Transformations of White Phosphorus Mediated by Low Valent Cobalt Complexes

Dissertation
Zur Erlangung des Doktorgrades der Naturwissenschaften
Dr. rer. nat.
an der Fakultät Chemie und Pharmazie der Universität Regensburg

vorgelegt von:
Sebastian Hauer
aus Deuerling

Der experimentelle Teil der vorliegenden Arbeit wurde in der Zeit zwischen Dezember 2019 und März 2024 unter Anleitung von Prof. Dr. Robert Wolf am Institut für Anorganische Chemie der Universität Regensburg angefertigt.

Die Arbeit wurde angeleitet von:	Prof. Dr. Robert Wolf	
Promotionsgesuch eingereicht am:	03.05 .2024	
Tag der mündlichen Prüfung:		
Promotionsausschuss:	Vorsitz:	Prof. Dr. Marcel Schorpp
	Erstgutachter	Prof. Dr. Robert Wolf
	Zweitgutachter	Prof. Dr. Jan J. Weigand
	Dritter Prüfer	Prof. Dr. Frank-Michael Matysik

Prologue

This thesis primarily reports on the synthesis, reactivity, and characterization of lowvalent cobalt complexes and their application for white phosphorus transformation. Chapter 1 provides a categorized review of the transition-metal-mediated functionalization of P_{4} with emphasis on recent research results. Chapter 2 addresses the [3+1] fragmentation of acylated tetraphosphidoligands, which provides access to acylcyanophosphanides and phosphines. Chapter 3 reports on the functionalization of anionic and neutral tetraphosphido complexes with electrophilic heterocycles. Chapters 4-5 describe the reactivity of tri- and tetraphosphido complexes with phosphorus-containing electrophiles to form polyphosphido complexes (Chapter 4) and functionalization with group 14 ambiphiles (Chapter 5), respectively. Chapter 6 covers a distinct project and describes the synthesis of new phosphorus-containing heterocycles by reaction of tert-butylphosphaalkyne or white phosphorus with diazoalkenes. Finally, Chapter 7 gives a summary of the results described in this thesis and provides a short outlook.

Prolog

Diese Dissertation behandelt hauptsächlich die Synthese, Reaktivität und Charakterisierung von niedervalenten Cobaltkomplexen und deren Anwendung für die Transformation von weißem Phosphor. Kapitel 1 gibt einen gruppierten Überblick über die übergangsmetallvermittelte P_{4} Funktionalisierung mit Schwerpunkt auf aktuellen Forschungsergebnissen. Kapitel 2 beschreibt die [3+1] Fragmentierung von acylierten Tetraphosphidoliganden, wodurch Acylcyanophosphanide und -phosphine zugänglich werden. In Kapitel 3 wird die Funktionalisierung von anionischen und neutralen Tetraphosphidokomplexen mit elektrophilen Heterocumulenen behandelt. Kapitel 4-5 beschreiben die Reaktivität von Tri- und Tetraphosphido Komplexen mit phosphorhaltigen Elektrophilen zum Aufbau von Polyphosphidokomplexen (Kapitel 4), bzw. der Funktionalisierung mit Ambiphilen der Gruppe 14 (Kapitel 5). Kapitel 6 beschreibt ein thematisch unabhängiges Projekt zur Synthese neuer phosphorhaltiger Heterocyclen durch Umsetzung von tert-Butylphosphaalkin oder weißem Phosphor mit Diazoalkenen. Das letzte Kapitel 7 fasst die Ergebnisse dieser Arbeit zusammen und gibt einen kurzen Ausblick.

