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Abstract
This work develops a quantum control application of many-body quantum chaos for ultracold
bosonic gases trapped in optical lattices. It is long known how to harness exponential sensitivity to
changes in initial conditions for control purposes in classically chaotic systems. In the technique
known as targeting, instead of a hindrance to control, the instability becomes a resource. Recently,
this classical targeting has been generalized to quantum systems either by periodically countering
the inevitable quantum state spreading or by introducing a control Hamiltonian, where both
enable localized states to be guided along special chaotic trajectories toward any of a broad variety
of desired target states. Only strictly unitary dynamics are involved; i.e. it gives a coherent quantum
targeting. In this paper, the introduction of a control Hamiltonian is applied to Bose–Hubbard
systems in chaotic dynamical regimes. Properly selected unstable mean field solutions can be
followed particularly rapidly to states possessing precise phase relationships and occupancies. In
essence, the method generates a quantum simulation technique that can access rather special states.
The protocol reduces to a time-dependent control of the chemical potentials, opening up the
possibility for application in optical lattice experiments. Explicit applications to custom state
preparation and stabilization of quantum many-body scars are presented in one- and
two-dimensional lattices (three-dimensional applications are similarly possible).

1. Introduction

The exponential instability inherent in chaotic dynamics typically leads a system towards relaxation,
equilibration, and/or thermalization. Naturally, chaos poses fundamental challenges for controlling system
dynamics as well. Nevertheless, there are circumstances in which chaos provides a resource for control, such
as gravity assist conjectured by Ulam [1], nicely illustrated as a control problem by the diversion of the
International Sun-Earth Explorer satellite to a Giacobini-Zinner comet flyby [2, 3], and more
comprehensively, by the theory of classical targeting [4–8], which falls under the more general moniker,
controlling chaos [9]. Roughly speaking, for fully chaotic systems the origin of the resource is the existence of
heteroclinic motion (trajectories) [10]. In a nutshell, there exists a set of neighboring initial conditions,
which lead to trajectories that deviate with a maximal exponential divergence from the trajectory of the given
initial conditions. Likewise, but the inverse process, there exists a set of trajectories which approach the final
conditions in a maximal exponential sense ending up in its neighborhood. Those rare trajectories belonging
to both sets capture the essence of heteroclinic motion, and give rise to the opportunity to make a tiny, but
very specific, change in the initial conditions that accelerates greatly how quickly the system dynamically
evolves to the predetermined final point. Hence, a great deal of the effort in controlling classical chaos
(targeting) is the identification of the precise and quite rare (heteroclinic) trajectory which accomplishes the
goal in an optimal way.
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Figure 1. Schematic illustration of an initially localized quantum state guided along a classical transport trajectory. A localized
quantum state, here represented as an orange cut through its Wigner function, centered around an initial phase space point
(upper right dot) can be guided to a specific target state (lower left cross) by following a solution of the classical limit. In a generic
system exhibiting quantum chaos the localized state would equilibrate in a logarithmically short time period, and thus the
spreading must be counteracted in a control protocol. The blue grid schematically represents a Hamiltonian landscape generating
unstable dynamics.

Recently, the translation of classical targeting into the quantum realm has been introduced and applied to
a longstanding paradigm of simple chaotic systems [11, 12], the kicked rotor [13, 14]. For quantum systems
with a well defined classical analog, it turns out that the same heteroclinic motion can be exploited both to
arrive at a predetermined, possibly exotic, target or final state, and greatly accelerate the way there. It can also
be done with exclusively unitary dynamics, and thus be fully coherent. The crucial new element not found in
the classical case essentially arises from the uncertainty principle [15]. The closest a quantum state can get to
the initial conditions of a classical analog is in the form of a minimum uncertainty wave packet and a
coherent state, depending on the context. By virtue of a Wigner transform analysis [16] of these states, they
correspond most closely to a Liouvillian density of neighboring initial conditions as opposed to a single
trajectory. Thus, a quantum analog of classical targeting must also control the Liouvillian flow around the
heteroclinic trajectory; see figure 1. It is this extra requirement that led to the introduction of two methods of
optimal coherent quantum targeting. The first technique follows the local stability analysis and counteracts
from time to time the inevitable spreading of the density [11]. The second technique is best conceived of as a
form of quantum simulation [17] in which a quite different Hamiltonian simulates the heteroclinic evolution
in a stable way [12]. In this work, the second technique is being applied to an important, experimentally
realizable many-body system, i.e. the Bose–Hubbard model [18, 19].

Quantum control techniques comprise a large longstanding research field with much of the early work
prompted by the dream of controlling chemical reactions [20–25], which more recently have been applied to
many-body systems [26, 27]. A survey [28] and an overview of optimal control theory [29] provide more
information on this larger field. On the whole, this field is not directly aimed at the challenge posed by
quantum chaos, where exponential instability is converted from hindrance to resource. Nevertheless, there
are a few works [30–36], but none address general approaches to optimal coherent targeting in quantum
chaotic many-body systems.

As alluded to before, a quantum targeting in an isolated many-body dynamical system may offer some
important capabilities. A fully chaotic dynamics eventually visits all possible states of a system independent
of starting point, hence there is the possibility of placing a system in an otherwise quite unusual or
difficult-to-access state. In a space of enormous volume as a many-body system would possess, in most cases
it would take an exceedingly long time to arrive at a desired state through an ergodic wandering, however,
heteroclinic motion provides those rare, most rapid paths from particular starting to final states, thus
providing a tremendously accelerated route to a desired state.

Many-body systems based on bosonic ultracold atoms provide ideal candidates for implementation of
coherent quantum targeting for a number of reasons. In the main though, there is a broad variety of
experiments with great control over tunable parameters being performed, and they provide an excellent
platform for quantum simulations [37–46]. However, in addition they possess well defined classical analogs
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in the form of a mean-field limit with large particle number as required by the control protocol. The classical
dynamics is governed by the Gross-Pitaevskii equation or its discretized version on a lattice (in optical lattices
the system gets effectively described by a Bose–Hubbard model [19]); see [47] for a detailed review. This
allows for a phase space formulation in which strongly chaotic regimes can be identified [48, 49] and where
the resulting heteroclinic dynamics can be explored. Finally, the systems admit both a continuous U(1) and
discrete dynamical symmetries that can be taken advantage of in developing control protocols for the
purposes of introducing extremely helpful mappings between different dimensional lattices and expanding
the range of initial states to which the protocol can be applied. For this work it is critical to be able to switch
off the on-site interaction between the atoms [50–52], and control the chemical potentials of the sites.

This paper is structured as follows: in the next section background material and notation are introduced
related to dynamical considerations, aspects of heteroclinic motion, Bose–Hubbard models, coherent and
Fock states resulting from number-projected coherent states, truncated Wigner approximations (TWAs), and
finally control protocol considerations. This is followed in section 3 with coherent quantum targeting
applied to one-dimensional, 1D, lattices. The realization of the protocol reduces to switching off the
interactions and controlling the chemical potentials of the individual sites in a time-dependent fashion.
Examples of state preparation with non-trivial condensate phases as well as periodic many-body states are
given. Error sources and fidelity of the protocol is discussed for explicit examples. Section 4 gives the
application to two-dimensional, 2D, lattices. An example of a lattice of discrete vortices is given in addition to
periodic mean field solutions. Finally, there is a summary and outlook for further research.

2. Background

In order to describe coherent quantum targeting and its application to Bose–Hubbard models, it is helpful to
start with some common background concerning chaotic dynamics, stability analysis of dynamical systems,
Bose–Hubbard systems, their mean field limit and symmetries, coherent and number projected coherent
states, TWAs, and the protocol for the optimal coherent quantum targeting itself.

2.1. Chaos, heteroclinic motion, and times scales
Within a chaotic volume of phase space, given any arbitrary initial and target state that respects the
restrictions due to constants of the motion, ergodicity guarantees the existence of a transport pathway
connecting the respective states. In fact, almost all of the trajectories would provide a connection. However,
the time scale for making the connection with a typical ergodic trajectory would be prohibitively long. Phase
space volume grows exponentially with system size, number of degrees of freedom L, and its random
exploration time scale would grow exponentially as well.

It is therefore necessary to seek special trajectories that connect the initial and final phase points in as
short a time as possible. The works of Lyapunov [53] and Poincaré [10] intimate the solution to this
optimization problem. First, a quantum state provides a coarse grained phase space volume of Planck’s
constant raised to the power of the number of degrees of freedom, hL [16]. Within such a localized
neighborhood of phase space points are initial conditions for trajectories which flee exponentially rapidly
from the central phase space point’s trajectory. Likewise, considering the target state’s neighborhood, there
exist trajectories that are approaching the trajectory associated with the central phase space point
exponentially rapidly; i.e. for every positive Lyapunov exponent, there is a negative exponent. There are
invariant sets of phase points associated with the positive and negative Lyapunov exponents called unstable
and stable manifolds, respectively. The intersection of these manifolds defines heteroclinic trajectories. They
have the combined features of fleeing the initial point’s trajectory at a maximally exponential rate while
simultaneously approaching the final point’s trajectory at the maximal exponential rate. Heteroclinic
trajectories exist that can be as close as necessary to the initial and final points.

One of the infinitely many heteroclinic trajectories gives the shortest dynamical connection time between
the initial and final phase space points depending on the volume hL, which determines the practical
constraint of closeness to initial and final phase space points, although hL can be chosen as small as preferred.
Denoting this time as tmin, the immediate neighborhood of trajectories that imitate this heteroclinic motion
is of the order of hL exp(−hKStmin), where hKS is Kolmogorov–Sinai entropy [54, 55] or for our purposes, the
sum of positive Lyapunov exponents. For an extensive system, i.e. the mean positive Lyapunov exponent is
constant and hKS grows linearly with the number of degrees of freedom, this neighborhood vanishes
exponentially with system size. Parenthetically, for the mean field Bose–Hubbard Hamiltonian introduced
ahead, equation (7), holding the filling factor constant (N/L) as the number of sites L increases leads to such
an extensive system. Thus, locating a suitable solution leads to a search for an extraordinarily rare trajectory;
see [56] for a general technique developed precisely for searching exponentially rare solutions.
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Of great interest here is how short the time scale tmin can be. Assuming an extensive system, the available
phase space volume per degree of freedom has a geometric mean, V1, so that the number of quantum coarse
grained cells for the full system is NL = (V1/h)L. There is a time scale for moving to an adjacent phase space
cell, t0, which is also the time for the quantum dynamics to move to the ‘closest’ orthogonal state. The time
scale for an ordinary meandering chaotic trajectory to connect two random cells is proportional to NLt0,
which is an extraordinarily long time. This is completely different from the optimal heteroclinic trajectory. It
is found somewhere inside a cell stretching as exp(hKSt). This grows to the order of NL on a very short time
scale given approximately by the relation

tmin ∼
1

hKS
lnNL =

1

λ
ln
V1
h

, (1)

where λ= hKS/L is the average positive Lyapunov exponent. This is another example of a so-called log-time
typically found in chaotic systems. The quintessential example is the Ehrenfest time at which quantum and
classical dynamics must diverge, which is a log-time [57–60] for a chaotic system. Depending on the
purposes, the details of a particular logtime may vary slightly in terms of Lyapunov exponents (maximum or
average, etc), either classical actions or phase space volumes, but they are all similarly logarithmic in Planck’s
constant.

This rather simplistic logic not only gives a vastly shorter time scale than NLt0 and one logarithmic in
Planck’s constant, but surprisingly, independent of the number of degrees of freedom. Perhaps a more
realistic calculation would lead to some weak system size dependence, after all dynamical systems are not
uniformly hyperbolic, different cells are more or less difficult to approach, and larger systems occupy larger
physical spaces, but clearly even a more realistic estimate would still lead to the conclusion that the optimal
heteroclinic motion gives something close to an exponential time scale speed-up compared with NLt0 and
very weak dependence on Planck’s constant. This turns out to be the remarkable way in which chaos becomes
a targeting resource. The cost of this speed up is the difficulty of identifying the requisite exponentially rare
trajectory.

Without further analysis of how to locate the optimal heteroclinic trajectory, the search space dimension
is the immense double-the-degrees-of-freedom of the entire lattice, 2L, such that any systematic search
quickly becomes numerically challenging if not impossible. Conveniently though, chaotic systems usually
allow for substantial reduction of the search space, as explicitly demonstrated for a search for heteroclinic
trajectories and complex saddles in a Bose–Hubbard system in [61]: for any phase space point located inside
a chaotic region, the local dynamics can be decomposed into pairs of stable and unstable manifolds. By
disregarding all stable directions and those corresponding to constants of the motion, any search in a
Bose–Hubbard system can be reduced to an (L− 2)-dimensional problem. By focusing only on the most
unstable directions an even further reduction is usually possible. Even so, a systematic search for general large
or higher-dimensional systems is typically futile.

