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depression are believed to compensate for monoaminergic 
and anticholinergic neurotransmitter shifts [2], but it takes 
several weeks for a clinically meaningful onset of action to 
occur. Thus, there is a need for rapid-acting antidepressants 
using novel pharmacologic targets. For example, ketamine 
has been shown to induce relatively rapid but short-lasting 
improvement in depressive symptoms via the glutamate 
system [3]. Benzodiazepines are comparably fast-acting 
and widely used anxiolytic compounds [3–6]. However, 
side effects such as tolerance development and abuse lia-
bility limit their use for medium- and long-term treatment 
[3–6]. Benzodiazepines do not have sustained antidepres-
sant properties [7–10]. Therefore, other treatment options, 
that produce rapid antidepressant and/or anxiolytic effects 
without the side effects of benzodiazepines are needed for 
the treatment of affective disorders. Most of the available 

Introduction

Major depressive disorder (MDD) is a serious condition 
with a high 12-month prevalence of about 6% and a lifetime 
incidence of about 16% [1]. Unmet needs include the lim-
ited efficacy of antidepressants, particularly their slow onset 
of action. Most antidepressants commonly described in 

  Marco Riebel
Marco.Riebel@medbo.de

1 Department of Psychiatry and Psychotherapy, University 
Regensburg, Universitätsstrasse 84, 93053 Regensburg, 
Germany

2 U1195 Inserm and University Paris-Saclay, Le Kremlin-
Bicêtre, Paris 94276, France

Abstract
Recently, the gamma-aminobutyric acid (GABA) system has come into focus for the treatment of anxiety, postpartum 
depression, and major depressive disorder. Endogenous 3α-reduced steroids such as allopregnanolone are potent positive 
allosteric modulators of GABAA receptors and have been known for decades. Current industry developments and first 
approvals by the U.S. food and drug administration (FDA) for the treatment of postpartum depression with exogenous 
analogues of these steroids represent a major step forward in the field. 3α-reduced steroids target both synaptic and extra-
synaptic GABAA receptors, unlike benzodiazepines, which bind to synaptic receptors. The first FDA-approved 3α-reduced 
steroid for postpartum depression is brexanolone, an intravenous formulation of allopregnanolone. It has been shown to 
provide rapid relief of depressive symptoms. An orally available 3α-reduced steroid is zuranolone, which also received 
FDA approval in 2023 for the treatment of postpartum depression. Although a number of studies have been conducted, 
the efficacy data were not sufficient to achieve approval of zuranolone in major depressive disorder by the FDA in 2023. 
The most prominent side effects of these 3α-reduced steroids are somnolence, dizziness and headache. In addition to the 
issue of efficacy, it should be noted that current data limit the use of these compounds to two weeks. An alternative to 
exogenous 3α-reduced steroids may be the use of substances that induce endogenous neurosteroidogenesis, such as the 
translocator protein 18 kDa (TSPO) ligand etifoxine. TSPO has been extensively studied for its role in steroidogenesis, 
in addition to other functions such as anti-inflammatory and neuroregenerative properties. Currently, etifoxine is the only 
clinically available TSPO ligand in France for the treatment of anxiety disorders. Studies are underway to evaluate its 
antidepressant potential. Hopefully, neurosteroid research will lead to the development of fast-acting antidepressants.
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antidepressants are based on the concept of monoamine 
reuptake inhibition, e.g., selective serotonin reuptake inhibi-
tor (SSRIs). Recently, however, the GABAergic system has 
come into focus with the industrial development of GAB-
Aergic steroids as novel treatment options for postpartum 
depression and major depressive disorder. Moreover, given 
the discrete signs of neuroinflammation in depression as 
revealed by positron emission tomography (PET) studies 
for the translocator protein 18 kDa (TSPO) and the ability 
of TSPO ligands to promote endogenous steroidogenesis [5, 
11], TSPO ligands may represent an interesting alternative 
to the administration of exogenous steroids.

Therefore, we discuss below recent developments in the 
treatment of depression and postpartum depression using 
GABAergic steroids in relation to their mechanism of action 
and in relation to TSPO ligands.

