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ABSTRACT: Although numerous polyphosphido complexes have
been accessed through the transition-metal-mediated activation
and functionalization of white phosphorus (P4), the selective
functionalization of the resulting polyphosphorus ligands in these
compounds remains underdeveloped. In this study, we explore the
reactions between cyclotetraphosphido cobalt complexes and
heterocumulenes, leading to functionalized P4 ligands. Specifically,
the reaction of carbon disulfide (CS2) with [K(18c-6)]-
[(Ar*BIAN)Co(η4-P4)] ([K(18c-6)]1, 18c-6 = [18]crown-6)
affords the adduct [K(18c-6)][(Ar*BIAN)Co(η3:η1-P4CS2)] ([K-
(18c-6)]3), in which CS2 is attached to a single phosphorus atom
(Ar* = 2,6-dibenzhydryl-4-isopropylphenyl, BIAN = 1,2-bis-
(arylimino)acenaphthene diimine). In contrast, the insertion of
bis(trimethylsilyl)sulfur diimide S(NSiMe3)2 into a P−P bond of [K(18c-6)]1 yields [K(18c-6)][(Ar*BIAN)Co(η3:η1-
P4SN2(SiMe3)2)] (K(18c-6)]4). This salt further reacts with Me3SiCl to form [(Ar*BIAN)Co(η3:η1-P4SN2(SiMe3)3] (5), featuring
a rare azatetraphosphole ligand. Moreover, treatment of the previously reported complex [(Ar*BIAN)Co(η3:η1-P4C(O)tBu)] (2)
with isothiocyanates results in P−C bond insertion, yielding [(Ar*BIAN)Co(η3:η1-P4C(S)N(R)C(O)tBu)] (6a,b; R = Cy, Ph).

■ INTRODUCTION
The reaction of white phosphorus with transition metal
complexes represents a powerful strategy in the synthesis of
distinctive phosphorus-based compounds.1 Transition-metal-
mediated P4 functionalization processes typically involve two
principal steps, which have been subject to considerable
investigation: Initially, a transition metal complex facilitates
the cleavage of one or more P−P bonds of the P4 tetrahedron,
yielding metal complexes that incorporate an activated
polyphosphido ligand. Subsequently, these Pn units undergo
functionalization through reactions with suitable nucleophiles or
electrophiles. The first step, P4 activation, has been widely
investigated and can result in a wide variety of polyphosphorus
structures, with ligands containing from one to eight P atoms.1

In particular, P4 ligands such as [1.1.0]bicyclotetraphosphane-
1,4-diide (commonly referred to as “butterfly-P4

2−”) and
cyclotetraphosphide (cyclo-P4

2−) units, emerge as prevalent
structural motifs (see Figure 1a).2,3 The subsequent function-
alization of the coordinated Pn units typically constitutes a
separate step.1 While the reactivity in this step can vary based on
the electronic properties of the transition metal fragment, it is
generally acknowledged that functionalization of P4 has not been
as thoroughly explored as its activation.

Several routes for the functionalization of butterfly-P4
complexes have been reported, including reactions such as the
addition and insertion of nucleophiles and electrophiles
(including alkylation), fragmentation, and transition metal

coordination.2,4 During our prior work, in which we reported
the synthesis of the nickel butterfly-P4 complex A, it was found
that phenyl isothiocyanate (PhNCS) inserts into a P−P bond of
the butterfly moiety. This reaction facilitated the formation of
unusual bicyclo[3.1.0]heterohexane isomers B and C (Figure
1b).2d,5

While several cyclo-P4 complexes have been reported, their
reactivity has not been as extensively investigated as the
butterfly-P4 counterparts.1,3 A study by Scheer and co-workers
demonstrated that treatment of the cyclo-P4 complex [Cp‴Co-
(η4-P4)] (D, Cp‴ = C5H2tBu3) with carbon-centered
nucleophiles leads to isomeric compounds E and F (Figure 1b).6

In a recent study, we reported the anionic cyclo-P4 complex
[(Ar*BIAN)Co(η4-P4)]− (1−, Figure 1b) and its reaction with
acyl chlorides, yielding the functionalized cyclo-P4 complex
[(Ar*BIAN)Co(η3:η1-P4C(O)tBu] (2).7 When compound 2
was treated with nitriles or isocyanides, there was a partial
displacement of the P4C(O)R ligand from the cobalt center.
Moreover, reaction with 2 equiv of KCN induced a [3 + 1]
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fragmentation process, releasing a monophosphorus species in
the form of an acylcyanophosphide.

Our previous work has revealed that polyphosphido
complexes exhibit promising reactivity toward electrophiles
and nucleophiles, indicating that transition-metal-Pn complexes
hold potential as precursors for the targeted synthesis of unique
(poly-)phosphorus compounds (Figure 1).5,8 Building upon
these insights, we herein report the functionalization of the
anionic complex 1− and its acylated, neutral counterpart 2 with
electrophilic heterocumulenes. In this study, we present the
synthesis of anionic cobalt complexes 3− and 4−, featuring
CoP4CS2

− and Co(η3:η1-P4SN2(SiMe3)2)− cores, respectively.
We investigate their structural and electronic properties, as
revealed by X-ray crystallography using synchrotron radiation
and density functional theory (DFT). Additionally, the
reactivity of complexes 3− and 4− toward electrophiles in salt
metathesis is examined. We also demonstrate the feasibility of
further functionalizing the polyphosphido ligand in CoP4C(O)
tBu with isothiocyanates, resulting in the formation of
[Co(η3:η1-P4C(S)N(R)C(O)tBu)] complexes (6, R = Cy, Ph).

■ RESULTS AND DISCUSSION
The addition of carbon disulfide to a purple solution of [K(18c-
6)]1 in THF resulted in a blue coloration within a few hours.
31P{1H} NMR spectroscopy confirmed the complete conversion
of anionic 1− into a single new species, [K(18c-6)][(Ar*BIAN)-
Co(η3:η1-P4CS2)] ([K(18c-6)]3), exhibiting an AXY2 spin
system (vide infra). This new complex crystallized in 89% yield
as dark blue blocks from a THF/n-hexane mixture (Scheme 1).