There is a further significant reduction of the search space dimension possible in cases where symmetries
are present in the initial and final states; details ahead. Indeed, this work focuses on Bose–Hubbard systems
possessing discrete symmetries, periodic boundary conditions, and symmetric initial conditions leading to a
reduced-dimensional symmetry plane of the mean field dynamics [62]. The reduced-dimensional dynamics
can be mapped onto larger systems with each dimension in the lattice (one, two, or three) being any integer
multiple of the reduced-dimensional value, including infinity. In this way, the search space remains the
reduced-dimensional value independent of the size or dimension of the lattice. Ahead for illustrative
purposes, the symmetry reduced-dimensional value of the lattice dimension is L= 4, and thus an optimized
search can be performed in an L− 2= 2-dimensional space no matter what the entire lattice size is. Thus, it
turns out that a simple Monte Carlo search in the reduced phase space around the initial state’s centroid is
sufficient to determine the suitable heteroclinic pathway, i.e. control trajectory. It is assumed in this work that
the technical problem of identifying suitable control trajectories is solved and is not discussed further. Note
finally that tmin is independent of system size in the case of relying on discrete symmetries, just as equation (1)
also gives a system size independent result, i.e. thus the essential motivation of taking advantage of discrete
symmetries is the reduced search space. Furthermore, the control scheme can also be applied to tasks in
which a certain time for reaching the target state is given, as long as it is greater than tmin. For such larger
times, there always exists a corresponding hetereoclinic trajectory that can be used as optimal transport path.

2.2. Bose–Hubbard systems
For many reasons the Bose–Hubbard model turns out to be an ideal bosonic many-body system with which
to investigate optimal coherent quantum control. Not only is this model experimentally relevant for
ultracold atoms in an optical lattice, but a classical limit can be defined as a mean-field limit of large
occupation numbers and the specific form of the interaction greatly facilitates the control implementation as
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Figure 2. Schematic representation of a 1D Bose–Hubbard ring. Cold atoms trapped in a 1D periodic lattice, here consisting of
four sites. The model includes nearest-neighbor hopping, on-site interactions between atoms, as well as energetic offsets for each
site given by individual chemical potentials.

discussed in sections 2.2 and 2.3 ahead. A convenient property is that a quadrature phase space
representation leads to a Hamiltonian formalism with canonically conjugate real variables. Furthermore, the
control protocol works on a many-body version of minimum uncertainty states in the form of Glauber
coherent states, and crucially all the results apply equally well to their total number projected states. Finally,
for the control system, the TWA becomes a critical analysis tool as its dynamics become essentially exact.

2.2.1. Hamiltonian and classical (mean field) limit
A gas of N ultracold atoms subject to a sufficiently strong periodic optical trapping potential generating a
lattice may be well described by the Bose–Hubbard model [19]; the lattice can be created in one, two, or three
dimensions. Further ahead, 2D lattices are treated, but here the Bose–Hubbard Hamiltonian is only given for
a periodic 1D lattice of L sites (L+ 1≡ 1),

Ĥ=−J
L∑

j=1

(
â†j âj+1 + h.c.

)
+

U

2

L∑
j=1

n̂j
(
n̂j− 1

)
+

L∑
j=1

µjn̂j . (2)

It energetically accounts for the possible hopping of bosons to neighboring sites, governed by the kinetic
hopping parameter J, as well as on-site interactions between the bosons given by an interaction strength U,
which is related to the s-wave scattering length of the two-body collisions between atoms. The individual sites
can additionally be offset by chemical potentials µj; see figure 2 for a simplified rendition of a 1D ring.

As there are two preserved quantities, energy and total particle number, the dimer (L= 2) is always
integrable, as are the limiting cases of U = 0 or J= 0, where the absence of an interaction leads to a
superfluid ground state and the absence of hopping gives a Mott insulator phase. For L> 2 and in the
parameter range J∼ UN, the quantum system is known to exhibit quantum chaos [48, 49], which is the
dynamical regime of current interest.

A mean field limit, which depends on an effective Planck constant, can be defined equal to the inverse
filling factor, h̄eff = L/N. As h̄eff→ 0, the mean field approximation gets better and better. A unique
Hamiltonian (classical) dynamics arises for the mean field if the ratio

γ =
1

h̄eff

U

J
, (3)

is held fixed.
It is possible to introduce Hermitian operators in terms of âj and â†j known as quadratures that obey

position-momentum-like commutation relations,

âj =

(
q̂j + ip̂j

)
√
2h̄eff

, â†j =

(
q̂j− ip̂j

)
√
2h̄eff

,
[
q̂j, p̂j

]
= ih̄eff , (4)
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which re-expresses the Bose–Hubbard Hamiltonian as

Ĥ=− J

h̄eff

L∑
j=1

(
q̂jq̂j+1 + p̂jp̂j+1

)
+

U

2h̄2eff

L∑
j=1

(
q̂2j + p̂2j

2

)2

+
L∑

j=1

µj−U

h̄eff

(
q̂2j + p̂2j

2

)
. (5)

Here an irrelevant constant energy offset has been dropped (which is also effectively an O(h̄2eff) correction to
the spectrum and, in any case, beyond semiclassical argumentation used ahead). Multiplying both sides of
the equation by h̄eff/J leads to a modified Hamiltonian,

Ĥ ′ =−
L∑

j=1

(
q̂jq̂j+1 + p̂jp̂j+1

)
+

γ

2

L∑
j=1

(
q̂2j + p̂2j

2

)2

+
L∑

j=1

µ ′j

(
q̂2j + p̂2j

2

)
, (6)

where µ ′j = (µj−U)/J. This Hamiltonian is in a sufficiently symmetric operator form for a full

time-dependent WKB approximation [63], i.e. good to O(h̄2eff), just through the association of q̂→ q and
p̂→ p. The classical analog Hamiltonian (mean field limit) is given by

H (⃗q, p⃗) =−
L∑

j=1

(
qjqj+1 + pj+1pj

)
+

γ

2

L∑
j=1

(
q2j + p2j

2

)2

+
L∑

j=1

µ ′j

(
q2j + p2j

2

)
, (7)

where the degree of chaos is determined by the value of γ. Typically, the strongest chaos is approximately in
the range 1< γ < 3; see [48, 61]. The dynamics of the quadratures is thus governed by Hamilton’s equation
of motion

˙⃗x= Σ∇⃗x⃗H , with x⃗= (⃗q, p⃗)and Σ =

(
0 1

−1 0

)
, (8)

in a 2L-dimensional phase space. The classical dynamics conserves energy and total number of particles
along each trajectory, i.e. each mean-field solution. For any targeting application using the Bose–Hubbard
model this implies that the space of possible targeting states is restricted to those associated to phase space
points sharing the same energy and particle number surface as the corresponding initial state. Choosing the
initial chemical potentials µ ′j of the individual sites however allows for quite a bit of freedom in putting
initial and target states on the same energy surface, so the constraint posed by energy conservation can be
largely evaded.

2.2.2. Localized states
Similar to [11, 12], the protocol for Bose–Hubbard systems is designed to control states that are initially
localized in the quadrature phase space. Glauber coherent states provide a natural and optimal choice with
which to embark as they are minimum uncertainty states and thus the most classical possible. Defined as
eigenstates of the annihilation operator

ˆ⃗a|ϕ⃗⟩coh = ϕ⃗|ϕ⃗⟩coh , (9)

they can be written explicitly as

|ϕ⃗⟩coh = exp

{
−∥ϕ⃗∥

2

2
+ ϕ⃗ · ˆ⃗a†

}
|0⟩ . (10)

Their phase space representation is given by the Wigner function and is well known to be a simple symmetric
2L-dimensional Gaussian wave packet

W (⃗q, p⃗) = (πh̄eff)
−L exp

{
− (⃗q− q⃗α)

2

h̄eff
− (⃗p− p⃗α)

2

h̄eff

}
, (11)

centered around the mean-field point ϕ⃗α = (⃗qα + i⃗pα)/
√
2h̄eff. The coherent state variance per degree of

freedom is given by σ2 = h̄eff/2, which for a single degree of freedom has the 2σ-contour enclosing a volume
2πh̄eff. More generally, the volume per quantum state is (2πh̄eff)L [16], as mentioned above.

The Bose–Hubbard system possesses a U(1) dynamical symmetry, which in mean field quadratures
equates to an SO(2) symmetry. Each trajectory maps perfectly onto another by simultaneously rotating each
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pair (qj,pj) through any given angle 0⩽ θ < 2π. This symmetry has the consequence that it implies a
generalization of the control protocol in a straightforward manner.

The same scheme as for a Glauber coherent state also works for a number projected coherent state

|ϕ⃗⟩Nproj =
1√

∥ϕ⃗∥2NN!

(
ϕ⃗ · ˆ⃗a†

)N
|0⟩ , (12)

which contains a fixed number of particles, and is a Fock state in some basis; states of this kind can be
constructed [64]. This additional class of states is of great physical significance just by virture of fixing the
particle number, but it also contains interesting cases such as ϕα

j = exp(2π iαj/L) with α= 0 corresponding
to the non-interacting ground state of the superfluid phase and α= 1 being the first excited state of the
momentum operator. Another class of states that can be represented as number projected coherent states are
all Fock states concentrated on a single site k, e.g. ϕj =

√
Lδj,k.

2.2.3. Truncated Wigner approximation
Due to their simpler representation, the discussion follows coherent states, however all results are equally
applicable to the number projected counterparts. In quadratures, the propagation of the state is given by the
Moyal bracket [65]

d

dt
W (⃗q, p⃗) = {H (⃗q, p⃗) ,W (⃗q, p⃗)}MB =

2

h̄eff
H (⃗q, p⃗) sin

[
h̄eff
←→
Λ

2

]
W (⃗q, p⃗) , (13)

with
←→
Λ =

←−
∂
∂q⃗

−→
∂
∂p⃗
−
←−
∂
∂p⃗

−→
∂
∂q⃗ denoting the symplectic operator, which acts like the Poisson bracket. An important

consequence of equation (13) is that for any quadratic Hamiltonian all higher order terms vanish, which
dovetails perfectly with the control protocol introduced ahead.

Dropping third and higher order terms in h̄eff yields the TWA [66, 67] in which quantum zero-point
fluctuations are encoded in the Wigner transforms, but otherwise quantum interference between mean field
paths is dropped. The distribution of initial conditions then evolves under a classical Liouville equation

d

dt
W (⃗q, p⃗) = {H (⃗q, p⃗) ,W (⃗q, p⃗)} . (14)

The Gaussian form for coherent states of equation (11) is straightforward to implement within the TWA.
This renders the TWA an excellent analysis tool for this work.

2.2.4. Density wave
Density waves corresponding to coherent states centered on mean-fields of the form ϕ⃗=

√
2/h̄eff

(1,0,1,0. . .), alternating sites for higher-dimensional lattices, are special solutions to Hamilton’s equations
given by initially populating every second site equally, while leaving the rest unoccupied. The mean field
solutions, using initial conditions based on their centroid values, can be mapped to and from the dimer [62],
which is an integrable system. The resulting trajectories exhibit periodic population inversion for γ < 4 with
a period τDW(γ), see figure 3(a). For γ > 4, the system is in a self-trapping regime where the solution is still
periodic, but only a partial population imbalance is achieved. If ϕ⃗ lies on the symmetry plane separatrix of
the dimer, γ= 4, the period diverges as shown in figure 3. Due to these special properties, it serves as a
convenient initial state for the applications discussed throughout this work, even though theoretically any
other state with a centroid located in a chaotic phase space region could be used. This makes τDW a natural
choice for a dynamical time scale, as long as the systems considered are sufficiently removed from the
singularity at γ= 4, as is done ahead. The corresponding time scales τDW of this work’s specific cases are
depicted in figure 3(b).