Steroids: synthesis and mechanisms of action

Steroids present in the brain originate from both steroido-
genic tissues, e.g., the adrenal cortex and also from a local 
synthesis [12]. Cholesterol is a substrate for the transloca-
tor protein 18 kDa (TSPO), which serves as a channel to 
transport cholesterol into the mitochondrial matrix [13, 14]. 
There, steroids are formed from cholesterol (Fig. 1).

An initial steroid is pregnenolone, which is converted 
to progesterone and deoxycorticosterone. These steroids 
are further reduced via the 5α-reductase and then by the 
3α-hydroxysteroid oxidoreductase that works in both direc-
tions [12] to produce 3α-reduced steroids, such as allo-
pregnanolone and 3α,5α-tetrahydrodeoxycorticosterone 
(3α5α-THDOC), that are positive allosteric modulators 
of GABAA receptors. Steroid binding occurs mainly at 
ß-subunit interfaces [15], whereas the benzodiazepine 
binding site is determined by the differential composition 
of α-subunits [16], thereby enhancing GABA-gated chlo-
ride currents. GABAA receptors can be differentiated into 
synaptic and extrasynaptic GABAA receptors. Synaptic 
GABAA receptors, which are targeted by benzodiazepines 
and 3α-reduced steroids, show a widespread expression pro-
file and mediate a phasic inhibition. Extrasynaptic GABAA 
receptors, however, are targeted by 3α-reduced steroids and 
confer tonic inhibition with a more region-specific expres-
sion profile [17] (Fig. 2). As 3α-reduced steroids target both 
synaptic and extrasynaptic GABAA receptors [18–20], this 
may contribute to their unique pharmacological profile. It 
is also noteworthy that while benzodiazepines prolong the 
fast phasic postsynaptic response of γ2 subunit-containing 
GABAA receptors, 3α-reduced steroids additionally evoke 
a tonic persistent inhibitory response involving extrasynap-
tic GABAA receptors containing the δ subunit [21]. These 

Fig. 1 Neurosteroidogenic pathway and therapeutic compounds. Left 
panel: 3α-reduced steroids are metabolites of progesterone. Their 
synthesis is catalyzed by the 5α-reductase and the 3α-hydroxysteroid 
oxidoreductase. The activity of the 3α-hydroxysteroid oxidoreduc-
tase may work both towards reduction and oxidation [92]. Right 
panel: Molecule structure of brexanolone and zuranolone. Brexano-
lone is an intravenous formulation of 3α, 5α-tetrahydroprogesterone 

(3α, 5α-THP, allopregnanolone). Zuranolone is a synthetic modifica-
tion of allopregnanolone and can be administered orally [11, 38, 43]. 
Brexanolone and zuranolone are approved by FDA for the treatment 
of postpartum depression, while zuranolone is still under investiga-
tion for major depressive disorder (MDD) and eventually for anxiety 
disorders
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differential effects on the time course and peak amplitude 
of GABA-evoked chloride currents may explain the differ-
ences in efficacy and side effect profile between 3α-reduced 
steroids and benzodiazepines.

Neurosteroids in depression

Studies investigating the composition of neurosteroids 
in depressed patients are rather rare. First clinical studies 
reported reduced levels of 3α-reduced steroids in corticospi-
nal fluid and plasma of depressed patients and a subsequent 
increase following SSRI treatment [22–24]. These findings 
are in line with molecular data showing that SSRIs or mir-
tazapine may increase concentrations of 3α-reduced ste-
roids through shifting the activity of the 3α-hydroxysteroid 
oxidoreductase towards the reductive direction (Fig. 1) [25, 
26]. This mechanism may contribute to the antidepressant 
and anxiolytic effects of these compounds. Moreover, fol-
lowing medication with different antidepressants we found 
an increase in 3β-reduced steroids, which exert functional 

antagonistic properties [22–24]. To investigate whether 
these changes in neurosteroid composition more likely 
reflect clinical response patterns, we did a series of studies 
with nonpharmacological treatments of depression such as 
sleep deprivation [27], repetitive transcranial magnetic stim-
ulation [28] and electroconvulsive therapy [29]. However, 
none of these treatments affected neurosteroid composition 
independent of treatment response. On the other hand, treat-
ment with mirtazapine normalized the altered neurosteroid 
pattern in both responders and non-responders to treatment, 
suggesting a pharmacological effect via neurosteroido-
genic enzymes [26]. Another study suggested alterations in 
neurosteroid composition also in perinatal depression [30]. 
Interestingly, in patients with premenstrual dysphoric dis-
order (PMDD), the sensitivity of exogenously administered 
allopregnanolone was shown to be dependent on the men-
strual cycle [31]. Although 3α-reduced steroids are altered 
in depression, these changes are far less pronounced than 
in postpartum depression and conflicting results have been 
reported on the relationship between hormonal changes and 

