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Abstract

The lateral occipitotemporal cortex (LOTC) has been shown to capture the represen-

tational structure of a smaller range of actions. In the current study, we carried out

an fMRI experiment in which we presented human participants with images depicting

100 different actions and used representational similarity analysis (RSA) to determine

which brain regions capture the semantic action space established using judgments

of action similarity. Moreover, to determine the contribution of a wide range of

action-related features to the neural representation of the semantic action space we

constructed an action feature model on the basis of ratings of 44 different features.

We found that the semantic action space model and the action feature model are

best captured by overlapping activation patterns in bilateral LOTC and ventral occipi-

totemporal cortex (VOTC). An RSA on eight dimensions resulting from principal com-

ponent analysis carried out on the action feature model revealed partly overlapping

representations within bilateral LOTC, VOTC, and the parietal lobe. Our results sug-

gest spatially overlapping representations of the semantic action space of a wide

range of actions and the corresponding action-related features. Together, our results

add to our understanding of the kind of representations along the LOTC that support

action understanding.
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1 | INTRODUCTION

We are constantly surrounded by various types of actions and can

recognize them without effort. However, understanding them is a

complex task, relying on multiple sources of information. One of the

key challenges is unraveling the mental representations of actions and

the degree to which these explain behavior. A growing number of

recent studies suggest that actions can be depicted as data points in a

multidimensional action space (e.g., Dima et al., 2022; Kabulska &

Lingnau, 2022; Lingnau & Downing, 2023; Thornton & Tamir, 2022;

Tucciarelli et al., 2019; Watson & Buxbaum, 2014), in line with corre-

sponding ideas in the object perception literature (Beymer &

Poggio, 1997; Edelman, 1998; Kriegeskorte et al., 2008). Understand-

ing the dimensions underlying this action space and the corresponding

neural implementation thus is key to understanding the human ability

to perceive and recognize actions.

The dimensions spanning the space of actions have been investi-

gated by several behavioral studies. For instance, in the realm of tool

usage, Watson and Buxbaum (2014) demonstrated that tools can be

sorted into distinct groups based on two dimensions: one associated
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with the hand configuration and the other with the magnitude of the

arm movement. Tucciarelli et al. (2019) showed that daily-life actions

can be mapped onto dimensions reflecting the type of change induced

by the action, and the type of need to be fulfilled by the actions (rang-

ing from basic, physiological needs to higher social needs). Further-

more, social importance has emerged as a prominent factor in various

other studies, either as the main factor in judgment of action similarity

(Dima et al., 2022) or as one of the factors, together with semantic

dimensions (e.g., food, work, home life) and visual information (scene

setting; Dima et al., 2023). A recent study of Vinton et al. (2023) sug-

gested that actions might be projected onto four dimensions: two

related to facial traits and emotions (e.g., friendly—unfriendly) and two

others unique to actions (e.g., planned—unplanned). Another impor-

tant dimension that emerged is the actor's goals (Tarhan et al., 2021).

Additionally, using large text data, Thornton and Tamir (2022)

revealed six abstract dimensions including Abstraction, Creation, and

Spiritualism. Finally, Kabulska and Lingnau (2022) highlighted the

importance of the valence of an action, that is, the differentiation

between pleasant (e.g., sport-related) and unpleasant (e.g., aggressive)

actions.

Brain areas that play a role in action recognition should capture

the similarity structure between actions, i.e. actions that are judged to

be more similar to each other should also be more similar to each

other with respect to the corresponding activity patterns (see also

Lingnau & Downing, 2023; Tucciarelli et al., 2019; Wurm &

Caramazza, 2022). To reveal areas with such properties, several previ-

ous studies examined the neural representations of a semantic action

space established on the basis of action similarity judgments as well

as the underlying action dimensions. As an example, Tucciarelli et al.

(2019) demonstrated that a semantic action space model of 27 differ-

ent actions depicted as static images is captured by patterns of activa-

tion in the lateral occipitotemporal cortex (LOTC). Likewise, using

videos of 60 different actions, Tarhan et al. (2021) obtained significant

correlations between neural activation patterns obtained during the

observation of different actions depicted as videos and a semantic

action space model along the ventral and dorsal streams, primary and

premotor cortex and the medial parietal lobe. Finally, Zhuang et al.

(2023) showed that a semantic action space model for 12 different

actions (presented as static images), organized into three taxonomic

levels, is reflected by patterns of activation in the LOTC and the supe-

rior parietal lobule, with the highest similarity for actions at the basic

level.

Several studies examined the neural representations of features

and dimensions underlying the organization of observed actions. As

an example, Tarhan and Konkle (2020b) revealed five large-scale brain

networks associated with action processing: one dedicated to social

aspects of actions (such as targeting an agent), and four pertained to a

“scale of space” (i.e., near space/far space). Tarhan et al. (2021) pro-

posed a hierarchy in processing actions along the posterior-to-anterior

lateral surface of the visual cortex, ranging from information about

visual aspects of actions, followed by movement-related information

and, finally, the goals of actions, in line with the results of a recent

EEG study by Dima et al. (2023). Furthermore, superior and inferior

portions of the LOTC have been shown to carry information about

actions along the dimensions sociality and transitivity, respectively

(Wurm et al., 2017). Overall, these findings contribute to our under-

standing of the neural substrates underlying the representation of

visually presented actions in the human brain. However, most previ-

ous studies either used a small set of preselected dimensions, or a

rather small stimulus set, which might restrict our understanding of

action representation in a real-world environment (for an exception,

see the study by Thornton & Tamir, 2022, which, however, was based

on large-scale text corpora).