2.3. Control Hamiltonian
Given that a (presumably heteroclinic) control trajectory (⃗q(t), p⃗(t))c connecting the mean-field centers of
the initial and target state at time tmin, respectively, is identified, the initial goal is to guide the coherent state
along this solution. Due to the quartic polynomial in quadratures present in the interaction term of
equation (7), the initially localized state spreads exponentially in time as the dynamics are strongly chaotic in
the dynamical regimes of interest. This spreading is so rapid that without some control mechanism, a
quantum targeting is impossible beyond an exceedingly short logarithmic time scale in h̄eff. Figure 4
demonstrates this fast equilibration for the example of a coherent state initially centered on a density wave.
The full time evolution is provided in Animation 1 in the supplementary material.
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Figure 3. Properties of a density wave. A density wave initially centered around ϕ⃗=
√

2/h̄eff (1,0,1,0) exhibits partial or full
periodic population inversion with a period τDW as illustrated in (a). How the period depends on dynamical parameter γ,

equation (3), of the system is shown in (b). Except for γ= 4 where the period diverges since ϕ⃗ lies on a separatrix of the mean
field dimer, τDW provides a well defined time scale of the system. The time scale is marked for all the specific trajectories used
throughout the work.

It is theoretically possible to proceed as in [11] and apply an additional unitary transformation to the
system sufficiently often that is designed to counteract the spreading. However, this generally introduces
terms in the time evolution that are not particle number conserving and thus challenging, if not impossible,
with respect to experimental realization. There exists a much simpler approach developed in [12] based on
introducing a new time-dependent simulation control Hamiltonian, Ĥc, that is uniquely designed for some
particular targeting problem with fixed initial and final quadrature conditions; note that a minimal time
related to heteroclinic motion could be the desired goal or any specific time longer than that.

Consider Hamilton’s equations for each component using equation (7),

q̇j =
∂H (⃗q, p⃗)

∂pj

∣∣∣∣⃗
q(t),⃗p(t)

=

[
µ ′j + γ

(
q2j + p2j

2

)]
pj− pj+1− pj−1 ,

ṗj =−
∂H (⃗q, p⃗)

∂qj

∣∣∣∣⃗
q(t),⃗p(t)

=−

[
µ ′j + γ

(
q2j + p2j

2

)]
qj + qj+1 + qj−1 . (15)

Evaluated using the control trajectory, (⃗q(t), p⃗(t))c, the terms in large square parentheses can be replaced by
time-dependent values that are no longer functions of {qj,pj}. With that replacement, it is straightforward to
see that a control Hamiltonian can be created with the interaction term switched off given by

Hc (⃗q, p⃗, t) =−
L∑

j=1

(
qjqj+1 + pj+1pj

)
+

L∑
j=1

µj (t)

(
q2j + p2j

2

)
, (16)

which is in essence a harmonic oscillator with chemical potentials that are time-dependent functions of the
control trajectory’s site occupancies,

µj (t) = µ ′j + γ

(
q2j (t)+ p2j (t)

2

)
= µ ′j + γnj (t) . (17)

The control Hamiltonian makes use of the chemical potentials µj(t) as purely time-dependent functions
evaluated along the chosen control (heteroclinic) trajectory (⃗q(t), p⃗(t))c, which effectively replaces the
originally cubic terms in quadratures with time-dependent linear terms. In this way, the control trajectory
and only the control trajectory, (⃗q(t), p⃗(t))c is a solution of Hamilton’s equations for both Hamiltonians
H (⃗q, p⃗) andHc (⃗q, p⃗, t). In addition,Hc (⃗q, p⃗, t) having a quadratic form leads to the TWA being exact for its
quantized version,

Ĥc (t) =−
L∑

j=1

(
â†j âj+1 + â†j+1âj−µj (t) n̂j

)
, (18)
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Figure 4. Spreading of a localized coherent state in a Bose–Hubbard system. A minimum uncertainty coherent state (here for

illustration chosen to be h̄eff = 1/10), initially centered on the density wave ϕ⃗α =
√

2/h̄eff (1,0,1,0) (indicated as dot in the
upper panel) is propagated in the Bose–Hubbard system (γ ≃ 1.965) using the TWA. With the scaled dynamics that is used, the
mean-field corresponds to the phase space point q⃗α = (2,0,2,0) and p⃗α = (0,0,0,0), independent of h̄eff. The state, whose
volume is for t= 0 well contained in the 2σ-contour (white dashed circle), quickly spreads, already being far from its initial
Gaussian shape after one period of the density wave. At t= 4τDW the state is fully equilibrated.

and there is no longer any spreading in the neighborhood of (⃗q(t), p⃗(t))c, or for that matter, anywhere else.
Although, (⃗q(t), p⃗(t))c is an exponentially unstable solution ofH (⃗q, p⃗), it is a stable solution ofHc (⃗q, p⃗, t).

Up to this point there is a broad freedom in the choice of a particular chaotic Hamiltonian that may serve
as a black box to produce a desired control solution. The apparently natural choice of a Bose–Hubbard type
of system, however, points to a deeper connection between the dispersionless dynamics generated by
equation (18) and the precise form of the interaction (quartic) term in equation (7). In addition, this choice
is quite favorable from the point of view of a practical implementation, since among the infinity of nonlinear
systems that one might consider for producing a control trajectory, a key selection criteria is the desire to
have a minimal alteration of a realistic experimental set up. The Bose–Hubbard Hamiltionian, describing a
broad range of self-interacting bosonic systems, satisfies this condition thanks to the technical possibilities to
tune the interaction [50–52] and chemical potential parameters, and to implement equation (18).
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There is however another deep conceptual reason for the special connection between the control and
Bose–Hubbard Hamiltonians. It relies on the coherent representation of the time evolution operator for
Bose–Hubbard systems

K
(
ϕ⃗β , ϕ⃗α; t

)
=
〈
ϕ⃗β

∣∣∣e− i
h̄ Ĥt
∣∣∣ ϕ⃗α

〉
, (19)

with Ĥ given in equation (2), in terms of auxiliary fields

Ksc
(
ϕ⃗β , ϕ⃗α; t

)
=
∑
γ

Dγ

(
ϕ⃗α, ϕ⃗β , t

)
Z(v)

e
i
2

´ t
0 dsσ⃗γ(s)v

−1σ⃗γ(s)×Kσ⃗γ

(
ϕ⃗β , ϕ⃗α; t

)
(20)

valid in the limit of large mean occupations N≫ 1. Here Kσ⃗γ
(ϕ⃗β , ϕ⃗α; t) is the transition amplitude between

initial |ϕ⃗α⟩ and target |ϕ⃗α⟩ coherent states defined by the control Hamiltonian, equation (18), with control
field µ⃗(t) = σ⃗γ(t). As shown in appendix A, the total transition amplitude for the full interacting problem is

given as a coherent sum, weighted by the factors Dγ(ϕ⃗α,ϕ⃗β ,t)
Z(v) e

i
2

´ t
0 dsσ⃗γ(s)v

−1σ⃗γ(s), over the set of control fields

σ⃗γ(s) obtained by σγ,j(s) = ϕγ,j(s)ϕ∗γ,j(s) from the solutions of the mean field boundary problem ϕ⃗γ(s). This
representation leads to a natural interpretation of the control Hamiltonian as a contribution to the full
interacting problem, that is selected based on further physical considerations. One such physical
consideration, relevant for the approach discussed here, is the real character of the control fields. Since,
generically, the solutions of the mean field problem linking initial and target coherent states admit only
solutions with complexified quadratures and the corresponding complexified auxiliarly fields, one instead
looks for nearby states admiting one solution with real quadratures, making the control Hamiltonian
Hermitian.

Furthermore, by its very construction, the transition amplitude for a given auxiliary field is dispersionless
due to the quadratic form of the control Hamiltonian. Specifically, this linearity of the control evolution
Ĥc(t), implies that the coherent state |ϕ⃗(t)⟩coh (possibly number projected) centered on the mean-field
solution used to drive the system satisfies the time-dependent Schrödinger equation, i.e.

i
∂

∂t
|ϕ⃗(t)⟩coh = Ĥc (t) |ϕ⃗(t)⟩coh . (21)

The explicit proof is provided in appendix B. Given the simple form of equation (18), the actual realization
of the protocol requires switching off the interactions [50–52] and controlling the chemical potentials of each
individual site in a time-dependent fashion. Some aspects of the protocol robustness to imperfections are
addressed in section 3.2.

3. Coherent quantum targeting in 1D lattices

Here, a few representative example applications of the protocol on a 1D periodic lattice are presented.
Preparing states with well-defined phase relations between the condensates on different sites is covered in
section 3.1 and the creation of non-trivial periodic evolution in section 3.3. As it turns out, even though the
idea of placing quantum states on classical trajectories is semiclassical in nature, the control system is
harmonic and thus behaves purely classical. This implies that the method should work perfectly well for both
the large particle number limit, as well as in dilute quantum regime. However, in this treatment the small
shifts between initial and target quadrature centers to the initial and final points of the control trajectory,
(⃗q(t), p⃗(t))c, are not taken into account. The resulting effects as well as imperfections in making the residual
interactions vanish both introduce an h̄eff dependency to the fidelity of the protocol and are addressed in
section 3.2. Both the TWA and full quantum simulations of the time evolution are given.

3.1. Targeting
As discussed in section 2.1, the great advantage of using heteroclinic pathways of the chaotic mean-field limit
as guiding control trajectories is their exponential speed-up of connecting any two points in phase space
provided by ergodicity. In principle, any state of the form of equation (10) or (12) can be prepared by
targeting the corresponding mean-field starting from an initial field sharing the same energy and particle
number surfaces. This includes states where the condensates on each site carry well defined, non-trivial
phases [52]. As a proof of principle, the targeted many-body state is chosen to have the bosons occupying the
first excited momentum eigenstate on a four-site ring, which corresponds to the homogeneous mean-field
ϕ⃗β =

√
1/h̄eff(1, i,−1,−i) with π/2-phases between neighboring sites.

10
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Figure 5. Schematic of initial and target quantum state. Raising the unoccupied sites energetically by choosing µ⃗= (0,γ,0,γ)
puts the density wave, (a), and excited momentum eigenstate (as target), (b), on the same classical energy surface. This opens up
the possibility of finding a control trajectory, connecting both mean fields in quadrature phase space. The corresponding initial
coherent quantum state can be guided along the control trajectory into the target quantum state by driving the control system
with the associated time-dependent occupation numbers.

As already discussed, the protocol is initialized with a coherent state centered on a density wave
ϕ⃗α =

√
2/h̄eff(1,0,1,0). By choosing the chemical potential offset accordingly, i.e. µ⃗ ′ = (0,γ,0,γ), both

mean-fields share the same classical energy surface for every value of γ and can be connected with a transport
trajectory, see figure 5. Figure 6 shows a heteroclinic trajectory with a control time of less then five oscillations
of the density wave τDW (figure 3(b)), which is quite short. If greater precision is required, then ergodicity
and the nature of unstable and stable manifolds guarantees the existence of heteroclinic trajectories closer to
the initial and target mean-fields at the expense of a longer control time. The initial state |ϕ⃗α⟩coh then evolves
under the control Hamiltonian, equation (18), by driving the system with the time dependent chemical
potentials that are determined by the respective site occupations shown in the right panel of figure 6. The
time-dependent site chemical potentials follow using equation (17) and the definition of µ ′j given in the text
immediately after equation (6). A TWA simulation (quantum calculation) is used to calculate the
propagation of the state. Note that the TWA calculation exactly matches the quantum calculation due to the
quadratic nature of the control Hamiltonian, and they cannot be distinguished in this case.

Figure 7 shows the initial and final state of the protocol. The full time evolution is provided in Animation
2 of the supplementary material. In contrast to the spreading observed in figure 4, the coherent state keeps its
minimum uncertainty form throughout the entire propagation, successfully arriving close the target
mean-field. For completeness, a full quantum simulation of the time evolution is performed. It gives the
same results. Figure 6 shows that the expectation value of the occupations follow the classical mean-field
solution perfectly in the control system, whereas they almost immediately deviate when evolving in the
original interacting Bose–Hubbard system; see figure 4.

3.2. Protocol robustness
Three mechanisms that might potentially degrade the quality of a particular application of coherent
quantum targeting are: (i) the proximity of initial and target state centroids from initial and final conditions
of the control trajectory, respectively, (ii) the precision with which the interactions can be made to vanish,
and (iii) the faithfulness with which the time-dependencies of the set of {µj(t)}match the occupancies of the
control trajectory. These mechanisms are discussed below individually. Note that an analysis of the latter
item is presumably model dependent, and amongst other issues, might depend on the type of noise inherent
in creating the {µj(t)}. Nevertheless, the effects of uncorrelated (white) noise in time are considered as a
simple starting point.

