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Chapter 1

Introduction

1.1 Historical Background of Spintronics
Spintronics is a vast field ranging over many phenomena [1], which emerged
many decades ago. In spintronics, the electron’s spin degree of freedom plays
a significant role in addition to its charge. At the heart lies the ability to
control and manipulate the electron spin. This often refers to the orientation
of a spin ensemble, which can be utilized to realise various devices such as
magnetic random access memory [2, 3] or magnetic read heads [4, 5] for hard-
disk drives.

Although the field of spintronics did not exist in 1857, it was understood
that the resistance of bulk nickel and iron could be manipulated by changing
the direction of an external magnetic field [6]. This first observation of magne-
toresistance, where the resistance of a material can be altered in the presence
of a magnetic field, is based on spin-dependent scattering due to spin-orbit
coupling in the material [7]. At the time these experiments were conducted,
the electron spin and, thus, both spin-orbit coupling and the physical origin
of the magnetoresistance were unknown.

It was not until 1922 that the famous Stern-Gerlach experiment showed
experimentally that the electron spin exists [8–10]. In this experiment, a
beam of silver atoms was directed through an inhomogeneous magnetic field
and detected using a glass plate. The gradient in magnetic field caused the
atom beam to deviate from its original trajectory, resulting in a beam splitting
into two: one for silver atoms with a spin-up configuration and one for silver
atoms with a spin-down configuration, which contradicted predictions made
from classical physics. This experiment demonstrated that individual silver
atoms possess discrete magnetic moments, which are now known to depend
on the atom’s spin. In addition, this was the first time that the quantum-
mechanical ground state of a system could be determinded directly.
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CHAPTER 1. INTRODUCTION

Two fundamental spintronic effects are the tunneling magnetoresistance
(TMR) effect and the giant magnetoresistance (GMR) effect. The former was
first measured in 1975 by Jullière in Fe/Ge/Co junctions [11]. The TMR ef-
fect involves two ferromagnetic electrodes that are separated by a thin tunnel
barrier. Upon applying a voltage, the tunneling current through the junction
changes by varying the relative orientation of the two ferromagnetic layers.
This motivates spin valve measurements, where the relative change in resis-
tance between a parallel RP and an antiparallel RAP configuration can be
measured as TMR = ∆R/RP = (RP−RAP)/RP. This way, the electric signal
through the junction can be manipulated by means of an external magnetic
field. Butler et al. [12] predicted a large magnetoresistance using MgO as a
tunnel barrier, which eventually led to high TMR values at room temperature
for CoFeB/MgO/CoFeB junctions [13].

The giant magnetoresistance (GMR) effect was discovered in 1988 inde-
pendently by Grünberg [14] and Fert [15], for which they were awarded the
Nobel prize in 2007 [16]. The GMR effect can be achieved by sandwiching a
thin nonmagnetic, metallic layer between two ferromagnets. In the original
works by Grünberg and Fert, Fe/Cr/Fe multilayers were used. The resistance
of the system depends on the relative orientation of the two ferromagnetic
layers. In a parallel state, the resistance is low, while the resistance is large
in an antiparallel configuration.

Using the GMR or TMR effect, various devices can be realized [17]. The
main advantages are nonvolatility and the fact that the magnetization state
is retained after the power of the device is switched off. For most applications
a large magnetoresistance is required.

To obtain a large magnetoresistance, materials with a large spin polariza-
tion are of interest. This refers to the fact that there is a different number
of spin up electrons N↑ than spin down electrons N↓ at the Fermi energy
EF. For this reason, half-metallic magnets [18, 19] such as Heusler alloys [20],
manganite perovskites [21] or ferromagnetic oxides [20, 22] are of great inter-
est. These materials, however, exhibit low compatibility with semiconductors.
Therefore, diluted magnetic semiconductors (DMS), which represent another
group of magnets, have gathered considerable interest. In a DMS, a nonmag-
netic semiconductor, such as GaAs, is doped with magnetic elements, such
as Mn, in order to obtain magnetic properties. This approach enables com-
patibility between the magnetic components of a spintronic device with other
semiconductor components. GaMnAs, which falls into the group of DMS [23–
25], is the ferromagnetic material used in this work, which allows to fabricate
all-semiconductor devices.

One possible application for new (spintronic) devices is to replace the
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1.1. HISTORICAL BACKGROUND OF SPINTRONICS

FM Gate FM

Spin Spin Manipulation Spin
Injection Detection

(a)

(b)

Figure 1.1: Spin analog of a field-effect transistor. A spin-polarized current
is injected from the left ferromagnet (FM) into a nonmagnet towards a fer-
romagnetic drain, where the spins are detected. By means of a gate voltage,
the spin-orbit coupling in the nonmagnet can be varied, which causes the spin
ensemble to precess. (a) If the spin ensemble reaches the drain in a configu-
ration parallel to the drain’s magnetization, the current is large. (b) In the
case of an antiparallel configuration, the current is low. Adapted from [28].

field-effect transistor in logic circuits. In a field-effect transistor, the flow of
electrons in a conducting channel between the source and the drain can be
switched "ON" and "OFF" through the usage of a gate [26]. A spin-analog of
the field-effect transistor was proposed in 1989 by Datta and Das [27], and the
device is sketched in figure 1.1. It consists of a nonmagnetic (NM) transport
channel (shown in cyan), sandwiched between two ferromagnets (FM), which
serve as the source and drain contacts, respectively. Similar to a field-effect
transistor, the current flow through the transport channel can be controlled
with a gate, which however manipulates the spin and not the charge of the
electrons.

The left FM is utilized for spin injection. From here, a spin-polarized
current is driven into the transport channel, whereas the ferromagnetic drain
contact on the right serves for spin detection. In the NM, the spins precess
about the spin-orbit coupling vector, whose magnitude can be modified by
applying a gate voltage. As a result, the precession rate can be controlled
using a gate.
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CHAPTER 1. INTRODUCTION

At the transition between the NM and the FM on the right, the relative
orientation between the spins and the magnetization of the right FM is of
crucial importance. A parallel configuration, shown in (a), results in a large
current, while an antiparallel configuration, shown in (b), causes a low current.
Therefore, the current flow through the device can be controlled by varying
the gate voltage, which serves as a switch between "ON" and "OFF".

To realize the spin transistor, four requirements must be met: efficient
spin injection and spin transport, spin manipulation, and spin detection.
All-electrical spin injection and spin detection have already been realized
in various (semiconductor) materials, utilizing various ferromagnetic (half-)
metals for spin injection [29–35]. Our group has realized all-electrical, all-
semiconductor devices for spin injection and spin detection [36] in an inverted
(Al,Ga)As/GaAs 2DEG [37] and in an (In,Ga)As quantum well [38]. While
controlled spin manipulation has been demonstrated in our group by Eberle
et al. [39], this work adresses spin detection.

According to Moore’s law [40], the number of transistors in an integrated
circuit grows exponentially with time [41], which is a phenomenological obser-
vation that requires miniaturization of the components [42]. This introduces
several challenges. The spin transistor requires a clear single magnetic do-
main in the FM. Decreasing the size of the device and, therefore, the size of
the FM, has a drastic impact on its magnetic characteristics. Therefore, it is
advantageous to explore alternative means for spin detection that do not rely
on FMs. One such alternative for spin detection is a quantum point contact
(QPC).

This work investigates spin detection by means of a QPC, which acts as
an energy barrier. Due to a splitting in quasichemical potential between spin-
up and spin-down electrons, the transmission probability through the QPC is
spin dependent. This enables linear and nonlinear spin-to-charge conversion
for spin detection, which are both measured as a voltage-drop across the QPC.
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1.2. THESIS OUTLINE

1.2 Thesis Outline

This thesis investigates the detection of a spin accumulation by means of linear
and nonlinear spin-to-charge conversion in a quantum point contact (QPC).

By employing a spin Esaki diode, comprised of GaMnAs and AlGaAs/GaAs,
we inject a nonequilibrium spin accumulation into an inverted GaAs/AlGaAs
two-dimensional electron gas (2DEG). From here, the spin accumulation dif-
fuses into all directions.

Utilizing a second spin Esaki diode, the spin accumulation can be de-
tected with the spin valve method, which provides an established and well-
known experimental way of spin detection. The spin valve method requires
sharp magnetic switching of the magnetization of the GaMnAs, which con-
flicts with miniaturization. The alternative of utilizing linear and nonlinear
spin-to-charge conversion in a QPC for spin detection, which does not require
a ferromagnet, is investigated here.

Chapter 2 shows the theoretical background of spin injection. Here, a
spin accumulation is treated in terms of the spin quasichemical potential µs,
which gives access to the basic concepts of spin transport. In addition, the
basics of spin detection are described.

Chapter 3 introduces fundamental concepts of two-dimensional and one-
dimensional transport. This includes the 2DEG and the QPC. For the latter,
the characteristic step-like conductance behavior is derived.

Chapter 4 provides an overview of the material used, sample design and
fabrication as well as measurement methods. The spin Esaki diode, which is
used for spin injection, is described in detail. In addition, the layout of the
heterostructure used in this work is explained. The cleanroom practise for
sample fabrication required standard methods for nanofabrication, which are
covered in detail. In addition, the measurement setup is described.

Chapter 5 shows the experimental characterization of the wafer’s spin
injection and spin transport properties by well established means, i.e., by
(distance-resolved) spin valve measurements. In addition, the realization of
the QPC is discussed. This includes a suitable split-gate design as well as a
characterization of the QPC’s parameters.

Chapter 6 comprises the main part of this work: linear and nonlinear
spin-to-charge conversion in a QPC. First, the theory of spin-to-charge con-
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CHAPTER 1. INTRODUCTION

version is covered and the measurement setup is shown.
Next, measurement results for nonlinear spin-to-charge conversion are pre-

sented, followed by a section on the results of linear spin-to-charge conversion
experiments. In both cases, the focus is on demonstrating that the measured
signal is spin-related. In the case of nonlinear spin-to-charge conversion, this
includes distance-resolved measurements and the use of out-of-plane magnetic
fields, which suppress the spin-related signal. In the case of linear spin-to-
charge conversion, the measured signal is compared with theoretical predic-
tions. Finally, the results of nonlinear and linear spin-to-charge conversion
experiments are compared.

Chapter 7 gives a summary of the experimental results.

6



Chapter 2

Theoretical Background of Spin
Injection

2.1 Resistor Model

At thermodynamic equilibrium, the sum of drift and diffusion currents in an
electron gas vanishes. From this, the Einstein relation can be derived, which
connects the conductivity σ with the density of states D(EF) and the diffusion
constant D [28]:

σ = e2D(EF)D, (2.1)

where e is the electron charge. In a ferromagnet (FM), spin-up and spin-down
electrons have different densities of states and, therefore, different conductiv-
ities. Based on the work of Mott [43, 44], which treats spin-up and spin-down
electrons as separate channels, the process of spin injection from a FM into
a nonmagnet (NM) can be described by the simple resistor model, which is
shown in figure 2.1. In the resistor model spin-up and spin-down channels are
treated as two resistors in a parallel circuit, with R↑ and R↓ representing the
resistance for each respective channel. In a FM-NM-FM junction, the total
resistance R 1

R
= 1
R↑

+ 1
R↓

(2.2)

depends on the relative orientation of the magnetization of the FMs, which
are assumed to be aligned either parallel or antiparallel. The spin current Is
in the NM,

Is = I↑ − I↓ = (∆VNM,↑ −∆VNM,↓)/RNM, (2.3)

is the difference in current between spin-up I↑ and spin-down I↓ electrons.
RNM is the resistance of the NM and ∆VNM,↑/↓ is the voltage drop for the
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CHAPTER 2. THEORETICAL BACKGROUND OF SPIN INJECTION

respective spin in the NM, which depends on the relative magnetization of
the FMs. The resistor model, which was treated extensively by Schmidt et al.
[45], highlights the conductivity mismatch problem [46]: if the resistance of the
NM greatly exceeds the resistance of the FM, the spin current Is inside the
NM will vanish (right side in figure 2.1). It was suggested by Rashba [47], that
introducing a tunnel barrier (TB) between the FM and the NM would solve
this problem. The resistor model, as presented here, neglects events which can
change the spins orientation. As figure 2.1 suggests, spin-up and spin-down
electrons have different chemical potentials at the FM-NM interface. In the
next section, spins are treated in terms of the quasichemical potential close to
the FM-NM interface.

Vo
lta

ge

Distance Distance

FM FMNM FM FMNM

RFM RNM RFM RFM RFMRNM

parallel

antiparallel

Figure 2.1: Voltage drop of spin-up and spin-down electrons, which are treated
as two parallel circuits in a FM-NM-FM junction. Based on the relative
orientation of the two FMs, the total resistance of the junction changes. If
the resistance of the NM is much larger than the resistance of the FM, the
spin current inside the NM vanishes. Adapted from [45].

2.2 Spin Current and Diffusion
Before adressing spin injection from a FM into a NM by electrial means, basic
concepts of spin transport have to be introduced. Here, the notation used by
Fabian [48] will be adapted. In contrast to the electron density n, the spin
density s is not preserved with

n = n↑ + n↓

s = n↑ − n↓,
(2.4)
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2.2. SPIN CURRENT AND DIFFUSION

where n↑ and n↓ are the densities for spin-up and spin-down electrons, respec-
tively. From the random walk theory, the drift-diffusion equation for s reads

∂s

∂t
+ ∂

∂x

(
−µeEs−D

∂s

∂x

)
= ∂s

∂t
+ ∂

∂x
Js = − s

τs
, (2.5)

with µe and E being the mobility and electric field, respectively. D is the
diffusion constant, τs the spin relaxation time and Js the spin current.

Suppose a steady state spin current at x = 0 and zero electric field, i.e.,
Js(0) = −D∂s/∂x|x=0 = Js0. In this case, the solution to the diffusion
equation is

s(x) = Js0
Ls
D
e−x/Ls = s0 e

−x/Ls . (2.6)

The spin diffusion length Ls, which is related to the diffusion constant and
spin relaxation time by

Ls =
√
Dτs (2.7)

gives a characteristic lengthscale over which spins decay exponentially in
space.

Ls

Js

x

s

s0 ∝ Js0Ls

∝ e−x/Ls

Figure 2.2: By means of a spin cur-
rent Js, spin is accumulated at x =
0. The spin accumulation is propor-
tional to the spin current as well as
the spin diffusion length and decays
exponentially. While the spin cur-
rent can be generated by any source,
this figure suggests a flow of spins
from a ferromagnetic region into a
nonmagnet. Adapted from [48].

Instead of focusing directly on the spin density s, one can also get in-
sights into spin dynamics by considering the quasichemical potential µ(x),
which emerges away from equilibrium. For degenerate semiconductors, one
can assume local charge neutrality, i.e., no charge accumulation inside the
semiconductor. As a consequence, the quasichemical potential fully balances
the electrostatic potential: µ(x) = −φ(x). In a FM, the condition reads
D(µ + φ) + Dsµs = 0. The quasichemical potential can be different for spin-
up and spin-down electrons and the total quasichemical potential µ and the

9



CHAPTER 2. THEORETICAL BACKGROUND OF SPIN INJECTION

spin-quasichemical potential µs are defined as

µ = 1
2(µ↑ + µ↓)

µs = 1
2(µ↑ − µ↓).

(2.8)

In general, one can define any spin-resolved variable as Xs = X↑−X↓, including
the conductivity σ or density of states D. The current of a corresponding spin
species is related to a gradient of the quasichemical potential by

j↑/↓ = σ↑/↓∇µ↑/↓ (2.9)

with the respective conductivites σ↑/↓. Using equation 2.9, one finds

j = j↑ + j↓ = σ∇µ+ σs∇µs (2.10a)
js = j↑ − j↓ = σs∇µ+ σ∇µs. (2.10b)

Equation 2.10b describes spin-to-charge coupling in a FM, where σs 6= 0:
an applied voltage leads to a spin current, while ∇µs 6= 0 leads to a charge
current (see equation 2.10a). In a NM, the conductivities for spin-up and
spin-down electrons are equal, σ↑ = σ↓. In this case, a spin current is driven
by a gradient in the spin quasichemical potential.

Using local charge neutrality, one obtains an expression for the nonequi-
librium spin accumulation δs

δs = s− s0 = 4eµs
D↑D↓
D

, (2.11)

where D↑/↓ is the density of states for a given spin species and e is the electron
charge. Due to the linear relation with δs, the spin quasichemical potential is
also called spin accumulation.

Solving equation 2.10a for ∇µ, inserting into equation 2.10b and using
equation 2.11, the spin current becomes

js = Pσj + 4∇µs
σ↑σ↓
σ

(2.12)

with the conductivity spin polarization Pσ = σs/σ. Using the steady state
drift-diffusion equation 2.5 (∂Js/∂x = −δs/τs) gives a diffusion equation for
µs:

∇2µs = µs
L2
s

(2.13)

10



2.3. SPIN INJECTION AND DETECTION

with the generalized diffusion length

Ls =
√
Dτs (2.14)

and the generalized diffusion constant

D = D
D↑/D↓ +D↓/D↑

. (2.15)

2.3 Spin Injection and Detection

After Aronov proposed coupling between spin and charge in 1976 [49], Johnson
and Silsbee developed the thermodynamics of magnetization transport across
a FM-NM junction [50, 51]. The theory of spin injection was then treated by
van Son et al. [52], Valet and Fert [53], Fert and Jaffres [54] and by various
other authors [46, 47, 55–59].

Before adressing spin detection, spin injection through a FM-TB-NM junc-
tion will be discussed using the standard model of spin injection. In this
section, the notation used by Fabian [48] and Žutić [60] will be adapted.

Spin Injection

Under the assumption of a continuous spin current js, an expression for the
spin current polarization Pj = js/j can be derived.

Considering a FM-TB-NM junction at x=0, with the FM located on the
left (i.e., x<0) and the NM on the right (i.e., x>0) side of the TB, and solving
equation 2.13 for the NM/FM region gives

µsN = µsN(0)e−x/LsN (NM region)
µsF = µsF(0)ex/LsF (FM region),

(2.16)

where LsN/sF is the spin diffusion length for the NM and the FM, respectively.
Inserting the gradient of this result into equation 2.12 gives the spin current
polarization at the junction

PjN(0) = −1
j

µsN(0)
RN

PjF(0) = PσF + 1
j

µsF(0)
RF

,

(2.17)

11



CHAPTER 2. THEORETICAL BACKGROUND OF SPIN INJECTION

where the effective spin resistances have been introduced as

RN = LsN
σN

RF = σF
4σF,↑σF,↓

LsF.
(2.18)

In a similar way, the current spin polarization at the TB (denoted "c" for
contact) can be obtained as

Pjc = PΣ + 1
j

∆µs(0)
Rc

. (2.19)

Here, PΣ is the conductance spin polarization of the contact andRc = Σ/4Σ↑Σ↓
is the effective spin resistance of the contact. While the spin current through
the interface is continuous, the spin accumulation is not. The drop in quasi-
chemical potential through the TB follows from equation 2.19 as

∆µs = jRc(Pj − PΣ). (2.20)

Figure 2.3 shows the spin current and spin accumulation for the case of spin
injection, i.e., electrons flowing from the FM into the NM (j < 0). Both the
spin current as well as the spin accumulation decay exponentially away from
the contact region with their characteristic spin diffusion length. For j > 0,
one speaks of spin extraction.

distance

LsF

−js µs

distance

LsN LsF LsN

∆µs

FM NM FM NM

Figure 2.3: Upon spin injection from a FM into a NM, the spin current over
the junction is continuous (left side). The profile of the spin accumulation µs
is discontinuous at the FM-NM junction (right side). µs decays exponentially
away from the injection point with the spin diffusion length LsN and LsF for
the NM and FM, respectively. Adapted from [48]
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2.3. SPIN INJECTION AND DETECTION

The main result of the standard model of spin injection can be derived by
equating the results from equations 2.17 and 2.19 to be

Pj = PjF(0) = PjN(0) = Pjc, (2.21)

which yields the spin injection efficiency

Pj = RFPσF +RcPΣ

RF +Rc +RN
. (2.22)

If the resistance of the NM is much greater than the resistance of the FM and
no TB is present, then Pj → 0, which describes the conductivity mismatch
problem discussed at the end of section 2.1.

The spin-to-charge coupling equation 2.10a states that in a FM, a gradient
in the spin accumulation leads to a charge current. The right side of figure
2.3 (where j < 0) shows that ∇µs > 0, which implies a current counterpropa-
gating to the applied bias. From a physical point of view, the nonequilibrium
spin accumulation diffuses away from the contact into the FM, where spin
currents also cause a charge current. As a consequence, an additional resis-
tance, called the spin bottleneck effect, [61] emerges, which can be derived by
solving equation 2.10a for ∇µ and integrating the result for both the FM and
the NM regions separately. This gives the total quasichemical potential drop
over the FM-TB-NM area. From the presence of a spin accumulation in the
FM, a correction δR to the total serial resistance R̃N + R̃F + 1/Σ arises as

µN(∞)− µF(−∞) = (R̃N + R̃F + 1
Σ + δR)j. (2.23)

The expression for the spin bottleneck effect (also called spin-coupled resis-
tance) can finally be expressed as

δR = RN(P 2
ΣRc + P 2

σFRF) +RFRc(PσF + PΣ)2

RF +Rc +RN
. (2.24)

The correction to the serial resistance from the spin bottleneck effect is always
positive: δR > 0

Spin Detection

When injecting spins from a FM into a NM, a voltage is applied and a spin
accumulation inside the NM builds up. The inverse effect can be used for spin
detection: if a spin accumulation is generated in a NM in proximity to a FM,
an electromotive force (emf) appears in an open circuit. This emf can then be
measured as a voltage drop, which was proposed in 1980 by Silsbee [62] and

13



CHAPTER 2. THEORETICAL BACKGROUND OF SPIN INJECTION

experimentally realized in 1985 by Johnson and Silsbee [63].
The spin detection scheme is shown in figure 2.4. A spin accumulation

is injected into a NM channel, which then diffuses towards all directions,
i.e., towards the right and left side of the injection point in this case. As a
consequence, a spin current (js 6= 0), yet no charge current (j = 0), flows to
the right side of the channel, where an emf builds up at a second FM-NM
interface. This emf can be measured as a non-local voltage drop.

V

Spin Injection Spin Detection

FM FM

NM

Figure 2.4: Typical non-local spin detection scheme using Silsbee-Johnson spin
charge coupling [63]. Spins are injected from the left FM into the NM channel
and diffuse towards all directions (blue color gradient). Using a second FM-
NM interface, the spin accumulation can be measured as a non-local voltage
drop. Adapted from [48]

Considering a FM-NM interface at x = 0 and a spin accumulation in-
side the NM, far away from the interface µsN(∞) 6= 0 and using the charge
neutrality condition, the emf can be expressed as

emf = ∆µ− PσFµsF(0). (2.25)

Equations 2.10a and 2.10b can also be formulated for the contact region be-
tween the FM and the NM. Using j = 0, the quasichemical potential drop
across the interface reads

∆µ = −RcPΣjs(0). (2.26)

There are two contributions to the emf: the first one is a drop in quasi-
chemical potential aross the contact, which arises from Pσ 6= 0 - the contact
acts a spin filter. The second part is contributed by the spin polarization in
the ferromagnet.

Assuming that the spin current js is continuous across the interface, the
emf can be calculated as

emf = −RFPσF +RcPΣ

RF +Rc +RN
µsN(∞) = −PjµsN(∞). (2.27)

14



2.3. SPIN INJECTION AND DETECTION

By changing either the sign of µsN(∞) or Pj, i.e., changing the magnetization
direction of the injector or the detector, respectively, the emf switches in sign.
This way, the spin valve method can be employed, which gives experimen-
tal access to measuring a spin accumulation and determining spin transport
parameters. The spin valve method is covered in section 5.1.
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Chapter 3

Theoretical Background of 2D
and 1D transport

3.1 The two-dimensional Electron Gas (2DEG)
When two materials with different bandgaps are brought into contact, an elec-
tron transfer occurs at the heterojunction, where electrons can move freely in
the plane of the heterojunction and have quantized energy levels in a direc-
tion perpendicular to the plane [64]. The alignment of the respective bands
is given by Anderson’s rule [65].

In the case of a heterojunction between n-doped AlGaAs and undoped
GaAs, a triangular quantum well emerges, where the potential landscape close
to the heterojunction is linear. The solution to the Schrödinger equation is
given by the Airy function [66], which has to be calculated numerically [67].
If only the ground state in the quantum well is occupied, one refers to the
system as a two dimensional electron gas (2DEG).

The conduction band profile and the wave function of the aforementioned
hetreostructure is schematically shown in figure 3.1. Electrons from the n-
doped AlGaAs diffuse into the GaAs layer, where they get trapped and cannot
diffuse back. At the interface a 2DEG emerges. Due to the spatial separation
between the 2DEG and the ionized donors, the impact of ionized-impurity
scattering is greatly reduced [66]. This method of modulation doping is often
used to achieve high mobilities in a 2DEG.

3.1.1 2D Density of States
In a 2DEG, the energy dispersion is parabolic and reads [64]

E = E0 +
~2k2

||

2m∗ , (3.1)
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3.1. THE TWO-DIMENSIONAL ELECTRON GAS (2DEG)

Energy

EF

ε1

2DEG

n-AlGaAs GaAs

z

Figure 3.1: Conduction band profile (black) and wave function (red) of a
heterojunction between n-AlGaAs and undoped GaAs. Electrons from the
AlGaAs diffuse into the GaAs layer, where they get trapped and form a 2DEG.
Adapted from [66].

where k|| =
√
k2
x + k2

y is the in-plane wave vector, m∗ is the effective mass and
~ the reduced Planck constant. E0 is the energy of the first subband.

