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Abstract
Motivation: Metastasis formation is a hallmark of cancer lethality. Yet, metastases are generally unobservable during their early stages of dis
semination and spread to distant organs. Genomic datasets of matched primary tumors and metastases may offer insights into the underpin
nings and the dynamics of metastasis formation.
Results: We present metMHN, a cancer progression model designed to deduce the joint progression of primary tumors and metastases using 
cross-sectional cancer genomics data. The model elucidates the statistical dependencies among genomic events, the formation of metastasis, 
and the clinical emergence of both primary tumors and their metastatic counterparts. metMHN enables the chronological reconstruction of mu
tational sequences and facilitates estimation of the timing of metastatic seeding. In a study of nearly 5000 lung adenocarcinomas, metMHN pin
pointed TP53 and EGFR as mediators of metastasis formation. Furthermore, the study revealed that post-seeding adaptation is predominantly 
influenced by frequent copy number alterations.
Availability and implementation: All datasets and code are available on GitHub at https://github.com/cbg-ethz/metMHN.
Keywords: cancer progression models, Mutual Hazard Networks, Markov chains, metastasis, cancer genomics, lung cancer. 

Introduction
Metastasis is the primary cause of cancer-related death. It 
occurs as tumors evolve, when the primary lesion extends be
yond its initial boundaries, invading adjacent healthy tissues, 
lymph nodes, and blood vessels. Cancer cells can then enter the 
bloodstream and spread to different locations within the body. 
At these new sites, the disseminated cells face novel selective 
pressures, leading to the elimination of many, but not all, cells. 
The survivors adapt and eventually colonize these foreign tis
sues, forming metastases (Lambert et al. 2017). This last step, 
the establishment of a (detectable) metastasis at a distant site, is 
what is commonly referred to as metastatic seeding. The devel
opment of cancer, or tumorigenesis, is predominantly driven by 
the progressive accumulation of genomic alterations, including 
somatic mutations and copy number alterations in cancer 
driver genes (Weinberg 2014). These alterations often result in 
divergent genotypes between a primary tumor and its associ
ated metastasis. Extensive clinical sequencing efforts like the 
MSK-MET study (Nguyen et al. 2022) recently compiled geno
mic data from primary tumors and metastases. In principle, 
such datasets may inform about the timing and genetic mecha
nisms of metastasis formation, but revealing these pieces of in
formation is challenging.

Cancer progression models aim to infer interactions be
tween genomic alterations based on their co-occurrence 

patterns in cross-sectional data. Such models can then be 
used to both predict the future progression of tumors as well 
as to explain the past by inferring the order in which ob
served alterations accumulated. These models have their 
roots in the pioneering work of Fearon and Vogelstein 
(1990). Since then, a variety of models and algorithms have 
emerged to refine and expand upon this concept. They in
clude Conjunctive Bayesian Networks (Beerenwinkel et al. 
2007), CAPRI (Ramazzotti et al. 2015), Network Aberration 
Models (Hjelm et al. 2006), HyperTraPS (Greenbury et al. 
2020), and Mutual Hazard Networks (Schill et al. 2020). All 
of these models only consider the progression of a single se
quence and thus cannot capture the divergent, branching pat
terns characteristic of metastatic disease progression. 
Therefore none of the above mentioned models can leverage 
the information provided by matched primary tumor and me
tastasis samples from the same patient. Methods like 
REVOLVER (Caravagna et al. 2018) or TreeMHN (Luo 
et al. 2023) can account for this branching behavior as they 
model evolution of tumors on a clonal level. However, they 
require phylogenetic data and are not explicitly designed to 
model metastatic branching.

Here, we present Mutual Hazard Networks for metastatic 
disease (metMHN), a cancer progression model that captures 
the branching progression observed in primary tumors and 
their metastatic offshoots. The model is designed to infer 
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interactions among genomic alterations and to assess their 
impact on the propensity for a tumor to seed a metastasis. 
Additionally, it accounts for metastasis-specific effects on the 
rates at which genomic alterations accumulate. metMHN uti
lizes both cross-sectional data from matched primary tumors 
and metastases, and singular observations of only one of the 
two. It also models how genomic changes affect tumor ob
servability. We demonstrate the utility and robustness of the 
metMHN model using the lung adenocarcinoma (LUAD) 
dataset provided by the Memorial Sloan-Kettering Cancer 
Center through AACR GENIE (Pugh et al. 2022).

Materials and methods
metMHN extends the Mutual Hazard Network (MHN) 
framework, originally introduced by Schill et al. (2020) and 
further developed by Schill et al. (2023), which models the 
progression of primary tumors. We first establish the nota
tion employed by MHNs and then introduce metMHN.