3.2.1. Proximity
As mentioned at the end of section 2 and proved in appendix B, the specific quadratic nature of Ĥc

guarantees that a coherent state initially (exactly) centered on the control trajectory used to drive the system
follows this trajectory perfectly without any spreading, and satisfies the associated time-dependent
Schrödinger equation. In addition, any coherent state centered anywhere remains a coherent state for all
times, only they do not follow the control trajectory. In general however, as mentioned at the beginning of
this section, the initial and final conditions of any control trajectory, section 3.1, are slightly shifted from the
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Figure 6. Control Trajectory to target excited momentum eigenstate. The trajectory connecting the centroids of the initial density

wave ϕ⃗α =
√

2/h̄eff(1,0,1,0) (red dot) with the final target state ϕ⃗β =
√

1/h̄eff(1, i,−1,−i) (red cross) is shown for the
different sites in the left panel (γ ≃ 1.965). The respective 1σ-contours for the initial and target coherent state’s Wigner densities,
equation (11), are depicted centered on their respective quadrature centroids with h̄eff = 1 (black dashed circles ) and h̄eff = 1/4
(gray dashed circles). Generally, the area inside the circles shrinks proportionally to h̄eff. The time-dependent control chemical
potentials shown in the right panel are determined by the respective site occupations by equation (17) and the offsets of µ ′

j given
in the text in section 3.1. Initially, somewhat similar to the integrable behavior of the density wave, the chaotic nature of the
control trajectory quickly dominates and it reaches the target at t= 4.9τDW. Additionally, the expectation values of the
occupations are shown for the quantum propagation of the coherent state evolving under the original Bose–Hubbard
Hamiltonian (uncontrolled, grey dotted), which deviate rapidly from the classical solution. Under the control Hamiltonian
(controlled, black dotted) the expectation values shadow the control trajectory, as they must.

initial and desired target states centroids, respectively. Letting tc denote the time at which the control
(heteroclinic) trajectory arrives closest to the target point, the shifts can be expressed as the norms

δxinitial = ||⃗xα− x⃗(0) ||, δxtarget = ||⃗xβ − x⃗(tc) || , (22)

resulting in a non-perfect overlap between the target state |ϕ⃗β⟩coh and the actual time evolved final state

|ϕ⃗α (tc)⟩coh := exp

− i

h̄

tcˆ

0

dtĤc (t)

 |ϕ⃗α⟩coh . (23)

The shifts are minimized in the search for a control trajectory while simultaneously keeping the protocol
time tc near its minimum. Since this distance only has a meaning relative to the volume of the coherent state,
an h̄eff dependency gets introduced into the fidelity F of the control process. States with larger filling factors
and thus smaller volume are more affected by the shifts as shown in figure 8. Based on the knowledge of
δxinitial and δxtarget bounds can be derived for the fidelity of the protocol:

Fmin = exp−
(
δxinitial + δxtarget

)2
2h̄eff

, Fmax = exp−
(
δxinitial− δxtarget

)2
2h̄eff

. (24)
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Figure 7. Coherent targeting along chaotic control trajectory. A coherent state (here for illustration h̄eff = 1/10 was chosen) is

initialized centered on the density wave ϕ⃗α =
√

2/h̄eff(1,0,1,0) (white dot). The inital phase space point is connected to the

target ϕ⃗β =
√

1/h̄eff(1, i,−1,−i) (red cross) through a control trajectory found in the Bose–Hubbard mean-field limit
(indicated as blue line). The 2σ-curves of the initial and target state are represented with white dashed circles. A TWA simulation
shows that driving the control system with the occupations of the control trajectory results in the coherent state evolving along
the predesigned path, keeping its minimum uncertainty form. After the control time tc = 4.9τDW the propagated state lands well
inside the volume of the target state.

Figure 8. Fidelity of the targeting protocol. The protocol depends on the specific control trajectory used for targeting. The initial
and final distance from the particular trajectory to the centroids of the respective states introduce a implicit h̄eff dependence into
the fidelity. Upper and lower bounds depending on those distances are depicted. The exact fidelity (black curve) depends on the
distance of the final states centroid to the actual target state and can be obtained numerically. The results obtained from both
TWA and quantum simulations match the fidelity curve. Note that the fidelity would remain unity for all N if shift operators were
additionally used to translate the initial and final coherent states.

The exact overlap is given as

F =

∣∣∣∣∣∣coh⟨ϕ⃗β |e
− i

h̄

tć

0
dtĤc(t)

|ϕ⃗α⟩coh

∣∣∣∣∣∣
2

= exp− δx⃗2

2h̄eff
, (25)

where δx⃗ is the distance between the centroids of the target and final state. It could be derived using an
adapted version of Heller’s linearized wave packet dynamics [68], which would be rather involved due to the
dependencies on the stability matrix. Here, it is simpler to extract δx⃗ numerically. Interestingly, even though
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Figure 9. Effect of constant weak residual interactions. The trajectory no longer ends near the target and is no longer perfectly
stable, which distorts the contours of the Wigner transform. Shown for only the first site, the final point of the control trajectory
ends at the red cross, which is increasingly far from the target (orange cross) as ϵ increases. The spreading also increases with ϵ as
illustrated for the 1σ-contour of the propagated Wigner density for h̄eff = 1 (black) and h̄eff = 1/4 (gray). For very small ϵ
(= 0.01), both effects remain negligible. However for ϵ= 0.1, the control trajectory completely overshoots the target and there is
a strong deformation of the coherent state. Accounting for ϵ in the µj(t), the overshoot is corrected, however the spreading
remains, as shown in the most right panel. The different state contour areas are a result of the depicted 1σ-contour being only a
cut through a higher-dimensional object.

the control method is semiclassical in nature, the harmonic nature of the Hamiltonian causes the protocol to
have almost perfect fidelity in the dilute quantum limit and then fall off for states with larger filling factor,
i.e. inverse h̄eff.

3.2.2. Residual interactions
The second mechanism mentioned above that could potentially degrade the coherent quantum targeting is
related to switching off the on-site interactions. Despite the fact that there can be great experimental control
over interactions [50], imagine nevertheless that the strength of the interaction cannot be turned off
precisely, and there is a small perturbative residual interaction, which might also have some slow or weak
time dependence. Also, imagine that the residual strength can be measured or known by some means. This
would add a perturbative term to the control Hamiltonian, equation (18), as follows:

Ĥϵ
c (t) =−

L∑
j=1

(
â†j âj+1 + â†j+1âj−µj (t) n̂j

)
+

ϵ(t)

2

L∑
j=1

n̂j
(
n̂j− 1

)
. (26)

The effect of such residual interactions would be twofold: the interactions would again lead to a deformation
of the initially minimum uncertainty coherent states, and constructing the control Hamiltonian with
(⃗q(t), p⃗(t))c would result in missing the desired target. Both effects are illustrated in figure 9 for a constant
residual interaction ϵ(t) = ϵ, as well as the improvement using the appropriately modified {µj(t)}. If the
behavior of ϵ(t) is known, it is quite simple to take into account. Consider Hamiltonian equations, just as
before in equation (15), which were used to determine the {µj(t)}, except with the inclusion of the ϵ term.
Now resolve the equations as before, the result is the replacement,

µj (t) =⇒ µj (t)− ϵ(t) (27)

in equation (26). It suffices to subtract ϵ(t) from the {µj(t)} to counteract the over or undershooting of the
target.

If ϵ is not compensated in the {µj(t)}, the fidelity decay with ϵ shown in figure 10 is more significant as
h̄eff→ 0. This indicates that the dominant error source is the perturbed control trajectory not arriving at the
target. It follows from the above argument that a non-zero distance of the final state to the target state affects
more significantly the overlap of states with smaller volume (larger mean particle number). If correcting the
Ĥc by adjusting the driving by the replacement, equation (27), an overall improved robustness to the residual
interactions is obtained (see again figure 10). Moreover, notably, the h̄eff = 1/4 coherent state is less affected
than the h̄eff = 1 one. The remaining error source is the deformation of the state, which is less significant for
smaller volumes.

3.2.3. White noise
The final potential mechanism that might degrade the fidelity of the control protocol has to do with how
perfectly the µj(t) can be produced experimentally. As a simple modeling starting point, imagine that there is
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Figure 10. Partial compensation of constant residual interactions. For a constant ϵ(t) = ϵ, the fidelity of an uncompensated
protocol quickly decays. The h̄eff = 1/4 decays much faster than h̄eff = 1. The over or undershooting of the target is the dominant
difficulty. If the behavior of ϵ(t) is known, it can be accounted for following the replacement in equation (27). This leads to a
significant overall improvement of the fidelity, even favoring the smaller h̄eff case, due to the deformation being the remaining
error. Since TWA is no longer exact with the interaction term present, the overlaps have been calculated in a full quantum
simulation. The orange triangles mark the cases depicted in figure 9.

Figure 11. Final deviation of the target due to white noise. An RMS average is calculated over 50 noise realizations for the final
distance to the unperturbed trajectory. There is a linear dependency for low amplitudes due to the stability of the target protocol
and cancellation of random changes. For strong noise magnitude (dominant with respect to the control µj(t)), the final point is
random and the distance is bounded by the phase space diameter. The errorbars display the run-to-run standard variance.

a small amount of white (uncorrelated) noise generated in the µj(t). Consider adding to each individual µj(t)
white noise (uncorrelated over time and site index) of some given root mean square (RMS) magnitude. This
changes the mean field trajectory and its endpoint differs from the ideal. As a function of the white noise
strength (i.e. the RMS of a white noise realization), the RMS distance δRMS between noisy and ideal trajectory
endpoints are calculated for 50 realizations. The results are shown in figure 11.

It turns out that the RMS deviation depends linearly on the strength of the white noise up to a level
beyond which it saturates. The control trajectory is a stable solution and the perturbations are random with a
vanishing mean. This gives a perturbed trajectory that stays close to the ideal. As the time evolution is
integrated, there are significant cancellations of the uncorrelated deviations. The trajectory with noise only
slowly diffuses away from the ideal.

For perturbations comparable to the phase space size, i.e. occupations (∼ 1/h̄), the actual control fields
µj(t) are more or less negligible and the motion is random, but nevertheless the deviation to the target point
is bounded by the phase space size. Therefore, the curve saturates for strong enough white noise.
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Figure 12. Symmetric periodic trajectory. For γ= 2.0607 there is a periodic mean-field solution very close to the density wave
that is symmetric for all even and odd sites. After three periods of the occupations (or three driving periods) the solution returns
to its original phase.

3.3. Stabilizing periodic trajectories
Nearly forty years ago, the concept of ‘quantum scarring of eigenstates’ was introduced by Heller [69]. He
argued for and observed excess intensity in the neighborhood of short unstable periodic trajectories in the
quantum eigenstates of a strongly chaotic dynamical system. The critical point was that there were
expectations that the eigenstates would behave similarly to random wave functions subject only to energy
surface constraints [70–73], i.e. δ(E−H)must somehow be respected. Furthermore, there were quantum
ergodic theorems regarding equidistribution and expectation values of smooth operators giving classical
values for nearly all eigenstates [74]. The excess intensity observed can be considered a weak form of
dynamical localization, and yet somehow must be consistent with the mathematical ergodic theorems, which
is a key element of the surprise of scarring’s existence.

In the many-body context, the Eigenstate Thermalization Hypothesis is the closest analog of the
quantum ergodicity discussed above [75, 76]. Unexpected deviations from this hypothesis in certain cases
might therefore provide the notion of a many-body quantum scarring analogous to Heller’s quantum
scarring. Experimental effects seen in a 51-atom Rydberg chain, and recently even in tilted Bose–Hubbard
systems, were introduced as many-body scarring [51, 77–79], although it is not necessarily clear that it is
conceptually the same as in the original context. In fact, an emergent local regularity of the dynamics, at least
on short to medium time scales, may underlie this many-body scarring phenomenon [80]. Thus, in some
cases many-body quantum scarring may be a result of at least some partial local integrable or near-integrable
dynamics. Nevertheless, there exists at least one example in the many-body context in which the explicit
connection to unstable periodic mean-field solutions has been made [81]. With the keen current interest in
many-body periodic or partially periodic dynamics [82, 83], it is worth looking at how optimal quantum
coherent control can be utilized to stabilize periodic dynamics in a many-body system. The method is
applied to simpler symmetric and much more complicated asymmetric unstable trajectories next.

3.3.1. Symmetric perodic mean-field control trajectory
In section 2.2.4, it is mentioned that the density wave exhibits periodic population inversion. This does not
constitute a periodic trajectory unless the phase is also periodic at the same time. It turns out that there are
truly periodic trajectories very close to the density wave initial condition for certain values of γ. One of these
values is selected and illustrated in figure 12. For each cycle of population inversion, the phase advances by
2π/3, which after the third cycle completes the periodic trajectory. Note the simple appearance, similar to a
Lissajous figure, of the quadrature variables for the trajectory. In essence, the initially empty site is π/2 out of
phase with the occupied site. There is an Animation 3 in the supplementary material illustrating the
continuous time evolution.