The perodicity in a crystal of length L demands that the wave vector of an
electron can only take certain values [26]. As a consequence, the number of
possible states per unit of k-space volume in two dimensions is Z = L2/(2π)2.
The number of possible states can also be examined in the energy space. Here,
the density of states D(E) refers to the number of states per unit energy and
unit area. The total number of states in k-space and energy-space has to be
the same, thus

∫ k(E+∆E)

k(E)
Z(k)d2k = 2 L2

(2π)2 2πk dk = D′(E)dE, (3.2)

where the factor 2 in the second term comes from the spin degeneracy. From
this, the density of states in 2 dimensions

D(E) = 2 2πk
(2π)2

dk

dE
= m∗

π~2 (3.3)

is constant and does not depend on unit energy.
At low temperatues the sheet carrier density then reads

n2D =
∫ ∞

0
D(E)f(E)dE = m∗

π~2 · EF, (3.4)

where f(E) is the Fermi-Dirac distribution and EF the Fermi energy, which
separates occupied states from unoccupied states.
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TRANSPORT

The Fermi wave vector kF and Fermi wavelength λF are given by

kF =
√

2m∗EF

~2 =
√

2πn2D

λF = 2π
kF

=
√

2π
n2D

.

(3.5)

For a 2DEG investigated in this work, λF ≈ 40 nm.

3.1.2 Transport Properties of a 2DEG

The diffusive transport properties of a 2DEG can be described by the Drude
model [68], where the electron’s movement in a conductor is governed by
classical mechanics. In an applied electric field Ex electrons are accelerated
until after a certain time interval, called the scattering time τ , a scattering
event takes place and the electron’s motion is changed to a random trajectory.
The average drift velocity vd and the carrier density ns in the conductor
determine the local current density j(r):

~j(r) = σ ~E = nse
2τ

m
~E = −ens~vD (3.6)

where σ is the conductivity, e and m the electron’s charge and mass, respec-
tively. The conductivity and the mobility µe are related via the expression
σ = nseµe.

Ballistic and Diffusive Transport

An important lengthscale is the mean free path lMFP = vFτ , with vF the Fermi
velocity. If the sample extends lengthscales L > lMFP, diffusive motion occurs
in the sample and the Drude model can be applied, while the ballistic regime
occurs for for L < lMFP, where the Drude model is inapplicable. Figure 3.2
shows the difference between diffusive and ballistic transport: in the former,
the main contribution to the transport properties is from scattering of elec-
trons at impurities, while for the latter, scattering at the sample boundaries
determines the current.

When applying a voltage V to a ballistic channel, the current I through
the channel is independent of the channel length L. As a consequence, the
conductance G = I/V is a global property of a ballistic sample.
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3.2. ONE-DIMENSIONAL SYSTEM: THE QUANTUM POINT
CONTACT (QPC)

Diffusive

Ballistic

L� lMFP

W

Figure 3.2: Schematic representation of diffusive (top) and ballistic (bottom)
electron transport. For diffusive transport, scattering in the channel domi-
nates the trajectory, while in the ballistic regime, only scattering at the sam-
ple boundary plays a role. Adapted from [69]

3.2 One-dimensional System: the Quantum
Point Contact (QPC)

A quantum point contact (QPC) is a system with clear ballistic transport
properties. A QPC is obtained when a 2DEG approaches its one-dimensional
limit by a further constriction of the order of the Fermi wavelength. Experi-
mentally, this constriction can be achieved using split-gates.

For a pair of split-gates expanding in y-direction, perpendicular to the
movement of electrons in x-direction, a saddle point potential emerges as
V = V0 − 1

2m
∗ω2

xx
2 + 1

2m
∗ω2

yy
2. In the saddle point potential only V0 has a

linear relation with the applied gate voltage, whereas the other parameters
remain constant [70]. ωx and ωy are the curvatures of the potential in x- and
y-direction, respectively.

The energy dispersion [68]

En(kx) = En + ~2k2
x

2m∗ (3.7)

is parabolic, where n is a quantum number representing a one-dimensional
mode in the channel. A mode is occupied if its energy En lies below the Fermi
energy.

At low temperatues, the total conductance of the channel becomes

G = 2 e
2

h
·N, (3.8)
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Vpot

x

y

Figure 3.3:
Representation of an
electron passing through
a saddle point poten-
tial V , which confines
a 2DEG in y-direction
to approach its one-
dimensional limit. The
potential originates from
applying a negative gate
voltage to a split-gate.

where N is the number of occupied modes, e2/h is the conductance of a one-
dimensional channel and the factor 2 comes from spin degeneracy. As the
gate voltage is decreased, modes become depopulated and the conductance
decreases as a step function from G(N)→ G(N− 1).

Quantized conductance was first observed in 1988 independently by van
Wees et al. [71] and Wharam et al. [72].

Conductance expressed through Transmission: the adi-
abatic Approximation

In a QPC electrons are forced to ballistically travel through a narrow constric-
tion with lengthscales shorter than the mean free path. As a consequence, the
Drude model for conduction cannot be applied. A suitable model is the Lan-
dauer approach [73–75] 1 as shown in figure 3.4, where two-dimensional elec-
tron reservoirs are connected to a one-dimensional channel. The conductance
is then expressed in terms of transmission and backscattering at the transi-
tion from the reservoir to the wire. If the change from the two-dimensional
to the one-dimensional region happens gradually, one speaks of a adiabatic
transition, where intersubband scattering is absent [76].

The adiabatic approximation was investigated by Glazman et al. [77] and
by Yacoby and Imry [78]. Here, the notation from reference [68] will be used.

1The Landauer approach considers two-terminal geometries and was extended by Büt-
tiker to describe multi-terminal setups, which is referred to as the Landauer-Büttiker for-
malism.
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eVSD
EF

EF + δµ

k

EF + δµ EF

x

2D 2D1D channel

(a) (b)

Figure 3.4: (a) In the Landauer approach, a one-dimensional channel is con-
nected to two-dimensional electron reservoirs. If a voltage is applied, the
chemical potential of the left reservoir is shifted. (b) Dispersion relation of
the one-dimensional channel. For k < 0, states are occupied up to EF + δµ
(filled dots) and unoccupied for greater energies (empty dots). For k > 0,
electron states are filled up to EF. Adapted from [76].

When the hamiltonian is separated into two parts

Hx = − ~2

2m∗
∂2

∂x2

Hyz(x) = − ~2

2m∗

(
∂2

∂y2 + ∂2

∂z2

)
+ V (x, y, z),

(3.9)

the solution of the Schrödinger equation for the total hamiltonian H = Hx +
Hyz can be written as

ψ(x, y, z) =
∑
n
ξn(x)χn(y, z;x), (3.10)

where χn(y, z;x) is the solution of the eigenvalue problem for Hyz. Projecting
ψ on a mode m and using ∂xχn ≈ 0 and ∂2

xχn ≈ 0 leads to a 1D energy barrier
problem:

− ~2

2m∗
∂2ξm(x)
∂x2 + V eff

m (x)ξm(x) = Eξm(x), (3.11)

where V eff
m is the effective potential an electron experiences. Using the ex-

pression for the quantum mechanical current, the total current through the
constriction is

Itot = 2e
h

∑
n

∫ +∞

−∞
dE Tn(E) [fR(E)− fL(E)] (3.12)
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with fL/R the Fermi-Dirac distribution at the left/right side of the constric-
tion and Tn(E) the energy dependent transmission coefficient. For low tem-
peratures and low applied source-drain voltage, the conductance of the QPC
becomes

G = 2e2

h

∑
n
Tn(E). (3.13)

(E − V0)/~ωx

∑ n
T n

(E
)

T0

Ttot

T1 T2 T3

0 2 4 6 8 10

0

1

2

3

4

Figure 3.5: Transmission coefficients Tn vor individual modes n (black) in a
QPC for ωy/ωx = 3 and the total transmission coefficient (red). As (E −
V0)/~ωx increases, Ttot increases as a step function. Adapted from [70].

For a saddle point potential (figure 3.3) the transmission coefficient of a
given mode takes the form [70]

Tn(εn) = 1
1 + e−πεn

(3.14)

which depends on the energy

εn = 2E − ~ωy(n + 1/2)− V0

~ωx
. (3.15)
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CONTACT (QPC)

The total transmission for the first four modes as well as the transmission
probabilities for the respective modes are plotted in figure 3.5 for ωy/ωx = 3.
When the barrier height of the constriction is decreased, the transmission
changes abruptly and the step-like increase of occupied modes typical for
QPCs is observed. Experimentally, the transmission through a QPC can be
altered by changing the split-gate voltage, which has a linear relation with E.

In this work, a QPC will be used as an energy barrier.
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Chapter 4

Methods

4.1 The Spin Esaki Diode
One obstacle for effective spin injection is the conductivity mismatch problem,
as described in section 2. In addition, the ferromagnetic semiconductors which
can be used in a heterojunction with III-V semiconductors are of p-doping [79,
80]. As a part of a spin Esaki diode [81], a p-doped ferromagnetic semicon-
ductor can be utilized for efficient electron spin injection while avoiding the
conductivity mismatch problem.

Part (a) in figure 4.1 represents the bandstructure of a spin Esaki diode
under zero bias. Due to the strong doping of both the ferromagnetic p-doped
and nonmagnetic n-doped layers of the p-n junction, the Fermi energy EF is
shifted to values below the valence band (VB) edge for the p-region and above
the conduction band (CB) edge for the n-region, respectively.

For an applied reverse bias as shown in (b) spin polarized carriers tunnel
from the VB of the p-region into the CB of the n-region, where a nonequi-
librium spin accumulation emerges. This way, a spin Esaki diode can be
utilized for efficient spin injection. Under forward bias, as shown in (c), a
spin-polarised current flows from the CB of the nonmagnet into the VB of the
ferromagnet. This results in a nonequilibrium spin accumulation due to spin
extraction, which is of the opposite sign compared to spin injection.

In this work, the spin Esaki diode is formed between GaAs and (Ga,Mn)As
[36, 37], which is a diluted magnetic semiconductor (DMS) [23]. A DMS com-
bines the attributes of both a semiconductor (such as bandstructure engineer-
ing via doping) and a ferromagnet [24]. In the case of (Ga,Mn)As, Mn ions
replacing the Ga cations introduce holes with a magnetic moment [23], i.e., the
ferromagnetism is mediated by charge carriers [82]. The magnetic properties
of (Ga,Mn)As can be tuned by various parameters such as Mn concentration
[83], illumination [84], electric fields (i.e., gating) [85] or doping [86, 87].
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4.1. THE SPIN ESAKI DIODE

p+ n+

EF

p+ n+ p+ n+

eU

(a) (b) (c)

eU

U = 0 U < 0 U > 0

Figure 4.1: Schematic representation of a spin Esaki diode, which is a p-n junc-
tion with both the p- and n-region heavily doped so that the Fermi energy
EF lies in the valence band (p-region) and in the conduction band (n-region),
respectively. The carriers in the valence band of the p-material are spin po-
larized. (a) Bandstructure for zero applied voltage. The carriers in the n-side
have no spin polarization. (b) Under reverse bias, spin-polarized carriers are
injected from the valence band of the p-region into the conduction band of the
n-region. (c) Under forward bias, spin-up electrons from the conduction band
of the n-region tunnel into the valence band of the p-region. The remaining
carriers in the n-region are spin-down polarized and one speaks of spin extrac-
tion. The bandstructure of the Esaki diode without (spin-polarized) electrons
is adapted from [26].

The devices in this work require two magnets with the same well-defined,
strong magnetic anisotropy axis, but different coercive fields. In a DMS, shape
anisotropy is weak due to its low magnetization values. As a consequence,
magnetocrystalline anisotropy determines the orientation of the easy axis [88],
which depends on various parameters such as temperature [89], carrier density
[80] and strain [90, 91]. For a Mn content of 3−6 %, temperatures below 4.2K
and compressive strain (as is the case for (Ga,Mn)As grown on GaAs) the easy
axis align with the [100] and [010] crystal directions [92, 93]. In addition, the
anisotropy can also be defined lithographically by patterning the (Ga,Mn)As
into narrow stripes [88, 94–97] to align the easy axis with the orientation of
the stripe. Controlling the anisotropy by lithographic means was used for the
samples fabricated in this work and will be described in section 4.3.

While (Ga,Mn)As was already used in 1999 to inject spin polarized holes
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CHAPTER 4. METHODS

into an (In,Ga)As quantum well [98], a spin Esaki diode was realized in 2001
by Kohda et al. [99] and in 2002 by Johnston-Halperin et al. [100].

4.2 Wafer Structure

In this work, fabricating a device suitable for efficient all-electrical spin in-
jection is centered around a spin Esaki diode, as described in the previous
chapter. For all-electrical spin detection additional requirements have to be
met. A spin polarized current must be able to flow from the point of injec-
tion into a transport channel from where efficient spin transport towards a
detection scheme is possible.

All of the aforementioned criteria are fulfilled by the wafer structure as
shown in figure 4.2. The wafers were grown via molecular beam epitaxy
(MBE) at the chair of Prof. Dr. Bougeard at the university of Regensburg.

Using (001) GaAs as a substrate, a 1000 nm GaAs/(Al,Ga)As superlattice
is grown, which consists of ∼ 100 GaAs and (Al,Ga)As layers each. The su-
perlattice reduces crystal strain and screens the effects of disorder, impurities
and other electric modulations at the tranport channel (an inverted 2DEG),
thus increasing its mobility. Next, 75 nm of Al0.33Ga0.67As is followed by a

Ga0.946Mn0.054As 50 nm

GaAs/(Al,Ga)As

Al0.33Ga0.67As 50 nm

GaAs 50 nm

n-GaAs 100 nm

GaAs n→ n+ 15 nm

Al0.33Ga0.67As 2 nm

Al0.33Ga0.67As 75 nm

2DEG

δ doping

superlattice 1000 nm

GaAs n+ 8 nm
Figure 4.2: Schematic representa-
tion of the wafer used for top-down
sample fabrication. The wafer,
from top to bottom, consists of
a GaMnAs - n+-GaAs heterostruc-
ture, which forms a spin Esaki diode
as the basis for efficient spin injec-
tion. Between the spin Esaki diode
and the 2DEG, which emerges in
a triangular quantum well formed
between GaAs and AlGaAs, the
dopant concentration in GaAs is
gradually reduced. The AlGaAs,
which is modulation doped 50 nm
away from the 2DEG, is grown on a
GaAs/(Al,Ga)As superlattice.
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4.2. WAFER STRUCTURE

delta-doping layer with Si as the dopant atoms, with a 50 nm Al0.33Ga0.67As
buffer layer on top. While contributing low impurity scattering [101, 102], the
delta-doping provides charge carriers for the inverted 2DEG, which forms in a
triangular quantum well between the Al0.33Ga0.67As and a 50 nm GaAs layer,
thus preserving high mobilities in the 2DEG. Subsequently, 100 nm of lightly
doped GaAs with a doping density of n = 5.7 · 1016 cm−3 is followed by a
15 nm GaAs transition layer, where the doping density is gradually increased
(n → n+) to align with the doping density of the final GaAs layer, which
is 8 nm thick with n+ = 5 · 1018 cm−3. The wafer is finalized with 50 nm of
Ga0.946Mn0.054As which forms a spin Esaki diode with the n+ GaAs layer. To
prevent diffusion of Mn into the wafer, a thin layer (2 nm) of Al0.33Ga0.67As is
grown in between the GaAs and the GaMnAs.

The wafer as presented here has a high charge carrier density at the 2DEG
and a nonzero charge carrier density between the 2DEG and the spin Esaki
diode. This way, carriers injected from the Esaki diode can reach the trans-
port layer. Between the points of spin injection and spin detection, however,
spin transport should take place exclusively in the 2DEG, which is achieved
by removing the top layers of the heterostructure via etching, where etch-
ing within the precise range of detch ∼ 55 − 60 nm is important. This way,
other conducting layers away from the 2DEG are removed, while conduction
within the 2DEG is still possible. More information on the bandstructure and
distribution of carrier density in the wafer is given elsewhere [103].

After cooling the sample down to cryogenic temperatues, the charge carrier
density ns of the sample is low. By illuminating the sample with a red LED, ns
can be increased due to the persistent photoeffect, where electrons occupying
DX centers in the Si atoms of the delta-doping layer are optically excited into
the 2DEG [104–106].

Experimentally, the quality of a 2DEG can be determined by utilizing mag-
netotransport measurements. From the slope of Hall measurements (black)
and the zero-field magnetoresistance (red) shown in figure 4.3, the carrier den-
sity ns and electron mobility µe were determined to be ns = 3.5 · 1011 cm−2

and µe = 5.9 · 105 cm2/Vs, respectively.
Additionally, the longitudinal resistance ρxx gives information if the charge

carrier transport occurs exclusively in the 2DEG, as intended. If either the
etching depth detch is too low or if the sample was illuminated for too long,
a transport channel parallel to the 2DEG is present. In the former case,
the parallel channel is in the n-GaAs layer, whereas it emerges in the delta-
doping layer in the latter case. A parallel transport channel manifests itself
as a component in the longitudinal resistance ρxx ∝ B2 which is parabolic in
the applied magnetic field B [66, 107]. In addition, the Shubnikov-de Haas
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Figure 4.3: Traces of Hall (black, RH) and magnetoresistance (red, ρxx) mea-
surements. From RH, the sheet carrier density ns can be determined, while
ρxx gives information about the electron mobility µe.

oscillations do not reach ρxx = 0 at large magnetic fields.

4.3 Sample Design and Fabrication
In this section, the basic device design well as sample fabrication are described.
Unless stated otherwise, all devices in this work were fabricated from the same
wafer with a layer structure as described in the previous chapter.

Sample Design

A sketch of a sample is shown schematically in figure 4.4 (a). It consists of
a transport channel (also called mesa), which is indicated by the light cyan
color. The mesa is connected to reference contacts (dark cyan) as well as
contacts for spin injection/detection (yellow), split-gate electrodes (orange)
and leads which enable magnetotransport measurements as well as probing
the voltage drop in the mesa across the area of the split-gates. Figure 4.4 (b)
schematically shows the cross section of a sample with regions including a spin
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contact, a transport section and a split-gate electrode. In the transport region
and for the split gates, parts of the wafer were etched away with an etching
depth detch = 55 − 60 nm to ensure that carrier transport is exclusive to the
2DEG (red). The split gate electrodes were deposited on top of an aluminum
oxide (AlOx) layer. For the split-gate, the spin and reference contacts, Au
was used as contact material.

detch

Spin contacts

Split gate

mesa

Au
AlOx

2DEG
GaAs

contact
Spin

gate
Split

(a) (b)

Figure 4.4: (a) Sketch of the sample design used in this work. It consists of
a mesa (light cyan), reference contacts (dark cyan), spin injection/detection
contacts (yellow) as well as split-gate electrodes (orange). (b) Representation
of the cross section of a device. Away from the spin contacts, parts of the
heterostructure were etched away. The split-gate electrodes were deposited
on an AlOx layer.

In this work, all devices have a mesa width of 20 µm. While usually indi-
vidual spin contacts are of various widths (∼ 300−700 nm) to ensure different
coercive fields, which enables the usage of the spin valve method (see section
5.1), some devices were made with all spin contacts having the same geometry.
The distance between individual spin contacts is usually of the order of the
spin diffusion length or smaller. The spatial separation between the leads for
measuring the voltage drop across the area with split-gate electrodes was kept
as small as possible, typically ∼ 6 µm. Detailed information on the shape of
the split-gates is given in section 5.2.1.

It has to be noted that the reference contacts are of the same structure
as the spin contacts, i.e., they also consist of spin-Esaki diodes. However, if
the reference contacts are sufficiently far away from a spin accumulation, no
emf builds up across the contacts, as the spins dephase on length scales much
greater than the spin diffusion length [108]. With a typical distance of 300 µm
between the referece contacts and the spin injection contacts, spin detection
experiments are feasible.
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Sample Fabrication

Sample fabrication was done in the cleanroom at the university of Regens-
burg using a top-down approach, where standard semiconductor processing
techniques were used. In the following, the steps for fabricating a device will
be described, whereas detailed information on the physics and optimization
of fabrication steps is given in reference [109].

Ar+

(b) (c) (d)

(e) (f) (g) (h)

(a)

2DEG Ga(Mn)As Resist AlOx Au

wet chemical
etching

Au

AuAlOx

Figure 4.5: Illustration of the various steps during device fabrication. (a)
Mesa definition by physical etching. (b) Mesa after removing resist residuals.
(c) After development of a positive resist, Au is evaporated on the sample.
(d) After lift-off, only the Au which adhered to the sample remains. (e)
Wet chemical etching of the sample. The Au acts as an etching mask. (f)
Deposition of AlOx. (g) Evaporating split-gate electrodes on the sample. (h)
Schematic sketch of the final sample.

The whole sequence of sample fabrication is shown in figure 4.5. In the
first step (a), a wafer piece, which is typically 5.5mm × 5.5mm large, is
coated with a negative e-beam resist (AR-N7500.18). After illumination and
development, chemically assisted ion beam etching (CAIBE) with argon is
used to define the basic device structure. By removing all conducting layers
from the heterostructure, charge transport is now limited to the mesa (b).
The precise etching depth dCAIBE > 270 nm is not important. In addition to
acetone, an O2 plasma can be used to carefully eliminate any residual resist
from the sample.

In the next electron beam lithography (EBL) step, the positive resist
PMMA is used to pattern the spin contacts and reference pads (c). In oder to
connect the spin contacts with the substrate, the thickness of the evaporated
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Ti/Au must exceed dCAIBE. Directly before evaporating the Ti/Au layers, the
sample’s native oxide layer is removed by putting it into a HCl:H2O solution1.
As the thickness of Ti/Au is large (35/400 nm, respectively, was used), 3 lay-
ers of PMMA were spin coated on the sample. This enables a clean lift-off
(d). It has to be noted, that during evaporation, Ti and Au adhere to both
the sample and to the photoresist. During lift-off, any metal on the resist is
washed away. For simplicity, the Ti/Au on the resist is not shown in figure
4.5.

Away from the spin and reference contacts, charge carrier transport exclu-
sive to the 2DEG is desired (see section 4.2). Utilizing wet chemical etching
with acetic acid (10C2H4O2:1H2O2:10O2) parts of the heterostructure are re-
moved (e). In this step, the previously evaporated Au acts as an etching mask.
The precise etching depth of detch = 55−60 nm has to be reached. If the etch-
ing depth is too low, then a parallel transport channel in the mesa exists,
which is visible in ρxx in magnetotransport measurements. If the sample is
etched for too long, then all conducting layers in the mesa are removed. For
the latter case it has to mentioned, that the sample is still conducting at room
temperature and that the missing transport channel only becomes apparent
at cryogenic temperatures, where the sample then is no longer conducting. In
order to remove the amount of material as demanded, the process of etching
can be devided into multiple steps until detch = 55 − 60 nm is reached. The
etching rate depends on multiple factors such as the used acid, temperature
of the etching solution or passed time after the solution was mixed [109].
However, if all parameters are kept the same, etching rates and results are re-
producible and the etching can be done in one step. Atomic force microscopy
(AFM) was used to observe the etched depth.

Using atomic layer deposition (ALD), 50 nm AlOx (Al2O3) was grown (f)
as an insulator for the gate electrodes at a temperature of 150 °C. Before
mounting the sample in the ALD chamber, the sample was again immersed
in an HCl:H2O solution after which a 10 nm SiO2 seed layer was grown using
plama enhanced chemical vapor deposition (PECVD).

In the final steps, the split-gate electrodes are defined using PMMA as
photoresist (g). Here, immersing the sample in HCl:H2O before evapora-
tion of Ti/Au was omitted. The split-gate electrodes must be thin enough
to allow transmission of light. The metal thicknesses of 2/20 nm for Ti and
Au, respectively, are not enough to electrically contact the gate to the sub-
state. Consequently, the contacts for the gate were defined in a separate EBL

1After the dip in HCl:H2O, it is important to rinse the sample with H2O, otherwise the
Ti/Au does not adhere well. This was one of the many things that were learned the hard
way.
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step, where again 35/400 nm of Ti/Au were evaporated, connecting the gate
electrodes at the edge of the mesa with the substrate. A scanning electron
microscope (SEM) image of the contact between a split-gate electrode and the
substrate is shown in figure 4.6 (c). The final sample is schematically depicted
in figure 4.5 (h).

Utilizing standard wire bonding, the sample is electrically connected to
a chip carrier. While any large contact pads (∼ 150 µm × 150 µm) on the
mesa can be bonded directly, the spin contacts and split-gates were connected
through larger contact pads on the substrate.

(a)

(b) (c)

Figure 4.6: (a) Drawing of the mesa layout (left) and the final sample (right).
The inset shows a scanning electron microscope (SEM) picture of the device.
(b) SEM picture of a pair of split-gate electrodes. (c) SEM image of the
contact between a split-gate electrode and the substrate.

The layout of the mesa is shown on the left side of figure 4.6 (a), while
the drawing in the middle represents the final sample. As the Au of the spin
contacts and reference pads is covered in AlOx, it appears darker than the
metal of the split-gate and its contacts. The inset shows a SEM picture of the
area around the split-gates. It consists of four spin contacts to the left and to
the right of the split-gates each, leads for measuring a potential drop and a
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pair of split-gate electrodes in the middle. Figure 4.6 (b) shows a SEM image
of a pair of split-gates from a close distance.

Sample fabrication was one of the main challenges in this work, partly due
to the sheer number of process steps needed and the necessity for accurate
alignment. More detailed information on the challenges of obtaining a finished
device is given elsewhere [110].

4.4 Measurement Setup
To utilize the magnetic properties of a material, it must be maintained at a
temperature below its Curie temperature. In this work, the heterostructure of
the utilized wafer includes (Ga,Mn)As, a ferromagnetic semiconductor, which
has a Curie temperature ∼ 60K. Unless otherwise specified, measurements
were done in a cryostat at temperatures of 1.4K, which is significantly below
the Curie temperature.