In the current study, we aimed to directly compare the neural rep-

resentation of a semantic action space model established behaviorally

based on action similarity judgments with a model that captures fea-

tures related to these actions (action feature model). Moreover, we

aimed to reveal potential dimensions underlying the organization of

these features. For that purpose, we carried out an fMRI experiment

in which we presented participants with 100 different actions (four

exemplars each). We constructed the semantic action space model on

the basis of data resulting from a multi-arrangement task

(Kriegeskorte & Mur, 2012) on 100 different actions (Kabulska &

Lingnau, 2022). To be able to determine to which degree the neural

representation of the semantic action space can be accounted for by

a range of different action-related features, we constructed an action

feature model on the basis of ratings of 44 different features (see

Kabulska & Lingnau, 2022, for details). Finally, in order to determine

the dimensions underlying the action feature model, we employed

principal component analysis (PCA) and investigated the neural repre-

sentations of the resulting dimensions (see also Tamir et al., 2016;

Tamir & Thornton, 2018; Thornton & Tamir, 2022).

2 | MATERIALS AND METHODS

2.1 | Participants

Here, 23 right-handed participants (11 males; mean age, 23; age range

20–34) participated in the study. All participants had normal or

corrected-to-normal vision and no history of neurological or psychiat-

ric disease. Data of three participants were not included in the data

analysis due to excessive head motion (translation/rotation bigger

than 3 mm; two participants and due to stopping the scan after 5 runs;

one participant). The experimental protocol was approved by the

ethics committee at the University of Regensburg. Written consent

was obtained from all participants before the experiment. Participants

were rewarded for taking part in the study.

2.2 | Stimuli

Stimuli consisted of 400 colored images of daily actions that por-

trayed 100 different daily actions in front of a naturalistic background,

such as running, biking, and eating (same as in Kabulska &

Lingnau, 2022; for a complete list of stimuli, see Table S1; see
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Figure 1 for examples), with four different exemplars per action. Stim-

uli were carefully chosen on the basis of the following criteria:

(a) actions were clearly visible, (b) no other distracting actions were

depicted in the image, and (c) the action was embedded in a natural

background. The stimulus set was collected from www.shutterstock.

de. All selected images were in landscape orientation and were

cropped to 600 � 400 pixels. The full set of images used in the study

is shown in Figure S1.

2.3 | Experimental design and task

We used a rapid event-related design (see Figure 1) adopting the

design used by Tucciarelli et al. (2019). There were eight functional

runs in total (approximately 9 min each). Each run started and ended

with 12 s fixation period. Each functional run consisted of 100 experi-

mental trials, 20 null trials (4 s long each), and 7 catch trials during

which the same action (but not the same exemplar) was shown as dur-

ing the previous trial. The order of experimental trials was random-

ized, whereas null trials and catch trials were pseudorandomly

interspersed between experimental trials, preventing two consecutive

null trials and two consecutive catch trials.

Each trial consisted of an action image (1 s) with a superimposed

central fixation cross, displayed on a uniform gray background, fol-

lowed by a fixation cross (3 s). Each action was presented once in a

run in a random order. Throughout the scanning session, each exem-

plar was shown twice (each in a separate run). Throughout the experi-

ment, participants performed a one-back task. Prior to entering the

scanner, they received written instructions, asking them to attentively

watch the images while keeping their eyes at fixation and to press a

button with the right index finger whenever there was a consecutive

repetition of the same action. Responses during these catch trials

were used offline to calculate response time and accuracy (see

Results: Behavioral data analysis). To ensure that participants under-

stood the task, they completed a practice run before entering the

scanner.

Inside the scanner, stimuli were back-projected onto a screen (reso-

lution 1024 � 768 at 60 Hz; viewing distance 106 cm, 12.98 � 8.53

degree of visual angle) and viewed via a mirror mounted on the

radiofrequency (RF) coil. Stimulus presentation and response collection

were controlled with A Simple Framework (Schwarzbach, 2011), a tool-

box based on the MATLAB Psychtoolbox-3 for Windows

(Brainard, 1997).

2.4 | Post-session questionnaire

At the end of the experiment, participants filled out a questionnaire in

which they were asked to judge on a 6-point Likert scale how (1) com-

fortable and (2) tired they felt inside the scanner, (3) to which degree

they internally verbalized the actions presented in the pictures, and

(4) to which degree they concentrated exclusively on the repetition of

the actions.

2.5 | Data acquisition

Functional and structural data were collected using a 3 T Siemens

Prisma MRI scanner and a 64-channel RF head coil at the University

of Regensburg. Functional images were acquired with a T2*-weighted

gradient echoplanar imaging sequence (voxel resolution:

2.5 � 2.5 � 2.5 mm; 60 axial slices that cover the whole brain; repeti-

tion time [TR]: 2 s, echo time [TE]: 30s, flip angle [FA]: 75�, field of

view: 192 mm, matrix size: 96 � 96, 265 volumes per run). Structural

T1-weighted images were acquired halfway through the scanning ses-

sion (i.e., after the fourth functional run) using an MPRAGE sequence

(voxel resolution: 1 � 1 � 1 mm, 160 axial slices, TR: 1910 ms, TE:

3.67 s, FA: 9�, matrix size: 256 � 256).

2.6 | Data analysis

Data preprocessing and univariate analyses were performed using

FEAT (FMRI Expert Analysis Tool; Woolrich et al., 2004; Woolrich

et al., 2001) which is a part of FSL (FMRIB's Software Library,

Jenkinson et al., 2012). FSL was also used for the extraction of infor-

mation about the clusters of the statistical maps (command: cluster),

creating ROIs, smoothing the maps and performing high-pass filtering

Press bu on

1s 1s3s 3s 1s 3s 1s

...