Mutual hazard networks
MHNs (Schill et al. 2020) model the progression of primary 
tumors as a continuous-time Markov chain (CTMC) 
fXðtÞ; t ≥ 0g on the binary state space f0;1gn. Specifically, a 
state x 2 f0;1gn represents a cancer genome, where xi ¼ 1 
indicates that event i 2 f1; . . . ;ng (e.g. a somatic driver muta
tion or copy number alteration) was detected in the cancer ge
nome, whereas xi ¼ 0 indicates that it was not detected. 
metMHN thus models the progression of consensus muta
tional profiles, without accounting for subclonal structure. 
Let pðtÞ 2 ½0;1�2

n 

denote the probability distribution over 
states at time t, where the states are ordered lexicographi
cally. The evolution of the probability distribution over time 
is governed by the Kolmogorov forward equation 

d
dt

p tð Þ ¼ Qp tð Þ solved by p tð Þ ¼ exp tQð Þp 0ð Þ: (1) 

Here pð0Þ denotes the distribution over states at the start 
of the progression. It is assumed that all tumors start in a 
wild type state, where no event has occurred yet, thus 
pð0Þ ¼ ð1;0; . . . ;0ÞT. Q 2 R2n × 2n 

denotes the transition rate 
matrix on the state space. Events are assumed to accumulate 
irreversibly and one at a time. Therefore, the only non-zero 
off-diagonal entries of Q are the transition rates from states 
x¼ ð. . . ;xi− 1;0;xi þ 1; . . .Þ to x þ i ¼ ð. . . ;xi− 1;1;xi þ 1; . . .Þ

that differ by exactly one event i. The transition rates are pa
rameterized by a much smaller matrix Θ 2 Rn × n

≥ 0 as 

Qx þ i ;x ¼ Θi;i
Y

xj¼1

Θi;j: (2) 

Here Θi;i denotes the base rate with which event i sponta
neously occurs in a tumor and Θi;j the multiplicative effect of 
the presence of event j on the rate of event i. No assumption 
is made about the biological mechanisms underlying such 
rate changes. However, within the context of this specific 
analysis, rate changes between mutational events may repre
sent evolutionary dependencies (Mina et al. 2022) and posi
tive rate changes between copy number events progressively 
increasing levels of chromosomal instability (Potapova et al. 
2013). The age of a tumor at the time of its diagnosis is un
known. In Schill et al. (2020), it is assumed to be 

exponentially distributed with mean 1 and independent of 
the state of the tumor. Marginalizing over t in the solution of 
Equation (1) yields the time-marginal distribution 

p :¼

ð1

0
exp ðtQÞpð0Þdt ¼ ðI − QÞ− 1pð0Þ; (3) 

where I denotes the identity matrix. Let px denote the proba
bility of observing a tumor in state x. Then the average log- 
likelihood for a dataset D of tumor states is defined as 

lDðΘÞ ¼
1
jDj

X

x2D
log px: (4) 

The matrix Q does not need to be stored explicitly, because 
it can be written as a sum of tensor products. By using tensor 
operations, p can be calculated efficiently and Θ can be 
learned with a time and space complexity only exponential in 
the number of events that have occurred for each tumor in 
the dataset, rather than exponential in 2n (Buis and Dyksen 
1996, Schill 2022). Recently (Klever et al. 2022, Georg 2022, 
Pfahler et al. 2023) reduced the complexity further to n3 us
ing modern tensor formats and thus made MHN applicable 
to even larger state spaces.

Clearly, a tumor can only appear in a dataset after it has 
been clinically detected. This detection, in turn, is influenced 
by the tumor’s genotype, as certain mutations can induce 
growth or alter the tumor’s morphology. Such changes may 
result in symptoms that lead to the tumor’s discovery, fol
lowed by its diagnosis, surgical removal, and eventual se
quencing. Therefore the rate of observation should be 
dependent on the state of the tumor. In Schill et al. (2023), 
the observation of a tumor was introduced as a separate 
event with its own set of parameters Ω 2 Rn

>0. The observa
tion of a state x happens at a rate ux ¼

Q
xj¼1Ωj, where Ωj is a 

multiplicative effect of the presence of event j on the rate of 
observation. On the other hand multiplicative effects of the 
observation on other events are set to 0. Thus, as soon as the 
observation event occurs, progression is halted. States where 
the observation occurred are thus absorbing states of the 
Markov chain. Then the probability distribution at observa
tion is equal to the stationary distribution pð1Þ and given by 

pð1Þ ¼ UðU − QÞ− 1pð0Þ ¼ ðI − QU − 1Þ
− 1pð0Þ; (5) 

with U¼ diagððuxÞxÞ 2 R
2n × 2n

>0 and Q and pð0Þ defined as in 
Equation (3) (Schill et al. 2023).

metMHN
With metMHN, we model the joint progression of primary 
tumors and metastases as a Markov process on the combined 
event space of both tumor entities (see Fig. 1b). Formally, we 
consider a CTMC fXðtÞ; t ≥ 0g on the state space 
S :¼ ff0;1g × f0;1ggn × f0;1g. A state x 2 S is represented 
by a bit string of length 2n þ 1. Each of the n progression 
events is encoded by two bits. The first bit xiP indicates the 
status of event i 2 f1; . . . ;ng in the primary tumor, and the 
second bit xiM indicates the status of event i in the metastasis. 
We use the notations PTðxÞ ¼ ðxiPÞ and MTðxÞ ¼ ðxiMÞ for i 
in f1; . . . ;ng to refer to the genotypes of the primary tumor 
and the metastasis respectively. The ðn þ 1Þth event is 
encoded by one bit only and indicates the status of the 
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seeding event. In the model context, the seeding event denotes 
that the progression of the metastasis has become decoupled 
from the progression of the primary tumor. Analogous to 
MHN we parameterize all transition rates by a low- 
dimensional set of parameters Θ 2 Rðn þ 1Þ × ðn þ 1Þ, where Θi;i 
refers to the base rate of event i and Θi;j to the effect of event j 
on the rate of event i. Before and after the seeding of a metas
tasis we assume different transition dynamics, which we de
scribe in the following paragraphs.