By employing superconducting coils, which are immersed in liquid helium,
external magnetic fields up to ±14 T can be applied. Furthermore, the sample

Voltage-Amplifier

source

S D

voltage

adder
AC/DC

converter
I/V

VDC

source
voltage

VAC

source
voltage

VDC

V

V

Figure 4.7: Measurement setup which enables the observation of quantized
conductance. At the source of the mesa (denoted S), an AC/DC adder is
used to superimpose an applied alternating voltage with a constant voltage.
At the drain of the mesa (denoted D), an I/V converter is connected to a
multimeter to detect the current flow through the mesa. During measurement,
the applied voltage to the split-gates (orange) is swept by a DC voltage source.
The longitudinal voltage drop in the mesa across the region adjacent to the
split-gates is connected to a voltage amplifier and read out by a multimeter.
When measuring quantized conductance, no device is connected to any spin-
contacts (yellow).
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can be rotated within the cryostat, allowing for a transition between an in-
plane and out-of-plane orientation of the applied magnetic field.

In general, standard lock-in measurement techniques were used and mea-
surements were done at an excitation frequency of 19Hz unless stated other-
wise. The setup to measure quantized conductance and characterize a QPC is
shown in figure 4.7. Between the source and drain of the mesa, an AC voltage
VAC is supperimposed with a DC voltage VDC using an AC/DC adding device,
which was developed at the chair of Prof. Dr. Bougeard [111]. At the drain,
an I/V converter is connected to a multimeter which allows to measure the
current flow through the device. A second DC voltage source is used to apply
and sweep the voltage at the split-gates of the QPC. By utilizing a voltage
amplifier, which is connected to a multimeter, the four-terminal voltage drop
across the area of the split-gates can be measured.
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Chapter 5

Experimental Results: Spin
Valve and Quantized
Conductance

The scope of this work is to use a QPC to detect a spin accumulation. There-
fore, two conditions must be met. First, a spin accumulation must be injected
and travel to a point of detection. The second condition is that quantized
conductance must be achieved.

5.1 Spin Valve
To detect a spin accumulation in a material by all-electrical means, the spin
valve method can be employed. Here, two different geometries are available.
One possibility is to utilize a local, two-terminal setup, where a fixed current
is applied between two ferromagnetic (FM) electrodes, which are separated
by a nonmagnetic (NM) transport channel. If sweeping an external magnetic
field and measuring the voltage drop between the pair of ferromagnets gives
rise to a spin valve pattern, a spin accumulation is present. In this type
of measurement setup, however, measurement components unrelated to spin
transport can influence the obtained signal. An additional voltage drop may
be caused by contact resistances and other effects [112], such as anisotropic
magnetoresistance [113].

These challenges can be avoided by utilizing a non-local measurement con-
figuration. In this four-terminal setup, as shown in figure 5.1, a bias is applied
between a FM and a reference contact, i.e., spins are injected, while a volt-
age drop VNL is measured between a second FM-reference contact pair. It is
important to note that a spin current, but no charge current flows between
the ferromagnetic contacts. This spin current arises due to spin diffusion from
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Figure 5.1: Non-local spin
valve measurement setup.
Spins are injected into the
left side of the mesa by
applying a current between
a given FM contact and a
reference contact. The spin
accumulation then diffuses
in all directions. At any
point in the channel, the spin
accumulation can be detected
by measuring a non-local
voltage drop between a cor-
responding FM contact and
a second reference contact.
Between the various FMs no
charge curernt flows.

the point of spin injection towards the second FM, where the aforementioned
non-local voltage drop can be measured due to Silsbee-Johnson spin charge
coupling [63].

Since the spin transport is based on diffusion and spin detection is fa-
cilitated by tunnel contacts, the spin accumulation µs in the NM transport
channel follows an exponential decay away from the injection contact (see
chapter 2) with

µs(x) = µs(0)e−x/Ls , (5.1)

where µs(0) is the initial spin accumulation and Ls the spin diffusion length.
To measure a voltage drop due to Silsbee-Johnson spin charge coupling an
electromotive force (emf) needs to be present in the detecting FM, yet absent
in the reference contact. As a consequence, the distance between the injector
and detector must be in the order of Ls, while the reference contacts must be
sufficiently distant from the initial spin accumulation. As shown in figure 5.1,
multiple detection contacts can be used in a single measurement.

To obtain the spin valve pattern, i.e., the characteristic switching in VNL,
two magnetic electrodes with the same well-defined magnetic anisotropy axis
but different coercive fields are utilized. This allows to switch the magneti-
zations of the FMs between mutual parallel and antiparallel configurations
by sweeping an external magnetic field along this anisotropy axis. Figure 5.2
illustrates the landscape of the quasichemical potential µ (black), spin accu-
mulation µs (dashed grey) and the quasichemical potentials for the individual
spin species µ↑,↓ (red) in a non-local spin valve measurement at various mag-
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Figure 5.2: Potential landscape of the quasichemical potential µ (black), spin
accumulation µs (dashed grey) and the quasichemical potentials for the indi-
vidual spin species µ↑,↓ (red) for non-local spin injection at various magnetic
field strengths. Between the leads of the left side of the sample a current is
applied, resulting in a spin accumulation. The exponential decay of the spin
accumulation indicates its diffusion into all directions. The magnetization
configuration switches from parallel (a) to antipallel (b) and then restores a
parallel configuration (c). In a second FM used for spin detection an emf
develops (blue dot) due to the spin accumulation, which can be measured as
a non-local voltage drop VNL. VNL plotted vs. B is shown in the insets and
displays the slope typical for spin valve measurements. Adapted from [28]

netic field strengths. Between the left reference contact and the left FM, µ
displays a linear slope due to an applied bias. This is in contrast to the rest
of the sample, where µ = 0. The spin accumulation µs, which is injected at
x = 0, decays exponentially into all directions. An emf develops in the FM
used for spin detection, as indicated by the blue dot. Since both FMs are in
the parallel configuration (a), the emf, and hence the measured signal VNL, are
positive. The schematic plot of VNL vs. magnetic field B is shown in the insets
of the figure. When the magnetization of the injecting contact switches (b),
leading to an antiparallel configuration, the sign of µs changes. Consequently,
VNL switches sign. A parallel configuration is restored once the detecting FM
also switches its magnetization orientation (c). From a mathematical point of
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view, this corresponds to a change in sign of Pj in equation 2.27, which results
in a positive VNL. This way, the standard spin valve signals are obtained.

The non-local spin valve measurements presented in figure 5.3, which ex-
hibit the expected switching in VNL, were obtained from devices which were
fabricated using the wafer layout described in chapter 4. During measure-
ment, an external magnetic field By = B was swept, where y||[11̄0] is parallel
to the spin contacts, while a bias of IAC = 2 µA was applied. The non-
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Figure 5.3: Non-local spin valve measurements for various distances with an
injection current of IAC = 2 µA. The presence of a spin accumulation in our
device is confirmed by the clear switching in VNL.

local voltage drop is displayed for various distances between the spin injec-
tion electrode and the detection contact, with curves shown for disances of
3, 6, 9 and 19 µm, respectively. The clear spin valve pattern demonstrates the
presence of a spin accumulation in our devices up to large spatial separations
between the injector-detector pair. In addition, the clear switching of all the
traces in the figure has further implications. The abruptness of the spin valve
also suggests that the FMs are uniformly magnetized in a single magnetic
domain. This is in contrast to magnets with multiple domains, where the
injected spin accumulation may be cancelled out in part. This shows that
using lithographic means to pattern narrow stripes, which defines a magnetic
easy axis through induced strain realaxation, is an approriate approach for
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the devices used in this work. It has to be noted that the measured data of
VNL around the switching event is shifted by a finite voltage offset. Origins of
a finite baseline include Peltier and Seebeck effects [114], a nonuniform tunnel
barrier thickness or pinholes in the tunnel barrier [115]. In this work, pinholes
are not considered relevant. Effects like interface spin scattering are relevant
at elevated temperatues [116].

As mentioned before, various conditions must be met to enable an all-
electrical spin injection/detection scheme. The traces shown in figure 5.3
demonstrate that the aforementioned criteria are met and that a GaMnAs
spin Esaki diode and an inverted GaAs/GaAlAs 2DEG are suitable for spin
injection and for spin transport, respectively.
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Figure 5.4: Semi-logarithmic plot of the amplitude of a spin valve signal ∆VNL
over injector-detector distance d. From a linear fit, the spin injection efficiency
P = 56 % and spin diffusion length Ls = 7.2 µm can be extracted. The data
was obtained from spin valve signals with a current IAC = 2 µA.

The data shown in figure 5.3 contains more information on the spin ac-
cumulation. More precisely, it is the distance-resolved amplitude of the spin
valve signal ∆VNL that enables additional insight. Since spin transport is me-
diated by diffusion, ∆VNL is expected to decay exponentially with a distance
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d between the spin injection and spin detection contacts [38]:

∆VNL = P 2IRsLs
2wc

exp
(
− d

Ls

)
, (5.2)

where the spin injection efficiency P is assumed to be equal for the injection
and detection contacts, I is the applied current, Rs and Ls the sheet resistance
and spin diffusion length, respectively, and wc the width of the contact, which
equals the width of the mesa. The exponential decay of ∆VNL with a distance
d is demonstrated in figure 5.4, where ∆VNL, which is plotted over d on a
semi-logarithmic scale, does show a linear slope. Utilizing a linear fit, the
spin injection efficiency and spin diffusion length were calculated as P = 56 %
and Ls = 7.2 µm. With P being in the range of previous results [37, 110],
a highly spin polarized curernt can be injected into a 2DEG. Ls provides a
length scale for the feasible distance between spin injection and spin detection
in any all-electrical spin detection method.

Further insight on the properties of spin transport can be gained with
Hanle measurements [48], where an out-of-plane magnetic field Bz is used to
dephase a spin accumulation. More detailed information on Hanle measure-
ments can be found in reference [117]. The trace of the Hanle measurement
shown in figure 5.5, which was conducted at an excitation curernt of I = 1 µA,
does exhibit the expected shape, which demonstrates a successful Hanle mea-
surement. The inset shows the measurement data over the full magnetic field
range from [−1 T, 1 T].

In this work, however, the importance of figure 5.5 does not lie in the
extraction of spin transport parameters but rather in the field strength re-
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Figure 5.5: Trace of a
Hanle measurement at an
excitation current of I =
1 µA. To dephase a spin
accumulation, an out-of-
plane magnetic field of
Bz ∼ 150 mT is required.
At around Bz ∼ 60 mT,
however, the amplitude of
a spin accumulation is sig-
nificantly reduced. The
inset shows the data over
the full magnetic field
range B ∈ [−1 T, 1 T]
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quired to suppress the spin-related signal. An out-of-plane magnetic field of
Bz = 150 mT is required to fully dephase the spin accumulation. As will
be discussed in the next section, however, low magnetic fields are advanta-
geous in this work. Although an out-of-plane magnetic field of Bz ∼ 60 mT is
not enough to completely dephase the spin accumulation, it does significantly
reduce its amplitude, suppressing large parts of the spin-related signal.

5.2 Quantized Conductance
This section presents a discussion of the realization of quantized conductance
by means of the split-gate technique. First, the determination of a suitable
split-gate layout is covered, followed by a characterization of the quantum
point contact (QPC).

Using a split-gate to form a constriction, which creates a narrow channel,
has been pioneered by Thornton [118] and Zheng [119]. At the constriction,
electrons travel through a saddle point potential V = V0− 1

2m
∗ω2

xx
2+ 1

2m
∗ω2

yy
2

and have a transmission probability given by equations 3.14 and 3.15, where
x represents the direction of the electron flow. Important quantities are the
curvatures ωx and ωy of the saddle point potential. It is, in fact, the ratio
of ωy/ωx that determines the sharpness of the conductance steps [70], where
ωy/ωx > 2 is preferable. In addition, the length of the constriction should not
exceed the mean free path lMFP of the sample as quantinzed conductance is a
ballistic phenomenon.

5.2.1 Split-Gate design
A number of factors can result in a deviation from the ideal quantized con-
ductance, including the presence of impurity sites in the constriction [120],
backscattering, or a nonideal split-gate design. To eliminate effects unrelated
to the latter, the split-gate design was developed on a different wafer.

This wafer, also based on GaAs, has a 2DEG which resides 90 nm below the
surface. The sample fabrication process was analogous to the steps described
in section 4.3 with a few exceptions. The most significant alteration was the
absence of a GaMnAs layer, which resulted in the omission of the wet chemical
etching procedure to remove portions of the heterostructure. This results in a
very smooth surface on which the split-gates can be deposited. Furthermore,
the split-gates were deposited directly on the wafer, eliminating the need
for an insulating material such as aluminum oxide. Thus, the electric field
constricting the 2DEG should not be smeared out. More imporantly, however,
this wafer has a very mobility. With a mobility of µe = 2.3 · 106 cm2/Vs, the
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mobility is almost four times that of the wafer used in this work for spin
injection.

The split-gates were lithographically defined with a parabolic shape in
the vincity of the constriction. At first, the layout as shown in the SEM
image of figure 5.8 (a) was used. The resulting conductance measurements
are represented by the red curve in figure 5.8 (c). Plateaus around integer
values of 2e2/h are not well defined and the transitions between the plateaus
are smeared out.
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Figure 5.6: The pair of split-gate electrodes in (a) has a higher curvature
than the one dipicted in the SEM image in (b). (c) Measurement of quantized
conductance. The sample with the low curvature of the split-gates exhibits
clear quantized conductance with well definded, sharp steps.
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To enhance the quality of the steps, the ratio of ωy/ωx has to be increased.
This is achieved by reducing the curvature of the split-gate, resulting in a
reduction of ωx. An SEM image of the layout with reduced curvature is shown
in figure 5.8 (b). The curvature exhibits y = x2 for x ∈ [−0.32 µm, 0.32 µm]
and is greatly increased away from the constriction to keep it sufficiently short.
The resulting conductance curve (black) in figure 5.8 (c) shows 9 well defined
plateaus and sharp steps, whereas the 10th mode is only visible as a small
shoulder.

With a split-gate distance of 270 nm and a Fermi wave length of λF ≈
50 nm, it is expected that ≈ 10 − 11 modes are visible in a measurement
[71]. The small deviation between the expected and measured number of
steps suggests a small depletion length [121], i.e., a small lateral electric field
component. The clear visibility of the plateaus as well as the abruptness of the
transition between modes suggests that the shape of the split-gates is suitable
for QPC experiments in this work.

5.2.2 QPC Characterization

The split-gate design, as shown in figure 5.6 (b), was then replicated on a
device fabricated from the wafer structure described in Section 4.2. As previ-
ously stated, the sample has to be illuminated with a red LED after cooling
it cryogenic temperatures to enhance the mobility and sheet carrier density.

The impact of the illumination on the characteristics of the QPC can be
observed in figure 5.7 (a), which depicts the conductance curves of the device
following illumination for varying durations. The blue curve was measured
after the shortest time under light exposure, followed by the red, black, and
dashed curves, respectively, after successive illumination. The inset shows the
black curve over the entire measurement range of VG ∈ [−1.92 V, 0 V]. The
trace can be devided into two parts. For higher gate voltages the conductivity
changes at a rapid rate as the 2DEG under the gate is depleted. Once the
gate voltage is sufficiently small, the channel’s width is reduced laterally until
G reaches zero, where the channel is "pinched-off". While the traces shown
were moved laterally to enable better comparability, it can be observed that
with increasing light exposure, the pinch-off point is moved towards lower gate
voltages. Furthermore, it can be seen that increasing the carrier density and
mobility enhances the quality of the measured plateaus. For the black curve,
four modes are visible, in contrast to the red and blue traces, where three
and zero modes are observed, respectively. However, if the sample has been
illuminated for an excessive duration, the quality of the measured plateaus
will deteriorate. Prolonged exposure to light will no longer alter the carrier
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Figure 5.7: (a) Conductance measurements of the same sample for various
illumination times ti. For better visibility, the curves have been shifted in
VG. The inset shows the black curve over the full measurement range VG ∈
[−1.92 V, 0 V]. Illumination increases the quality of steps. However, when
the sample is illuminated for too long, the step quality decreases again. The
transconductances ∂GQPC/∂VG displayed in (b) show that especially higher
order modes can be better observed for longer illumination times.

density, yet will result in a reduction in mobility. The influence of illumunation
is also reflected in the derivative ∂GQPC/∂VG of the conductance (also called
transconductance) traces with respect to split-gate voltage, which is shown in
figure 5.7 (b). The blue curve shows no peaks, while the red and black curves
have 3 and 4 peaks, respectively. The curves were offset vertially for better
visibility.

The enhacement of quantized conductance after illumination is caused by
the increased mobility and sheet carrier density ns. Deviations from ideal
quantized conductance arise due to backscattering at the constriction [68].
Reasons for backscattering include potential fluctuations from ionized impu-
rities, which cause random disorder in the electrostatic potential landscape
[122–125]. The effect of disorder can be reduced by enhanced screening if ns
is increased.

Following illumination, the conductance steps are well-defined, yet only a
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few steps are observed. With a Fermi wave length of λF = 40 nm it is expected
that ≈ 13 − 14 steps can be observed, which is in contrast to 4 measured
modes. This suggests a lateral depletion of 95 nm due to the electric field and
a channel width of ∼ 80 nm.

The fact that only 4 steps are visible in figure 5.7 is in contrast to the
conductance curves shown in figure 5.6, which display 9 well defined plateaus.
Furthermore, it is evident that the steps in the black curve presented in figure
5.7 are less distinct than those in figure 5.6. As the split-gate layout is iden-
tical, the discrepancy can be attributed to the utilized wafers. The observed
difference in step quality can be explained by a difference in mobility, which is
approximately four times greater in the case of the wafer used in the previous
section. The discrepancy in the number of observed steps may be attributed
to the spatial separation between the 2DEG and the split-gates. With the
inclusion of the AlOx insulating layer, the 2DEG is situated at a depth of
approximately 215 nm below the gate, which is ≈ 2.2× the depth of the wafer
used in the previous section. This may result in additional lateral contrictions
due to in-plane components of the electric field of the split-gates. However,
this increase is 3.6×, which suggests that structures with deep 2DEGs may
exhibit different electrostatics, as has been pointed out before [126]. It is,
however, likely that the deciding factor is the mobility of the wafer. While
projecting small patterns from a surface gate onto deeper 2DEGs becomes in-
creasingly difficult, it has to be pointed out that clear quantized conductance
has been measured before in a GaAs/Al0.33Ga0.67As 2DEG formed 277 nm
beneath the surface [126]. In the aforementioned work, the mobility was
µe = 3 · 106cm2/Vs.

Further insight into the properties of a QPC can be gained by finite-bias
measurements. Superimposing1 a DC voltage VDC, which alters the energetic
separation of the source µS and drain µD chemical potentials, with an applied
AC bias serves as an energy reference, allowing the determination of the in-
dividual subband energy spacings [126–128]. This is illustrated by the band
diagram in figure 5.8, which shows parabolic subbands separated by the sub-
band spacing ∆SB. In the case of a small applied DC bias (a) the chemical
potentials µS and µD on both sides of the QPC are in the same subband. In
a conductance measurement, integer values of 2e2/h can be observed. If the
difference between the chemical potentials due to an increase in VDC is suffi-
ciently large (b), µS and µD are separated by one subband. As the subband
in between the chemical potentials contributes half to the total conductance,
G = (2e2/h)(n − 1

2) is expected and so called half-plateaus form. Once two
subband bottoms are separating µS and µD, integer values of 2e2/h are re-

1The measurement setup and the AC/DC adder are described in section 4.4.
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Figure 5.8: (a) For a low applied source-drain bias VDC the chemical poten-
tial µS and µD on both sides of a split-gate reside in the same subband and
the conductance reaches integer values of 2e2/h. (b) Upon a sufficient in-
crease of VDC, one subband separates µS and µD and half-plateaus form with
G = (2e2/h)(n − 1

2). (c) Once the chemical potentials are separated by two
subbands, integer values of 2e2/h are restored. Adapted from [129].

stored.
In the top part of figure 5.9 (a) conductance measurements for VDC = 0 mV

(black) and VDC = 4 mV (red) are shown. In the case of a finite source-
drain bias, multiple half-plateaus are observed, indicating a clean sample [129].
Higher order integer plateaus are obscured by noise and cannot be clearly
resolved, which is a usual phenomenon [129, 130] (curves not shown). The
bottom part of figure 5.9 (a) shows the derivative of the respective curves.
In both cases, clear maxima are visible which appear shifted by half a period
between the curves. In the color plot shown in figure 5.9 (b) a diamond
like pattern emerges. Color-coded is the transconductance ∂GQPC/∂VG over
applied split-gate voltage VG and source-drain bias VDC. Blue areas, indicating
low ∂GQPC/∂VG represent plateaus in conductance, whereas red areas occur
at the transition between modes, where ∂GQPC/∂VG is high.

The values of VG where a maximum in ∂GQPC/∂VG occurs are plotted for
every value of VDC in figure 5.10. Upon applying a finite VDC, the single peaks
in transconductance at a given subband split into two peaks. This splitting in-
creases with higher VDC. For the nth subband, the peak is split into n+ and n−,
where the +(-) indicates that the peak shifts towards higher (lower) gate volt-
ages. The points in the evolution of maximum values of ∂GQPC/∂VG, where
the n+ and (n+1)− peaks merge are highlighted in red. As mentioned before,
VDC can be used as an energy reference. The red points in figure 5.10 mark the
energy values where µS and µD are one subband spacing apart ∆SB,n = eVDC

(see figure 5.8). The extracted values are ∆SB,1 = 4.8 meV, ∆SB,2 = 3.4 meV
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Figure 5.9: (a) Conductance curves (top) and the transconductance
∂GQPC/∂VG (bottom) of the measured signals at a source-drain voltage of
VDC = 0 mV (black) and VDC = 4 mV (red). In the latter case, clear half-
plateaus emerge. (b) Color plot of ∂GQPC/∂VG over VG and VDC. Blue areas,
indicating low ∂GQPC/∂VG, represent plateaus in conductance, whereas red
areas occur at the transition between modes, where ∂GQPC/∂VG is high.
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and ∆SB,3 = 2.8 meV for the first three modes, respectively. It is commonly
observed that subband spacing increases with decreasing number of modes
[126, 128, 129].

V
D
C

(m
V

)

VG (V)
-3.8 -3.7 -3.6 -3.5

0

1

2

3

4

5

6
Figure 5.10: Evolution of
the maxima in transcon-
ductance over applied
split-gate voltage VG
for various values of
VDC. The values where
the split peaks of two
subbands merge is equal
to the subband spacing
∆SB = eVDC and are
marked by the red dots.

As a next step, the curvature ωx of the saddle point potential will be de-
termined, which then allows to calculate the aforementioned ratio of ωy/ωx.
To determine ωx, the transmission probability is fitted to the measured con-
ductance curve obtained at VDC = 0 V. The transmission probability through
a QPC of a given mode n is given by equations 3.14 and 3.15 as

Tn(εn) = 1
1 + e−πεn

εn = 2E − ~ωy,n(n + 1/2)− V0

~ωx
,

(5.3)

where ~ωy,n = ∆SB,n is the subband spacing. To be able to fit the transmis-
sion probability to the measured conductance curve, the relation between the
energy E and applied split-gate voltage VG must be known. E and VG are
connected through the lever arm α, with E = αVG [129]. At the transition
between modes, i.e., n + 1 → n and n → n − 1 modes, the transmission
probability of the given mode is given by Tn(εn) = 1/2 and Tn-1(εn-1) = 1/2,
respectively2.

To obtain Tn(εn) = Tn-1(εn-1) = 1/2 in equation 5.3 for a given mode, the
conditions

~ωy,n+1(n + 1/2) + αVG,n − V0 = 0
~ωy,n(n− 1 + 1/2) + αVG,n-1 − V0 = 0

(5.4)

2One has to be careful here. The transmission probability for the first subband is given
by T0(ε0) while the energy spacing of the first subband is denoted by ~ωy,1
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have to be fulfilled (i.e., εn = εn-1 = 0). Here, VG,n is the split-gate voltage at
the transition between modes. From this, the lever arm can be calculated by
subtracting the terms in equation 5.4 and one obtains

α = ωy,n+1(n + 1/2)− ωy,n(n− 1/2)
∆VG

. (5.5)

With the lever arm known, equation 5.3 can be fitted to the measured
conductance curve with two unknown variables, ~ωx and V0. For future exper-
iments, the point of interest is the transition between 0 and 1 modes. Before
the fit can be done, a series resistance of Rs = 1.6 kΩ has to be subtracted
from the measured conductance signal. Figure 5.11 shows the measured data
(black) as well as the fit for the lowest subband (red). The curvature of the
QPC is calculated as ~ωx = 1.84 meV, which gives a ratio of ωy/ωx = 2.6.
These experiments suggest that the shape of the split-gate and the resulting
parabolic potential is suitable for QPC measurements and that the deviation
from ideal quantized conductance comes from the wafer properties rather than
the split-gate design.
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Figure 5.11: Fit of the
transmition probabil-
ity for the first mode
(red) and the measured
data (black). Using
~ωy = 4.8 meV one ob-
tains ~ωx = 1.84 meV
from the fit. The high
ratio of ωy/ωx suggests
that the parabolic poten-
tial originating from the
split-gates is suitable for
QPC measurements.