Fig. 2 Mechanism of action of etifoxine. Upper box: Molecule struc-
ture of etifoxine. Etifoxine has a dual mode of action. It is a TSPO 
ligand and promotes neurosteroidogenesis, which in turn modulate 
GABAA receptors, but also directly modulates α2 and α3 containing 
GABAA receptors (gray dotted arrows). It is approved in France for 
adjustment anxiety disorders and under investigation for the treat-

ment of depression by our group. Lower boxes: GABAA receptors 
are expressed both at synaptic and extrasynaptic sites with different 
expression patterns and physiological and pharmacological properties. 
While benzodiazepines target only synaptic receptors, neurosteroids 
modulate both synaptic and extrasynaptic receptors, which may 
explain their distinct clinical profile
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within 15 days of treatment when compared to placebo [42] 
and increased patient-reported quality of life within this 
time frame [43]. In addition, a recent meta-analysis pointed 
towards a beneficial effect of zuranolone within two weeks 
of treatment [44]. Several follow-up studies have been pub-
lished recently. A study with 50 mg zuranolone was able to 
reproduce the superiority over placebo on day 15 in reduc-
ing the Hamilton Depression Scale (HAM-D) score with the 
first signs of onset already on day 3 [45]. However, in the 
so-called MOUNTAIN study, zuranolone did not meet its 
primary endpoint at a dose of 30 mg on day 15 of treat-
ment [46]. In the SHORELINE study, an open-label phase 
3 trial, repeated treatment courses were offered as needed, 
with responders requiring fewer than two treatment courses 
during one year of follow-up [47]. Another recent meta-
analysis suggested antidepressant and anxiolytic efficacy of 
zuranolone with an optimal dose of 30 mg, with an increased 
risk of side effects with increasing the dose [48]. It is note-
worthy, however, that in contrast to postpartum depression, 
zuranolone has not been approved for major depressive 
disorder. Concerns have been raised about limited efficacy, 
incompatibility with breastfeeding, putative impairment of 
psychomotor function, and potential for abuse [49]. Other 
issues that need to be evaluated include how long the effects 
of zuranolone can be maintained after treatment is discon-
tinued, whether zuranolone can really work as an interval 
therapy requiring only short treatment intervals of 14 days, 
thereby changing the course of the disease without the need 
for maintenance or relapse medications, and whether zura-
nolone can be administered for a longer period of time in 
relation to side effects. So far, headache, somnolence and 
dizziness are the most prominent side effects within a two-
week treatment. The side effect profile over longer treat-
ment periods remains to be determined. It will be of great 
interest to see what the future potential of zuranolone in the 
treatment of major depressive disorder will be.

Structure and function of TSPO

An alternative to the administration of exogenous 3a-reduced 
steroids is the promotion of endogenous neurosteroidogen-
esis. Much research has focused on the translocator protein 
18 kDa (TSPO), suggesting it as a promising candidate for 
endogenous steroid formation. The following section on 
the structure and function of TSPO is taken in part from 
a recent review by our group in the same journal and pre-
sented again here for reasons of clarity [11]. The transloca-
tor protein 18 kDa (TSPO) is a 169 amino acid comprising 
protein of the outer mitochondrial membrane (OMM) [13, 
14], which is associated with other proteins residing in the 
OMM such as voltage-dependent anion channel (VDAC), 
but also with cytosolic proteins, e.g., the steroidogenic acute 

symptom onset [32]. Although the reported findings of alter-
ations in neurosteroid composition are subtle and only few 
studies are available, there is a good rationale for the thera-
peutic use of either exogenous or endogenous neurosteroids 
in affective disorders, which may provide a basis for novel 
treatment options.