F IGURE 1 Example trial sequence and experimental design. We conducted an fMRI experiment using a rapid event-related design. Each trial
consisted of the presentation of an image depicting an action (e.g., running, biking, eating; 1 s) followed by a gray screen (3 s). Throughout the
experiment, a central fixation cross was presented on the screen. Participants were instructed to attentively observe the actions while keeping
their eyes at fixation and to press a button with their right index finger whenever they saw a repetition of the same action in two subsequent
trials (here: biking). Each functional run lasted approximately 9 min and included 100 experimental trials, 7 catch trials and 20 null trials (see
Methods for details). The whole fMRI session consisted of eight functional runs.
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(command: fslmaths). All further analyses were conducted in MATLAB

(The MathWorks Inc.) using specific toolboxes mentioned below and

custom written scripts (available on https://osf.io/efn3w/?view_

only=c2b87331de8b45aab23bf182b9921a57).

2.7 | Preprocessing

The preprocessing of functional data included: (1) removal of the

first four volumes, (2) slice time correction, (3) head motion correc-

tion (trilinear interpolation) with respect to the first volume of the

first run for each participant (using MCFLIRT), (4) BET brain extrac-

tion, (5) spatial smoothing with a Gaussian kernel of 5 mm FWHM,

and (6) high-pass filtering (cutoff frequency of 100 MHz). Note that

step (5) was carried out for reliability-based voxel selection (follow-

ing Magri et al., 2021; Park et al., 2022; Thornton & Tamir, 2024),

whereas this step was omitted for representational similarity analy-

sis (RSA).

Data were linearly registered using FMRIB's Linear Image Regis-

tration Tool (Jenkinson et al., 2002; Jenkinson & Smith, 2001), first to

each participant's 3D T1-weighted image (7 degrees of freedom) and

then to the MNI152 standard brain (12 degrees of freedom).

2.8 | First-level univariate fMRI analysis

We performed the first-level univariate analysis for the reliability-

based voxel selection on spatially smoothed data (see previous sec-

tion), whereas we used unsmoothed data for the RSA. For both types

of analysis, a general linear model was used to model the obtained

data series. We included 100 regressors of interests (one for each

action), with each trial modeled as an epoch lasting from the onset to

the offset of the image (1 s). In addition, we included one regressor

for the catch trials, and six regressors resulting from 3D motion cor-

rection (x, y, z translation and rotation). Each regressor of interest was

convolved with a standard dual gamma hemodynamic response func-

tion (Friston et al., 1998).

2.9 | Reliability-based voxel selection

To ensure that analyses are performed within a set of voxels that sys-

tematically respond during the processing of observed actions, we

selected voxels based on their reliability following Tarhan and Konkle

(2020a) using their code available on OSF (https://osf.io/m9ykh/).

With this approach, the voxels are considered as reliable when they

(a) show systematic differences in activation across the different

experimental conditions (in our case, actions), and that (b) show similar

activation levels across conditions in different sets (i.e., different

exemplars) of the stimuli. To select reliable voxels, we first computed

voxel reliability values for each voxel and each condition by correlating

the corresponding vectors of β weights in response to each condition

between odd and even runs. Next, for a range of reliability thresholds

(from r = 0 to r = .95), we computed the condition multi-voxel reliabil-

ity, a measure of the stability of the pattern of responses correspond-

ing to a single condition. Condition multi-voxel reliability was

computed for each condition separately, by correlating β weights

between even and odd runs for all the voxels exceeding a given voxel-

reliability threshold.

To implement this method, we performed the second- and group-

level univariate analysis on spatially smoothed data split into odd and

even runs (averaged across runs within each split). Next, we plotted

the group-level condition multi-voxel reliabilities for a range of differ-

ent voxel-reliability thresholds (Figure S2a) and selected the beginning

point of the plateau as the reliability cutoff (Figure S2b). We also pro-

vide results of condition multi-voxel reliabilities obtained for each sin-

gle subject, averaged across conditions for better readability

(Figure S2c). Based on the group pattern reliability plot (Figure S2b),

we decided on a voxel-reliability threshold equal to 0.25 (which is

comparable to the threshold used by Tarhan & Konkle, 2020a). All

subsequent analyses (both at the level of single subjects and at the

group level) were performed within voxels exceeding this threshold

(Figure S2d).

2.10 | Representational similarity analysis

To identify brain areas that represent (a) the semantic action space

model and (b) the action feature model, we performed searchlight-

based RSA (Kriegeskorte et al., 2006; Kriegeskorte et al., 2008)

using the CoSMoMVPA Toolbox (Oosterhof et al., 2016). As input,

we used (unsmoothed) t-maps (1 for each of the 100 actions) calcu-

lated from β estimates obtained from first-level univariate analysis.

RSA was performed using a searchlight sphere (radius: 10 mm)

within voxels exceeding the voxel-reliability threshold (see previous

paragraph). For each searchlight sphere, a neural representational

dissimilarity matrix (RDM) was created by computing pairwise dis-

tances (squared Euclidean distance) between t-scores of each pair of

actions. The resulting neural RDM was correlated (Pearson correla-

tion) with a selected target RDM (see RSA: Model RDMs for details)

and the correlation value was assigned to the center voxel of each

sphere, resulting in a correlation map.

To be able to account for the variability explained by additional

models capturing low-level visual features, mid-level scene-related

features (GIST), or action features (action feature model; see

section RSA: Model RDMs for details), we performed a multiple regres-

sion RSA (see, e.g., Proklova et al., 2016; Tucciarelli et al., 2019, for

similar approaches). To test the suitability of this approach, we deter-

mined the degree of multicollinearity between the variables using the

variance inflation factor (VIF). The VIFs were small, both when includ-

ing three models (semantic action space model: 1.01, low-level visual

control model: 1.01, GIST model: 1.00; action feature model: 1.01,

low-level visual control model: 1.01, GIST model: 1.06) and when

including four models (semantic action space model: 1.09, action fea-

ture model: 1.15, low-level visual control model: 1.02, GIST model:

1.07), indicating a low risk of multicollinearity between the different
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models (see also Figure S3 for Pearson's correlation coefficients

between the models).