Single crystal X-ray diffraction (SCXRD) analysis elucidated
the structure of the complex, revealing a puckered cyclo-P4 ligand
in a η3-coordinating mode (Figure 2a). A CS2 moiety is bound
via the carbon atom to the noncoordinating phosphorus atom
P4. Additionally, one sulfur atom from the CS2 moiety exhibits
η1-coordination to the cobalt center. The similar C−S bond
distances, 1.698(5) Å and 1.664(5) Å, are intermediate between
those of typical C−S single and double bonds (∑rCS 1.78 Å vs
1.61 Å).9 The Co−S1 bond length (2.2724(1) Å) is notably
longer than the Co−S distance in the structurally related
complex [(triphos)Co(η2-CS2)] (2.206(4) Å; triphos = MeC-
(CH2PPh2)3) and exceeds the length of a typical Co−S single
bond (∑rCoS 2.14 Å).10 These observations support the
description of the P4CS2 ligand as featuring a delocalized
exocyclic CS2-moiety acting as a pendant donor ligand, as
depicted in Scheme 1. The delocalization of the η3-coordinated
P1−P2−P3 moiety is apparent by shorter bond lengths among
the coordinating phosphorus atoms (P1−P2 2.169(2) Å and
P2−P3 2.169(7) Å) compared to those involving the non-
coordinating ones (P1−P4 2.228(6) Å and P3−P4 2.222(7) Å).
This structural motif is similar to the behavior observed in the
related complex [(Ar*BIAN)Co(η3:η1-P4C(O)tBu)] (2, vide
infra) and in the series of complexes [Cp‴Co(η3-P4R2)] (R =
Ph, Cy, tBu).7,11

The 31P{1H} NMR spectrum of [K(18c-6)]3 features an
AXY2 spin system, corroborating the existence of a Cs symmetric
tetraphosphido ligand (Figure 2b). The simulated P−P coupling
constants are in agreement with those of [Cp‴Co(η3-P4R2)]
complexes, reported to exhibit AMM′X spin systems, and the
previously reported complex 2, which gives rise to an AM2X spin
system.7,11 The resonance for the coordinating phosphorus
atom Px at δ = 99.6 ppm is shifted significantly upfield in
comparison to 2 (δ = 323.3 ppm) but appears downfield shifted
relative to the equivalent phosphorus atom of [Cp‴Co(η3-
P4Ph2)] (δ = −80.7 ppm).

Inspired by the successful functionalization of the cyclo-P4
ligand in 1− with CS2 (vide supra), we extended our
investigation to include reactions with other heterocumulenes.
While attempts to functionalize the Pn moieties with isocyanates
and isothiocyanates led to complex mixtures of products that
impeded characterization, the use of sulfur diimide S(NSiMe3)2
resulted in the selective formation of [K(18c-6)][(Ar*BIAN)-
Co(η3:η1-P4SN2(SiMe3)2)] ([K(18c-6)]4, Scheme 2a).
31P{1H} NMR spectroscopic monitoring revealed a quantitative
reaction and complete conversion within 6 days at 35 °C, using a
slight excess of the diimide (1.5 equiv). Surprisingly, the diimide
variant with alkyl substituents, S(NtBu)2, did not undergo any

Figure 1. (a) Activation and (b) functionalization of white phosphorus;
[Ni] = [CpNi(IMes)] (IMes = 1,3-bis(2,4,6-trimethylphenyl)-
imidazolin-2-ylidene); [Co] = Cp‴Co (Cp‴ = C5H2tBu3), R =
CH2SiMe3, tBu; Ar* = 2,6-dibenzhydryl-4-isopropylphenyl; (c) [LCo]
= (Ar*BIAN)Co, R = Cy, Ph.

Scheme 1. Addition of CS2 to the Tetraphosphido Ligand in
[K(18c-6)]1a

aReagents and conditions: 1.2 equiv of CS2; THF, r.t., 1 d; yield:
[K(18c-6)]3: 89%.

Inorganic Chemistry pubs.acs.org/IC Article

https://doi.org/10.1021/acs.inorgchem.4c00808
Inorg. Chem. XXXX, XXX, XXX−XXX

B

https://pubs.acs.org/doi/10.1021/acs.inorgchem.4c00808?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.4c00808?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.4c00808?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.4c00808?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.4c00808?fig=sch1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.4c00808?fig=sch1&ref=pdf
pubs.acs.org/IC?ref=pdf
https://doi.org/10.1021/acs.inorgchem.4c00808?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


reaction under similar conditions, or at further elevated
temperature.

A SCXRD analysis, using synchrotron radiation at the
Rossendorf Beamline BM20 (ESRF), conducted on crystals

Figure 2. (a) Solid-state molecular structure of [K(18c-6)][(Ar*BIAN)Co(η3:η1-P4CS2)] ([K(18c-6)]3); thermal ellipsoids are shown at the 50%
probability level; hydrogen atoms, solvent molecules, and disorder are omitted for clarity. Selected bond lengths [Å] and angles [deg]: P1−P2
2.169(2), P2−P3 2.1697(2), P3−P4 2.230(2), P1−P4 2.2286(2), Co1−P1 2.2936(1), Co1−P2 2.3031(2), Co1−P3 2.2815(2), Co1−S1 2.2725(1),
Co1−N1 1.998(4), Co1−N2 1.976(4), P4−C3 1.850(6), C3−S1 1.698(5), C3−S2 1.664(5), P1−P2−P3 85.08(7), P2−P3−P4 88.93(7), P3−P4−
P1 82.44(6), P4−P1−P2 88.81(8). (b) Experimental (upward) and simulated (downward) 31P{1H} NMR spectra of [K(18c-6)]3 in THF-d8 with
nuclei assigned to an AXY2 spin system: δ(PA) = 127.6 ppm, δ(PX) = 99.6 ppm, δ(PY) = 84.9 ppm, 1JXY = −320 Hz, 1JAY = −110 Hz, 2JAX = 5 Hz.

Scheme 2. Reaction of [K(18c-6)]1 with Sulfur Diimide and Subsequent Functionalization with Trimethylsilyl Chloridea

aReagents/byproducts and conditions: (a) 1.5 equiv of S(NSiMe3)2; THF, 35 °C, 6 d; (b) Me3SiCl/ −[K(18c-6)]Cl; toluene, r.t., 3 h; (c) 1.0
equiv of [nBu4N]CN; C6D6, r.t., 3 h or 1.0 equiv of KOPh/1.0 equiv of 18c-6; C6D6, r.t., 3 d; yields [K(18c-6)]4: 63%, 5: 63%.
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obtained from a toluene/n-hexane mixture, revealed the
structure of anion 4−, featuring an η3-coordinating azatetra-
phosphole ring (Figure 3a).12 The structure bears an exocyclic
NSiMe3 group alongside a sulfur atom, both bound to the same
phosphorus atom, indicating the insertion of a Me3SiN moiety
into a P−P bond. The azaphosphole ring adopts an envelope
conformation with the nitrogen atom N3 positioned at the apex,
at a distance of 0.700(6) Å above the plane formed by P1, P2, P3,
and P4. This conformation resembles cyclic P4N frameworks
observed in oligophosphines such as cyclo-[NP(PPh2)2]2, cyclo-
[(PMe)(PPh2)N]2, and cyclo-[(PPh)4NR] (R = Me, Cy),13d,h as
well as related compounds.13 To our knowledge, [K(18c-6)]4 is
the first example of a transition metal complex bearing a cyclo-
P4N ligand framework. The P1−P2 and the P3−P4 bond
lengths of 2.205(2) Å and 2.200(8) Å, respectively, agree with
typical P−P single bonds (∑rPP 2.22 Å), whereas the P2−P3

bond length at 2.047(2) Å suggests partial P�P double bond
character.9 This interpretation is supported by calculated bond
orders of 0.89, 1.05, and 1.13, despite the optimized P2−P3
distance in the theoretical models (2.155 Å) being slightly
longer than the experimental value (vide infra).

