Die Gesamtanzahl der Artefakte pro Arterie 

verringerte sich in der RCA von 3,11 ± 1,65 auf 2,26 

± 1,52. Die Abhängigkeit der IQ der RCA von der HR 

nahm in Bildern mit MCA-Rekonstruktion zu einer in-

termediären Korrelation ab. 
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Zusammenfassung: Der angewandte MCA verbes-

sert die IQ von mit 64-MDCT aufgenommenen Bil-

dern und reduziert den Einfluss der HR auf die IQ, 

was die Validität von 64-MDCT bei der Diagnose von 

CCS erhöht. 

 

Abstract: 

Background: Coronary computed tomography angi-

ography (CCTA) is an essential part of the diagnosis 

of chronic coronary syndrome (CCS) in patients with 

low-to-intermediate pre-test probability. The mini-

mum technical requirement is 64-row multidetector 

CT (64-MDCT), which is still frequently used, alt-

hough it is prone to motion artifacts because of its 

limited temporal resolution and z-coverage. In this 

study, we evaluate the potential of a deep-learning-

based motion correction algorithm (MCA) to elimi-

nate these motion artifacts. 

Methods: 124 64-MDCT-acquired CCTA examina-

tions with at least minor motion artifacts were in-

cluded. Images were reconstructed using a conven-
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tional reconstruction (CA) algorithm and an MCA. Im-

age quality (IQ), according to a five-point Likert scale, 

was evaluated per segment, per artery, and per pa-

tient and was correlated with potentially disturbing 

factors [heart rate (HR), intra-cycle HR changes, 

BMI, age, and sex]. Comparison was done by Wil-

coxon-Signed-Rank test, and correlation by 

Spearman's Rho. 

Results: Per patient, insufficient IQ decreased by 

5.26%, and sufficient IQ increased by 9.66% with 

MCA. Per artery, insufficient IQ of the right coronary 

artery (RCA) decreased by 18.18%, and sufficient IQ 

increased by 27.27%. Per segment, insufficient IQ in 

segments 1 and 2 decreased by 11.51% and 

24.78%, respectively, and sufficient IQ increased by 

10.62% and 18.58%, respectively. Total artifacts per 

artery decreased in the RCA from 3.11 ± 1.65 to 2.26 

± 1.52. HR dependence of RCA IQ decreased to in-

termediate correlation in images with MCA recon-

struction. 

Conclusion: The applied MCA improves the IQ of 64-

MDCT-acquired images and reduces the influence of 
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HR on IQ, increasing 64-MDCT validity in the diag-

nosis of CCS. 

 

Keywords: Coronary computed tomography angi-

ography; single-source computed tomography; 64-

detector row computed tomography; motion artifact 

reduction; deep learning-based algorithm; motion 

correction algorithm 
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1 Introduction 

 

Since the introduction of the 64-multidetector 

computed tomography (MDCT) scanner, computed 

CT angiography (CCTA) has emerged as a widely ac-

cessible and established non-invasive diagnostic tool 

for assessing chronic coronary syndrome (CCS)1. 

Previous studies have demonstrated the equivalence 

of CCTA to both non-invasive functional testing and 

invasive coronary angiography (ICA) in the risk as-

sessment and estimation of major adverse cardio-

vascular events (MACE) in cases with low to inter-

mediate pre-test probability (PTP)2-5. These findings 

are noteworthy, given that ICA is considered the ref-

erence method for CCS evaluation, and makes 

CCTA appealing as an alternative diagnostic method 

for low to intermediate-risk patients. Particularly, as 

ICA is associated with a low incidence of serious pro-

cedure-related complications, including major bleed-

ing (0.5-2%), heart attack, stroke, or death (0.1-

0.2%)3,6,7. Moreover, non-invasive functional tests 

based on CCTA have also been introduced recently, 
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including computed tomography perfusion (CTP) and 

fractional flow reserve CT (FFRCT)8,9. In this way, 

CCTA can be used to assess the hemodynamic sig-

nificance of a coronary stenosis, increasing the ac-

curacy of CCS diagnosis.  

In light of these advancements, the European 

Society of Cardiology (ESC) has revised its guide-

lines for the diagnosis and treatment of CCS, now 

recommending CCTA as the primary diagnostic 

method for CCS in populations with a low to interme-

diate PTP10-12. However, application of CCTA has 

limitations as image quality (IQ) can be compromised 

due to factors such as extensive coronary calcifica-

tion, the patient's inability to cooperate with breath-

hold commands, significant obesity, and a high and 

variable heart rate (HR and HRv)13. Especially, false-

positive results due to HR- and HRv-related motion 

artifacts present a challenge for CCTA, given the 

small diameter (1-5 mm) of the coronary arteries and 

a displacement of up to 1 cm during the cardiac cy-

cle14-16.  
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Strategies to mitigate the impact of motion ar-

tifacts on IQ and interpretability involve both hard-

ware and software approaches. Hardware improve-

ments primarily focus on increasing temporal resolu-

tion by reducing gantry rotation time, applying half-

scan rotation, and utilizing high-pitch imaging. The in-

troduction of dual-source (DSCT) and MDCT is con-

sidered to have the most profound impact on CCTA 

applicability, as it significantly increases temporal 

resolution, allowing for the capture of images of the 

entire heart during one heart cycle17-20. Additionally, 

the effect of cardiac motion can be further reduced 

by applying prospective electrocardiographic (ECG)-

gated axial ("step-and-shoot scan" [PGI]) or retro-

spective ECG-gated helical (RGH) acquisition to se-

lect the most quiescent cardiac phase for imaging, 

typically the end-systolic and mid-diastolic 

phase15,21. During image reconstruction, RGH 

merges data from multiple volume blocks acquired 

during different cardiac cycles within a defined car-

diac phase, effectively eliminating motion artifacts at 

low and constant HR. However, despite efforts such 
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as ECG-guided tube current modulation and low tube 

voltage scanning, RGH is associated with a relatively 

high effective dose due to constant image acquisi-

tion22. In contrast, PGI-guided acquisition is triggered 

by a predefined cardiac phase based on the ECG 

signal (regularly during the R-R interval), minimizing 

the effective dose compared to RGH23. Unfortu-

nately, this makes PGI more dependent on a con-

stantly regular and low HR for accurate acquisition.  

Since an optimal HR cannot be guaranteed, 

HR control is regularly administered through rate-lim-

iting drugs like beta-blockers or ivabradine20,24. Sub-

lingual nitroglycerine is also often employed to dilate 

coronary arteries, enhancing IQ25. However, optimal 

imaging conditions remain challenging in certain sit-

uations, such as HRv in cardiac arrhythmias or high 

HR in patients insensitive to beta-blockers or with 

contraindications26,27. 

Software-based solutions in the form of mo-

tion correction algorithms (MCA) provide an effective 

remedy for non-diagnostic images plagued by motion 

artifacts. Currently, there are two vendor-specific 
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MCA available in the market. SnapShot Freeze 

(SSF) 1 (GE Healthcare, Waukasha, WI, USA) is pri-

marily designed for CCTA, and its updated version, 

SSF2 (GE Healthcare), can be employed not only for 

CCTA but also for whole heart imaging, such as the 

assessment of the aortic annulus in transcatheter 

aortic valve replacement28,29. These algorithms gen-

erate images from data captured during adjacent car-

diac phases within a single cardiac cycle, occurring 

60 milliseconds before and after a predefined target 

phase. This approach minimizes beat-to-beat incon-

sistencies, heart period variations, or gantry period 

resonance points that could potentially affect the re-

construction. Motion artifacts are corrected by deter-

mining the current vessel position and estimating the 

motion path and velocity in the predefined target 

phase, enabling adaptive correction28,29.  