Therapeutic effects of 3α-reduced steroids

Although 3α-reduced steroids and their behavioral proper-
ties have been known for decades, only recently industrial 
efforts have been undertaken to put these molecules for-
ward as therapeutic agents. The first neurosteroid to receive 
approval for the treatment of postpartum depression by the 
FDA is brexanolone [33]. The formula of brexanolone is 
identical to that of the naturally occurring allopregnano-
lone (Fig. 1). It is a special preparation for intravenous 
application, that should be administered for 60 h [34, 35]. 
In these two studies, a rapid, clinically meaningful anti-
depressant effect was observed that persisted throughout 
the study period of 30 days. The most common adverse 
effects were dizziness and headache. These findings were 
replicated in the HUMMINGBIRD clinical program with 
rapid improvement of depressive, anxiety and insomnia 
symptoms [36]. A post-marketing survey revealed no seri-
ous safety concerns for brexanolone, with sedation being 
the most serious side effect [37]. From a pathophysiologi-
cal perspective the administration of 3α-reduced steroids 
such as brexanolone may alleviate affective symptoms in 
postpartum depression [11]. After parturition, progesterone 
and its 3α-reduced metabolites show an enormous decline, 
which may cause affective symptoms and may be alleviated 
by exogenous administration of 3α-reduced steroids [5]. 
Thus, neurosteroid replacement may be directly related to 
the pathophysiology of postpartum depression. However, a 
practical inconvenience of brexanolone is the 60-hour intra-
venous infusion. An oral medication was needed and was 
introduced with zuranolone (Fig. 1), which solves the prob-
lem of administration. In 2023, zuranolone was approved 
by the FDA for the treatment of postpartum depression [38, 
39]. It was shown that zuranolone produced a reduction in 
depressive symptoms within 15 days of treatment that lasted 
until day 45 [39, 40]. In addition, zuranolone improved 
sleep patterns in a model of insomnia in healthy volunteers 
[11, 41]. In these studies, side effects of zuranolone were 
similar to those of brexanolone (headache, dizziness, and 
somnolence). The approval of two 3a-reduced steroids for 
postpartum depression represents a major breakthrough in 
the treatment of this mental disorder.

A series of studies have been conducted to further study 
the efficacy of zuranolone in major depressive disorder. 
Zuranolone significantly improved depressive symptoms 
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even predict the clinical response to celecoxib treatment in 
major depression [64], thereby highlighting the potential 
of TSPO ligands as personalized approaches both in diag-
nostics and for selecting treatment procedures in relation to 
their outcome. In patients suffering from PTSD, it has been 
shown that higher C-reactive protein (CRP) levels are asso-
ciated with lower prefrontal-limbic TSPO availability and 
PTSD severity [65]. Moreover, in neurodegenerative dis-
orders, such as Alzheimer´s disease but also in depression 
with cognitive impairment, upregulation of TSPO labeling 
has been reported in PET studies [62, 66]. However, TSPO 
expression should not unequivocally be considered as a 
marker of neuroinflammation, since also neuronal activa-
tion may increase TSPO levels [67]. These findings suggest 
that TSPO ligands exert antidepressant effects through their 
anti-inflammatory properties. Moreover, TSPO gene vari-
ants, such as the rs6971 Ala147Thr polymorphism, which 
affects ligand binding and cholesterol uptake, should be 
considered in clinical studies when assessing TSPO binding 
or function. For example, both bipolar disorder and diurnal 
cortisol rhythm in bipolar disorder have been linked to this 
TSPO polymorphism [68, 69].

Various TSPO ligands may display anxiolytic or putative 
antidepressant properties in rodents [11, 14, 70]. In a trans-
lational study, our group showed that the selective TSPO 
ligand XBD173 enhanced GABAergic neurotransmission 
in brain slices via the induction of neurosteroidogenesis 
and effectively reduced the number of pharmacologically 
induced panic attacks in rodents in the absence of sedation 
[70]. Moreover, XBD173 displayed anti-panic and anx-
iolytic efficacy in humans using an experimental anxiety 
paradigm involving a challenge with cholecystokinin tetra-
peptide (CCK-4). Whereas the benzodiazepine alprazolam 
caused sedation and withdrawal symptoms after only 7 days 
of treatment, these were absent in the XBD173-treated sub-
jects. Recent molecular studies using global or neuronal 
TSPO knockout mice further dissected the role of neuro-
nal TSPO for modulating anxiety- and depression-related 
behavior and the effects of XBD173 [57]. A recent animal 
study suggested that the TSPO ligand AC-5216 (XBD173) 
may exert rapid antidepressant and memory enhancing 
effects [71]. The capability of TSPO ligands to exert anxio-
lytic and antidepressant effects has also been demonstrated 
for other novel TSPO ligands such as YL-IPAo8 in a rat 
model of postpartum depression [72] or the antagonistic 
ligand ONO-2952 [73]. Therefore, TSPO represents a prom-
ising target for the development of fast-acting anxiolytics 
and antidepressants with a favorable side effect profile.