To corroborate the molecular structure derived from SCXRD
data, we carried out geometry optimization for anion 4− using
the TPSS-D4/def2-TZVP CPCM level of theory. Subsequent
intrinsic bond orbital analysis (IBO, see SI for details) identified
single bonds within the cyclic P4N moiety and a polarized P�N
(P1−N4) double bond (see IBO 155 in Figure S43 in SI).14

Additionally, a lone pair was observed on N4, residing in a p-type
orbital with slight delocalization over the P2N unit, which
contributes to the stabilization of the planar geometry at N4.
The Mayer bond order (MBO) analysis further supports the
double bond character of the P1−N4 bond, with a calculated

Figure 3. (a) Solid-state molecular structure of [K(18c-6)][(Ar*BIAN)Co(η3:η1-P4SN2(SiMe3)2)] ([K(18c-6)]4); thermal ellipsoids are shown at
the 50% probability level; hydrogen atoms, solvent molecules, [K(18c-6)]+, and disorder are omitted for clarity. Selected bond lengths [Å] and angles
[deg]: P1−P2 2.205(2), P2−P3 2.047(2), P3−P4 2.200(8), P1−N3 1.681(4), P4−N3 1.749(5), P1−S1 2.049(2), P1−N4 1.567(5), Co1−P2
2.336(2), Co1−P3 2.235(2), Co1−P4 2.327(2), Co1−S1 2.391(2), P1−P2−P3 103.00(7), P2−P3−P4 95.57(8), P3−P4−N3 104.75(2), P4−N3−
P1 109.5(3), Co1−S1−P1 81.90(8), Si1−N3−P1 124.6(3), Si2−N4−P1 134.0(3). (b) Experimental (upward) and simulated (downward) 31P{1H}
NMR spectra of 4− with nuclei assigned to an AMXY spin system: δ(PA) = 118.8 ppm, δ(PM) = 29.2 ppm, δ(PX) = −12.4 ppm, δ(PY) = −43.2 ppm, 1JXY
= −431 Hz, 1JAX = −343 Hz, 1JMY = −331 Hz, JMX = 17 Hz, JAY = 10 Hz, JAM = −32 Hz.
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MBO of 1.57. These theoretical insights align well with the P1−
N4 bond length of 1.567(5) Å, which falls in the expected range
for a P�N double bond (∑rPN 1.62 Å).9 Conversely, the MBO
value of the endocyclic P1−N3 and P4−N3 bonds are 1.05 and
0.95, respectively, indicative of single bonds.

The 31P{1H} NMR spectrum of [K(18c-6)]4 in CD3CN
exhibits an AMXY spin system, distinguished by large 1JPP
coupling constants ranging from −331 Hz to −431 Hz, with
chemical shifts recorded at δ = 118.8 (PA), 29.2 (PE), −12.4
(PM), and −43.2 (PX) ppm (Figure 3b and Figure S7, SI). These
findings are characteristic for an asymmetric catena-P4 unit,

consistent with previous observations for similar systems.7,8b,15

The assignment of the resonances is based on the assumption
that the tetrasubstitued P1 atom gives rise to the most deshielded
31P NMR signals. The largest 1JPP coupling constant was
observed between phosphorus atoms P2 and P3, further
supporting partial P�P double bond character. In the 29Si{1H}
NMR spectrum, two distinct doublets emerge: one at δ = −17.9
ppm corresponding to the imino group, and one at δ = 3.6 ppm,
assigned to the amino group. These groups feature 2JSiP coupling
constants of 16.6 and 6.1 Hz, respectively. For comparison, the
resonance of S(NSiMe3)2 appears at δ = 1.6 ppm in C6D5CD3.16

Figure 4. (a) Solid-state molecular structure of [(Ar*BIAN)Co(η3:η1-P4SN2(SiMe3)3)] (5); thermal ellipsoids are shown at the 50% probability level;
hydrogen atoms, solvent molecules and disorder are omitted for clarity. Selected bond lengths [Å] and angles [deg]: P1−P2 2.1966(2), P2−P3
2.1451(2), P3−P4 2.1789(2), Co1−P2 2.3297(1), Co1−P3 2.3210(1), Co1−P4 2.2935(1), Co1−S1 2.3416(1), Co1−N1 1.970(4), Co1−N2
1.986(3), P1−N3 1.670(4), P4−N3 1.782(4), P1−N4 1.666(4), P1−S1 2.0261(2), P1−P2−P3 100.50(6), P2−P3−P4 94.04(6), P2−P1−N4
120.79(1), P1−N3−P4 106.3(2), P1−N4−Si3 120.1(2), Si3−N4−Si2 120.8(2). (b) Experimental (upward) and simulated (downward) 31P{1H}
NMR spectra of 5 with nuclei assigned to an AMXY spin system: δ(PA) = 134.5 ppm, δ(PM) = 49.3 ppm, δ(PX) = −51.8 ppm, δ(PY) = −59.9 ppm, 1JXY
= −423 Hz, 1JMY = −425 Hz, 1JAX = −350 Hz, JMX = 31 Hz, JAY = 11 Hz, JAM = −21 Hz.
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The more pronounced 2JSiP coupling associated with the
exocyclic NSiMe3 group is likely a consequence of its
involvement in the P1�N4 multiple bond.