In several phantom models, SSF1 has been 

described as a useful tool for motion correction, es-

pecially at high HR. It has been shown that SSF1 in 

combination with dual-energy CT (DECT) and 256-
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MDCT can improve image quality and diagnostic ac-

curacy even further30-32. In addition, SSF1 itself was 

used as the basis for further software-based im-

provement in the accuracy of vessel and stenosis di-

ameters through the use of CT number calibrated di-

ameters 33.  

In clinical settings, the application of SSF1 has 

improved IQ  and interpretability in both 64- and 256-

detector row CTs34-37. Importantly, motion correction 

with SSF1 has been demonstrated to be independent 

of HR and HRv in most studies, although some high-

light the necessity of sufficient HR control to optimize 

IQ  in the presence of SSF138-42. Additionally, SSF1 

has been effective in mitigating image distortions re-

lated to body mass index (BMI), such as photon star-

vation, scatter, and truncation artifacts43,44. There-

fore, SSF1 is widely regarded as a valuable tool for 

supporting CCTA in CCS diagnosis and the evalua-

tion of external devices, including stents and coro-

nary artery bypass grafts (CABG)45-49.  
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Furthermore, SSF1 has illustrated a reciprocal 

benefit, not only improving hardware but also bene-

fiting from it. So, the combination of motion correction 

by SSF1 with DECT has led to further improvements. 

DECT, characterized by rapid switching between low 

and high tube potentials, facilitates the reconstruc-

tion of monochromatic images. This enhances the 

contrast of the intracoronary lumen, improving the 

tracking performance of SSF1. DECT also attenu-

ates blooming and radiation hardening effects asso-

ciated with excessive calcification, further boosting 

the effectiveness of SSF150,51. Equally significant, 

SSF1 serves as a useful complement to PGI, pre-

serving good IQ  even at high HR. This allows the 

application of PGI at higher HR or HRv, resulting in a 

lower overall effective dose36,40.  

In 2019, SSF2, a further development of 

SSF1, was introduced. Preliminary literature sug-

gests that the positive effects of SSF2 on IQ  are 

even more profound compared to its predecessor16. 

However, it's important to note that both MCA, SSF1 
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and SSF2, are vendor-specific and applicable only to 

specific CT scanners.  

Recognizing the clinical utility of MCA in miti-

gating motion artifacts, there is ongoing exploration 

of approaches to develop more widely applicable, 

non-vendor-specific MCA using various technical 

strategies52. 

Lossau et al. (2019)53 classified four MCA-

based approaches for motion estimation and correc-

tion: registration-based, metric-based, partial angle 

reconstruction (PAR)-based, and image-based ap-

proaches. The registration-based approach, akin to 

SSF technology, utilizes 3-D/3-D registered filtered 

back projections (FBP). The core principle involves 

calculating a 4-dimensional motion vector field (MVF) 

from two corresponding points of a reference and a 

target heart phase. The resulting MVF is employed to 

warp the target phases with respect to the reference 

phase, achieving a motionless reconstruction. Image 

data is collected during the most quiescent cardiac 

phase using ECG-guided acquisition. Despite effec-

tively eliminating motion artifacts, registration-based 
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methods are associated with a high effective dose 

due to an extended acquisition period54-57. 

Rohkohl et al. (2013)58 introduced a metrics-

based approach that applies motion artifact metrics 

(MAM), such as entropy and positivity, to 3-D/3-D 

FBP for identifying and quantifying motion artifacts. 

Image reconstructions are iteratively adjusted until 

motion artifacts reach a minimum. However, metric-

based image enhancement is constrained to low and 

regular HR, limiting its clinical applicability. 

PAR-based methods emerge as a promising 

solution to increase temporal resolution at high HR 

while minimizing the effective dose. PAR are created 

by dividing short scan FBP into as many angular seg-

ments as possible, reconstructing these segments 

separately in an angular range much smaller than the 

short scan range. Although PAR suffer from limited 

viewing angle artifacts, each PAR is endowed with a 

very high temporal resolution of 5-10ms, depending 

on the gantry rotation time. This enables PAR to be 

utilized for accurate motion estimation and correc-

tion59-62.  
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Several methods have been proposed to ap-

ply PAR in motion correction. Kim et al. (2015)60 uti-

lized two conjugated PAR images 180° apart to de-

termine the MVF through non-rigid registration. The 

calculated MVF was then used to warp the PAR with 

respect to a predefined centered target phase of 90°, 

obtaining a motion-corrected FBP. Building on this, 

Kim et al. (2018) developed a motion estimation and 

correction model to calculate and compensate for 

motion artifacts in whole-heart images. They esti-

mated 3D MVF based on two orthogonal PAR im-

ages, further processing them to 4D MVF, assuming 

linear motion. These 4D MVF were refined by apply-

ing a metric-based method to correct inaccuracies 

due to linear motion estimation, proposing a highly 

effective MCA63,64. However, the reconstruction time 

for a whole heart image was 35 minutes in this trial, 

making this approach less suitable for clinical prac-

tice64. Hahn et al. (2016)61 also applied PAR, using a 

single short scan FBP for image data acquisition. 

Subsequently, the image data were divided into small 

volumes, utilized for the creation of PAR and a dense 
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MVF. The MVF were calculated based on a cost func-

tion minimizing entropy as a measure of motion arti-

facts. PAR were employed as a quasi-static repre-

sentation of the coronary arteries. For motion correc-

tion, a central sub-angle image was defined as the 

reference phase. The remaining sub-angle images 

were warped by MVF with respect to the reference 

phase and added to obtain a motion-free image. This 

PAR-based MCA, referred to as partial angle motion 

correction (PAMoCo), was tested by Hahn et al. 

(2017) on both a phantom model and real patient 

data. In this setting, PAMoCo reduced motion arti-

facts almost independently of HR and cardiac phase. 

Furthermore, the effective dose exposure was signif-

icantly reduced by using a short scan protocol. Nev-

ertheless, PAMoCo still required a computation time 

for each artery of 10-15 minutes, comparable to Kim 

et al. (2018)64,65. 

To expedite computation time, image-based 

motion correction has been introduced using deep 

learning-based MCA, such as Convolutional Neural 
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Networks (CNN). CNN can be directly applied to re-

constructed images without the need for raw data66. 

Notably, Generative Adversarial Networks (GAN) 

have emerged as prominent examples, comprising a 

generator and a discriminator CNN. The generator is 

trained to detect and correct motion artifacts by con-

verting motion-distorted images into motion-free im-

ages, with a motion-free target image serving as the 

ground truth. The discriminator classifies generated 

motion-free images as real or fake, initiating an iter-

ative learning process until the ground truth and arti-

ficial image are indistinguishable. Although initial re-

sults of GAN are promising, clinical data are scarce, 

and computational power requirements remain 

high52,67-69. 

Apart from GAN, other deep learning-based 

approaches utilizing CNN have recently been pro-

posed. Lossau et al. (2019)70 predicted coronary ar-

tery motion by applying a new deep-learning MCA 

called CoMPACT, based on the detection of motion 

artifact features. For MCA training, they introduced a 
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deep-learning model that artificially generates mo-

tion-disturbed images by computing and inversely 

applying synthetic MVF. These artificial motion-dis-

turbed images are then used to train algorithms that 

calculate MVF in terms of motion artifact features. 

