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The Fermionic Entanglement Entropy of the
Vacuum State of a Schwarzschild Black Hole
Horizon

Felix Finster and Magdalena Lottner

Abstract. We define and analyze the fermionic entanglement entropy of a
Schwarzschild black hole horizon for the regularized vacuum state of an
observer at infinity. Using separation of variables and an integral repre-
sentation of the Dirac propagator, the entanglement entropy is computed
to be a prefactor times the number of occupied angular momentum modes
on the event horizon.
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1. Introduction

Black hole thermodynamics is an exciting topic of current research in both
physics and mathematics. It was initiated by the discovery of Bekenstein and
Hawking that black holes behave thermally if one interprets surface gravity as
temperature and the area of the event horizon as entropy [2,18]. The analogy
to the second law of thermodynamics suggests that the area of the black hole
horizon should only increase in time. However, this is in contradiction with
the discovery of Hawking radiation and the resulting “evaporation” of a black
hole [16,17]. This so-called information paradox [19] inspired the holographic
principle [36,37] and the current program of attempting to understand the
structure of spacetime via information theory, entropies and gauge/gravity
dualities.

The present work is concerned with the entropy of a black hole. Generally
speaking, entropy is a measure for the disorder of a physical system. There are
various notions of entropy, like the entropy in classical statistical mechanics
as introduced by Boltzmann and Gibbs, the Shannon and Rényi entropies in
information theory or the von Neumann entropy for quantum systems. Here
we focus on the entanglement entropy, which quantifies the quantum entan-
glement of a spatial region with its surrounding (for the general physical and
mathematical context, see, for example, [21,29]). The entanglement entropy
of the event horizon tells us about the quantum entanglement between the
interior and exterior regions of the black hole. For technical simplicity, we
here restrict attention to the simplest mathematical model of a black hole: a
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Schwarzschild black hole of mass M (more general black holes will be discussed
in the outlook section after (8.2)). We consider the Rényi entropy functional
for a general Rényi parameter κ > 0. The case κ = 1 gives the von Neumann
entropy functional. We compute the corresponding entanglement entropies for
the quasi-free fermionic state describing the vacuum of an observer at infinity.
More precisely, we consider the quasi-free fermionic Hadamard state which is
obtained by frequency splitting for the observer in a rest frame in Schwarzschild
coordinates, with an ultraviolet regularization on a length scale ε. In a more
physical language, we consider a free Fermi gas formed of non-interacting one-
particle Dirac states. Based on formulas derived in [20,25] (for more details,
see the preliminaries in Sect. 2.1), the entanglement entropy can be expressed
in terms of the reduced one-particle density operator. We choose this one-
particle density operator as the regularized projection operator to all negative
frequency solutions of the Dirac equation in the exterior Schwarzschild geom-
etry (where “frequency” refers to the Schwarzschild time of an observer at
rest). Making use of the integral representation of the Dirac propagator in [8]
and employing techniques developed in [25,32–34,39], it becomes possible to
compute the entanglement entropy on the black hole horizon explicitly. We
find that, up to a prefactor which depends on εM , this entanglement entropy
is given by the number of occupied angular momentum modes, making it pos-
sible to reduce the computation of the entanglement entropy to counting the
number of occupied one-particle states. A similar result is obtained for the
Rényi entropies with Rényi index κ > 2

3 .
We now outline our setting and the main result. The quasi-free regularized

Dirac vacuum state can be described completely by the corresponding reduced
one-particle density operator (for details see Sect. 2.1). We choose this operator
as the regularized projection operator to the negative frequency solutions of the
Dirac equation by Πε

− (for details see Sects. 3 and 4). Given a parameter κ > 0
(the Rényi index), we introduce the Rényi entropy function ηκ as follows.
If t /∈ (0, 1), then we set ηκ(t) = 0. For t ∈ (0, 1), we define

ηκ(t) =
1

1− κ
log

(
tκ + (1− t)κ

)
for κ �= 1 (1.1)

η1(t) := lim
κ′→1

ηκ′(t) = − t log t− (1− t) log(1− t) for κ = 1 (1.2)

(the last limit can be computed directly with l’Hospital’s rule). Note that the
function ηκ is continuous and smooth except at t = 0 and t = 1, as shown in
Fig. 1 for various values of κ. Note that η1 is the familiar von Neumann entropy
function. Next, we consider the entropic difference operator corresponding to
the subset Λ as introduced [24, Section 3] (for more details and references, see
the preliminaries in Sect. 2.1)

Δκ(Πε
−,Λ) := ηκ

(
χΛ Πε

− χΛ

)− χΛ ηκ(Πε
−)χΛ , (1.3)

In order to obtain the entropy of the event horizon, we choose Λ as an annular
region around the event horizon. As the radial coordinate, we choose Regge–
Wheeler coordinate u ∈ R, in which the event horizon is located at u → −∞
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Figure 1. Plot of the function ηκ for κ = 0.1, 1 and 10

(for details, see (2.5) in the preliminaries). We then parametrize Λ by

Λ := K × S2 with K := (u0 − ρ, u0)

≡
⎧
⎨

⎩

⎛

⎝
u sin ϑ cos ϕ
u sin ϑ sin φ

u cos ϑ

⎞

⎠

∣
∣
∣
∣
∣
∣

u0 − ρ < u < u0, 0 < ϑ < π, 0 < ϕ < 2π

⎫
⎬

⎭
(1.4)

(see also Fig. 2 on page 29). The fermionic entanglement entropy is obtained
as the trace of the entropic difference operator (1.3) in the limit when Λ moves
toward the event horizon, i.e.,

Sκ(Πε
−,Λ) := lim

u0→−∞ tr
(
Δκ(Πε

−,Λ)
)

. (1.5)

We shall prove that, to leading order in the regularization length ε, this trace
is independent of ρ. It turns out that we get equal contributions from the two
boundaries at u0 − ρ and u0 as u0 → −∞. Therefore, the fermionic entangle-
ment entropy is given by one half this trace.

Before stating our main result, we note that the trace of the entropic
difference operator can be decomposed into a sum over all occupied angular
momentum modes. For ease in presentation, we begin with one angular mo-
mentum mode parametrized by (k, n) with k ∈ Z + 1/2 and n ∈ N (for details
on the separation of variables of the Dirac equation, see the preliminaries in
Sect. 2.3). Then the trace in (1.5) becomes

tr Δκ

(
(Πε

−)kn,K) ,

where (Πε
−)kn is the operator Πi

ε restricted to the angular mode (k, n). This
operator depends only on the radial variable; this is why the characteristic
function χΛ has been replaced by χK. We define the mode-wise Rényi entropy
of the black hole as

SBH
κ,kn :=

1
2

lim
ρ→∞ lim

ε↘0

1
f(ε)

lim
u0→−∞ tr Δκ

(
(Πε

−)kn,K) , (1.6)
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where f(ε) is a function describing the highest order of divergence in ε (we
will later see that here f(ε) = log(M/ε) with M the black hole mass). Our
main result shows that SBH

κ,kn has the same numerical value for each angular
mode:

Theorem 1.1. Let κ > 2
3 and let n ∈ Z and k ∈ Z + 1/2 arbitrary, then

lim
ε↘0

lim
u0→−∞

1
log(�/ε)

tr Δκ

(
(Πε

−)kn,K) =
1
12

κ + 1
κ

, (1.7)

where � is a reference length. Due to the form of the Rényi entropy functions,
the right-hand side is always positive. For the entanglement entropy, i.e., κ =
1, we obtain in particular

lim
ε↘0

lim
u0→−∞

1
log(�/ε)

tr Δ1

(
(Πε

−)kn,K) =
1
6

. (1.8)

We note for clarity that the only purpose of the reference length � is to make
the argument of the logarithm dimensionless. The choice of � is irrelevant,
because writing log(�/ε) = log � − ε, the term log � is sub-leading. Thus, the
main statement of (1.7) and (1.8) is that, in the limit ε ↘ 0, the traces are
logarithmically divergent, and we determine the corresponding proportionality
factor. Since the mass of the Dirac particles will be irrelevant, it is natural
to associate � with the only other parameter with dimension of length: the
mass M of the black hole. Therefore, in what follows we will always replace
the logarithm in the above formulas by log(M/ε) (for more on units, see the
last paragraph of introduction).

In simple terms, the above result shows that each occupied angular mo-
mentum mode gives the same contribution to the (Rényi) entanglement en-
tropy. This result can be understood immediately from the infinite red shift
effect at the event horizon. Indeed, asymptotically near the event horizon, a
Dirac wave behaves like a massless particle without angular momentum (as
will be made precise in Lemma 2.3), suggesting that also the entanglement
entropy should be the same for each angular mode. Proving this result, how-
ever, makes it necessary to estimate different error terms, which constitutes
the technical core of this work.

The (Rényi) entanglement entropy of the black hole can be written for-
mally as the sum of all angular momentum modes,

SBH
κ =

∑

k,n

SBH
κ,kn . (1.9)

Since each angular mode gives the same non-zero contribution (1.8), the sum
in (1.9) clearly diverges if an infinite number of angular modes are occupied.
This leads us to regularize the vacuum state by also occupying only a finite
number of angular momentum modes (for details see (4.2) in Sect. 4). After this
has been done, the sum in (1.9) becomes finite. Then, applying Theorem 1.1 to
each angular mode, it becomes possible to compute the entanglement entropy
of the horizon simply by counting the number of occupied angular momentum
modes. This is reminiscent of the counting of states in string theory [35] and
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loop quantum gravity [1]. In order to push the analogy further, assuming a
minimal area ε2 on the horizon and keeping in mind that the area of the event
horizon scales like M2 (as is obvious already from dimensional considerations),
the number of occupied angular modes should scale like M2/ε2. In this way,
we find that the entanglement entropy is indeed proportional to the area of
the black hole. The factor log(M/ε) in the above theorem is usually referred
to as an enhanced area law. Such an enhanced area law typically occurs if the
considered fields are massless, in which case long-range effects give rise to an
additional logarithmic divergence. This fits to our physical situation because,
as mentioned above, the Dirac wave behaves near the event horizon like as
massless field due to the red shift effect at the event horizon. We also note for
clarity that we make essential use of the fact that our vacuum state involves a
hard cutoff between the occupied one-particle states of negative frequency and
the non-occupied states of positive frequency. It is not clear to us if considering
instead a smooth cutoff function would still lead to an enhanced area law.

The article is structured as follows. Section 2 provides the necessary pre-
liminaries on entanglement entropy, the Dirac equation, the Dirac propagator
in the Schwarzschild geometry and some technical tools involving Schatten
classes and pseudo-differential operators. In Sect. 3, the regularized projection
operator on the negative frequency solutions of the Dirac equation is defined
and decomposed into angular momentum modes. For each angular momentum
mode, the resulting functional calculus is formulated and the corresponding op-
erator is rewritten in the language of pseudo-differential operators. Moreover,
the symbol will be further simplified at the horizon. After these preparations,
the core of this works begins in Sect. 4, where the regularized fermionic vac-
uum and the corresponding (Rényi) entanglement entropy of the event horizon
are defined. In Sect. 5, there is the entropy of a simplified limiting operator
(in the sense that the regularization goes to zero) at the horizon. Afterward,
we estimate the error caused by using the limiting operator instead of the
regularized one (Sect. 6). It turns out that this error drops out in the limiting
process. Subsequently, we complete the proof of the main result (Theorem 1.1)
by combining the results from the previous sections (Sect. 7). We conclude with
a brief summary and a discussion of open problems (Sect. 8). The appendices
contain additional material and give some background information.

Units and notational conventions. We work throughout in natural units � =
c = 1. Then, the only remaining unit is that of a length (measured for examples
in meters). It is most convenient to work with dimensionless quantities. This
can be achieved by choosing an arbitrary reference length � and multiplying
all dimensional quantities by suitable powers of �. For example, we work with
the

dimensionless quantities m� ,
M

�
and

ε

�
(1.10)

(where m is the mass of the Dirac particles, M is the mass of the black hole
times the gravitational constant and ε is the regularization length). For ease
in notation, in what follows we set � = 1, making it possible to leave out all
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powers of �. The dimensionality can be recovered by rewriting all formulas
using the dimensionless quantities in (1.10). In the Schwarzschild geometry, it
is natural to choose � as the black hole mass M .

We conclude the introduction with some general notational conventions.
For two non-negative numbers (or functions) X and Y depending on some pa-
rameters, we write X � Y (or Y � X) if X ≤ CY for some positive constant C
independent of those parameters. To avoid confusion, we may comment on the
nature of (implicit) constants in the bounds.

For any vector space V , we denote

L(V ) :=
{
f : V → V

∣
∣ f bounded and linear

}
.

Finally, for ease of notation the operator of multiplication by f is denoted
with the same letter, i.e., (fψ)(x) := f(x)ψ(x).

2. Preliminaries

2.1. The Entanglement Entropy of a Quasi-Free Fermionic State

Given a Hilbert space (Hm, 〈.|.〉m) (the “one-particle Hilbert space”), we let (F,
〈.|.〉F) be the corresponding fermionic Fock space, i.e.,

F =
∞⊕

k=0

Hm ∧ · · · ∧Hm︸ ︷︷ ︸
k factors

(where ∧ denotes the totally anti-symmetrized tensor product). We define the
creation operator Ψ† by

Ψ† : Hm → L(F) , Ψ†(ψ)
(
ψ1 ∧ · · · ∧ ψp

)
:= ψ ∧ ψ1 ∧ · · · ∧ ψp .

Its adjoint is the annihilation operator denoted by Ψ(ψ) := (Ψ†(ψ))∗. These
operators satisfy the canonical anti-commutation relations
{
Ψ(ψ),Ψ†(φ)

}
= (ψ|φ) and

{
Ψ(ψ),Ψ(φ)

}
= 0 =

{
Ψ†(ψ),Ψ†(φ)

}
.

Next, we let W be a statistical operator on F, i.e., a positive semi-definite linear
operator of trace one,

W : F → F , W ≥ 0 and trF(W ) = 1 .

Given an observable A (i.e., a symmetric operator on F), the expectation value
of the measurement is given by

〈A〉 := trF
(
AW ) .

The corresponding quantum state Ω is the linear functional which to every
observable associates the expectation value, i.e.,

Ω : A → trF
(
AW ) .

In this work, we restrict our attention to the subclass of so-called quasi-
free quantum states, fully determined by their two-point functions

Ω2(ψ, φ) := Ω
(
Ψ†(φ)Ψ(ψ)

)
, for any ψ, φ ∈ Hm .
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Definition 2.1. The reduced one-particle density operator D is the positive
linear operator on the Hilbert space (Hm, (.|.)M) defined by

Ω2(ψ, φ) = 〈ψ |Dφ〉m , for any ψ, φ ∈ Hm .

The von Neumann entropy S(Ω) of the quasi-free fermionic state Ω can
be expressed in terms of the reduced one-particle density operator by

S(Ω) = tr η1(D) , (2.1)

where ηκ is the function from (1.2) (for a plot, see Fig. 1). This formula ap-
pears commonly in the literature (see, for example, [28, Equation 6.3], [7,22,26]
and [20, eq. (34)]). A detailed derivation is found in [11, Appendix A]. Sim-
ilar to (2.1) also other entropies can be expressed in terms of the reduced
one-particle density operator. In particular, the Rényi entropy can be written
as Sκ(Ω) = tr ηκ(D) This formula is also derived in [11, Appendix A].

For the entanglement entropy, we need to assume that the Hilbert space Hm

is formed of wave functions in spacetime. Restricting them to a Cauchy sur-
face, we obtain functions defined on three-dimensional space N (which could
be R

3 or, more generally, a three-dimensional manifold). Given a spatial sub-
region Λ ⊂ N , we define the (Rényi) entanglement entropy by

Sκ(D,Λ) := tr
(
ηκ

(
χΛ D χΛ

)− χΛ ηκ(D)χΛ

)
. (2.2)

More details in the case κ = 1 can be found in [24, Section 3].

2.2. The Dirac Equation in Globally Hyperbolic Spacetimes

Since we are ultimately interested in Schwarzschild space time, the abstract
setting for the Dirac equation is given as follows (for more details see, for exam-
ple, [12]). Our starting point is a four dimensional, smooth, globally hyperbolic
Lorentzian spin manifold (M, g), with metric g of signature (+,−,−,−). We
denote the corresponding spinor bundle by SM. Its fibers SxM are endowed
with an inner product ≺.|.�x of signature (2, 2), referred to as the spin inner
product. Moreover, the mapping

γ : TxM → L(SxM) , u →
∑3

j=0
γjuj ,

where the γj are the Dirac matrices defined via the anti-commutation relations

γ(u) γ(v) + γ(v) γ(u) = 2 g(u, v)1Sx(M) ,

provides the structure of a Clifford multiplication.
Smooth sections in the spinor bundle are denoted by C∞(M, SM). Like-

wise, C∞
0 (M, SM) are the smooth sections with compact support. We also

refer to sections in the spinor bundle as wave functions. The Dirac operator D
takes the form

D := iγj∇j : C∞(M, SM) → C∞(M, SM) ,

where ∇ denotes the connections on the tangent bundle and the spinor bun-
dle. Then the Dirac equation with parameter m (in the physical context cor-
responding to the particle mass) reads

(D −m)ψ = 0 . (2.3)
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Due to global hyperbolicity, our spacetime admits a foliation by Cauchy
surfaces M = (Nt)t∈R. Smooth initial data on any such Cauchy surface yield
a unique global solution of the Dirac equation. Our main focus lies on smooth
solutions with spatially compact support, denoted by C∞

sc (M, SM). The solu-
tions in this class are endowed with the scalar product

(ψ|φ)m =
ˆ
N
≺ψ | νjγj φ�x dμN(x) , (2.4)

where N is a Cauchy surface N with future-directed normal ν and dμN denotes
the measure on N induced by the metric g (compared to the conventions in
[12], we here preferred to leave out a factor of 2π). This scalar product is
independent of the choice of N (for details see [12, Section 2]). Finally, we
define the Hilbert space (Hm, (.|.)m) by completion,

Hm := C∞
sc (M, SM)

(.|.)m
.

2.3. The Dirac Propagator in the Schwarzschild Geometry

2.3.1. The Integral Representation of the Propagator. We recall the form of
the Dirac equation in the Schwarzschild geometry and its separation, closely
following the presentation in [8] and [14]. Given a parameter M > 0 (the black
hole mass), the exterior Schwarzschild metric reads

ds2 = gjk dxj dxk =
Δ(r)
r2

dt2 − r2

Δ(r)
dr2 − r2 dϑ2 − r2 sin2 ϑ dϕ2 ,

where

Δ(r) := r2 − 2Mr .

Here the coordinates (t, r, ϑ, ϕ) take values in the intervals

−∞ < t <∞, r1 < r <∞, 0 < ϑ < π, 0 < ϕ < 2π ,

where r1 := 2M is the event horizon. It is most convenient to transform the
radial coordinate to the so called Regge–Wheeler coordinate u ∈ R defined by

u(r) = r + 2M log(r − 2M) , so that
du

dr
=

r2

Δ(r)
. (2.5)

In this coordinate, the event horizon is located at u → −∞, whereas u → ∞
corresponds to spatial infinity, i.e., r →∞.

In this geometry, the Dirac operator takes the form (see also [14, Sec-
tion 2.2]):

D =

⎛

⎜
⎜
⎝

0 0 α+ β+

0 0 β− α−
α− −β+ 0 0
−β− α+ 0 0

⎞

⎟
⎟
⎠ with

β± =
i

r

(
∂

∂ϑ
+

cot ϑ

2

)
± 1

r sinϑ

∂

∂ϕ
and
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α± = − ir
√

Δ(r)
∂

∂t
±
√

Δ(r)
r

(
i

∂

∂r
+ i

r −M

2Δ(r)
+

i

2r

)
.