Currently, the only clinically available TSPO ligand is 
etifoxine (Fig. 2), which is approved in France. Etifox-
ine has a dual mode of action, as it targets TSPO but also 
directly α2 and α3 containing GABAA receptors [74]. Initial 

regulatory protein (StAR) and proteins of the inner mito-
chondrial membrane (IMM), such as the adenine nucleo-
tide transporter (ANT) [13, 14]. TSPO mediates numerous 
biological functions such as mitochondrial cholesterol 
transport, porphyrin transport and heme synthesis, apopto-
sis, cell proliferation, and transport of ions and metabolites 
[13, 14]. Although TSPO is particularly abundant in steroid 
producing tissues it can be found substantially also in the 
brain, liver, heart, and the immune system. The broad range 
of expression and its pleiotropic functional properties ren-
der TSPO an interesting target for many disease areas [13, 
14, 50]. Currently, the exact role of TSPO for steroidogen-
esis has been challenged by studies in various knock-out 
mice [51–53], where steroidogenesis remains unaffected by 
TSPO knockout.

Nevertheless, TSPO ligands exert numerous functions 
including anti-inflammatory properties, which on the one 
hand offer a much broader pharmacological profile but on 
the other hand should be considered when developing TSPO 
ligands for therapeutic purposes both in terms of clinical 
and side effects. Recently, some TSPO ligands, such as the 
benzodiazepine diazepam (which also has some affinity for 
TSPO [14]), have been shown to activate synaptic pruning, 
leading to increased synaptic C1q deposition, removal of 
excitatory synapses, microglial phagocytosis of synaptic 
proteins, and decline in cognitive function [5, 54]. Such 
findings of impaired cognitive function, which may be due 
to a loss of hippocampal and cortical excitatory synapses, 
may provide an explanation for why certain benzodiaz-
epines, such as diazepam, may cause cognitive impairment 
in humans. On the other hand, a recent study showed that 
the TSPO ligand XBD173 prevented the amyloid β-induced 
neurotoxicity and dendritic spine loss and even exerted pre-
cognitive effects in a mouse model of Alzheimer’s disease 
[55]. Thus, the question of whether TSPO ligands may have 
beneficial or even detrimental effects on cognition and in 
neurodegenerative disorders warrants further investigation.

TSPO ligands in the treatment of anxiety and 
depression

TSPO expression and activity [11, 13, 14, 56, 57] play an 
important role for psychiatric disorders and their treatment. 
A variety of studies have investigated the expression of 
TSPO in stress-related disorders [5, 11, 50]. These stud-
ies investigated either the expression of TSPO mRNA in 
peripheral mononuclear cells, the binding characteristics 
of the TSPO ligand PK11195 to platelet membranes, or 
protein expression in thrombocytes [58–60]. Meanwhile, 
various PET studies reported increased TSPO expression in 
depression [61, 62] and obsessive-compulsive disorder [63]. 
Recently, it has been suggested that TSPO PET imaging may 
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placebo and etifoxine samples from 25 subjects were com-
plete and could be analyzed. These were collected on day 5, 
60 min after the 12:00 midday medication intake (placebo or 
etifoxine). Steroid profiles were determined by means of a 
highly specific and sensitive gas chromatography coupled to 
tandem mass spectrometry analysis as described previously 
[53]. A two-sided t-test was performed between etifoxine 
and placebo samples per neurosteroid using a bootstrapped 
(k = 10,000) null distribution generated from the study data.