Subsequently, the generated MVF are inserted into 

an iterative motion correction pipeline to incremen-

tally improve the IQ of real FBP53. Although CoM-

PACT has shown remarkable results in motion cor-

rection, its clinical applicability cannot yet be fully as-

sessed due to limited real patient data. 

Maier et al. (2021)62 recently introduced Deep 

PAMoCo, another image-based deep learning MCA. 

Deep PAMoCo is based on PAMoCo presented by 

Hahn et al. (2017)65 and, thus, on Partial Angle Mo-

tion Correction (PAMoCo). However, unlike Hahn et 

al. (2017)65, Maier et al. (2021)62 optimized the MVF 

computation using a deep neural network (DNN) ra-

ther than a metric-based model. The network was de-

signed to detect motion artifact features and thereby 

estimate MVF coordinates for ultimately all PAR. For 
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MCA training, motion-disturbed images were syn-

thetically generated and divided into PAR, serving as 

input to the motion correction network. The success 

of the motion correction network was evaluated by 

comparing the results with the exact motion trajectory 

used to implement the motion artifacts. The most ef-

ficient network was then compared to standard re-

construction and conventional PAMoCo in a small set 

of real-patient CCTA scans. In these experiments, 

the reconstruction by Deep PAMoCo was superior to 

both standard reconstruction and conventional 

PAMoCo. However, larger clinical studies for Deep 

PAMoCo with real patient data are still lacking. The 

aim of this study was to investigate the effect of Deep 

PAMoCo on CCTA IQ and interpretability with a 

standard single-source 64-MDCT and to evaluate its 

impact on IQ affected by mean HR, ΔHR, BMI, gen-

der, and age to assess potential clinical applicability. 
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2 Materials and Methods 

 

2.1 Image data, algorithm, and CT-scanning 

 

124 CCTA data sets of consecutive patients 

scanned with the same CT system and the same CT 

protocol were retrieved from the Picture Archiving 

and Communication System and included in this 

study. The clinical indication for CCTA was according 

to clinical guidelines 71. Original image data were 

anonymized, and patients are not identifiable. Con-

secutive patient data in which at least one vascular 

segment was affected by motion artifacts were se-

lected for the evaluation with the MCA and a conven-

tional reconstruction algorithm (CA). Since Deep 

PAMoCo is applied to already reconstructed image 

data, no raw data is required. Deep PAMoCo can, 

therefore, be used on different CT systems without 

any problems.  

The scanning protocol included calcium-scor-

ing, test-bolus-tracking, and CCTA. CCTA imaging 
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was performed using a 64-MDCT (Siemens Defini-

tion 64, Siemens Healthineers, Erlangen, Germany) 

with a gantry rotation time of 0.33 seconds, a colli-

mation of 64x0.6mm, an automatic, weight-adjusted 

tube voltage between 100-120kVp, and automatic 

exposure control. Acquisition was performed with 

PGI. PGI was performed at a maximum HR ≤80 

beats per minute (bpm) during an R-R interval of 60- 

80% in diastole (average 68%). Low-dose calcium-

scoring was performed before CCTA to estimate the 

patient's calcium load. A calcium score of 1000 was 

considered the upper limit for CCTA. Patients with a 

calcium score >1000 were referred to the catheter la-

boratory. CCTA was performed by trained staff. Beta-

blockers were administered orally or i.v. if HR was 

≥65bpm after checking contraindications. Sublingual 

nitroglycerine was administered 2-3 minutes before 

the examination. For the examination, patients were 

placed in the supine position, head first. The field of 

view (FOV) was estimated considering the size of the 

heart (approximately from 2cm below the carina to 

the lower edge of the apex cordis). Contrast medium  
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1  Unacceptable: image is not di-

agnostic due to massive motion 

artifacts 

 

2  Below average: image is subop-

timal and not diagnostic due to 

severe motion artifacts 

 

3  Average: image is readable and 

diagnostic, slight to moderate 

motion artifacts are apparent  

 

4  Above average: image has good 

IQ; slight motion artifacts are ap-

parent  

 

5  Excellent: image is perfectly 

readable; no artifacts are appar-

ent  

 

Table 1 Likert scale description 

Likert Score description  
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 (CM; Solutrast 370, Bracco, Milan, Italy) was admin-

istered via an antecubital intravenous line at a flow 

rate of 6ml/s followed by 30ml of saline at the same 

flow rate. Body mass index (BMI), age, sex, mean  

Figure 1 (A) Median and interquartile range (IQR) of image 

quality per-patient and per-artery with CA and MCA due to 

a five-point Likert scale. Significance is marked with an as-

terisk. (B) Mean ±SD of motion artifacts per-artery. Signifi-

cance is marked with an asterisk. (C) Median and interquar-

tile range (IQR) of image quality per-segment with CA and 

MCA due to a five-point Likert scale. Significance is marked 

with an asterisk. 
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 HR, and intra-cycle HR changes (ΔHR) were regis-

tered. 

 

2.2 Image quality assessment 

 

Images were evaluated by a radiology resident 

trained for the evaluation of CCTA images. IQ was 

assessed per segment, per artery (right coronary ar-

tery = RCA, left anterior descending artery = LAD, left 

circumflex artery = LCx), and per patient. Per seg-

ment assessment was performed in regard to the So-

ciety of Cardiovascular Computed Tomography-

Study population    

Total (n) 124 
  

Male/female  59 55 
 

  Mean Range ±SD 

Mean age (years) 59,49 21-95 12,53 

Mean BMI (kg/m2) 27,58 18,9-43,03 5,21 

Mean HR (bpm) 63,92 43-133 11,88 

Mean ΔHR (bpm) 7,14 0-105 14,16 

Table 2 Study population 
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guidelines for the interpretation and reporting of 

CCTA72 using a 17-segment approach. A minimal 

vessel diameter of 2mm was chosen for quality eval-

uation. IQ was determined using a 5-point Likert 

scale in terms of image evaluability. The 5-point Lik-

ert scale provides accurate information on IQ without 

being overwhelming. Evaluability was determined 

based on image readability and the amount of motion 

artifacts according to previous studies 51: 1 = unac-

ceptable; 2 = below average; 3 = average; 4 = above 

average; 5 = excellent (Table 1). The total amount of 

motion artifacts was assessed by counting the mo-

tion artifacts per artery (RCA, LAD, LCx) by identify-

ing typical patterns of motion artifacts as "crescents," 

"tails," and "horns" (Supp. Fig. 1). MCA-inserted arti-

facts were assessed by identifying typical patterns as 

“steps” or vessel “duplications” (Supp. Fig. 2). 

 

2.3 Literature Review 

 

The focus of the literature review was on tech-

nical, pharmacological, and software-based methods 
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for optimizing CCTA and reducing motion artifacts. 

Systematic literature review was conducted using the 

online medical literature database 'PubMed.'  

The search term employed was 'Coronary computed 

tomography angiography' in conjunction with the 

connector "AND" along with 'Motion correction algo-

rithm,' 'motion artifact reduction,' and 'Deep learning-

based algorithm.' After entering the respective 

search terms, the search results were restricted to 

sources in German and English. In this manner, on 

'PubMed,' 55 sources were found for the combination 

'Coronary computed tomography angiography AND 

motion correction algorithm,' 79 for 'Coronary com-

puted tomography angiography AND motion artifact 

re-duction,' and 53 for 'Coronary computed tomogra-

phy angiography AND deep learning-based algo-

rithm.' These sources were then assessed for their 

relevance to this work. The thematic focus of each 

publication should be on the application of motion 

correction algorithms to improve the image quality 

and interpretability of CCTA images. With this focus, 
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the collected sources were evaluated for their suita-

bility for this work based on their titles and abstracts. 