Then the Dirac equation can be separated with the ansatz

ψkn(t, u, ϕ, ϑ) = e−ikϕ 1
Δ(r)1/4

√
r

⎛

⎜
⎜
⎜
⎝

Xkn
− (t, u)Y kn

− (ϑ)
Xkn

+ (t, u)Y kn
+ (ϑ)

Xkn
+ (t, u)Y kn

− (ϑ)
Xkn

− (t, u)Y kn
+ (ϑ)

⎞

⎟
⎟
⎟
⎠

with k ∈ Z + 1/2, n ∈ N and ω ∈ R. The angular functions Y kn
± can be ex-

pressed in terms of spin-weighted spherical harmonics and form an orthonormal
basis of L2

((
(−1, 1), dϑ cos ϑ

)
, C2

)
(see [14, Section 2.4] with additional refer-

ence to [15]). The radial functions Xkn
± satisfy a system of partial differential

equations
(√

Δ(r)D+ imr − λ

−imr − λ
√

Δ(r)D−

)(
Xkn

+

Xkn
−

)

= 0 , (2.6)

where m denotes the particle mass and

D± =
∂

∂r
∓ r2

Δ(r)
∂

∂t
,

for details see [8, Section 2]. Moreover, employing the ansatz

Xkn
± (t, u) = e−iωt Xknω

± (u) ,

equation (2.6) goes over to a system of ordinary differential equations, which
admits two two-component fundamental solutions labeled by a = 1, 2. We
denote the resulting Dirac solution by Xknω

a = (Xknω
a,+ ,Xknω

a,− ). In the case |ω| <
m, these solutions behave exponentially near infinity. We always choose the
fundamental solution for

a = 1 as the fundamental solution which decays at infinity. (2.7)

For more details on the choice of the fundamental solutions, see Sect. 2.3.4.
In what follows, we will often use the following notation for two-component

functions

A :=
(

A+

A−

)
.

The norm in C
2 will be denoted by |. |, the canonical inner product on L2(R, C2)

by 〈.|.〉 and the corresponding norm by ‖.‖.
As implied by [8, Theorem 3.6], one can then find the following formula

for the mode-wise propagator:

Theorem 2.2. Given initial radial data X0 ∈ C∞
0 (R, C2) at time t = 0, the

corresponding solution X ∈ C∞(R2, C2) of the radial Dirac equation (2.6) can
be written as

X(t, u) =
1
π

ˆ ∞

−∞
dω e−iωt

2∑

a,b=1

tknω
ab Xknω

a (u) 〈Xknω
b |X0〉 , (2.8)
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for any t, u ∈ R. The Xknω
a (x) are the fundamental solutions mentioned before.

Here the coefficients tknω
ab satisfy the relations

tknω
ab = tknω

ba

and ⎧
⎨

⎩

tknω
ab = δa,1 δb,1 if |ω| ≤ m

tknω
11 = t22 =

1
2

,
∣
∣tknω

12

∣
∣ ≤ 1

2
if |ω| > m .

(2.9)

We note for clarity that, in view of (2.9) and (2.7), in the case |ω| < m only the
exponentially decaying wave function enters the integral representation. This
has the effect that, asymptotically near infinity, only the spectrum for |ω| ≥ m
is visible, in agreement with the mass gap in Minkowski space.

2.3.2. Hamiltonian Formulation. The Dirac equation (2.3) can be written in
the Hamiltonian form

i∂tψ = Hψ , (2.10)

where the Hamiltonian H is a spatial operator acting on the spinors. Choosing
the Cauchy surface N as the surface of constant Schwarzschild time and the
domain D(H) as the smooth and compactly supported spinorial wave functions
on N , the Hamiltonian is symmetric with respect to the scalar product (2.4),
i.e.,

(Hψ |φ)m = (ψ |Hφ)m for all ψ, φ ∈ D(H)

(for more details on this point in general stationary spacetimes, see [9, Sec-
tion 4.6]). The Hamiltonian is essentially self-adjoint (see [13] for details in a
more general context). Denoting the unique self-adjoint extension again by H,
the Cauchy problem can be solved with the spectral calculus by

ψ(t) = e−itH ψ0 . (2.11)

This is the abstract counterpart of the integral representation of Theorem 2.2.
In simple terms, the solution (2.8) can be understood as giving an integral
representation for the operator e−itH restricted to an angular mode. Noting
that ω is the spectral parameter, the integral in (2.8) can be understood as
a spectral decomposition in terms of the spectral measure (in particular, the
spectrum of the Hamiltonian is the whole real axis). In order to make these
connections more precise, we first note that also the radial Dirac equation after
separation of variables (2.6) can be written in the Hamiltonian form

i
∂

∂t
Xkn(t, u) =

(
HknXkn|t

)
(u)

⇐⇒ (D −m) e−ikϕ 1
Δ(r)1/4

√
r

⎛

⎜
⎜
⎜
⎝

Xkn
− (t, u)Y kn

− (ϑ)
Xkn

+ (t, u)Y kn
+ (ϑ)

Xkn
+ (t, u)Y kn

− (ϑ)
Xkn

− (t, u)Y kn
+ (ϑ)

⎞

⎟
⎟
⎟
⎠

= 0 ,
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where the Hamiltonian Hkn now is an essentially self-adjoint operator on
L2(R, C2) with dense domain D(Hkn) = C∞

0 (R, C2). This makes it possible to
write the solution of the Cauchy problem as

X(t, u) =
(
e−itHkn X0

)
(u) with u ∈ R .

Here, the initial data can be an arbitrary vector-valued function in the Hilbert
space, i.e., X0 ∈ L2(R, C2). If we specialize to smooth initial data with compact
support, i.e., X0 ∈ C∞

0 (R, C2), then the time evolution operator can be written
with the help of Theorem 2.2 as

(
e−itHknX0

)
(u) =

1
π

ˆ ∞

−∞
dω e−iωt

2∑

a,b=1

tknω
ab Xknω

a (u) 〈Xknω
b |X0〉

for X0 ∈ C∞
0 (R, C2)

We point out that this formula does not immediately extend to general X0 ∈
L2(R, C2); we will come back to this technical issue a few times in this work.

2.3.3. Connection to the Full Propagator. We now explain how the solution
of the Cauchy problem as given abstractly in (2.11) can be decomposed into
angular modes. Our considerations explain why we may restrict attention to
one angular mode instead of the full propagator and why we can use the
ordinary L2-scalar product instead of (.|.)m. We introduce the function

S := Δ(r)1/4
√

r .

Moreover, for each fixed k ∈ Z + 1/2 and n ∈ Z we denote by (H0
m)kn the

completion of the vector space

Vkn :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

S−1 e−ikϕ

⎛

⎜
⎜
⎜
⎝

Xknω
− (u)Y kn

− (ϑ)
Xknω

+ (u)Y kn
+ (ϑ)

Xknω
+ (u)Y kn

− (ϑ)
Xknω

− (u)Y kn
+ (ϑ)

⎞

⎟
⎟
⎟
⎠

∣
∣
∣
∣X = (X+,X−) ∈ L2(R, C2)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

with respect to the scalar product (.|.)m introduced in (2.4), i.e.,

(H0
m)kn := Vkn

(.|.)m
.

This space can be thought of as the mode-wise solution space of the Dirac
equation at time t = 0. Note that the entire Hilbert space of solutions at
time t = 0, namely

Hm|t=0 =: H0
m

has the orthogonal decomposition

H0
m =

⊕

i∈N

(H0
m)kini

. (2.12)

(again with respect to (.|.)m), where ((ki, ni))i∈N is an enumeration of (Z +
1/2) × Z. Furthermore, each space (H0

m)kn can be connected with L2(R, C2)
using the mapping

S̃ :
(
(H0

m)kn , (.|.))→ L2(R, C2) ,
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which for any (ψ1, · · · , ψ4) ∈ (H0
m)kn is given by

(
S̃(ψ1, · · · , ψ4)

)
1

=

ˆ 1

−1

dϑ cos ϑ

ˆ 2π

0

dϕ
〈(

ψ2(u, ϑ, ϕ) , ψ3(u, ϑ, ϕ)
) ∣∣
∣ e−ikϕ

(
Y kn
+ (ϑ) , Y kn

− (ϑ)
)〉

C2
,

(
S̃(ψ1, · · · , ψ4)

)
2

=

ˆ 1

−1

dϑ cos ϑ

ˆ 2π

0

dϕ
〈(

ψ4(u, ϑ, ϕ) , ψ1(u, ϑ, ϕ)
) ∣∣
∣ e−ikϕ

(
Y kn
+ (ϑ) , Y kn

− (ϑ)
)〉

C2
.

It has the inverse

S̃−1 : L2(R, C2) → (
(H0

m)kn , (.|.)m

)
,

(X+,X−) → S−1e−ikϕ

⎛

⎜
⎜
⎜
⎝

X−(u)Y kn
− (ϑ)

X+(u)Y kn
+ (ϑ)

X+(u)Y kn
− (ϑ)

X−(u)Y kn
+ (ϑ)

⎞

⎟
⎟
⎟
⎠

.

Then a direct computation shows the scalar products transform as

〈S̃ψ | S̃φ〉L2 = (ψ |φ)m for any φ, ψ ∈ (H0
m)kn .

This implies that S̃ is unitary and we can identify the two spaces.
Now recall that the Dirac equation can be separated by solutions of the

form

ψ̂ = S−1e−ikϕ

⎛

⎜
⎜
⎜
⎝

X−(t, u)Y kn
− (ϑ)

X+(t, u)Y kn
+ (ϑ)

X+(t, u)Y kn
− (ϑ)

X−(t, u)Y kn
+ (ϑ)

⎞

⎟
⎟
⎟
⎠

,

and can then be described mode-wise by the Hamiltonian Hkn on the space L2

(R, C2). Therefore, denoting

H̃kn := S̃−1HknS̃ ,

the diagonal block operator (with respect to the decomposition (2.12))

H̃ := diag
(
H̃(k1,n1) , H̃(k2,n2) , . . .

)
,

defines an essentially self-adjoint Hamiltonian for the original Dirac equation
on the space H0

m.
Moreover, any function of H̃ is of the same diagonal block operator form.

The same holds for any multiplication operator MχŨ
, where Ũ is a spherically

symmetric set

Ũ := U × S2 ⊆ R× S2 .

In particular, such an operator has the block operator representation

MχŨ
= diag

(MχŨ
, MχŨ

, . . .
)

.

We therefore conclude that when computing traces of operators of the form

χŨf(H̃)χŨ or f(χŨ H̃χŨ ) ,
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(for some suitable function f), we may consider each angular mode separately
and then sum over the occupied states (and similarly for Schatten norms of
such operators).

Moreover, we point out that instead of (H0
m)kn we can work with the

corresponding objects in L2(R, C2), as the spaces are unitarily equivalent. Note
that then the multiplication operator MχŨ

goes over to MχU
, i.e.,

S̃−1MχŨ
S̃ =MχU

.

In particular, this leads to

tr
(
χŨf(H̃)χŨ

)
=

∑

k,n

tr
(
χŨf(H̃kn)χŨ

)
=

∑

k,n

tr
(
χUf(Hkn)χU

)

and

tr f
(
χŨ H̃χŨ

)
=

∑

k,n

tr f
(
χŨ H̃knχŨ

)
=

∑

k,n

tr f
(
χUHknχU

)
.

2.3.4. Asymptotics of the Radial Solutions. We now recall the asymptotics
of the solutions of the radial ODEs and specify our choice of fundamental
solutions. Since we want to consider the propagator at the horizon, we will
need near-horizon approximations of the solutions Xknω. In order to control
the resulting error terms, we now state a slightly stronger version of [8, Lemma
3.1], specialized to the Schwarzschild case.

Lemma 2.3. For any u2 ∈ R fixed, in Schwarzschild space every solution X ≡
Xknω for u ∈ (−∞, u2) is of the form

X(u) =
(

f+
0 e−iωu

f−
0 eiωu

)
+ R0(u)

where the error term R0 decays exponentially in u, uniformly in ω. More pre-
cisely, writing

R0(u) =
(

e−iωug+(u)
eiωug−(u)

)
,

the vector-valued function g = (g+, g−) satisfies the bounds

|g(u)| < cedu ,

∣
∣
∣
∣

d
du

g(u)
∣
∣
∣
∣ ≤ dcedu for all u < u2 ,

with coefficients c, d > 0 that can be chosen independently of ω and u < u2.

The proof, which follows the method in [8], is given in detail in Appendix B.
We can now explain how to construct the fundamental solutions Xa =

(X+
a ,X−

a ) for a = 1 and 2 (for this see also [8, p. 41] and [14, p. 9–10]). In the
case |ω| > m, we choose X1 and X2 such that the corresponding functions f0

from the previous lemma are of the form

f0 =
(

1
0

)
for X1 and f0 =

(
0
1

)
for X2 .

In the case |ω| ≤ m, we consider the behavior of solutions at infinity (i.e.,
asymptotically as u → ∞). It turns out that there is (up to a prefactor) a
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unique fundamental solution which decays exponentially. We denote it by X1.
Moreover, we choose X2 as an exponentially increasing fundamental solution.
We normalize the resulting fundamental system at the horizon by

lim
u→−∞ |X1/2| = 1 .

Representing these solutions in the form of the previous lemma, we obtain

X1/2(u) =

(
e−iωuf+

0,1/2

eiωuf−
0,1/2

)

+ R0,1/2(u)

with coefficients f±
0,1/2 ∈ C. Due to the normalization, we know that

|f0,1/2| = 1 and in particular |f±
0,1/2| ≤ 1 .

Note, however, that f0 and R0 from the previous lemma may in general also
depend on k and n, but for ease in notation this dependence will be suppressed.

2.4. A Few Functional Analytic Tools

2.4.1. Basic Definitions. Later will often rewrite operators on L2(Rd, Cn) as
pseudo-differential operators of the form

(
Opα(A)ψ

)
(x) :=

( α

2π

)d
ˆ

Rd

ˆ
U

e−iαξ·(x−y) A(x,y, ξ) ψ(y) dy dξ

for any ψ ∈ C∞
0 (U , Cn) .

(2.13)

where U ⊆ R
d is some open set. The so-called symbol A is a suitable mea-

surable matrix-valued map A : (Rd)3 × (0,∞) → M(n, n) such that the op-
erator on C∞

0 (U , Cn) defined by (2.13) can be extended continuously to all
of L2(U , Cn). The parameter d ∈ N can be thought of as the spatial dimension
and the parameter n ∈ N as the number of components of the wave function ψ.
Note that if U � R

d, then the operator Opα(A) may still be considered an
operator on L2(Rd, Cn) if one replaces A(x,y, ξ) by χU (x)A(x,y, ξ)χU (y). In
fact in what follows, we often identify these operators. Symbols denoted by low-
ercase letters usually indicate that the symbol is scalar valued. Moreover, the
symbols sometimes additionally depend on α or other parameters. We usually
denote this by corresponding super- or subscripts. For some symbols A, the
integral representation (2.13) extends to all Schwartz or even all L2-functions.
If this condition is needed for specific results, we will mention it explicitly. We
will also establish some conditions on A that guarantee such extensions. The
names of the arguments of the symbol A are adapted to the application in
mind. In particular, if symbols that are not boldface, this usually implies that
they are scalar valued, i.e., d = 1.

In order to conveniently compute the entanglement entropy, we will often
be interested in the trace of the following operator:

Dα(ηκ,Λ,A) := ηκ

(
χΛOpα(A)χΛ

)− χΛηκ

(
Opα(A)

)
χΛ ,

where Λ ⊆ R
d is some measurable set which will be specified later.

Moreover, in what follows we will often use the notation

PΩ,α := Opα(χΩ)
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for some measurable set Ω ⊆ R
d, which emphasizes that this is a projection

operator (that it is well defined follows from Lemma A.1 in Appendix A).
In Remark A.2, we will see that the integral representation of such operators
always extends to all Schwartz functions.

Furthermore, as we will later see, we can often estimate traces of functions
of operators in terms of Schatten norms, which we now introduce (we refer
to [5, Ch. 11] for more details on this topic). For a compact operator A in
a separable Hilbert space H, we denote by sk(A), k = 1, 2, . . . , its singular
values, i.e., eigenvalues of the self-adjoint compact operator

√
A∗A labeled in

non-increasing-order counting multiplicities. For the sum A+B, the following
inequality holds:

s2k(A + B) ≤ s2k−1(A + B) ≤ sk(A) + sk(B) . (2.14)

We say that A belongs to the Schatten–von Neumann class Sp, p > 0, if

‖A‖p :=
(
tr(A∗A)

p
2
) 1

p

is finite. The functional ‖A‖p defines a norm if p ≥ 1 and a quasi-norm if 0 <
p < 1. With this (quasi-)norm, the class Sp is a complete space. For 0 < p ≤ 1,
the quasi-norm is actually a p-norm, that is, it satisfies the following triangle
inequality for all A,B ∈ Sp,

‖A + B‖p
p ≤ ‖A‖p

p + ‖B‖p
p (0 < p ≤ 1) . (2.15)

Moreover, for all A ∈ Sq1 and B ∈ Sq2 the following Hölder-type inequality
holds (see [33, Section 2.1] with reference to [5, p. 262]),

‖AB‖q ≤ ‖A‖q1‖B‖q2 , with q−1 = q−1
1 + q−1

2 , 0 < q1, q2 ≤ ∞ . (2.16)

Remark 2.4. We note that the q-th Schatten norm is invariant under unitary
transformations: Let H and G be Hilbert spaces, U ∈ L(G,H) unitary and A ∈
Sq ⊆ L(H), then

(U−1AU)∗U−1AU = (U∗AU)∗U−1AU = U∗A∗UU−1AU = U−1A∗AU,

which is unitarily equivalent to A∗A and thus has the same eigenvalues showing
that

‖A‖q = ‖U−1AU‖q .

In particular, in the case q = 1 this shows that the trace norm of A is conserved
under unitary transformation. ♦

Moreover, we will frequently use the following function norms (see, for
example, [32, p. 5–6] with slight modifications)

Definition 2.5. Let S(n,m,k)(Rd) with m,n, k ∈ N0 be the space of all complex-
valued functions on (Rd)3, which are continuous, bounded and continuously
partially differentiable in the first variable up to order n, in the second to m
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and in the third to k and whose partial derivatives up to these orders are
bounded as well. For a ∈ S(n,m,k)(Rd) and l, r > 0, we introduce the norm

N (n,m,k)(a; l, r) := max
0≤ñ≤n
0≤m̃≤m
0≤k̃≤k

sup
x,y ,ξ

lñ+m̃rk̃
∣
∣∇ñ

x∇m̃
y ∇k̃

ξa(x,y, ξ)
∣
∣ .

Similarly, S(n,k)(Rd) with n, k ∈ N0 denotes the space of all complex-valued
functions on (Rd)2, which are continuous and bounded and continuously par-
tially differentiable in the first variable up to order n and in the second to k and
whose partial derivatives up to these orders are bounded. For a ∈ S(n,m)(Rd)
and l, r > 0, we introduce the norm

N (n,k)(a; l, r) := max
0≤ñ≤n
0≤k̃≤k

sup
x,ξ

lñrk̃
∣
∣∇ñ

x∇k̃
ξa(x, ξ)

∣
∣ .

Finally, by S(k)(Rd) with k ∈ N0 we denote the space of all complex-valued
functions on R

d, which are continuous and bounded and continuously partially
differentiable up to order k and whose partial derivatives up to these orders
are bounded. For a ∈ S(k)(Rd) and r > 0, we introduce the norm

N (k)(a; r) := max
0≤k̃≤k

sup
ξ

rk̃
∣
∣∇k̃

ξa(ξ)
∣
∣ .

Note that any function a ∈ S(n,k) may be interpreted as element of
in S(n,m,k)(Rd) for any m ∈ N0 by the identification

a(x,y, ξ) ≡ a(x, ξ) for all y ∈ R
d .

Then, for any l, r > 0 one has

N (n,m,k)(a; l, r) = N (n,k)(a; l, r) .

2.4.2. Estimates on q-Normed Ideals. In order to generalize a theorem by
Widom (Theorem 5.3) later on, we need a few estimates, which we state here.
Since Theorem 5.3 admits only smooth functions, the next two lemmata will
allow us to extend it to certain functions which do not need to be differentiable
everywhere.

Lemma 2.6 [34, Cor. 2.11, Cond. 2.9, Thm. 2.10]. Let q, r > 0 parameters,
n ≥ 2 a natural number and f ∈ Cn

0 (−r, r). Let S ⊂ L(H) (with a Hilbert
space H) be a q-normed ideal such that there is σ ∈ (0, 1] with

(n− σ)−1 < q ≤ 1 .