Prior to seeding, the (soon-to-be) metastasis is identical to 
the primary tumor. Thus, events occur simultaneously in the 
primary tumor and the metastasis. Formally, we can describe 
these dynamics by a CTMC on the subspace S0 :¼

ff0;1g × f0;1ggn × f0g � S with transition rate matrix 

Q0 2 R22n þ 1 × 22n þ 1
. Let x¼ ð. . . ;xði − 1ÞM ;0;0;xði þ 1ÞP ; . . . ;0Þ

and x þ iP þ iM :¼ ð. . . ;xði− 1ÞM ;1;1;xði þ 1ÞP ; . . . ;0Þ be states that 
differ by exactly one event i. Transitions from states x to 
states x þ iP þ iM happen at rate 

(a)

(b)

Figure 1. (a) Workflow of metMHN. In the top-left section, we show the types of input data that metMHN processes. Each row corresponds to a patient, 
each column to an event in the primary tumor (blue) or the metastasis (red). Events are represented by symbols and their status is encoded with a ‘1’ for 
present, ‘0’ for absent, or left blank if a tumor is unobserved. On the right, we present the primary output of metMHN: A network of interactions 
between events in matrix form. In the lower section, we show the most probable chronological ordering in which events accumulated in observed data 
points as inferred by metMHN. The progression trajectory of the primary tumor is indicated by blue arrows, while the trajectory of the metastasis is 
marked by red arrows. (b) The metMHN process and its state space: Black-bordered squares represent full states: the two compartments on the left 
detail the status of the primary tumor, the two on the right correspond to the metastasis, and the central diamond symbolizes the seeding event. The 
diagram is divided into two subspaces, with the left half constituting the subspace S0 and the right half comprising the subspace S1. Transitions between 
states that occur at non-zero rates are shown as solid black arrows. Transitions that are not possible in S0 but are possible in S1 are indicated by greyed- 
out arrows. Dotted arrows highlight transitions that influence the seeding event specifically.
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Q0ðΘÞx þ iP þ iM ;x ¼ Θi;i
Y

xjP ¼ xjM ¼ 1
j ≤ n

Θi;j: (6) 

All other transitions within S0 are prohibited (rate 0).
After seeding, the primary tumor and the metastasis are 

separate tumors and we assume that both accumulate muta
tions independently of each other. Formally, we describe the 
post-seeding dynamics by a CTMC on the subspace 
S1 ¼ ff0;1g × f0;1ggn × f1g � S. We introduce two transi
tion rate matrices QP and QM 2 R22n þ 1 × 22n þ 1

. QP holds the 
rates for transitions that change only the primary tumor part 
of a state x: Transitions from states x¼ ð. . . ;xði − 1ÞM ;

0;xiM ;xði þ 1ÞP ; . . . ;1Þ to states x þ iP ¼ ð. . . ;xði − 1ÞM ;1;xiM ;

xði þ 1ÞP ; . . . ;1Þ occur at rate 

QPðΘÞx þ iP ;x
¼ Θi;i

Y

xjP ¼ 1
j ≤ n

Θi;j: (7) 

Note that transition rates in QP only depend on the pri
mary tumor genotype PTðxÞ and not on the full state x. Since 
events must occur one at a time, all other transitions on S1 

that affect the primary tumor occur at rate 0. QM holds the 
rates for transitions that change only the metastasis part of a 
state x. We assume that metastatic tumors spread to foreign 
sites and face novel selective pressures that can differ drasti
cally from the original site. We account for this by explicitly 
modeling effects from the seeding event on the progression 
events. Progression events occur in the metastasis at a rate 
given by the product of their base rates, the effects of events 
that are present in the metastasis and the effect of the new en
vironment. Hence, transitions from states x¼ ð. . . ;xði− 1ÞM ;

xiP ;0;xði þ 1ÞP ; . . . ;1Þ to states x þ iM ¼ ð. . . ;xði − 1ÞM ;xiP ;1;
xði þ 1ÞP ; . . . ;1Þ occur at rate 

QMðΘÞx þ iM ;x ¼ Θi;i
Y

xjM ¼ 1
j ≤ n

Θi;j

0

@

1

A
Θi;n þ 1: (8) 

All other transitions on S1 that affect the metastasis are 
prohibited (rate 0). The full transition rate matrix on S1 is 
then given by the sum of QP and QM.