The obtained β maps were subsequently spatially smoothed with

a 5 mm FWHM kernel and entered into a one-sample t test. Statistical

significance for the group-level analyses was determined by correcting

the β maps for multiple comparisons using threshold-free cluster

enhancement (TFCE, Smith & Nichols, 2009) in combination with clus-

ter level correction (p = .05, one-tailed, z = 1.65, 5000 iterations).

To reveal areas that capture the semantic similarity between

actions, we carried out two multiple regression RSAs with the seman-

tic action space model. In the first multiple regression RSA, to account

for low-level visual features and mid-level scene-related features, we

regressed out the low-level visual control model and the GIST model.

In the second multiple regression RSA, to account for low-level visual

features, mid-level scene-related features and information corre-

sponding to a range of different action-related features, we regressed

out the low-level visual control model, the GIST model and the action

feature model.

To be able to compare the topography of the areas capturing the

semantic action space model and the action feature model, we com-

puted another multiple regression RSA for the action feature model,

regressing out the low-level visual control model and the GIST model.

For visualization purposes, we displayed the resulting thresholded

t-maps onto an inflated standard surface map provided by BrainNet

Viewer (Xia et al., 2013).

2.10.1 | RSA: Model RDMs

The semantic action space model and the action feature model were

derived on the basis of a number of behavioral experiments

(Kabulska & Lingnau, 2022), whereas the low-level visual control

model and the GIST model were established on the basis of image

properties. The procedures are briefly summarized below.

Semantic action space model

This model was used to determine which brain areas capture the

semantic similarity space of actions resulting from behavioral judg-

ments of action similarity. Following previous studies (Dima

et al., 2022; Tucciarelli et al., 2019), we derived this model from a

multi-arrangement paradigm (Kriegeskorte & Mur, 2012). In short,

20 participants were asked to arrange 100 images of daily actions

(same set of actions as used in the current study) on an arena, where

between-action distances reflected action similarity (for details, see

Kabulska & Lingnau, 2022). The model was created based on the

resulting pairwise distances between the actions, averaged across

participants.

Action feature model

We established this model in order to examine to which degree the

semantic action space can be accounted for on the basis of the simi-

larity of a wide range of features. First, using a free feature-listing

experiment, we asked N = 40 participants to list at least 5 features

per action which resulted in approximately 6000 collected responses

describing a set of 100 daily actions presented as verbs (same actions

as used in the current study). Second, we reduced that list of features

to 44 key action features (e.g., Upper/Lower limbs, Targeting a person/

tool, Pace, Duration, Valence; see Table S2 for a list of all 44 key action

features) and, from another set of N = 273 participants, obtained

feature-based ratings for the same set of 100 actions. The averaged

and rescaled ratings were subsequently used to create a feature

model by computing pairwise distances between actions (Euclidean

distance).

Note that the action feature model was built using ratings

obtained for actions depicted as action verbs (rather than static pic-

tures). This was done to avoid that ratings were driven by particular

exemplars depicting an action. A consequence of the use of verbal

material as prompts for action feature ratings might be that we under-

estimated the degree to which the action feature model can account

for the semantic action space model.

Low-level visual control model

We constructed this model to be able to account for low-level visual

features. Since representations of objects in early layers of artificial

neural networks have been shown to resemble neural activity within

early visual cortex (Güçlü & van Gerven, 2015; Lindsay, 2021) we

decided to use the first convolutional layer from ResNet50, a deep

convolutional network with 50 layers, pretrained on object categories

(He et al., 2016) and fine-tuned on 339 action categories from the

Moments in Time dataset (Monfort et al., 2020). We fed

the ResNet50 model with the 400 action images (100 actions with

4 exemplars each) which we used in the fMRI experiment. Next, we

(1) determined the activations within the first convolutional layer and

stored them as vectors and (2) averaged the resulting vectors across

action exemplars, resulting in 100 activation vectors (one vector per

action). (3) Next, we computed 1-Pearson's R correlation for each

pairwise combination of vectors resulting in a 100 � 100 RDM. We

also created an RDM based on the first layer of AlexNet (Krizhevsky

et al., 2017), pretrained on the ImageNet dataset (Russakovsky

et al., 2015) and conducted an RSA using the corresponding RDM as a

low-level visual control model. Since AlexNet is another frequently

used convolutional neural network (e.g., Kietzmann et al., 2019; Lee

Masson & Isik, 2021), we wished to determine whether we obtain

similar results when low level visual features are determined on the

basis of AlexNet instead of ResNet50. The corresponding results are

shown in Figures S4 and S5.

GIST model

To account for the similarity between observed actions that is due to

the similarity of the scenes in which these actions are performed, we

employed the GIST model (Torralba & Oliva, 2001). This computa-

tional model extracts information about scenes based on several

dimensions that have been shown to be related to specific scene cate-

gories, such as naturalness, openness, and roughness. We generated

GIST descriptors for all 400 action images (100 actions with 4 exem-

plars each) using the default parameters for the number of

KABULSKA ET AL. 5 of 14

 10970193, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.26605 by U
niversitaet R

egensburg, W
iley O

nline L
ibrary on [28/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



orientations at which the Gabor filters are applied, and the filter used

to reduce illumination effects of input images. Subsequently, we aver-

aged the descriptors across action exemplars, resulting in a set of

100 GIST descriptors, one for each action. To construct the GIST

RDM, we computed pairwise distances between the actions using the

Euclidean distance metric.

2.11 | Principal component analysis

The action feature model contained information about all 44 action

features reported by Kabulska and Lingnau (2022) (see section RSA:

Model RDMs for details). To be able to reduce this large number of

features to a smaller set of dimensions, we conducted a PCA on the

44 feature-based ratings of 100 actions (same ratings as used to cre-

ate the feature RDM, see RSA: Behavioral RDMs). The components

were derived using varimax rotation which maintains orthogonality

between them. We identified 11 components with eigenvalues

greater than one (Table S3). Based on the screen plot combined with

the “elbow method” (Figure S6), we chose eight dimensions, account-

ing for approximately 64.1% in total of the variability in the feature

ratings.