Finally, the influence of a perpendicular magnetic field on the properties of
the QPC is analysed. A field may exert an influence at the entrance and exit of
the constriction imposed by the split-gates, where electrons may be backscat-
tered and therefore cannot pass through the constriction. This backscattering
is the origin of a nonzero resistance of a QPC [70, 72, 76, 120]. By applying
an out-of-plane magnetic field3 the impact of geometric backscattering can be

3High perpendicular magnetic fields are the reason why the quantization can be measured
very accurately using the quantum Hall effect, opposed to QPC measurements [131].
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reduced while the energy barrier of the QPC is unaffected.
In figure 5.12 a conductance measurement is shown for a perpendicular

magnetic field of B = 0 mT (black) and B = 50 mT (red). No strong visible
difference between the measured traces appears. The transconductances for
B = 0 mT (blue) and B = 50 mT (cyan) also show marginal difference in the
peak signal.
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Figure 5.12:
Conductance (black,
red) and transconduc-
tance (blue, cyan) in an
out-of-plane magnetic
field of B = 0 mT and
B = 50 mT, respec-
tively. For the small
magnetic field used
here, the signal does
not change significantly.

In the next chapter, a signal which is linear in the transconductance will
be measured in a small out-of-plane magnetic field. As shown in figure 5.12,
the transconductance does not significantly change in the field range used here
and the basic properties of the QPC are unaffected.

5.3 Conclusion
The basic properties of spin injection and quantized conductance for the het-
erostructure used in this work were analysed.

Utilizing spin valve measurements with a varying distance between the in-
jector and detectors, a spin diffusion length of Ls = 7.2 µm and spin injection
efficiency of P = 56 % were determinded. This confirms efficient spin injec-
tion and spin transport of the heterostructure and also gives a lengthscale for
electrical spin detection. Spin valve signals could be obtained up to a distance
of 25 µm using an excitation current of I = 2 µA. Hanle measurements con-
firmed that a perpendicular magnetic field of 60 mT significantly suppresses
a spin accumulation due to dephasing.
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5.3. CONCLUSION

For achieving quantized conductance, the saddle point potentials should
have a ratio of ωy/ωx > 2 [70]. Defining a split-gate electrode with a low
curvature (x = y2 for x ∈ [−3.2 µm, 3.2 µm]) yields 4 well resolved plateaus
for a split-gate separation of 270 nm. By illuminating the sample the quality
and number of visible plateaus can be increased.

Further insights into the properties of a QPC were gained from source-
drain biasing measurements. Clear half-plateaus were seen, which indicates
a high cleanliness of the sample. Utilizing the source-drain bias as an en-
ergy reference, the subband spacing was determined. For the first subband
~ωy = 4.8 meV was extracted. When the transmission probability of a QPC
was fitted to the measured conductance data, the curvature of the saddle
point potential was determined as ~ωx = 1.84 meV. This yields a ratio of
ωy/ωx = 2.6 which shows that the chosen split-gate design is suitable for
achieving quantized conductance and that deviations from nonideal quantiza-
tion arise from factors unrelated to the split-gate design.

The goal of this work is to utilize a QPC as an energy barrier to measure a
spin accumulation. All prerequisites, namely efficient spin injection and spin
transport as well as quantized conductance, are met.
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Chapter 6

Measuring Spin Accumulation
using a QPC

In this chapter the experimental results for the main objective of this work are
discussed: using a QPC as an energy barrier to detect a spin accumulation.

In section 6.1, a brief overview of the theory of linear and nonlinear spin-to-
charge conversion is given, while the experimental results are shown in section
6.2.

6.1 Theory of linear and nonlinear Spin-to-
Charge conversion

The theory of nonlinear spin-to-charge conversion was developed by Stano et
al. [132, 133]. The basic idea originates in the fact that in a quantum point
contact the transmission T (E) depends on the energy E of a particle (see
equations 3.14 and 3.15).

Assuming that the spin orientation of a carrier is conserved at the trans-
mission, the transmission probability reads

T σσ12 (E) = T (E) + σ δT (E), (6.1)

where 12 denotes transmission from the left to the right side of the QPC, σ
is the spin species and δT (E) represents an adjustment to the transmission
coefficient that is reliant on the spin orientation.

With respect to the Fermi energy, the electrochemical potential of a spin
subband is given by µσi = eVi + σ δµsi where i=1(2) represents the left (right)
side of the QPC, Vi is the applied voltage and δµsi is the spin accumulation
on either side of the contriction.
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Utilizing a Landauer-Büttiker formalism, the current through the contric-
tion can be calculated as

I = G1eδV +G2(δµ2
s1 − δµ2

s2) +G3(δµs1 − δµs2) +G4(δµs1 + δµs2)eδV (6.2)

with the conductances

G1 = 2e
h

∫
dE(−∂Ef)T (E) (6.3a)

G2 = e

h

∫
dE(−∂Ef)[∂ET (E)] (6.3b)

G3 = 2e
h

∫
dE(−∂Ef)δT (E) (6.3c)

G4 = e

h

∫
dE(−∂Ef)[∂EδT (E)], (6.3d)

where G1 is the standard conductance of a QPC. If a spin accumulation µs1/2
is present on either side of the constriction, additional contributions to the
current through the QPC emerge. The second term in equation 6.2 represents
nonlinear spin-to-charge conversion, which does not depend on the sign of a
spin accumulation. As represented in figure 6.1 (a), the quadratic relation
between current and spin accumulation originates in the energy dependence
of both the Fermi energy fσi = f(E − µσi ) and the transmission coefficient
T (E). The third and fourth terms are conversion terms that describe the
linear relationship between spin and charge which originates in the Zeeman
energy from an external magnetic field, as shown in figure 6.1 (b). G3 and
G4 are, respectively, linked to the difference between and average of spin
accumulation on both sides of the QPC. Close to the pinch-off, one can set
δµs1 = δµs and δµs2 = 0. If the constriction is not sensitive to spin, as
is the case for zero external magnetic field, one finds δT (E) = 0 and the
conductances G3 = G4 = 0 vanish.

Generally, there are two methods to measure nonlinear spin-to-charge con-
version. One approach is to keep both sides of the QPC at the same potential
(δV = 0) and measure the current I = G2δµ

2
s. Alternatively, one side of the

QPC can be set as a floating probe. A voltage that ensures no charge current
flows through the constriction can be accessed as

eδV (2ω) = −1
2
G2

G1
δµ2

s (6.4)

by measuring the second harmonic voltage drop. In this work, the latter ap-
proach is used. Consequently, the measured signal δV (2ω) is related to the
transconductance of the QPC, which is due to G2 ∝ ∂EG1. The peak sig-
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Figure 6.1: (a) Nonlinear spin-to-charge conversion. If a spin accumulation
δµs1 is injected at the left side of a QPC, a current flows through the con-
striction even in the absence of applied bias. As the transmission probability
T (E) ∝ δµs1, the net current I ∝ δµ2

s1 is nonlinear. (b) In a magnetic field
B (anti)parallel to spin-up(down) electrons, the energy barrier imposed by a
QPC decreases (increases). As a consequence, the transmission coefficients
for the spin subbands differs by 2δT . The additional current I is linear in B
and δµs1.

nal is then observed between plateaus at G1 = (N + 1/2) 2e2/h. In addition,
δVpeak(2ω) ∝ 1/(N+1/2) increases with fewer transport modes N and is max-
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imal when the QPC is half open. It has to be noted that from a mathematical
perspective, δV (2ω)→∞ for G1 → 0 which can be solved by adding a small
constant to G1.

By applying an in-plane magnetic field, the constriction becomes spin sen-
sitive. Due to the Zeeman energy, the transmission probability changes as
E → E − σµB in equation 5.3. The difference in transmission for the spin
subbands then reads

δT = −µB∂ET (E), (6.5)

where µ = (g/2)µB is the magnetic moment, with g the g-factor and µB
the Bohr magneton. G3 is linear in both transconductance and the applied
magnetic field, whereas G4 depends on the slope of the transconductance with
respect to the applied gate voltage.

For a floating probe (i.e., I = 0), equation 6.2 becomes

−G1eδV (ω) = (G3 +G4eδV (ω))δµs (6.6)

when measuring at the excitation frequency ω. At maximum transconduc-
tance close to the pinch-off, i.e., at G1 = e2/h one finds G4 = 0. In this case,
for B → 0, the slope of V (ω) with respect to the applied magnetic field gives
information on the spin accumulation as [134, 135]

∂(δV (ω))
∂B

∣∣∣∣
B=0

= gµBπ

2e~ωx
δµs. (6.7)

Due to the difference in chemical potentials of the spin subbands, different
transmission probabilities arise. If a magnetic field is applied antiparallel to
the spin accumulation, the Zeeman energy penalty compensates the difference
in transmission. The net current becomes compensated if

δµs = gµBBc. (6.8)

The compensation field Bc gives information on both the sign and magnitude
of the spin accumulation.

Linear spin-to-charge conversion was measured by Nichele et al. [134]
in a 2-dimensional hole gas, in which the spin accumulation was generated
using the mesoscopic spin Hall effect (SHE) [136]. In contrast to the device
used in this work, not relying on ferromagnetic electrodes to generate the
spin accumulation allowed the investigators to apply large magnetic fields
antiparallel to the spin accumulation. The theory from reference [133] was
extended and showed that ∂BV (ω) ∝ ∂EG1/G1. In a tree-terminal setup,
reminiscent of the letter ’T’, a current was driven between terminals 1 and 2
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and the tree-terminal voltage drop between terminals 1 and 3 is antisymmetric
in a magnetic field. In addition to proving ∂BV (ω) ∝ ∂EG1/G1, changing the
setup to have zero g factor yielded ∂BV (ω) = 0.

Nonlinear spin-to-charge conversion was measured by Marcellina et al.
[135], also in a 2-dimensional hole gas with the intrinsic SHE [137] as the
origin of the spin accumulation. The sample was structured as the letter ’H’
[138, 139] which allowed to measure the inverse SHE at the same time. The
measured three-terminal voltage V (2ω) ∝ I2

sd showed the expected depen-
dence on the source-drain voltage and decreased once the spin accumulation
was suppressed by a magnetic field.

In our devices used in this work, the magnitude of the spin accumulation
at the QPC could be manipulated by varying both the applied bias Isd as well
as the distance between the spin injection electrode and the point of detection.
An exponential decay of the measured signal with increasing spatial separation
on the scale consistent with the spin diffusion length would be a clear sign
that the measured signal is of spin origin.

Thermopower

In addition to nonlinear spin-to-charge conversion, the second harmonic volt-
age drop δV (2ω) across the constriction may also in part arise from ther-
mopower. This is due to the fact that the underlying physics of nonlinear
spin-to-charge conversion and thermopower, which will be derived in the fol-
lowing, have a similar origin. Using a Landauer-Büttiker formalism, a relation
between the current flow I, heat flow Q and the difference in both the chemical
potential ∆µ and the temperature difference ∆T can be derived.

The current I and heat flow Q through a QPC are [140](
I

Q

)
=
(
G L

M K

)(
∆µ/e
∆T

)
(6.9)

where G and K are the electric and heat conductivity of a QPC, respectively,
and L,M are thermo-electric coefficients. Similar to the previous section,
the condition for a nonzero thermo-electric coefficient is that the conductance
varies with energy [141].

Even in the absence of an applied bias, a temperature gradient across a
QPC results in a voltage drop. For I = 0, the thermopower S is defined as

S =
(

∆µ/e
∆T

)
I=0

= −L
G

(6.10)
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and relates a voltage drop ∆µ/e = ∆V across the QPC with the temperature
difference. It is important to note that the thermopower S ∝ 1/(N + 1/2)
increases with decreasing number of transport modes N.

In the samples used in this work, a current flows on one side of the device
which is separated from the other side by means of a QPC. Due to Joule heat-
ing, a temperature gradient Te − Tl across the QPC emerges as the difference
between the electron Te and lattice temperatures Tl. For both diffusive [142]
and ballistic [141] transport, the thermopower is linear in transconductance

S = ∆V
Te − Tl

∣∣∣∣
I=0

= −π
2k2

B
3e (Te + Tl)

∂EG

G
(6.11)

where kB is the Boltzmann constant. Thus, maximum thermopower is ex-
pected between modes when the transconductance is maximal [143, 144] with
[145, 146]

∆V N
peak = −C(T 2

e − T 2
l )

N + 1/2 (6.12)

which depends on the curvature of the saddle point potential ~ωx as C =√
2π3k2

B/24e~ωx.
The heat loss per electron P = I2RH/nsA depends on the current I, the

resistance of the heating channel RH, sheet carrier density ns and channel area
A. In the linear response regime, the measured signal due to thermopower is
∆V N

max ∝ P [140, 146]. Consequently, the voltage drop across the QPC which
corresponds to thermopower will appear as the second harmonic voltage drop:
S ∝ ∆V (2ω).

Comparing equation 6.11 with equations 6.4 and 6.3b reveals that nonlin-
ear spin-to-charge conversion and thermopower have the same slope. This is
due to the fact that both contributions are ∝ I2

sd and have the origin in the en-
ergy dependence of T (E). Thus, when measuring ∆V (2ω) it is important to
verify wether the signal originates from a spin accumulation or thermopower.

6.2 Experimental Results

In this section the measurement results for both nonlinear and linear spin-
to-charge conversion are presented. First, the results of nonlinear spin-to-
charge conversion experiments are shown, followed by the discussion of the
measurements on linear spin-to-charge conversion. In addition, experiments in
a local configuration were conducted and the results are shown in the appendix
C.
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The presence of a QPC in non-local spin-to-charge conversion devices im-
plies a slightly different measurement setup compared to the one used in the
non-local spin valve measurements, described in the previous chapter (see
section 5.1). Therefore, the measurement setup will be shown, after which
measurements regarding nonlinear spin-to-charge conversion and linear spin-
to-charge conversion will be discussed.

6.2.1 Measurement Setup

In a standard QPC measurement, a voltage source is connected to both sides
of the constriction. This is in contrast to non-local measurements, for which
the regions of applied bias and voltage measurement are spatially separated.
In figure 6.2 the measurement setup for measuring spin-to-charge conversion
in a non-local manner is shown. Similar to the spin valve measurements (see
figure 5.1 and 5.2), an applied bias between a spin injection contact (yellow)
and a reference contact (cyan), which is sufficiently far away from the spin
contact, leads to a spin accumulation δµs(0) beneath the spin concact. The
spin accumulation diffuses into all directions and decays exponentially with
distance x from the spin contact as δµs = δµs(0) exp(−x/Ls). If an energy
barrier in form of a QPC (orange) is sufficiently close to the spin injection
contact, a spin accumulation δs1 6= δs2 could be expected on both sides of the
QPC. This spin accumulation should be detectable as a voltage drop across
the QPC.

As mentioned in the previous section, the side of the QPC that is far away
from the spin injection contact is maintained as a floating probe. This presents
two challenges as the split-gate voltage VG decreases and the constriction
becomes narrower.

If VG is decreased to values below pinch-off, the left and right side of
the constriction become electrically separated. Consequently, the measured
voltage drop across the QPC is no longer clearly defined, which manifests
itself in an arbitrary voltage drop and a low signal-to-noise ratio.

If the QPC is half open, the resistance of the channel RQPC = h/e2 ≈
26 kΩ is large. To avoid the influence of capacitive conversion, a voltage-
amplifier with high impedance is used to measure the voltage drop across the
QPC. In addition, the excitation frequency is reduced to fAC = 1.07 Hz to
eliminate the influence of capacitive effects. Measuring at low frequencies,
however, introduces additional challenges in the form of increased noise and
other parasitic effects1. In addition, measurements take a longer time as the

1At low frequencies, e.g., turning on the light in the lab can be seen in electric measure-
ments.
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Figure 6.2: Setup for measuring spin-to-charge conversion in a non-local man-
ner. A spin accumulation is injected into the mesa by applying a bias between
a spin contact (yellow) and a reference contact (cyan). The spin accumulation
then diffuses toward a QPC (orange), where it can be detected as a voltage
drop across the constriction. When the QPC is close to pinch-off, the resis-
tance of the sample increases. Therefore, a high-impedance voltage-amplifier
is used to measure the voltage drop across the QPC. To avoid capacitive con-
version, the excitation frequency fAC = 1.07 Hz is low.

sweeping rate has to be decreased to allow for longer integration times of the
lock-in amplifiers.

6.2.2 Nonlinear Spin-to-Charge Conversion

The black dotted curve in figure 6.3 shows the results of the conductance mea-
surement on one of the samples. Details on the split-gate design and QPC
characterization are given in section 5.2. Clear plateaus and sharp transi-
tions can be seen, which is reflected in the high peaks in transconductance
∂GQPC/∂V of the QPC, represented by the black curve. The ’kink’ in the
last transconductance peak, which is marked by the black arrow, occurs at
G = 0.6 (2e2/h) and hints at the 0.7 anomaly, which is still elusive in its origin
[147–153].

Shown in various shades of red is the measured signal V (2ω)/I2
sd, i.e.,

the second harmonic of the measured non-local voltage normalized by the
square of the excitation current. The measurement was performed for Isd ∈
[100, 200, ..., 1000 nA]. There are two notable features in the plot. The shape
of the measured signal correlates well with the transconductance, which in-
cludes features such as the ’kink’ at the point before the QPC is half open,
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which is marked by the dark red arrow for the curve corresponding to Isd =
200 nA. Over the selected measurement range, which includes five subbands,
V (2ω)/I2

sd shows the expected slope, with peaks reminiscent of a δ-function.
The second important feature is that for the full range of selected excita-
tion currents the curves collapse on a similar trace when normalized by I2

sd.
It has to be noted that for Isd ∈ [100, 200, ..., 1000 nA] the normalized sig-
nal decreases for increased Isd, while from the theory one expects a constant
V (2ω)/I2

sd, assuming a linear relation between the spin accumulation and Isd.
There are two possible reasons for the decrease of the normalized signal with
increasing current. A first possible reason could be a nonlinear relation be-
tween the spin accumulatin and a current. For the current ranges used here,
the spin accumulation is typically linear in Isd [154]. A second reason for the
decrease in V (2ω)/I2

sd with increased source drain bias may be that the the-
ory for nonlinear spin-to-charge conversion is valid only for small variations
in chemical potential. For increased currents, higher order terms in a Taylor
expansion have to be taken into account and deviations from linear behavior
are expected.

Figure 6.4 shows V (2ω)/I2
sd for Isd = 200 nA (blue) and Isd = 1 µA (cyan).

The ratio of the two curves, V (2ω)(200 nA)/V (2ω)(1 µA) · (1000/200)2, rep-
resented in red, shows similar values for all five transitions between the sub-
bands. For higher order peaks, a moving average of the data, displayed in
black, is shown to guide the eye due to the low signal-to-noise ratio. The fact
that the ratio remains the same over the whole measurement range suggests
that the linear response model is valid for many modes and for the currents
used here.

The data presented in figure 6.5 extends the measurements shown in figure
6.3 to lower excitation currents. Contrary to the high excitation currents, the
data collapses well onto a single trace for the range of currents shown here,
Isd ∈ [20, 30, ..., 100 nA], as expected. Shown in black is the transconduc-
tance of the QPC weighted by the conductance ∂VGQPC/GQPC. The weighted
transconductance and the measured data exhibit a similar slope over the en-
tire measurement range. This shows that the voltage drop across the QPC
follows not only the transconductance and its features (such as the ’kink’),
but also the conductance of the QPC, as predicted from equation 6.4. Exper-
iments with lower currents Isd = 2, 5, 10 nA show the same slope. They are,
however, not included in figure 6.5 due to excessive noise.

In this non-local experiment setup, the right side of the QPC is kept float-
ing. Therefore, the total current passing through the QPC must be zero. Prior
to the application of an excitation current, both sides of the constriction are at
equal potential. When a non-local bias is generated, a current flows through
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Figure 6.3: Results of a non-local spin-to-charge conversion experiment. The
line with small dots shows the measured conductance of the QPC, while the
black line with large dots displays the transconductance ∂GQPC/∂V . Sharp
peaks in the transconductance are observed due to the clearly quantized con-
ductance. Shown in different shades of red is the measured non-local voltage
drop across the QPC V (2ω)/I2

sd normalized by the square of the excitation
current. For the currents used here, Isd ∈ [100, 200, ..., 1000 nA], the measured
curves collapse on a similar trace and follow the transconductance well.

the constriction due to the energy dependence of the QPC’s transmission co-
efficient. A voltage drop, which is measured during experiment, maintains a
restoring current to keep the total current at zero. At lower conductance, the
voltage required to maintain the restoring current increases. The fact that the
experiment follows the behavior expected from theory shows that the model
used in the previous section is appropriate. A QPC can be used as an energy
barrier.

Distance-Resolved Measurements

The curves shown in figures 6.3 and 6.5 display the slope as predicted from
theory. At the moment, however, it unclear whether the voltage drop across
the QPC is spin-related or due to other effects. To demonstrate that V (2ω)
originates in spin, one approach is to conduct experiments with varying dis-
tances d between the spin injection contact and the constriction. From the
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Figure 6.4: Non-local spin-to-charge signal V (2ω)/I2
sd for 200 nA (blue) and

1 µA (cyan) as well as the ratio of the blue and cyan curve (red). Between
all five subband transitions, the ratio of the measured signal does not change.
The black curves are a moving average of the data to guide the eye.

standard model of spin injection, the spin accumulation generated at a given
spin injection contact diffuses into all directions and decays exponentially with
a distance. Assuming the validity of the model in our devices, V (2ω), mea-
sured using various spin injecting contacts, is expected to decay exponentially
with a distance, V (2ω) ∝ exp(−d/Ls), where Ls is the spin diffusion length.

Figure 6.6 shows the peak values of V (2ω)/I2
sd at the transitions between

subbands. The measurements were done for various distances d between the
spin injection contacts and the constriction. During the experiment, the split-
gate voltage VG was swept and V (2ω) was measured non-locally. This proce-
dure was repeated for various excitation currents Isd ∈ [200, 300, ..., 900 nA].
The graph shows the average of the peak values in V (2ω)/I2

sd, observed at the
transitions between subbands. Distances between the spin injection region and
the QPC include 10 µm (black), 13 µm (red) and 16 µm (blue). In contrast to
the expected exponential decay, V (2ω)/I2

sd increases as d is increased.
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Figure 6.5: Continuation of the non-local spin-to-charge conversion experi-
ment. The black line represents the transconductance weighted by the con-
ductance of the QPC ∂VGQPC/GQPC. The colored curves show the voltage
drop across the QPC V (2ω)/I2

sd weighted by the square of excitation currents
for various Isd. For all currents used here, the data collapse onto a single curve
and follow the weighted transconductance well.

The measured signal2 appears to be correlated with the geometry of the
spin contacts. More precisely, it appears that V (2ω)/I2

sd increases as the width
of a spin contact is decreased as the curve with the lowest peak heights was
measured using a spin contact, which is w = 1 µm wide (black curve) and
the red curve corresponds to w = 700 nm and blue curve, which exhibits the
largest peak signal heights, corresponds to w = 500 nm. The spin contacts in a
spin-injection device are commonly fabricated with various widths to facilitate
unambiguous magnetic switching, required for spin valve measurements. The
difference in the induced strain relaxation results in different coercive fields

2From a chronological perspective, these measurements presented here were the first
non-local spin-to-charge conversion measurements conducted for this thesis. It also has to
be mentioned that the measurements shown in figure 6.6 were conducted on a different
wafer than all other samples in this work, however with the same heterostructure layout.
Although spin valve measurements showed similar results, indicating proper spin transport
features, it has to be noted that the mobility of this wafer was lower compared to the wafer
used for the remaining experiments. The consequence was not in spin transport, but rather
in the results of QPC measurements. The decreased mobility led to less clear plateaus and
blurred transitions, resulting in lower transconductance values.
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[96], which in turn leads to a clear spin valve pattern. However, changing the
width of a spin contact seems to affect more than just the coercive field, which
complicates the demonstration of a spin origin of V (2ω).

By fabricating a device for which all spin contacts have identical geometry,
it may be possible to bypass this complication. Consequently, such a device
was prepared. In figure 6.7 the corresponding sample is shown schematically
on the left side, while on the right side of the figure a SEM picture of the
sample is shown. The mesa is 20 µm wide and all spin contacts have the
same width of w = 1 µm, while the distance between individual spin contacts
is 3 µm. The geometric parameters have been chosen in order to maximize
the spin accumulation at the constriction, which is achieved by keeping the
distance between the spin contacts and the QPC to a minimum while still
allowing for the fabrication of clean samples with well-defined structures. The
lowest spatial separation between a spin contact and the QPC is 6.5 µm.
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Figure 6.6: Results of distance-resolved non-local spin-to-charge conversion
measurements. The gate voltage was swept and V (2ω) measured for various
excitation currents Isd ∈ [200, 300, ..., 900 nA]. Shown here are the average
values of V (2ω)/I2

sd at maximum transconductance between subbands. The
measurement was conducted for three different spin contacts. Opposed to
the expectation that the measured signal decreases with increased distance
d between the spin contact and the QPC, it is observed that the measured
signal scales with the with w of the spin contact. The error bars indicate the
standard deviation.
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6.5 µm 3 µm

Figure 6.7: Schematic repre-
sentation of the sample (left)
and a SEM picture of the
sample (right). All spin con-
tacts have the same width
w = 1 µm. In the center of the
sample is a QPC. The small-
est distance between the QPC
and a spin contact is 6.5 µm.