For the same reasons that the fidelity of the control protocol is not perfect in figure 8, i.e. the trajectory
initial conditions do not perfectly match the initial state centroids, the achievement of perfect periodicity
degrades with increasing time and decreasing h̄eff. This is illustrated in figure 13 for the two cases
h̄eff = 1,1/64 up to three periods of the periodic motion. The tall peaks indicate the initial state is recurring
at integer multiples of the periodic control trajectory with the h̄eff = 1 case falling off slowly with increased

16



New J. Phys. 26 (2024) 073002 L Beringer et al

Figure 13. Quantum recurrences in the controlled system. When propagated in the uncontrolled system, no recurrences appear.
For h̄eff = 1, the recurrences are almost perfect due to the large size of the state in phase space. In addition, smaller side peaks are
visible because the volume is so large. Those disappear for the smaller inherent volume for the h̄eff = 1/64 case, together with
more imperfect recurrences. Naturally, the smaller volume of the h̄eff = 1/64 case also generates a sharper peak.

Figure 14. Asymmetric periodic trajectory. There exist also a dense set of highly nontrivial periodic mean-field trajectories, which
could serve as control trajectories. Here, a trajectory is shown for γ= 1.3. Its evolution is extremely close to a periodic mean-field
trajectory. Due to technical complications, the exact periodic trajectory’s initial conditions are not sought to greater precision,
and in any case, the density wave is not perfectly centered on the control trajectory either.

time, and the h̄eff = 1/64 case falling off much quicker. Perfect recurrences would be restored by an initial
shift of the initial state centroids to the initial conditions of the periodic mean-field trajectory.

3.3.2. Asymmetric periodic mean-field control trajectory
Although more challenging, it is possible to locate periodic mean-field trajectories with far less symmetry
that are in the close neighborhood of a density wave. An example is shown in figure 14. In either the
quadrature variables, which do not even faintly resemble a Lissajous figure, or even just the occupancies, the
control trajectory follows a highly nontrivial evolution before it returns. The complete time evolution can
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Figure 15. Two possible schematic mappings of 2D mean-field dynamics to a 1D ring. By initializing the condensates on a 2D
periodic lattice in the arrangement shown in panels (a) or (c), the mean-field dynamics of each lattice site can be mapped to the
dynamics of the corresponding site on a 1D ring, (b), with double the hopping parameter, i.e. J1D = 2J2D. In greater detail, a 1D

mean-field solution ϕ⃗1D = (ϕ1,ϕ2,ϕ3,ϕ4)) with a 1D Hamiltonian H1D(2J,U, µ⃗/2) is mapped via the patterns (a) or (c) to a 2D
mean-field solution with a 2D Hamiltonian H2D(J,U, µ⃗).

again be found for this case as Animation 4 in the supplementary material. The quality of the recurrence for
this longer, more complicated trajectory, is not quite as good as for the symmetric trajectory in the previous
subsection.

4. Coherent quantum targeting in 2D lattices

A considerable utility of cold atom optical lattices lies in their capacity to be created in any number of
dimensions. A priori, the control protocol is not limited to 1D systems, however higher-dimensional systems
lead to exponentially expanding search spaces for heteroclinic trajectories. Thus, to target arbitrary states
requires sophisticated search algorithms [61, 84], and even so it may become effectively impossible.
Nevertheless, there do exist certain classes of symmetric, periodic lattice configurations for which it is
possible to map the mean-field dynamics to that of 1D periodic rings [62]. In this way, the protocol can be
reduced to identifying the corresponding trajectory in the lower-dimensional space, which renders the search
feasible. Here, 2D lattice examples are treated in which the mean-field dynamics are explicitly mapped to that
of a 1D ring, reducing the problem again to finding control trajectories in a numerically accessible search
space.

There is more than one way to generate an appropriate mapping for these purposes. For the one relied on
below, the sites are mapped into higher-dimensional lattices such that the nearest-neighbor associations are
preserved. There is a change in nearest-neighbor multiplicity with increasing dimension that requires a
renormalization of the hopping parameter, which once taken into account generates a dynamics in the larger
lattice that appears as multiple copies of the 1D ring used in the mapping [62]. As long as the initial and
target states respect the implied discrete symmetries, the optimal coherent quantum targeting in
higher-dimensional lattices reduces to again identifying optimal control trajectories in the 1D ring.

Following this particular prescription, two possible lattice arrangements are shown in figure 15, that
allow for the dynamics of a periodic 4× 4 lattice to be mapped onto the dynamics of a four-site ring. In fact,
the mappings work for any 4n× 4m 2D lattice with periodic boundary conditions (including n→∞). Here
the mean-field dynamics reduce to the four-site ring with double the hopping parameter J1D = 2J2D [62].
The two examples given are a lattice consisting of four-site ring building blocks or of shifted stripes,
respectively. By initializing the lattice in one of those symmetric ways, it is possible to guide a many-body
state along a control trajectory by driving the 2D-lattice system with its mean-field occupations, µR⃗(t),
corresponding to those of the reduced 1D system, µ⃗(t). The 2D-lattice control Hamiltonian,

Ĥ2D
c (t) =−

∑
⟨R⃗,⃗R ′⟩

(
â†
R⃗
âR⃗ ′ + h.c.

)
+
∑
R⃗

µR⃗ (t) n̂R⃗, (28)

is analogous to the 1D case after accounting for the doubled number of neighboring sites in the chemical
potentials.

The two target configurations shown in figure 16 result from the mappings of figure 15 applied to the
1D-ring control trajectory of section 3.1. The initial condition consists of alternating occupied and
unoccupied sites satisfying either mapping. The full evolutions are shown in the supplementary material,
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Figure 16. Targeting in 2D lattices. Mapping the mean-field dynamics of a symmetrically arranged 2D lattice to a four-site ring
allows for targeting certain classes of states by identifying their respective lower-dimensional control trajectory. By initializing the
lattice using the arrangements presented in figure 15(a) or 15(c) with the initial conditions of the control trajectories previously
discussed and propagating the mean-field dynamics, it is possible to prepare the homogeneous lattice states shown in (a) and (b),
respectively. The occupation of each site is encoded in the arrow length and the phases in the angle of the corresponding arrows
read clockwise from the right horizontal.

Animation 5 and Animation 6, respectively, where the sites evolve according to the symmetry of the
mappings. This way it is possible, for example, to target the homogeneous lattice state where the respective
condensate phases form a vortex structure as shown in figure 16(a) or a shifted stripe structure as shown in
figure 16(b).

Applying the same logic it is possible to also create periodic many-body states on a 2D lattice by for
example using the periodic trajectories discussed in section 3.3. The entire time evolution is again presented
in the supplementary material, Animation 7 and Animation 8, respectively. Naturally there also exist
multiple mappings that reduce the dynamics of a 3D lattice to that of a four-site ring with adjusted hopping
parameter J1D = 3J3D.

5. Conclusion

The presence of chaos poses fundamental challenges for controlling the evolution of a classical dynamical
system, nevertheless it is long known that it is possible to convert the inherent difficulties caused by
instability and ergodicity into a resource [4]. Recently, it was shown that with respect to quantum systems, an
additional requirement is needed, i.e. the suppression of quantum state spreading [11]. Done originally in a
Schrödinger or single particle context, a feasible extension into the many-body domain, here for ultracold
atoms in an optical lattice, requires the identification of a time-dependent control Hamiltonian, and in this
way build a quantum simulator controlling many-body quantum chaos.

The extension of chaotic classical targeting to coherent quantum targeting is facilitated through the use of
semiclassical methods in which trajectories in the mean-field/classical limit and their stability analysis
provide the basis for determining the necessary perturbations or time-dependent modifications of the
system. The quadrature phase space formulation of a many-body system of ultracold bosons results in a
mean field limit, i.e. large filling factor, of ordinary Hamiltonian dynamics. Thus, the adaptation to a
many-body system parallels closely the prior work in a Schrödinger dynamics context. In particular, the same
class of trajectories, heteroclinic ones, provides the time-dependent chemical potentials that determine the
control Hamiltonian.

As in [11, 12], the protocol is designed for guiding localized quantum states. All of the results are shown
for minimum uncertainty coherent states, but they apply immediately to the wider and important class that
includes number projected coherent states. To control the spreading of the many-body state a control system
is introduced that is essentially a time-dependent harmonic oscillator driven with the on-site occupations
along the specific control trajectory. In practice this means that interactions between the bosons is turned off
in an experiment, which is something that in optical lattice systems can usually be achieved to high precision,
e.g. using Feshbach resonances as a basis for one possible method. Together with the fact that the protocol
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reduces to controlling the chemical potentials of the individual sites in a smooth, time-dependent fashion we
believe this protocol to be suitable for practical experimental implementation.

Due to the harmonic nature of the system and the U(1) symmetry of the dynamics any (number
projected) coherent state placed on the control trajectory used to drive the Hamiltonian satisfies the time
evolution of the system exactly. This means that the protocol provides a tool to propagate a broad range of
states from arbitrary initial and target points in quadratures given that the underlying dynamics is
sufficiently ergodic, opening up new possibilities in state preparation for optical lattices. An example is
shown of a relatively short trajectory that can be used to target a homegeneous lattice state with well defined,
non-trivial phases between the condensates.

There are a few aspects of quantum targeting that may impact any assessment of how robust it can be
against imperfections. First, the ideal would be to make the tiny shifts of the initial state centroids to the
initial conditions of the optimal control (heteroclinic) trajectories. Likewise, the final state centroids on those
trajectory endpoints would be slightly shifted to the target state’s values. In fact, the initial shift is the single
most important element in classical targeting, whereas suppressing the state spreading is the critical element
in the quantum case. By virtue of the uncertainty principle, the optimal trajectory is already well represented
inside the quantum state’s Wigner transform. By not performing the shifts, a decrease of the fidelity is
introduced into the protocol, which gets worse as the filling factor increases. This is observed numerically by
calculating the overlap between the propagated and desired target state.

A second imperfection would be due to the inability to turn off the interactions exactly, which left
uncompensated quickly breaks down the control protocol. Although, it is anticipated that the on-site
interaction strength can, in many circumstances, be controlled experimentally to high precision, if any
non-vanishing residual interaction can be characterized, then a simple rectification expressed in
equation (27) solves the over or undershooting effect, which would be the main contributor to a fidelity
decay. The local deformation of the initially circular Wigner density contours at the target state remains, but
improves with increasing filling factor. A third issue, that of imperfect control over the {µj(t)}, may require
appropriate modeling of noise or other imperfections in a particular physical setup, which is left for future
consideration. However, in the case of white noise (uncorrelated fluctuations in the individual chemical
potentials over time), the strength of this type of noise has a linear dependence on the distance deviation in
the targeting protocol and the control protocol is not particularly sensitive.

For the examples given, it is necessary to introduce chemical potential offsets in order to place an initial
state and a target state on the same energy surface such that chaotic trajectories can provide transport paths
between them. If it were desired not to have these offsets at the end, although not discussed here, it would be
possible to consider say adiabatically turning off the offsets and seeking some modified chaotic transport
path between the initial and target states. For example, the momentum target state of section 3 would
become a fixed state of the system without interactions and chemical potential offsets, which might be a
desired goal as well. Additional time-dependence in the chemical potential offsets does not add much, if any,
additional complications with respect to solving Hamilton’s equations, but it adds an extra dimension to the
complexity of the search for an optimal control trajectory. This issue of possible unwanted final chemical
potential offsets does not arise if the initial and targets states are identical, as for the periodic trajectory cases,
as they are automatically on the same energy surface without offsets.

The presented 1D examples are of greater utility and versatility than they might appear at first sight. By
mapping the sites into higher-dimensional lattices such that the nearest-neighbor associations are preserved,
it is possible to control much larger and higher-dimensional lattices without suffering from the exponential
growth of search volumes in phase space. For initial and target states that respect certain symmetric lattice
configurations, optimal coherent quantum targeting in higher-dimensional lattices is no more complicated
than finding control trajectories in the 1D ring to which the mean-field dynamics can be mapped. On the
other hand, for arbitrary lattice configurations in high dimensions, a systematic search for control
trajectories becomes exponentially challenging with system size.