If the thematic focus of the publication appeared suit-

able, the source was obtained in full text, and its con-

tent checked. Literature that was deemed un-suitable 

during any part of this evaluation process was ex-

cluded from further processing. Using these gath-

ered publications, an extensive forward and back-

ward search for additional publications was con-

ducted. The goal was to collect sources that investi-

gate the requirements and challenges of CCTA and 

both hardware- and software-based methods for re-

ducing motion artifacts in CCTA. Emphasis was 

placed on current devel-opments, technical back-

grounds, as well as application results in phantom 

models and based on patient data. 'PubMed' was 

also utilized for this forward and backward search. 

 

2.4 Statistics 
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Statistical analysis was carried out with JASP 

team (2022). JASP (version 0.16.4) [computer soft-

ware]. Continuous variables are expressed as mean 

± standard deviation (SD). The central tendency of 

non-dichotomous categorical variables is expressed 

as median and percentage. Significance was tested 

using paired samples tests. A one-tailed p-value of 

<0.01 is considered to indicate statistical significance 

in IQ assessment. IQ between the CA and the MCA 

was compared using the Wilcoxon-Signed-Rank test 

for ordinal variables. Rank-Biserial correlation was 

chosen as the effect size measurement. Normality of 

continuous data was assessed by applying the 

Shapiro-Wilk test. As continuous data were not nor-

mally distributed, the non-parametric Wilcoxon-

Signed-Rank test and Rank-Biserial correlation were 

applied. Correlation analysis between BMI, age, sex, 

Table 3 Mean ±SD of motion artifacts and total number (n) 
of MCA inserted artifacts per-artery. 
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mean HR, and ΔHR and IQ was performed using 

Spearman's Rho. A two-tailed p-value of <0.01 is 

considered to indicate statistical significance. Graphs 

were created using GraphPad Prism, Prism 9 for 

Windows 64-bit, version 9.5.1 (733), January 26, 

2023, tables were created using Microsoft® Excel® 

2019 MSO (Version 2303 Build 16.0.16227.20202) 

64 Bit. 

 

3 Results 

 

CCTA data sets of 124 patients were evaluated (Ta-

ble 2). Of these, eleven data sets were excluded due 

Figure 1 Correlation RCA image quality and mean HR. 0.1=weak 
correlation, 0.3= moderate correlation, 0.5= strong correlation. 
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to severe stack transition, vessel calcifications, and 

medical devices (stents and pacemakers) producing 

massive artifacts. BMI was missing in 20 patients; 

sex, age, ΔHR, and mean HR in nine patients. IQ of 

114 patients, 333 arteries, and 3019 segments was 

evaluated (Figure 2 and 3; Supp. Table 1). Per pa-

tient, unacceptable or below-average images de-

creased from 9.65% to 4.39%, and above-average or 

excellent images increased from 67.54% to 77.2%. 

Per artery, the RCA improved significantly. Here, the 

percentage of unacceptable or below-average im-

ages decreased from 36.36% to 18.18%, and above-

average or excellent images increased from 31.82% 

to 59.09%. Per segment, RCA segments 1 and 2 

benefited from the MCA. Unacceptable or below-av-

erage images decreased from 33.63% to 22.12% 

and from 71.68% to 46.9%, respectively, while 

above-average or excellent images increased from 

44.25% to 54.87% and from 19.47% to 38.05%, re-

spectively. The total number of artifacts was deter-

mined per artery (Figure 4; Supp. Table 2). We ob-

served a decrease in motion artifacts from 3.11 ± 
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1.65 to 2.26 ± 1.52 in the RCA. There was no signifi-

cant decrease in motion artifacts in the LAD or LCx. 

In 11 out of 3019 segments, the IQ deteriorated due 

to MCA-inserted artifacts, especially in RCA seg-

ments 1 and 3. These artifacts mostly resembled 

vessel “duplications” or “steps “. The correlation be-

tween IQ and BMI, age, mean HR, ΔHR, and sex was 

tested per artery using Spearman's Rho (Figure 5; 

Supp. Table 3). Mean HR and IQ correlated signifi-

cantly negatively in all three coronary arteries. The 

correlation was strong for RCA reconstructed with CA 

and intermediate for MCA. Correlation was weak for 

LAD and LCx reconstructed with both CA and MCA. 

There was no significant correlation between IQ and 

BMI, age, ΔHR, or sex.  

 

4 Discussion 

 

In this study, we evaluated the performance of 

a novel deep learning-based MCA by comparing IQ 

of 64-MDCT-acquired CCTA images. As in previous 

studies, the RCA and its segments 1 and 2 were 
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found to be most prone to motion artifacts, as these 

are the most motile vessel segments 14. MCA recon-

struction had the greatest effect in these segments in 

improving IQ and reducing the total number of motion 

artifacts. Baseline IQ of LAD and LCx per artery and 

per segment was initially much better; MCA-improve-

ment of LAD and LCx was negligible. On the per pa-

tient level, we observed an overall improvement of 

IQ. By evaluating potential disturbers, we found a sig-

nificant negative correlation between mean HR and 

IQ for RCA, LAD, and LCx in CA- and MCA-recon-

struction. However, the influence of mean HR was 

strong in the CA-reconstruction and intermediate in 

the MCA-reconstruction of the RCA. Correlation be-

tween mean HR and IQ of LAD and LCx was weak in 

both CA and MCA. BMI, age, sex, and ΔHR had no 

significant impact on IQ. The IQ results were corre-

lated with mean HR, ΔHR, age, sex and BMI. Mean 

HR and BMI are already known to have a negative 

effect on IQ. Subsequently, we also correlated ΔHR 

to assess both its effect on IQ and the potential of the 

MCA used to mitigate this potential effect. We also 
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correlated age and sex to determine a possi-ble re-

lated effect on IQ due to ageing effects or sex speci-

ficities. 

Recently, various MCA-based approaches 

have been published to mitigate motion artifacts. Two 

vendor-specific MCA are currently available: Snap-

Shot Freeze (SSF) 1 and its successor SSF2 (GE 

Healthcare, Waukasha, WI, USA) 16,29. In the clinical 

setting, SSF1 improved IQ and interpretability in ≥64-

MDCT scanners independent of HR and BMI 36,39. In 

addition, good IQ was maintained even at high HR, 

allowing wider application of PGI leading to a lower 

total effective dose 36,40. Therefore, SSF1 is consid-

ered a useful tool to assist CCTA in CCS diagnosis 

49. Positive effects of SSF2 on IQ are even more pro-

found compared to its predecessor 16. Unfortunately, 

both MCA are vendor-specific and only applicable on 

vendor-specific CT scanners 52. Besides SSF1 and 

2, there have been several attempts to develop even 

more effective and widely applicable MCA 11. How-

ever, most of these suffer from limitations due to high 

effective dose, poor performance at high or irregular 
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HR, or long computation time 53,58,64,65. The recently 

introduced deep-learning-based MCA might be a so-

lution. Deep learning-based MCA can be applied 

post-acquisitionally without the need for raw data 66. 

By this, they have a very short computation time and 

can be used vendor-independently 53,62. However, 

larger studies on the performance of deep learning-

based MCA are still scarce. Therefore, their clinical 

applicability cannot yet be assessed although phan-

tom studies are promising 53,62,64. 

In this study, we have found that the applied 

deep learning-based MCA Deep PAMoCo improves 

the IQ of 64-MDCT-acquired images 16,62. By this, the 

rate of non-diagnostic images and false-positive re-

sults could be remarkably reduced, especially at 

higher HR 28,39,41. As CCTA is already considered to 

have a high-negative predictive value, this could fur-

ther increase its validity for the diagnosis of CCS 13. 