By construction, the last event that occurs jointly and at 
the same time in a primary tumor and metastasis is the seed
ing event. Let QS 2 R22n þ 1 × 22n þ 1 

denote the transition rate 
matrix that holds the rates for all transitions from states x¼
ðx1M ; . . . ;xnM ;0Þ in S0 to their corresponding states x þ S ¼

ðx1M ; . . . ;xnM ;1Þ in S1. Such transitions occur at rate 

QSðΘÞx þ S;x ¼ Θn þ 1;n þ 1

Y

xjP ¼ xjM ¼ 1
j ≤ n

Θn þ 1;j: (9) 

See Fig. 1b for an illustration of the state space for n¼ 2. 
The transition rate matrix on the full state space S is then 

Q ¼ Q0 þ QS þ QP þ QM (10) 

and we denote the probability distribution over states at time 
t by pðtÞ. Following Klever et al. (2022), we also provide for
mulas for the matrices Q0;QS;QP;QM as sums of tensor 
products in Supplementary Section S1. By using these tensor 

structures in conjunction with the methods outlined in Schill 
(2022, Appendix A), the model parameters can be learned 
with a time and space complexity only exponential in the 
number of events that have occurred for each sample in the 
dataset, rather than exponential in 2ð2n þ 1Þ.

Modeling consecutive observations
Following Schill et al. (2023), we model the observation of 
tumors explicitly as events. Since we model two tumors that 
at some point evolve independently and can also be observed 
separately, we have to include two distinct observation 
events. Thus we now model a CTMC on the extended state 
space SD :¼ S × f0;1g2. Let �pðtÞ denote the probability dis
tribution over states on the extended state space at time t. We 
assume that each event has a multiplicative effect on the rate 
of observation of the tumor it occurred in. Since the events 
that lead to the detection of a primary tumor can be vastly 
different from the effects that lead to the detection of a metas
tasis, we introduce two separate parameter vectors ΩP;ΩM 2

Rn þ 1
> 0 that contain the effects of progression events in the pri

mary tumor and the metastasis on the rates of their respective 
observation event. The primary tumor and the metastasis ob
servation rates are defined as 

ðuPÞx ¼

Y

xjP ¼ 1

j ≤ n

ðΩPÞj; if xn þ 1 ¼ 0;

ðΩPÞn þ 1

Y

xjP ¼ 1

j ≤ n

ðΩPÞj; otherwise;

8
>>>>>>><

>>>>>>>:

(11) 

ðuMÞx ¼

0; if xn þ 1 ¼ 0;
ðΩMÞn þ 1

Y

xjm ¼ 1

j ≤ n

ðΩMÞj; otherwise:

8
>>><

>>>:

(12) 

Let UP;UM 2 R22n þ 1 × 22n þ 1 
denote the diagonal matrices that 

hold the observation rates for primary tumors and metastases 
respectively and US ¼UP þ UM. We define that a metastasis is 
not observable prior to the seeding. Therefore, we set the rates 
of observation of metastases for such states to 0. We are inter
ested in the distribution of the full system at the time of first ob
servation, which can be triggered by either primary tumor or 
metastasis. We calculate this analogously to Schill et al. (2023)
as the stationary distribution �p on the extended state space SD 
where each of the observation events halts the progression of 
the entire system. Each state where either observation occurred 
becomes an absorbing state. Thus the entire probability mass is 
located on the sets of states OP ¼ S × ð1;0Þ (primary tumor is 
observed) and OM ¼ S × ð0;1Þ (metastasis is observed). 
Analogous to Equation (5), we therefore have 

�pjOP
¼ UPðUS − QÞ− 1p0 and (13) 

�pjOM
¼ UMðUS − QÞ− 1p0: (14) 

In most cases, there is a considerable time lag between the 
observation of a primary tumor and the observation of its 
metastatic offspring. To account for this, we model two con
secutive observations. Consider the case where the primary 
tumor is observed first with genotype xP 2 f0;1gn and the 
metastasis is only observed at a later point in time with geno
type xM 2 f0;1gn. In this case the metastasis is unobservable 

metMHN                                                                                                                                                                                                                                    i143 

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/40/Supplem
ent_1/i140/7700849 by R

egensburg U
niversity user on 19 July 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae250#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae250#supplementary-data


at the time of primary tumor observation, and thus we are in
terested in the metastasis marginal probability �pPo of only ob
serving a primary tumor xP, given by 

�pPo
xP ¼

X

x 2 OP

PTðxÞ ¼ xP

ð�pjOP
Þx: (15) 

Note that each tumor in a dataset is observed exactly once 
and no information about its subsequent progression is avail
able. Therefore we do not track the progression of the pri
mary tumor after its observation. Instead from here on, we 
only model the progression of the still unobserved metastasis. 
To do so, we first calculate the distribution of metastasis gen
otypes at the time of primary tumor observation conditioned 
on the observed primary tumor genotype, which is given by 

�pMjPo
x ¼

ð�pjOP
Þx

�pPo
xP

; if PTðxÞ ¼ xP;