There are a number of interesting directions that future optimal coherent quantum targeting research
might follow from the technical/pratical side to more general extensions. This includes extending the
methods to spin chains and fermionic systems, which present several new challenges. It might be
advantageous to replace the current methods of identifying control trajectories with machine learning
methods. Additionally, more work is needed to understand how the exponential speed up of heteroclinic
pathways relates to quantum speed limits. Finally, a direction worth mentioning is the investigation of
many-body interference using the control protocol.
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Appendix A. A formulation of quantum control from the perspective of auxiliary fields

The purpose of this appendix is to provide a picture of the control protocol discussed in the main text from
the point of view of the semiclassical approximation implemented within the auxiliary field formulation of
interacting field theories. The auxiliary field method, see for example [86], is an exact representation of the
path integral form of the propagator where interactions are accounted for by the response of the system to all
possible time-dependent external potentials. It is based on the functional identity

ˆ
D [x]

Z(M)
e

i
2

´ t
0 ds
´ t
0 ds

′x(s)M(s,s ′)x(s ′)ei
´ t
0 dsx(s)y(s) = e

i
2

´ t
0 ds
´ t
0 ds

′y(s)(M−1)(s,s ′)y(s ′) (A.1)

also known in the field theory literature as the Hubbard–Stratanovich (HS) transformation. HereM(s, s ′) is a
kernel with a functional inverse defined by

ˆ t

0
ds ′M(s, s ′)

(
M−1

)
(s ′, s ′ ′) = δ (s− s ′ ′) , (A.2)

and Z(M) is a normalization constant defined by comparing both sides of equation (A.1) with y(s) = 0. The
generalization for multi-component fields, (⃗x(s), y⃗(s)), is straightforward by also introducing a matrix
structureM(s, s ′)→M(s, s ′).

To apply the HS transformation to the case of interest here, start with the coherent state form of the
propagator for interacting bosonic fields,

K
(
ϕ⃗β , ϕ⃗α; t

)
:= ⟨ϕ⃗β |e−

i
h̄ Ĥt|ϕ⃗α⟩ (A.3)

with Ĥ given by equation (2). This propagator admits a path integral representation, found using standard
techniques generically given by

K
(
ϕ⃗β , ϕ⃗α; t

)
=

ˆ
D
[
ϕ⃗, ϕ⃗∗

]
ei(Rfree[ϕ⃗,ϕ⃗∗]+Rint[ϕ⃗,ϕ⃗∗]), (A.4)

and defined by the non-interacting (free) Rfree and interacting Rint terms in the action. As a rule, the free term
contains functionals that are at most quadratic in the complex fields ϕj(s). Interaction terms, for the case of
particular interest here, are in turn given as linear combinations of terms bilinear in the local occupations

V̂int =
1

2

∑
i,j

vijn̂i
(
n̂j− δij

)
with n̂i = â†i âi, and vij = vji. (A.5)

Therefore, neglecting issues of ordering in defining the classical action functional (see [87, 88] for details)

Rint

[
ϕ⃗, ϕ⃗∗

]
=

1

2

ˆ t

0
ds
∑
i,j

vij|ϕi (s) |2
(
|ϕj (s) |2− δij

)
. (A.6)

As is well known, the reason why the path integral, equation (A.4), cannot be evaluated in closed form is
that the interaction term is not of Gaussian type. However, by means of the HS transformation, the
fourth-order terms, equation (A.6), can be decoupled in favor of the (vector) real auxiliary field σ⃗(s)
obtaining

K
(
ϕ⃗β , ϕ⃗α; t

)
=

ˆ
D [σ⃗]

Z(v)
e

i
2

´ t
0 dsσ⃗(s)v

−1σ⃗(s)Kσ⃗

(
ϕ⃗β , ϕ⃗α; t

)
(A.7)
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where the reduced propagator

Kσ⃗

(
ϕ⃗β , ϕ⃗α; t

)
=

ˆ
D
[
ϕ⃗, ϕ⃗∗

]
ei(Rfree[ϕ⃗,ϕ⃗∗]+

´ t
0 ds

∑
j σj(s)nj(s)), with nj (s) = |ϕj (s) |2, (A.8)

now has the key property of representing a free field evolving under the time-dependent external field σj(s)
coupled at the jth site to the local occupations, i.e. a time-dependent local chemical potential.

Next, Gaussian path integrals, even with time-dependent parameters as in equation (A.8) preventing us
to find their solution in closed form, can be exactly expressed by means of the solution of the corresponding
classical (mean-field) problem, which in this case is unique. In other words,

Kσ⃗(ϕ⃗β , ϕ⃗α; t) = A(t, [σ⃗])ei(R
mf
free(ϕ⃗β ,ϕ⃗α,[σ⃗])+

´ t
0 ds

∑
j σj(s)n

mf
j (s,ϕ⃗β ,ϕ⃗α,[σ⃗]))) (A.9)

where Rmf,nmf
j are now functionals of the auxiliary fields σ⃗, as indicated by [.], and functions of t, ϕ⃗β , ϕ⃗α.

These objects are obtained by

Rmf
free

(
ϕ⃗β , ϕ⃗α, t, [σ⃗]

)
= Rfree

[
ϕ⃗(s) = ϕ⃗mf

(
s, ϕ⃗β , ϕ⃗α, t, [σ⃗]

)
, ϕ⃗∗ (s) = ϕ⃗mf

(
s, ϕ⃗β , ϕ⃗α, t, [σ⃗]

)∗]
(A.10)

and

nmf
j

(
s, ϕ⃗β , ϕ⃗α, t, [σ⃗]

)
=
∣∣∣ϕmf

j

(
s, ϕ⃗β , ϕ⃗α, t, [σ⃗]

)∣∣∣2 (A.11)

from the unique solution ϕ⃗mf(s, ϕ⃗β , ϕ⃗α, t, [σ⃗]) of the Euler–Lagrange (mean field) equations

δ

δϕ⃗∗

(
Rfree

[
ϕ⃗, ϕ⃗∗

]
+

ˆ t

0
ds
∑
α

σα (s)nα (s)

)
ϕ⃗=ϕ⃗mf

= 0 (A.12)

satisfying

ϕ⃗(s= 0) = ϕ⃗α and ϕ⃗(s= t) = ϕ⃗β . (A.13)

Finally, the van Vleck–Morette determinant A(t, [σ⃗]) can be shown to be independent of the boundary
conditions ϕ⃗β , ϕ⃗α for quadratic actions, and its precise form can be found in [89].

It is instructive to consider the specific situation for a system described by the Bose–Hubbard
Hamiltonian. In this case, besides the interaction term, equation (A.5), the action functional contains a free
term of the form

Rfree

[
ϕ⃗, ϕ⃗∗

]
=

ˆ t

0
ds
∑
j

Im

(
ϕj (s)

dϕ∗j (s)

ds

)
+

ˆ t

0
ds
∑
i,j

hijϕ
∗
i (s)ϕj (s) (A.14)

and therefore the mean field solutions that fully determine the reduced propagator for a given auxiliary field
σ⃗(s) are easily obtained from the variation in equation (A.12) to be

i
d

ds
zi (s) =

∑
j

hijzj (s)+σi (s)zi (s) , (A.15)

namely the mean field equations for a bosonic free field under a time-dependent chemical potential, as
expected.

Up to here, the original interacting problem is transformed into a coherent weighted sum of reduced
propagators over all possible time-dependent auxiliary fields, each of them representing linear evolution,

K(ϕ⃗β , ϕ⃗α; t) =

ˆ
D [σ⃗]

Z(v)
e

i
2

´ t
0 dsσ⃗(s)v

−1σ⃗(s)A(t, [σ⃗])× ei(R
mf
free(ϕ⃗β ,ϕ⃗α,t,[σ⃗])+

´ t
0 ds

∑
j σj(s)n

mf
j (s,ϕ⃗β ,ϕ⃗α,t,[σ⃗]))), (A.16)

which is an exact expression. It is at this stage that the semiclassical approximation, essential for the
construction of the control protocol, enters. Evaluating the integral over auxiliary fields in a saddle point
approximation, that in turn requires the assumption that the prefactors A(t, [σ]) are smooth, the full
propagator turns out to be dominated by the configurations, σ⃗ = σ⃗γ , satisfying the corresponding vanishing
of the first variation, namely

δ

δσ⃗

1

2

ˆ t

0
dsσ⃗ (s)v−1σ⃗ (s)+Rmf

free

(
ϕ⃗β , ϕ⃗α, t, [σ⃗]

)
+

ˆ t

0
ds
∑
j

σj (s)n
mf
j

(
s, ϕ⃗β , ϕ⃗α, t, [σ⃗]

)∣∣∣∣∣∣
σ⃗γ

= 0. (A.17)
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Using the implicit dependence of Rmf
free and nmf

α on the auxiliary field as given in equations (A.10) and (A.11)
and the mean-field equations, equation (A.12), this gives

v−1σ⃗γ (s) = n⃗mf
(
s, ϕ⃗β , ϕ⃗α, t, [σ⃗γ ]

)
(A.18)

or

σγ,i (s) =
∑
j

vijn
mf
j

(
s, ϕ⃗β , ϕ⃗α, t, [σ⃗γ ]

)
(A.19)

as the set of equations that determines the dominant auxiliary fields σ⃗γ . The extreme nonlinearity of this
system resulting from the role of σ⃗ as time-dependent contributions to the couplings in the linear
equations (A.12) and (A.15) makes it natural to expect a countable, but large, number of solutions.

The implicit problem in equation (A.19) can be made more familiar by invoking the dependence of the
mean field occupations nmf

α on σ⃗ as given precisely by the mean-field equations (A.12). Substitution of
equation (A.19) into the equations obtained from equation (A.12) then results in the explicit solution

σγ,i (s) =
∑
j

vij|ϕclas
γ,j |2 (A.20)

where ϕ⃗ class
γ solves the nonlinear equation

i
d

ds
ϕi (s) =

∑
j

hijϕj (s)+
∑
j

vijni (s)ϕj (s) (A.21)

for the Bose–Hubbard type of action. Note that the fields σ⃗γ inherit the boundary conditions,
equation (A.13), finally expressing the equivalence of the semiclassical approximation at the mean field level
with a nonlinear classical field equation. This is reassuring as it is expected that the introduction of auxiliary
fields at an intermediate step should not change the classical limit of the original interacting problem,
precisely given by equation (A.21).

The importance of this representation is, however, clear upon return to the semiclassical evaluation of the
exact integral in equation (A.16), given now within the saddle point approximation by

Ksc(ϕ⃗β , ϕ⃗α; t) =
∑
γ

Dγ(ϕ⃗β , ϕ⃗α, t)

Z(v)
e

i
2

´ t
0 dsσ⃗(s)v

−1σ⃗(s)
∣∣∣
σ⃗=σ⃗γ

× A(t, [σ⃗])ei(R
mf
free(ϕ⃗β ,ϕ⃗α,t,[σ⃗])+

´ t
0 ds

∑
j σj(s)n

mf
j (s,ϕ⃗β ,ϕ⃗α,t,[σ⃗])))

∣∣∣
σ⃗=σ⃗γ

, (A.22)

where the prefactorsDγ result from the usual integration over Gaussian fluctuations around the classical
configurations σ⃗γ . The second line of equation (A.22) contains the reduced propagator for the quadratic
action, equations (A.8) and (A.9) in its semiclassical (but exact) form. Thus,

Ksc
(
ϕ⃗β , ϕ⃗α; t

)
=
∑
γ

Dγ

(
ϕ⃗β , ϕ⃗α, t

)
Z(v)

e
i
2

´ t
0 dsσ⃗γ(s)v

−1σ⃗γ(s)×Kσ⃗γ

(
ϕ⃗β , ϕ⃗α; t

)
(A.23)

where Kσ⃗γ
is the exact coherent state propagator for the γth classical auxiliary field that, given the quadratic

nature of the corresponding action, acts invariantly on the initial coherent state, i.e. it transports ϕ⃗α without
dispersion along the classical phase space trajectory.