Moreover, consider a self-adjoint operator A on D(A) ⊆ H and a projection
operator P such that PD(A) ⊆ D(A) and |PA(1− P )|σ ∈ S and PA(1− P )
extends to a bounded operator. Then

‖f(PAP )P − Pf(A)‖S � max
0≤k≤n

(
rk‖f (k)‖L∞

)
r−σ

∥
∥|PA(1− P )|σ∥∥

S

with an implicit constant independent of A, P and f .
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We will usually apply this and the following lemma to operators of the
form

A = Opα(A), P = χΛ ,

for some subset Λ ⊆ R
d and with S as the qth Schatten class.

In preparation for the next lemma, we introduce the following condition.

Condition 2.7 [34, Condition 2.3]. Let n ∈ N and f ∈ Cn(R\{t0}) ∩ C(R) a
function with t0 ∈ R, such that there exist γ,R > 0 with

f n := max
0≤k≤n

sup
t�=t0

|f (k)(t)| · |t− t0|−γ+k < ∞ , (2.17)

and supp f ⊆ [t0 −R, t0 + R].

Lemma 2.8 [34, Theorem 2.10]. Let f satisfy Condition 2.7 for some n ≥ 2
and γ,R > 0. Let S, A and P as in Lemma 2.6 with σ < γ, then

∥
∥f(PAP )P − Pf(A)

∥
∥
S

� f n Rγ−σ
∥
∥|PA(1− P )|σ∥∥

S
,

with an implicit constant independent of A, P , f and R.

Example 2.9. Ultimately we want to apply Lemma 2.8 to ηκ (times a cutoff
function). Therefore, we introduce the function

f(x) := ηκ(x)Φ1(x) , for any x ∈ R ,

with a smooth non-negative function Φ1 such that

supp Φ1 =
[
− 3

4
,

3
4

]
and Φ1

∣
∣
[− 1

2 , 1
2 ]
≡ 1 .

Note that f then satisfies the conditions of Lemma 2.8 for any n ∈ N, γ < 1
arbitrary, R = 3/4 and x0 = 0.

This gives an idea how Lemma 2.8 can be used to estimate the error in
Theorem 5.3 caused by functions like ηκ, which are not differentiable every-
where. ♦

2.4.3. Estimates of Pseudo-Differential Operators. Here we list a few previ-
ously establishes estimates on pseudo-differential operators, which we will use
later on. The first lemma shows that Opα(a) is bounded with respect to the
operator norm uniformly in α as long as a ∈ S(n,m,k)(Rd).

Lemma 2.10 [32, Lemma 3.9] (adapted to our notation). Let a ∈ S(k,k,d+1)(Rd)
be a symbol such that Opα(a) is well defined and its integral representation ex-
tends to all Schwartz functions. We choose k := �d/2�+ 1, l0 > 0 and l, r > 0
such that αlr ≥ l0. Then

‖Opα(a)‖∞ � N (k,k,d+1)(a; r, l) ,

with an implicit constant only depending on d, r and l0.

The next corollary helps us to estimate the error caused by interchanging
characteristic functions in position and momentum space.
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Corollary 2.11 [33, Corollary 4.7](case d = 1). For any two open bounded
intervals K,J as well as numbers q ∈ (0, 1] and α ≥ 2, the following estimate
holds

‖χKPJ,α(1− χK)‖q � (log α)1/q ,

with a constant independent of α.

The next proposition gives an estimate for terms of the form χΛOpα(a)(1−
χΛ), which we will come up when applying Lemmata 2.6 or 2.8. In order to
state it, we first need to introduce the following condition.

Condition 2.12 [25, Condition 3.1]. For d ≥ 1, the set Λ ⊂ R
d, satisfies one

of the following requirements:

(1) If d = 1, then Λ is a finite union of open intervals (bounded or unbounded)
such that their closures are pair-wise disjoint.

(2) If d ≥ 2, then Λ is a Lipschitz region (i.e., an open set whose boundary
is locally Lipschitz), and either Λ or R

d \ Λ is bounded.

Proposition 2.13 [25, Proposition 3.2](Adapted to the cases needed and our
notation). Let the region Λ ⊂ R

d satisfy Condition 2.12, and let α0 > 0 be a
constant. Let q ∈ (0, 1] and

m̃ := �(d + 1)q−1�+ 1 .

Let a be a scalar-valued symbol only depending on ξ, i.e., a(x,y, ξ) ≡ a(ξ)
with support contained in Bτ (μ) for some μ ∈ R

d and τ > 0. Assume that a ∈
S(m̃)(Rd) and Opα(a) is well defined with integral representation extending to
all Schwartz functions. Then, for any ατ ≥ α0,

‖χΛOpα(a)(1− χΛ)‖q � (ατ)
d−1

q N (m̃)(a; τ) ,

with implicit constants independent of a, α, τ and μ.

Proposition 2.14 [32, Proposition 3.8 and p. 17] with reference to [4, Theorem
11.1], [3, Section 5.8] and [31, Theorem 4.5]. For z ∈ Z set Cz := z + (0, 1]d

and for σ ∈ (0,∞) and g ∈ L2
loc(R

d)

|g|σ :=
[∑

z∈Z

( ˆ
Cz

|g(x)|2dx

)σ/2 ]1/σ

.

Then, given functions a, h ∈ L2
loc(R) with |a|σ, |h|σ < ∞ for some σ ∈ (0, 2),

it follows that h Opα(a) ∈ Sσ (with integral representation extending to all
Schwartz functions) and

∥
∥h Op1(a)

∥
∥

σ
≤ C |h|σ |a|σ .
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3. The Regularized Projection Operator

3.1. Definition and Basic Properties

As previously mentioned, the entropy is computed using the mode-wise reg-
ularized projection operator to the negative frequency space (Πε

−)kn. This
operator emerges from e−itHkn from Sect. 2.3.2 by setting t = iε (the “iε”-
regularization) and restricting to the negative frequencies. Similar as explained
in Sect. 2.3.3, for operators of this form it suffices to consider the correspond-
ing operator for one angular mode (Πε

−)kn. So more precisely, for any X ∈
C∞

0 (R, C2) the operator (Πε
−)kn is defined by

(
(Πε

−)kn X
)
(x) :=

1
π

ˆ 0

−∞
dω eεω

2∑

a,b=1

tknω
ab Xknω

a (x)〈Xknω
b |X〉 , (3.1)

for any x ∈ R.
Since in this section we focus on one angular mode, we will drop the

superscripts kn on the functions Xknω
a and tknω

ab . Moreover, we will sometimes
write the ω-dependence of Xknω

a or tknω
ab as an argument, i.e.,

Xknω
a (u) ≡ Xω

a (u) ≡ Xa(u, ω) for any u ∈ R .

The asymptotics of the radial solutions at the horizon (Lemma 2.3) yield
the following boundedness properties for the functions Xω

a :

Remark 3.1. Given u2 ∈ R and a constant C > 0, we consider measurable
functions X,Z : R → C

2 with the properties

suppX, suppZ ⊂ (−∞, u2] and ‖X‖∞, ‖Z‖∞ < C .

Then the estimate in Lemma 2.3 yields
∑

a,b

|tωab| |X(u)| |Xω
a (u, ω)| |Xω

b (u′, ω)| |Z(u′)| ≤ 2C2 (1 + cedu) (1 + cedu′
) ,

for almost all u, u′, ω ∈ R and with constants c, d only depending on k, n and u2.
If we assume in addition that X and Z are compactly supported, then

for any g ∈ L1(R) the Lebesgue integralˆ ∞

−∞
du

ˆ ∞

−∞

dω

π
g(ω)

ˆ ∞

−∞
du′ tωab X†(u) Xω

a (u, ω) Xω
b (u′, ω)† Z(u′) ,

is well defined. Moreover, applying Fubini we may interchange the order of
integration arbitrarily. ♦

Furthermore, we will need the following technical lemma, which tells us
that testing with smooth and compactly supported functions suffices to deter-
mine if a function is in L2 and to estimate its L2-norm:

Lemma 3.2. Let N be a manifold with integration measure μ. Given a func-
tion f ∈ L1

loc(N, Cn) (with n ∈ N), we assume that the corresponding func-
tional on the test functions

Φ : C∞
0 (N, Cn) → C , v →

ˆ
N

〈v(x) | f(x)〉Cn dμ(x)
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is bounded with respect to the L2-norm, i.e.,
∣
∣Φ(v)

∣
∣ ≤ C ‖v‖L2(N,Cn) for all v ∈ C∞

0 (N, Cn) .

Then f ∈ L2(N, Cn) and ‖f‖L2(N,Cn) ≤ C.

Proof. Being bounded, the functional Φ can be extended continuously to
L2(N, Cn). The Fréchet–Riesz theorem makes it possible to represent this func-
tional by an L2-function f̂ i.e., ‖f̂‖L2(N,Cn) ≤ C and

ˆ
N

〈v(x),
(
f(x)− f̂(x)

)〉Cn dμ(x) = 0 for all v ∈ C∞
0 (N, Cn) .

The fundamental lemma of the calculus of variations (for vector-valued func-
tions on a manifold) yields that f = f̂ almost everywhere. �

Now we have all the tools to prove the boundedness of the operator (Πε
−)kn.

Lemma 3.3. Equation (3.1) defines a continuous endomorphism (Πε
−)kn on L2

(R, C2) with operator norm

‖(Πε
−)kn‖∞ ≤ 1 .

Proof. Let X,Z ∈ C∞
0 (R, C2) be arbitrary. We apply (Πε

−)kn to X and test
with Z, i.e., consider

〈

Z
∣
∣
∣

1
π

ˆ 0

−∞
dω eεω

2∑

a,b=1

tωab Xa(u, ω)
〈
Xω

b

∣
∣X

〉
〉

=: (∗) .

Applying Remark 3.1, we may interchange integrations such that

(∗) =
1
π

ˆ 0

−∞
dω eεω

2∑

a,b=1

tωab

〈
Z
∣
∣Xω

a

〉 〈
Xω

b

∣
∣X

〉
.

Moreover, from [8, proof of Theorem 3.6] we obtain the estimate

ˆ ∞

−∞

dω

π

∣
∣
∣
∣

2∑

a,b=1

tωab

〈
X
∣
∣Xω

a

〉〈
Xω

b

∣
∣ Z

〉
∣
∣
∣
∣ ≤ ‖X‖‖Z‖ , (3.2)

which yields

|(∗)| ≤ ‖X‖‖Z‖ .

Now by Lemma 3.2 we conclude that

(Πε
−)knX ∈ L2(R, C2) and ‖(Πε

−)knX‖ ≤ ‖X‖ .

This estimate shows that (Πε
−)kn extends to a continuous endomorphism on L2

(R, C2) with operator norm ‖(Πε
−)kn‖∞ ≤ 1. �
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3.2. Functional Calculus for Hkn

In order to derive some more properties of (Πε
−)kn, we need to employ the

functional calculus of Hkn, as we want to rewrite

(Πε
−)kn = g(Hkn) ,

for some suitable function g.
The following two propositions constitute the main result of this section.

Proposition 3.4. Let g ∈ L1(R) ∩ L∞(R) be a real valued function. Then for
any X ∈ C∞

0 (R, C2), the operator g(Hkn) has the integral representation

(
g(Hkn)X

)
(u) =

ˆ ∞

−∞

dω

π
g(ω)

ˆ ∞

−∞
du′

2∑

a,b=1

tωab Xa(u, ω)
〈
Xb(u′, ω)

× ∣
∣X(u′)

〉
C2 , (3.3)

valid for almost any u ∈ R. Moreover, for any Z ∈ C∞
0 (R, C2),

〈Z | g(H)X〉 =
ˆ ∞

−∞

dω

π
g(ω)

2∑

a,b=1

tωab 〈Z|Xω
a 〉〈Xω

b |X〉 , (3.4)

Proposition 3.5. Let g ∈ L1(R) ∩ L∞(R) be a real valued function. Then the
operator g(Hkn) has the following properties:

(i) The operator norm of g(Hkn) is bounded, namely

‖g(Hkn)‖∞ ≤ ‖g‖L∞ .

(ii) The operator g(Hkn) is self-adjoint.

Proof of Proposition 3.4. We proceed in two steps.
First step: Proof for g ∈ C∞

0 (R): Since the Fourier transform is a bijection on
the Schwartz space, for any g ∈ C∞

0 (R) there is a function ĝ ∈ S(R) such that

g(ω) =
ˆ

ĝ(t) e−iωt dt for any ω ∈ R .

We evaluate the right hand side of (3.3) for X ∈ C∞
0 (R, C2) arbitrary. Note

that, when testing this with some Z ∈ C∞
0 (R, C2), we may interchange the u-

and ω-integrations due to an argument similar as in Remark 3.1. We thus
obtain

〈

Z
∣
∣
∣

1
π

ˆ
g(ω)

2∑

a,b=1

tab(ω) Xω
a 〈Xω

b |X〉 dω

〉

=
1
π

ˆ
g(ω)

2∑

a,b=1

tab(ω)
〈
Z
∣
∣Xω

a

〉 〈
Xω

b

∣
∣X

〉
dω

=
1
π

ˆ
dω

(ˆ
dt ĝ(t) e−itω

) 2∑

a,b=1

tab(ω)
〈
Z
∣
∣Xω

a

〉 〈
Xω

b

∣
∣X

〉
=: (∗) .
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Using the rapid decay of ĝ together with (3.2), we can make use of the Fubini–
Tonelli theorem which leads to

(∗) =
1
π

ˆ
dt ĝ(t)

ˆ
dω e−itω

2∑

a,b=1

tab(ω)
〈
Z
∣
∣Xω

a

〉 〈
Xω

b

∣
∣X

〉
.

It is shown in [8] that

(∗) =
ˆ

ĝ(t)
〈
Z
∣
∣ e−itHknX

〉
dt .

Now we can again apply Fubini’s theorem due to the rapid decay of ĝ and the
boundedness of the operator e−itHkn (which follows from (3.2)), leading to

(∗) =
〈
Z
∣
∣
∣
(ˆ

ĝ(t) e−itHkndt

)
X
〉

.

Next we use the multiplication operator version of the spectral theorem to
rewrite Hkn as

Hkn = U f U−1 ,

with a suitable unitary operator U and a Borel function f on the corresponding
measure space

(
σ(Hkn),Σ, μ

)
. Then

e−itHkn = U e−itf U−1 ,

and thus, for any X̃ ∈ L2(R, C2) and almost any x ∈ A it holds that
((ˆ

ĝ(t)e−itfdt
)
U−1X̃

)
(x) =

( ˆ
ĝ(t)e−itf(x)dt

)
(U−1X̃)(x)

= g
(
f(x)

)
(U−1X̃)(x) ,

which leads to

(∗) =
〈
Z
∣
∣ U(g ◦ f) U−1X

〉
=
〈
Z
∣
∣ g(Hkn)X

〉
.

Thus, we conclude that for any X,Z ∈ C∞
0 (R× S2, C4),

〈

Z
∣
∣
∣

1
π

ˆ ∞

−∞
g(ω)

2∑

a,b=1

tωab Xω
a 〈Xω

b |X〉
〉

=
〈
Z
∣
∣ g(Hkn)X

〉
.

Then, Lemma 3.2 (together with similar estimates as before) yields that
ˆ ∞

−∞
g(ω)

2∑

a,b=1

tωab Xω
a (.) 〈Xω

b |X〉 ∈ L2(R× S2, C4) ,

and therefore

g(H)X =
∑

kn

ˆ ∞

−∞
g(ω)

2∑

a,b=1

tωab Xω
a 〈Xω

b |X〉 ,

almost everywhere.
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Second step: Proof for g ∈ L1(R) ∩ L∞(R) : We choose a sequence of test
functions (gn)n∈N in C∞

0 (R) which is uniformly bounded by a constant C > 0
such that1

gn → g in L1(R) and pointwise almost everywhere .

Then with f and U as before (where we applied the spectral theorem to Hkn)
we obtain for any X ∈ L2(R, C2)

gn

(
f(x)

)
(U−1X)(x) → g

(
f(x)

)
(U−1X)(x) for almost all x ∈ σ(Hkn) .

Moreover, with the notation Δgn := gn − g we can estimate
∣
∣Δgn

(
f(x)

)
(U−1X)(x)

∣
∣ ≤ (

C + ‖g‖∞
) ∣∣(U−1X)(x)

∣
∣

for almost all x ∈ σ(Hkn) .

So the function
(
C + ‖g‖∞

)|U−1X| ∈ L2(A,μ) dominates the sequence of
measurable functions

(MΔgn◦f (U−1X)
)
n∈N

which additionally tends to zero
pointwise almost everywhere. Therefore, using Lebesgue’s dominated conver-
gence theorem, we conclude that

Mgn◦f U−1 X →Mg◦f U−1 X in L2(σ(Hkn, μ)

and thus

gn(Hkn)X → g(Hkn)X in L2(R, C2) .

In particular, we conclude that for any X,Z ∈ C∞
0 (R, C4),

〈Z | gn(Hkn)X〉 → 〈Z | g(Hkn)X〉 . (3.5)

Next we need to show that the corresponding integral representations
converge. To this end, we note that, just as in the first case, we may interchange
integrations in the way

〈

Z
∣
∣
∣
ˆ ∞

−∞
dω Δgn(ω)

2∑

a,b=1

tωab Xω
a 〈Xω

b |X〉
〉

=
ˆ ∞

−∞
dω Δgn(ω)

2∑

a,b=1

tωab 〈Z|Xω
a 〉〈Xω

b |X〉 =: (∗∗) ,

Now keep in mind that Remark 3.1 also yields the bound
∣
∣
∣
∣

2∑

a,b=1

tωab 〈Z|Xω
a 〉〈Xω

b |X〉
∣
∣
∣
∣ ≤ CZ,X ,

which holds uniformly in ω. Using this inequality, we obtain the estimate

1Note that such a sequence can always be constructed from an arbitrary sequence (g̃n)n∈N ⊆
C∞

0 (R) converging to g in L1(R) by smoothly cutting off the values of the function whenever
its absolute value is larger than ‖g‖∞ + 1 (to ensure uniform boundedness) and then going
over to a subsequence (to get pointwise convergence a.e., see, for example, [30, Theorem
3.12]).
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|(∗∗)| ≤
ˆ ∞

−∞
dω
∣
∣Δgn(ω)

∣
∣
∣
∣
∣

2∑

a,b=1

tωab〈Z|Xknω
a 〉〈Xknω

b |X〉
∣
∣
∣

≤ CZ,X

ˆ ∞

−∞
dω
∣
∣Δgn(ω)

∣
∣ n→∞−→ 0 .

Combined with (3.5), this finally yields for any X,Z ∈ C∞
0 (R× S2, C4)

〈Z | g(H)X〉 =

〈

Z
∣
∣
∣
∑

kn

ˆ ∞

−∞
dω g(ω)

2∑

a,b=1

tωab Xω
a 〈Xω

b |X〉
〉

.

We obtain (3.3) just as in the first case using Lemma 3.2. Finally, (3.4) follows
by testing with Z and again interchanging the integrals as explained before.

�

Proof of Proposition 3.5. (i) This follows directly from (3.4) together with
(3.2), since

|〈Z | g(Hkn)X〉L2 | (3.4)
=

∣
∣
∣
ˆ

dω

π
g(ω)

2∑

a,b=1

tωab

〈
Z |Xω

a

〉
L2

〈
Xω

b |X
〉

L2

∣
∣
∣ (3.6)

(3.2)

≤ ‖g‖∞‖Z‖L2‖X‖L2 . (3.7)

(ii) Using (3.3), the following computation shows that the operator g(Hkn)
is also self-adjoint because for any X,Z ∈ Ξ we have

〈Z | g(Hkn)X〉L2

=
ˆ

du

ˆ
dω

π
g(ω)

ˆ
du′

2∑

a,b=1

tωba

〈
X(u′) |Xb(u′, ω)

〉
C2

〈
Xa(u, ω) | Z(u)

〉
C2

Fubini=
ˆ

du′
ˆ

dω

π
g(ω)

ˆ
du

2∑

a,b=1

tωba

〈
Z(u) |Xb(u, ω)

〉
C2

〈
Xa(u′, ω) |X(u′)

〉
C2

=
〈
X | g(Hkn)Z

〉
L2 =

〈
g(Hkn)Z |X〉

L2 .