Table of Contents

1 Functionalization of Polyphosphido Ligands Derived from White Phosphorus 1
1.1 Introduction 3
1.2 One-Step Activation and Functionalization of P_{4} 5
1.3 Functionalization of P_{1} Ligands 11
1.4 Functionalization of P_{2} Ligands 13
1.5 Functionalization of P_{3} Ligands 14
1.6 Functionalization of P_{4} Ligands 18
1.7 Functionalization of P_{n} Ligands ($n \geq 5$) 21
1.8
1.8 Conclusion and Outlook 26
2 Cobalt-Mediated [3+1] Fragmentation of White Phosphorus: Access to Acylcyanophosphanides 31
2.1 Introduction 33
2.2 Results and Discussion 35
2.3 Conclusion 46
2.4 Experimental Details 48
2.4.1 Synthesis of Compounds 49
2.4.2 NMR Spectra 66
2.4.3 Additional Experiments 90
2.4.4 Reaction Monitoring 101
2.4.5 Proposed Reaction Mechanism 105
2.4.6 UV/Vis Spectra 106
2.4.7 IR Spectra 111
2.4.8 \quad Single Crystal X-Ray Diffraction Data 115
2.4.9 Quantum Chemical Calculations 127
3 Functionalization of Tetraphosphido Ligands by Heterocumulenes 173
3.1 Introduction 175
3.2 Results and Discussion 177
3.3 Conclusion 187
3.4 Experimental Details 189
3.4.1 Synthesis of Compounds 189
3.4.2 NMR Spectra 197
3.4.3 Additional Experiments 209
3.4.4 Proposed Reaction Mechanism 214
3.4.5 UV/Vis Spectra 215
3.4.6 IR Spectra 218
3.4.7 Single Crystal X-Ray Diffraction Data 219
3.4.8 Quantum Chemical Calculations 223
4 Synthesis of Polyphosphido Cobalt Complexes through P-P Bond Condensation 239
4.1 Introduction 241
4.2 Results and Discussion 244
4.3 Conclusion 253
4.4 Experimental Details 254
4.4.1 Synthesis of Compounds 255
4.4.2 NMR Spectra 262
4.4.3 UV/Vis Spectra 271
4.4.4 IR Spectra 273
4.4.5 Single Crystal X-Ray Diffraction Data 274
5 Reactivity of Cyclotetraphosphido and Cyclotriphosphido Cobalt Complexes toward Group 14 Ambiphiles 279
5.1 Introduction 281
5.2 Results and Discussion 282
5.3 Conclusion 288
5.4 Experimental Details 289
5.4.1 Synthesis of Compounds 290
5.4.2 NMR Spectra 293
5.4.3 Additional Experiments 296
5.4.4 UV/Vis Spectra 298
5.4.5 IR Spectra 299
5.4.6 Single Crystal X-Ray Diffraction Data 300
6 1,2,4-Diazamonophospholes and 1,2,3,4-Diazadiphospholes Derived from Diazoalkenes: Synthesis and Coordination Chemistry 305
6.1 Introduction. 307
6.2 Results and Discussion 309
6.3 Conclusion 321
6.4 Experimental Details 323
6.4.1 Synthesis of Compounds 324
6.4.2 NMR Spectra 336
6.4.3 Additional Experiments 358
6.4.4 Reaction Monitoring 359
6.4.5 Proposed Reaction Sequence 361
6.4.6 UV/Vis Spectra 362
6.4.7 IR Spectra 369
6.4.8 Single Crystal X-Ray Diffraction Data 370
7 Summary and Conclusion 381
8 Acknowledgements 391
9 Curriculum Vitae 393
10 List of Publications 395

1 Functionalization of Polyphosphido Ligands Derived from White Phosphorus ${ }^{[\text {[a] }}$

Abstract

A myriad of useful organophosphorus compounds are accessible from white phosphorus $\left(\mathrm{P}_{4}\right)$, which are crucial for our modern society. However, current industrial routes used to transform P_{4} into these products are indirect, wasteful, and highly hazardous. Transition-metal (TM)-mediated processes have emerged as promising and atom-efficient alternatives, leading to the development of a plethora of early and late transition metal polyphosphido complexes through the coordination of P_{4}. While this first step, often referred to as "activation", has become well established, the subsequent functionalization of these complexes remains a challenging goal in this field. This chapter provides an overview of successful P_{4}-derived functionalization reactions of polyphosphido ligands in transition metal complexes, with a particular emphasis on recent developments not covered in previous review articles.