0; otherwise:

8
><

>:
(16) 

In words, we set the probability of all states where the pri
mary tumor genotype is not equal to the observation to 0, and 
then renormalize the resulting vector to obtain the desired con
ditional distribution. Next analogously to Schill et al. (2023) we 
propagate the distribution of unobserved metastases forward in 
time, until the metastasis is observed. This yields 

�pMojPo ¼ UMðUM − QMÞ
− 1�pMjPo: (17) 

Finally, the probability to observe a primary tumor and 
metastasis pair in state x, given that the primary tumor was 
observed first is 

�pPo > Mo
x ¼ �pMojPo

x �pPo
xP : (18) 

By an analogous calculation, the probability to observe a 
primary tumor and metastasis pair in state x, given that the 
metastasis was observed first is given by 

�pMo > Po
x ¼ �pPojMo

x �pMo
xM : (19) 

If the order of observation is not recorded, then we evalu
ate the total probability to observe state x as 

�ptot
x ¼ �pPo > Mo

x þ �pMo > Po
x : (20) 

Equations (18–20) give the probabilities of observing pairs 
of genotypes. However, often only a single genotype is avail
able, whereas the other is missing. Such individual data 
points are incorporated by first calculating the full joint dis
tributions over all states and then by marginalizing over the 
missing genotypes. First consider the case, where only a pri
mary tumor is observed with genotype xP, then marginaliza
tion over the unobserved metastasis genotypes yields 

�pMm
xP ¼

X

y 2 S × ð1; 1Þ
PTðyÞ ¼ xP

�ptot
y : (21) 

If a metastasis was observed but not sequenced, then we do 
not need to sum over all states, but only over states in S1. 

Conversely, if evidence for the complete absence of metasta
ses is available, then we only need to sum over states in S0. 
Next, consider the case where only a metastasis is observed 
with genotype xM, then marginalizing over the unobserved 
primary tumor genotypes yields 

�pPm
xM ¼

X

y 2 S1 × ð1; 1Þ
MTðyÞ ¼ xM

�ptot
y : (22) 

Since a metastasis is observed, we know that seeding must 
have occurred and therefore we only need to sum over states 
in S1.

Parameter estimation
The average log-likelihood of a dataset D containing primary 
tumor and metastasis pairs as well as single genotypes is 
given by 

lDðΘ;ΩM;ΩPÞ ¼
1
jDj

X

d2D
log ðpdÞ (23) 

where 

pd ¼

�pMm
d ; if d is a single primary tumor;

�pPm
d ; if d is a single metastasis;

�pPo > Mo
d ; if d is paired; primary obs: first;

�pMo > Po
d ; if d is paired;metastasis obs: first;

�ptot
d ; if d is paired; obs: order unknown:

8
>>>>>>><

>>>>>>>:

(24) 

We infer the parameters Θ;ΩM;ΩP from data via maximum 
likelihood estimation. We follow (Schill et al. 2023) and uti
lize the penalization 

penalðΘ;ΩM;ΩPÞ ¼
Xn þ 1

i6¼j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

θ2
i;j þ θ2

j;i − θi;jθj;i

q

þ
Xn þ 1

j¼1

ðjðωPÞjj þ jðωMÞjjÞ

(25) 

with θi;j ¼ logðΘi;jÞ; ðωMÞj ¼ logððΩMÞjÞ; ðωPÞj ¼ logððΩPÞjÞ. 
The penalty promotes sparsity as the logarithmic parameters 
are shrunk to 0. Additionally, it promotes symmetry as effects 
between events i and j are grouped and selected together. We 
then optimize 

lDðΘ;ΩM;ΩPÞ− λpenalðΘ;ΩM;ΩPÞ (26) 

via gradient ascent. The hyper parameter λ is selected via 5- 
fold cross validation.

Results
We first assessed metMHN’s ability to recover parameters in 
simulations. The exact simulation setup and the results are 
shown in Supplementary Section S2. Next, to further our un
derstanding of metastatic spread in lung adenocarcinomas, 
we trained metMHN on 4852 paired and unpaired samples 
from the LUAD cohort of the MSK-IMPACT study. In the 
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following section we describe the dataset and then present 
our key findings.

Data preparation
We retrieved the AACR GENIE 14.1 data release (Pugh et al. 
2022) through synapse.org (The AACR Project Genie 
Consortium 2023). Our selection included all samples 
assayed at the Memorial Sloan-Kettering Cancer Center an
notated with the ONCOTREE code ‘LUAD’ (Lung 
Adenocarcinoma). For primary tumors without correspond
ing metastasis samples, we retrieved information about their 
metastatic status from Nguyen et al. (2022) and excluded 
samples where the status of the metastasis was unknown. 
The final dataset consisted of 453 matched primary tumor 
(PT)/metastasis (MT) samples, 2127 unpaired MT samples, 
595 PT samples without corresponding metastases 
(seeding¼0), and 1677 PT samples with metastases that 
were not sequenced (seeding¼1). The three most highly mu
tated paired samples were excluded from our analysis due to 
computational challenges in processing them with metMHN. 
In total, our study included 2725 PT and 2580 MT samples 
from 4852 patients. Metadata for each sample also included 
the age of the corresponding patient at which the sample was 
reported (see Supplementary Fig. S7). These data inform the 
model about the order of observation of primary tumors and 
metastases in the same patients. When multiple PT or MT 
samples were present, we chose the PT sample with the youn
gest sampling age and the MT sample with the oldest sam
pling age.