Especially regarding its limited temporal resolution, 

the presented MCA seems to be attractive to en-

hance 64-MDCT-acquired images. However, the ap-
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plied MCA can also be expected to be useful in com-

bination with high-end imaging technology, as high or 

irregular HR can also disturb ≥128-MDCT and DSCT 

imaging 37. Besides IQ improvement, the tested MCA 

could also reduce the effective dose during CCTA, as 

PGI could be applied at higher HR, and by this more 

widely 36,40. However, as IQ still correlated with HR at 

an intermediate level, the presented MCA should be 

considered as a support and not as a substitute for 

HR control 42. Finally, the tested MCA seems to be 

especially attractive in regard to its broad applicability 

due to its short computation time of 15 seconds per 

entire CCTA image and its vendor-independent use 

52,53. Thus, the presented MCA resembles a low-ef-

fort software upgrade for CCTA imaging performed 

with 64-MDCT. 

This study has limitations. Firstly, since we 

wanted to test the ability of the MCA to compensate 

for motion artifacts and to improve IQ, patient data 

were not given in this trial. Secondly, in this study, we 

had to exclude eleven images completely and two 
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partially because of stack transition, vessel calcifica-

tions, and medical devices (stents and pacemakers) 

producing massive artifacts. In addition, due to a lack 

of documentation, we were unable to determine BMI 

in 20 patients and mean HR, ΔHR, age, and sex in 9 

patients. Thirdly, the evaluation of IQ was conducted 

by a sole professional. Consequently, we cannot pro-

vide an inter-observer agreement. Fourthly, the IQ 

assessment was conducted by employing a five-

point Likert score, consistent with previous re-

search51. However, it is essential to note that there is 

no officially recommended approach for evaluating 

IQ, and therefore, the assessment lacks standardiza-

tion. Consequently, the comparability with studies uti-

lizing different assessment scores is restricted. 

Fifthly, the primary objective of this study was to eval-

uate the performance of the applied MCA in enhanc-

ing the IQ of real patient CCTA images. It is crucial to 

emphasize that the findings should not be general-

ized to other deep learning methods, given our lim-

ited study population and the focus on a sole MCA. 
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Sixthly, this was a single-center study. We recom-

mend further studies at other radiology centers to in-

crease the power and validity of our findings. Moreo-

ver, as this study aimed to evaluate the impact of a 

deep learning-based MCA on IQ, we cannot draw 

conclusions regarding its clinical utility. Further re-

search is needed to evaluate the impact of MCA on 

diagnostic accuracy using invasive coronary angi-

ography as a reference. Thus, it would also be pos-

sible to evaluate the impact of vessel calcification on 

IQ and MCA-related effective dose reduction. Finally, 

we did not compare the tested MCA with vendor-spe-

cific or other MCA. Thus, we cannot determine the 

superiority of the presented MCA. 

 

5 Conclusion 

 

In conclusion, this study has demonstrated on 

the one hand that the applied deep learning-based 

MCA is able to improve IQ in a large set of 64-MDCT 

acquired real-patient images and, on the other hand, 

to reduce HR impact on IQ. Thus, the presented MCA 
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can be considered as a promising example of deep 

learning-based MCA. Now, further comparative stud-

ies should be done to evaluate the effectiveness of 

the presented MCA in regard to other MCA and to 

assess its clinical utility and diagnostic accuracy. 

 

6 Abbreviations 

 

BMI= body mass index 

CA = Conventional algorithm 

CCTA = Coronary computed tomography angi-

ography 

CCS = Chronic coronary syndrome 

DSCT = Dual source computed tomography 

ECG = Electrocardiogram 

ESC = European society of cardiology 

FOV = Field of view 

HR = Heart rate 
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IQ = Image quality 

i.v. = intra-venously 

LAD = Left descending artery 

LCx = Left circumflex artery 

MCA = Motion correction algorithm 

MDCT = Multidetector computed tomography 

PGI = Prospective electrocardiographic-gated imag-

ing 

PTP = Pre-test probability 

RBC = Rank-biserial correlation 

RCA = Right coronary artery 

SSF = SnapShot Freeze  

ΔHR = intra-cycle HR changes 
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7 Supplementary Data  

 

 

Motion artifact elimination by MCA 

Supplementary Figure 1 Motion artifact elimination by MCA at 
segment 2 
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Supplementary Figure 3 MCA related artifacts (n=11) 

MCA inserted artifacts 
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 CA MCA   
Image 
Quality 1 2 3 4 5 1 2 3 4 5 p-value 

Rank-biserial 
correlation 

Per-Patient             

 2 9 26 48 29 2 3 21 42 46 < .001 -0.895 

(%) 1,75 7,89 22,81 42,11 25,44 1,75 2,63 18,42 36,84 40,35   

Per-Artery             

RCA 11 29 35 19 16 7 13 25 37 28 < .001 -1.000 

(%) 10,00 26,36 31,82 17,27 14,55 6,36 11,82 22,73 33,64 25,45   

LAD 2 2 10 33 66 2 2 11 28 70 0.175 -0.333 

(%) 1,75 1,75 8,77 28,95 57,89 1,75 1,75 9,65 24,56 61,40   

LCx 3 8 18 24 57 3 7 21 21 58 0.558 0.028 

(%) 2,70 7,21 16,22 21,62 51,35 2,70 6,31 18,92 18,92 52,25   

Per-Segment             

1 17 21 25 19 31 9 16 26 30 32 < .001 -0.674 

(%) 15,04 18,58 22,12 16,81 27,43 7,96 14,16 23,01 26,55 28,32   

2 62 19 10 12 10 30 23 17 24 19 < .001 -1.000 

(%) 54,87 16,81 8,85 10,62 8,85 26,55 20,35 15,04 21,24 16,81   

3 7 9 20 31 38 6 8 24 29 38 0.432 -0.043 

(%) 6,67 8,57 19,05 29,52 36,19 5,71 7,62 22,86 27,62 36,19   

4 3 5 12 21 29 3 5 11 19 31 0.117 -0.600 

(%) 4,29 7,14 17,14 30,00 41,43 4,35 7,25 15,94 27,54 44,93   

16 3 6 8 13 27 3 4 8 13 29 0.175 -0.333 

(%) 5,26 10,53 14,04 22,81 47,37 5,26 7,02 14,04 22,81 50,88   

5 1 6 11 18 77 1 6 12 16 78 0.579 0.000 

(%) 0,88 5,31 9,73 15,93 68,14 0,88 5,31 10,62 14,16 69,03   

6 1 5 26 14 67 1 5 24 14 69 0.036 -1.000 

(%) 0,88 4,42 23,01 12,39 59,29 0,88 4,42 21,24 12,39 61,06   

7 0 12 24 13 64 0 12 25 10 66 0.383 -0.200 

(%) 0,00 10,62 21,24 11,50 56,64 0,00 10,62 22,12 8,85 58,41   

8 0 18 21 16 58 0 16 22 14 61 0.010 -1.000 

(%) 0,00 15,93 18,58 14,16 51,33 0,00 14,16 19,47 12,39 53,98   

9 9 19 19 8 49 9 18 18 7 51 0.036 -1.000 

(%) 8,65 18,27 18,27 7,69 47,12 8,74 17,48 17,48 6,80 49,51   

10 9 28 12 8 44 9 26 11 7 48 0.007 -1.000 

(%) 8,91 27,72 11,88 7,92 43,56 8,91 25,74 10,89 6,93 47,52   

11 4 17 26 10 54 4 17 26 10 53 0.500 -1.000 

(%) 3,60 15,32 23,42 9,01 48,65 3,64 15,45 23,64 9,09 48,18   

12 15 9 11 7 31 15 9 11 5 33 0.173 -1.000 

(%) 20,55 12,33 15,07 9,59 42,47 20,55 12,33 15,07 6,85 45,21   

13 5 19 18 17 44 5 17 20 17 44 0.286 -0.333 

(%) 4,85 18,45 17,48 16,50 42,72 4,85 16,50 19,42 16,50 42,72   

14 15 11 9 2 31 15 11 9 1 32 0.500 -1.000 

(%) 22,06 16,18 13,24 2,94 45,59 22,06 16,18 13,24 1,47 47,06   

15 0 0 4 1 3 0 0 4 1 3 0.500 -1.000 

(%) 0,00 0,00 50,00 12,50 37,50 0,00 0,00 50,00 12,50 37,50   

17 1 8 3 5 15 1 6 4 4 16 0.173 -1.000 

Image Quality   

 