Note that applying Fubini is justified in view of Remark 3.1. From this
equation, the self-adjointness follows by continuous extension. �

Now we apply these results to the operator Πε
−:

Corollary 3.6. Consider the function

g : R → R , ω → χ(−∞,0)(ω) eεω ,

then we have

(Πε
−)kn = g(Hkn)

Moreover, for ηκ as before we have:

ηκ((Πε
−)kn) = (ηκ ◦ g)(Hkn) (3.8)
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Proof. First of all note that

(Πε
−)kn = g(Hkn) ,

as both operators clearly agree on the dense subset C∞
0 (R, C2) ⊆ L2(R, C2)

(see Proposition 3.4) and are bounded (see Lemma 3.3 and Proposition 3.5).
Equation (3.8) then follows by applying the functional calculus of Hkn (which
is applicable due to Proposition 3.5). �

3.3. Representation as a Pseudo-Differential Operator

The general idea is to rewrite Πε
− in the form of Opα(A) and identify α with

the inverse regularization constant:

α =
l0
ε

,

with a suitable reference length l0.
With the help of (3.3), we obtain for any ψ ∈ C∞

0 (R, C2)

(
(Πε

−)knψ
)
(u) =

ˆ ∞

−∞
(Πε

−)kn(u, u′) ψ(u′) du′

with the kernel

(Πε
−)kn(u, u′) =

1
π

ˆ ∞

−∞
e−iω(u−u′)

[(
aε,11(ω) aε,12(u, ω)

aε,21(u, ω) aε,22(ω)

)
+R0(u, u′, ω)

]

dω (3.9)

and

aε,11(ω) = eεω

(∣
∣f+

0,1(ω)
∣
∣2 χ(−m,0)(ω) +

1
2

χ(−∞,−m)(ω)
)

aε,12(u, ω) = e−εω e2iωu
(
f−
0,1(−ω) f+

0,1(−ω) χ(0,m)(ω) + t12(−ω) χ(m,∞)(ω)
)

aε,21(u, ω) = eεω e2iωu
(
f−
0,1(ω) f+

0,1(ω) χ(−m,0)(ω) + t21(ω) χ(−∞,−m)(ω)
)

aε,22(ω) = e−εω
(∣
∣f−

0,1(ω)
∣
∣2 χ(0,m)(ω) +

1
2

χ(m,∞)(ω)
)

,

and some error termR0(u, u′, ω) related to the error term R0(u) in Lemma 2.3.
A more detailed computation is given in Appendix C. Moreover, the more pre-
cise form of R0(u, u′, ω) is found in Sect. 6.1.3. Note that for the Schwarzschild
case we always replace x by u and y by u′ to emphasize that we are working
with Regge–Wheeler coordinates.

In order to bring (Πε
−)kn in the form of Opα(A), we need to rescale the ω-

integral by a dimensionless parameter α. As previously mentioned, the idea is
to set α = l0/ε with some reference length l0. In Schwarzschild space, the only
scaling parameter of the geometry is the mass of the black hole M . Thus, we
choose as reference length l0 = M and rescale the ω integral by

α :=
M

ε
.
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Introducing the notation

ξ :=
ω

α
=

εω

M
,

we thereby obtain

(Πε
−)kn(u, u′) =

α

π

ˆ
e−iαξ(u−u′)

[(
aε,11(Mξ/ε) aε,12(u,Mξ/ε)

aε,21(u,Mξ/ε) aε,22(Mξ/ε)

)

+R0(u, u′, (Mξ/ε))

]

dξ ,

(3.10)

and set

R(ε)
0 (u, u′, ξ) := R0(u, u′, (Mξ/ε)) (3.11)

A(ε)(u, ξ) :=

(
aε,11(Mξ/ε) aε,12(u,Mξ/ε)

aε,21(u,Mξ/ε) aε,22(Mξ/ε)

)

. (3.12)

Note that in the matrix-valued functions aε and R0 we use the scaling pa-
rameter ε and otherwise α. This is convenient because we will first consider
the α → ∞ limit of an operator related to the ε → 0 limit of A(ε) and then
estimate the errors caused by this procedure. In this sense, α and ε can at first
be considered independent scaling parameters. When considering the limiting
case ε → 0 however, one has to keep their relation in mind.

4. The Regularized Fermionic Vacuum State and Its
Entanglement Entropy

After the above preparations, we can now define the regularized fermionic vac-
uum state in the Schwarzschild geometry as well as the corresponding (Rényi)
entanglement entropy of the event horizon. Our starting point is the obser-
vation that a quasi-free fermionic state is uniquely described by its reduced
one-particle density operator D (see Definition 2.1). We want to choose D as
the regularized projection operator onto all the negative-frequency solutions
of the Dirac equation. Using the spectral calculus for the Hamiltonian H in
the Dirac equation in the Hamiltonian form (2.10), our first ansatz is

D = g(H) with g(ω) := χ(−∞,0)(ω) eεω . (4.1)

Note that, in the limiting case ε ↘ 0, the operator D goes over to the projec-
tion operator to all negative-frequency solutions. The corresponding quasi-free
state Ω is pure. In the case ε > 0, the function eεω gives a smooth cutoff for
large frequencies on the energy scale 1/ε. Even in this regularized situation,
the spectral function g is discontinuous at ω = 0. This implements the physi-
cal picture that, in the vacuum, all negative frequency one-particle states are
occupied, whereas all positive frequency states are not.

Our fist ansatz (4.1) has the shortcoming that it involves an infinite
number of angular momentum modes, giving rise to a divergence in (1.9). In
order to remedy the situation, we let O be a finite subset of (Z + 1/2) × N
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(referred to as the occupied angular momentum modes or occupied one-particle
states) and choose

D = Πε
− :=

∑

(k,n) occupied

(Πε
−)kn , (4.2)

where we sum over all (k, n) ∈ O. Here the mode-wise regularized projection
operator (Πε

−)kn is defined using the integral representation by (3.1). Alterna-
tively and equivalently, it can be characterized using the spectral calculus as
described in Corollary 3.6.

We note that, for simplicity, for each angular momentum mode we choose
the same regularization length ε. More generally, one could consider a regu-
larized vacuum state where ε = ε(k, n) depends on the angular mode. Since
the entropy can be decomposed into the sum of the entropies of all angular
momentum modes, all our results generalize immediately to this more general
state.

Choosing D according to (4.2), we consider the (Rényi) entanglement
entropy as defined by (2.2), where Λ is chosen as an annular region in (1.4); see
also Fig. 2. Note that in the Regge–Wheeler coordinates the horizon is located
at −∞, so ultimately we want to consider the limit u0 → −∞ and ρ →∞.

As explained in Sect. 2.3.3, we can compute the trace mode-wise by going
over to the subregions K:

tr
(
ηκ

(
χΛΠε

−
)
χΛ)− χΛηκ

(
Πε

−
)
χΛ

)
=

∑

(k,n)
occupied

tr
(
ηκ

(
χK(Πε

−)knχK
)

−χKηκ

(
(Πε

−)kn

)
χK

))
.

Thus, we define the mode-wise Rényi entropy of the black hole as in (1.6) by

SBH
κ,kn =

1
2

lim
ρ→∞ lim

α→∞
1

f̃(α)
lim

u0→−∞ tr Δκ

(
(Πε

−)kn,K) ,

where f̃(α) is a function describing the highest order of divergence in α (we
will later see that here f̃(α) = log α). The complete entanglement entropy of
the black hole is then the sum over all occupied modes (see (1.9)).

In order to compute this in more detail, we will prove that

lim
ρ→∞ lim

α→∞
1

f(α)
lim

u0→−∞ tr
(
ηκ

(
χK(Πε

−)knχK
)− χKηκ

(
(Πε

−)kn

)
χK

)
(4.3)

= lim
ρ→∞ lim

α→∞
1

f(α)
lim

u0→−∞ tr
(
ηκ

(
χKOpα(A0)χK

)− χKηκ

(
Opα(A0)

)
χK

)
,

(4.4)

where

A0(ξ) :=
(

eMξχ(−∞,0)(ξ) 0
0 e−Mξχ(0,∞)(ξ)

)
. (4.5)

(We will later see that the operators in (4.3) and (4.4) are well defined and trace
class). The notation A0 is supposed to emphasize the connection to the ε→ 0
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Figure 2. Cross section visualizing the set Λ = K × S2

limit of Aε. Since A0 is diagonal, the computation of (4.4) is much easier than
the one for (4.3). In fact, we have

(4.4) =

2∑

j=1

lim
ρ→∞ lim

α→∞
1

f(α)
lim

u0→−∞
tr
(
ηκ

(
χKOpα(a0,j)χK

) − χKηκ

(
Opα(a0,j)

)
χK

)

with the scalar functions

a0,1(ξ) := eMξχ(−∞,0)(ξ) and a0,2(ξ) := e−Mξχ(0,∞)(ξ) . (4.6)

This reduces the computation of (4.4) to a problem for real-valued symbols
for which many results are already established.

Remark 4.1. We point out that our definition of the entanglement entropy
differs from the conventions in [20,24] in that we do not add the entropic
difference operator of the complement of Λ. This is justified as follows. On the
technical level, our procedure is easier, because it suffices to consider compact
spatial regions (indeed, we expect that the entropic difference operator on the
complement of Λ is not trace class). Conceptually, restricting attention to the
entropic difference operator of Λ can be understood from the fact that occupied
states which are supported either inside or outside Λ do not contribute to the
entanglement entropy. Thus, it suffices to consider the states which are non-
zero both inside and outside. These “boundary states” are taken into account
already in the entropic difference operator (1.3).

This qualitative argument can be made more precise with the following
formal computation, which shows that at least the unregularized entropic dif-
ference is the same for the inner and the outer parts: First of all note that ηκ(x)
vanishes at x = 0 and x = 1. Since Π− is a projection, this means that

ηκ(Π−) = 0 and therefore tr
(
χΛ ηκ(Π−) χΛ

)

= 0 = tr
(
χΛc ηκ(Π−) χΛc

)
.
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Moreover, if we assume that both χΛ Π− χΛ and Π− χΛ Π− are compact
operators, we can find a one-to-one correspondence between their non-zero
eigenvalues: Take any eigenvector ψ of χΛ Π− χΛ with eigenvalue λ �= 0, then
we must have

χΛψ =
1
λ

χ2
Λ Π− χΛψ = ψ and Π−ψ �= 0 ,

which yields

λ ψ =
(
χΛ Π− χΛ

)
ψ =

(
χΛ Π−

)
ψ .

Then Π−ψ is an eigenvector of Π− χΛ Π− with eigenvalue λ because
(
Π− χΛ Π−

)
(Π−ψ) = Π−

(
χΛ Π−

)
ψ = λ Π−ψ .

Since the same argument also works with the roles of Π− χΛ Π− and χΛ Π− χΛ

interchanged, this shows that the nonzero eigenvalues of both operators (counted
with multiplicities) coincide. Then the same holds true for ηκ(Π− χΛ Π−)
and ηκ(χΛ Π− χΛ), proving that

tr ηκ(χΛ Π− χΛ) = tr ηκ(Π− χΛ Π−) .

Due to the symmetry of ηκ, namely

ηκ(x) = ηκ(1− x) for any x ∈ R ,

this then leads to

tr ηκ(χΛ Π− χΛ) = tr ηκ(Π− χΛ Π−) = tr ηκ

(
Π− −Π− χΛ Π−

)

= tr ηκ(Π− χΛc Π−) .

Repeating the same argument as before with χΛc Π− χΛc finally gives

tr ηκ(χΛ Π− χΛ) = tr ηκ(Π− χΛc Π−) = tr ηκ(χΛc Π− χΛc) .

Regularizing this expression suggests that the entanglement entropies of the
inside and outside as defined in (1.3) coincide. If this is the case, our definition
of entanglement entropy agrees (up to a numerical factor) with
that in [20,24]. ♦

5. Trace of the Limiting Operator

In this section, we shall analyze the operator Opα(a0,1) in (4.6). Of course, the
same methods apply to Opα(a0,2).

Notation 5.1. In the following, it might happen that in the symbol A we can
factor out a characteristic function in ξ, i.e.,

A(u, u′, ξ) = χΩ(ξ) Ã(u, u′, ξ) .

In this case, we will sometimes denote the characteristic function in ξ corre-
sponding to the set Ω by IΩ (this is to avoid confusion with the characteristic
function χK in the variables u or u′).
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Figure 3. Illustration with examples of the “vertices” in Theorem 5.3

Remark 5.2. Note that the operator Opα(a0,1) corresponds to

Opα(a0,1) = F a0,1 F−1 ,

and is therefore well defined on all of L2(R) and by Remark A.2 its integral
representation extends to all Schwartz functions. Moreover, for any bounded
subset U ⊆ R the integral representation of the operator χUOpα(a0,1)χU holds
on all of L2(R) due to Lemma A.6. ♦

5.1. Idea for Smooth Functions

The general idea is to make use of the following one-dimensional result by
Widom [39].

Theorem 5.3. Let K,J ⊆ R intervals, f ∈ C∞(R) be a smooth function
with f(0) = 0 and a ∈ C∞(R2) a complex-valued Schwartz function which
we identify with the symbol a(x, y, ξ) ≡ a(x, ξ) for any x, y, ξ ∈ R. Moreover,
for any symbol b we denote its symmetric localization by

A(b) :=
1
2

(
χK Opα

(
IJ b

)
χK +

(
χKOpα

(
IJ b

)
χK

)∗)
, (5.1)

(recall that IJ is the characteristic function corresponding to J ⊆ R with respect
to the variable ξ). Then

tr
(
f(A(a))− χK Opα

(
IJ f(a)

)
χK

)
=

1
4π2

log(α)
∑

i

U
(
a(vi); f

)
+O(1) ,

where vi are the vertices of K × J (see Fig. 3)
and

U(c; f) :=
ˆ 1

0

1
t(1− t)

(
f(tc)− tf(c)

)
dt for any c ∈ R .
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Figure 4. Plot of the function a in (5.3)

Remark 5.4. (i) To be precise, Widom considered operators with kernels

α

2π

ˆ
dy

ˆ
dξ e+iαξ(x−y) a(x, ξ)

but the results can clearly be transferred using the transformation ξ →
−ξ.

(ii) Moreover, Widom considers operators of the form Opα(a) whose in-
tegral representation extends to all of L2(K). We note that, in view
of Lemma A.6, this assumption holds for any operator Opα(a) with
Schwartz symbol a = a(x, ξ), even if, apriori, the integral representa-
tion holds only when inserting smooth compactly
supported functions. ♦

We want to apply the above theorem with J = (−∞, 0) =: J and K =
K = (u0 − ρ, u0), where we choose f as a suitable approximation of the func-
tion ηκ (again with f(0) = 0) and a as an approximation of the diagonal matrix
entries a0,1/2 in (4.5) and (4.6). For ease of notation, we only consider a ≈ a0,1,
noting that our methods apply similarly to a0,2. To be more precise, we first
introduce the smooth non-negative cutoff functions Ψ,Φ ∈ C∞(R) with

Ψ(ξ) =

{
1 , ξ ≤ 0
0 , ξ > 1

and Φ(u) =

{
1 , u ∈ [−ρ, 0]
0 , u /∈ (−ρ− 1, 1) ,

(5.2)

and set Φu0(x) := Φ(x− u0). Then we may introduce a as the function

a(u, ξ) := Ψ(ξ) Φu0(u) eMξ . (5.3)

For a plot of a see Fig. 4.
Note that then a is a Schwartz function and

χK Opα(IJ a) χK = χK Opα(a0,1) χK . (5.4)
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Moreover, the resulting symbol clearly fulfills the condition of Lemma A.6,
so we can extend the corresponding integral representation to all L2(R, C)-
functions. In addition, the operator is self-adjoint, because of Lemma A.1.
This implies that we can leave out the symmetrization in (5.1), i.e.,

A(a) = χK Opα(IJ a) χK = χK Opα(a0,1) χK . (5.5)

Furthermore, due to Lemma A.1, we may pull out any function f as in Theo-
rem 5.3 in the sense that

χK Opα

(
IJ f(a)

)
χK = χK Opα

(
f(a0,1)

)
χK = χK f(Opα(a0,1)) χK ,

where we used that a0,1 vanishes outside J and that f(0) = 0.
In our application, the vertices of K × J are (similar as in Fig. 3B) given

by

v1 = (u0, 0) and v2 = (u0 − ρ, 0) ,

and thus

a(vi) = 1 , for any i = 1, 2 ,

leading to

tr
(
f
(
χKOpα(a0,1)χK

)− χKf
(
Opα(a0,1)

)
χK

)
=

1
2π2

log(α) U(1; f) +O(1) ,

(5.6)

valid for any f ∈ C∞(R) with f(0) = 0.
Note that, using Lemma A.3 and the fact that a0,1 does not depend on u

or u′, the O(1)-term does not change when varying u0, and therefore, the result
stays same when we take the limit u0 → −∞. We need to keep this in mind
because we shall take the limit u0 → −∞ before the limit α →∞ (cf. (1.6)).

5.2. Proof for Non-differentiable Functions

In order to state the main result of this section, we first need to introduce the
following condition.

Condition 5.5. Let T := {t0, . . . , tl} be a finite set and g ∈ C2(R \ T ) ∩C0(R)
be a function such that there exists a constant γ > 0 and in the neighborhood
of every ti there are constants ck > 0, k = 0, 1, 2 satisfying the conditions

|g(t)(x)| ≤ ck |t− ti|γ−k . (5.7)

Example 5.6. As shown in detail in Lemma D.1, the functions ηκ satisfy Con-
dition 5.5 with T = {0, 1} and if κ �= 1 for any γ ≤ min{1, κ} if κ = 1 we may
take any γ < 1. ♦

The following theorem constitutes the main result of this section.

Theorem 5.7. Let K = (u0−ρ, u0), J = (−∞, 0) (as in Sect. 5.1) and a0,1(ξ) =
eMξχ(−∞,0)(ξ) as in (4.6). Moreover, let g ∈ C2(R\{t0, . . . , tl})∩C0(R) satisfy
Condition 5.5 with g(0) = 0. Then

lim
α→∞ lim

u0→−∞
1

log α
tr Dα(g,K, a0,1) =

1
2π2

U(1; g) . (5.8)
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In the proof of Theorem 5.7, we will apply Lemmata 2.6 and 2.8. In order
to complete the error estimates, one finally needs to control the term ‖|PA(1−
P )|σ‖S. This can be done with the following lemma.

Lemma 5.8. Let u0 ∈ R arbitrary and K = (u0 − ρ, u0). Choose numbers q ∈
(0, 1], α ≥ 3 and ρ ≥ 2. Then the symbol a0,1 from (4.6) satisfies

∥
∥χK Opα(a0,1) (1− χK)

∥
∥q

q
� log α .

with implicit constants independent of α and u0.

Proof. First of all, make use Lemma A.3 in order to replace the region K
by K0 := (−ρ, 0):

‖χK Opα(a0,1) (1− χK)‖q
q = ‖χK0 Opα(a0,1) (1− χK0)‖q

q .