[^0]
1.1 Introduction

Phosphorus, atomic number 15 in the periodic table, is one of the six biogenic elements essential for life on earth and was discovered by Hennig Brand in 1669. ${ }^{[1-4]}$ Today, synthetic (organo-)phosphorus compounds (OPC) are ubiquitous in everyday life, e.g. in flame retardants, agrochemicals and pharmaceuticals, among many others. ${ }^{[5-7]}$ The single most important feedstock material for the industrial synthesis of these compounds is white phosphorus $\left(\mathrm{P}_{4}\right)$ - the most reactive elemental allotrope - which is produced annually on a megaton scale from phosphate ore (apatite) via electric arc furnace reduction (Wöhler process). While the majority of this P_{4} is then reoxidized to generate high-purity phosphoric acid (thermal $\mathrm{H}_{3} \mathrm{PO}_{4}$), the remaining fraction (ca. 18\%) is used to prepare the numerous organophosphorus compounds relevant to industry and commerce. ${ }^{[5,8]}$

The established industrial route involves the conversion of P_{4} into phosphorus trichloride $\left(\mathrm{PCl}_{3}\right)$ using hazardous chlorine gas $\left(\mathrm{Cl}_{2}\right.$, Scheme 1$) . \mathrm{PCl}_{3}$ is a highly corrosive liquid that must be stored under inert conditions and can be further oxidized using Cl_{2} or O_{2} to produce PCl_{5} or POCl_{3}, respectively. Nucleophilic functionalization of these phosphorus chlorides then furnishes the desired organophosphorus products, alongside inorganic salt waste. This process is illustrated by the commercial preparation of industrially valuable triphenylphosphine $\left(\mathrm{PPh}_{3}\right)$, where chlorobenzene is treated with PCl_{3} in the presence of molten sodium. ${ }^{[9]}$ Alternatively, P_{4} can be broken down into toxic and flammable phosphine gas $\left(\mathrm{PH}_{3}\right)$ via acid- or base-mediated disproportionation with concomitant loss of phosphorus due to oxidation. ${ }^{[5,6,8]} \mathrm{PH}_{3}$ is then employed in hydrophosphination reactions of alkenes and ketones to yield the desired phosphorus compounds.

Scheme 1. Current industrial route toward monophosphorus compounds and metal mediated alternative.

Thus, these established routes are energy intensive, require highly hazardous reagents, proceed via harmful intermediates, and generate superstoichiometric amounts of chemical waste. As a result, contemporary research endeavors to develop alternative approaches for the functionalization of P_{4}, circumventing environmentally detrimental processes.

The incorporation of P_{4} into the coordination sphere of a transition metal to generate a reactive polyphosphido complex $[\mathrm{M}]-\mathrm{P}_{n}$ (= activation) has been widely examined over the past several decades and reviewed. ${ }^{[10-15]}$ Through degradation into smaller $\mathrm{P}_{1}-\mathrm{P}_{3}$ fragments and aggregation into larger $\mathrm{P}_{n}(\mathrm{n} \geq 5)$ frameworks a plethora of fascinating polyphosphido complexes has become accessible, with examples of some common structural motifs illustrated in Figure 1. While strides have been made in functionalization to derive OPCs from P_{4} in recent years, such as other P -atom sources, reactions of P_{4} with main group elements, electrochemical and photochemical processes, the field of obtaining P_{1} products directly from P_{4} is still in its infancy and relies on processes hampered by poor selectivity or efficiency hence their transition to an industrial scale appears unlikely. ${ }^{[10,16-20]}$ Thus, more traditional transition-metal-mediated routes are still highly desirable. Through activation of P_{4}, the transformation of the P_{n} moieties with suitable reagents (= functionalization) is facilitated. Studying these reactions could ultimately pave the way to an effective and environmentally friendly route toward organophosphorus derivatives derived from P_{4}. Additionally, such processes could provide access to polyphosphorus frameworks, phosphide materials and further unique and intriguing P-containing compounds, inaccessible by other synthetic pathways.