The results of the non-local spin-to-charge conversion measurements shown
in figure 6.8 were conducted on a device with the geometry presented in figure
6.7. The measurements were performed on various spin contacts with a dis-
tance of 6.5 µm (orange), 9.5 µm (red), 12.5 µm (dark red) and 15.5 µm (light
red) from the QPC, using an excitation current of Isd = 600 nA. For all dis-
tances, the data follows both the transconductace and the inverse conductance
of the constriction. For the last subband transition, i.e., at G1 → G0, the volt-
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Figure 6.8: Transconductance (black) of a QPC and the non-local voltage
drop across a QPC, V (2ω)/I2

sd, normalized by the square of excitation current
(various shades of red). The measurements were conducted at Isd = 600 nA
for various spin contacts. While all spin contacts are of the same geometry,
they differ in the distance d from the QPC.
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age drops measured for spin contacts located at d = 12.5 µm and d = 15.5 µm
show lower values than expected from the 1/GQPC dependence. In addition,
one finds that the measured voltage V (2ω) is greater for d = 15.5 µm compared
to d = 12.5 µm. This suggests that although all spin contacts are nominally
the same, small deviations among individual spin contacts may influence the
measurements. Aside from this anomally, one finds that V (2ω)/I2

sd is largest
for the spin contact with the lowest spatial separation from the QPC with
d = 6.5 µm. In general, V (2ω)/I2

sd decreases as d is increased.
As previously stated, a spin accumulation decays exponentially with a

distance d from the spin contact. The characteristic length scale for this
exponential decay is the spin diffusion length Ls. If V (2ω) is spin-related, one
expects that the measured voltage drop across the constriction

V (2ω, d)spin = Vspin,0 e
(−2d/Ls) (6.13)

also decays exponentially with a distance, where Vspin,0 is the signal one would
obtain for d = 0. The factor 2 in the exponent comes from the fact that
for nonlinear spin-to-charge conversion, the signal is quadratic in the spin
accumulation.

To study the distance dependence for many subbands, V (2ω) must be cor-
rected by the transconductance, see equation 6.4. Figure 6.9 shows the value of
the non-local voltage drop at the transition between subbands, V (2ω)·G/∂VG,
normalized by the weighted transconductance as a function of distance d. The
data is presented for five conductance risers, i.e., at the first five subband tran-
sitions, GN → GN+1, including N ∈ [0, 1, ..., 4]. The data for d = 12.5 µm from
figure 6.8 was omitted for figure 6.9. It has to be noted that ∂VGQPC/GQPC is
different for each subband. Consequently, each subband has to be evaluated
seperately. Instead of an exponential decay, all five curves seem to exhibit a
linear slope. For a spatial separation of ∆d = 3 µm between individual spin
contacts, the spin accumulation should exhibit sufficient variation to display
an exponential decay, see figure 5.4. This is due to the fact that for the wafers
used in this work, the spin diffusion length is Ls = 7.2 µm. From distance re-
solved measurements it is therefore not possible to prove whether the second
harmonic of the voltage drop across the QPC originates in spin.

Suppressing the Spin Accumulation with a Perpendicular Magnetic
Field

In another try of checking whether V (2ω) arises from the presence of a spin
accumulation, measurements in a magnetic field Bz = B perpendicular to the
spin accumulation were performed. When a perpendicular magnetic field is ap-
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Figure 6.9: Non-local voltage drop V (2ω) measured across a QPC at
various subband transitions, normalized by the weighted transconductance
∂VGQPC/GQPC as a function of distance. ∂VGQPC/GQPC has to be evaluated
separately for each subband. Shown are the first five risers in the conductance.
All curves exhibit a linear slope.

plied, it dephases the in-plane spin accumulation, suppressing the spin-related
signal. The procedure is reminiscent of the Hanle measurements, mentioned
in section 5.1. The utilization of a large perpendicular magnetic field to sup-
press the spin-related signal in a QPC has been demonstrated in reference
[135]. Compared to the samples used in our work, however, the generation of
the spin accumulation did not rely on ferromagnetic spin contacts but rather
on the spin Hall effect. In addition, the strong spin-orbit coupling in their
GaAs hole gas demanded large magnetic fields to suppress the spin accumu-
lation. In our samples, however, large magnetic fields can cause an undesired
change in the magnetization configuration of the spin contacts. A second
problem that may arise from employing large out-of-plane magnetic fields is
a modification of the QPC properties. Specifically, the step quality may be
enhanced, resulting in higher peak transconductance values. This could com-
plicate the evaluation of the data, as V (2ω) is linear in the transconductance.
Consequently, low perpendicular magnetic fields are advantageous for the de-
vices used in this work. In section 5.1, the Hanle measurement presented in
figure 5.5 shows that for the heterostructure used in this work B = 150 mT
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is required to fully dephase the spin accumulation. At B = 50 mT, however,
most of the spin signal was suppressed, while the QPC characteristics remain
unaltered, see figure 5.12. Consequently, B = 50 mT is the perpendicular
magnetic field strength chosen for the following experiments.

Before applying an out-of-plane magnetic field, the magnets of the spin
Esaki diode were magnetized by a strong in-plane magnetic field B = 1 T
aligned with the easy axis of the spin contacts. Before rotating the sample
into an out-of-plane configuration, the magnetic field was swept to zero with
a low sweeping rate. Approaching B = 0 with a large sweeping rate could
cause the magnetic field to pass through zero field, potentially affecting the
magnetic orientation of the spin contacts. One approach for the measurements
in a magnetic field, which has been used succesfully before [134, 135], is to
apply a fixed split-gate voltage VG and sweep the field. This method, however,
resulted in measurements with a low signal-to-noise ratio for our samples. A
different possibility is to fix the magnetic field and sweep VG, which is the
approach chosen in this work.
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Figure 6.10: Results of non-local spin-to-charge conversion experiments in
zero applied magnetic field (black) and in an out-of-plane magnetic field of
B = 50 mT (red). The measurement was repeated for different currents Isd ∈
[10, 20, ..., 100 nA]. The out-of-plane magnetic field is used to dephase a spin
accumulation δµs → 0 at the QPC. There is, however, no visible difference
between the red and black curves. Before the measurement was started, the
spin contacts were magnetized by a strong in-plane magnetic field.
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The non-local voltage drop V (2ω)/I2
sd, normalized by the excitation cur-

rent, is shown in figure 6.10 for zero applied magnetic field (black curves) and
for B = 50 mT (red). Measurements were conducted for different currents
Isd ∈ [10, 20, ..., 100 nA]. Unfortunately, there is no clear difference between
B = 0 and B = 50 mT. For certain current densities in figure 6.10 the red
curve falls below the black curve. These results, however, cannot be repro-
duced. When the measurements were repeated, the curves showed no differ-
ence or showed even the opposite behavior, with B = 50 mT producing higher
peak values in V (2ω). These results suggest that any differences between zero
magnetic field and B = 50 mT are due to fluctuations in the measurement
rather than being spin related.

Discussion

The absence of any influence of an out-of-plane magnetic field on V (2ω) sug-
gests that we cannot verify the existence of a spin accumulation in our devices
via nonlinear spin-to-charge conversion. Based on the data presented in fig-
ure 6.10, it may even be inferred that no spin accumulation is present in our
samples. Section 5.1, however, demonstrated the presence of a spin accumu-
lation in our devices using the non-local spin valve method, which exhibited
clear switching behavior. Distance-resolved spin valve measurements revealed
a high spin injection efficiency and spin diffusion length. Additionally, Hanle
measurements were conducted, demonstrating that an out-of-plane magnetic
field of 50 mT can effectively suppress a significant portion of the spin sig-
nal. This highlights the importance of being able to confirm the presence of
spin accumulation through well-established alternative methods. However, if
V (2ω) is not spin-related, the question of the origin of V (2ω) arises.

It is possible that thermopower, which is also measured as the second har-
monic voltage drop across a QPC [140], has a major contribution to V (2ω).
This may provide an explanation for the unexpected increase of V (2ω) with a
distance d between the spin contact and the QPC in figure 6.6, where it was
observed that V (2ω) increases as the width of the spin contacts decreases.
The width of the spin contacts affects the voltage drop across the spin con-
tacts, which is larger for smaller width w due to the decrease in surface area.
A consequence of the large voltage drop, which is required to drive an exci-
tation current through a spin contact (or reference contact), is local heating
of electrons in the transport channel. Heat is then conducted efficiently in
the high mobility 2DEG, which results in a temperature gradient across the
QPC as T1 − T2 = ∆T . This temperature gradient results in a thermopower
signal, which is measured as the second harmonic voltage drop V (2ω) across
the QPC. The I-V curves of spin contacts with w = 300 nm (light blue) and
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w = 700 nm (blue) displayed in figure 6.11 show that the three-terminal volt-
age V3T, which drops across the spin Esaki diode, indeed changes significantly
with the contact width. The inset shows the measured data in the range of
I ∈ [−25 µA, 25 µA]. These results suggest that thermopower (TP) may play
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Figure 6.11: I-V curve of two
spin contacs, displaying the
voltage drop over the spin
Esaki diode V3T (blue) and
the differential conductance
∂V3T/∂I (red) as a funktion
of applied current I. The con-
tacts are 700 nm (dark blue,
dark red) and 300 nm (light
blue, light red) wide, respec-
tively. The inset shows the
measurement over the range
of I ∈ [−25 µA, 25 µA]

a significant role in the samples used in this work. The non-local voltage drop
across the QPC may be a supperposition V (2ω) = V (2ω)spin + V (2ω)TP of a
signal originating in spin and in thermopower. If the width of a spin contact
is altered, the voltage drop over the spin Esaki diode changes, which in turn
affects the dissipated power at a given current. As a consequence, a wide spin
contact located close to the QPC may exhibit a large V (2ω)spin and a small
V (2ω)TP. In contrast, a narrow spin contact located further away from the
constriction may show a decreased V (2ω)spin and an increased V (2ω)TP com-
pared to the close contact. The fact that V (2ω) in figure 6.6 increases as the
distance between the spin contacts is increased may be attributed to a larger
increase in thermopower compared to the decrease in spin-related signal.

There is an additional factor which may indicate that V (2ω) originates in
thermopower. This additional factor is an observed linear relation between
V (2ω) and d in figure 6.9, which may result from the heat transport proper-
ties in our 2DEG, where heat is also expected to decay exponentially with a
distance from the QPC, where the characteristic length scale is called the ther-
mal decay length. In our samples, the thermal decay length should exceed the
spin diffusion length by about one order of magnitude [146], i.e., the thermal
decay length is much larger than the distances in figure 6.9. Consequently,
one can approximate

V (2ω) ≈ V 0
TP(1− d

LTP
) (6.14)

a linear relation between the voltage drop accross the QPC and the distance
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d, in the case that d is small compared to the thermal decay length. The
linearity between d and V (2ω) is, in fact, observed in figure 6.9 for all mea-
sured subband transitions, which may be attributed to a large contribution of
thermopower for V (2ω).

Figure 6.9 may provide additional information about the origin of V (2ω),
as the cyan curve, which shows the data for the first subband transition G0 →
G1, exhibits distinct behavior from the other curves. A QPC can be used as
a thermometer3, to measure thermopower or to measure heat transport [140].
This is achieved by measuring V (2ω) at the transition between subbands.
Due to unknown reasons, this procedure cannot be applied for quantitative
analysis at the first subband transition, where V (2ω)TP exhibits abnormal
values, which changes the exact evaluation of thermopower. The curves shown
in figure 6.9 fall onto a similar trace for 1 → 2, 2 → 3, 3 → 4. While the
slope of the curve for the transition from 4 → 5 is similar to the one for
the aforementioned curves, the slope for the normalized voltage drop V (2ω) ·
G/∂VG for the first subband exhibits different behavior from the rest. A
quantitative difference in behavior for the first subband is consistent with
literature on thermopower [140].

Decreasing the Influence of Thermopower

One way to conduct further investigation would be to repeat the measurement
series using a device that has more spin contacts to generate additional data
points. However, the fabrication of these devices is subject to certain limita-
tions. Decreasing the distance between individual spin contacts is challenging
due to lithographic limitations. Additionally, the distance d between a spin
contact and the QPC cannot be chosen arbitrarily large due to the decay of
the spin accumulation with increasing d.

A second approach to conduct further investigation is to decrease the gen-
erated thermopower by fabricating a sample with wider spin contacts. This
way, the voltage drop across the spin injection contact’s tunnel barrier, which
is a prerequisite for efficient spin injection [47], is reduced. The consequence is
decreased heating of the transport channel and, thus, decreased thermopower.
Upon widening the ferromagnetic spin contacts, however, one needs to be care-
ful that the magnetic properties are unaffected as it is important to maintain
a well-defined magnetic anisotropy axis to enable magnetic switching. This
anisotropy axis, which results from induced strain relaxation, can be talored
by lithographic means (see chapter 4). The change in magnetic anisotropy

3If a QPC is to be used as a thermometer, a second QPC has to be utilized as a reference
point for measurements.
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from induced strain relaxation, however, is only present at the edge of a spin
contact [96]. For this reason, spin contacts must be fabricated with a large as-
pect ratio and cannot be arbitrarily large. For a spin contact with w = 2 µm,
however, spin valve measurements showed well-defined magnetic switching.
Consequently, devices with w = 2 µm wide spin contacts were fabricated. Fig-
ure 6.12 displays a SEM of such a device. In the center of the device is a spin
contact with w = 2 µm. With a spatial separation of 6.5 µm a QPC is placed
on either side of the spin contact. Further away from the center are additional
spin contacts with standard geometry, enabling spin valve measurements.

Spin contacts

QPC

Figure 6.12: Device
with a large spin con-
tact of width w = 2 µm
in the center. The
widening of the contact
area reduces contact
resistance, thereby lim-
iting heat generation.
6.5 µm to the left and
to the right of the
spin contact, a QPC is
placed. Additional spin
contacts enable spin
valve measurements.

Non-local spin-to-charge conversion measurements of a sample containing
a spin contact with w = 2 µm are shown in figure 6.13. The left axis shows the
measured raw data in units of µV while the right axis shows the data normal-
ized by the square of applied source drain current V (2ω)/I2

sd. An excitation
current of Isd = 2 µA was chosen. Similar to previous samples, an out-of-plane
magnetic field was used to suppress a spin accumulation. Prior to the mea-
surement, the spin contacts were magnetized with a strong in-plane magnetic
field. At fixed magnetic fields B ∈ [0, 2.5, ..., 75 mT], the split-gate voltage VG
was swept. Figure 6.13 (a) shows the data over the full measurement range
whereas 6.13 (b) displays the inset, zooming in on the last transconductance
step. The curves are color coded with respect to the applied magnetic field.
For B = 0, the measurement data is displayed in red. At increasing magnetic
fields, the color changes from red to purple to blue.
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Figure 6.13: (a) Non-local spin-to-charge conversion measurements of a spin
contact with w = 2 µm for various out-of-plane magnetic fields. Prior to
measurement, the spin contacts were magnetized in-plane. One observes the
trend that with increasing magnetic field (red→ purple→ blue) from B = 0
to B = 75 mT the measured signal decreases. Part (b) shows the inset from
a, zooming in on the graph.

For increasing magnetic fields, V (2ω) decreases to smaller values. This
decrease has to be viewed as a general trend. If the data between individual
magnetic fields is compared directly, the measured data may contradict the
expected behavior. For B = 10 mT the measured voltage drop across the con-

73



CHAPTER 6. MEASURING SPIN ACCUMULATION USING A QPC

VG (V)

V
(2
ω

)(
µV

)

-2.604 -2.602 -2.600 -2.598 -2.596 -2.594

120

140

160

0 mT

37.5 mT

75 mT

Figure 6.14: Repeat of the measurement as presented in figure 6.13. The
results from the previous measurements could not be repeated. Instead,
the measurements here suggest that an out-of-plane magnetic field increases
V (2ω). The fact that some curves are scattered to different values suggest
that not a magnetic field but fluctuations in the measurement are responsible
for variations in the obtained data.

striction is larger than for B = 0. Although the magnetic field causes a shift
of V (2ω) towards smaller values, it appears that multiple measurements are
necessary to obtain unambiguous results due to the large fluctuation of V (2ω)
at the last conductance riser. For this reason, the measurement procedure
was repeated immeadiately after the measurement finished. The result of the
reiteration is shown in figure 6.14. For this measurement series, the drop in
V (2ω) with increasing magnetic field cannot be seen. In fact, the curves of
the figure would suggest an increase of signal with magnetic field strength,
which opposes the results from the previous measurements.

Figures 6.13 and 6.14 show different behavior in V (2ω) with respect to a
perpendicular magnetic field. In the first measurement series, V (2ω) decreased
with B, whereas the second measurement series showed an increase with B.
The measurements from figures 6.13 and 6.14, however, share the fact that
the obtained data is subject to large fluctuations. This suggests that the
reason for the magnetic field dependence observed in figure 6.13 is due to
fluctuations in the measurement rather than spin related phenomena. With
the geometry presented in figure 6.12, where a spin contact with a large contact
with w = 2 µm was used for spin injection, it is still not possible to prove spin
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origin of V (2ω) and it appears that thermopower (or other effects) play a
significant role in the generation of V (2ω). One approach to further reduce
any influence of thermopower, which appears to be the result of generated
heat from the spin contacts, would be to fabricate a device with very large
spin contacts, which have a width of, say, w = 20 µm. Note that in this case,
the magnetic anisotropy axis is not perpendicular to the flow of electrons
in the mesa4. It is, however, possible that even in a device containing an
idealized spin Esaki diode, which has very low tunneling resistance, the heat
generation by the current flow through the 2DEG is large enough to obscure
a spin related signal. This gives rise to the question of whether it is possible
to verify the existence of a spin accumulation in our devices with nonlinear
spin-charge conversion assuming the spin accumulation behaves according to
the standard model of spin injection. As a next step, the spin-related signal
across the QPC is calculated.

Calculation of the Spin-Related Voltage Drop across the QPC

One advantage of the devices used in this work is that by means of the spin
valve method, an independent path to accessing information on the spin accu-
mulation, δµs, and spin transport properties is available. If a clear spin-related
component of V (2ω) was observed in the measurement data, then comparing
these results to the data obtained from spin valve measurements would enable
verification of the obtained values for δµs. Unfortunately, the standard exper-
imental checks did not confirm the presence of the spin-related signal in the
measured voltage. Instead, the reverse approach will now be used, where δµs
obtained from spin valve measurements is utilized to calculate the expected
value of V (2ω)spin in a nonlinear spin-to-charge conversion experiment.

The first step is to calculate the value of δµs based on spin valve mea-
surements. A spin accumulation is defined as a splitting in the quasichemical
potential between spin-up µ↑ and spin-down µ↓ electrons (see section 2.2).
Therefore, the quasichemical potential profile of a spin valve measurement,
which is shown in figure 5.2, is crucial for the calculation of δµs. When the
spin contacts switch from a parallel to an antiparallel configuration, the non-
local voltage resulting from the emf changes. The difference in the measured
non-local voltage is linear in the spin accumulation at the detector site. In
fact, one finds that ∆VNL = VNL,↑ − VNL,↓ ∝ µ↑ − µ↓ = 2δµs(d). To determine
the exact value of δµs, however, it is necessary to use multiple injector-detector
pairs to conduct distance-resolved spin valve measurements.

From distance-resolved spin valve experiments, spin transport parame-
4One could, of course, change the orientation of the mesa.
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ters can be extracted. As spin transport has a diffusive character, the spin
accumulation decays exponentially with a distance d from spin injection as
δµs(d) = δµs(0) exp(−d/Ls). Here, Ls is the spin diffusion length and δµs(0)
is the spin accumulation at the spin injection contact. Figure 5.4 shows ∆VNL
on a semi-logarithmic scale over d. One finds that ∆VNL is related to the spin
injection efficiency P and source-drain current I by the expression [38]

∆VNL = P 2IRsLs
2wc

exp
(
− d

Ls

)
, (6.15)

where Rs and wc are the sheet resistance and width of the spin contacts,
respectively. ∆VNL was not measured at d = 6.5 µm. However, the fit shown
in figure 5.4 results in ∆VNL(6.5 µm) = 3.0 µV and P = 56 % at I = 2 µA.
To obtain equation 6.15 one assumes that P is equal for spin injection and
detection. From this, the relation between ∆VNL and δµs follows as

δµs = e∆VNL
2P , (6.16)

which results in δµs(6.5 µm, 2 µA) = 2.7 µeV.
Now the expected voltage drop across a QPC which is caused by a spin

accumulation can be calculated. At the last conductance riser, at GQPC =
e2/h, equation 6.4 becomes [135]

V (2ω) = −1
2

π

e~ωx
δµ2

s, (6.17)

where ~ωx = 1.84 meV was calculated in section 5.2. Inserting the values
into equation 6.17 shows that V (2ω) = 6.2 nV is very low compared to the
measured values of V (2ω) ∼ 150 µV obtained from measurements. Based on
the values presented here, it is very difficult to measure nonlinear spin-to-
charge conversion in the samples presented in this work.

Now the question arises whether the expected signal could be larger in an
idealized sample. This idealized sample considers the maximum value for δµs
that is possible to obtain in our devices from a theoretical point of view. In
this case, it is assumed that the spin accumulation reaches the QPC with-
out any loss in magnitude: δµs = δµs(0). From a mathematical point of
view, this means that the distance between the spin contact and the QPC
is zero, which is not possible in a real device. If, however, the spatial sepa-
ration between the spin contact and the QPC is smaller than the mean free
path, electron transport and, thus, spin transport is ballistic. In this case,
spin relaxation is suppressed and one can use ∆VNL(d → 0) = 7.5 µV to
calculate δµs at the constriction. In addition to loss-free spin transport, a
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spin injection efficiency of P = 100 % is assumed. In this case, one obtains
∆VNL,100% → ∆VNL/(0.56)2 = 23.8 µV at I = 2 µA 5. In this case, the spin
accumulation amounts to δµs = 11.9 µeV, which is considerably larger than
the value obtained from spin valve measurements in this work. Inserting this
value into equation 6.17 and using P = 100 % results in V (2ω) = 120 nV.
This leads to a large increase in the spin related signal compared to the values
obtained from the previous calculations. As V (2ω) ∝ δµ2

s, increasing the spin
accumulation greatly changes the measured signal. However, the gedankenex-
periment of using a perfect, idealized device still produces values, which are
orders of magnitude below the signals obtained from measurements in this
work.

In summary, the spin-related origin of V (2ω) could not be confirmed.
There are, however, some experimental obvervations which point towards
thermopower does playing a significant role in the devices used in this work.
There are several ways to decrease the amount of generated thermopower be-
yond those previously discussed. One option is to further increase the width
of the mesa. Another approach is to choose a material with a different heat
capacity cv, which is given by [140]

cv = π2

3
kBT

EF
ns kB (6.18)

where T , ns, kB and EF are the temperature, sheet carrier density, Boltzmann
constant and Fermi energy, respectively. The electron density, however, is
in the range typical for GaAs/AlGaAs heterostructures. Increasing the tem-
perature by a few Kelvin would most likely destroy the observed quantized
conductance of the QPC due to temperature smearing.

Considering the various measurements presented in this section as well as
the calculations presented, it appears that measuring a spin accumulation with
a QPC by means of nonlinear spin-to-charge conversion is very problematic
with the devices used in this work. In order to utilize nonlinear spin-to-charge
conversion, it appears necessary to reduce the influence of any components in
V (2ω) which are not spin related. In addition, a larger spin accumulation
would be required to increase the spin-related component of V (2ω), which
may be achieved by other means than all-electrical spin injection through a
spin Esaki diode.

5In comparison, Marcellina et al., who measured nonlinear spin-to-charge conversion in
a GaAs hole gas obtained δµs = 1 µeV at I = 5 nA utilizing the spin Hall effect [135].
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6.2.3 Linear Spin-to-Charge Conversion

This section presents the findings of linear spin-to-charge conversion experi-
ments. Here, the voltage drop, V (ω), measured across the QPC, is linear in the
spin accumulation δµs and linear in a magnetic field B, which is (anti)parallel
to the spin accumulation. In contrast to nonlinear spin-to-charge conversion,
the first harmonic of the voltage drop across the QPC is measured, so the
measurements should not be affected by thermopower.

While the measurement setup for measuring spin-to-charge conversion in
the linear regime also followed the scheme from figure 6.2, the measurements
presented in this section were conducted in a dilution fridge at a temperature
of 85 mK. The voltage drop V (ω) across the QPC was measured while ap-
plying a non-local excitation current Isd on its left side and leaving the right
side as a floating probe. During measurement, the split-gate voltage VG was
swept at a given in-plane magnetic field.

If a spin accumulation δµ1 = δµs is present on the left side of the QPC
with no spin accumulation on the right side δµ2 = 0, the measured voltage
drop over the constriction reads

V (ω) = G3δµs
e(G1 +G4δµs)

, (6.19)

with G1, G3 and G4 given by equations 6.3a, 6.3c and 6.3d, respectively. Ex-
perimentally, δµ2 = 0 can be achieved by creating a narrow constriction with a
QPC conductance of G ≤ 2e2/h. By inserting equation 6.5 into equation 6.3c,
one finds that G3 follows the transconductance ∂GQPC/∂VG of the QPC, i.e.,
G3 is expected to follow the shape of a δ-function with respect to the applied
split-gate voltage. At the first conductance step, where the transconductance
is at its maximum (i.e., at G = e2/h), G4 equals zero. In this case, equation
6.19 simplifies to V (ω) = (G3 h/e2) · δµs.

The voltage drop V (ω) measured over the QPC is expected to be linear in
the spin accumulation. Therefore, V (ω) is also linear in the excitation current
Isd. The curves in figure 6.15 show the measured voltage drop V (ω) at zero
magnetic field for various excitation currents. The applied currents are Isd =
20 nA (black curve), Isd = 40 nA (red), Isd = 60 nA (green) and Isd = 80 nA
(blue). Even without quantitative analysis it seems that the expected linear
relation between V (ω) and Isd holds. Figure 6.15 also illustrates one technical
advantage of linear spin-to-charge conversion opposed to employing nonlinear
methods. Even if the excitation current is increased by a factor of four, the
measured data can still be plotted in one graph. In the case of nonlinear spin-
to-charge conversion, the increase in the measured signal would be 16-fold.
However, the challenge is not in visualizing the data but rather in the need
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Figure 6.15: Voltage drop V (ω) over the QPC at B = 0 for various excitation
currents Isd. It appears that V (ω) increases linearly as Isd is increased from
20 nA (black) to 40 nA (red), 60 nA (green) and 80 nA (blue).

to adjust the working range of the measuring multimeter for large variations
in the measured signal.