Given the ionic nature of 4− and the anticipated
nucleophilicity of the phosphaimino nitrogen N4 (Mulliken
charge −0.48), we hypothesized that it would readily undergo
salt metathesis reactions with electrophiles. Our assumption was
confirmed when the addition of Me3SiCl to a solution of
[K(18c-6)]4 in toluene resulted in an immediate color change
from blue to purple due to the formation of [(Ar*BIAN)Co-
(η3:η1-P4SN2(SiMe3)3)] (5, Scheme 2b), which was crystallized
as purple needles from n-hexane at −35 °C in 63% isolated yield.
Synchrotron SCXRD analysis of 5 revealed the silylation of the
imino moiety, resulting in a bis(trimethylsilyl)amino group
(Figure 4a).12 The structural characteristics of 5 closely
resemble those of its precursor 4− (vide supra), including the
presence of a central η3-coordinating azatetraphosphole ring.
However, the P1−N4 bond length (1.666(4) Å) is elongated
due to its increased single bond character. The silylated nitrogen
atom N4 in 5 adopts an almost trigonal planar geometry (∑∠
358°) positioned 0.144(4) Å above the plane defined by Si2, Si3,
and the chiral phosphorus atom P1. The presence of the
trimethylsilyl groups attached to N4 is reflected in the 1H NMR
spectrum by two distinct signals, which persist even when the
sample is subjected to variable temperature (VT) NMR
experiments at up to 100 °C (Figure S11, SI).

This phenomenon is attributed to restricted rotation around
the P1−N4 bond, which frustrates chemical equivalence of the
trimethylsilyl groups on the NMR time scale. In addition, the
three inequivalent silicon atoms are discernible in the 29Si{1H}
NMR spectrum, giving rise to two doublets at δ = 7.4 (Si3, 2JSiP =
11 Hz) and δ = 11.6 ppm (Si2, 2JSiP = 6 Hz), as well as a singlet at
δ = 9.3 ppm for Si1. The assignment of the signals has been
facilitated through both homo- and heteronuclear 2D NMR
spectroscopy, further supported by the observed 2JSiP coupling
constants (vide supra). The P4 unit in 5 gives rise to an AMXY
spin system in the 31P{1H} NMR spectrum (Figure 4b),
featuring chemical shifts and coupling constants akin to those of
the precursor 4− and related asymmetric P4-chains.7,8b,15 In
contrast, the symmetrical, uncoordinated, and cyclic azaphos-
phane [(PPh)4NMe] exhibits two multiplet resonances at δ =
126.0 ppm and δ = 13.2 ppm, which are distinct from the
resonances of compound 5.13h In particular, the resonances of
the middle phosphorus atoms in the chain of 5 are observed at
higher field at δ = −51.8 ppm and δ = −59.9 ppm.

The addition of the SiMe3 group is a reversible process, as
treatment of 5 with either cyanide or alkoxide salts regenerate
anion 4−. These feature either [nBu4N]+ or [K(18c-6)]+ cations,
depending on the salt used (Scheme 2c), resembling classic
acid−base reactivity (Figure S27).

Shifting our focus from anionic cyclo-P4 complex 1−, we
investigated the acylated and neutral [(Ar*BIAN)Co(η3:η1-
P4C(O)tBu)] (2), anticipating it might exhibit similar reactivity
toward electrophilic heterocumulenes. However, likely due to
the reduced nucleophilicity of the acylated phosphorus atoms in
2, no significant reactivity was observed with either CS2 or
S(NR)2. Nonetheless, the addition of sulfur-containing
isothiocyanates, specifically CyNCS or PhNCS, to a solution
of 2 resulted in a notable color change from magenta to purple
(Scheme 3). The reaction with PhNCS (1.1 equiv) led to the
complete conversion of 2 within 3 h, according to 31P{1H} NMR
spectroscopic monitoring. In contrast, the reaction with CyNCS
(1.4 equiv) proceeded at a markedly slower pace and achieved

full conversion after 3 days. We propose a reaction mechanism
for the isothiocyanate insertion that begins with the attack of the
acylated phosphorus atom on the carbon atom of the
heterocumulene. This is followed by attack of the nitrogen on
the carbonyl carbon atom and finally the coordination of the
sulfur atom to the cobalt center (see the SI, Scheme S2). The
resulting complexes [(Ar*BIAN)Co(η3:η1-P4C(S)N(R)C(O)
tBu)] (R = Cy (6a); R = Ph (6b)) were isolated in 80% and 64%
yield, respectively.

Single-crystal XRD analysis performed on large block-shaped
crystals, grown from toluene, confirmed the insertion of the
isothiocyanate into the P−C bond of 2, forming 6a (Figure 5).
While there are documented instances of isothiocyanates
undergoing insertion into P−P, P−Si, and P−H bonds, to our
knowledge this marks the first example of such a reaction
involving a P−C bond.5,17 In 6a, the thioacyl group coordinates

Scheme 3. Insertion of Isothiocyanates into the P−C Bond of
2a

aReagents and conditions: 1.4 equiv of CyNCS; toluene, r.t., 3 d (6a);
1.1 equiv of PhNCS; toluene, r.t., 3 h (6b); yields 6a: 80% 6b: 63%.

Figure 5. Solid-state molecular structure of [(Ar*BIAN)Co(η3:η1-
P4C(S)N(Cy)C(O)tBu)] (6a); thermal ellipsoids are shown at the
50% probability level; hydrogen atoms and solvent molecules are
omitted for clarity. Selected bond lengths [Å] and angles [deg]: P1−P2
2.2437(8), P2−P3 2.1697(7), P3−P4 2.1669(8), P1−P4 2.2360(7),
Co1−P2 2.2881(5), Co1−P3 2.2915(6), Co1−P4 2.2838(8), Co1−S1
2.2583(6), Co1−N1 1.9701(2), Co1−N2 1.9693(2), S1−C3
1.696(2), C3−N3 1.343(3), C4−N3 1.471(3), P1−C3 1.856(2),
C4−O1 1.196(3), P1−P2−P3 88.80(3), P2−P3−P4 85.38(3), P3−
P4−P1 89.07(3), P4−P1−P2 82.05(3).

Inorganic Chemistry pubs.acs.org/IC Article

https://doi.org/10.1021/acs.inorgchem.4c00808
Inorg. Chem. XXXX, XXX, XXX−XXX

F

https://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.4c00808/suppl_file/ic4c00808_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.4c00808/suppl_file/ic4c00808_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.4c00808/suppl_file/ic4c00808_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.4c00808?fig=sch3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.4c00808?fig=sch3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.4c00808?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.4c00808?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.4c00808?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.4c00808?fig=fig5&ref=pdf
pubs.acs.org/IC?ref=pdf
https://doi.org/10.1021/acs.inorgchem.4c00808?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


to the cobalt via the sulfur atom, rather than through the oxygen
atom of the remote acyl group.7 This coordination shift is
reflected in the ATR-IR spectrum, where the C�O stretching
vibration in 6a was distinctly observed at ν̃CO = 1727 cm−1, a
band typical for acyl groups.18 This contrasts the C�O stretch
in 2, which was predicted to occur at ν̃CO = 1462 cm−1, thereby
overlapping with the BIAN C−N vibrations in the fingerprint
region.7 The puckered cyclo-P4 moiety observed in complex 6a
closely resembles that in complexes 2, 3− and [Cp‴Co(η3-
P4R2)] (Cp‴ = C5H2tBu3; R = Ph, Cy, tBu),7,11 featuring