2.11.1 | RSA with principal components

Subsequently, we wanted to determine which brain regions best cap-

ture these dimensions. To address this question, we performed a

regression-based RSA, separately for each of the eight dimensions

while regressing out the low-level visual control model and the GIST

model (see section RSA: Model RDMs for details). In order to construct

the dimension-based RDMs, the first step involved multiplying the

action feature ratings (obtained in Kabulska & Lingnau, 2022) by load-

ings on a given dimension. Subsequently, we took the resulting

100 vectors (one per action) of weighted feature ratings and com-

puted pairwise distances (Euclidean distance) between them. Prior to

conducting multiple regression RSA, we computed the VIF. The VIFs

were below 4 for all the models indicating low multicollinearity

between them (PC1: 2.34; PC2: 2.91; PC3: 3.16, PC4: 3.46, PC5:

3.16, PC6: 2,40, PC7: 3.33, PC8: 2.30, low-level visual model: 1.04,

GIST model: 1.15). Pearson's correlation coefficients between the

models are shown in Figure S3.

2.12 | Winner-takes-all with principal components

To visualize the most dominant dimension for each voxel, we calcu-

lated a winner-takes-all map following Tarhan et al. (2021) within the

voxels exceeding the reliability-based voxel threshold. We only

included the six (out of eight) principal components (PCs) for which

the multiple regression RSA revealed significant clusters of voxels that

survived correction for multiple comparisons. We assigned a unique

color to each voxel to the dimension with the highest correlation.

3 | RESULTS

3.1 | Behavioral results

We performed an fMRI experiment with 100 daily actions (four exem-

plars per action; see Figure S1 for a complete overview of all stimuli)

using a rapid event-related design (see Methods, section Experimental

design and task for details). Mean reaction time for correct responses

was 959.84 ms (±43.60 ms SEM). Participants identified catch trials

with a mean error rate of 24.73% (±2.74% SEM), corresponding to

approximately 14 out of 56 catch trials per participant.

The post-session questionnaire revealed that on average the par-

ticipants were reasonably concentrated on the task of identifying

catch trials (mean = 4.09; std = 1.12; 1 = not concentrated at all,

6 = concentrated exclusively on the task), and that they felt reasonably

comfortable inside the scanner (mean = 4.3; std = 0.88; 1 = very

uncomfortable, 6 = very comfortable). The questionnaire also revealed

that participants felt neither completely rested nor very tired through-

out the experiment (mean = 3.43; std = 1.04; 1 = not tired at all,

6 = very tired), and that they verbalized the stimuli to some degree to

perform the task (mean = 4.7; std = 1.11; 1 = not naming at all;

6 = quietly naming).

Individual error rates and answers provided in the post-session

questionnaire are provided in Table S4.

3.2 | Reliability map

Following Tarhan and Konkle (2020a), we used a reliability-based

voxel selection (see Methods section for details). This analysis

revealed voxels with high reliability in occipital brain areas, covering

both ventral and dorsal visual streams, and part of the parietal lobe

(see Figure S2D), whereas voxel reliability was lower in frontal areas.

All subsequent analyses were performed within the reliability map.

3.3 | Searchlight-based RSA

To determine which brain areas reflect the semantic action space

model, corresponding to the categorical organization obtained from

the multi-arrangement task while accounting for variability due to

low- level visual features, mid-level scene-related features, and high-

level action features, we performed a multiple regression searchlight-

based RSA (see Methods, section Representational similarity analysis

for details). Moreover, to determine the spatial correspondence

between the regions capturing the semantic action space and the

regions capturing a feature-based organization, we carried out an

additional searchlight-based RSA on the action feature model.

The resulting searchlight maps for the semantic action space

model (while regressing out the low-level visual control model and the

GIST model) revealed significant correlations between neural patterns

of activation and the action space model in bilateral occipitotemporal

and fusiform cortex, as well as in small portions of the superior
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parietal lobe (Figure 2a). Additionally regressing out the action feature

model resulted in a qualitatively similar, but less widespread map

(Figure 2b) that was limited to bilateral occipitotemporal and temporal

occipital fusiform cortex.

The action feature model was captured by patterns of activation

in a comparable, but slightly more widespread set of regions, including

the bilateral occipitotemporal and fusiform cortex, as well as the supe-

rior parietal lobe (see Figure 2c). The resulting brain maps show a simi-

lar pattern when the low-level visual control model is generated on

the basis of the first layer of AlexNet (Figure S4).

3.4 | Principal component analysis

PCA on the 44 feature ratings for the 100 different actions revealed

eight components that explained 64.1% of the variance (see Methods

section for details). We labeled these components on the basis of the

features belonging to each component (see Table S3). We labeled

the first component that explained most of the variance (21.6%)

Movements of any type due to high positive loadings for features

linked to various types of movements, such as Lower limb movements,

Change of location, Use of force and negative loadings on features

associated with the absence of movement, that is, No movement and

Sitting. The second component was mostly related to different arm

movement kinematics (e.g., rotating, sweeping, circular) and was

therefore labeled Arm movement kinematics. We used the label Object

manipulation involving the upper body for the third component for

several reasons. First, the component consisted of features related to

the upper body. Second, we wished to capture the aspect “Object

manipulation” in the label since the features Goal-directedness and

Targeting a non-manipulable object/a tool indicated that the actions

have a clear end-goal and are aiming at specific objects or tools. The

subsequent components were associated with features related to the

Context of the actions (Indoor, Outdoor, Season-dependence), the Pos-

ture of the agents performing the actions, Contact with others

(i.e., whether or not the action involved direct or indirect contact with

another person), and Object-directedness (i.e., whether or not the

action targeted a manipulable object, as well as Concentration). The

last component referred to the features Noise, Harm, and Negative

valence and thus was labeled Negative Emotions.