Figure 1. Transition metal polyphosphido complexes accessible through degradation and aggregation of $\mathrm{P}_{4} ; \mathrm{R}=i \mathrm{Pr}, \mathrm{C}\left(\mathrm{CD}_{3}\right)_{2} \mathrm{Me}, \mathrm{Ar}=3,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}, \mathrm{Cp}^{\prime \prime \prime}=\mathrm{C}_{5} \mathrm{H}_{2} t \mathrm{Bu}_{3}$.

Previous review articles have extensively covered various aspects of P_{4} chemistry, including complexes with early/late transition metals, and two recent publications from our group focus on the functionalization and coordination chemistry of $\mathrm{P}_{4}{ }^{[10-15]}$ Thus, this introduction will focus only on the most relevant previous contributions to this area, as well as recent work not covered in the aforementioned review articles. To assist the reader navigate this introduction, it is organized according to the degree of degradation or aggregation at the metal center. Therefore, one-step activation and functionalization will be discussed first, followed by functionalization of P_{n} units from lowest to highest nuclearity in the following sections.

1.2 One-Step Activation and Functionalization of \mathbf{P}_{4}

A landmark example of a metal complex inducing simultaneous activation and functionalization of P_{4} was reported in 1998, by Peruzzini and co-workers, when they demonstrated the direct hydrogenation of P_{4} to yield PH_{3} and primary organophosphines, RPH_{2} (Scheme 2a). ${ }^{[21]}$ When working in a closed system, the late transition metal hydrides of rhodium(III) (1a) and iridium(III) (1b) [(triphos) MH_{3}] ($\mathrm{M}=\mathrm{Rh}$, Ir; triphos = $\left.\mathrm{MeC}\left(\mathrm{CH}_{2} \mathrm{PPh}_{2}\right)_{3}\right)$ were shown to simultaneously activate and functionalize P_{4} in a single step [3+1] fragmentation reaction. Products of these reactions were the very stable cyclo $-\mathrm{P}_{3}$ complexes 2 and P_{1} product PH_{3}. Mechanistic insight into the hydrogenation was provided by the reaction of dihydridoethyl iridium complex $\mathbf{1 c}$ with P_{4} in an open system (Scheme 2b).

Scheme 2. Rhodium and iridium mediated [3+1] fragmentation of P_{4} by stoichiometric hydrogenation; triphos $=\mathrm{MeC}\left(\mathrm{CH}_{2} \mathrm{PPh}_{2}\right)_{3}$.

In this case, the formation of butterfly compound [(triphos) $\left.\operatorname{IrH}\left(\eta^{1}: \eta^{1}-\mathrm{P}_{4}\right)\right]$ (3) and evolution of ethane gas was initially observed. Compound $\mathbf{3}$, formed by oxidative addition of P_{4} to the iridium center, likely represents an initial intermediate en route to $\mathbf{2 b}$. Compound $\mathbf{3}$ slowly isomerizes to $\mathbf{4 b}$ at room temperature, which subsequently reacts with H_{2} above $60^{\circ} \mathrm{C}$ to give $\mathbf{2 b}$ and PH_{3} (Scheme 2c). One year later, Peruzzini and coworkers demonstrated that $\mathbf{4 c}-\mathbf{e}$ is also accessible by the reaction of rhodium ethylene complexes 5 with P_{4} (Scheme 2d). ${ }^{[22]}$ Upon release of the labile ethylene ligand from 5, a transient, coordinatively unsaturated, 16 -electron species [(triphos)RhR] was formed, which reacts with P_{4} to give complexes analogous to 3 . Migration of the alkyl or aryl groups to the P_{4} ligand resulted in $\mathbf{4 c} \mathbf{c}$ e, representing the first example of TM-mediated $\mathrm{P}-\mathrm{C}$ bond formation, derived from P_{4}. Notably, the reaction of hydrido-ethylene derivative 5d did not yield expected product $\mathbf{4 a}$, but the tetraphosphidoethyl derivative $\mathbf{4 d}$ through loss of H_{2}, resulting from insertion of the ethylene ligand. ${ }^{[23]}$ Subjecting $\mathbf{4 c} \mathbf{c} \mathbf{e}$ to an atmosphere of H_{2} and heating the solution to $60^{\circ} \mathrm{C}$ led to fragmentation and the release of $\mathbf{2 a}$ as well as primary phosphine EtPH_{2} directly derived from P_{4}. These [3+1] fragmentations demonstrate the potential of a transition-metal-mediated approach for the transformation of P_{4} into functionalized derivatives. However, so far only stoichiometric hydrogenation reactions have been reported. Even in the presence of up to 30 atm of H_{2} and 10 equiv. of P_{4}, only stoichiometric hydrogenation was observed, which was attributed to the high stability of complexes $2 .{ }^{[21]}$ Thus the direct hydrogenation of P_{4} still suffers from poor atom efficiency.