elongated P1−P2 (2.2437(8) Å) and P1−P4 (2.2360(7) Å)
bond lengths alongside shorter P2−P3 (2.1697(7) Å) and P3−
P4 (2.1669(8) Å) bond lengths, indicative of some degree of
multiple bond character. Furthermore, the bond lengths of S1−
C3 (1.696(2) Å) and C3−N3 (1.343(3) Å) are elongated
relative to those in free aryl isothiocyanate (S−C, 1.566 Å; C−N
1.152 Å), indicating increased single bond character in 6a.19 The
coordination sphere of the cobalt center is completed by an
Ar*BIAN•− radical anion.20 The phenyl-substituted derivative is
essentially isostructural with 6b (Figure S41, SI).

Figure 6. (a) Variable temperature 31P{1H} NMR spectra of 6a in toluene-d8. (b) Experimental (upward) and simulated (downward) 31P{1H} NMR
spectra of 6a at −60 °C in toluene-d8 with nuclei assigned to an AEMX spin system: δ(PA) = 117.9 ppm, δ(PE) = 105.4 ppm, δ(PM) = 85.5 ppm, δ(PX)
= 77.6 ppm, 1JAE = −324 Hz, 1JAX = −321, 1JEM = −129 Hz, 1JMX = −133 Hz, 2JAM = 18 Hz, 2JEX = 20 Hz.
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The 31P{1H} NMR spectrum of 6a in C6D6 features two
triplets at δ = 86.3 (PM) ppm and δ = 117.3 (PA) ppm, as well as a
significantly broadened signal (Δν1/2 = 2500 Hz) at δ = 93.0
(PE/X) ppm. This broadening suggests a dynamic process
occurring in solution. Given the solid-state molecular structure
of 6a, two distinct signals are expected for the phosphorus atoms
P2 and P4 if the rotation is restricted around the C4−N3 or the
C3−N3 axis, with the latter axis exhibiting partial multiple bond
character (1.343(3) Å vs ∑rCN 1.46 Å for a single bond; labeling
according to Figure 5). VT 31P{1H} NMR spectroscopy
elucidated this phenomenon further, revealing that the broad
resonance at ambient temperature separates into two distinct
signals at 0 °C. These resolve below −40 °C into distinct
multiplets, indicative of an AEMX spin system (Figure 6). In
contrast, the 31P{1H} NMR spectrum of 6b, which possesses
nearly identical C3−N3 and C4−N3 bond lengths, displays
well-resolved signals conforming to an AB2X spin system with
similar chemical shifts akin to those of 6a (see Figure S23, SI).
This distinct behavior in solution is probably due to hindered
rotation resulting from the steric demand of the substituent.

■ CONCLUSION
The reaction of anionic cyclo-P4 complex 1− with CS2 leads to
the electrophilic addition of the heterocumulene to the cyclo-P4
ligand, resulting in the formation of 3−, which features a
puckered η3:η1-P4CS2 ligand. Initial reactivity studies of 3−

toward electrophiles indicate a propensity for salt metathesis
reactions, suggesting new pathways for subsequent functional-
ization. Upon employing the sulfur diimide S(NSiMe3)2 as the
reactant, P−P bond insertion was facilitated for cyclo-P4 complex
1−, yielding complex 4−, with a novel CoP4N− core. Compound
3− represents the first azatetraphosphole complex and under-
goes further functionalization to yield 5 upon reaction with
Me3SiCl. These compounds, 4− and 5, have been characterized
with various analytical techniques, including single crystal X-ray
structural analysis at synchrotron facilities and computational
chemistry studies. The neutral complex 2 exhibits discrepant
reactivity, undergoing insertion of isothiocyanates into the P−C
bond of the acylated tetraphosphido ligand, yielding the highly
derivatized complexes 6a and 6b. This new reaction type
expands the repertoire of P−C bond insertion reactions available
for the strategic functionalization of tetraphosphido ligands.

Overall, our findings highlight the versatility and potential of
low-valent polyphosphido complexes for effecting targeted and
diverse transformations of P4. With increased availability of
routes to various cyclo-P4 complexes, particularly highlighted by
recent advancements, this paves the way to unique phosphorus
compounds. Ongoing research in this area is instrumental in
deepening our understanding of reactivity patterns and
mechanisms, laying the essential groundwork for the develop-
ment of systems capable of facilitating the efficient transition-
metal-mediated functionalization of P4.

■ EXPERIMENTAL SECTION
General Considerations. All experiments were performed under

an atmosphere of dry argon, by using standard Schlenk and glovebox
techniques. Solvents were purified, dried, and degassed with an MBraun
SPS800 solvent purification system. All dry solvents except n-hexane
were stored under argon over activated 3 Å molecular sieves in gastight
ampules. n-Hexane was stored over a potassium mirror. NMR spectra
were recorded on Bruker Avance 400 spectrometers. 1H and 13C{1H}
spectra were referenced internally to residual solvent resonances.
31P{1H} spectra were referenced externally to 85% H3PO4 (aq). The

assignment of the 1H and 13C NMR signals was confirmed by two-
dimensional (COSY, HSQC, HMBC, NOESY and ROESY) experi-
ments. A more detailed assignment of the signals can be found in the SI.
For compounds which give rise to a higher order spin system in the
31P{1H} NMR spectrum, the resolution enhanced 31P{1H} NMR
spectrum was transferred to the software gNMR, version 5.0.6, by
Cherwell Scientific.21 The full line shape iteration procedure of gNMR
was applied to obtain the best match of the fitted to the experimental
spectrum. 1J(31P31P) coupling constants were set to negative values and
all other signs of the coupling constants were obtained accordingly.22

UV/vis spectra were recorded on an Ocean Optics Flame
Spectrometer with a DH-2000-BAL light source. Elemental analyses
were performed by the Central Analytics Department of the University
of Regensburg using a Vario micro cube. Mass spectra were recorded on
a Finnigan MAT 95 spectrometer. IR spectra were recorded with a
Bruker ALPHA spectrometer equipped with a diamond ATR unit.