3.5 | RSA on dimensions resulting from PCA

To determine which brain areas represent the information captured

by each of the dimensions resulting from PCA on the feature ratings,

we conducted a searchlight-based RSA, separately for each of the

eight dimensions, regressing out the low-level visual control model

and the GIST model. The results of this analysis are shown in Figure 3.

For the dimension Movements of any type, that explains the largest

amount of variance (21.63%), we identified significant clusters in bilat-

eral temporal occipital fusiform cortices and lateral occipital cortices,

extending toward the superior parietal lobules. The dimension Object

manipulation involving the upper body was captured by clusters in the

left inferior temporal gyrus, bilateral temporal fusiform cortices, and

lateral occipital cortices. For the dimension Context, we obtained clus-

ters in bilateral lateral occipital cortices and the left temporal occipital

fusiform cortex. Clusters in bilateral temporal occipital fusiform corti-

ces and superior parietal lobules corresponded to the dimension Pos-

ture. The dimension Contact with others was associated with clusters

in the left lateral occipital cortex (superior and inferior division) and a

smaller cluster in the right lateral occipital cortex (inferior division), as

well as a cluster in the left temporal occipital fusiform cortex. The

dimension Object-directedness showed a significant correlation with

activation patterns within clusters in bilateral temporal occipital fusi-

form cortices and lateral occipital cortices (superior division). In sum,

(A) (B) (C)

F IGURE 2 Results of the group-level searchlight-based representational similarity analysis (RSA) for: (a) the semantic action space model
(regressing out the low-level visual control model and the GIST model); (b) the semantic action space model (regressing out the low-level visual
control model, the GIST model and the action feature model); and (c) the action feature model (regressing out the low-level visual control model
and the GIST model). Statistical maps show t-values thresholded at a z-score of 1.65, corresponding to p < .05 (one-tailed), corrected for multiple
comparisons (TFCE, p < .05, 5000 Monte Carlo permutations).
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this analysis revealed a substantial degree of overlap between the dif-

ferent dimensions along the ventral visual stream and the superior

parietal lobe, in particular for the dimensions Movements of any type,

Context, Posture, and Object-directedness. By contrast, the dimensions

Object manipulation involving the upper body and Contact with others

were associated with more circumscribed clusters of voxels. The

resulting brain maps show a similar pattern when the low-level visual

control model is based on the first layer of AlexNet rather than

ResNet50 (see Figure S5). To explore the spatial arrangement of these

dimensions, we carried out a Winner-takes-all analysis (see next

section).

3.6 | Winner-takes-all map

To explore clusters of voxels with a preference for individual PCs, we

calculated a winner-takes-all map (see Methods for details). Note that

since we provide no additional statistics for these maps, this analysis

merely serves as an additional visualization of the results shown in

Figure 3. That said, the winner-takes-all analysis highlights multiple

clusters displaying the highest correlation with the dimension Move-

ments of any type in a prominent portion of the right LOTC as well as

the left dorsal LOTC (Figure 4, blue). The dimension labeled Object-

manipulation involving the upper body showed the highest correlations

F IGURE 3 Results of the searchlight representational similarity analysis (RSA), carried out separately for each of the eight dimensions
(regressing out the low-level visual control model and the GIST model). Six out of eight dimensions showed a significant correlation with neural
activation patterns after correction for multiple comparisons (TFCE, p < .05, 5000 Monte Carlo permutations). Statistical maps show t-maps
thresholded using threshold-free cluster enhancement (TFCE) at a z-score of 1.65. The remaining two dimensions, namely arm movement
kinematics and negative emotions, did not survive the correction.

F IGURE 4 Results of the winner-
takes-all analysis with maps for six
different dimensions obtained from the
searchlight-based representational
similarity analysis (RSA) (see Figure 2; see
also Tarhan et al., 2021). Each voxel was
assigned a color corresponding to the
dimension that showed the strongest
correlation with the corresponding
activity patterns (see legend on the right
for the assignment of colors to each
dimension).
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with patterns of activation in a more anterior portion of the left mid-

dle LOTC (dark green). The dimension Context formed small clusters in

bilateral superior parietal lobe (light green). The information related to

Posture was encoded in the left middle posterior LOTC, right dorsal

LOTC and portions of bilateral VOTC (red), whereas the Contact with

others dimension exhibited a significant correlation with patterns of

activation in the left dorsal LOTC (orange). Finally, this analysis

highlighted that the Object-directedness dimension exhibits the highest

correlation with activation patterns in the superior parietal lobe (bilat-

erally), a small portion in the inferior parietal lobe (bilaterally), as well

as portions of visual cortex (bilaterally), ranging from V1 to V4

(yellow).

4 | DISCUSSION

In this study, we investigated the neural architecture underlying the

organization of a wide range of observed actions. For that purpose,

we conducted an fMRI experiment with static images depicting

100 different human actions. Using multiple regression RSA in

which we accounted for variability due to low-level visual features

and mid-level scene-related features, we identified shared represen-

tations of a semantic action space and a high-level action feature

model in lateral and ventral occipitotemporal cortex. Using PCA, we

found that these action features can be reduced to eight dimen-

sions, including movements of any type, object-directedness and

context that explained 64.8% of the variance of the data. RSA with

these dimensions revealed distinct, but partially overlapping clusters

for six out of eight dimensions within the LOTC, the VOTC and the

superior parietal lobe that were further distinguished using a

winner-take-all analysis. In the following we discuss these results in

the context of existing studies on this topic and point out future

directions.