Genomic data consisted of somatic mutation data and seg
mented log R ratio (LRR) copy number data derived from 
single-region bulk sequencing using the targeted MSK- 
IMPACT panel (Cheng et al. 2015). We annotated mutation 
data using OncoKB (Chakravarty et al. 2017) and filtered for 
variants likely to be functional, as outlined in Schill et al. 
(2023). Our analysis was restricted to genes consistently in
cluded in all versions of the MSK-IMPACT panel (The 
AACR Project Genie Consortium 2023). Specifically, we ex
amined mutations in the top 20 most frequently mutated 
genes. In the case of copy number alterations, we initially 
normalized segmented copy number data using mecan4CNA 
(Gao and Baudis 2020). Amplifications were identified with 
LRR values corresponding to relative copy number gains 
≥ 0:5. Conversely, deletions were marked by LRR values 
corresponding to relative copy number losses ≤ −0:5. We 
determined the precise minimal intervals necessary for a copy 
number event classification in 8 instances, based on the mini
mal commonly altered regions per chromosome arm and 
gene extents. For amplifications, we required full gene extents 
to be covered by an alteration, whereas for deletions we 
allowed for shorter intervals. In total, our study considered 
28 distinct genomic events, including mutational events 
(‘M’), copy number amplification (‘Amp’) and deletion 
(‘Del’) events. Binary event input data, alongside exact inter
val definitions for copy number events, records of the selected 
patients and samples and preparation scripts are accessible at 
https://github.com/cbg-ethz/metMHN.

Effects between genomic events and seeding
On the dataset described above, we fit metMHN and tuned 
the hyperparameter λ in a 5-fold cross-validation (Fig. 2). 
Reassuringly, the LUAD model confirms several interactions 
well-documented in the literature. Specifically, it identifies 

the strongly mutually suppressive relationship (evidenced by 
a bidirectional negative edge) between the principal drivers 
KRAS (M) and EGFR (M) (Unni et al. 2015; Skoulidis and 
Heymach 2019). Our model infers that EGFR suppresses fur
ther mutational co-drivers, which suggests that it might often 
be sufficient for progression. Instead, EGFR-driven LUADs 
frequently exhibit disruption of cell cycle regulation through 
copy number losses in RB1 and CDKN2A, two patterns also 
described in Nahar et al. (2018).

The model further highlights synergistic interactions that 
reflect established oncogenic processes, such as the rate 
increases observed between STK11 (M) and KEAP1 (M), and 
between TP53 (M) and RB1 (M) (Offin et al. 2019, 
Wohlhieter et al. 2020, Cai et al. 2022). metMHN also infers 
multiple positive interactions between gene mutations and 
corresponding copy number alterations, exemplified by the 
interaction between EGFR (M) and amplification of EGFR/ 
7p, as well as between STK11 (M) and deletion of STK11/ 
19p—a pattern commonly seen across various cancers 
(Becchi et al. 2023). Additionally, the model reflects that sev
eral mutational events capable of activating the (RTK)-RAS- 
RAF-MEK signaling pathway-namely, KRAS (M), EGFR 
(M), NF1 (M), BRAF (M), and MET (M)-tend to promote 
the observation of primary tumors and suppress each other’s 
occurrence (Imperial et al. 2019).

metMHN identifies drivers of metastasis
We next examined the interactions between genomic events 
and metastatic seeding. The outgoing edges from the seeding 
event (rightmost column in Fig. 2) represent the cancer cell’s 
adaptive response to the changing selective pressures encoun
tered during its journey from the primary tumor to the meta
static site. The incoming edges into the seeding event (bottom 
row in Fig. 2) indicate how particular mutations within the 
primary tumor may accelerate or impede the metastatic seed
ing rate, thereby pinpointing genetic elements that either 
drive or hinder metastasis development.

metMHN identifies mutations and amplifications in 
EGFR, along with TP53 mutations and deletions, and MET 
mutations, as accelerators of metastasis formation, as indi
cated by positive edges (ie, promoting effects) from these 
events to the seeding event (Fig. 2). These findings are sub
stantiated by experimental evidence which indicate that acti
vation of EGFR (Che et al. 2015, Tsai et al. 2015), 
inactivation of TP53 (Wang et al. 2009, Powell et al. 2014), 
and activation of MET (Chang et al. 2015, Yin et al. 2019) 
enhance the metastatic capacity of lung cancer cells. Beyond 
these events, metMHN also revealed that various other copy 
number alterations positively influence the seeding process. 
Although widespread aneuploidy is typically regarded as a 
hallmark of advanced cancer stages (Ben-David and Amon 
2019), specific copy number changes, like CDKN2A dele
tions, have been documented to sometimes occur early in 
lung adenocarcinoma development (Nahar et al. 2018, 
Watkins et al. 2020). In this context we also note metMHN’s 
inference that copy number events generally do not substan
tially affect the primary tumor observation rate but indeed 
promote metastasis observability.