S(NSiMe3)2 and CS2 (c = 5.0 M in THF) were purchased from
Sigma-Aldrich; PhNCS, CyNCS from Alfa Aesar; and all were used as
received. Trimethylsilyl chloride was purchased from Sigma-Aldrich
and a stock solution (c = 1.58 M in toluene) was prepared. The starting
materials [K(18c-6)][(Ar*BIAN)Co(η4-P4)] ([K(18c-6)]1) and
[(Ar*BIAN)Co(η3:η1-P4C(O)tBu)] (2) were prepared according to
previously reported procedures.7

[K(18c-6)][(Ar*BIAN)Co(η3:η1-P4CS2)] ([K(18c-6)]3). A stock solu-
tion of CS2 (30.6 μL, c = 5.0 M in THF, 0.153 mmol, 1.2 equiv) was
added to a deep purple solution of [K(18c-6)]1 (200 mg, 0.128 mmol,
1.0 equiv) in THF (4 mL) at room temperature. The reaction mixture
was stirred overnight, resulting in a blue solution which was filtered.
The filtrate was layered with n-hexane (12 mL). After 3 days, blue
shimmering crystals had formed, which were isolated by decantation of
the mother liquor, washed with n-hexane (2 × 1 mL), and dried in
vacuo. The solid contained 0.4 equiv of n-hexane and 0.7 equiv of THF
after drying as indicated by 1H/13C{1H} NMR spectra and elemental
analysis. Yield: 186 mg (0.115 mmol, 89%). UV/vis: (THF, λmax/nm,
εmax/L·mol−1·cm−1): 330 (22 000), 375sh (14 000), 570 (15 000), 725
(10500). 1H NMR (400.13 MHz, 300 K, THF-d8): δ/ppm = 1.11−1.16
(m, 12H), 2.78 (sept., 3JHH = 6.9 Hz, 2H), 3.45 (br s, 24H), 5.06 (s,
2H), 5.50 (d, 3JHH = 7.1 Hz, 2H), 6.22−6.26 (m, 2H), 6.41−6.46 (m,
8H), 6.51−6.59 (m, 4H), 6.65−6.70 (m, 4H), 6.79−6.81 (m, 4H),
6.85−6.86 (m, 2H), 6.90−7.10 (m, 14H), 7.24 (d, 3JHH = 8.2 Hz, 2H),
7.31−7.33 (m, 4H), 7.57−7.59 (m, 4H), 7.96 (s, 2H). 13C{1H} NMR
(100.66 MHz, 300 K, THF-d8): δ/ppm = 23.9 (s), 24.3 (s), 34.2 (s),
51.1 (s), 52.5 (s), 71.1 (s), 120.7 (s), 122.9 (s), 125.3 (s), 125.6 (s),
125.7 (s), 125.9 (s), 127.4 (s), 127.5 (s), 127.6 (s), 127.7 (s), 128.0 (s),
128.2 (s), 130.6 (s), 130.8 (s), 130.9 (s), 131.2 (s), 131.5 (s), 134.0 (s),
134.1 (s), 134.4 (s), 138.8 (s), 143.6 (s), 143.9 (s), 145.0 (s), 146.6 (s),
147.6 (s), 150.9 (s), 159.8 (s); C�S: not detected. 31P{1H} NMR
(162.04 MHz, 300 K, THF-d8): δ/ppm = 83.3−86.1 (m, 2P, PY), 97.8−
101.7 (m, 1P, PX), 127.6 (t, 1P, PA), for parameters obtained by
simulation, see Figure S3 and Table S1, SI. Anal. Calcd (%) for
(C95H92CoKN2O6P4S2)·(n-hexane)0.4(THF)0.7 (Mw = 1643.84 g·
mol−1) C 69.62, H 6.02, N 1.62, S 3.71; found C 69.25, H 6.07, N
1.48, S 4.11.

[K(18c-6)][(Ar*BIAN)Co(η3:η1-P4SN2(SiMe3)2)] [K(18c-6)]4). N,N-
Bis(trimethylsilyl)sulfurdiimide (19.8 mg, 22.6 μL, 0.096 mmol, 1.5
equiv) was added to a deep purple solution of [K(18c-6)]1 (100 mg,
0.064 mmol, 1.0 equiv) in THF (2 mL). The reaction mixture was
stirred at 35 °C for 6 days, resulting in a blue solution which was filtered.
n-Hexane (40 mL) was added while stirring, precipitating a purple solid,
which was isolated by filtration, washed with n-hexane (3 × 2 mL), and
dried in vacuo. Yield: 71 mg (0.040 mmol, 63%). UV/vis: (THF, λmax/
nm, εmax/L·mol−1·cm−1): 320sh (17 000), 550 (10 000), 710 (9000).
1H NMR (400.30 MHz, 300 K, MeCN-d3): δ/ppm = −0.14 (s, 9H),
0.09 (s, 9H), 1.11−1.17 (m, 12H), 2.76−2.88 (m, 2H), 3.55 (s, 24H),
4.66 (s, 1H), 4.98 (d, 3JHH = 7.1 Hz, 1H), 5.19 (s, 1H), 5.71 (d, 3JHH =
7.1 Hz, 1H), 6.06−6.19 (m, 7H), 6.32−6.36 (m, 2H), 6.47−6.59 (m,
7H), 6.73−6.77 (m, 2H), 6.81−6.98 (m, 11H), 7.03−7.32 (m, 16H),
7.43−7.48 (m, 3H), 7.95 (s, 1H), 8.49 (s, 1H). 13C{1H} NMR (100.61
MHz, 300 K, MeCN-d3): δ/ppm = 1.5 (d, 3JCP = 3.9 Hz), 4.7 (d, 3JCP =
3.1 Hz), 24.2 (s), 24.4 (s), 24.4 (s), 24.6 (s), 34.3 (s), 34.4 (s), 50.9 (s),
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51.3 (s), 51.6 (s), 52.0 (s), 71.0 (s), 120.5 (s), 120.7 (s), 123.0 (s),
123.3 (s), 125.5 (s), 126.0 (s), 126.1 (s), 126.1 (s), 126.2 (s), 126.2 (s),
126.6 (s), 127.5 (s), 127.7 (s), 127.9 (s), 128.1 (s), 128.1 (s), 128.1 (s),
128.2 (s), 128.3 (s), 128.4 (s), 128.7 (s), 128.7 (s), 128.8 (s), 129.3 (s),
130.7 (s), 131.2 (s), 131.2 (s,), 131.3 (s), 131.4 (s), 131.4 (s), 131.6 (s),
131.6 (s), 131.7 (s), 132.9 (s), 134.2 (s), 134.6 (s), 134.7 (s), 134.9 (s),
137.9 (s), 139.3 (s), 143.1 (s), 144.1 (s), 144.4 (s), 144.5 (s), 144.6 (s),
146.7 (s), 147.9 (s), 148.5 (s), 150.0 (s), 153.8 (s), 155.4 (s), 159.9 (s),
161.6 (s). 31P{1H} NMR (161.98 MHz, 300 K, MeCN-d3): δ/ppm =
−43.2 (dd, 1P, PY), − 12.4 (ddd, 1P, PX), 29.2 (ddd, 1P, PM), 118.8 (dd,
1P, PA), for parameters obtained by simulation, see Figure S7 and Table
S2, SI. 29Si{1H} NMR (79.49 MHz, 300 K, MeCN-d3): δ/ppm = −17.9
(d, 2JSiP = 16.6 Hz), 3.6 (d, 2JSiP = 6.1 Hz). Anal. Calcd (%) for
(C100H110CoKN4O6P4SSi2) (Mw = 1774.15 g·mol−1) C 67.70, H 6.25,
N 3.16, S 1.81; found C 67.29, H 6.29, N 3.04, S 1.72. TOF-MS (ESI,
MeCN): m/z(%) calcd. for C88H86CoN4P4SSi2