Next, let (Ψj)j∈Z be a partition of unity with Ψj(x) = Ψ0(x− j) for all j ∈ Z

and supp Ψ0 ⊆ (− 1
2 , 3

2 ). For any j ∈ Z, we consider the symbols

aj(ξ) := Ψj(ξ) eMξ ,

Using the notation Jj := (j − 1, j) for any j ∈ Z≤0, we obtain with the help
of Lemma A.8 together with Remark A.9,

χK0 Opα(IJj
a0,1) (1− χK0) = χK0 Opα(IJj

aj) (1− χK0)
= χK0 PJj ,α Opα(aj) (1− χK0) ,

so with the triangle inequality (2.15) we conclude that

‖χK0 Opα(a0,1) (1− χK0)‖q
q ≤

∑

j∈Z≤0

‖χK0 PJj ,α Opα(aj) (1− χK0)‖q
q . (5.9)

In the next step, we want to interchange PJj ,α and χK0 . To this end note that

‖[PJj ,α, χK0 ]‖q
q = ‖PJj ,αχK0 − χK0PJj ,αχK0 + χK0PJj ,αχK0 − χK0PJj ,α‖q

q

= ‖(1− χK0)PJj ,αχK0 − χK0PJj ,α(1− χK0)‖q
q

≤ 2‖(1− χK0)PJj ,αχK0‖q
q

where we also used that
(
χK0 PJj ,α (1− χK0)

)∗ = (1− χK0) PJj ,α χK0 ,

together with the fact that singular values (and therefore the q-norm) are
invariant under Hermitian conjugation.2 Moreover, using Remark A.4 together
with Corollary 2.11 we conclude that for any j ∈ Z≤0:

‖(1− χK0)PJj ,αχK0‖q
q = ‖(1− χK0)Opα(IJj

)χK0‖q
q

= ‖(1− χK0)Opα(IJ0)χK0‖q
q � log α ,

2Note that for any A ∈ Sq we can write ‖A‖q = (
∑

i

√
λi

q
)1/q where the λi are the

eigenvalues of A∗A (note that since A is compact, there are countably many). Moreover,
for any eigenvector ψ of A∗A corresponding to a non-zero eigenvalue, the vector Aψ is an

eigenvector of AA∗ with the same eigenvalue, so we see that ‖A∗‖q ≤ ‖A‖q (as ψ might lie

in the kernel of A). Then, symmetry yields the equality.
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with implicit constant independent of j ∈ Z≤0, α ≥ 2 and u0. Moreover,
making use of Lemma 2.10 together with Remark A.2 and the fact that

N (1,1,2)(aj ; 1, 1) � eMj ,

with an implicit constant independent of j we obtain for any α ≥ 1,

‖Opα(aj)‖q
∞ � eqMj ,

again with an implicit constant independent of j and α. Using the Hölder-type
inequality (2.16), this allows us to estimate

‖χK0 PJj ,α Opα(aj) (1− χK0)‖q
q ≤ ‖[χK0 , PJj ,α] Opα(aj) (1− χK0)‖q

q

+ ‖PJj ,α χK0 Opα(aj) (1− χK0)‖q
q ≤ ‖[χK0 , PJj ,α]‖q

q‖Opα(aj) (1− χK0)‖q
∞

+ ‖PJj ,α‖q
∞‖χK0 Opα(aj) (1− χK0)‖q

q � eqMj log α

+ ‖χK0 Opα(aj) (1− χK0)‖q
q .

with an implicit constant independent of j ∈ N0 and α ≥ 2. Thus, it remains
to estimate the term ‖χK0 Opα(aj) (1−χK0)‖q

q. To this end, we want to apply
Proposition 2.13 to aj . So choose τ = 2 and μ = j − 1/2, then

N (m̃)(aj ; τ) � eMj ,

with an implicit constant independent of j. This yields

‖χK0 PJj ,α Opα(aj) (1− χK0)‖q
q ≤ ‖[χK0 , PJj ,α] Opα(aj) (1− χK0)‖q

q

� eqMj log α ,

(5.10)

with an implicit constant independent of j and α ≥ 3. Then, summarizing (5.9)
and (5.10) yields

‖χK Opα(a0,1) (1− χK)‖q
q ≤

∑

j∈Z≤0

‖χK0 PJj ,α Opα(aj) (1− χK0)‖q
q

�
∞∑

j=0

e−qMj log α � log α ,

with an implicit constant independent of α ≥ 3 and u0. �

In the proof of Theorem 5.7, we will also make use of the following con-
tinuity result for U(1; f).

Lemma 5.9. Let f be a function on [0, 1] with f(0) = 0.

(i) If f ∈ C2([0, 1]) denote

‖f‖C2 := max
0≤k≤2

max
t∈[0,1]

∣
∣f (k)(t)

∣
∣ .

Then,

|U(1; f)| ≤ 9
2
‖f‖C2 .
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(ii) If f satisfies Condition 5.5 with X = {z} where z = 0 or z = 1 and is
supported in [z −R, z + R] for some R < 1

2 , then

|U(1; f)| ≤ f 2
Rγ

γ(1−R)
.

Proof. First split the integral in the definition of U(1; f) as follows:

∣
∣U(1; f)

∣
∣ ≤

∣
∣
∣
∣
∣

ˆ 1/2

0

1
t(1− t)

(
f(t)− tf(1)

)
dt

∣
∣
∣
∣
∣

︸ ︷︷ ︸
=:(I)

+

∣
∣
∣
∣
∣

ˆ 1

1/2

1
t(1− t)

(
f(t)− tf(1)

)
dt

∣
∣
∣
∣
∣

︸ ︷︷ ︸
=:(II)

.

(i) For the estimate of (I), consider the Taylor expansion for f around t = 0
keeping in mind that f(0) = 0:

f(t) = tf ′(0) +
t2

2
f ′′(t̃

)
for suitable t̃ ∈ [0, t] ,

and therefore

(I) ≤
ˆ 1/2

0

∣
∣
∣

1
(1− t)

∣
∣
∣

︸ ︷︷ ︸
≤2

(
|f ′(0)|
︸ ︷︷ ︸
≤‖f‖C2

+ |t/2|
︸︷︷︸
≤1/4

|f ′′(t̃)|
︸ ︷︷ ︸
≤‖f‖C2

)
dt +

ˆ 1/2

0

∣
∣
∣

1
(1− t)

∣
∣
∣

︸ ︷︷ ︸
≤2

|f(1)|
︸ ︷︷ ︸
≤‖f‖C2

dt

≤ 9
4
‖f‖C2

(note that t̃ is actually a function of t, but this is unproblematic be-
cause f ′′ is uniformly bounded).
Similarly, for the estimate of (II) we use the Taylor expansion of f , but
now around t = 1,

f(t) = f(1) + (t− 1)f ′(1) +
(t− 1)2

2
f ′′(t̃) for suitable t̃ ∈ [0, t] .

We thus obtain

(II) ≤
ˆ 1

1/2

∣
∣
∣

1
t(1− t)

∣
∣
∣
(
|1− t| |f(1)|+ |1− t| |f ′(1)|+ |1− t|2

2
|f ′′(t̃)|

)
dt

≤
ˆ 1

1/2

|1/t|
︸︷︷︸
≤2

(
|f(1)|
︸ ︷︷ ︸
≤‖f‖C2

+ |f ′(1)|
︸ ︷︷ ︸
≤‖f‖C2

+
|1− t|

2︸ ︷︷ ︸
≤1/4

|f ′′(t̃)|
︸ ︷︷ ︸
≤‖f‖C2

)
dt ≤ 9

4
‖f‖C2 .

(ii) (a) Case z = 0: First note that

|f(t)| ≤ f 2|t|γ for any t ∈ (0, 1/2) .

This yields for R < 1/2,

|(I)| =
∣
∣
∣
ˆ 1/2

0

1
t(1− t)

f(t)dt
∣
∣
∣ ≤

ˆ R

0

1
|1− t|
︸ ︷︷ ︸

≤1/(1−R)

f 2|t|γ−1dt
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≤ 1
1−R

f 2

ˆ R

0

|t|γ−1

︸ ︷︷ ︸
=Rγ/γ

dt ≤ f 2
Rγ

γ(1−R)
,

Moreover, the integral (II) vanishes for R < 1/2.
(b) Case z = 1: Similarly as in the previous case, we now have

(I) = 0 for R < 1/2 .

Moreover, just as in the previous case, one can estimate

|f(t)| ≤ f 2|1− t|γ for any t ∈ (1/2, 1) .

This yields for R < 1/2,

|(ii)| ≤ f 2

ˆ 1

1−R

1
|t| |1− t|1−γ dt ≤ f 2

Rγ

γ(1−R)
.

�

Now we have all the tools to prove Theorem 5.7.

Proof of Theorem 5.7. Before beginning, we note that the u0-limit in (5.8)
may be disregarded, because the symbol is translation invariant in position
space (see Lemma A.3, noting that a0,1 does not depend on u ≡ x or u′ ≡ y).

The remainder of the proof is based on the idea of the proof of [34,
Theorem 4.4] Let a be the symbol in (5.3). By Lemma 2.10, we can assume
that the operator norm of Opα(a) is uniformly bounded in α. We want to
apply Lemma A.8 with A = a and B = IJ (recall that J = (−∞, 0)). In order
to verify the conditions of this lemma, we first note that, Remark A.9 (i) yields
condition (ii), whereas condition (i) follows from the estimateˆ

du
∣
∣
∣
ˆ

dξ e−iξu eMξ ψ(ξ) Ψ(ξ) Φu0(u)
∣
∣
∣
2

≤
ˆ u0+1

u0−ρ−1

du
(ˆ

dξ χ(−∞,1)(ξ) eMξ |ψ(ξ)|
)2

≤ (ρ + 2) ‖χ(−∞,1) e·/M‖2L2(R,C) ‖ψ‖2L2(R,C) ,

(which holds for any ψ ∈ L2(R)). Now Lemma A.8 yields

Opα(IJ a) = Opα(a) Pα,J .

Since Pα,J is a projection operator, we see that ‖Opα(IJ a)‖∞ ≤ ‖Opα(a)‖∞
for all α. In particular, the operator Opα(IJ a) is bounded uniformly in α.
Hence,

‖A(a)‖ =
∥
∥χKOpα(a0,1)χK

∥
∥ =

∥
∥χK Opα(IJ a) χK

∥
∥ ≤ ‖Opα(a)‖∞ =: C1 ,

uniformly in α (recall that A(a) is the symmetric localization from Theo-
rem 5.3). Moreover, the sup-norm of the symbol a0,1 itself is bounded by a
constant C2. We conclude that we only need to consider the function g on the
interval

[−max{C1, C2},max{C1, C2}] .
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Therefore, we may assume that

supp g ⊆ [−C,C] with C := max{C1, C2}+ 1 ,

possibly replacing g by the function

g̃ = ΨC g

with a smooth cutoff function ΨC ≥ 0 such that ΨC |[−C+1,C−1] ≡ 1 and supp ΨC

⊆ [−C,C]. For ease of notation, we will write g ≡ g̃ in what follows.
We remark that the function ηκ which we plan to consider later al-

ready satisfies this property by definition with C = 2. From Lemma 2.8 and
Lemma 5.8 we see that Dα(g,K, a0,1) is indeed trace class. We now compute
this trace, proceeding in two steps.

First Step: Proof forg ∈ C2(R).
To this end, we first apply the Weierstrass approximation theorem as given in
[27, Theorem 1.6.2] to obtain a polynomial gδ such that fδ := g − gδ fulfills

max
0≤k≤2

max
|t|≤C

∣
∣f (k)

δ (t)
∣
∣ ≤ δ . (5.11)

Without loss of generality, we can assume that fδ(0) = 0 (otherwise replace fδ

by the function t → fδ/2(t) − fδ/2(0)). In order to control the error of the
polynomial approximation, we apply Lemma 2.6 with n = 2, r = C, some σ ∈
(0, 1), q = 1 and

A = Opα(a0,1) , P = χK , g = f̃δ := fδ ΨC

(note that here g is the function in Lemma 2.6) where ΨC is the cutoff function
from before (the cutoffs and approximation are visualized in Fig. 5).

This gives
∥
∥fδ

(
χK Opα(a0,1

)
χK

)− χK fδ

(
Opα(a0,1)

)
χK

∥
∥

1

=
∥
∥f̃δ

(
χK Opα(a0,1) χK

)− χK f̃δ

(
Opα(a0,1)

)
χK

∥
∥

1

� δ
∥
∥χK Opα(a0,1) (1− χK)

∥
∥σ

σ
.

with an implicit constant independent of δ and α. Moreover, applying Lemma 5.8
with q = σ, we conclude that for α large enough

∥
∥fδ

(
χK Opα(a0,1) χK

)− χK fδ(Opα(a0,1)) χK
∥
∥

1
� δ log α ,

(again with an implicit constant independent of δ and α). Using this inequality,
we can estimate the trace by

trDα(g,K, a0,1) ≤ tr Dα(gδ,K, a0,1) + ‖Dα(fδ,K, a0,1)‖1
≤ tr Dα(gδ,K, a0,1) + C3 δ log α ,

with a constant C3 independent of δ and α. In order to compute the remaining
trace, we can again apply Theorem 5.3 (exactly as in the example (5.6)). This
gives

tr Dα(gδ,K, a0,1) =
1

2π2
log(α) U(1; gδ) +O(1) ,
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Figure 5. Visualization of the cutoffs and approximations
in the first step of the proof of Theorem 5.7 for C = 2. We
start with a function g, which is first multiplied by the cutoff-
function ΨC , giving g̃. This function is then approximated by
a polynomial gδ. Multiplying gδ by the cutoff function ΨC

results in a function which is here called g̃δ (but does not
directly appear in the proof). The function f̃δ is then given
by the difference between g̃ and g̃δ

and thus

tr Dα(g,K, a0,1) ≤ 1
2π2

log(α) U(1; gδ) + C3 δ log α +O(1) ,

which yields together with Lemma 5.9,

lim sup
α→∞

1
log α

tr Dα(g,K, a0,1) ≤ 1
2π2

U(1; gδ) + C3 δ . (5.12)

Moreover, applying Lemma 5.9 to fδ we obtain due the (5.11)

lim
δ→0

|U(1; gδ)− U(1; g)| = lim
δ→0

|U(1; fδ)| = 0 .

Therefore, taking the limit δ → 0 in (5.12) gives

lim sup
α→∞

1
log α

tr Dα(g,K, a0,1) ≤ 1
2π2

U(1; g) .

Analogously, using
1

2π2
log(α) U(1; gδ) +O(1) = trDα(gδ,K, a0,1) ≤ tr Dα(g,K, a0,1)

+ ‖Dα(fδ,K, a0,1)‖1 ≤ tr Dα(g,K, a0,1) + C3 δ log α ,

we obtain

lim inf
α→∞

1
log α

tr Dα(g,K, a0,1) ≥ 1
2π2

U(1; gδ) + C3 δ .

Now we can take the limit δ → 0,

lim inf
α→∞

1
log α

trDα(g,K, a0,1) ≥ 1
2π2

U(1; g) .
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Figure 6. Schematic plot of a function g (blue) which is non-
differentiable at z = 0 with the corresponding functions g

(1)
1/2

(red), g
(1)
1/4 (orange) and g

(1)
1/10 (green): They are cutting out

the non-differentiable point

Combining the inequalities for the lim sup and lim inf, we conclude that for
any g ∈ C2(R),

lim
α→∞

1
log α

trDα(g,K, a0,1) =
1

2π2
U(1; g) . (5.13)

Second Step: Proof for g as in claim.
By choosing a suitable partition of unity and making use of linearity, it suffices
to consider the case T = {z} meaning that g is non-differentiable only at one
point z. Next we decompose g into two parts with a cutoff function ξ ∈ C∞

0 (R)
with the property that

ξ(t) =

{
1, |t| ≤ 1/2
0, |t| ≥ 1

.

and writing

g = g
(1)
R + g

(2)
R ,

with

g
(1)
R (t) := g(t) ξ

(
(t− z)/R

) ⇒ supp g
(1)
R ⊆ [z −R, z + R] ,

g
(2)
R (t) := g(t)− g

(1)
R (t) ⇒ supp g

(2)
R ⊆ [−C,C] ;

see also Fig. 6.
Note that the derivatives of g

(1)
R satisfy the bounds

(
g
(1)
R

)(k)

(t) =
k∑

n=0

c(n, k) g(k−n)(t) ξ(n)
(
(t− z)/R

) 1
Rn

,
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(with some numerical constants c(n, k)) and therefore the norm . 2 in Lemma
2.8 can be estimated by

g
(1)
R 2 = max

0≤k≤2
sup
t�=z

∣∣
∣∣

k∑

n=0

c(n, k) g(k−n)(t) ξ(n)
(
(t − z)/R

) 1

Rn

∣∣
∣∣ · |t − z|−γ+k

≤ max
0≤k≤2

sup
t�=z

k∑

n=0

∣∣c(n, k)
∣∣ ∣∣g(k−n)(t)

∣∣ |t − z|−γ+k−n
∣∣ξ(n)

(
(t − z)/R

)∣∣

|t − z|n
Rn

.

Noting that on the support of
(
g
(1)
R

)(k) we have

|t− z|
R

≤ 1 ,

we conclude that

g
(1)
R 2 ≤ C4 g 2 (5.14)

with C4 independent of R (also note that g 2 is bounded by assumption).
For what follows, it is also useful to keep in mind that

0 = g
(1)
R (0) = g

(2)
R (0) .

Now we apply (5.13) to the function g
(2)
R (which clearly is in C2(R)),

lim
α→∞

1
log α

tr Dα(g(2)
R ,K, a0,1) = U(1; g(2)

R ) .

Next, we apply Lemma 2.8 to g
(1)
R with A and P as before and some σ ∈ (0, 1)

with σ < γ,
∥
∥Dα

(
gR(1),K, a0,1

)∥∥
1
≤ Cσ g 2 Rγ−σ

∥
∥χK Opα(a0,1) (1− χK)

∥
∥σ

σ
.

Applying Lemma 5.8 (for α large enough) with q = σ yields
∥
∥Dα

(
gR(1),K, a0,1

)∥∥
1
≤ C5 g 2 Rγ−σ log α .

where the constant C5 is independent of R and α. Just as before, it follows
that

lim sup
α→∞

1
log α

tr Dα(g,K, a0,1) ≤ U
(
1; g(2)

R

)
+ C5 g 2 Rγ−σ

lim inf
α→∞

1
log α

tr Dα(g,K, a0,1) ≥ U
(
1; g(2)

R

)
+ C5 g 2 Rγ−σ .

The end result follows just as before by taking the limit R → 0, provided that
we can show the convergence U(1; g(2)

R ) → U(1; g) for R → 0. To this end note
that if z /∈ {0, 1}, we have

|U(1; g(2)
R )− U(1; g)| = |U(1; g(1)

R )| ≤ C6R

for some C6 > 0 independent of R provided that R is sufficiently small (more
precisely, so small that g

(1)
R vanishes in neighborhoods around 0 and 1; note

that the integrand is supported in [z−R, z +R] and bounded uniformly in R).
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These estimates show that limR→0 U(1; g − g
(2)
R ) = 0 in the case that z is

neither 0 nor 1. In the remaining cases where z is either 0 or 1, we can apply
Lemma 5.9, which also yields due to (5.14),

lim
R→0

|U(1; g(2)
R )− U(1; g)| = lim

R→0
|U(1; g(1)

R )| = C4 g 2 lim
R→0

Rγ

γ(1−R)
= 0 .

This concludes the proof. �

We finally apply Theorem 5.7 to the function ηκ and the matrix-valued
symbol A0 (see (1.2) and (4.5)).

Corollary 5.10. For any κ > 0, ηκ, K and A0 as before,

lim
α→∞ lim

u0→∞
1

log α
tr Dα(ηκ,K,A0) =

1
π2

U(1; ηκ) =
1
6

κ + 1
κ

.

Moreover, in the case that κ = 1, we can explicitly compute the coefficient
U(1; η1) to give

lim
α→∞ lim

u0→∞
1

log α
trDα(η1,K,A0) =

1
π2

U(1; η1) =
1
3

.

Proof. As explained in Example 5.6, the functions ηκ satisfy Condition 5.5
with n = 2 for any κ > 0. Moreover, we have ηκ(0) = 0 for any κ > 0.
Therefore, we can apply Theorem 5.7 and obtain

lim
α→∞ lim

u0→∞
1

log α
tr Dα(ηκ,K, a0,1) =

1
2π2

U(1; ηκ) .

Repeating the procedure analogously for a0,2 gives

lim
α→∞ lim

u0→∞
1

log α
tr Dα(ηκ,K, a0,2) =

1
2π2

U(1; ηκ) ,

and therefore

lim
α→∞ lim

u0→∞
1

log α
tr Dα(ηκ,K,A0) =

1
π2

U(1; ηκ) .

By [23, Appendix], evaluating U(1; ηκ) yields

U(1; ηκ) =
ˆ 1

0

ηκ(t)
t(1− t)

dt =
π2

6
κ + 1

κ
,

and therefore

lim
ε↘0

lim
u0→∞

1
ln(1/ε)

tr Dα(ηκ,K,A0) =
1
π2

U(1; ηκ) =
1
6

κ + 1
κ

.

This concludes the proof. �

Corollary 5.10 already looks quite similar to Theorem 1.1. The remaining
task is to show equality in (4.4). To this end, we need to show that all the
correction terms drop out in the limits u0 →∞ and α →∞. The next section
is devoted to this task.
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6. Estimating the Error Terms

In the previous section, we worked with the simplified kernel (4.5) and com-
puted the corresponding entropy. In this section, we estimate all the errors,
thereby proving the equality in (4.4). Our procedure is summarized as follows.
Using (3.10), the regularized projection operator (Πε

−)kn can be written as

(Πε
−)kn = Opα

(
2 (A(ε) +R(ε)

0 )
)

and A(ε) as in (3.12) and the error term

R(ε)
0 (u, u′, ξ) := R0(u, u′,Mξ/ε) ,

We denote the corresponding symbol by
(
(afull)ij

)
1≤i,j≤2

:= A(ε)
full := 2(A(ε) +R(ε)

0 ) .