Nearly two decades later, Zhang and co-workers reported a further example for a onepot [3+1] fragmentation and functionalization reaction of white phosphorus (Scheme 3). ${ }^{[24]}$ Rare-earth metallacyclopentadienes 6 reacted with half an equivalent of P_{4} and display dual dinucleophile/diene character. Thus, inducing fragmentation into P_{3} and P_{1} moieties, which were isolated as cyclo- P_{3} complexes 7 and the lithium phospholide 8. DFT calculations provided insight into the mechanism and revealed a dual role for $\mathbf{6}$, explaining the required $2: 1$ stoichiometry. Following fragmentation, the released P_{3} moiety was captured by a cycloaddition reaction with $\mathbf{6}$, which yielded stereoselectively exo-bicyclo $[4,1,0]$ triphosphaheptanide complexes 7. Second, the P_{1} fragment was captured by double nucleophilic attack of 6 , yielding 8 . The lithium P_{1} species $\mathbf{8}$ had already been reported a year earlier by the same group, through the related [3+1] fragmentation of P_{4} by 1,4-dilithium-1,3-butadienes. ${ }^{[25]}$ This thereby represents a rare example for one-step activation and functionalization of P_{4} mediated by rare earth metals,
with concomitant trapping of both fragments. ${ }^{[24,26-28]}$ The chemically distinct phosphorus atoms in 7a gave rise to two signals in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum at $\delta=-198 \mathrm{ppm}(2 \mathrm{P})$ and $\delta=-91 \mathrm{ppm}(1 \mathrm{P})$, contrasting much more common and symmetrical late TM cyclo- P_{3} complexes, which usually exhibit a singlet in the range of $\delta=-160$ to $-210 \mathrm{ppm} .^{[15,29]}$

Scheme 3. Simultaneous activation and functionalization of P_{4} by a rare-earth mediated [3+1] fragmentation; $\mathrm{Cp}^{*}=\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}$.

Additional equivalents of $\mathbf{8}$ could be generated by ring contraction of the cyclo- P_{3} ligand in $7 \mathbf{b}(\mathrm{R}=\mathrm{Lu} ; \mathrm{R}=\mathrm{Me})$ upon oxidation with p-benzoquinone. Addition of the oxidant led to [2+1] fragmentation with release of $\mathbf{8}$ and concomitant regeneration of P_{4} in a ratio of 2:1. Monitoring via ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy revealed a series of signals, which were assigned to proposed intermediates. A possible reaction sequence for the extrusion of the P_{2} synthon was thereby proposed (Scheme 3 bottom).

Another example for yttrium mediated one-step activation and functionalization of P_{4} was reported by Zhang, Zhou and co-workers. ${ }^{[30]}$ Addition of half an equivalent of P_{4} to the yttrium alkyl complex $\mathbf{9}$ in the presence of DMAP (4-dimethylaminopyridine) led to 10 (Scheme 4a). Complex 10 features a distorted cyclo- $\mathrm{P}_{4} \mathrm{R}_{2}{ }^{2-}$ ligand bridging the two yttrium centers, derived from the insertion of P_{4} into the yttrium-carbon bonds. Addition of HMPA $\left(\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\right]_{3} \mathrm{PO}\right)$, a selective cation solvate, promoted migration of the benzylic residues to a single phosphorus atom, releasing tribenzylphosphine $\mathbf{1 1}$ and forming the Zintl-type $\mathrm{P}_{7}{ }^{3-}$ complex $\mathbf{1 2}$ (Scheme 4b). ${ }^{[31]}$ In addition, heating of $\mathbf{1 0}$ led to a selective