Figure 3 (Fig. 3) shows peripheral plasma lev-
els of pregnenolone (PREG), progesterone (PROG), 
5α-dihydroprogesterone (5α-DHP), 3α,5α-
tetrahydroprogesterone (3α,5α-THP, allopregnanolone), 
5α-dihydrodeoxycorticosterone (5α-DHDOC), and 3α,5α-
tetrahydrodeoxycorticosterone (3α,5α-THDOC) on a loga-
rithmic scale (absolute values are provided in Table 1).

In this clinical study, no effects of etifoxine were detected 
in the plasma of male volunteers. This is in contrast to find-
ings in rats, where etifoxine caused increases in progester-
one and 3α-reduced steroids in both brain and plasma [83, 
84] as well as in cellular systems [56]. Presumed differences 
in tissue-specific enzymatic machinery and between rats and 
humans preclude further conclusions. A part of the steroid 
pool, like allopregnanolone, is mainly formed in peripheral 
glands [85], whereas neuronal tissue provides enzymes such 
as the 5α-reductase and 3α-hydroxysteroid dehydrogenase 
to synthesize meaningful local concentrations of neuros-
teroids [85–87]. In rats, plasma levels are not fully corre-
lated and much lower compared to their levels in neural 
tissue [88, 89]. Although these findings seem to weaken the 
role of peripheral plasma levels of neurosteroids as sensi-
tive clinical biomarkers, measurable differences in plasma 
levels of specific neurosteroids could still be an important 
marker of pathological conditions with or without reflecting 
localized brain processes [90]. Ongoing clinical research in 
our group aims to study the sensitivity of peripheral steroid 
levels to therapeutic manipulation, e.g. by etifoxine treat-
ment under pathological conditions [91].

Etifoxine and GABAkines in the treatment of 
depression

Because TSPO ligands may induce neurosteroidogenesis, 
they may represent an alternative approach to exogenously 
applied 3α-reduced steroids such as brexanolone or zura-
nolone in the treatment of postpartum depression or major 
depressive disorder. As outlined above, our group is cur-
rently performing a first proof of concept study assessing 
the potential of etifoxine as adjunct treatment in depression 
in relation to neuroimaging and microbiome parameters. 
Moreover, modifications of the etifoxine molecule, such as 
the GABAkine GRX-917 [92], may provide TSPO ligands 

clinical studies with etifoxine have provided first evidence 
for a clinical anxiolytic effect, which showed comparable 
efficacy to the benzodiazepine lorazepam in patients suf-
fering from adjustment disorders with anxiety [75]. The 
anxiolytic effects of etifoxine comparable to clonazepam 
have recently been confirmed in a randomized controlled 
double-blind clinical trial in patients with anxiety disorders 
[76]. At the cellular level, we have characterized the effects 
of etifoxine in comparison to benzodiazepines regarding 
neurosteroidogenesis [56]. Moreover, our group recently 
described differential effects of etifoxine and alprazolam on 
hypothalamic-pituitary-adrenal (HPA) axis activity in the 
Trier Social Stress Test in Virtual Reality (VR-TSST) [77]. 
Furthermore, we recently showed that etifoxine but not 
alprazolam reduced the fear-potentiated startle in compari-
son to placebo in an experimental threat paradigm in healthy 
volunteers [78]. However, the brain circuits underlying the 
anxiolytic and/or anti-stress effects of TSPO ligands have 
not been identified so far. Therefore, we conducted a double 
blinded within-design study with healthy male volunteers 
to address this issue. In this study, we could also show dif-
ferential effects of etifoxine and alprazolam on GABAergic 
function as assessed by double-pulse transcranial magnetic 
stimulation (TMS) [79] and subtle effects on microbiome 
composition [80]. To address the question of whether eti-
foxine may affect peripheral steroid concentrations, steroid 
profiles were obtained in plasma in a subset of study partici-
pants which are reported below.