Equation (A.23) is the final result of this analysis. It expresses the semiclassical approximation to the
coherent state propagator of the interacting theory as a coherent sum over a countable set of contributions.
Each term in the sum represents the exact and dispersionless quantum propagation of the initial coherent
state under auxiliary fields playing the role of time-dependent chemical potentials that are in turn
determined by the solution of the interacting problem. In the language of the main text, the full interacting
propagator is given as a sum over all possible classical (mean field) control protocols. The control protocol
proposed in the main text amounts then to choosing, based on minimal time t to dynamically connect ϕ⃗α

with ϕ⃗β or other physical considerations, a single one of the auxiliary fields.
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Appendix B. Coherent time-evolution in control systems

A proof is outlined showing that a coherent state |ϕ⃗(t)⟩coh centered on any mean-field solution ϕ⃗(t) of the
control Hamiltonian equation (18) solves the controlled quantum time evolution

|ϕ⃗(t)⟩coh = Ûc (t) |ϕ⃗0⟩coh = T̂ exp

{
−i
ˆ t

0
Ĥc (s)ds

}
|ϕ⃗0⟩coh,

where ϕ⃗0 = ϕ⃗(0). More explicitly, the coherent state is shown to be a solution to the corresponding
Schrödinger equation, i.e.

i
d

dt
|ϕ⃗(t)⟩coh = Ĥc (t) |ϕ⃗(t)⟩coh ,

which is equivalent to the previous equation. To this end, recall that the classical control Hamiltonian,
equation (16), can also be written in terms of complex mean-fields

Hc

(
ϕ⃗, ϕ⃗∗, t

)
=−

L∑
j=1

{
ϕ∗j+1 +ϕ∗j−1−µj (t)ϕ

∗
j

}
ϕj,

that evolve according to the equations motion

iϕ̇j =
∂Hc

∂ϕ∗j
=−

{
ϕj+1 +ϕj−1−µj (t)ϕj

}
iϕ̇∗j =−

∂Hc

∂ϕj
=
{
ϕ∗j+1 +ϕ∗j−1−µj (t)ϕ

∗
j

}
.

Start by assuming that there is a coherent state solution and look for a contradiction or consistency.
Taking the left hand side time derivative of the coherent state reduces to taking the derivative of the
mean-field since the mean particle number conservation along any classical solution implies
∥ϕ⃗∥2 = N= const.

i
d

dt
|ϕ⃗(t)⟩coh = ie−∥ϕ⃗∥

2/2eϕ⃗(t)·
ˆ⃗a†

 L∑
j=1

ϕ̇j (t) â
†
j

 |0⟩.
Next use the classical mean-field equations of motion from above

i
d

dt
|ϕ⃗(t)⟩coh =−ie−∥ϕ⃗∥

2/2eϕ⃗(t)·
ˆ⃗a†

L∑
j=1

({
ϕj+1 (t)+ϕj−1 (t)−µj (t)ϕj (t)

}
â†j

)
|0⟩

=−
L∑

j=1

({
ϕj+1 (t)+ϕj−1 (t)−µj (t)ϕj (t)

}
â†j

)
|ϕ⃗(t)⟩coh.

With respect to the right hand side, use the definition given in equation (9) of a coherent state being an
eigenstate of the annihilation operator to obtain

Ĥc (t) |ϕ⃗(t)⟩coh =−
L∑

j=1

({
â†j+1 + â†j−1 +µj (t) â

†
j

}
âj
)
|ϕ⃗(t)⟩coh

=−
L∑

j=1

(
â†j
{
ϕj+1 (t)+ϕj−1 (t)+µj (t)ϕj (t)

})
|ϕ⃗(t)⟩coh,

which matches exactly the expression coming from the left hand side.

Remark 1. The proof for number projected states is analogous using the property

âj|ϕ⃗(t)⟩Nproj = ϕj|ϕ⃗(t)⟩N−1proj .

Remark 2. The control trajectory used to drive the chemical potentials
{
µj(t)

}
is a special case since it is a

solution to both the classical equations of motion of the control system, as well as the Bose–Hubbard mean-
field limit.With that information, the above proof implies that a coherent state initially centered on the control
trajectory arrives at the end of the trajectory with perfect fidelity.
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Remark 3. For any specified control Hamiltonian of the form of equation (18), recalling the equation for
calculating the stability matrix, every initial mean-field condition or trajectory leads to the exact same time-
dependent stability matrix. Thus, all trajectories have to rotate around the control trajectory and the stability
matrix solution is a time-dependent orthogonal matrix. This implies that for a coherent state initially centered
off the control trajectory by ||δx⃗init||, this distance stays constant. By using the properties of the stabilitymatrix,
and Heller’s linearized wave packet dynamics [68], it would be possible to provide an analytical formula for
the fidelity, for example shown in figure 8 based solely on the knowledge of the initial state and the control
trajectory.
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[15] Heisenberg W 1927 Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik Z. Phys. 43 172–98
[16] Wigner E P 1932 On the quantum correction for thermodynamic equilibrium Phys. Rev. 40 749–59
[17] Johnson T H, Clark S R and Jaksch D 2014 What is a quantum simulator EPJ Quantum Technol. 1 10
[18] Gersch H A and Knollman G C 1963 Quantum cell model for bosons Phys. Rev. 129 959–67
[19] Jaksch D, Bruder C, Cirac J I, Gardiner C W and Zoller P 1998 Cold bosonic atoms in optical lattices Phys. Rev. Lett. 81 3108–11
[20] Tannor D J and Rice S A 1985 Control of selectivity of chemical reaction via control of wave packet evolution J. Chem. Phys.

83 5013–8
[21] Brumer P and Shapiro M 1986 Control of unimolecular reactions using coherent light Chem. Phys. Lett. 126 541–6
[22] Judson R S and Rabitz H 1992 Teaching lasers to control molecules Phys. Rev. Lett. 68 1500–3
[23] Warren W S, Rabitz H and Dahleh M 1993 Coherent control of quantum dynamics: the dream is alive Science 259 1581–9
[24] Peirce A P, Dahleh M A and Rabitz H 1988 Optimal control of quantum-mechanical systems: existence, numerical approximation

and applications Phys. Rev. A 37 4950–64
[25] Kosloff R, Rice S A, Gaspard P and Tannor D J 1989 Wavepacket dancing: Achieving chemical selectivity by shaping light pulses

Chem. Phys. 139 201–20
[26] Doria P, Calarco T and Montangero S 2011 Optimal control technique for many-body quantum dynamics Phys. Rev. Lett.

106 190501
[27] van Frank S et al 2016 Optimal control of complex atomic quantum systems Sci. Rep. 6 34187
[28] Dong D and Petersen I 2010 Quantum control theory and applications: a survey IET Control Theory Appl. 4 2651–71
[29] James M R 2021 Optimal quantum control theory Annu. Rev. Control Robot. Auton. Syst. 4 343–67
[30] Tomsovic S and Lefebvre J H 1997 Can wave packet revivals occur in chaotic quantum systems? Phys. Rev. Lett. 79 3629–32
[31] Gong J and Brumer P 2005 Quantum chaos meets coherent control Annu. Rev. Phys. Chem. 56 1–23
[32] Gruebele M and Wolynes P G 2007 Quantizing Ulam’s control conjecture Phys. Rev. Lett. 99 060201
[33] Bitter M and Milner V 2017 Experimental demonstration of coherent control in quantum chaotic systems Phys. Rev. Lett.

118 034101
[34] Vanhaele G and Schlagheck P 2021 NOON states with ultracold bosonic atoms via resonance- and chaos-assisted tunneling Phys.

Rev. A 103 013315
[35] Vanhaele G, Bäcker A, Ketzmerick R and Schlagheck P 2022 Creating triple-NOON states with ultracold atoms via chaos-assisted

tunneling Phys. Rev. A 106 L011301
[36] Madronero J, Ponomarev A, Carvalho A R R, Wimberger S, Viviescas C, Kolovsky A, Hornberger K, Schlagheck P, Krug A and

Buchleitner A 2006 Quantum chaos, transport and control—in quantum optics Adv. Atom. Mol. Opt. Phys. 53 33–73
[37] Bloch I, Dalibard J and Zwerger W 2008 Many-body physics with ultracold gases Rev. Mod. Phys. 80 885–964
[38] Dalibard J, Gerbier F, Juzeliunas G and Öhberg P 2011 Artificial gauge potentials for neutral atoms Rev. Mod. Phys. 83 1523–43
[39] Bloch I, Dalibard J and Nascimbène S 2012 Quantum simulations with ultracold gases Nat. Phys. 8 267–76
[40] Chien C-C, Peotta S and Di Ventra M 2015 Quantum transport in ultracold atoms Nat. Phys. 11 998–1004

25

https://orcid.org/0009-0000-2904-8073
https://orcid.org/0009-0000-2904-8073
https://orcid.org/0000-0002-2631-0336
https://orcid.org/0000-0002-2631-0336
https://orcid.org/0000-0002-0818-0072
https://orcid.org/0000-0002-0818-0072
https://orcid.org/0000-0001-7296-4237
https://orcid.org/0000-0001-7296-4237
https://orcid.org/0000-0001-9933-1392
https://orcid.org/0000-0001-9933-1392
https://doi.org/10.2514/6.1984-1976
https://doi.org/10.2514/6.1984-1976
https://doi.org/10.1007/BF03546336
https://doi.org/10.1007/BF03546336
https://doi.org/10.1103/PhysRevLett.64.1196
https://doi.org/10.1103/PhysRevLett.64.1196
https://doi.org/10.1103/PhysRevLett.65.3215
https://doi.org/10.1103/PhysRevLett.65.3215
https://doi.org/10.1103/PhysRevE.47.305
https://doi.org/10.1103/PhysRevE.47.305
https://doi.org/10.1063/1.166277
https://doi.org/10.1063/1.166277
https://doi.org/10.4249/scholarpedia.1699
https://doi.org/10.4249/scholarpedia.1699
https://doi.org/10.1103/PhysRevLett.130.020201
https://doi.org/10.1103/PhysRevLett.130.020201
https://doi.org/10.1103/PhysRevE.108.044202
https://doi.org/10.1103/PhysRevE.108.044202
https://doi.org/10.1016/0370-1573(79)90023-1
https://doi.org/10.1016/0370-1573(79)90023-1
https://doi.org/10.1016/0370-1573(90)90067-C
https://doi.org/10.1016/0370-1573(90)90067-C
https://doi.org/10.1007/BF01397280
https://doi.org/10.1007/BF01397280
https://doi.org/10.1103/PhysRev.40.749
https://doi.org/10.1103/PhysRev.40.749
https://doi.org/10.1140/epjqt10
https://doi.org/10.1140/epjqt10
https://doi.org/10.1103/PhysRev.129.959
https://doi.org/10.1103/PhysRev.129.959
https://doi.org/10.1103/PhysRevLett.81.3108
https://doi.org/10.1103/PhysRevLett.81.3108
https://doi.org/10.1063/1.449767
https://doi.org/10.1063/1.449767
https://doi.org/10.1016/S0009-2614(86)80171-3
https://doi.org/10.1016/S0009-2614(86)80171-3
https://doi.org/10.1103/PhysRevLett.68.1500
https://doi.org/10.1103/PhysRevLett.68.1500
https://doi.org/10.1126/science.259.5101.1581
https://doi.org/10.1126/science.259.5101.1581
https://doi.org/10.1103/PhysRevA.37.4950
https://doi.org/10.1103/PhysRevA.37.4950
https://doi.org/10.1016/0301-0104(89)90012-8
https://doi.org/10.1016/0301-0104(89)90012-8
https://doi.org/10.1103/PhysRevLett.106.190501
https://doi.org/10.1103/PhysRevLett.106.190501
https://doi.org/10.1038/srep34187
https://doi.org/10.1038/srep34187
https://doi.org/10.1049/iet-cta.2009.0508
https://doi.org/10.1049/iet-cta.2009.0508
https://doi.org/10.1146/annurev-control-061520-010444
https://doi.org/10.1146/annurev-control-061520-010444
https://doi.org/10.1103/PhysRevLett.79.3629
https://doi.org/10.1103/PhysRevLett.79.3629
https://doi.org/10.1146/annurev.physchem.56.092503.141319
https://doi.org/10.1146/annurev.physchem.56.092503.141319
https://doi.org/10.1103/PhysRevLett.99.060201
https://doi.org/10.1103/PhysRevLett.99.060201
https://doi.org/10.1103/PhysRevLett.118.034101
https://doi.org/10.1103/PhysRevLett.118.034101
https://doi.org/10.1103/PhysRevA.103.013315
https://doi.org/10.1103/PhysRevA.103.013315
https://doi.org/10.1103/PhysRevA.106.L011301
https://doi.org/10.1103/PhysRevA.106.L011301
https://doi.org/10.1016/S1049-250X(06)53002-2
https://doi.org/10.1016/S1049-250X(06)53002-2
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.83.1523
https://doi.org/10.1103/RevModPhys.83.1523
https://doi.org/10.1038/nphys2259
https://doi.org/10.1038/nphys2259
https://doi.org/10.1038/nphys3531
https://doi.org/10.1038/nphys3531