− [M−]: 1470.4424;
found 1470.4298.

[(Ar*BIAN)Co(η3:η1-P4SN2(SiMe3)3)] (5). A stock solution of Me3SiCl
(53.5 μL, 1.58 M in toluene, 0.085 mmol, 1.0 equiv) was added to a blue
solution of [K(18c-6)]4 (150 mg, 0.085 mmol, 1.0 equiv) in toluene
(3.5 mL). The reaction mixture was stirred for 3 h, over which the color
changed to purple. The suspension was filtered through a pad of silica
(0.5 × 1 cm) and washed with toluene (3 × 1 mL). The solvent was
removed and the purple residue extracted with n-hexane (8 mL). The
filtrate was concentrated to half of the original volume. Storage for 1 day
at room temperature and 1 day at −35 °C gave numerous shimmering
purple crystals, which were isolated by decantation of the mother liquor
and dried in vacuo. The crystalline solid contained 0.1 equiv of n-hexane
and 0.1 equiv of toluene after drying as indicated by 1H/13C{1H} NMR
spectra and elemental analysis. Yield: 82 mg (0.053 mmol, 63%). UV/
vis: (THF, λmax/nm, εmax/L·mol−1·cm−1): 330sh (17 000), 550
(11 000), 700 (14 000). 1H NMR (400.13 MHz, 300 K, C6D6): δ/
ppm = 0.05 (s, 9H), 0.20 (s, 9H), 0.38 (s, 9H), 1.09−1.14 (m, 12H),
2.58−2.71 (m, 2H), 5.40 (s, 1H), 5.43 (s, 1H), 5.55 (d, 3JHH = 7.1 Hz,
1H), 6.02 (d, 3JHH = 7.1 Hz, 1H), 6.17−6.21 (m, 1H), 6.29−6.33 (m,
1H), 6.49−6.56 (m, 4H), 6.62−6.76 (m, 10H), 6.92−6.94 (m, 2H),
7.03−7.21 (m, 10H, d (3JHH = 8.1 Hz) overlapping with d (3JHH = 8.2
Hz)), 7.27−7.34 (m, 8H), 7.37−7.37 (m, 1H), 7.41−7.44 (m, 7H),
7.46 (s, 1H), 7.51−7.53 (m, 2H), 7.72−7.74 (m, 2H), 7.97 (s).
13C{1H} NMR (100.61 MHz, 300 K, C6D6): δ/ppm = 2.8 (d, 3JPC = 8.1
Hz), 5.2 (dd, 3JPC = 5.9 Hz, 3.5 H), 5.7 (d, 3JPC = 1.8 Hz), 24.0 (s), 24.0
(s), 24.1 (s), 24.1 (s), 33.8 (s), 33.9 (s), 51.1 (s), 51.7 (s), 52.0 (s), 52.4
(s), 121.8 (s), 122.0 (s), 124.4 (s), 124.4 (s), 125.7 (s), 125.9 (s), 126.0
(s), 126.1 (s), 126.2 (s), 127.0 (s), 127.7 (s), 127.7 (s), 127.8 (s), 127.9
(s), 128.0 (s), 128.1 (s), 128.2 (s), 128.3 (s), 128.5 (s), 128.6 (s), 130.2
(s), 130.5 (s), 130.7 (s), 130.8 (s), 130.8 (s), 131.0 (s), 131.0 (s), 131.3
(s), 131.4 (s), 132.3 (s), 132.4 (s), 132.9 (s), 135.2 (s), 136.5 (s), 137.9
(s), 138.8 (s), 142.8 (s), 143.1 (s), 143.4 (s), 143.8 (s), 145.3 (s), 145.5
(s), 146.1 (s), 146.5 (s), 147.8 (s), 148.1 (s), 150.9 (s), 152.2 (s), 163.1
(s), 164.2 (s). 31P{1H} NMR (162.04 MHz, 300 K, C6D6): (AMXY)
spin system δ/ppm = −60.1 (dd, 1P, PY), −54.2 - −49.0 (m, 1P, PX),
47.9−50.8 (m, 1P, PM), 133.4−135.7 (m, 1P, PA), for parameters
obtained by simulation, see Figure S13 and Table S3. 29Si{1H} NMR
(79.49 MHz, 300 K, C6D6): δ/ppm = 7.4 (d, 2JSiP = 10.9 Hz), 9.3 (s),
11.6 (d, 2JSiP = 6.1 Hz). Anal. Calcd (%) for (C91H95CoN4P4SSi3)·
(toluene)0.1·(n-hexane)0.1 (Mw = 1543.93 g·mol−1) C 70.98, H 6.27, N
3.59, S 2.05; found C 71.33, H 5.88, N 3.51, S 2.07.

[(Ar*BIAN)Co(η3:η1-P4C(S)N(Cy)C(O)tBu)] (6a). Neat cyclohexyl
isothiocyanate (7.3 mg, 7.4 μL, 0.052 mmol, 1.4 equiv) was added to
a magenta-colored solution of 2 (50 mg, 0.037 mmol, 1.0 equiv) in
toluene (1.5 mL). The reaction mixture was stirred for 3 days, giving a
purple solution. The solvent was removed in vacuo. Subsequently, the
resulting purple residue was washed with n-hexane (3 × 0.5 mL) and
dried in vacuo yielding a deep purple powder. Complex 6a is stable in
solution even when heated to 50 °C for up to 3 weeks. Yield: 44 mg
(0.030 mmol, 80%). UV/vis: (toluene, λmax/nm, εmax/L·mol−1·cm−1):
330 (12 000), 430 (2500), 550 (5000), 720 (8000). 1H NMR (400.13
MHz, 300 K, C6D6): δ/ppm = 0.60−0.65 (m, 5H), 0.92 (s, 9H), 1.02−
1.05 (m, 12H), 1.16−1.22 (m, 3H), 1.46−1.49 (m, 2H), 2.58 (sept.,
3JHH = 6.9 Hz, 2H), 3.43−3.48 (m, 1H), 5.50 (s, 2H), 5.89 (d, 3JHH =