Supplementary Table 1 Image quality per-patient, per-artery, and per-
segment due to a five-point Likert-scale, CA = conventional algorithm, 
MCA = motion correction algorithm, significant p-values in bold.  
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Correlation of Mean HR and Image Quality 

 

 

 

B 

A 

Supplementary Figure 3 (A) Correlation LAD and (B) LCx image 
quality and mean HR. 0.1=weak correlation, 0.3= moderate corre-
lation, 0.5= strong correlation. 



 

47 
 

Impact of potentially disturbing factors  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 CA  MCA 

 RCA LAD LCx   RCA LAD LCx 

        

Gender        
Spearmans Rho 0.165 -0.003 -0.121 

 
0.167 -0.061 -0.113 

p-Wert 0.123 0.977 0.263 
 

0.119 0.572 0.294 

Age         
Spearmans Rho 2.366×10-4 -0.063 0.032 

 
0.016 -0.057 0.019 

p-Wert 0.998 0.562 0.766 
 

0.880 0.601 0.864 

R-R         
Spearmans Rho -0.117 -0.116 -0.078 

 
-0.038 -0.121 -0.088 

p-Wert 0.279 0.281 0.470 
 

0.727 0.263 0.415 

Mean HR         
Spearmans Rho -0.510 -0.295 -0.287 

 
-0.403 -0.289 -0.328 

p-Wert < .001 0.005 0.007 
 

< .001 0.006 0.002 

ΔHR         
Spearmans Rho 0.049 -0.110 -0.083 

 
0.018 -0.155 -0.096 

p-Wert 0.650 0.306 0.441 
 

0.865 0.149 0.376 

BMI         

  -0.095 -0.082 -0.062 
 

0.022 -0.028 -0.046 

  0.379 0.447 0.566 
 

0.839 0.797 0.668 

 
Supplementary Table 2 Correlation (Spearmans Rho and p-value) of 
Improvement per-artery and mean HR, ΔHR, BMI, age, and gender. 
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Abstract
Coronary computed tomography angiography (CCTA) is an essential part of the diagnosis of chronic coronary syndrome 
(CCS) in patients with low-to-intermediate pre-test probability. The minimum technical requirement is 64-row multidetector 
CT (64-MDCT), which is still frequently used, although it is prone to motion artifacts because of its limited temporal 
resolution and z-coverage. In this study, we evaluate the potential of a deep-learning-based motion correction algorithm  
(MCA) to eliminate these motion artifacts. 124 64-MDCT-acquired CCTA examinations with at least minor motion artifacts 
were included. Images were reconstructed using a conventional reconstruction algorithm (CA) and a MCA. Image quality 
(IQ), according to a 5-point Likert score, was evaluated per-segment, per-artery, and per-patient and was correlated with 
potentially disturbing factors (heart rate (HR), intra-cycle HR changes, BMI, age, and sex). Comparison was done by 
Wilcoxon-Signed-Rank test, and correlation by Spearman’s Rho. Per-patient, insufficient IQ decreased by 5.26%, and 
sufficient IQ increased by 9.66% with MCA. Per-artery, insufficient IQ of the right coronary artery (RCA) decreased by 
18.18%, and sufficient IQ increased by 27.27%. Per-segment, insufficient IQ in segments 1 and 2 decreased by 11.51% and 
24.78%, respectively, and sufficient IQ increased by 10.62% and 18.58%, respectively. Total artifacts per-artery decreased in 
the RCA from 3.11 ± 1.65 to 2.26 ± 1.52. HR dependence of RCA IQ decreased to intermediate correlation in images with 
MCA reconstruction. The applied MCA improves the IQ of 64-MDCT-acquired images and reduces the influence of HR on 
IQ, increasing 64-MDCT validity in the diagnosis of CCS.

Keywords  Coronary computed tomography angiography · Single-source computed tomography · 64-Detector row 
computed tomography · Motion artifact reduction · Deep learning-based algorithm · Motion correction algorithm

Introduction

The European Society of Cardiology (ESC) recommends 
coronary computed tomography angiography (CCTA) as 
the diagnostic method of choice for patients with suspected 
chronic coronary syndrome (CCS) with a low to intermediate 
pre-test probability (PTP) [1]. Currently, 64-row multidetec-
tor single-source CT (64-MDCT) is considered the minimum 
requirement for proper CCTA imaging [2]. The 64-MDCT 
systems have been shown to be a valid and accurate 

diagnostic tool, even when compared to ≥ 128-MDCT or 
dual-source CT (DSCT) [3, 4]. In addition, 64-MDCT is 
widely available, making it an indispensable diagnostic tool 
in patients with CCS [1, 5, 6]. Although 64-MDCT can pro-
vide perfect images under optimal conditions, its limited tem-
poral resolution makes it susceptible to motion artifacts in 
patients with high or variable heart rates (HR), especially in 
the right coronary artery (RCA) [1, 7, 8]. Several approaches 
have been proposed to reduce motion artifacts in 64-MDCT, 
both in terms of hardware modification (gantry rotation time, 
half scan rotation, high-pitch imaging, prospective (PGI) 
and retrospective electrocardiographic (ECG)-gated imag-
ing) and HR control (beta-blockers or ivabradine) [3, 4, 8, 
9]. However, these approaches have limitations either due 
to physical limits or contraindications [9, 10]. For further 
image enhancement, novel software-based approaches in the 
form of motion correction algorithms (MCA) offer a suitable 
solution for motion-disturbed images.
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Several MCA based on different technical approaches 
have been introduced in the last decade [11]. However, only 
a few MCA have proven their clinical utility and are com-
mercially available [12, 13]. Furthermore, the clinical appli-
cability of most of these MCA is limited mainly because of 
either vendor-specificity, high effective dose, poor perfor-
mance at high or irregular HR, or long computation time [11, 
14–16]. The latest MCA variants are based on deep-learning 
networks [11]. In several phantom trials and small patient 
studies, they have shown remarkable results in improving the 
image quality (IQ) of motion-impaired images in an accept-
able computation time [11, 14, 17]. However, clinical data 
for these deep learning-based MCA are still scarce. The aim 
of this study was to evaluate the performance of a recently 
introduced deep learning-based MCA (Deep PAMoCo) on 
IQ in a large set of real-world patient CCTA data sets and to 
demonstrate the potential clinical utility of this MCA [15].