As a next step, the magnetic field dependence of V (ω) must be investi-
gated. A magnetic field B (anti)parallel to the spin accumulation changes
the kinetic energy of a given spin species, thus making the constriction spin
sensitive. Consequently, the voltage drop V (ω) across the QPC is linear in
the magnetic field6. In fact, one finds that the derivative of V (ω) with respect
to the magnetic field is linear in the spin accumulation δµs with

∂(δV (ω))
∂B

∣∣∣∣
B=0

= gµBπ

2e~ωx
δµs, (6.20)

where g, µB and ωx are the g-factor, Bohr magneton and curvature of the QPC,
respectively. The derivation for equation 6.20 is shown in the appendix (see
A). In the case of a magnetic field oriented antiparallel to the spin accumu-
lation, the spin accumulation’s energy penalty reduces the spin transmission
probability, thereby decreasing V (ω). Conversely, in a parallel configuration,
the transmission probability is enhanced. When an antiparallel magnetic field

6The fact that G3 is linear in B also follows from inserting equation 6.5 into equation
6.3c.
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is increased, V (ω) decreases with B and the slope ∂B(δV (ω)) is negative. At
the point where the spin injection contacts switch from an antiparallel con-
figuration to a parallel one, it is expected that V (ω) will exhibit a sudden
increase, accompanied by a change in the sign of ∂B(δV (ω)).

Figure 6.16 shows results from measurements conducted at small magnetic
fields, B ∈ [20, 40, ..., 140mT], which allows to switch between antiparallel and
parallel configurations between the spin accumulation and the magnetic field.
The measurement was done at an excitation current Isd = 100 nA at the last
conductance step G1 → G0. In (a) the measured voltage V (ω)/Isd normalized
by the excitation current is shown. Plotted are curves at B = 20 mT (black),
B = 80 mT (green) and B = 140 mT (red). In addition, the second harmonic
voltage drop V (2ω)/I2

sd normalized by the square of injection current is shown
as a dotted line. V (2ω) is linear in the transconductance of the QPC and
was covered in detail in the previous chapter. As G3 is also linear in the
transconductance, it is expected that both V (ω) and V (2ω) exhibit a similar
slope. This behavior is observed for split-gate voltages VG > −6.32 V. Upon
decreasing VG further, V (2ω) decreases opposed to the observed increase in
V (ω). The opposing behavior in the slope of V (ω) and V (2ω) may arise from
a possible increased contribution of G4 to the denominator in equation 6.19
as G1 becomes small.

Due to high noise is it not possible to extract a relation between V (ω) and
the applied magnetic field. To gain further insight, a moving average method
was used to smooth the measurement data, which is shown in figure 6.16
(b). Even with the lower noise from the moving average, it is not possible to
extract quantitative information on V (ω) with respect to B. While it appears
that V (ω) has increased between B = 20 mT (black) and B = 140 mT (red),
one does observe that V (ω) at B = 80 mT (green) intersects both the black
and the red curve at various split-gate voltages. It should be noted that the
moving average method must be used with caution, as a single high fluctuation
during measurement can have a significant impact on the averaged signal over
a wide range. Based on the data presented in figure 6.16 it appears that higher
magnetic fields are necessary for achieving adequate resolution.

Consequently, measurements were conducted in the high magnetic field
regime, and the results are displayed in figure 6.17. At any given magnetic
field, the measurement was conducted at Isd ∈ [20, 40, 60, 80 nA]. The plot
shows the voltage drop over the QPC, V (ω)/Isd, normalized by the excita-
tion current. The data collapses on a single trace for each magnetic field,
validating the aforementioned linear relation between excitation current and
voltage drop. The data for B = 0 (red curves, for which the corresponding
regions of high and low transconductance are highlighted), B = 6 T (green)
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Figure 6.16: (a) Results of a non-local spin-to-charge conversion experiment at
various in-plane magnetic fields B = 20 mT (black curve), B = 80 mT (green)
and B = 140 mT (red). Shown is the measured voltage drop across the QPC,
V (ω)/Isd, normalized by the excitation current Isd = 100 nA. As a reference
for the slope of the signal, V (2ω) is also shown (dotted curve). Over a wide
range of split-gate voltage VG, V (ω) and V (2ω) exhibit a similar slope. Due to
the high noise, a magnetic field dependence cannot be extracted. (b) Moving
average of the signal shown in (a). It seems that the signal increases with
magnetic field. For unambiguity, higher magnetic fields appear imperative.
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Figure 6.17: Voltage drop V (ω)/Isd over the QPC normalized by the excitation
current. Measurements were conducted at Isd ∈ [20, 40, 60, 80 nA], at magnetic
fields B = 0 T (red curves), B = 6 T (green) and B = 12 T (cyan). The data
collapses on a single trace for a given magnetic field and it appears that V (ω)
increases with B, indicating that the measured signal is of spin origin. For
the data at B = 0 T, the dashed lines indicate the regions of high and low
transconductance, respectively.

and B = 12 T (cyan) are shown. For visual clarity, the data for B = 3 T
and B = 9 T are not shown in the figure. V (ω)/Isd clearly increases with in-
creasing magnetic field. At minimum transconductance, the splitting between
values measured at high magnetic field and zero magnetic field is low, when
the first subband is still populated at around VG = −6.0 V. As VG decreases
and the first subband is depopulated, V (ω) increases. At this point, an in-
creased splitting between the voltages measured at high magnetic field and
zero magnetic field is observed. While the voltage drop normalized by the
excitation current reaches ∼ 550 Ω for B = 0 (red curves), it reaches ∼ 950 Ω
for B = 12 T. As VG is decreased further and the QPC pinches off, one finds
V (ω) = 0. The linearity of V (ω) in B is consistent with an interpretation
that the measured signal originates from spin-related phenomena.

The increase in V (ω) with increasing magnetic field is consistent with the
fact that B is parallel to the spin accumulation for such high values of B. As
one cannot switch between a parallel and antiparallel orientation of B and the
spin accumulation, the direction of the magnetic field can be reversed in order
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to check that V (ω) is spin related . In our samples, reversing the direction of
B → −B should result in an increase in V (ω) as the magnetic field strength
increases. It is expected that V (ω) is symmetric in B.

Figure 6.18 displays the results of linear spin-to-charge conversion measure-
ments at negative magnetic fields in the high-field regime. The measurements
were also conducted for multiple excitation currents Isd ∈ [20, 40, 60, 80 nA].
Shown is V (ω)/Isd as the averaged signal of all excitation currents at various
magnetic fields. V (ω)/Isd increases linearly from ∼ 450 Ω at B = −3 T (ma-
genta curve) to higher values for B = −6 T (cyan), B = −9 T (blue) up to
∼ 685 Ω at B = −12 T (green). The linear increase of V (ω) in a magnetic
field parallel to the spin accumulation, regardless of the direction of B, agrees
with expectations and further indicates that V (ω) is spin-related.
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Figure 6.18: Measurements results of nonlinear spin-to-charge conversion for
Isd ∈ [20, 40, 60, 80 nA] at various magnetic fields. Shown is V (ω)/Isd averaged
for all excitation currents at various negative magnetic fields. The alignment
of the magnetic spin injection contacts with the external magnetic fields results
in a spin accumulation parallel to the magnetic field. Thus, the correlation
between the signal increase and the magnitude of the applied field indicates
that the measured signal originates from spin.

Comparing the data presented in figures 6.17 and 6.18 reveals that V (ω)
is not symmetric in B. At positive fields one finds larger resistances com-
pared to the resistances at negative fields with V (ω, 12 T)/Isd ∼ 950 Ω >

V (ω,−12 T)/Isd ∼ 685 Ω . Figure 6.19 shows magnetic field-resolved V (ω)/Isd
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at the point where the QPC is half open. To obtain the data, the average of
V (ω)/Isd for all measured excitation currents was taken at a given magnetic
field. The scatter plot confirms the linear relation between V (ω)/Isd and B.
Shown are the results for negative magnetic fields (red dots) and for positive
magnetic fields (black dots). For positive magnetic fields, V (ω)/Isd is linear
in B. At B = 9 T the data point is lower than expected, deviating from the
linear relation. The linearity of V (ω)/Isd with respect to B is also observed
for negative magnetic fields. One, however, finds that V (ω)/Isd has lower
values at B = −3 T compared to B = 0. In fact, figure 6.19 suggests that
V (ω)/Isd is symmetric around B = −3 T. This would suggest that the applied
magnetic field is antiparallel to the spin accumulation up to B = −3 T, which
is imposisble for our devices. The spin contacts switch their magnetization
configuration at B ∼ −30 mT, see figure 5.3.
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Figure 6.19: Magnetic field-resolved V (ω)/Isd at the point where the QPC
is half open. Data are shown for negative magnetic fields (red dots) and
positive magnetic fields (black dots). Although one observes linearity between
V (ω)/Isd and B for positive and negative magnetic fields, one finds lower
values of V (ω)/Isd at negative fields. This contradicts the expectation that
V (ω)/Isd is symmetric around B = 0.

One possible explanation for the difference in V (ω)/Isd for positive mag-
netic fields and negative magnetic fields could be the fact that between mea-
surements the pinch-off point of the QPC changes. More precisely, one finds
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that the pinch-off, which is the point at which G = 0 is reached and the con-
striction closes, shifts towards larger split-gate voltages VG with time. This
gradual shift in the pinch-off can also be observed in figures 6.17 and 6.18.
In addition to the time-dependence of this shift, it appeared that sweeping B
also resulted in a permanent7 offset of the conductance curve to higher VG.
From a chronological point of view, linear spin-to-charge conversion experi-
ments were first conducted at positive magnetic fields at B = 0 → 3 T →
6 T → 9 T → 12 T. After this, measurements were conducted at negative
magnetic fields B = −3 T→ −6 T→ −9 T→ −12 T. In between linear spin-
to-charge conversion experiments, no measurements of quantized conductance
were performed to observe the properties of the QPC.

To investigate the impact of QPC-related properties, the measurements
at positive magnetic fields were repeated. The results of the repeated mea-
surement are shown in figure 6.20 (a). Shown are V (ω)/Isd as a function of
VG for B = 0 (red curve), B = 3 T (green), B = 6 T (blue), B = 9 T (cyan)
and B = 12 T (magenta). In agreement with previous measurements, the
curves show a δ-like curve and exhibit a linearity in both B and Isd. It is
interesting to note that the unexpected decrease in V (ω)/Isd at B = 9 T is
again observed. Possible reasons for this behavior are not known. To com-
pare the data obtained in figure 6.20 (a) with previous results the curves were
offset in VG to align the points of maximum transconductance. The results
are presented in figure 6.20 (b). Shown is V (ω)/Isd over VG from the first
measurement series for B = 0 (red curves), B = 6 T (green) and B = 12 T
(cyan). The black dotted curves display the results from the measurement se-
ries repeating the experiment. One finds a good overlap between the original
data and the data obtained from the second measurement series. This overlap
includes not only the peak values of V (ω)/Isd but also the shape of the curves.
The rising, plateau-like and falling features of the data all occur at the same
points. These results suggest that the properties of the QPC remain stable
and do not affect measurement outcomes, despite the fact that the pinch-off
point changes with time. Consequently, the difference in V (ω)/Isd for positive
and negative magnetic fields is not a result of a change in the properties of
the QPC.

The difference in V (ω)/Isd for positive and negative magnetic fields can
in fact be attributed to a background signal at the first conductance plateau.
Figure 6.21 (a) displays V (ω)/Isd at B = 0 (black curve), B = 12 T (blue)
and B = −12 T (red). The curves were adjusted in VG so that the step in the
signal occurs at the same point. Each curve is the average of all currents used,

7VG can be shifted back to lower values by illuminating the sample. Too much illumi-
nation, however, may decrease step quality, see figure 5.7.
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Figure 6.20: (a) Repeat of linear spin-to-charge conversion measurements at
various magnetic fields. V (ω)/Isd over VG shows the expected slope for various
excitation currents. Similar to the previous measurement series, the linearity
of the peak signal of V (ω)/Isd with applied magnetic field is not observed at
B = 9 T . (b) First conducted linear spin-to-charge conversion measurements
(colored curves) and the repeat measurement of linear spin-to-charge conver-
sion (black dotted curves). To improve visibility, some curves were offset in
VG. The repeat measurement aligns well with the original data.

Isd ∈ [20, 40, 60, 80 nA]. To calculate the average, a linear interpolation of the
data was performed prior to averaging. Since the transconductance is zero at
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the first conductance plateau (at VG = −6.00 V), one expects V (ω)/Isd = 0.
While the curve follows the expected behavior at B = 0, one finds V (ω)/Isd 6=
0 for B = 12 T and B = −12 T. The background ∆V ′ is correlated with the
applied magnetic field. One finds that ∆V ′ is positive for B > 0 and negative
for B < 0. Figure 6.21 (b) shows V (ω)/Isd with the removed background
signal at the first conductance pleateau. Shown are the data at B = 0 (black
curve), B = 12 T (blue with solid dots), B = 6 T (blue with empty dots),
B = −12 T (red with solid dots) and B = −6 T (red with empty dots). After
the background is removed, V (ω)/Isd still increases with increasing magnetic
field. Furthermore, the signal overlaps for both positive and negative magnetic
fields.

The fact that V (ω)/Isd is symmetric in B after removing the background
signal is apparent in figure 6.22. Here, the value of V (ω)/Isd at maximum
transconductance is shown with respect to applied magnetic field. Shown
are data for positive magnetic fields (black dots) and negative magnetic fields
(red). It is observed that V (ω) falls onto similar values as B → −B is reversed.
In conclusion, one finds that all theoretical predictions for linear spin-to-charge
conversion in our devices are met, namely a δ-like curve, linearity in B and
Isd and symmetry with respect to B.

As a next step, the value of the spin accumulation resulting from linear
spin-to-charge conversion can be calculated. This calculation requires the
slope of V (ω) with respect to B, which is obtained through a linear fit to the
data in figure 6.22. Points marked as "x" were omitted for the calculation of
linear fits, which are shown as solid lines for positive (black line) and negative
(red) B. The linear fits yield a slope ∂BV (ω)/Isd = −24 Ω/T for negative
magnetic fields and ∂BV (ω)/Isd = 27 Ω/T for positive magnetic fields, respec-
tively. Inserting these results into equation 6.20 and using g = −0.39 [132]
and ~ωx = 1.84 meV yields

δµs(B > 0) = −1416 eV/A (6.21a)
δµs(B < 0) = 1250 eV/A, (6.21b)

respectively. Inserting Isd = 20 nA, which is an excitation current that was ap-
plied in the linear spin-to-charge conversion experiments, into equations 6.21a
and 6.21b yields δµs(20 nA) = −28 µeV and δµs(20 nA) = 25 µeV, respectively.
Now, these values, which were obtained for a spin injection contact located
6.5 µm away from the QPC, can be compared to the results from spin valve
measurements. Non-local spin valve measurements cannot be conducted at
the excitation currents used for linear spin-to-charge conversion. However, one
can assume a constant spin injection efficiency over a wide range of Isd [154].
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Figure 6.21: (a) V (ω)/Isd at B = 0 (black), B = 12 T (blue) and B = −12 T
(red). To enhace data comparability, the curves were shifted in VG to ensure
that the signal rise occurs at the same point. At VG = −6.00 V, where the
first conductance plateau is located, one finds a background signal ∆V ′ which
correlates with the applied magnetic field. (b) V (ω)/Isd at B = 0 (black
curve), B = 12 T (blue with solid dots), B = 6 T (blue with empty dots),
B = −12 T (red with solid dots) and B = −6 T (red with empty dots) after
subtracting ∆V ′. One finds that V (ω)/Isd remains linear in B and overlaps
for positive and negative magnetic fields.

Equation 6.16 can then be utilized to calculate the spin accumulation from
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non-local spin valve measurements at low excitation currents. At Isd = 20 nA,
one would find δµs(20 nA) = 27 neV. In practice, the spin valve signal would
be obscurred by noise while utilizing such low excitation currents. Compared
to the results obtained from non-local spin valve measurements, the spin ac-
cumulation calculated from linear spin-to-charge conversion is then larger by
three orders of magnitude. This cannot be explained by measurement uncer-
tainties. Next, possible reasons for this large increase will be discussed.

One possible explanation for an increased signal can be an enhanced g-
factor in a QPC as the contriction closes, which is attributed to electron-
electron interactions [152]. The g-factor was observed to be enhanced up to 10
times its original value at the last subband [129]. Unfortunately, the sample
broke before the experimental determination of the g-factor for the sample
used in this work. An additional explanation for an increased signal may
be the contribution from ballistic effects. In this work, the mean free path is
lmfp = 5.75 µm. This is smaller than the spin diffusion length Ls = 7.2 µm and
also smaller than the distance between the spin contact and the QPC. Chen
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Figure 6.22: V (ω)/Isd at the point of maximum transconductance after the
background has been removed. The data is both symmetric and linear in
B. For both positive (black solid line) and negative (red) magnetic fields, a
linear slope was fitted to the data. Points marked with an ’x’ were excluded
from the fits. The linear fits yield a slope of ∂BV (ω)/Isd = −24 Ω/T and
∂BV (ω)/Isd = 27 Ω/T, respectively.
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et al. calculated that the spin accumulation can be increased in the ballistic
regime [155]. The prerequisites for an increase in spin accumulation in the
ballistic regime are a spin dependent tunnel barrier with a large resistance
and a mean free path greater than the spin diffusion length. This leads to an
increase in the spin accumulation by a factor η = 1 + l2mfp/L

2
s. If the spins

are travelling ballistically towards the constriction, the enhancement factor in
our devices would amount to ∼ 1.7.

A third factor that could lead to an increase in the measured signal may
be an enhanced spin accumulation at the QPC, which is a possibility that will
now be shortly discussed. The presence of the constriction in the vincinity
of the spin injection contact can change a distribution of spin accumulation
in the channel. Therefore, it might be false to assume that the spin accu-
mulation at the constriction has the same value as detected in a spin valve
measurement with a non-constricted channel. The situation is illustrated in
figure 6.23, which shows the channel without (a) and with a QPC (b). Two
principal factors influence the physical principles underlying spin accumula-
tion in the context of spin valve measurements and measurements employing
a QPC for spin detection. The first reason for the discrepancy between spin
valve measurements and spin-to-charge conversion experiments is that, for
the latter, the spin accumulation must be at the center of the mesa where
the constriction forms. This creates a two-dimensional problem as the con-
striction becomes narrow. The second difference is that the QPC creates a
narrow channel at the point of the constriction, which can even be pinched-off
at low split-gate voltages. This creates a bottleneck, which increases the spin
accumulation. Enhancement of the spin accumulation in confined channels
has been predicted theoretically within the standard model of spin injection
[156] and observed experimentally as the enhancement of the local magne-
toresistance signals [154]. In addition, it is possible that the QPC has other
influences on the measured signals that extend beyond the description within
the drift-diffusion model. Thomas et al. [152] found evidence of a possible
spin polarization in a one-dimensional electron gas, even at zero magnetic
field, which may have an influence on the spin accumulation detected by a
QPC in our devices. All these factors may lead to a large increase in the
measured signal compared to the expected value based on spin valve mea-
surements. Nevertheless, we are unable to provide a quantitative explanation
for the discrepancy in the spin accumulation detected by spin-to-charge con-
version at the QPC, which is 1000 times larger than that observed with the
spin valve effect.

An additional argument can be made in support of the interpretation that
the measured signals originate from a spin accumulation that is enhanced
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by the presence of the QPC. This argument arises from a comparison of the
spin accumulation calculated from linear and nonlinear measurements. At an
excitation current of Isd = 1 µA, the spin accumulation extracted from linear
spin-to-charge conversion measurements would amount to δµs = 1.35 meV,
assuming the standard value for the g-factor in a GaAs 2DEG, which is g =
−0.39 [132]. It is, however, a known fact that the g-factor can be enhanced
in a QPC [152], and the enhancement has been observed up to 10-fold [129].
Assuming a six-fold increase in the g-factor of the QPC, a spin accumulation
of δµs = 225 µeV would be yielded at the constriction with an excitation
current of Isd = 1 µA. This obtained value for the spin accumulation is still
larger than expected. However, it must be noted again that the influence of
the QPC on the spin accumulation is unknown. Therefore, it is possible that
δµs = 225 µeV represents the spin accumulation value at the QPC.

Assuming the value of δµs = 225 µeV, the expected signal for nonlin-
ear spin-to-charge conversion experiments can be calculated using equation

(a)

(b)

Figure 6.23: The theory for spin injection and spin detection is based on a
one-dimensional random walk model, sketched in (a). During a spin valve
measurement, a spin accumulation injected from the left spin contact (yellow)
diffuses in x-direction and is detected by a second spin contact. (b) Nonlin-
ear spin-to-charge conversion utilizing a QPC (orange). At the constriction
imposed by the QPC, a bottleneck is created, which increases the spin accu-
mulation. In addition, spins may have to travel in y-direction to pass through
the constriction, making the problem two-dimensional.
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6.17. Inserting ~ωx = 1.84 meV, which was calculated in section 5.2, one finds
that the measured voltage drop for nonlinear spin-to-charge conversion would
amount to V (2ω) ∼ 40 µV at Isd = 1 µA. Nonlinear spin-to-charge conversion
experiments at Isd = 1 µA have been conducted in this work, and the results
are shown in figure 6.3. The measured value of V (2ω) ∼ 40 µV is in good
agreement with the calculations. These calculations show that the results ob-
tained from nonlinear and linear spin-to-charge conversion are consistent with
each other, and may be the result of the spin accumulation, under assumption
that the latter is enhanced by the presence of the QPC.

If the measured nonlinear signal, V (2ω), and the linear signal, V (ω), are
assumed to arise from the presence of a spin accumulation, it is important
to note that the theoretical description of spin transport must be adjusted.
The standard model of spin injection cannot be applied in this case. Using
spin-to-charge conversion in a QPC appears to be not simply an alternative
method of spin detection, but rather a distinct process with different physics.
Simply speaking, a QPC is more than just a detector.

Utilizing linear spin-to-charge conversion to measure δµs offers the advan-
tage of not requiring clear ferromagnetic switching, which is important for
miniaturization. A spin accumulation can be measured using very low cur-
rents which are not accessible for spin valve measurements. In our devices,
performing spin valve measurements at Isd = 20 nA has never been achieved
and may be impossible. Compared to spin valve measurements, however,
various disadvantages have to be mentioned. These disadvantages include
additional steps during sample fabrication. Defining split-gates by electron
beam lithography requires precise cleanroom practice. Further drawbacks of
linear spin-to-charge conversion are evident during measurement. To achieve
quantized conductance, high mobilities are a prerequisite. Additionally, the
measurement setup requires greater care. The last drawback is the fact that
spin-to-charge conversion experiments require more time. While a spin valve
measurement can be completed in ∼ 20 min, the linear spin-to-charge conver-
sion measurements presented in this work extended over longer time periods.
Obtaining data for a single measurement series required more than a day.

6.3 Conclusion
In this chapter, spin detection by means of nonlinear and linear spin-to-charge
conversion in a QPC were analyzed. Experiments were conducted in a non-
local setup where a spin-polarized current was injected on the left side of the
QPC, and the right side was kept floating. The presence of a spin accumu-
lation δµs at the constriction results in a measurable voltage drop across the
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QPC. The measurement of nonlinear spin-to-charge conversion involves the
second harmonic of the voltage drop, V (2ω) ∝ µ2

s, which is proportional to
the square of the spin accumulation. In contrast, linear spin-to-charge conver-
sion is measured by the first harmonic of the voltage drop, V (ω) ∝ µs, which
is linear in the spin accumulation.

The data obtained from nonlinear, non-local spin-to-charge conversion ex-
periments aligned well with theoretical predictions. The shape of the measured
curves follows the QPCs transconductance, weighted by the conductance of
the QPC. Additionally, V (2ω) exhibited the expected proportionality with the
square of the excitation current. The next step was to determine whether the
measured signal originates from a spin accumulation or other effects. Here,
one can utilize an out-of-plane magnetic field, which nullifies the effects of
the spin accumulation, or distance-resolved measurements to prove the origin
of spin. It was, however, not possible to confirm that the measured signal
originates in spin.

For linear, non-local spin-to-charge conversion experiments, the measured
signal, V (ω), is expected to be linear in both the transconductance of the QPC
and the excitation current. These predictions were confirmed by the measured
data. In addition, V (ω) is predicted to be linear in a magnetic field that is
either parallel or anti-parallel to the spin accumulation. Measurements at
low magnetic fields, which enable switching between parallel and antiparallel
configurations, did not provide sufficient resolution for a definitive conclusion.
Therefore, measurements in the high magnetic field regime, with fields up to
±12 T, were conducted. For the magnetic fields used in these experiments,
the magnetization configuration of the spin contacts is always parallel to the
magnetic field. Therefore, the spin accumulation is also always parallel to the
magnetic field. This relationship is evident in the experimental data as the
measured signal is linear in the magnitude of the applied external magnetic
field, regardless of its sign. These facts suggest that the data obtained from
linear, non-local spin-to-charge conversion experiments are of spin origin. Fi-
nally, the spin accumulation, δµs, could be calculated and compared to the
values obtained from spin valve measurements. The data from linear spin-to-
charge conversion experiments, however, suggests a spin accumulation which
is ∼ 1000 times larger than predicted from spin valve measurements. The
theory for spin-to-charge conversion presented in this work cannot explain
this discrepancy. However, it is possible that the physics behind the spin ac-
cumulation is altered by the QPC. It is well-known that the g-factor may be
enhanced in the QPC. Additionally, the constriction may create a bottleneck
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for the spin accumulation, increasing its magnitude.