7.1 Hz, 2H), 6.22−6.26 (m, 2H), 6.64−6.65 (m, 6H), 6.71−6.75 (m,
2H), 6.82−6.98 (m, 10H), 7.06−7.15 (m, 14H), 7.19 (d, 3JHH = 8.2 Hz,
2H), 7.29−7.29 (m, 2H), 7.36−7.37 (m, 2H), 7.35−7.36 (m, 2H),
7.62−7.67 (m, 8H), 7.92 (s, 2H). 13C{1H} NMR (100.66 MHz, 300 K,
C6D6): δ/ppm = 24.4 (s), 24.5 (s), 26.1 (s), 26.6 (s), 29.0 (s), 31.2 (s),
34.4 (s), 44.1 (s), 51.7 (s), 53.3 (s), 67.1 (s), 122.6 (s), 125.4 (s), 126.5
(s), 126.6 (s), 126.9 (s), 127.3 (s), 128.4 (s), 128.5 (s), 128.5 (s), 128.7
(s), 129.0 (s), 129.2 (s), 130.6 (s), 130.9 (s), 131.1 (s), 131.4 (s), 132.6
(s), 135.2 (s), 136.8 (s), 139.0 (s), 143.5 (s), 145.3 (s), 146.0 (s), 146.3
(s), 148.5 (s), 149.7 (s), 164.3 (s), 183.1 (s); C�S: not detected.
31P{1H} NMR (162.04 MHz, 300 K, C6D6): δ/ppm = 86.3 (t, 1P, PM),
93.0 (br s, Δν1/2 = 2500 Hz, 2P, PE/X), 117.3 (t, 1P, PA); (161.98 MHz,
toluene-d8, 213 K): δ/ppm = 77.6 (dd, 1P, PX), 85.5 (t, 1P, PM), 105.3
(dd, 1P, PE), 118.0 (t, 1P, PA), for parameters obtained by simulation,
see Figure S19 and Table S4, SI. IR (solid state): ν/̃ cm−1 = 3058w,
3023w, 2953w, 2928w, 1944w, 1805w, 1727m (C�O), 1600w,
1533m, 1492s, 1446m, 1417m, 1369s, 1322m, 1297m, 1255w, 1193m,
1153w, 1101w, 1076w, 1035m, 1007m, 920w, 895w, 842w, 820m,
761m, 736s, 736m, 696s, 654m, 634m, 606s. Anal. Calcd (%) for
(C94H88CoN3OP4S) (Mw = 1490.65 g·mol−1) C 75.74, H 5.95, N 2.82,
S 2.15; found: C 75.60, H 5.93, N 2.58, S 1.75.

[(Ar*BIAN)Co(η3:η1-P4C(S)N(Ph)C(O)tBu)] (6b). Neat PhNCS (11.0
mg, 9.7 μL, 0.081 mmol, 1.1 equiv) was added to a magenta-colored
solution of 2 (100 mg, 0.074 mmol, 1.0 equiv) in toluene (2 mL). The
reaction mixture was stirred for 3 h, over which the color changed to
purple. The solvent was removed in vacuo, and the purple residue
extracted with n-hexane (30 mL). The mixture was filtered, and the
filtrate concentrated until incipient crystallization. Purple crystals
formed upon storage for 2 days at −35 °C. The crude product (84 mg)
was isolated by decantation of the supernatant. Recrystallization from
Et2O (2 mL) at −35 °C gave shimmering deep purple crystals, which
were isolated by decantation of the mother liquor and dried in vacuo.
The compound decomposes to new species (identified by ABMX and
AEMX spin systems in the 31P{1H} NMR spectrum) in solution at
ambient temperature over the course of hours. Yield: 69 mg (0.046
mmol, 63%). UV/vis: (toluene, λmax/nm, εmax/L·mol−1·cm−1): 325
(22500), 530 (9000), 710 (13 000). 1H NMR (400.13 MHz, 300 K,
C6D6,): δ/ppm = 0.76 (s, 9H), 1.00−1.03 (m, 12H), 2.55 (sept., 3JHH =
6.9 Hz, 2H), 5.45 (s, 2H), 5.80−5.82 (m, 2H), 5.85 (d, 3JHH = 7.1 Hz),
6.21−6.25 (m, 2H), 6.57−6.82 (m, 17H), 7.01−7.16 (m, 16H), 7.25−
7.29 (m, 6H), 7.31−7.34 (m, 6H), 7.57 (s, 2H), 7.74−7.76 (br m, 4H).
13C{1H} NMR (100.61 MHz, 273 K, toluene-d8): δ/ppm = 24.3 (s),
24.5 (s), 28.5 (s), 34.3 (s), 43.3 (s), 51.4 (s), 52.9 (s), 122.5 (s), 125.5
(s), 126.5 (s), 126.5 (s), 126.6 (s), 127.2 (s), 127.9 (s), 128.3 (s), 128.3
(s), 128.4 (s), 128.5 (s), 128.6 (s), 128.8 (s), 128.7 (s), 128.9 (s), 130.1
(s), 130.2 (s), 130.7 (s), 130.9 (s), 131.1 (s), 132.0 (s), 135.2 (s), 136.6
(s), 138.7 (s) 141.6 (s), 142.7 (s), 145.0 (s), 145.8 (s), 146.2 (s), 148.5
(s), 149.0 (s), 164.4 (s), 182.2 (s); C�S: not detected. 31P{1H} NMR
(162.04 MHz, 300 K, C6D6): (AB2X) spin system δ/ppm = 95.5−98.8
(m, 1P, Px), 103.8−109.5 (m, 3P, PA/PB), for parameters obtained by
simulation, see Figure S23 and Table S5. IR (solid state): ν ̃/ cm−1 =
3056w, 3023w, 2956w, 2924w, 2160w, 2031w, 1735w (C�O), 1685w,
1598w, 1530w, 1492m, 1450m, 1471m, 1361w, 1296w, 1253w, 1192w,
1163w, 1075w, 1030w, 949w, 917w, 894w, 820m, 737m, 695s, 655m,
605m. Anal. Calcd (%) for (C94H82CoN3OP4S) (Mw = 1484.60 g·
mol−1) C 76.05, H 5.57, N 2.83, S 2.16; found: C 76.34, H 5.69, N 2.82,
S 1.97.
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