New J. Phys. 26 (2024) 073002 L Beringer et al

[41] Langen T, Geiger R and Schmiedmayer J 2015 Ultracold atoms out of equilibrium Annu. Rev. Condens. Matter Phys. 6 201–17
[42] Schäfer F, Fukuhara T, Sugawa S, Takasu Y and Takahashi Y 2020 Tools for quantum simulation with ultracold atoms in optical

lattices Nat. Rev. Phys. 2 411–25
[43] Yang B, Sun H, Ott R, Wang H-Y, Zache T V, Halimeh J C, Yuan Z-S, Hauke P and Pan J-W 2020 Observation of gauge invariance

in a 71-site Bose-Hubbard quantum simulator Nature 587 392–6
[44] Altman E et al 2021 Quantum simulators: architectures and opportunities PRX Quantum 2 017003
[45] Braun C, Saint-Jalm R, Hesse A, Arceri J, Bloch I and Aidelsburger M 2023 Real-space detection and manipulation of topological

edge modes with ultracold atoms (arXiv:2304.01980v1 [cond-mat.quant-gas])
[46] Bluvstein D et al 2024 Logical quantum processor based on reconfigurable atom arrays Nature 626 58–65
[47] Pitaevskii L P and Stringari S 2003 Bose-Einstein Condensation (Oxford University Press)
[48] Kolovsky A R and Buchleitner A 2004 Quantum chaos in the Bose-Hubbard model Europhys. Lett. 68 632
[49] Pausch L, Carnio E G, Rodríguez A and Buchleitner A 2021 Chaos and ergodicity across the energy spectrum of interacting bosons

Phys. Rev. Lett. 126 150601
[50] Chin C, Grimm R, Julienne P and Tiesinga E 2010 Feshbach resonances in ultracold gases Rev. Mod. Phys. 82 1225–86
[51] Su G-X, Sun H, Hudomal A, Desaules J-Y, Zhou Z-Y, Yang B, Halimeh J C, Yuan Z-S, Papíc Z and Pan J-W 2023 Observation of

many-body scarring in a Bose-Hubbard quantum simulator Phys. Rev. Res. 5 023010
[52] Impertro A, Karch S, Wienand J F, Huh S, Schweizer C, Bloch I and Aidelsburger M 2023 Local readout and control of current and

kinetic energy operators in optical lattices (arXiv:2312.13268 [cond-mat.quant-gas])
[53] Lyapunov A M 1892 The general problem of the stability of motion PhD Thesis University of Kharkov (in Russian)
[54] Kolmogorov A N 1958 New metric invariant of transitive dynamical systems and endomorphisms of Lebesgue spaces Dokl. Akad.

Nauk SSSR 119 861–4
[55] Sinai Y G 1959 On the notion of entropy of a dynamical system Dokl. Akad. Nauk SSSR 124 768–71
[56] Leit̃ao J C, Viana Parente Lopes J M and Altmann E G 2017 Importance sampling of rare events in chaotic systems Eur. Phys. J. B

90 181
[57] Ehrenfest P 1927 Bemerkung über die angenäherte Gültigkeit der klassischen Mechanik innerhalb der Quantenmechanik Z. Phys.

45 455–7
[58] Berman G P and Zaslavsky G M 1978 Condition of stochasticity of quantum nonlinear systems Physica A 91 450–60
[59] Zaslavsky G M 1981 Stochasticity in quantum systems Phys. Rep. 80 157–250
[60] Richter K, Urbina J D and Tomsovic S 2022 Semiclassical roots of universality in many-body quantum chaos J. Phys. A: Math.

Theor. 55 453001
[61] Tomsovic S 2018 Complex saddle trajectories for multidimensional quantum wave packet/coherent state propagation: application

to a many-body system Phys. Rev. E 98 023301
[62] Steinhuber M 2020 Semiclassical approach to the high-dimensional self-trapping of interacting cold atoms in optical lattices

Master’s Thesis Universität Regensburg
[63] Maslov V P and Fedoriuk M V 1981 Semiclassical Approximation in Quantum Mechanics (Reidel Publishing Company)
[64] Greiner M, Mandel O, Hänsch T W and Bloch I 2002 Collapse and revival of the matter wave field of a bose-einstein condensate

Nature 419 51–54
[65] Moyal J E 1949 The Monte Carlo method Proc. Camb. Phil. Soc. 45 99–124
[66] Steel M J, Olsen M K, Plimak L I, Drummond P D, Tan S M, Collett M J, Walls D F and Graham R 1998 Dynamical quantum noise

in trapped Bose–Einstein condensates Phys. Rev. A 58 4824–35
[67] Sinatra A, Lobo C and Castin Y 2002 The truncated Wigner method for bose-condensed gases: limits of validity and applications J.

Phys. B: At. Mol. Opt. Phys. 35 3599–631
[68] Heller E J 1975 Time-dependent approach to semiclassical dynamics J. Chem. Phys. 62 1544–55
[69] Heller E J 1984 Bound-state eigenfunctions of classically chaotic hamiltonian systems: Scars of periodic orbits Phys. Rev. Lett.

53 1515–8
[70] Berry M V 1977 Regular and irregular semiclassical wavefunctions J. Phys. A: Math. Gen. 10 2083–91
[71] Voros A 1979 Semiclassical ergodicity of quantum eigenstates in the Wigner representation Stochastic Behaviour in Classical and

Quantum Hamiltonian Systems ed G Casati and J Ford (Springer) pp 326–33
[72] McDonald S W and Kaufman A N 1979 Spectrum and eigenfunctions for a hamiltonian with stochastic trajectories Phys. Rev. Lett.

42 1189–91
[73] McDonald S W 1983 Wave dynamics of regular and chaotic rays PhD Thesis University of California
[74] Shnirelman A I 1974 Ergodic properties of eigenfunctions Usp. Math. Nauk. 29 181–2
[75] Deutsch J M 1991 Quantum statistical mechanics in a closed system Phys. Rev. A 43 2046
[76] Srednicki M 1994 Chaos and quantum thermalization Phys. Rev. E 50 888–901
[77] Bernien H et al 2017 Probing many-body dynamics on a 51-atom quantum simulator Nature 551 579–84
[78] Turner C J, Michailidis A A, Abanin D A, Serbyn M and Papíc Z 2018 Weak ergodicity breaking from quantum many-body scars

Nat. Phys. 14 745–9
[79] Serbyn M, Abanin D A and Papíc Z 2021 Quantum many-body scars and weak breaking of ergodicity Nat. Phys. 17 675685
[80] Khemani V, Laumann C R and Chandran A 2019 Signatures of integrability in the dynamics of Rydberg-blockaded chains Phys.

Rev. B 99 161101
[81] Hummel Q, Richter K and Schlagheck P 2023 Genuine many-body quantum scars along unstable modes in Bose-Hubbard systems

Phys. Rev. Lett. 130 250402
[82] Ljubotina M, Roos B, Abanin D A and Serbyn M 2022 Optimal steering of matrix product states and quantum many-body scars

PRX Quantum 3 030343
[83] Ljubotina M, Petrova E, Schuch N and Serbyn M 2024 Tangent space generators of matrix product states and exact Floquet

quantum scars (arXiv:2403.12325 [quant-ph])
[84] Altman E 2018 Many-body localization and quantum thermalization Nat. Phys. 14 979–83
[85] Beringer L, Steinhuber M, Urbina J D, Richter K and Tomsovic S 2024 Controlling Many-body quantum Chaos: Bose-Hubbard

systems New J. Phys. (https://doi.org/10.1088/1367-2630/ad5752)
[86] Negele J W and Orland H 1998 Quantum Many-Particle Systems (Advanced Books Classics) (Taylor & Francis)
[87] Wilson J H and Galitski V 2011 Breakdown of the coherent state path integral: two simple examples Phys. Rev. Lett. 106 110401
[88] Bruckmann F and Urbina J D 2018 Rigorous construction of coherent state path integrals through dualization

(arXiv:1807.10462v1)
[89] Schulman L S 1981 Techniques and Applications of Path Integration (Wiley)

26

https://doi.org/10.1146/annurev-conmatphys-031214-014548
https://doi.org/10.1146/annurev-conmatphys-031214-014548
https://doi.org/10.1038/s42254-020-0195-3
https://doi.org/10.1038/s42254-020-0195-3
https://doi.org/10.1038/s41586-020-2910-8
https://doi.org/10.1038/s41586-020-2910-8
https://doi.org/10.1103/PRXQuantum.2.017003
https://doi.org/10.1103/PRXQuantum.2.017003
https://arxiv.org/abs/2304.01980v1
https://doi.org/10.1038/s41586-023-06927-3
https://doi.org/10.1038/s41586-023-06927-3
https://doi.org/10.1209/epl/i2004-10265-7
https://doi.org/10.1209/epl/i2004-10265-7
https://doi.org/10.1103/PhysRevLett.126.150601
https://doi.org/10.1103/PhysRevLett.126.150601
https://doi.org/10.1103/RevModPhys.82.1225
https://doi.org/10.1103/RevModPhys.82.1225
https://doi.org/10.1103/PhysRevResearch.5.023010
https://doi.org/10.1103/PhysRevResearch.5.023010
https://arxiv.org/abs/2312.13268
https://doi.org/10.1140/epjb/e2017-80054-3
https://doi.org/10.1140/epjb/e2017-80054-3
https://doi.org/10.1007/BF01329203
https://doi.org/10.1007/BF01329203
https://doi.org/10.1016/0378-4371(78)90190-5
https://doi.org/10.1016/0378-4371(78)90190-5
https://doi.org/10.1016/0370-1573(81)90127-7
https://doi.org/10.1016/0370-1573(81)90127-7
https://doi.org/10.1088/1751-8121/ac9e4e
https://doi.org/10.1088/1751-8121/ac9e4e
https://doi.org/10.1103/PhysRevE.98.023301
https://doi.org/10.1103/PhysRevE.98.023301
https://doi.org/10.1038/nature00968
https://doi.org/10.1038/nature00968
https://doi.org/10.1017/S0305004100000487
https://doi.org/10.1017/S0305004100000487
https://doi.org/10.1103/PhysRevA.58.4824
https://doi.org/10.1103/PhysRevA.58.4824
https://doi.org/10.1088/0953-4075/35/17/301
https://doi.org/10.1088/0953-4075/35/17/301
https://doi.org/10.1063/1.430620
https://doi.org/10.1063/1.430620
https://doi.org/10.1103/PhysRevLett.53.1515
https://doi.org/10.1103/PhysRevLett.53.1515
https://doi.org/10.1088/0305-4470/10/12/016
https://doi.org/10.1088/0305-4470/10/12/016
https://doi.org/10.1103/PhysRevLett.42.1189
https://doi.org/10.1103/PhysRevLett.42.1189
https://doi.org/10.1103/PhysRevA.43.2046
https://doi.org/10.1103/PhysRevA.43.2046
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1038/nature24622
https://doi.org/10.1038/nature24622
https://doi.org/10.1038/s41567-018-0137-5
https://doi.org/10.1038/s41567-018-0137-5
https://doi.org/10.1038/s41567-021-01230-2
https://doi.org/10.1038/s41567-021-01230-2
https://doi.org/10.1103/PhysRevB.99.161101
https://doi.org/10.1103/PhysRevB.99.161101
https://doi.org/10.1103/PhysRevLett.130.250402
https://doi.org/10.1103/PhysRevLett.130.250402
https://doi.org/10.1103/PRXQuantum.3.030343
https://doi.org/10.1103/PRXQuantum.3.030343
https://arxiv.org/abs/2403.12325
https://doi.org/10.1038/s41567-018-0305-7
https://doi.org/10.1038/s41567-018-0305-7
https://doi.org/10.1088/1367-2630/ad5752
https://doi.org/10.1103/PhysRevLett.106.110401
https://doi.org/10.1103/PhysRevLett.106.110401
https://arxiv.org/abs/1807.10462v1

	Controlling many-body quantum chaos: Bose–Hubbard systems
	1. Introduction
	2. Background
	2.1. Chaos, heteroclinic motion, and times scales
	2.2. Bose–Hubbard systems
	2.2.1. Hamiltonian and classical (mean field) limit
	2.2.2. Localized states
	2.2.3. Truncated Wigner approximation
	2.2.4. Density wave

	2.3. Control Hamiltonian

	3. Coherent quantum targeting in 1D lattices
	3.1. Targeting
	3.2. Protocol robustness
	3.2.1. Proximity
	3.2.2. Residual interactions
	3.2.3. White noise

	3.3. Stabilizing periodic trajectories
	3.3.1. Symmetric perodic mean-field control trajectory
	3.3.2. Asymmetric periodic mean-field control trajectory


	4. Coherent quantum targeting in 2D lattices
	5. Conclusion
	Appendix A. A formulation of quantum control from the perspective of auxiliary fields
	Appendix B. Coherent time-evolution in control systems
	References