4.1 | Neural representation of the semantic
action space

In the current study, we aimed to determine which brain regions

reflect the similarity between observed actions, captured in the

semantic action space model. We followed the assumption that

activation patterns in areas that store conceptual representations

of actions show a significant correlation with the similarity struc-

ture captured in the semantic action space model. Our results are

in line with the results by Tucciarelli et al. (2019) who reported that

a behaviorally determined action space assumed to capture the

semantic similarity of a set of 27 actions is reflected by patterns of

activation in the LOTC. To account for additional action compo-

nents that might covary with the semantic action space, Tucciarelli

et al. (2019) regressed out nine additional models capturing diverse

aspects, including the similarity of objects, body parts and the dis-

tance between the observer and the actor. These additional action

components partially overlapped with the cluster capturing the

semantic action space. The current study advances the findings of

Tucciarelli et al. (2019) in two important ways. First, we demon-

strated that the results of Tucciarelli et al. (2019) generalize to a

significantly wider range of actions (i.e., 100 instead of 27 actions).

Second, our whole-brain searchlight RSA revealed the highest simi-

larity between the semantic action space model and patterns of

activation in dorsal and ventral portions of the LOTC, even after

regressing out (a) a low-level visual control model derived from the

first convolutional layer of a neural network (ResNet50), (b) mid-

level spatial information of the scenes captured by the GIST model

and (3) high-level information related to 44 different action fea-

tures. In line with this view, the posterior middle temporal gyrus, a

subportion of the LOTC, has been shown to be involved in the pro-

cessing of action semantics (e.g., Kable et al., 2002; Kemmerer

et al., 2008; Papeo et al., 2015), and lesions to temporal and parie-

tal regions, but not to frontal regions, have been shown to have an

impact on the ability to associate an action with an appropriate

semantic label (Kalénine et al., 2010). Together, our results provide

an important extension of a growing number of studies suggesting

that the LOTC gathers not only perceptual evidence on the basis of

action features, but also more conceptual action aspects (Hafri

et al., 2017; Oosterhof et al., 2010, 2012; Wurm et al., 2015;

Zhuang et al., 2023; for reviews, see Wurm & Caramazza, 2022,

Lingnau & Downing, 2015, 2023).

4.2 | Dimensions underlying the organization of
action features

The action feature model used in the current study is based on ratings

obtained for 44 action features carried out for 100 different actions

(Kabulska & Lingnau, 2022). PCA revealed eight dimensions underly-

ing the organization of these features (Movements of any type, Arm

movement kinematics, Object manipulation involving the upper body,

Context, Posture, Contact with others, Object-directedness, and Negative

Emotions). These dimensions align remarkably well with those previ-

ously proposed and examined. Movements and posture are undeni-

ably crucial aspects of actions, as they are sufficient to identify a wide

range of actions (Johansson, 1973, see, e.g., Beauchamp et al., 2003;

Grossman et al., 2000; Papeo et al., 2017 for studies with point-light

displays). Moreover, numerous actions involve the use of tools

(e.g., Buxbaum, 2001; Chao & Martin, 2000; Watson &

Buxbaum, 2014) or are directed toward specific objects (e.g., Bach

et al., 2014; Wurm et al., 2017). Additionally, contact with other peo-

ple and social actions play a vital role in our daily lives, enabling suc-

cessful communication with others, while comprehending and

interpreting emotions is a crucial part in this process (e.g., Isik

et al., 2017; Papeo, 2020; Poyo Solanas et al., 2020). Moreover, in

contrast to objects that can be understood in isolation, understanding

actions involves information that extends beyond the body itself

(e.g., information regarding the scene; see Wurm & Schubotz, 2012;

Wurm & Schubotz, 2017). Hence, using a wide range of actions and

action features, our study revealed a set of dimensions that have been
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proposed in previous studies but, to the best of our knowledge, have

not been collectively investigated before. Our approach allowed us to

determine the degree to which the neural representation of these

action features contributes to the neural representation of the seman-

tic action space model (see section Neural representation of the

semantic action space), and to examine to which degree the topogra-

phies corresponding to the neural representation of the different

action dimensions spatially overlap with the neural territory capturing

the semantic action space. We discuss these results in more detail in

the following paragraphs.

4.3 | Neural representation of action dimensions

The searchlight RSA on the obtained PCs revealed overlapping clus-

ters of voxels along ventral and dorsal portions of the LOTC and the

superior parietal cortex for the dimensions Movements of any type,

Context, Posture, and Object-directedness, and more circumscribed

clusters in the LOTC and the fusiform cortex for the dimensions

Object manipulation involving the upper body and Contact with others.

Thus, in line with the results reported by Tucciarelli et al. (2019), the

LOTC carries information about each of the investigated action

dimensions, which we will discuss in more detail in the following

sections.

We found that activation patterns in the dorsal LOTC showed the

highest similarity with the dimension labeled Contact with others,

while activation patterns in the ventral LOTC showed the highest sim-

ilarity with the dimension labeled Object-directedness. These results

are in line with several recent studies indicating an animate–inanimate

organization of dorsal and ventral portions of the LOTC

(e.g., Lingnau & Downing, 2015; Wurm et al., 2017; Wurm &

Caramazza, 2022). More precisely, it has been shown that dorsal por-

tions of the LOTC have a preference for animate things (Chao

et al., 1999; He et al., 2020), body parts (e.g., Downing et al., 2001),

movements (Beauchamp et al., 2003), and person-directed actions

(Wurm & Caramazza, 2019a, 2019b), while ventral portions have a

preference for inanimate things (Chao et al., 1999; He et al., 2020),

action-specific tool motion (Beauchamp et al., 2002; Beauchamp

et al., 2003), and actions involving objects (e.g., Wurm &

Caramazza, 2019a; see Wurm & Caramazza, 2022 for a recent review

on the animate–inanimate organization). Note that the clusters repre-

senting the dimensions Contact with others and Object-directedness

obtained in the current study (see Figures 2 and 3) are well aligned

with the clusters showing a high similarity with the Sociality and the

Transitivity model reported by Wurm et al. (2017).