Interestingly, the effects promoting metastasis were rela
tively modest when compared to the base rate of seeding. 
This observation suggests that certain genetic or non-genetic 
drivers of the metastatic process might not be accounted for 
in the model. Alternatively, this could also indicate that 
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primary tumor cells may inherently possess a propensity to 
metastasize, as suggested by Klein (2020). Lastly, metMHN 
suggests that upon the seeding of metastases, the accumula
tion rates of many mutational events tend to decrease. This 
pattern could imply that once the metastatic process is initi
ated and in progress, there is diminished pressure for further 
mutational driver alterations, compared to the initial stages 
of primary tumorigenesis (Dymerska and Marusiak 2024).

Relative timing of progression events and seeding
We computed the most likely chronological sequences of 
events for 313 paired data points and 2,127 unpaired metas
tases, where we limited our analysis to cases where calcula
tions were feasible. For the paired data points the orderings 
are branched, as exemplified in Fig. 3a. Prior to seeding, 
events happen jointly in the primary tumor. Upon seeding, 
the trajectory splits into a primary tumor branch and a metas
tasis branch (blue lower and red upper branches in Fig. 3a, 
respectively). The unpaired metastases’ orderings are linear.

Next, we analyzed the distribution of event positions in 
metastasis genotypes, relative to trajectory lengths (Fig. 3b): 

The plots show for every event how often it occurred for each 
relative time point, where the left end of the axes corresponds 
to the beginning and the right to the end of progression. 
Well-established and highly frequent mutational drivers of 
LUAD progression, such as KRAS (M), EGFR (M), and TP53 
(M) appear consistently early as initiating events. We find 
similar patterns for less frequent mutational events, such as 
MET (M) and SETD2 (M). Some events rarely appear as ini
tiators, but still mostly occur in the early half of any se
quence, such as STK11 (M) and BRAF (M). For example, 
RB1 (M) rarely happens spontaneously, which is reflected by 
its low base rate. However, it is promoted by both EGFR (M) 
and TP53 (M) and thus tends to happen subsequently, see  
Fig. 2 and Supplementary Fig. S5. Crucially, metastatic seed
ing was observed to happen at varying stages, with the major
ity of trajectories showing genomic progression both before 
and after seeding. On the late end of the spectrum we mainly 
find copy number events. After the first such event happens, 
it usually promotes other copy number events (see Fig. 2), 
leading to compounding rate increases for copy number 
events towards the end of a typical trajectory, possibly 
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Figure 2. Interactions between progression events in lung adenocarcinomas. The log-effects on observation (clinical detection) of the primary tumor and 
metastasis ωP and ωM are plotted in the first two rows, the remaining matrix shows the log-interaction strengths among genomic events θ. Promoting 
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Figure 3. (a) Event orders for five patients as inferred by metMHN. Events accumulate from left to right. Blue edges represent the primary tumor 
development, red edges the one of the metastasis. Distances between events do not correspond to real or estimated time. (b) Distribution of 
relative positions in trajectories of metastasis genotypes. The left end of the axes corresponds to the beginning, and the right to the end of progression. 
(c) Empirical evidence from paired samples and pre-seeding probabilities estimated by metMHN through simulation. The first and second column 
show the pre-seeding probabilities estimated by metMHN conditioned on the event being observed in the primary tumor (column 1) or the metastasis 
(column 2). Column 3 shows the number of occurrences for each event in the paired data, column 4 shows the proportions of shared versus private 
occurrences for each event in the paired data. Columns 5 and 6 show the mean variant allele frequencies in the primary tumor and the metastasis, 
respectively.
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reflecting genomic instability in late stage cancers (Ben-David 
and Amon 2019).

Next, we stratified the inferred metastasis trajectories by 
the 3 most prevalent initial events. Specifically, trajectories 
starting with TP53 (M), KRAS (M), and EGFR (M) at the 
first position accounted for 1766 patients or 72.38% of the 
analyzed metastases (see Supplementary Fig. S5). 
Remarkably, the subset of trajectories initiated by TP53 (M) 
included a significant number of tumors which seeded imme
diately after. These tumors then predominantly acquired 
copy number events. In a minority of cases, additional muta
tion events such as STK11 (M) and KEAP1 (M) occurred be
fore seeding. Trajectories that began with KRAS (M) 
generally showed later seeding, frequently after the accumu
lation of other mutational co-drivers, including TP53 (M), 
STK11 (M), KEAP1 (M), RBM10 (M), and ATM (M). These 
trajectories too typically concluded with a series of copy 
number events. Conversely, trajectories initiated by EGFR 
(M) (right side) exhibited distinctly different progression 
patterns. Contrary to those beginning with KRAS (M), 
these trajectories rarely accumulated additional mutational 
events before seeding, with TP53 (M) being an exception. 
Post-seeding, the progression was once again dominated by 
copy number changes. However, these events followed char
acteristic sequences, often starting with EGFR/7p (Amp) and 
CDKN2A/9p (Del), then proceeding to TP53/17p (Del) and 
STK11/19p (Del), and culminating with the clinical detection 
of the tumor.