Materials and Methods

Image Data, Algorithm, and CT‑Scanning

124 CCTA data sets of consecutive patients scanned with the  
same 64-MDCT system and the same CT protocol were 
retrieved from the Picture Archiving and Communication 
System and included in this study. The clinical indication 
for CCTA was according to clinical guidelines [2]. Original 
image data were anonymized, and patients are not identifi-
able. Consecutive patient data in which at least one vascular 
segment was affected by motion artifacts were selected for 
the evaluation with a conventional reconstruction algorithm 
(CA) and the MCA. Since the MCA is applied to already 
reconstructed image data, no raw data is required. The MCA 
can, therefore, be used on different CT systems without any 
limitations.

The function of the applied MCA is based on partial angle 
reconstructions (PAR) computed with a motion vector field 
(MVF) generated by a Deep Neural Network (DNN). After an  
initial reconstruction of the CCTA images, the position of the 
coronary arteries is determined using a segmentation software.  
PAR of the coronary arteries are created from this data by 
forward and backprojecting data. PAR are characterized by a  
very high temporal resolution, virtually freezing the individual 
PAR. The PAR are then mapped by a MVF to the same 
motion state. MVF are generated by a DNN and compute a 
motion vector for each PAR. Finally, the motion-corrected 
PAR are re-inserted into the original reconstruction, resulting 
in a motion-compensated image. More detailed technical 
information about the MCA can be found elsewhere [15].

The scanning protocol included calcium-scoring, 
test-bolus-tracking, and CCTA. CCTA imaging was 
performed using a 64-MDCT (Siemens Definition 64, 

Siemens Healthineers, Erlangen, Germany) with a gan-
try rotation time of 0.33s, a collimation of 64 × 0.6mm, 
an automatic, weight-adjusted tube voltage between 100 
and 120kVp, and automatic exposure control. Acquisi-
tion was performed with PGI. PGI was performed at a 
maximum HR ≤ 80 beats per minute (bpm) during an R-R 
interval of 60–80% in diastole (average 68%). Low-dose 
calcium-scoring was performed before CCTA to estimate 
the patient’s calcium load. A calcium score of 1000 was 
considered the upper limit for CCTA. Patients with a cal-
cium score >1000 were referred to the catheter labora-
tory. CCTA was performed by trained staff. Beta-blockers 
were administered orally or i.v. if HR was ≥65bpm after 
checking contraindications. Sublingual nitroglycerine 
was administered 2–3min before the examination. For the 
examination, patients were placed in the supine position, 
head first. The field of view (FOV) was estimated consid-
ering the size of the heart (approximately from 2cm below 
the carina to the lower edge of the apex cordis). Contrast 
medium (CM; Solutrast 370, Bracco, Milan, Italy) was 
administered via an antecubital intravenous line at a flow 
rate of 6ml/s followed by 30ml of saline at the same flow 
rate. Body mass index (BMI), age, sex, mean HR, and 
intra-cycle HR changes (ΔHR) were registered.

Image Quality Assessment

Images were evaluated by a radiology resident trained 
for the evaluation of CCTA images. IQ was assessed per- 
segment, per-artery (right coronary artery = RCA, left anterior 
descending artery = LAD, left circumflex artery = LCx), and 
per-patient. Per-segment assessment was performed in regard 
to the Society of Cardiovascular Computed Tomography-
guidelines for the interpretation and reporting of CCTA [18]  
using a 17-segment approach. A minimal vessel diameter  
of 2mm was chosen for quality evaluation. IQ was deter-
mined using a 5-point Likert score in terms of image evalu-
ability. The 5-point Likert score provides accurate informa-
tion on IQ without being overwhelming. Evaluability was 
determined based on image readability and the amount of 
motion artifacts according to previous studies [19]: 1 = unac-
ceptable; 2 = below average; 3 = average; 4 = above average; 
5 = excellent (Table 1). The total amount of motion artifacts 
was assessed by counting the motion artifacts per-artery 
(RCA, LAD, LCx) by identifying typical patterns of motion 
artifacts as “crescents,” “tails,” and “horns” (Fig.  1A).  
MCA-inserted artifacts were assessed by identifying typical 
patterns as “steps” or vessel “duplications” (Fig. 1B).

Statistics

Statistical analysis was carried out with JASP team 
(2022). JASP (version 0.16.4) [computer software]. 
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Continuous variables are expressed as mean ± standard 
deviation (SD). The central tendency of non-dichotomous 
categorical variables is expressed as median and 
percentage. Significance was tested using paired samples 
tests. A one-tailed p-value of <0.01 is considered to 
indicate statistical significance in IQ assessment. IQ 

between the CA and the MCA was compared using 
the Wilcoxon-Signed-Rank test for ordinal variables. 
Rank-Biserial correlation was chosen as the effect size 
measurement. Normality of continuous data was assessed 
by applying the Shapiro–Wilk test. As continuous data 
were not normally distributed, the non-parametric 

Table 1   Likert score description Likert Score description 

Likert score 

1 

Unacceptable:  image is 

not diagnostic due to 

massive

motion artifacts 

Likert score 

2 

Below average:  image 

is suboptimal and not 

diagnostic due to severe 

motion artifacts

Likert score 

3 

Average:  image is 

readable and diagnostic, 

slight to moderate 

motion artifacts are 

apparent 

Likert score 

4 

Above average:  image 

has good IQ; slight 

motion artifacts are 

apparent 

Likert score 

5 

Excellent:  image is 

perfectly readable; no 

artifacts are apparent 
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Wilcoxon-Signed-Rank test and Rank-Biserial correlation 
were applied. Correlation analysis between BMI, age, 
sex, mean HR, and ΔHR and IQ was performed using 
Spearman’s Rho. A two-tailed p-value of <0.01 is 
considered to indicate statistical significance. Graphs 
were created using GraphPad Prism, Prism 9 for Windows 
64-bit, version 9.5.1 (733), January 26, 2023, tables were 
created using Microsoft® Excel® 2019 MSO (Version 
2303 Build 16.0.16227.20202) 64 Bit.

Results

CCTA data sets of 124 patients were evaluated (Table 2). 
Of these, eleven data sets were excluded due to severe stack 
transition, vessel calcifications, and medical devices (stents 
and pacemakers) producing massive artifacts. BMI was 
missing in 20 patients; sex, age, ΔHR, and mean HR in nine 
patients. IQ of 113 patients, 333 arteries, and 3019 segments 
was evaluated (Fig. 2 and 3; Supplementary Table 1).

Fig. 1   A Motion artifact elimina-
tion by MCA at segment 2. B 
MCA inserted artifacts at seg-
ment 3 (n = 11)
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Per-patient, unacceptable or below-average images 
decreased from 9.65% to 4.39%, and above-average or excel-
lent images increased from 67.54% to 77.2%. Per-artery, the 

RCA improved significantly. Here, the percentage of unac-
ceptable or below-average images decreased from 36.36% 
to 18.18%, and above-average or excellent images increased 
from 31.82% to 59.09%. Per-segment, RCA segments 1 and 
2 benefited from the MCA. Unacceptable or below-average 
images decreased from 33.63% to 22.12% and from 71.68% 
to 46.9%, respectively, while above-average or excellent 
images increased from 44.25% to 54.87% and from 19.47% 
to 38.05%, respectively. The total number of artifacts was 
determined per-artery (Fig. 4; Supplementary Table 2). We 
observed a decrease in motion artifacts from 3.11 ± 1.65 to 
2.26 ± 1.52 in the RCA. There was no significant decrease 
in motion artifacts in the LAD or LCx. In 11 out of 3019 
segments, the IQ deteriorated due to MCA-inserted artifacts, 
especially in RCA segments 1 and 3. These artifacts mostly 
resembled vessel “duplications” or “steps”. The correlation 
between IQ and BMI, age, mean HR, ΔHR, and sex was 
tested per-artery using Spearman’s Rho (Fig. 5; Supple-
mentary Table 3). Mean HR and IQ correlated significantly 
negatively in all three coronary arteries. The correlation 
was strong for RCA reconstructed with CA and interme-
diate for MCA. Correlation was weak for LAD and LCx 

Table 2   Study population

Study population

Total (n) 124
Male/female 59 55

Mean Range  ± SD

Mean age (years) 59,49 21–95 12,53
Mean BMI (kg/m2) 27,58 18,9–43,03 5,21
Mean HR (bpm) 63,92 43–133 11,88
Mean ΔHR (bpm) 7,14 0–105 14,16

Fig. 2   Median and interquartile range of IQ per-patient and per-artery 
with CA and MCA due to a 5-point Likert score. Significance is 
marked with an asterisk

Fig. 3   Median and interquartile range of IQ per-segment with CA and MCA due to a 5-point Likert score. Significance is marked with an asterisk
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reconstructed with both CA and MCA. There was no sig-
nificant correlation between IQ and BMI, age, ΔHR, or sex.