Steroid plasma profile following treatment with 
etifoxine

The study population of 36 male participants between the 
ages of 18 and 55 years was screened by a physician for 
the absence of physical and psychiatric disorders by physi-
cal examination and the German version of the Mini-Inter-
national Neuropsychiatric Interview (M.I.N.I.) [81, 82]. 
Study population and design are described in more detail 
elsewhere [79, 80]. The trial was registered at the European 
Clinical Trials Register (EudraCT number: 2018-002181-
40) and at the German Register of Clinical Studies (DRKS-
ID: DRKS00020267) and approved by the ethics committee 
of University of Regensburg and the German Federal Insti-
tute for Drugs and Medical Devices (BfArM). All partici-
pants gave their written informed consent. Throughout the 
experiment, participants were required to abstain from alco-
hol, driving, and the use of heavy machinery. The order of 
medication intake was pseudo-randomly assigned - placebo, 
alprazolam (1.5 mg/d in 3 doses of 0.5 mg) and etifoxine 
(150 mg/d in 3 doses of 50 mg) for 5 days each, with a 
washout period of at least 7 days between medications. Due 
to the complexity and expense of the steroid analysis, only 
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in progesterone after childbirth leads to a corresponding 
drop in 3α-reduced steroids, which may contribute to the 
psychopathology of postpartum depression. As a clinical 
consequence, the administration of exogenous 3α-reduced 
steroids has a solid pathophysiological rationale. In fact, 
the portfolio of studies presented has led to the approval of 
brexanolone and zuranolone for the treatment of postpartum 
depression. The situation is less clear in major depressive 
disorder. Although subtle changes in neurosteroid composi-
tion have been reported in major depressive disorder and 
anxiety disorders, and antidepressants have been shown to 
interfere with neurosteroidogenic enzymes, the magnitude of 
alterations is only marginal compared to postpartum depres-
sion. Nevertheless, it is intriguing that the study portfolio 
presented by SAGE/Biogen suggests a rapid antidepressant 
potential of zuranolone also in major depressive disorder. 
However, zuranolone has not been approved by the FDA 
for major depressive disorder due to several concerns that 
need to be addressed. According to the authors, the follow-
ing questions should be addressed: What will be the side-
effect profile after a more prolonged administration beyond 
14 days? Will there be abuse liability or tolerance effects? 
What will be the efficacy over a longer period of time? Will 
these agents find their place as a monotherapy or as adjuncts 
to standard antidepressants? Will interval therapy become 
a novel treatment regimen? Moreover, the induction of 
endogenous neurosteroidogenesis via TSPO ligands such 
as etifoxine or derivatives may be an interesting alternative 
approach. Will these two approaches provide similar clini-
cal effects, or will there be a different clinical profile given 

with improved pharmacokinetic properties. It is noteworthy 
that side effects such as sedation, tolerance development 
and abuse liability, which are typical for benzodiazepines, 
have not been reported for TSPO ligands so far, which fur-
ther supports their investigation as a novel treatment option.

Conclusion and outlook.
The neurosteroid field is known for decades. However, 

it has recently gained considerable interest due to indus-
trial efforts, e.g., by SAGE/Biogen, to develop 3α-reduced 
steroids such as brexanolone and zuranolone as novel ther-
apeutic agents for affective disorders. With respect to post-
partum depression, it is quite clear that the dramatic drop 

Table 1 Steroid profile in plasma following administration of etifoxine 
and placebo in healthy male volunteers. Mean and standard deviation 
of steroid concentrations in ng/ml. PREG: pregnenolone, PROG: pro-
gesterone, 5α-DHP: 5α-dihydrodroprogesterone, 3α,5α-THP: 3α,5α-
tetrahydroprogesterone, 5α-DHDOC: 5α-dihydrodeoxycorticosterone, 
3α,5α-THDOC: 3α,5α-tetrahydrodeoxycorticosterone
neurosteroid medication mean [ng/ml] standard deviation
PREG Etifoxine 5.222 2.486

Placebo 5.832 2.730
PROG Etifoxine 0.178 0.103

Placebo 0.148 0.095
5α-DHP Etifoxine 0.249 0.128

Placebo 0.317 0.162
3α,5α-THP Etifoxine 0.183 0.227

Placebo 0.190 0.131
5α-DHDOC Etifoxine 0.328 0.403

Placebo 0.264 0.646
3α,5α-THDOC Etifoxine 0.061 0.035

Placebo 0.056 0.044

Fig. 3 Steroid profile in plasma following administration of etifox-
ine and placebo in healthy male volunteers. Steroid concentrations 
in ng/ml are shown logarithmized on the y axis. Error bars indicate 
95% confidence intervals. No significant effect of the etifoxine on 

plasma steroids was detectable. PREG: pregnenolone, PROG: pro-
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