When comparing the data from linear spin-to-charge conversion, where an
enhanced g-factor was assumed, to that of nonlinear experiments, the mea-
sured signals indicate a similar spin accumulation. The absence of a proven
spin origin for nonlinear spin-to-charge conversion may be attributed to the
constriction, which could significantly alter the spin accumulation. Further
investigation is required to fully comprehend the system’s behavior, as the
influence of a QPC might extend beyond mere spin detection.
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Chapter 7

Summary

This work adressed spin detection by means of a quantum point contact
(QPC), which acts as an energy barrier. Due to the different quasichemical
potentials of spin-up and spin-down electrons, one finds different transmission
probabilities through that energy barrier. This way, a QPC can be utilized
for spin detection by means of spin-to-charge conversion. Prior to conduct-
ing the first spin-to-charge conversion experiments, certain requirements must
be met. These include efficient spin injection and spin transport to obtain a
large spin accumulation at the detection site, i.e., at the QPC. Additionally,
a functioning QPC is necessary.

To examine the spin injection and spin transport properties of the devices
used in this work, distance-resolved spin valve measurements were conducted.
They revealed a high spin injection efficiency of P = 56% and a spin diffusion
length of Ls = 7.2 µm. Hanle measurements showed that small out-of-plane
magnetic fields of Bz = 60 mT suppress the majority of the spin accumulation.
These results confirm efficient spin injection and spin transport in the 2DEG.

The next step was to achieve quantized conductance, which is realized
through split-gates across the mesa, perpendicular to the flow of electrons.
To obtain the well-known step-like conductance pattern typical for a QPC, an
appropriate split-gate geometry is required. As a first step, a split-gated de-
vice was fabricated on a wafer which has a large mobility, but no means of spin
injection. By lowering the curvature of the split-gates, well defined plateaus
could be achieved. The split-gate pattern was then transferred onto a device
fabricated from a wafer suitable for spin injection. Source-drain biasing exper-
iments then confirmed that the split-gate design used here is appropriate for
measuring quantized conductance. As a final step, experiments showed that
small out-of-plane magnetic fields up to Bz = 50 mT do not affect backscat-
tering and leave the transmission properties of the QPC unaffected, which
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is important for future experiments. These experimental results demonstrate
that all the necessary prerequisites for spin-to-charge conversion, namely ef-
ficient spin injection and transport, as well as quantized conductance, are met.

Finally, spin-to-charge conversion experiments were conducted. The ex-
periments were conducted in a non-local setup where a spin-polarized current
was injected on the left side of the QPC, and the right side was left float-
ing. The presence of a spin accumulation δµs at the constriction results in
a voltage drop across the QPC, which is measured during experiment. The
measurement of nonlinear spin-to-charge conversion involves the second har-
monic of the voltage drop, V (2ω) ∝ µ2

s, which is proportional to the square of
the spin accumulation. In contrast, the measurement of linear spin-to-charge
conversion involves the first harmonic of the voltage drop, V (ω) ∝ µs, which
is linear in the spin accumulation.

First, nonlinear spin-to-charge conversion experiments were conducted.
Here, the measured data agrees well with the theoretical predictions for non-
linear spin-to-charge conversion. The first prediction is that the curves follow
∂VG/G, which is the transconductance of the QPC, weighted by the QPCs
conductance. In addition, V (2ω) is expected to be linear in the square of the
spin accumulation, and, thus, linear in the square of the applied excitation
current V (2ω) ∝ I2

sd, which is also observed during experiment. Now it had
to be proven that V (2ω) arises from spin and not from other effects. This can
be demonstrated by means of distance-resolved measurements, where an ex-
ponential decay of V (2ω) with a distance would be a clear sign of spin origin.
In the first experiments, however, is was observed that V (2ω) increased as d
is increased. It appeared that the geometry of the spin contacts play a sig-
nificant role. To avoid ambiguity regarding the origin of V (2ω) in relation to
different contact geometries, we fabricated a sample with identical spin con-
tact geometries. With this sample, distance-resolved nonlinear spin-to-charge
conversion measurements were performed once more. The measurements of
V (2ω), however, could not provide evidence for a spin origin. Instead of
the aforementioned exponential decay, a linear relation between V (2ω) and
d was observed. Consequently, other means to prove spin origin were em-
ployed. The second method to prove the spin origin of V (2ω) was to utilize
an out-of-plane magnetic field to suppress the spin signal, similar to Hanle
measurements. This method, however, was also not successful in demonstrat-
ing that V (2ω) is related to spin. It is possible that the signal generated from
thermopower obscures the signal generated from spin. Consequently, it was
imperative to reduce the thermopower generated by the spin contacts. This
was achieved by widening the spin contact to w = 2 µm. It was, however, still
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not possible to prove a spin-related component of V (2ω). This prompts the
inquiry of whether it is possible to measure nonlinear spin-to-charge conver-
sion for the devices utilized in this work. Therefore, a gedankenexperiment
was presented as the final step. In this gedankenexperiment, we calculated
the spin-related signal generated by an idealized device with a spin injection
efficiency of P = 100% and ballistic spin transport. The calculations, how-
ever, demonstrate that the spin-related signal of V (2ω) is orders of magnitude
below the measured data.

Next, linear spin-to-charge conversion experiments were conducted. From
theory, it is expected that the measured signal, V (ω), is linear in the transcon-
ductance and linear in the spin accumulation, δµs, and, therefore, in the exci-
tation current Isd. This was observed in the experimental data. In addition,
V (ω) is predicted to be linear in an external magnetic field, which is either
parallel or antiparallel to the spin accumulation. More precisely, the zero-field
derivative of the measured signal, ∂BV (ω)|B=0 ∝ δµs, is predicted to be pro-
portional to the spin accumulation. Therefore, measurements with in-plane
magnetic fields were conducted. Initially, measurements were conducted in
the low magnetic field regime, which allowed for switching between parallel
and antiparallel configurations. However, the measurement data exhibited a
low signal-to-noise ratio, which prevented the extraction of a magnetic field
dependence of V (ω). Therefore, measurements in the high magnetic field
regime were conducted. In this case, the magnetization configuration of the
spin contacts, and, therefore, the spin accumulation, was always parallel to the
magnetic field. This gave rise to the expectation that V (ω) is symmetric in B,
which was confirmed by the measured data. To validate these experimental
results, the measurement was repeated for positive magnetic fields. In the re-
peat measurements, the data from the initial measurements were successfully
replicated. Next, the spin accumulation as a result from the linear spin-
to-charge conversion experiments was calculated, and then compared to the
results from spin valve measurements. At an excitation current of Isd = 20 nA,
the data from linear spin-to-charge conversion experiments indicated a spin
accumulation of 25 µeV and −28 µeV, respectively, which exceeds the value
obtained from spin valve measurements by three orders of magnitude. It is,
however, plausible that V (ω) is of spin origin, despite the discrepancy with
spin valve measurements. In this case, the aforementioned discrepancy may
arise from the QPC, which modifies the properties of the spin accumulation.
These modifications include an enhanced g-factor and an enhancement of the
spin accumulation at the constriction due to the formation of a bottleneck.
Considering these factors, however, cannot explain the enhancement by three
orders of magnitude.
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The results from nonlinear and linear spin-to-charge conversion were then
compared directly. If one calculates the spin accumulation resulting from
linear spin-to-charge conversion under the assumption of a g-factor that is
enhanced six-fold and uses the value of the spin accumulation to calculate
the nonlinear signal, one finds a value that is similar to the results that were
obtained experimentally. The implications are that the signal obtained for
nonlinear spin-to-charge conversion experiments may be of spin origin and
that a QPC is not only a detector. In the case of spin-to-charge conversion, it
appears that a QPC is a complicated system with different physics compared
to spin valve measurements. Spin-to-charge conversion via a QPC does not
seem to be a substitute for the spin valve method, but rather a completely
different system. Therefore, it is necessary to gain a better understanding
of how the QPC affects spin accumulation in order to utilize spin-to-charge
conversion in other devices.

Linear spin-to-charge conversion appears as to be a suitable method for
spin detection in devices that cannot utilize the spin valve method, such as
material systems that are incompatible with ferromagnets or materials that
only allow for low current densities. For the devices used in this work, spin
valve measurements were never performed with excitation currents below Isd =
500 nA and at Isd = 20 nA, spin valve measurements would be impossible.
Linear spin-to-charge conversion gives access to spin detection down to low
current densities. In this work, we measured linear spin-to-charge conversion
using an excitation current of Isd = 20 nA, and it seems possible to employ
even lower current densities.
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Appendix A

Calculations

Derivation of equation 6.7
One aims to calculate

∂ET (E) = ∂E
1

1 + exp(−2π(E−EF
~ωx

))
) (A.1)

around E = EF for B → 0.
Utilizing the equations around small x

∂x
1

1 + e−ax
= ae−ax

(1 + e−ax)2 (A.2a)

e−x ≈ 1 (A.2b)

Thus, one finds
∂ET (E) = a

4 (A.3)

At E = EF one finds

−G1eδV (ω) = G3δµs (A.4a)

−1
2

2e
h eδV = −gµBB2

2π
~ωx

4
e
hδµs (A.4b)

∂V (ω)
∂B

∣∣∣∣
B=0

= gµBπ

2e~ωx
δµs. (A.4c)

Equation 6.17 is derived in a similar manner.
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Appendix B

Supplementary Measurements

Characterization of Wafer C210309A
Unless stated otherwise, measurements were conducted on devices fabricated
from the wafer C191106B. It was, however, stated that the measurements
presented in figure 6.6 were conducted on a different wafer. This wafer,
C210309A, has the same heterostructure layout as wafer C191106B. For wafer
C210309A, magnetotransport measurements, shown in figure B.1 yield a car-
rier density and mobility of ns = 2.4 · 1011 cm−2 and µe = 1.5 · 105 cm2/Vs,
respectively.

This is in contrast to wafer C191106B, see figure 4.3, where the carrier
density ns and electron mobility µe were determined to be ns = 3.5 ·1011 cm−2

and µe = 5.9 · 105 cm2/Vs, respectively.
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Figure B.1: Magnetotransport measurements of the wafer C210309A. One
finds a carrier density and mobility of ns = 2.4 · 1011 cm−2 and µe = 1.5 ·
105 cm2/Vs, respectively.
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Figure B.2: Spin valve measurement conducted on wafer C210309A at an
excitation current I = 1 µA.
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Figure B.3: Measurement of quantized conductance of a device fabricated
from wafer C210309A.
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Figure B.4: Magnetotransport measurements conducted on wafer C120522B.
This wafer was used for the fabrication of the devices in figure 5.6. The
carrier density and mobility are ns = 2.4 ·1011 cm−2 and µe = 2.3 ·106 cm2/Vs,
respectively.
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Figure B.5: Magnetotransport measurements conducted on wafer C191106B
after too much illumination. The carrier density and mobility are ns = 3.6 ·
1012 cm−2 and µe = 4.3 · 105 cm2/Vs, respectively.
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Appendix C

Local Spin-to-Charge Coupling
Measurements

In this subsection local measurements of spin-to-charge coupling are presented.
The measurement setup is sketched in figure C.1. Basically, this is the setup
used for measuring quantized conductance. Here, however, the source signal,
which is a superimposed AC/DC voltage, is applied at a spin contact, while
the drain is a reference contact on the other side of the constriction. This way,
both a charge current and a spin current flow through the constriction. In
addition to measuring the current flow through the device, the voltage drop
over the constriction is also measured. More precisely, one is able to measure
both the first harmonic of the voltage drop, which can be used to calculate
the conductance, and also the second harmonic V (2ω). All measurements pre-
sented in this subsection were conducted in a dilution fridge at a temperature
of 85 mK at an excitation frequency fAC = 19 Hz.

In contrast to a non-local configuration, the right side of the QPC is no
longer a floating probe when conducting local measurements. Consequently,
one expects that the presence of the spin accumulation leads to an increased
current through the constriction [132] as the drain contact on the right side
of the constriction has a fixed potential.

It has to be mentioned that the theory of spin-to-charge coupling from
reference [132] was not developed for local experiments1. The voltage drop,
which is measured across the QPC, depends on both the transconductance as
well as on the spin accumulation (V (ω) ∝ δµs and V (2ω) ∝ δµ2

s).
In non-local spin-to-charge coupling experiments, the value of δµs may re-

main constant while the transconductance is varied by adjusting the split-gate
voltage. In local experiments, this is not the case. Here, the spin accumula-
tion, which is linear in the applied current, also varies upon sweeping split-

1This was confirmed by J. Fabian in conversation, one of the authors of reference [132].

104



gate voltage. As a result, the focus of this section does not lie in extracting
calculated values of spin parameters, but rather in finding signatures of a spin-
related signal. As mentioned before, applying an out-of-plane magnetic field
provides means to suppress the spin-related signal through spin dephasing.

Voltage-Amplifier

source

D

voltage

adder
AC/DC

converter
I/V

VDC

source
voltage

VAC

source
voltage

VDC

V

V

Figure C.1: Measurement setup for local spin-to-charge coupling experiments.
A source voltage, which is a superposition of an AC/DC signal, is applied at a
spin contact. This results in both a charge current and a spin current flowing
through the QPC. The voltage drop over the constriction is measured using
a multimeter. Both the first and second harmonics of the voltage drop are
measured.

Figure C.2 (a) shows results of QPC measurements using a spin contact as
a source. Shown are data for spin contacts located 6.5 µm (red curve), 9.5 µm
(green), 12.5 µm (blue) and 15.5 µm (cyan) away from the constriction. In
addition, measurements were conducted using a reference contact far away
from the constriction (black). Five conductance plateaus can be observed for
all curves with the clear, step-like transition between plateaus typical for QPC
measurements. One can see that the curves obtained from spin contacts show
more defined plateaus compared to the curve from the reference contact. The
question now arises as to whether the improved step quality is a result of a
spin accumulation.

Figure C.2 (b) displays the source-drain current through the sample during
the measurements presented in (a). The current Isd =∼ 50 nA at the last
subband is of the same order of magnitude as for the measurements in the
previous chapter. For all measurements, the same source drain-voltage was
applied. In the case of the reference contact as a source, this results in a
current which is significantly higher compared to the spin contacts. Most
likely, the larger current through the constriction leads to a decreased step
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Figure C.2: Conductance curves obtained from local spin-to-charge coupling
experiments. The spatial separation between the spin contacts and the QPC
were 6.5 µm (red curve), 9.5 µm (green), 12.5 µm (blue) and 15.5 µm (cyan). In
addition, a reference contact was utilized (black). The curves resulting from
spin contacts exhibit more well defined plateaus. (b) Current through the
sample during the measurements shown in (a). One finds that the reference
contact has a larger current, which is most likely the reason for the difference
in step quality.

quality. The current difference between the spin contacts and the reference
contact also indicates a high resistance of the spin contacts resulting from the
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Esaki diode. The reference contact, which is also made up of an Esaki diode,
has an area of approximately ∼ 150 × 150 µm. Electrons travelling through
the reference contact face a larger resistance caused by the mesa. However,
for the spin contacts, the shorter mesa length is compensated by the large
resistance of the Esaki diode, which has an area of ∼ 1× 20 µm.

To evaluate the possible influence of a spin accumulation on the results
presented in figure C.2 (a), the measurements were repeated in an out-of-plane
magnetic field B = 75 mT. The results are presented in figure C.3. Shown is
the conductance in units of 2e2/h as a function of the split-gate voltage. The
curves obtained for the spin contact (red curves), which is located 6.5 µm away
from the QPC, are offset in Vg to better distinguish from the reference contact
(black curves). The presence of an out-of-plane magnetic field B = 75 mT
(light black and light red curve, respectively) does not show a significant
impact on the conductance traces. The overlap betweenB = 0 andB = 75 mT
is not perfect for the spin contact. However, the overlap upon applying a
magnetic field is also not perfect for the reference contact. This implies that
the difference between B = 0 and B = 75 mT originates in the measurement
setup in the form of fluctuations. As the various spin contacts vary in spatial
separation to the QPC, one expects any spin dependent phenomenon to decay
exponentially with distance. Observing the difference in conductance upon
applying a magnetic field, no correlation with distance was observed (data
not shown).

An in-plane magnetic field changes the Zeeman energy of a spin species.
For large magnetic fields, spin degeneracy is broken and integer conductance
values G ∼ e2/h are observed. In long quantum wires, Liang et al. showed
experimantally that electrons parallel to a magnetic field have a transmis-
sion probability of unity, whereas antiparallel electrons have a transmission
probability of ∼ 65% [157]. The manifestation of this was observed in the
conductance traces. More precisely, the difference in conductance between
plateaus amounted to ∆G ∼ e2/h or ∆G ∼ 0.65 e2/h. This represents either
a situation where a change occurs from antiparallel to parallel (∆G ∼ e2/h)
or from parallel to antiparallel ∆G ∼ 0.65 e2/h.

In this work, the measured conductance plateaus stay quantized to integer
values of 2e2/h up to in-plane magnetic fields of B = 5 T (data not shown).
No measurements were done at higher fields. For both the reference contact
as well as the spin contact, a magnetic field changes the conductance curve.
For various spin contacts, no distance dependence of relevant parameters was
found. In reference [135], the spin current through the QPC was calculated
to Ispin, linear = 37 pA at the presence of a spin accumulation of δµs = 1 µeV.
While the curvature of the QPC is larger in this work, resulting in a larger
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Figure C.3: Measurement of quantized conductance using a reference contact
(black) at B = 0 and in an out-of-plane magnetic field B = 75 mT (light gray).
Also displayed are local spin-to-charge coupling measurements utilizing a spin
contact 6.5 µm away from the QPC. These measurements were performed
at B = 0 (red) and in an out-of-plane magnetic field B = 75 mT (light red).
There is no visible difference in the curves after dephasing a spin accumulation
with a field.

spin current through the QPC [133], it has to be mentioned that the spin
accumulation for the currents used during the measurements in this section
are orders of magnitude below δµs = 1 µeV (see previous section).

Consequently, one finds that linear spin-to-charge coupling is not suitable
for local measurements in the devices used in this work. The reason is that the
change in current is obscurred by noise and cannot be measured in experiment.

During local spin-to-charge coupling experiments, one can also measure the
second harmonic of the voltage drop over the constriction. Figure C.4 shows
V (2ω) as a function of split-gate voltage for the reference contact (black) and
different spin contacts (colored curves) at B = 0. There is a clear difference
between V (2ω) measured for the reference contact and for the spin contacts.
For the former, the data is centered around zero for the full measurement
range. Below Vg−0.75 V, peaks resembling δ-functions are found at periodic
intervals.

When utilizing spin contacts, the data looks different. From Vg ∈ [0,−0.75 V],
one finds V (2ω) ≈ 0. Upon sweeping the split-gate voltage to lower values,
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the signal decreases. In general, it can be observed that the trace of V (2ω)
follows the shape of the letter ’u’ until the point where the QPC is pinched off.
With the ’u’ shape as an envelope function, δ-like peaks in V (2ω) are formed,
which tend to increase in height as the constriction becomes more narrow.
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Figure C.4: Second harmonic of the voltage drop V (2ω) across a QPC during
local measurements. One finds that the curve for the reference contact (black)
has a different slope than the curves obtained using spin contacts (colored
curves). All curves show δ-like peaks, which are observed periodically.

The main result from section 6.2.2, where non-local nonlinear spin-to-
charge coupling experiments are discussed, is that thermopower dominates the
nonlinear signal. One expects the same for local measurements. Regardless of
the origin of V (2ω) in figure C.4, it is important to consider certain aspects.

First, no dependence between V (2ω) and the spatial separation between
the QPC and the spin contact can be observed. On a second note it is im-
portant to consider that the shape of V (2ω) deviates from the expectation of
simple δ-functions. This makes quantitative analysis difficult.

From equation 6.4 follows the expectation that the peak height increases
with a decreasing number of modes. The spin accumulation, however, is also
linear in the conductance of the QPC.

Consequently, as

eδV (2ω) = −1
2
G2

G1
δµ2

s ∝ −
1
2
G2

G1
G2

1 = −1
2G2G1, (C.1)
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the second harmonic voltage drop across the QPC is expected to be linear in
the conductance of the constriction. In figure C.4, the opposite is observed.
At the last step before the QPC closes, V (2ω) shows increased peak values,
contrary to expectation.
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Figure C.5: Transconductance (black curve) and V (2ω) at B = 0 and in an
out-of-plane magnetic field B = 75 mT. Although V (2ω) partially follows the
transconductance, it is important to note that the correlation is not present
at all times. The application of a magnetic field does not significantly alter
V (2ω), suggesting that the signal originates in parameters unrelated to spin.

This shows that for local measurements, the theory presented in the be-
ginning of this chapter cannot be applied.

Figure C.5 shows the transconductance (black curve) as well as V (2ω) at
B = 0 (red) and at B = 75 mT (light red). While the transconductance
and V (2ω) display peaks at similar gate voltages, one finds a large difference
in shape. At the final subband transition, V (2ω) and the transconductance
overlap well.

Applying an out-of-plane magnetic field B = 75 mT shows no visible influ-
ence on V (2ω). This confirms the expectation that, similar to section 6.2.2, a
spin accumulation is not the driving force in the generation of V (2ω).

110



Bibliography

1. Bader, S. D. & Parkin, S. Spintronics. Annu. Rev. Condens. Matter
Phys. 1, 71–88 (2010).

2. Raffel, J. I. Operating characteristics of a thin film memory. Journal of
Applied Physics 30, S60–S61 (1959).

3. Pohm, A., Comstock, C. & Hurst, A. Quadrupled nondestructive out-
puts from magnetoresistive memory cells using reversed word fields.
Journal of applied physics 67, 4881–4883 (1990).

4. Childress, J. R. & Fontana Jr, R. E. Magnetic recording read head
sensor technology. Comptes Rendus Physique 6, 997–1012 (2005).

5. Solin, S. A. et al. Nonmagnetic semiconductors as read-head sensors
for ultra-high-density magnetic recording. Applied Physics Letters 80,
4012–4014 (2002).

6. Thomson, W. On the electro-dynamic qualities of metals: Effects of
magnetization on the electric conductivity of nickel and of iron. Pro-
ceedings of the Royal Society of London, 546–550 (1857).

7. Zhao, C.-J., Ding, L., HuangFu, J.-S., Zhang, J.-Y. & Yu, G.-H. Re-
search progress in anisotropic magnetoresistance. Rare Metals 32, 213–
224 (2013).

8. Gerlach, W. & Stern, O. Der experimentelle Nachweis des magnetischen
Moments des Silberatoms. Zeitschrift für Physik 8, 110–111 (1921).

9. Gerlach, W. & Stern, O. Der experimentelle nachweis der richtungsquan-
telung im magnetfeld. Zeitschrift für Physik 9, 349–352 (1922).

10. Gerlach, W. & Stern, O. Das magnetische moment des silberatoms.
Zeitschrift für Physik 9, 353–355 (1922).

11. Julliere, M. Tunneling between ferromagnetic films. Physics letters A
54, 225–226 (1975).

12. Butler, W., Zhang, X.-G., Schulthess, T. &MacLaren, J. Spin-dependent
tunneling conductance of Fe| MgO| Fe sandwiches. Physical Review B
63, 054416 (2001).

111



13. Ikeda, S. et al. Tunnel magnetoresistance of 604% at 300K by sup-
pression of Ta diffusion in CoFeB/ MgO/ CoFeB pseudo-spin-valves
annealed at high temperature. Applied Physics Letters 93 (2008).

14. Binasch, G., Grünberg, P., Saurenbach, F. & Zinn, W. Enhanced mag-
netoresistance in layered magnetic structures with antiferromagnetic
interlayer exchange. Physical review B 39, 4828 (1989).

15. Baibich, M. N. et al. Giant magnetoresistance of (001) Fe/(001) Cr
magnetic superlattices. Physical review letters 61, 2472 (1988).

16. Thompson, S. M. The discovery, development and future of GMR: The
Nobel Prize 2007. Journal of Physics D: Applied Physics 41, 093001
(2008).

17. Hirota, E., Sakakima, H. & Inomata, K. Giant magneto-resistance de-
vices (Springer Science & Business Media, 2013).

18. De Groot, R., Mueller, F., van Engen, P. v. & Buschow, K. New class of
materials: half-metallic ferromagnets. Physical review letters 50, 2024
(1983).

19. Pickett, W. E. & Moodera, J. S. Half metallic magnets. Physics Today
54, 39–44 (2001).

20. Soulen Jr, R. et al. Measuring the spin polarization of a metal with a
superconducting point contact. science 282, 85–88 (1998).

21. Park, J.-H. et al. Direct evidence for a half-metallic ferromagnet. Nature
392, 794–796 (1998).

22. Schwarz, K. CrO2 predicted as a half-metallic ferromagnet. Journal of
Physics F: Metal Physics 16, L211 (1986).

23. Ohno, H. et al. (Ga, Mn) As: a new diluted magnetic semiconductor
based on GaAs. Applied Physics Letters 69, 363–365 (1996).

24. Dietl, T. & Ohno, H. Dilute ferromagnetic semiconductors: Physics and
spintronic structures. Reviews of Modern Physics 86, 187 (2014).

25. Braden, J., Parker, r. J., Xiong, g. P., Chun, S. & Samarth, N. Direct
measurement of the spin polarization of the magnetic semiconductor
(Ga, Mn) As. Physical review letters 91, 056602 (2003).

26. Gross, R. & Marx, A. Festkörperphysik (Oldenbourg Wissenschaftsver-
lag Verlag, 2012).

27. Datta, S. & Das, B. Electronic analog of the electro-optic modulator.
Applied Physics Letters 56, 665–667 (1990).

112



28. Schäpers, T. Semiconductor Spintronics isbn: 9783110425444. https:
//doi.org/10.1515/9783110425444 (De Gruyter, Berlin, Boston,
2016).