Discussion

In this study, we evaluated the performance of a novel 
deep learning-based MCA by comparing IQ of 64-MDCT-
acquired CCTA images. As in previous studies, the RCA and 
its segments 1 and 2 were found to be most prone to motion 
artifacts, as these are the most motile vessel segments [7]. 
MCA reconstruction had the greatest effect in these seg-
ments in improving IQ and reducing the total number of 
motion artifacts. Baseline IQ of LAD and LCx per-artery and  

per-segment was initially much better; MCA-improvement 
of LAD and LCx was negligible. On the per-patient level, 
we observed an overall improvement of IQ. By evaluating 
potential disturbers, we found a significant negative correla-
tion between mean HR and IQ for RCA, LAD, and LCx in 
CA- and MCA-reconstruction. However, the influence of 
mean HR was strong in the CA-reconstruction and interme-
diate in the MCA-reconstruction of the RCA. Correlation 
between mean HR and IQ of LAD and LCx was weak in 
both CA and MCA. BMI, age, sex, and ΔHR had no signifi-
cant impact on IQ.

Recently, various MCA-based approaches have been 
published to mitigate motion artifacts. Two vendor-specific 
MCA are currently available (2023): SnapShot Freeze (SSF) 
1 and its successor SSF2 (GE Healthcare, Waukasha, WI, 
USA) [13, 20]. In the clinical setting, SSF1 improved IQ 
and interpretability in ≥ 64-MDCT independent of HR and 
BMI [21, 22]. In addition, good IQ was maintained even at 
high HR, allowing wider application of PGI leading to a 
lower total effective dose [21, 23]. Therefore, SSF1 is con-
sidered a useful tool to assist CCTA in CCS diagnosis [12]. 
Positive effects of SSF2 on IQ are even more profound com-
pared to its predecessor [13]. Unfortunately, both MCA are 
vendor-specific and only applicable on vendor-specific CT 
scanners [17]. Besides SSF1 and 2, there have been several 
attempts to develop even more effective and widely appli-
cable MCA [11]. However, most of these suffer from limita-
tions due to high effective dose, poor performance at high 
or irregular HR, or long computation time [11, 16, 24, 25]. 
The recently introduced deep learning-based MCA might 
be a solution. Deep learning-based MCA can be applied 
post-acquisitionally without the need for raw data [26]. By 
this, they have a very short computation time and can be 

Fig. 4   Mean ± SD of motion artifacts per-artery. Significance is 
marked with an asterisk

Fig. 5   Correlation (Spearman’s Rho) of IQ improvement with CA and MCA due to a 5-point Likert score in the RCA and mean HR
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used vendor-independently [11, 15]. However, larger stud-
ies on the performance of deep learning-based MCA are 
still scarce. Therefore, their clinical applicability cannot yet 
be assessed although phantom studies are promising [11, 
15, 25].

In this study, we have found that the applied deep 
learning-based MCA Deep PAMoCo improves the IQ of 
64-MDCT-acquired images [13, 15]. By this, the rate of 
non-diagnostic images and false-positive results could be 
remarkably reduced, especially at higher HR [22, 27, 28]. 
As CCTA is already considered to have a high-negative pre-
dictive value, this could further increase its validity for the 
diagnosis of CCS [1]. Especially regarding the limited tem-
poral resolution of 64-MDCT, the presented MCA seems to 
be attractive to enhance 64-MDCT-acquired images. How-
ever, the applied MCA can also be expected to be useful in 
combination with high-end imaging technology, as high or 
irregular HR can also disturb ≥ 128-MDCT and DSCT imag-
ing [29]. Besides IQ improvement, the tested MCA could 
also reduce the effective dose during CCTA, as PGI could 
be applied at higher HR, and by this more widely [21, 23]. 
However, as IQ still correlated with HR at an intermediate 
level, the presented MCA should be considered as a sup-
port and not as a substitute for HR control [30]. Finally, the 
tested MCA seems to be especially attractive in regard to 
its broad applicability due to its short computation time of 
15s per entire CCTA image and its vendor-independent use 
[11, 15, 17]. Thus, the presented MCA resembles a low-
effort software upgrade for CCTA imaging performed with a 
64-MDCT.

This study has limitations. Firstly, since we wanted to test 
the ability of the MCA to compensate for motion artifacts 
and to improve IQ, patient data were not given in this trial. 
Secondly, in this study, we had to exclude eleven images 
completely and two partially because of stack transition, 
vessel calcifications, and medical devices (stents and pace-
makers) producing massive artifacts. In addition, due to a 
lack of documentation, we were unable to determine BMI in 
20 patients and mean HR, ΔHR, age, and sex in 9 patients. 
Thirdly, the evaluation of IQ was conducted by a sole profes-
sional. Consequently, we cannot provide an inter-observer 
agreement. Fourthly, the IQ assessment was conducted by 
employing a 5-point Likert score, consistent with previous 
research [19]. However, it is essential to note that there is 
no officially recommended approach for evaluating IQ, 
and therefore, the assessment lacks standardization. Con-
sequently, the comparability with studies utilizing different 
assessment scores is restricted. Fifthly, the primary objective 
of this study was to evaluate the performance of the applied 
MCA in enhancing the IQ of real patient CCTA images. It 
is crucial to emphasize that the findings should not be gen-
eralized to other deep learning methods, given our limited 
study population and the focus on a sole MCA. Sixthly, this 

was a single-center study. We recommend further studies at 
other radiology centers to increase the power and validity 
of our findings. Moreover, as this study aimed to evaluate 
the impact of a deep learning-based MCA on IQ, we can-
not draw conclusions regarding its clinical utility. Further 
research is needed to evaluate the impact of MCA on diag-
nostic accuracy e.g. using invasive coronary angiography as 
a reference. Thus, it would also be possible to evaluate the 
impact of vessel calcification on IQ and MCA-related effec-
tive dose reduction. Finally, we did not compare the tested 
MCA with vendor-specific or other MCA. Thus, we cannot 
determine the superiority of the presented MCA.

Conclusion

In conclusion, this study has demonstrated on the one hand 
that the applied deep learning-based MCA is able to improve 
IQ in a large set of 64-MDCT-acquired real-patient images 
and, on the other hand, to reduce HR impact on IQ. Thus, the 
presented MCA can be considered as a promising example 
of deep learning-based MCA. Now, further studies should 
be done to evaluate the effectiveness of the presented MCA 
in regard to other MCA and to assess its clinical utility and 
diagnostic accuracy.
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