It is worth noting that the studies that formed the basis of the

idea of the animate–inanimate dimension as one of the organizing

principles of the LOTC used material that was quite different from the

material used in the current study. Specifically, Martin and Weisberg

(2003) used moving geometric shapes, whereas Wurm et al. (2017),

Wurm and Caramazza (2019a), and Wurm and Caramazza (2019b)

used well-controlled videos of a small set of actions performed by an

actor sitting at a table with the upper arms directed at an object or a

person. In the current study, we demonstrate that the distinction

between person-directed and object-directed actions generalizes

across a wide range of actions from a diverse set of categories, involv-

ing different body parts and objects depicted in naturalistic scenes as

static images.

In contrast to most of the other dimensions which showed signifi-

cant correlations with the activity patterns within several brain

regions, the dimension Contact with others was mainly located in the

posterior superior temporal sulcus (pSTS). This result is well aligned

with a growing number of studies demonstrating that the pSTS carries

information about communicative actions (Isik et al., 2017; Pitcher &

Ungerleider, 2021; Walbrin et al., 2018). Moreover, the cluster for

Contact with others was more widespread in the left compared to the

right hemisphere, indicating a lateralization in encoding social aspects

of actions.

4.4 | High-dimensional spaces in the LOTC

The regions capturing the higher-level action feature model and the

underlying dimensions strongly overlapped with those capturing

the semantic action space model. The overlap encompassed the

LOTC, indicating the pivotal role of this region in representing diverse

information about actions (see also Lingnau & Downing, 2015;

Wurm & Caramazza, 2022). This raises the question according to

which principles this diverse information is represented along the

LOTC. Our data are compatible with the proposal put forward by

Lingnau and Downing (2015) that diffuse patterns of activation across

the LOTC integrate information from more focal, but strongly overlap-

ping selective regions, and that the distribution of these activity pat-

terns might define multiple representational spaces. The organization

of the LOTC along multiple dimensions is in line with the idea put for-

ward by the work by Graziano and Aflalo (2007), indicating that the

motor cortex is organized along multiple dimensions—such as somato-

topic information and information about different types of limb move-

ments. As suggested by Graziano and Aflalo (2007), this structure is

not limited to the motor cortex and may extend to any region that

processes multidimensional and complex knowledge. Whereas it

seems likely that the importance of specific dimensions differs

between the dorsal and the ventral stream, the general principle pro-

posed by Graziano and Aflalo (2007) might apply to the LOTC as well.

In line with this view, several studies demonstrated that planned

actions can be decoded not only from premotor and parietal regions,

but also from the LOTC (e.g., Ariani et al., 2015; Gallivan et al., 2013;

Gallivan & Culham, 2015; Turella et al., 2020; see also Gallivan, 2014).

Moreover, information is assumed to be exchanged between the dor-

sal and the ventral stream, for example, via connectivity between the

posterior parietal cortex and the extrastriate body area

(e.g., Hutchison et al., 2014; Zimmermann et al., 2016, 2018). The

organization of action-relevant information along high-dimensional

spaces might facilitate such an exchange. The current study revealed

a number of these dimensions and thus may serve as a starting point

for further studies.
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4.5 | The contribution of conceptual knowledge to
the organization of observed actions

Conceptual knowledge can be divided into function (i.e., “what for”)
and manipulation (i.e., “how to”) knowledge (e.g., Buxbaum

et al., 2000; Lesourd et al., 2021; Mahon & Caramazza, 2009), with a

specific role of temporal and parietal regions, respectively. Moreover,

object concepts have been proposed to be organized taxonomically

(e.g., in terms of feature-based similarities), thematically (e.g., in terms

of co-occurrences in particular contexts) or both (Kalénine &

Buxbaum, 2016). One thus may wonder about the link between the

organizing principles for observed actions obtained in the current

study and those that are assumed to contribute to the organization of

conceptual knowledge.

For the generation of our semantic action space model, we did

not explicitly instruct participants to focus on any of these aspects.

Moreover, function and manipulation knowledge, and taxonomic and

thematic relations are often correlated (as an example, actions belong-

ing to the category “food-related actions” are typically thematically

related to the context “kitchen”). Since the current study did not

focus on a distinction between function and manipulation knowledge,

or between taxonomic and thematic relations, we did not select our

stimuli in a way that would allow us to disentangle the contribution of

these different types of knowledge. Consequently, it is not straight-

forward to quantify the contribution of function or manipulation

knowledge, or the role of taxonomic versus thematic relations during

the generation of the semantic action space model. In fact, we con-

sider it likely that participants based their similarity judgments of

observed actions on a combination of several dimensions (see also

previous paragraph), including the use of function and manipulation

knowledge and taxonomic and thematic relations. Moreover, we

assume that the importance of different dimensions during the judg-

ment of action similarities varies as a function of the task (see also

Lingnau & Downing, 2023).

Regarding the action feature model, we asked participants to rate

the importance of a range of different features, related to sensory,

functional, motor, and manipulation knowledge, but also of higher-

level, rather abstract features such as “valence” or “harm.” The com-

ponents revealed by PCA applied to the action feature model range

from manipulation knowledge (components “movements of any type,”
and “posture”) to thematic relations (e.g., components “context,”
“object directedness,” and “object manipulation involving upper

body”) to more abstract organizing principles (component “contact
with others”).

5 | CONCLUSION

Our results provide an important extension of previous studies, sug-

gesting that the LOTC hosts conceptual representations for a wide

range of observed actions from several different action categories.

Moreover, our results suggest that the areas capturing the semantic

action space overlap with areas capturing action components at

varying hierarchical levels, in line with the idea that the LOTC, like

other areas of the brain such as the motor cortex and parietal cortex,

is organized along multiple dimensions (see also Graziano &

Aflalo, 2007; Lingnau & Downing, 2015; Wurm & Caramazza, 2022).
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