In preparation, translate K to K0 with the help of the unitary operator Tu0

making use of Lemma A.3. Moreover, we use that the operators (Πε
−)kn and

Opα(A0) are self-adjoint. We thus obtain

Dα(ηκ,K,A(ε)
full)−Dα(ηκ,K,A0) = Dα(ηκ,K0, Tu0(A(ε)

full))
−Dα(ηκ,K0, Tu0(A0)) ,

where A0 is the kernel of the limiting operator from (4.5). Note that Tu0(A0) =
A0 since the symbol A0 only depends on ξ. Now we can estimate

‖Dα(ηκ,K0, Tu0(A(ε)
full))−Dα(ηκ,K0,A0)‖1 (I)

≤
∥
∥
∥ηκ

(
χK0 Opα(Tu0(A(ε)

full)) χK0

)− ηκ

(
χK0 Opα(A0)) χK0

)∥∥
∥

1

+
∥
∥
∥χK0

(
ηκ

(
Opα

(
Tu0(A(ε)

full)
))− ηκ

(
Opα(A0)

))
χK0

∥
∥
∥

1
. (II)

In the following, we will estimate the expressions (I) and (II) separately.

6.1. Estimate of the Error Term (I)

We begin with the following simplified result from [34], which is related to
Lemma 2.8.

Theorem 6.1. [34, Condition 2.3 and Theorem 2.4 (simplified to our needs)]
Let f satisfy Condition 2.7 with some n ≥ 2 and γ,R > 0. Let S be a q-normed
ideal of compact operators on H such that there is σ ∈ (0, 1] with σ < γ and

(n− σ)−1 < q ≤ 1 .

Let A,B be two bounded self-adjoint operators on H. Suppose that |A−B|σ ∈ S,
then

‖f(A)− f(B)‖S ≤ Cn Rγ−σ f n

∥
∥|A − B|σ∥∥

S

with a positive constant Cn independent of A,B, f and R.
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In order to apply this theorem to the functions ηκ, as in the proof of
Theorem 5.7 we use a partition of unity. Similar as explained in Example 5.6,
we need to choose γ < 1 for κ = 1 and γ ≤ min{1, κ} otherwise. We will later
see that with the methods in this work we can only estimate the error terms
if κ > 2/3. Thus, we assume that 2/3 < γ < 1 allowing us to treat all these
cases simultaneously. This gives rise to the constraint

σ ∈
(2

3
, 1
)

.

Setting A = χK0Opα(Tu0(A(ε)
full))χK0 and B = χK0Opα(A0)χK0 (which

are clearly bounded and self-adjoint), we obtain
∥
∥ηκ

(
χK0 Opα

(
Tu0(A(ε)

full)
)

χK0

)− ηκ

(
χK0Opα

(A0

)
χK0

)∥∥
1

≤ C
∥
∥χK0 Opα

(
Tu0(A(ε)

full)−A0

)
χK0

∥
∥σ

σ

(6.1)

with C independent of A and B (and thus in particular independent of u0

and α).
For ease of notation, from now on we will denote

(
Δ(aij)(ε)u0

)
1≤i,j,≤2

:= ΔA(ε)
u0

:= Tu0(A(ε)
full)−A0 .

Note that the symbol of the Opα(.) in (6.1) is matrix valued. But, applying
Remark 2.4 (ii), we obtain

∥
∥χK0Opα(ΔA(ε)

u0
)χK0

∥
∥σ

σ
≤

2∑

i,j=1

∥
∥
∥χK0 Opα

(
Δ(aij)(ε)u0

)
χK0

∥
∥
∥

σ

σ
,

with scalar-valued symbols Δ(aij)
(ε)
u0 .

We now proceed by estimating the Schatten norms of the operators

χK0 Opα

(
Δ(aij)(ε)u0

)
χK0 .

This will also show that these operators are well defined and bounded on L2

(K0, C). For the estimates, we need the detailed form of the symbols given by

(Δa11)
(ε)
u0

(u, u′, ξ) = eMξχ(−mε/M,0)(ξ)
(
2|f+

0,1|2
(Mξ

ε

)
− 1

)

+ r11
(
u + u0, u

′ + u0,
Mξ

ε

)
(6.2)

(Δa12)
(ε)
u0

(u, u′, ξ) = 2e−Mξe2Miξ(u+u0)/(ε)

[

f−
0,1

(−Mξ

ε

)
f+
0,1

(−Mξ

ε

)
χ(0,mε/M)(ξ)

+ t12
(−Mξ

ε

)
χ(mε/M,∞)(ξ)

]

+ r12
(
u + u0, u

′ + u0,
Mξ

ε

)
(6.3)

(Δa21)
(ε)
u0

(u, u′, ξ) = 2eMξe2Miξ(u+u0)/ε

[

f−
0,1

(Mξ

ε

)
f+
0,1

(Mξ

ε

)
χ(−mε/M,0)(ξ)

+ t21
(Mξ

ε

)
χ(−∞,−mε/M)(ξ)

]

+ r21
(
u + u0, u

′ + u0,
Mξ

ε

)

(6.4)
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(Δa22)
(ε)
u0

(u, u′, ξ) = −e−Mξχ(0,mε/M)(ξ)
(
2|f−

0,1|2
(−Mξ

ε

)
− 1

)

+ r22
(
u + u0, u

′ + u0,
Mξ

ε

)
, (6.5)

with rij(u, u′, ξ) = (R0(u, u′, ξ))ij for any 1 ≤ i, j ≤ 2. Note that these
equations only hold as long as u is smaller than some fixed u2 which we may
always assume as we take the limit u0 → −∞.

One can group the terms in these functions into three classes, each of
which will be estimated with different techniques: There are terms which are
supported on “small” intervals [−mε/M, 0] or [0,mε/M ]. There are terms that
contain the factor e2Miξ(u+u0)/ε, which makes them oscillate faster and faster
as u ≤ u0 → −∞. And, finally, there are the rij-terms which decay rapidly
in u and/or u′. Due to the triangle inequality (2.15), it will suffice to estimate
each of these classes separately.

6.1.1. Error Terms with Small Support. We use this method for terms which
do not depend on u and u′ and which in ξ are supported in a small neighbor-
hood of the origin. More precisely, these terms are of the form

eMξχ(−mε/M,0)(ξ)
(
2|f+

0,1|2(Mξ/ε)− 1
)

in Δ(a11)
(ε)
u0

−e−Mξχ(0,mε/M)(ξ)
(
2|f−

0,1|2(−Mξ/ε)− 1
)

in Δ(a22)
(ε)
u0 .

Since these operators are translation invariant, we do not need to apply the
translation operator Tu0 . This also shows that the error corresponding to these
terms can be estimated independent of u0. For the estimate, we will apply
Proposition 2.14. As an example, consider

a(ε)(ξ) := eMξχ(−mε/M,0)(ξ)
(
2|f+

0,1|2(Mξ/ε)− 1
)

,

and

h := χK ,

which are both in L2
loc(R) because |f+

0,1| is bounded. Moreover, applying Lemma
A.5 we obtain:

(
Opα(a(ε))

)
(u, u′) =

(
Op1(a(ε))

)
(u, u′) ,

for

a(ε)(ξ) := a(ε)(ξ/α) = eεξ χ(−m,0)(ξ)
(
2
∣
∣f+

0,1(ξ)
∣
∣2 − 1

)
,

which is again in L2
loc(R) for the same reasons as a(ε). Now we apply the

Hölder-type inequality (2.16) and Proposition 2.14 with p ∈ (0, 1) arbitrary to
obtain

∥
∥χK0 Opα(a(ε)) χK0

∥
∥p

p
≤ ‖χK0‖p

∞
∥
∥χK0Opα(a(ε))

∥
∥p

p

≤ ∥
∥χK0Op1(a(ε))

∥
∥p

p
≤ C |χK0 |pp |a(ε)|pp .
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Next, noting that K0 = (−ρ, 0) ⊆ (−�ρ�, 0), it follows that

|χK0 |pp ≤
0∑

−�ρ
1 = �ρ� .

Similarly, since |a(ε)(ω)| is bounded by one,

|a(ε)|pp ≤
0∑

−�m
1 ≤ �m� .

Combining the last two inequalities, we conclude that

‖χK0 Opα(a(ε)) χK0‖p
p ≤ C�ρ��m� . (6.6)

Completely similar for

ã(ε)(ξ) := −e−Mξχ(0,mε/M)(ξ)

we obtain
‖χK0 Opα(ã(ε)) χK0‖p

p ≤ C�ρ��m� , (6.7)

for any p ∈ (0, 1) so in particular for p = σ. The estimates (6.6) and (6.7) show
that the error terms with small support are bounded uniformly in u0 and α.
Therefore, dividing by log α and taking the limit α → ∞, these error terms
drop out.

6.1.2. Rapidly Oscillating Error Terms. After translating the symbol by u0,
these error terms are of the form

b(ε)(u, ξ, α) = e−Mξ e2Miξ(u+u0)/ε g(Mξ/ε) χ(0,∞)(ξ) or

b̃(ε)(u, ξ, α) = eMξ e2Miξ(u+u0)/ε g̃(Mξ/ε) χ(−∞,0)(ξ) ,

for some functions g, g̃ which are measurable and bounded. They appear
in Δ(a12)

(ε)
u0 and Δ(a21)

(ε)
u0 . For simplicity, we restrict attention to the sym-

bols of the form b(ε), but all estimates work the same for b̃(ε) in the same way.
We will make use of the following results from [5, Theorem 4 on page 273 and
p. 254, 263, 273], which adapted and applied to our case of interest can be
stated as follows.

Theorem 6.2. Let l ∈ N0 and K be an integral operator on L2(K0) (again
with K0 = (−ρ, 0)) with kernel k, i.e., for any ψ ∈ L2(K0):

(Kψ)(u) =
ˆ

K0

k(u, u′) ψ(u′) du′ .

If k(., u′) ∈W l
2(K0) for almost all u′ ∈ K0 with

θ2
2(t) :=

ˆ
K0

∥
∥k(., u′)

∥
∥2

W l
2(K0)

du′ < ∞ ,

then

K ∈ Sp for p > p′ = (1/2 + l)−1
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and

‖K‖p ≤ Cl,p θ2(t) .

We want to apply this theorem for p ∈ (0, 1) arbitrary, thus let l ∈ N

arbitrary. Moreover, in view of Lemma A.6, the integral representation corre-
sponding to χK0Opα(b(ε))χK0 may be extended to all of L2(R) and we may
interchange the dξ and du′ integrations. Thus, we need to estimate the norm θ2

of the kernel of this operator. Thus, we consider kernels of the form

k(ε)
u0

(u, u′) :=
M

2πε

ˆ ∞

0

eiMξ(u+u′+u0)/ε e−Mξ g(Mξ/ε) dξ

=
M

2π

ˆ ∞

0

eiMξ̃(u+u′+u0) e−εMξ̃ g(Mξ) dξ̃ ,

where we used the change of coordinates ξ̃ = ξ/ε. Since g is bounded and the
factor e−εMξ̃ provides exponential decay, these kernels are always differentiable
up to arbitrary orders with

dl

dul
k(ε)

u0
(u, u′) =

1
2π

ˆ ∞

0

(iMξ̃)l eiω(u+u′+u0) e−εω g(ω) dω , for any l ∈ N .

Our goal is to show that the limit u0 → −∞ of θ2

(
k

(ε)
u0

)
is uniformly bounded

in ε. To this end, we first note that

k(ε)
u0 (u, u′) = F(h1,(ε))(−u − u′ − u0) ,

dl

dul
k(ε)

u0 (u, u′) = F(h2,(ε))(−u − u′ − u0) ,

with

h1,(ε)(ω) :=
1

2π
e−εω g(ω) χ(0,∞)(ω) , hl,(ε)(ω) :=

1

2π
(iω)l e−εω g(ω) χ(0,∞)(ω) .

Now note that both h1,(ε) and hl,(ε) are in L1(R), so the Riemann–Lebesgue
Lemma (see, for example, [6, Theorem 1]) tells us that for any δ > 0 we can
find R = R(ε) > 0 such that

∣
∣k(ε)

u0
u, u′)

∣
∣,
∣
∣
∣
∣

dl

dul
k(ε)

u0
(u, u′)

∣
∣
∣
∣ ≤ δ for |u + u′ + u0| > R .

Keeping in mind that for u0 ≤ 0,

|u + u′ + u0| ≥ |u0| for any u, u′ ∈ K0,

this is satisfied for u0 < −R(ε). This yields
∥
∥k(ε)

u0
(., y)

∥
∥2

W l
2(K0)

≤ lδ2ρ ,

which in turn leads to

θ2(k(ε)
u0

) ≤
√

lδρ ,

and so

lim
u0→∞ ‖χK0 Opα(b(ε)) χK0‖p ≤ C1,σ

√
lρδ ,

for any p ∈ (0, 1), so in particular this holds for p = σ. As δ is arbitrary, we
conclude that the rapidly oscillating error terms vanish in the limit u0 → −∞.
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We note for clarity that, since we take the limit u0 → −∞ first, we do not
need to worry about the dependence of the above estimate on ε.

6.1.3. Rapidly Decaying Error Terms. Finally, we consider the rapidly decay-
ing error terms. In order to determine their detailed form, we first note that
the solutions of the radial ODE have the asymptotics as given in Lemma 2.3
with an error term of the form

R0(u) =

(
e−iωuR+(u, ω)
e−iωuR−(u, ω)

)

,

with

R±(u) := f±(u)− f±
0

and f± as in (B.1). Using this asymptotics in the integral representation, the
error terms in (6.2)–(6.5) can (similar as explained in AppendixC) computed
to be

r11(u, u′, ω) = χ(−∞,0)(ω) eεω
2∑

a,b=1

tab(ω)

×
[
f+
0,a(ω) R+,b(u′, ω) + R+,a(u, ω) f+

0,b(ω) + R+,a(u, ω) R+,b(u′, ω)
]

r12(u, u′, ω) = χ(0,∞)(ω) e2iωu e−εω
2∑

a,b=1

tab(−ω) ×
[
f+
0,a(−ω) R−,b(u′, −ω)

+ R+,a(u, −ω) f−
0,b(−ω) + R+,a(u, −ω) R−,b(u′, −ω)

]

r21(u, u′, ω) = χ(−∞,0)(ω) e2iωu eεω
2∑

a,b=1

tab(ω)

×
[
f−
0,a(ω) R+,b(u′, ω) + R−,a(u, ω) f+

0,b(ω) + R−,a(u, ω) R+,b(u′, ω)
]

r22(u, u′, ω) = χ(0,∞)(ω) e−εω
2∑

a,b=1

tab(−ω)
[
f−
0,a(−ω) R−,b(u′, −ω)

× +R−,a(u, −ω) f−
0,b(−ω) + R−,a(u, −ω) R−,b(u′, −ω)

]
.

In order to estimate these terms, the idea is to apply Theorem 6.2 (as
well as the σ-triangle inequality) to each of these terms (with u and u′ shifted
by u0) and then take the limit u0 → −∞. We will do this for the first few
terms explicitly, noting that the other terms can be estimated similarly.

Given u2, we know from Lemma 2.3 that for all u < u2,

|R±(u, ω)| ≤ cedu , |∂uR±(u, ω)| ≤ cdedu , (6.8)

with constants c, d > 0 that can be chosen independently of ω (note that we
always normalize the solutions by |f0| = 1). Now for any a, b ∈ {1, 2} we
consider the symbol

c(ε)(u, u′, ξ) := χ(−∞,0)(ξ) eMξ tab

(
Mξ/ε

)
f+
0,a

(
Mξ/ε

)
R+,b

(
u′, Mξ/ε

)
χK(u) χK(u′) ,
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which is contributing to r11(u, u′,Mξ/ε) (note that we again rescaled here in
order to get the correct prefactor e−iαξ(u−u′)). Translating by u0 as before
gives

c̃(ε)(u, u′, ξ) = c(ε)(u + u0, u
′ + u0, ξ)

= χ(−∞,0)(ξ) eMξ tab

(
Mξ/ε

)
f+
0,a

(
Mξ/ε

)

R+,b

(
u′ + u0, Mξ/ε

)
χK0(u) χK0(u

′) .

By Lemma A.6, the corresponding integral representation can be extended
to all of L2(R), since R+ is bounded uniformly in ω when restricted to the
compact interval K0 due to Lemma 2.3, and the eMξ-factor provides exponen-
tial decay in ω. Moreover, Lemma A.6 again implies that we may interchange
the dξ and du′ integrations.

In order to estimate the corresponding error term, we apply Theorem 6.2
to the kernel

ku0,α(u, u′) :=
1
2π

ˆ 0

−∞
e−iω(u−u′) eεω tab(ω) f+

0,a(ω) R+,b(u′ + u0, ω) dω

(note that we could leave out the χK0-functions because in Theorem 6.2 we
consider the operator on L2(K0); moreover, we rescaled back as before). This
kernel is differentiable for similar reasons as before and

d

du
ku0,α(u, u′) :=

1

2π

ˆ 0

−∞
(−iω) e−iω(u−u′) eεω tab(ω) f+

0,a(ω) R+,b(u′ + u0, ω) dω .

Using again the estimates for R± in (6.8) yields for any u, u′ ∈ K0:

|ku0,α(u, u′)| ≤ ced(u′+u0)

2π

ˆ 0

−∞
eεω dω =

ced(u′+u0)

2πε
,

∣
∣
∣

d
du

ku0,α(u, u′)
∣
∣
∣ ≤ ced(u′+u0)

2π

ˆ 0

−∞
|ω| eεω dω =

ced(u′+u0)

2πε2
,

where we used that |tab|, |f±
0,1/2| ≤ 1. Therefore,

∥
∥ku0,α(., u′)

∥
∥2

W 1
2 (K0)

= ρ

(
c2e2d(u′+u0)

4π2ε2
+

c2e2d(u′+u0)

4π2ε4

)

and thus

θ2
2(k) ≤ ρ2

ε2

(
C1 + C2/ε2

)
e2du0 ,

which makes clear that the corresponding error term vanishes in the limit u0 →
−∞.

We next consider a u-dependent contribution to r11 for some a, b ∈ {1, 2}
whose kernel of the form

k2(u, u′) :=
1
2π

ˆ 0

−∞
e−iω(u−u′) eεω tab(ω) R+,a(u + u0, ω) f+

0,b(ω) dω .
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Differentiating with respect to u gives

d
du

k2(u, u′) :=
1
2π

ˆ 0

−∞
e−iω(u−u′) eεω tab(ω) f+

0,b(ω)
(
∂uR+,a(u + u0, ω)− iω R+,a(u + u0, ω)

)
dω ,

so that, similarly as before,

∣
∣k2(u, u′)

∣
∣ ≤ ced(u+u0)

2πε
,

∣
∣
∣
∣

d
du

k2(u, u′)
∣
∣
∣
∣ ≤

( c

2πε2
+

cd

2πε

)
ed(u+u0) .

This gives
∥
∥k2(., u′)

∥
∥2

W 1
2 (K0)

≤ ρ C(ε) e2du0

and thus

θ2(k2)2 ≤ ρ2 C̃(ε) e2du0

with a constant C(ε) independent of u0. This shows that the corresponding
error term again vanishes as u0 →∞.

All the other error terms contributing to rij can be treated in the same
way: The absolute value of the corresponding kernels (and their first deriva-
tives) can always be estimated by a factor continuous in u and u′ times a factor
exponentially decaying in u0 like edu0 . This makes it possible to estimate θ2

by a function which decays exponentially as u0 → −∞.

6.2. Estimate of the Error Term (II)

It remains to estimate the error terms (II) on page 43. First of all note that
due to Lemma A.3,

∥
∥
∥χK0

(
ηκ

(
Opα

(
Tu0(A(ε)

full)
))− ηκ

(
Opα(A0)

))
χK0

∥
∥
∥

1

=
∥
∥
∥χK

(
ηκ

(
(Πε

−)kn

)− ηκ

(
Opα(A0)

))
χK

∥
∥
∥

1

Luckily, in this case we can directly compute ηκ

(
(Πε

−)kn

)
and ηκ

(
Opα(A0)

)
,

which simplifies the estimate. As explained before in Lemma A.1, we have

ηκ

(
Opα(A0)

)
= Opα

(
ηκ(A0)

)
.