29. Han, W. et al. Tunneling spin injection into single layer graphene. Phys-
ical review letters 105, 167202 (2010).

30. Sasaki, T. et al. Electrical spin injection into silicon using MgO tunnel
barrier. Applied Physics Express 2, 053003 (2009).

31. Koo, H. C. et al. Electrical spin injection and detection in an InAs
quantum well. Applied physics letters 90 (2007).

32. Bruski, P. et al.All-electrical spin injection and detection in the Co2FeSi/GaAs
hybrid system in the local and non-local configuration. Applied Physics
Letters 103 (2013).

33. Lou, X. et al. Electrical detection of spin transport in lateral ferromagnet–
semiconductor devices. Nature Physics 3, 197–202 (2007).

34. Van’t Erve, O. et al. Electrical injection and detection of spin-polarized
carriers in silicon in a lateral transport geometry. Applied Physics Let-
ters 91 (2007).

35. Hammar, P. & Johnson, M. Spin-dependent current transmission across
a ferromagnet–insulator–two-dimensional electron gas junction. Applied
Physics Letters 79, 2591–2593 (2001).

36. Ciorga, M. et al. Electrical spin injection and detection in lateral all-
semiconductor devices. Physical Review B 79, 165321 (2009).

37. Oltscher, M. et al. Electrical spin injection into high mobility 2D sys-
tems. Physical Review Letters 113, 236602 (2014).

38. Eberle, F., Schuh, D., Bougeard, D., Weiss, D. & Ciorga, M. Diffu-
sive Spin Transport in Narrow Two-Dimensional-Electron-gas Chan-
nels. Physical Review Applied 16, 014010 (2021).

39. Eberle, F. et al. Controlled Rotation of Electrically Injected Spins in a
Nonballistic Spin-Field-Effect Transistor. Nano Letters (2023).

40. Moore, G. E. Cramming more components onto integrated circuits,
Reprinted from Electronics, volume 38, number 8, April 19, 1965, pp.
114 ff. IEEE solid-state circuits society newsletter 11, 33–35 (2006).

41. Mollick, E. Establishing Moore’s law. IEEE Annals of the History of
Computing 28, 62–75 (2006).

42. Thompson, S. E. & Parthasarathy, S. Moore’s law: the future of Si
microelectronics. Materials today 9, 20–25 (2006).

113

https://doi.org/10.1515/9783110425444
https://doi.org/10.1515/9783110425444


43. Mott, N. F. The electrical conductivity of transition metals. Proceedings
of the Royal Society of London. Series A-Mathematical and Physical
Sciences 153, 699–717 (1936).

44. Mott, N. F. The resistance and thermoelectric properties of the tran-
sition metals. Proceedings of the Royal Society of London. Series A-
Mathematical and Physical Sciences 156, 368–382 (1936).

45. Schmidt, G. &Molenkamp, L. Spin injection into semiconductors, physics
and experiments. Semiconductor science and technology 17, 310 (2002).

46. Schmidt, G., Ferrand, D., Molenkamp, L., Filip, A. & Van Wees, B.
Fundamental obstacle for electrical spin injection from a ferromagnetic
metal into a diffusive semiconductor. Physical Review B 62, R4790
(2000).

47. Rashba, E. Theory of electrical spin injection: Tunnel contacts as a
solution of the conductivity mismatch problem. Physical Review B 62,
R16267 (2000).

48. Fabian, J., Matos-Abiague, A., Ertler, C., Stano, P. & Zutic, I. Semi-
conductor spintronics. Acta Phys. Slovaca 57, 567–907 (2007).

49. Aronov, A. Spin injection in metals and polarization of nuclei. ZhETF
Pisma Redaktsiiu 24, 37 (1976).

50. Johnson, M. & Silsbee, R. Thermodynamic analysis of interfacial trans-
port and of the thermomagnetoelectric system. Physical Review B 35,
4959 (1987).

51. Johnson, M. & Silsbee, R. Coupling of electronic charge and spin at
a ferromagnetic-paramagnetic metal interface. Physical Review B 37,
5312 (1988).

52. Van Son, P., Van Kempen, H. & Wyder, P. Boundary resistance of the
ferromagnetic-nonferromagnetic metal interface. Physical Review Let-
ters 58, 2271 (1987).

53. Valet, T. & Fert, A. Theory of the perpendicular magnetoresistance in
magnetic multilayers. Physical Review B 48, 7099 (1993).

54. Fert, A. & Jaffres, H. Conditions for efficient spin injection from a fer-
romagnetic metal into a semiconductor. Physical Review B 64, 184420
(2001).

55. Hershfield, S. & Zhao, H. L. Charge and spin transport through a
metallic ferromagnetic-paramagnetic-ferromagnetic junction. Physical
Review B 56, 3296 (1997).

114



56. Rashba, E. I. Diffusion theory of spin injection through resistive con-
tacts. The European Physical Journal B-Condensed Matter and Com-
plex Systems 29, 513–527 (2002).

57. Fabian, J., Žutić, I. & Sarma, S. D. Theory of spin-polarized bipolar
transport in magnetic p- n junctions. Physical Review B 66, 165301
(2002).

58. Žutić, I., Fabian, J. & Sarma, S. D. Spin-polarized transport in inho-
mogeneous magnetic semiconductors: theory of magnetic/nonmagnetic
p- n junctions. Physical review letters 88, 066603 (2002).

59. Vignale, G. & D’Amico, I. Coulomb drag, magnetoresistance, and spin-
current injection in magnetic multilayers. Solid state communications
127, 829–834 (2003).

60. Žutić, I., Fabian, J. & Sarma, S. D. Spintronics: Fundamentals and
applications. Reviews of modern physics 76, 323 (2004).

61. Johnson, M. Analysis of anomalous multilayer magnetoresistance within
the thermomagnetoelectric system. Physical review letters 67, 3594
(1991).

62. Silsbee, R. Novel method for the study of spin transport in conductors.
Bull. Magn. Reson 2, 284–285 (1980).

63. Johnson, M. & Silsbee, R. H. Interfacial charge-spin coupling: Injection
and detection of spin magnetization in metals. Physical review letters
55, 1790 (1985).

64. Ando, T., Fowler, A. B. & Stern, F. Electronic properties of two-dimensional
systems. Reviews of Modern Physics 54, 437 (1982).

65. Anderson, R. L. Experiments on ge-gaas heterojunctions. Solid-State
Electronics 5, 341–351 (1962).

66. Davies, J. H. The physics of low-dimensional semiconductors: an intro-
duction (Cambridge university press, 1998).

67. Abramowitz, M. & Stegun, I. A. Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables. National Bureau of
Standards Applied Mathematics Series 55. Tenth Printing. (1972).

68. Ihn, T. Semiconductor Nanostructures: Quantum states and electronic
transport (OUP Oxford, 2009).

115



69. Van Houten, H., van Wees, B. J. & Beenakker, C. W. J. Quantum and
Classical Ballistic Transport in Constricted Two-Dimensional Electron
Gases in Physics and Technology of Submicron Structures (eds Heinrich,
H., Bauer, G. & Kuchar, F.) (Springer Berlin Heidelberg, 1988), 198–
207.

70. Büttiker, M. Quantized transmission of a saddle-point constriction.
Physical Review B 41, 7906 (1990).

71. Van Wees, B. et al. Quantized conductance of point contacts in a two-
dimensional electron gas. Physical Review Letters 60, 848 (1988).

72. Wharam, D. et al. One-dimensional transport and the quantisation of
the ballistic resistance. Journal of Physics C: solid state physics 21,
L209 (1988).

73. Landauer, R. Spatial variation of currents and fields due to localized
scatterers in metallic conduction. IBM Journal of research and devel-
opment 1, 223–231 (1957).

74. Landauer, R. Spatial variation of currents and fields due to localized
scatterers in metallic conduction. IBM Journal of Research and Devel-
opment 32, 306–316 (1988).

75. Büttiker, M. Four-terminal phase-coherent conductance. Physical re-
view letters 57, 1761 (1986).

76. Beenakker, C. & van Houten, H. Quantum transport in semiconductor
nanostructures. Solid state physics 44, 1–228 (1991).

77. Glazman, L., Lesovik, G., Khmel’nitskii, D. & Shekhter, R. Reflection-
less quantum transport and fundamental ballistic-resistance steps in
microscopic constrictions. ZhETF Pisma Redaktsiiu 48, 218 (1988).

78. Yacoby, A. & Imry, Y. Quantization of the conductance of ballistic point
contacts beyond the adiabatic approximation. Physical Review B 41,
5341 (1990).

79. Dietl, T., Ohno, o. H., Matsukura, a. F., Cibert, J. & Ferrand, e. D.
Zener model description of ferromagnetism in zinc-blende magnetic
semiconductors. science 287, 1019–1022 (2000).

80. Dietl, T., Ohno, o. H. & Matsukura, F. Hole-mediated ferromagnetism
in tetrahedrally coordinated semiconductors. Physical Review B 63,
195205 (2001).

81. Esaki, L. New phenomenon in narrow germanium p- n junctions. Phys-
ical review 109, 603 (1958).

116



82. MacDonald, A., Schiffer, r. P. & Samarth, h. N. Ferromagnetic semi-
conductors: moving beyond (ga, mn) as. Nature materials 4, 195–202
(2005).

83. Oiwa, A. et al. Low-temperature conduction and giant negative magne-
toresistance in III–V-based diluted magnetic semiconductor:(Ga, Mn)
As/GaAs. Physica B: Condensed Matter 249, 775–779 (1998).

84. Oiwa, A., Mitsumori, Y., Moriya, R., Słupinski, T. & Munekata, H.
Effect of optical spin injection on ferromagnetically coupled Mn spins
in the III-V magnetic alloy semiconductor (Ga,Mn)As. Physical review
letters 88, 137202 (2002).

85. Chiba, D., Matsukura, F. & Ohno, H. Electric-field control of ferromag-
netism in (Ga,Mn)As. Applied Physics Letters 89 (2006).

86. Lee, S. et al. Effect of Be doping on the properties of GaMnAs fer-
romagnetic semiconductors. Journal of applied physics 93, 8307–8309
(2003).

87. Yuldashev, S. U. et al. Effect of additional nonmagnetic acceptor doping
on the resistivity peak and the Curie temperature of Ga 1- x Mn x As
epitaxial layers. Applied physics letters 82, 1206–1208 (2003).

88. Zemen, J., Kučera, J., Olejník, K. & Jungwirth, T. Magnetocrystalline
anisotropies in (Ga, Mn) As: Systematic theoretical study and compar-
ison with experiment. Physical Review B 80, 155203 (2009).

89. Sawicki, M. et al. Temperature dependent magnetic anisotropy in (Ga,
Mn) As layers. Physical Review B 70, 245325 (2004).

90. Sawicki, M. Magnetic properties of (Ga, Mn) As. Journal of magnetism
and magnetic materials 300, 1–6 (2006).

91. Abolfath, M., Jungwirth, T., Brum, J. & MacDonald, A. Theory of
magnetic anisotropy in III 1- x Mn x V ferromagnets. Physical Review
B 63, 054418 (2001).

92. Gould, C. et al. An extensive comparison of anisotropies in MBE grown
(Ga, Mn) As material. New Journal of Physics 10, 055007 (2008).

93. Lee, S., Chung, J.-H., Liu, X., Furdyna, J. K. & Kirby, B. J. Ferromag-
netic semiconductor GaMnAs. Materials Today 12, 14–21 (2009).

94. Hümpfner, S. et al. Lithographic engineering of anisotropies in (Ga,
Mn) As. Applied Physics Letters 90 (2007).

95. Wunderlich, J. et al. Local control of magnetocrystalline anisotropy in
(Ga, Mn) As microdevices: Demonstration in current-induced switch-
ing. Physical Review B 76, 054424 (2007).

117



96. Hoffmann, F. et al. Mapping the magnetic anisotropy in (Ga, Mn) As
nanostructures. Physical Review B 80, 054417 (2009).

97. Wenisch, J. et al. Control of magnetic anisotropy in (Ga, Mn) As
by lithography-induced strain relaxation. Physical review letters 99,
077201 (2007).

98. Ohno, Y. et al. Electrical spin injection in a ferromagnetic semiconduc-
tor heterostructure. Nature 402, 790–792 (1999).

99. Kohda, M., Ohno, Y., Takamura, K., Matsukura, F. & Ohno, H. A spin
Esaki diode. Japanese Journal of Applied Physics 40, L1274 (2001).

100. Johnston-Halperin, E. et al. Spin-polarized Zener tunneling in (Ga, Mn)
As. Physical Review B 65, 041306 (2002).

101. Umansky, V., De-Picciotto, R. & Heiblum, M. Extremely high-mobility
two dimensional electron gas: Evaluation of scattering mechanisms. Ap-
plied physics letters 71, 683–685 (1997).

102. Hwang, E. & Sarma, S. D. Limit to two-dimensional mobility in modulation-
doped GaAs quantum structures: How to achieve a mobility of 100 mil-
lion. Physical Review B 77, 235437 (2008).

103. Oltscher, M. Spininjektion in zweidimensionale Elektronengase. Mas-
ter’s Thesis (2011).

104. Störmer, H., Dingle, R., Gossard, A., Wiegmann, W. & Sturge, M. Two-
dimensional electron gas at a semiconductor-semiconductor interface.
Solid state communications 29, 705–709 (1979).

105. Nathan, M. I. Persistent photoconductivity in AlGaAs/GaAs modu-
lation doped layers and field effect transistors: a review. Solid-State
Electronics 29, 167–172 (1986).

106. Mooney, P. Deep donor levels (DX centers) in III-V semiconductors.
Journal of Applied Physics 67, R1–R26 (1990).

107. Kane, M., Apsley, N., Anderson, D., Taylor, L. & Kerr, T. Parallel
conduction in GaAs/AlxGa1-xAs modulation doped heterojunctions.
Journal of Physics C: Solid State Physics 18, 5629 (1985).

108. Ciorga, M., Utz, M., Schuh, D., Bougeard, D. & Weiss, D. Effect of con-
tact geometry on spin-transport signals in nonlocal (Ga, Mn) As/GaAs
devices. Physical Review B 88, 155308 (2013).

109. Baca, A. G. & Ashby, C. I. Fabrication of GaAs devices 6 (IET, 2005).
110. Jäger, O. Effect of the Channel Geometry on Spin Signals in Lateral

Spin Injection Devices. Master’s Thesis (2022).

118



111. Wieand, M. Conductance Quantization in the High Spin-Orbit-Coupling
Material InGaAs/InAlAs. Master’s Thesis (2018).

112. Tombros, N., Van Der Molen, S. & Van Wees, B. Separating spin and
charge transport in single-wall carbon nanotubes. Physical Review B
73, 233403 (2006).

113. Jedema, F. J., Filip, A. & Van Wees, B. Electrical spin injection and ac-
cumulation at room temperature in an all-metal mesoscopic spin valve.
Nature 410, 345–348 (2001).

114. Bakker, F., Slachter, A., Adam, J.-P. & VanWees, B. Interplay of Peltier
and Seebeck effects in nanoscale nonlocal spin valves. Physical review
letters 105, 136601 (2010).

115. Johnson, M. & Silsbee, R. Calculation of nonlocal baseline resistance
in a quasi-one-dimensional wire. Physical Review B 76, 153107 (2007).

116. Garzon, S., Žutić, I. & Webb, R. A. Temperature-dependent asymmetry
of the nonlocal spin-injection resistance: Evidence for spin nonconserv-
ing interface scattering. Physical review letters 94, 176601 (2005).

117. Kuczmik, T. et al. Hanle spin precession in a two-dimensional electron
system. Physical Review B 95, 195315 (2017).

118. Thornton, T., Pepper, M., Ahmed, H., Andrews, D. & Davies, G. One-
dimensional conduction in the 2D electron gas of a GaAs-AlGaAs het-
erojunction. Physical review letters 56, 1198 (1986).

119. Zheng, H., Wei, H., Tsui, D. & Weimann, G. Gate-controlled transport
in narrow GaAs/Al x Ga 1- x As heterostructures. Physical Review B
34, 5635 (1986).

120. Van Wees, B. J. et al. Quantum ballistic and adiabatic electron trans-
port studied with quantum point contacts. Physical Review B 43, 12431
(1991).

121. Wharam, D. et al. Empirical relation between gate voltage and elec-
trostatic potential in the one-dimensional electron gas of a split-gate
device. Physical Review B 39, 6283 (1989).

122. Nixon, J. A. & Davies, J. H. Potential fluctuations in heterostructure
devices. Physical Review B 41, 7929 (1990).

123. Williamson, J., Timmering, C., Harmans, C., Harris, J. & Foxon, C.
Quantum point contact as a local probe of the electrostatic potential
contours. Physical Review B 42, 7675 (1990).

124. Smith, L. et al. Disorder and interaction effects in quantum wires in
Journal of Physics: Conference Series 376 (2012), 012018.

119



125. Yakimenko, I. I. & Berggren, K.-F. Probing dopants in wide semicon-
ductor quantum point contacts. Journal of Physics: Condensed Matter
28, 105801 (2016).

126. Thomas, K. et al. Ballistic transport in one-dimensional constrictions
formed in deep two-dimensional electron gases. Applied physics letters
67, 109–111 (1995).

127. Patel, N. et al. Ballistic transport in one dimension: additional quan-
tisation produced by an electric field. Journal of Physics: Condensed
Matter 2, 7247 (1990).

128. Patel, N. et al. Evolution of half plateaus as a function of electric field
in a ballistic quasi-one-dimensional constriction. Physical review B 44,
13549 (1991).

129. Rössler, C. et al. Transport properties of clean quantum point contacts.
New Journal of Physics 13, 113006 (2011).

130. Rössler, C., Herz, M., Bichler, M. & Ludwig, S. Freely suspended quan-
tum point contacts. Solid State Communications 150, 861–864 (2010).

131. Van Houten, H. & Beenakker, C. Quantum point contacts. Physics to-
day 49, 22–27 (1996).

132. Stano, P., Fabian, J. & Jacquod, P. Nonlinear spin to charge conversion
in mesoscopic structures. Physical Review B 85, 241301 (2012).

133. Stano, P. & Jacquod, P. Spin-to-charge conversion of mesoscopic spin
currents. Physical Review Letters 106, 206602 (2011).

134. Nichele, F. et al. Generation and detection of spin currents in semi-
conductor nanostructures with strong spin-orbit interaction. Physical
Review Letters 114, 206601 (2015).

135. Marcellina, E. et al. Nonlinear spin filter for nonmagnetic materials at
zero magnetic field. Physical Review B 102, 140406 (2020).

136. Bardarson, J., Adagideli, I. & Jacquod, P. Mesoscopic spin Hall effect.
Physical review letters 98, 196601 (2007).

137. Hirsch, J. Spin hall effect. Physical review letters 83, 1834 (1999).
138. Brüne, C. et al. Evidence for the ballistic intrinsic spin Hall effect in

HgTe nanostructures. Nature Physics 6, 448–454 (2010).
139. Hankiewicz, E., Molenkamp, L., Jungwirth, T. & Sinova, J. Manifesta-

tion of the spin Hall effect through charge-transport in the mesoscopic
regime. Physical Review B 70, 241301 (2004).

120



140. Van Houten, H., Molenkamp, L., Beenakker, C. & Foxon, C. Thermo-
electric properties of quantum point contacts. Semiconductor Science
and Technology 7, B215 (1992).

141. Sivan, U. & Imry, Y. Multichannel Landauer formula for thermoelec-
tric transport with application to thermopower near the mobility edge.
Physical review b 33, 551 (1986).

142. Mott, N. & Jones, H. The Theory of the Properties of Metals and Alloys
isbn: 9780486604565 (Dover Publications, 1958).

143. Molenkamp, L., Van Houten, H., Beenakker, C., Eppenga, R. & Foxon,
C. Quantum oscillations in the transverse voltage of a channel in the
nonlinear transport regime. Physical Review Letters 65, 1052 (1990).

144. Dzurak, A. et al. Thermopower of a one-dimensional ballistic constric-
tion in the non-linear regime. Journal of Physics: Condensed Matter 5,
8055 (1993).

145. Proetto, C. Thermopower oscillations of a quantum-point contact. Phys-
ical review B 44, 9096 (1991).

146. Appleyard, N., Nicholls, J., Simmons, M., Tribe, W. & Pepper, M. Ther-
mometer for the 2D electron gas using 1D thermopower. Physical review
letters 81, 3491 (1998).

147. Rejec, T. & Meir, Y. Magnetic impurity formation in quantum point
contacts. Nature 442, 900–903 (2006).

148. Iqbal, M. et al. Odd and even Kondo effects from emergent localization
in quantum point contacts. Nature 501, 79–83 (2013).

149. Wang, C.-K. & Berggren, K.-F. Spin splitting of subbands in quasi-one-
dimensional electron quantum channels. Physical Review B 54, R14257
(1996).

150. Bauer, F. et al. Microscopic origin of the ’0.7-anomaly’ in quantum
point contacts. Nature 501, 73–78 (2013).

151. Micolich, A. What lurks below the last plateau: experimental studies
of the 0.7× 2e2/h conductance anomaly in one-dimensional systems.
Journal of Physics: Condensed Matter 23, 443201 (2011).

152. Thomas, K. et al. Possible spin polarization in a one-dimensional elec-
tron gas. Physical Review Letters 77, 135 (1996).

153. Smith, L. et al. Statistical study of conductance properties in one-
dimensional quantum wires focusing on the 0.7 anomaly. Physical Re-
view B 90, 045426 (2014).

121



154. Oltscher, M. et al. Gate-tunable large magnetoresistance in an all-
semiconductor spin valve device. Nature Communications 8, 1807 (2017).

155. Chen, K. & Zhang, S. Enhancement of spin accumulation in ballistic
transport regime. Physical Review B 92, 214402 (2015).

156. Jaffrès, H., George, J.-M. & Fert, A. Spin transport in multiterminal
devices: Large spin signals in devices with confined geometry. Physical
Review B 82, 140408 (2010).

157. Liang, C.-T., Pepper, M., Simmons, M., Smith, C. & Ritchie, D. Spin-
dependent transport in a quasiballistic quantum wire. Physical Review
B 61, 9952 (2000).

122



Danksagung

Ich möchte mich bei verschiedenen Personen für die Unterstützung bei dieser
Arbeit bedanken. Beginnend beiProf. Dr. Dieter Weiss für die Möglichkeit,
meine Arbeit an seinem Lehrstuhl durchzuführen. Am Lehrstuhl war stets
eine freundliche, produktive Atmosphäre und ich hatte jederzeit das Gefühl,
dass ich bei Problemen zu Herrn Weiss kommen kann.

Prof. Dr. Mariusz Ciorga gilt mein Dank für das Ausschreiben des
Themas, für die Betreuung und die zahlreichen fachlichen Diskussionen über
die Jahre. Mariusz hatte jederzeit gute Beiträge zu meinen Ideen, Messergeb-
nissen und Lösungsansätze für Schwierigkeiten.

Für die Korrektur meiner Arbeit, sowie das bereit erklären zur Prüfung
gilt mein Dank Prof. Dr. Jaroslav Fabian, Prof. Dr. Jörg Wunderlich
und Prof. Dr. Franz J. Gießibl.

Meinen Masterstudenten, Ole Jäger und Adrian Vanselow will ich für
ihre Zeit und Engagement zu dem Thema danken. Dank gilt auch ihrer Geduld
mir gegenüber und dem, was ich durch die Betreuung lernen durfte.

Franz Eberle und Albert Koop gilt besonderer Dank für die Einar-
beitung und Hilfestellung sowohl im Reinraum als auch im Magnetlabor. Vor
allem Albert hat mir mit viel Geduld und Passion geholfen.

Dr. Dmitriy Kozlov gilt mein Dank für fachliche Diskussionen und
einer angenehmen gemeinsamen Zeit im Büro. Mein größter Dank gilt Dima
für Hilfe beim Aufbau meines Messsetups.

Für jegliche Hilfe während meiner Zeit an der Universität Regensburg
möchte ich allen Mitgliedern und Angestellten des Lehrstuhls danken, sowie
der Hilfe von Personen außerhalb des Lehrstuhls.

Für emotionale Unterstützung danke ich vor allem meiner Freundin,Mona
Wieland, die immer ein offenes Ohr hatte und niemals müde wurde, mir
zuzuhören (immer und immer und immer wieder). Dazu gilt mein Dank
meinen Eltern, welche mir mein Studium, sowie meinen kompletten Werde-
gang ermöglicht haben, sowie meiner gesamten Familie.

Besonderer Dank gilt Jan Bärenfänger und Stefan Hartl für die gute
gemeinsame Zeit im Arbeitsalltag.

123


	Introduction
	Historical Background of Spintronics
	Thesis Outline

	Theoretical Background of Spin Injection
	Resistor Model
	Spin Current and Diffusion
	Spin Injection and Detection

	Theoretical Background of 2D and 1D transport
	The two-dimensional Electron Gas (2DEG)
	2D Density of States
	Transport Properties of a 2DEG

	One-dimensional System: the Quantum Point Contact (QPC)

	Methods
	The Spin Esaki Diode
	Wafer Structure
	Sample Design and Fabrication
	Measurement Setup

	Experimental Results: Spin Valve and Quantized Conductance
	Spin Valve
	Quantized Conductance
	Split-Gate design
	QPC Characterization

	Conclusion

	Measuring Spin Accumulation using a QPC
	Theory of linear and nonlinear Spin-to-Charge conversion
	Experimental Results
	Measurement Setup
	Nonlinear Spin-to-Charge Conversion
	Linear Spin-to-Charge Conversion

	Conclusion

	Summary
	Calculations
	Supplementary Measurements
	Local Spin-to-Charge Coupling Measurements
	Bibliography
	Danksagung