metMHN is consistent with clonality information
A key quality of metMHN is its ability to quantify the timing 
of seeding relative to other progression events. To validate 
this, we compared it with an orthogonal readout of meta
static development relative to mutational events: A mutation 
that predates the seeding of a primary tumor clone is 
expected to be clonal, i.e. exhibit a high variant allele fre
quency (VAF, close to 0.5) in subsequent metastases (Birkbak 
and McGranahan 2020). In contrast, mutations arising post- 
seeding in metastases are more likely to be subclonal and 
thus exhibit lower VAFs. Therefore, we used per-gene mean 
VAFs in metastasis samples as a proxy for the relative timing 
(pre- or post-seeding) of the occurrence of mutations in the 
respective gene. To account for a bias in VAF distributions, 
we restricted VAF measurements to cases in which the respec
tive gene was not copy number altered. We compared for 
each mutation its mean VAF with the model-derived proba
bility that the event occurred prior to seeding. To this end, 
we approximated this probability through simulations using 
Gillespie’s algorithm (Gillespie 1977). We found that muta
tional events with high pre-seeding probabilities in metastases 
corresponded to elevated VAFs in metastasis samples as evi
denced by a Pearson correlation coefficient of 0.55 (P¼ .01) 
see Fig. 3c and Supplementary Fig. S6. For a more detailed 
analysis of timing trends between pairs of genomic events, we 
provide a comparison of metMHN inferences with trends in 
phylogenetic analyses of TCGA primary tumors (Raynaud 
et al. 2018) in Supplementary Section S3. In summary, while 
metMHN builds on co-occurrence patters and does not lever
age VAF information, they nevertheless produce results con
sistent with clonality information.

Discussion
We have presented metMHN, an efficient analytical model 
for cancer progression, specifically designed to investigate the 
forking progression paths of primary tumors and their meta
static offspring. metMHN capitalizes on the extensive cross- 
sectional data available from clinical targeted sequencing and 
is able to infer relationships between events that are shared 
across individual samples. Our comprehensive analysis, 
encompassing data from nearly 5000 lung cancer patients, 
corroborates well-established relationships among key geno
mic drivers. In addition, metMHN successfully identifies spe
cific events in primary tumors that may accelerate the 
development of metastases and quantifies how the dynamics 
of event accumulation change upon metastatic branching. 
Moreover, metMHN allows for the reconstruction as well as 
for the simulation of disease histories yielding further insight 
into the dynamics of metastatic cancers.

Every model’s efficacy is inherently tied to the quality of its 
training data. While metMHN uses comprehensive cross- 
sectional data from bulk tissue, this approach has its limita
tions, particularly in resolving the clonal structures of hetero
geneous tumors. In metMHN, binary states represent the 
tumor as a whole. Consequently, two tumors with identical 
mutations will be interpreted identically by the model, even 
if, in one case, the mutations exist within the same clone, and 
in the other, they are in separate clones. In terms of what we 
define as seeding event, the most accurate biological interpre
tation would be the onset of genetic divergence between the 
metastasis-seeding cell and its most recent detectable ancestor 
in the primary tumor (Sun and Nikolakopoulos 2021). 
Phylogenetic methods which use multi-regional samples have 
an advantage in accurately timing this event. Furthermore, 
this notion of seeding does not necessarily correspond to the 
seeding cell leaving the primary tumor, nor does it necessarily 
correspond to the establishment of the seeding cell at its met
astatic site (Sun and Nikolakopoulos 2021).

Another challenge arises when the training data does not 
accurately represent the patient population. For instance, an 
under-representation of metastatic tumors in the training 
data could lead to an underestimation of the base rate for the 
seeding event, falsely suggesting they occur later in the pro
gression than they actually do, while an over-representation 
of these cases would have the opposite effect. In contrast, 
phylogenetic methods, which reconstruct tumor evolution on 
an individual basis, are less susceptible to biases in datasets. 
These methods also offer the advantage of resolving clonal 
structures, presenting a more detailed picture of tumor evolu
tion. However, the scarcity of data, especially in multi-region 
sequencing studies, limits their ability to represent patient 
populations comprehensively.

The complexity of cancer progression can exceed the capa
bilities of metMHN, for example, when patients present with 
numerous metastatic lesions or harbor disseminated cells that 
have yet to form detectable metastases. Various factors, in
cluding treatment modalities, genetic predispositions, age, in
flammation, and other comorbidity conditions may further 
influence disease progression.

In summary, metMHN is a cancer progression model pro
viding a quantitative and dynamic description of tumor de
velopment and metastatic seeding. It can be learned from 
currently available large clinical genomic datasets comprising 
cross-sectional bulk sequencing data.
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