Moreover, from Proposition 3.4 and Corollary 3.6 we conclude that for any ψ ∈
C∞

0 (R, C2),

(
ηκ

(
(Πε

−)kn

)
ψ
)
(u) =

1
π

ˆ 0

−∞
ηκ(eεω)

2∑

a,b=1

tab(ω) Xa(u, ω)
〈
Xb(., ω)

∣
∣ ψ

〉
dω .

So we conclude that we can rewrite

ηκ

(
Opα(a0)

)− ηκ

(
(Πε

−)kn

)
= Opα(ΔÃ(ε)) ,
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where the entries of the symbol Ã(ε) = (Δã
(ε)
i,j )1≤i,j≤2 are given by

Δã
(ε)
1,1(u, u′, ξ) = ηκ

(
eMξ

)
e−Mξ (Δa11)

(ε)
0 (ξ) ,

Δã
(ε)
1,2(u, u′, ξ) = ηκ

(
e−Mξ

)
eMξ Δa12)

(ε)
0 (u, ξ) ,

(Δã
(ε)
2,1(u, u′, ξ) = ηκ

(
eMξ

)
e−Mξ (Δa21)

(ε)
0 (ξ) ,

Δã
(ε)
2,2(u, u′, ξ) = ηκ

(
e−Mξ

)
eMξ (Δa22)

(ε)
0 (u, ξ) .

Thus, these error terms are almost the same as before, except that the fac-
tor eMξ has been replaced by ηκ(eMξ) etc. and without translation by u0.
Therefore, after applying Lemma A.3 in order to again translate by u0,∥
∥
∥χK

(
ηκ

(
(Πε

−)kn

)− ηκ

(
Opα(A0)

))
χK

∥
∥
∥

1
=
∥
∥
∥χK0 Opα

(
Tu0(Ã(ε))

)
χK0

∥
∥
∥

1
,

we can use the same techniques as before if we can show that the functions

g1(ω) := ηκ(e−εω) χ(0,∞)(ω) , g2(ω) := ω ηκ(e−εω) χ(0,∞)(ω) ,

are bounded and in L1(R) (and the same for the functions with ω → −ω, but
for simplicity we again omit this case). We start with the case that κ = 1 and
first rewrite these functions in more detail as

g1(ω) = χ(0,∞)(ω)
(
εω e−εω +

(
e−εω − 1

)
log

(
1− e−εω

))

g2(ω) = χ(0,∞)(ω) ω
(
εω e−εω +

(
e−εω − 1

)
log

(
1− e−εω

))
.

The terms e−εωωk with k = 1, 2 are clearly bounded and in L1(R). Moreover,

lim
ω↘0

((
e−εω − 1

)
log

(
1− e−εω

))

= lim
ω↘0

log
(
1−e−εω

)

(
e−εω − 1

)−1

l′H= lim
ω↘0

ε
(
1−e−εω

)−1
e−εω

ε
(
e−εω−1

)−2
e−εω

= − lim
ω↘0

(
1− e−εω

)
= 0 ,

(where “l′H” denotes the use of L’Hospital’s rule) showing that these terms
are bounded near ω = 0. Next,

lim
ω→∞

log
(
1− e−εω

)

e−εω

l′H= lim
ω→∞

ε
(
1− e−εω

)−1
e−εω

−ε e−εω
= lim

ω→∞
−1

1− e−εω
= −1 ,

showing that as ω → ∞ those terms decay like e−εω. Therefore, these terms
are also bounded and in L1(R). Now let κ �= 1, then

ηκ(e−εω) = log
(
e−κεω + (1− e−εω)κ

)
,

so the functions g1 and g2 are bounded. Moreover, ηκ(e−εω) decay like e−κ̃εω

with κ̃ := min{1, κ} for ω →∞ since

lim
ω→∞

∣
∣
∣
∣
ηκ(e−εω)
e−κ̃εω

∣
∣
∣
∣

l′H=
κ

1− κ
lim

ω→∞

∣
∣
∣
∣
∣
∣

e−(κ−1)εω−(1−e−εω)κ−1

e−κεω+(1−e−εω)κ (−ε)e−εω

−εe−κ̃εω

∣
∣
∣
∣
∣
∣

=
κ

1− κ
lim

ω→∞

∣
∣
∣
∣
∣

e−κεω−e−εω

e−κεω+1

e−κ̃εω

∣
∣
∣
∣
∣
=

κ

1− κ
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This shows that κ �= 1; the functions g1 and g2 are in L1(R) as well.

7. Proof of the Main Result

We can now prove our main result.

Proof of Theorem 1.1. Having estimated all the error terms in trace norm and
knowing that the limiting operator is trace class (see the proof of Theorem 5.7),
we conclude that the operator

ηκ

(
χK (Πε

−)kn χK
)− χK ηκ

(
(Πε

−)kn

)
χK

is trace class. Moreover, we saw that all the error terms vanish after dividing
by log α and taking the limits u0 → −∞ and α →∞ (in this order). We thus
obtain by Corollary 5.10,

lim
α→∞ lim

u0→−∞
1

log α

(
ηκ

(
χK (Πε

−)kn χK
)− χK ηκ

(
(Πε

−)kn

)
χK

)

= lim
α→∞ lim

u0→−∞
1

log α
tr Dα(ηκ,K,A0) =

1
π2

U(1; ηκ) =
1
π2

ˆ 1

0

ηκ(t)
t(1− t)

dt .

Moreover, since by [23, Appendix],
ˆ 1

0

ηκ(t)
t(1− t)

dt =
π2

6
κ + 1

κ
,

and recalling that α = M/ε, we obtain the result. �

8. Conclusions and Outlook

To summarize this article, we introduced the fermionic entanglement / Rényi
entropy of a Schwarzschild black hole horizon based on the Dirac propagator
as

SBH
κ =

1

2

∑

(k,n)
occupied

lim
ε↘0

lim
u0→−∞

1

log(M/ε)
tr
(

ηκ

(
χK(Πε

−)knχK
) − χKηκ

(
(Πε

−)kn

)
χK

)
.

(8.1)
We have shown that we may treat each angular mode separately. This transi-
tion enables us to disregard the angular coordinates, which makes the problem
essentially one-dimensional in space. Furthermore, in the limiting case we were
able to replace the symbol of the corresponding pseudo-differential operator
by A0 in (4.5) provided that κ > 2

3 . Since this symbol is diagonal matrix-
valued, this reduces the problem to one spin dimension. Moreover, because A0

is also independent of ε, the trace with the replaced symbol can be computed
explicitly. It turns out to be a numerical constant independent of the consid-
ered angular mode.
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This leads us to the conclusion that the fermionic entanglement entropy
of the horizon is proportional to the number of angular modes occupied at the
horizon,

SBH
1 =

∑

(k,n)
occupied

SBH
1,kn =

1
6

#
{
(k, n)

∣
∣ angular mode (k, n) occupied

}
,

and a similar result holds for the Rényi entropies with κ > 2
3 . This is compara-

ble to the counting of states in string theory [35] and loop quantum gravity [1].
Furthermore, assuming that there is a minimal area of order ε2, the number
of occupied modes at the horizon was given by M2/ε2, which would lead to

SBH
1 =

1
6

M2

ε2
.

Bringing the factor log(M/ε) in (8.1) to the other side, this would mean that,
up to lower orders in ε−1, we would obtain the enhanced area law

∑

(k,n)
occupied

lim
u0→−∞ tr

(
η1

(
χK(Πε

−)knχK
)− χKη1

(
(Πε

−)kn

)
χK

)

=
1
6

M2

ε2
log(M/ε) + o

(
M2/ε2 log(M/ε)

)
, as ε↘ 0 . (8.2)

One obvious question is whether this result holds not only in the Schwarzs
child geometry, but for more general and physically realistic black holes. The
core of our analysis makes use only of the asymptotic form of the Dirac wave
functions near the event horizon. This leads to the conjecture that our re-
sults should hold for any black hole whose near-horizon geometry coincides
with that of Schwarzschild. However, it is not clear to us how to prove this
result, because our analysis is based on the integral representation of the Dirac
propagator in [8], which holds only in the presence of global spacetime symme-
tries which allowing for the complete separation of the Dirac equation into a
system of ordinary differential equations. We expect that the integral represen-
tation could be derived in general static and spherically symmetric black hole
spacetimes, but this has not been worked out in the literature. Another gener-
alization which seems possible from the perspective of separation of variables is
the extension from Schwarzschild to the Kerr–Newman and 5D Myers–Perry
family of rotating black holes, where corresponding integral representations
have been derived (see [8,38]).

Another interesting topic for future research would be to analyze the
number of occupied angular momentum modes at the horizon in more detail, in
particular for a realistic model where the Schwarzschild black hole arises in the
large time asymptotics of a spherically symmetric star undergoing gravitational
collapse. Keeping into account the dynamical evolution of the regularization
(as described, for example, by the regularized Hadamard expansion [10]), we
do not expect that the resulting effective regularization length ε will be the
same for each angular momentum mode. Therefore, the constant in (1.8) might
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become n-dependent,

lim
ε↘0

lim
u0→−∞

1
log(M/ε)

tr Δ1

(
(Πε

−)kn,K) = c(n) .

In this case, the counting of occupied states in (1.9) would have to be replaced
by a weighted sum,

∑

(k,n) occupied

c(n) .

This weighted sum can be understood as the effective number of occupied
states. It might be that the weighted sum remains finite even if an infinite
number of angular momentum modes (k, n) are taken into account.

Another interesting extension of our results is to consider more general
quasi-free states in particular thermal states. Although our methods still apply
in this situation, it is not clear to us which results to expect.

Finally, it seems possible to generalize our results technically as follows.
Having mainly the von Neumann entropy function (i.e., κ = 1) in mind, we
only established estimates for R± and its first derivative in u. This had the
consequence that were not able to estimate the corresponding error terms for
Rényi entropies with κ ≤ 2

3 with the same methods. However, those methods
would also apply for κ ≤ 2

3 if one were able to estimate higher derivatives
of R± suitably well. This is another topic for future research.
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Appendix A. A Few Technical Results on Pseudo-Differential
Operators

Appendix provides a few technical results on pseudo-differential operators.
By Opα(A), we always denote an operator as defined in Sect. 2.4.1.

Lemma A.1. Let Opα(A) as defined in Sect. 3.3 with U = R
d. If the sym-

bol A is hermitian matrix valued, measurable, independent of x and y, i.e.,
A(x,y, ξ) ≡ A(ξ) and is uniformly bounded in ξ (with respect to the ordinary
matrix-sup-norm), then Opα(A) is well defined and self-adjoint. Moreover, for
any Borel function f defined on the spectrum of Opα(A), we have

f(Opα(A)) = Opα(f(A)) .

Proof. Note that

Opα(A) = F A(./α) F−1 , (A.1)

where A(./α) denotes the matrix-multiplication operator by A(./α) and F the
unitary extension of the Fourier transform on L2(Rd, Cn) (since (A.1) holds for
all C∞

0 (Rd, Cn)-functions and the right-hand side defines a bounded operator
on L2(Rd, Cn)). This also shows that Opα(A) is bounded (and therefore well
defined) and self-adjoint. Since for any ξ ∈ R

d, the matrix A(ξ/α) is hermitian
matrix valued, the spectral theorem for matrices yields a unitary matrix U(ξ)
such that

U(ξ)A(ξ/α)U(ξ)−1 = diag(d1(ξ), ·, dn(ξ)) =: D(ξ) .

Using the identification L2(Rd, Cn) ∼= L2
({1, . . . , n} × R

d, C
)
, the operator U

(·)−1F−1 can be interpreted as the unitary transformation form the multi-
plicative version of the spectral theorem for the operator Opα(A) and D as
the corresponding function.

Thus, we have

f(Opα(A)) = F U(·) f(D(·/α)) U(·)−1 F−1 = F f(A(·/α)) F−1

= Opα(f(A)) .

�

Remark A.2. A similar argument as in the above proof can be used to prove a
criterion on when the integral representation of Opα(A) extends to all Schwartz
functions. Let A be a symbol which only depends on x. Then, just as in the
proof of Lemma A.1 we conclude that

Opα(A) = F−1 A(·/α) F .

Now take an arbitrary Schwartz function φ ∈ S(Rd, Cn), then Fφ is defined
with the usual integral representation. Moreover, since F is an automorphism
on the Schwartz space Fφ ∈ S(Rd, Cn). Furthermore, if the mapA(·/α)(Fφ)(·)
is in �L1(Rd, Cn), the inverse Fourier transform is again given by the usual
integral representation meaning that the integral representation of Opα(A)
extends to φ.
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We conclude that if for any Schwartz function ψ ∈ S(Rd, Cn), the vector-
valued function A(·/α) ψ(·) ∈ L1(Rd, Cn), then the integral representation
of Opα(A) extends to all Schwartz functions.

This is, for example, the case for any measurable and (in the matrix
sup-norm) bounded symbol A. ♦

The next lemma will be needed for consistency reasons when taking the
limit u0 → −∞:

Lemma A.3. Let Opα(A) as in Sect. 3.3, let U, V ⊂ R
d be arbitrary Borel sets

and c ∈ R
d an arbitrary vector. For any x,y, ξ ∈ R

d we transform a given
symbol A by

Tc(A)(x,y, ξ) := A(x + c,y + c, ξ) .

Then there is a unitary transformation tc on L2(Rd, Cn) such that

tc χU+c Opα

(
T−c(A)

)
χV +c t−1

c = χU Opα(A) χV . (A.2)

Moreover, assuming in addition that Opα(A) is self-adjoint, we conclude that
for any Borel function f ,

f
(
χU Opα(A) χU

)
= tc f

(
χU+c opα(T−c(A)) χU+c

)
t−1
c . (A.3)

Proof. We will show that the desired unitary operator is given by the transla-
tion operator

tc : L2(Rd) → L2(Rd), f → f(. + c) ,

(which is obviously unitary). Note that for any Borel set W ⊆ R
d

χW+c = t−c χW tc ,

and therefore

χU Opα(A) χV = tc χU+c t−c Opα(A) tc χV +ct−c .

By a change of coordinates, we obtain for arbitrary ψ ∈ C∞
0 (Rd, Cn)

(
t−c Opα(A) tc ψ

)
(x)

=
(
Opα(A) tc ψ

)
(x − c) =

αd

(2π)d

ˆ
dξ

ˆ
dy e−iαξ (x −c −y )

A(x − c, y , ξ) ψ(y + c)

=
αd

(2π)d

ˆ
dξ

ˆ
dy e−iαξ (x −y ) A(x − c, y − c, ξ , ) ψ(y )

=
(
Opα

(
T−c (A)

)
ψ
)
(x) .

This shows (A.2).
For (A.3), we make use the multiplication operator version of the spectral

theorem. This provides a unitary transformation φ and a suitable function g
such that

χU Opα(A) χU = φ−1 g φ .

Combined with the previous discussion, this implies

χU+c Opα

(
T−c(A)

)
χU+c = (φ tc)−1 g (φ tc) ,
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which is the multiplication operator representation of χU+copα

(
T−c(A)

)
χU+c ,

because φ tc is also a unitary operator. Therefore,

f
(
χU+c Opα(T−c(A)) χU+c

)
=
(
φ tc

)−1 (f ◦ g)
(
φ tc

)

= t−1
c f

(
χU Opα(A) χU

)
tc ,

concluding the proof. �

Remark A.4. A similar result as Lemma A.3 holds for translations in the ξ-
variable: Let c ∈ R

d be an arbitrary vector. For any x,y, ξ ∈ R
d transform a

given symbol A by

Rc(A)(x,y, ξ) := A(x,y, ξ + c) .

Then, for any ψ ∈ C∞
0 (Rd, Cn) and x ∈ R

d we have
(
Opα(Rc(A))ψ

)
(x) =

αd

(2π)d

ˆ
Rd

dξ

ˆ
U

dy e−iαξ(x−y)A(x,y, ξ + c)ψ(y)

=
αd

(2π)d

ˆ
Rd

dξ

ˆ
U

dy e−iα(ξ−c)(x−y)A(x,y, ξ + c)ψ(y)

=
αd

(2π)d
e−iαcx

ˆ
Rd

dξ

ˆ
U

dy e−iαξ(x−y)A(x,y, ξ + c)eiαcyψ(y) .

This shows that

Opα(Rc(A)) = eiαc· Opα(A) e−iαc· ,

which implies similar consequences for trace and Schatten norms since the
operator Meiαc · is unitary. ♦

Lemma A.5. Let A be a symbol such that Opα(A) is well defined on L2(Rd, Cn),
let K ⊂ R be some measurable subset and α, β > 0 some arbitrary constants.
Then,

(i) There is a unitary operator Vβ on L2(Rd, Cn) such that

V −1
β χK Opα(A) χK Vβ = χβK Opα/β(A) χβK . (A.4)

We refer to this as rescaling in position space.
(ii) By rescaling in momentum space, we mean the equality

Opα(A) = Opβα

(A(β ·)) . (A.5)

Proof. First, (ii) simply follows by changing coordinates in the ξ-integral.
For (i) consider the unitary operator Vβ , which is for any ψ ∈ L2(Rd, Cn)
defined by

(
Vβϕ

)
(x) := βd/2 ϕ(βx) , for any x ∈ R .

Then, for any ψ ∈ L2(Rd, Cn) and x ∈ R
d,

(
V −1

β χKVβψ
)
(x) = βd/2

(
V −1

β χKψ(β.)
)
(x) = χK(x/β)ψ(x) =

(
χβKψ

)
(x)

and for any ψ ∈ S(Rd, Cn)
(
V −1

β Opα(A)Vβψ
)
(x) =

αd

2π

ˆ ∞

−∞
dξ

ˆ ∞

−∞
dy eiαξ(x/β−y)A(ξ)ψ(βy)
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=
(α/β)d

2π

ˆ ∞

−∞
dξ

ˆ ∞

−∞
dy eiα/βξ(x−y)A(ξ)ψ(y) = (Opα/β(A)ψ)(x) ,

where in the second step we applied a change of coordinates in the y-integral.
�

Lemma A.6. Let Opα(A) as in Sect. 3.3, such that A satisfies
ˆ

Rd

dξ

√ˆ
U

dy
∥
∥A(x,y, ξ)

∥
∥2

n×n
<∞ , for any x ∈ R

d

(where ‖.‖n×n is the ordinary sup-norm on the n × n-matrices). Then the
integral representation of Opα(A) may be extended to all L2(Rd, Cn)-functions
and the y and the ξ integrations may be interchanged. Thus, for any ψ ∈
L2(Rd, Cn) and almost any x ∈ R

d, the following equations hold
(
Opα(A)ψ

)
(x) =

( α

2π

)d
ˆ

Rd

dξ

ˆ
U

dy e−iαξ·(x−y) A(x,y, ξ) ψ(y)

=
( α

2π

)d
ˆ

U
dy

ˆ
Rd

dξ e−iαξ·(x−y) A(x,y, ξ) ψ(y) .

Proof. We first show that, applying the Fubini–Tonelli theorem and Hölder’s
inequality, the integrations may be interchanged, by estimatingˆ

Rd

dξ

ˆ
U

dy
∣
∣e−iαξ·(x−y)A(x,y, ξ)ψ(y)

∣
∣

≤
ˆ

Rd

dξ

√ˆ
U

dy
∥
∥A(x,y, ξ)ψ(y)

∥
∥2

n×n

∥
∥ψ

∥
∥

L2(Rd,Cn)
< ∞ .

Next, we want to show that we can extend the integral representation to
all L2(Rd, Cn)-functions, i.e., that the above integral indeed corresponds to(
Opα(A)ψ

)
(x). To this end, let (ψn)n∈N be a sequence of C∞

0 (Rd, Cn)-functions
converging to ψ with respect to the L2(Rd, Cn)-norm. Then Opα(A)ψ is by
definition given by

Opα(A)ψ = lim
n→∞ Opα(A)ψn , (A.6)

where the convergence is with respect to the L2(Rd, Cn)-norm. However, going
over to a subsequence we can assume that this convergence also holds pointwise
outside of a null set N ⊆ R

d. Moreover, for any x ∈ U\N and we can compute

lim
n→∞

∣
∣
∣
∣
( α

2π

)d
ˆ

Rd

dξ

ˆ
U

dy e−iαξ·(x−y) A(x,y, ξ) ψ(y)− (
Opα(A)ψn

)
(x)

∣
∣
∣
∣

= lim
n→∞

∣
∣
∣
∣
( α

2π

)d
ˆ

Rd

dξ

ˆ
U

dy e−iαξ·(x−y) A(x,y, ξ) Δψn(y)
∣
∣
∣
∣

≤
( α

2π

)d
ˆ

Rd

dξ

√ˆ
Rd

dy
∥
∥A(x,y, ξ)

∥
∥2

n×n
lim

n→∞ ‖Δψn‖2L2(Rd,Cn) = 0 ,

with Δψn := ψ − ψn. Combining this estimate with the pointwise conver-
gence (A.6) in U \N yields the claim. �
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Remark A.7. We want to apply Lemma A.6 to the operator χK(Πε
−)knχK

with K = (u0 − ρ, u0). By rescaling as before, we see that this operator is of
the form Opα(A(α)) with

A(α)(u, u′, ξ) = 2 χK(u) χK(u′) χ(−∞,0)(ξ) eMξ

×
2∑

a,b=1

t
kn(αξ)
ab

⎛

⎝
X

kn(αξ)
a,+ (u)Xkn(αξ)

b,+ (u′) X
kn(αξ)
a,+ (u)Xkn(αξ)

b,− (u′)

X
kn(αξ)
a,− (u)Xkn(αξ)

b,+ (u′) X
kn(αξ)
a,− (u)Xkn(αξ)

b,− (u′)

⎞

⎠ .

Note that, apriori, the integral representation of this operator is well defined
only for C∞

0 (R)2-functions with support in K. In order to extend the integral
representation to all L2(K, C2)-functions, it suffices to verify the condition in
Lemma A.6. To this end, we note that, due to Lemma 2.3, for given u2 > u0,
we have

|Xkn(αξ)
a,i (u)| < 1 + cedu ,

for any a ∈ {1, 2}, i ∈ {+,−}, u < u2 and ξ ∈ R, where the constants c, d > 0
are independent of ξ. Also using that the transmission coefficients tab are
always bounded by 1/2, we obtain the estimate

‖A(α)(u, u‘, ξ)‖n×n ≤ C eMξ χ(−∞,0)(ξ) χK(u) χK(u′)

for any α > 0 with C independent of u, u′ and ξ. Thus, for any u ∈ K and α > 0
we have
ˆ

dξ

√ˆ
du′ ‖A(α)(u, u′, ξ)‖2n×n = C

ˆ 0

−∞
dξ

√ˆ u0

u0−ρ

du′ e2Mξ = C

√
ρ

M
<∞ .

Clearly, the entire expression vanishes for u /∈ K.
This shows that we can indeed apply Lemma A.6 to χK(Πε

−)knχK, meaning
that the corresponding integral representation can be applied to any L2(K, C2)-
function, and the u′- and ξ-integrations may be interchanged. Moreover, due
to the characteristic functions in the symbol, we can even extend the integral
representation to all functions in L2(R, C2). ♦

Lemma A.8. Let A(x,y, ξ) ≡ A(x, ξ) (i.e., A is independent of y) and
B(x,y, ξ) ≡ B(y, ξ) be symbols such that Opα(A) and Opα(B) are well de-
fined and the following two conditions hold:

(i) The operator A defined for any ψ ∈ L2(Rd, Cn) by

(Aψ)(x) :=
ˆ

Rn

e−iξx A(x, ξ/α) ψ(ξ) dξ ,

is bounded on L2(Rd, Cn).
(ii) The operator B defined for any ψ ∈ C∞

0 (Rd, Cn) by

(Bψ)(ξ) :=
1

(2π)d

ˆ
Rn

eiξy B(y, ξ/α) ψ(y) dy ,

may be continuously extended to L2(Rd, Cn).
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Then

Opα(A) Opα(B) = Opα(AB) .

Proof. We first note that, due to condition (i),

Opα(A) = A F−1 ,

as both sides define continuous operators on L2(Rd, Cn) and agree on the
C∞

0 (Rd, Cn)-functions (where F is again the continuous extension of the Fourier
transform to the Hilbert space L2(Rd, Cn)). Similarly, we conclude that

Opα(B) = F B .

This yields

Opα(A) Opα(B) = A B ,

and for any ψ ∈ C∞
0 (Rd, Cn) we have

Opα(A)Opα(B)ψ = ABψ =
ˆ

Rd

dξ

ˆ
Rn

dx e−iαξ(x−y)A(x, ξ)B(y, ξ)ψ(y) .

Note that as Opα(A) and Opα(B) are bounded operators, so is Opα(A)Opα(B).
This concludes the proof by continuous extension and by the definition of
Opα(AB). �

Remark A.9. (i) In what follows, we often apply the previous lemma in the
case that

B(y, ξ) = χU (ξ)

for some measurable set U ⊆ R
d. Then condition (ii) of Lemma A.8 is

obviously fulfilled, because for any ψ ∈ C∞
0 (Rd, Cn) we have

Bψ = χαU F−1ψ ,

and thus

‖Bψ‖ = ‖χαU F−1ψ‖ ≤ ‖F−1ψ‖ = ‖ψ‖ .

(ii) Moreover, in the following, the symbol A is sometimes independent of
both x and y and bounded by a constant C > 0 (with respect to the
matrix sup-norm); then, for any ψ ∈ L2(Rd, Cn) it follows that

Aψ = A(./α) Fψ,

and moreover,

‖Aψ‖ = ‖A(./α) Fψ‖ ≤ C‖ψ‖ .

Therefore, condition (i) in Lemma A.8 is also fulfilled.
(iii) Another case we will consider later is that A ≡ a is scalar valued, inde-

pendent of y and continuous with compact support

supp a ⊆ Bl(v)×Br(μ) .
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Then from the following argument we conclude that A also fulfills condi-
tion (i) from Lemma A.8. Take ψ ∈ L2(Rd) arbitrary and considerˆ
|Aψ(x)|2 dx

=
ˆ

Bl(v)

dx

ˆ
Br(μ)

dξ

ˆ
Br(μ)

dξ′ e−iu(ξ′−ξ) ψ(ξ) ψ(ξ′) a(x, ξ/α) a(x, ξ′/α)

Here we may interchange the order of integration due to the Fubini–
Tonelli Theorem sinceˆ

Bl(v)

dx

ˆ
Br(μ)

dξ

ˆ
Br(μ)

dξ′
∣
∣
∣ψ(ξ) ψ(ξ′) a(x, ξ/α) a(x, ξ′/α)

∣
∣
∣

≤ C2 vol(Bl(v)) ‖ψ‖2L1(Br(μ),C2) <∞ ,

where C is a bound for the absolute value of the continuous and com-
pactly supported function a. Note that L2(Br(μ), C2) ⊆ L1(Br(μ), C2)
since Br(μ) is bounded. We then obtainˆ

|Aψ(u)|2 du

=
ˆ

dξ ψ(ξ)
ˆ

dξ′ ψ(ξ′)
ˆ

dx e−ix(ξ′−ξ) a(x, ξ/α) a(x, ξ′/α)
︸ ︷︷ ︸

=:ã(ξ,ξ′)

≤ ‖ψ‖
ˆ
|ψ(ξ)| ‖ã(ξ, .)‖ dξ ≤ ‖ψ‖2

√ˆ
dξ

ˆ
dξ′ |ã(ξ, ξ′)|2 ,

where the function ã is again continuous and compactly supported, which
makes the last integral finite. We remark that in the last line we again
applied Hölder’s inequality twice.
This estimate shows that condition (i) from Lemma A.8 is again
satisfied. ♦

Appendix B. Proof of Lemma 2.3

Proof. We follow the proof of [8, Lemma 3.1]. As explained there, employing
the ansatz

X(u) =
(

e−iωuf+(u)
eiωuf−(u)

)
, (B.1)

the vector-valued function f must satisfy the ODE

d
du

f =

√
Δ(r)
r2

(
0 e2iωu (imr − λ)

e−2iωu (−imr − λ) 0

)
f , (B.2)

where λ is an eigenvalue of the operator

A :=

(
0 d

dϑ + cot ϑ
2 + k+1/2

sin ϑ

− d
dϑ − cot ϑ

2 + k+1/2
sin ϑ 0

)
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(see [8, Appendix 1]) and thus does not depend on ω (in contrast with the
Kerr–Newman case as explained in [8]). Estimating (B.2) gives

∣
∣
∣
∣

d
du

f

∣
∣
∣
∣ ≤

∣
∣
∣
∣

√
r − 2M

r3/2

∣
∣
∣
∣ (mr + |λ|)|f | =

√
r − 2M

r

(
m +

|λ|
r

)
|f | .

Next, we transform r − 2M to the Regge–Wheeler coordinate,

r − 2M = 2M W
(
eu/(2M)−1/2M

)
,

where W is the inverse log function, i.e., the inverse function of x → xex. An
elementary estimate3 shows that W (x) ≤ x for any x ≥ 0, and therefore, we
can estimate

∣
∣
∣
∣

d
du

f

∣
∣
∣
∣ ≤

eu/M−1/2

√
2M

(
m +

|λ|
2M

)
|f | , (B.3)

where we also used that r ≥ 2M . Setting

c1 := (2Me)−1/2
(
m +

|λ|
2M

)
, d :=

1
M

,

we can proceed just as in [8, Proof of 3.1]:
Without loss of generality, we can assume that |f | is nowhere vanishing4

and divide (B.3) by |f | giving

|d/duf |
|f | ≤ c1e

du .

This yields

∣
∣ log |f |(u2)− log |f |(u)

∣
∣ =

∣
∣
∣
∣
∣

ˆ u2

u

d
du (|f+|2 + |f−|2)

|f |2 du′
∣
∣
∣
∣
∣
≤ 4

ˆ u2

u

c1 edu′
du′

=
4c1

d

(
edu2 − edu

)
.

From this, we conclude that

log |f |(u) ≥ log |f |(u2)− 4c1

d

(
edu2 − edu

) ≥ log |f |(u2)− 4c1

d
edu2

log |f |(u) ≤ log |f |(u2) +
4c1

d

(
edu2 − edu

) ≤ log |f |(u2) +
4c1

d
edu2 ,

which yields

|f(u2)| exp
(
− 4c1

d
edu2

)
≤ |f(u)| ≤ |f(u2)| exp

(4c1

d
edu2

)
. (B.4)

Using this inequality in (B.3), we obtain
∣
∣
∣
∣

d
du

f

∣
∣
∣
∣ ≤ c1 |f(u2)| exp

(4c1

d
edu2

)
edu , (B.5)

3Since the function f(x) := xex is strictly increasing (and differentiable) on (0, ∞), so is W =
f−1 on

(
f(0), f(∞)

)
= (0, ∞). So from xex ≥ x for any x ≥ 0 follows x = W (xex) ≥ W (x).

4If |f(u)| = 0 for one u ∈ R, then due to (B.2) any order of derivative of f vanishes at u a
and therefore, by the Picard–Lindelöf theorem, the function f vanishes identically on R.
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which shows that df
du is integrable. Moreover, the function f(u) converges

for u → −∞ to

f0 := lim
u→−∞ f(u)

(B.4)

�= 0 .

Now integrating (B.5) from −∞ to u < u2, we get

|f(u)− f0| ≤ c1

d

∣
∣f(u2)

∣
∣ exp

(4c1

d
edu2

)
edu . (B.6)

Finally, in order to get rid of the factor |f(u2)|, we make use of (B.4) in the
limit u → −∞,

|f(u2)| ≤ |f0| exp
(4c1

d
edu2

)
. (B.7)

Substituting this in (B.6), we end up with the desired result

|f(u)− f0| ≤ cedu ,

with

c :=
c1

d
|f0| exp

(8c1

d
edu2

)

and

g(u) := f(u)− f0 .

Similarly, removing |f(u2)| from (B.5) using (B.7) we obtain
∣
∣
∣
∣

d
du

g

∣
∣
∣
∣ ≤ dcedu ,

which completes the proof. �

Appendix C. Computing the Symbol of (Πε
−)kn

In this section, we give a more detailed computation of the symbol of the
operator (Πε

−)kn for given k and n. Recall that (Πε
−)kn is for any function ψ ∈

C∞
0 (R, C2) given by

(
(Πε

−)knψ
)
(u) =

1
π

ˆ
dω

ˆ
du′e−εω

2∑

a,b=1

tωa,bXa(u, ω)
〈
Xb(., ω)

∣
∣ ψ

〉
.

The main task is therefore to determine
2∑

a,b=1

tωa,bXa(u, ω)Xb(u′, ω)† =: (∗) . (C.1)

To this end, first note that the details of the coefficients tab in (2.9) give

(∗) = χ(−m,0)(ω) X1(u, ω) X1(u′, ω)† (C.2)

+ χ(−∞,−m)(ω)
[ 1

2
X1(u, ω) X1(u′, ω)† +

1
2

X2(u, ω) X2(u′, ω)† (C.3)

+ tω12 X1(u, ω) X2(u′, ω)† + tω21 X2(u, ω) X1(u′, ω)†
]

. (C.4)
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Moreover, using the asymptotics of the radial solutions given in Lemma 2.3
the matrix Xi(u, ω) Xj(u′, ω)† can for any i, j ∈ {1, 2} be written as

Xi(u, ω) Xj(u′, ω)†

=

(
f+
0,i(ω) f+

0,j(ω) e−iω(u−u′) f+
0,i(ω) f−

0,j(ω) e−iω(u+u′)

f−
0,i(ω)f+

0,j(ω) eiω(u+u′) f−
0,i(ω) f−

0,j(ω) eiω(u−u′)

)

(C.5)

+ R0,i(u, ω)

(
f+
0,j(ω) e−iωu′

f−
0,j(ω) eiωu′

)†
+

(
f+
0,i(ω) e−iωu

f−
0,i(ω) eiωu

)

R0,j(u′, ω)† (C.6)

+ R0,i(u, ω) R0,j(u′, ω)† . (C.7)

The terms in (C.6)-(C.7) will result in the error matrix R0 and are computed
in Sect. 6.1.3. Here we are mainly interested in the terms in (C.5).

Combining our choices of f0 from Sect. 2.3.4 with (C.5) and (C.2)-(C.4),
we obtain

(∗) = χ(−m,0)(ω)

(
|f+

0,1(ω)|2 e−iω(u−u′) f+
0,1(ω) f−

0,1(ω) e−iω(u+u′)

f−
0,1(ω)f+

0,1(ω) eiω(u+u′) |f−
0,1(ω)|2 eiω(u−u′)

)

+ χ(−∞,−m)(ω)

(
1
2 e−iω(u−u′) tω12 e−iω(u+u′)

tω21 eiω(u+u′) 1
2 eiω(u−u′)

)

+ R̃0(u, u′, ω) ,

where R̃0(u, u′, ω) consists of the terms (C.6)-(C.7) inserted in the sum (C.1).
In order to rewrite (Πε

−)kn as a pseudo-differential operator, we need a
prefactor of the form e−iω(u−u′) before the symbol. The matrix components
in (∗) indeed involve such plane waves. However, the (2, 2)-components oscillate
with the wrong sign. In order to circumvent this issue, we can use the freedom
of coordinate change ω → −ω in the dω integration of the (2, 2)- and (1, 2)-
components. This yields (3.9).

Appendix D. Regularity of ηκ

We now verify in detail that the functions ηκ satisfy Condition 5.5.

Lemma D.1. Consider the functions ηκ in (1.1). Then for any κ �= 1, ηκ sat-
isfies Condition 5.5 with T = {0, 1} for any γ ≤ min{1, κ}. Moreover, the
function ηκ in (1.2) satisfies Condition 5.5 with T = {0, 1} for any γ = κ.

Proof. We start with the case that κ = 1. Then,

η1 ∈ C2(R \ {0, 1}) ∩ C0(R) ,

as

lim
t→0

(− t log(t)− (1− t) log(1− t)
)

= − lim
t→0

log(t)
t−1

l′H= lim
t→0

t−1

t−2
= 0 ,

(where “l′H” denotes the use of l’Hospital’s rule) and

lim
t→1

(− t log(t)− (1− t) log(1− t)
)

= − lim
t→1

log(1− t)
(1− t)−1

l′H=
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− lim
t→1

(1− t)−1

(1− t)−2
= 0 .

Moreover, for any t ∈ (0, 1) we have

η′
1(t) = − log(t) + log(1− t) ,

η′′
1 (t) = −1

t
− 1

1− t
.

Thus, for any γ < 1

lim
t↘0

η1(t)t−γ =− lim
t↘0

log t

tγ−1
− lim

t↘0

log(1− t)
tγ

l′H= − lim
t↘0

t−1

(γ − 1)tγ−2

+ lim
t↘0

(1− t)−1

γtγ−1

= lim
t↘0

t1−γ

1− γ
+ lim

t↘0

t1−γ

γ(1− t)
= 0 ,

and obviously

lim
t↗0

η1(t)t−γ = 0 .

Therefore, there exists a neighborhood U0,0 of z = 0 and a constant C0,0 such
that for any t ∈ U0,0,

|η1(t)| ≤ C0,0|t|γ .

Similarly,

lim
t↗1

η1(t)(t− 1)−γ = lim
t↗1

log t

(1− t)γ
+ lim

t↗1

log(1− t)
(1− t)γ−1

l′H= lim
t↗1

− t−1

γ(1− t)γ−1
+ lim

t↗1

(1− t)−1

(γ − 1)(1− t)γ−2
= 0 ,

lim
t↘1

η1(t)(t− 1)−γ = 0 ,

yielding a neighborhood U1,0 of z = 1 and a constant C1,0 such that for
any t ∈ U1,0:

|η1(t)| ≤ C1,0 |t− 1|γ .

The other estimates follow analogously by computing the limits

lim
t↘0

η′
1(t)t

1−γ =− lim
t↘0

log(t)
tγ−1

l′H= lim
t↘0

t−1

(1− γ)tγ−2
= lim

t↘0

t1−γ

1− γ
= 0 ,

lim
t↗1

η′
1(t)(t− 1)1−γ =− lim

t↗1

log(1− t)
(1− t)γ−1

l′H= lim
t↗1

(1− t)−1

(1− γ)(1− t)γ−2

= lim
t↗1

(1− t)1−γ

1− γ
= 0 ,

lim
t↘0

η′′
1 (t)t2−γ =− lim

t↘0
t1−γ = 0 ,

lim
t↗1

η′′
1 (t)(t− 1)2−γ =− lim

t↗1
(1− t)1−γ = 0 ,
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lim
t↗0

η′
1(t)t

1−γ = lim
t↘1

η′
1(t)(t− 1)1−γ = lim

t↗0
η′′
1 (t)t2−γ

= lim
t↘1

η′′
1 (t)(t− 1)2−γ = 0 .

This concludes the proof for the case that κ = 1.
Next, consider κ �= 1. It is evident that

ηκ ∈ C2(R \ {0, 1}) ∩ C0(R) .

Moreover, the derivatives of ηκ for t ∈ (0, 1) are given by

η′
κ(t) =

κ

1− κ

tκ−1 − (1− t)κ−1

tκ + (1− t)κ
,

η′′
κ(t) = κ

tκ−2 + (1− t)κ−2

tκ + (1− t)κ
− κ2

1− κ

(
tκ−1 + (1− t)κ−1

)2

tκ + (1− t)κ
.

Thus, we conclude that for κ < 1:

η′
κ(t) ! tκ−1 , η′′

κ(t) ! tκ−2 , for t ↘ 0 ,

η′
κ(t) ! (1− t)κ−1 , η′′

κ(t) ! (1− t)κ−2 , for t ↗ 1 ,

so that we may choose γ ≤ κ. For 1 < κ ≤ 2, first note that none of the first
derivatives vanishes at t = 0 or t = 1, so we have

η′
κ(t) ! 1 , η′′

κ(t) ! tκ−1 , for t ↘ 0 ,

η′
κ(t) ! 1 , η′′

κ(t) ! (1− t)κ−1 , for t ↗ 1 ,

and therefore, we can only take γ ≤ 1. Similarly, for κ > 2 we have

η′
κ(t) ! 1 , η′′

κ(t) ! 1 , for t ↘ 0 ,

η′
κ(t) ! 1 , η′′

κ(t) ! 1 , for t ↗ 1 ,

so we can only take γ ≤ 1 as well. �
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