1,2-benzyl shift to afford an $\mathrm{R}_{2} \mathrm{P}$-substituted cyclo- P_{3} bridging ligand in $\mathbf{1 4}$ (Scheme 4c). ${ }^{[30]}$ Extrusion of this exo- PR_{2} moiety was achieved by addition of benzyl potassium to $\mathbf{1 3}$, yielding the trinuclear $\mathrm{Y}_{2} \mathrm{~K}$ cyclo- P_{3} complex $\mathbf{1 4}$ by elimination of $\mathbf{1 1}$. Complex $\mathbf{1 4}$ is also accessible directly from $\mathbf{1 0}$ by addition of $K-R$, suggesting a benzylic migration induced by the strong nucleophile, followed by elimination of $\mathbf{1 1}$ (Scheme 4d). Thus, this procedure demonstrates an elegant two-step [3+1] fragmentation process of P_{4} in which a phosphorus atom is derivatized to form an organophosphine.

Scheme 4. Yttrium mediated synthesis of tribenzylphosphine via two-step [3+1] fragmentation of $\mathrm{P}_{4}, \mathrm{~L}=$ N, N^{\prime}-di(2,6-diisopropylphenyl)-1,4-diazabutadiene, $\quad \mathrm{DMAP}=$ 4-dimethylpyridine, $\mathrm{HMPA}=$ $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\right]_{3} \mathrm{PO}$.

In 2024 the same group of authors reported a direct construction of functionalized diphosphine ligands from P_{4} mediated by silyl-bridged amido/methylene yttrium complex 15 (Scheme 5a). ${ }^{[32]}$ Further derivatization of the diphosphanato yttrium complex 16 was reported using CS_{2}, which afforded the highly reorganized an dianionic 3,4-dithiolate ligand, bridging two yttrium atoms in a non-symmetric fashion in 17 (Scheme 5b). The reaction with an excess of CO gas (1 atm .) afforded the $\mathrm{P}-\mathrm{P}$ and $\mathrm{Y}-\mathrm{P}$ bond insertion product 18. DFT provided insight into the unusual insertion, revealing that the first step of the reaction is the insertion of CO into a $\mathrm{Y}-\mathrm{P}$ bond followed by the migration of another P atom to the resulting acyl carbon, thus proceeding via 19. The preferential addition of the $\mathrm{Y}-\mathrm{P}$ bond over the $\mathrm{P}-\mathrm{P}$ bond was confirmed by treatment of $\mathbf{1 6}$ with electrophilic
heterocumulenes (Scheme 5d). From the reaction with azobenzene ($\mathrm{PhN=NPh}$) compound 20 was isolated, bearing a functionalized diphosphine ligand. Moreover, the reactions with $\operatorname{PhNCE}(\mathrm{E}=\mathrm{S}, \mathrm{O})$ afforded the addition products 21. Specifically, when 21a was recrystallized from a THF/hexane mixture loss of the coordinating THF was observed, which led to rearrangement of the P_{2} ligand and formation of $\mathbf{2 2}$. Treatment of 16 with sulfur or selenium led to chalcogenylation of the diphosphine ligand and formation of the corresponding di-sulfides/selenides in 23 and 24, respectively (Scheme 5e). The formation of $\mathbf{2 3}$ and $\mathbf{2 4}$ was explained by insertion of sulfur/selenium into each Y-P bond of $\mathbf{1 6}$.

Scheme 5. Yttrium mediated one-step activation and functionalization of P_{4} with further derivatization of the resulting P_{2} ligand.

Building on these results, Zhan, $\mathrm{Zhou}, \mathrm{Li}$, and co-workers also reported a related direct functionalization of P_{4} mediated by rare-earth metal dialkyl complexes 25 (Scheme 6). ${ }^{\text {[32] }}$ Treatment of $\mathbf{2 5}$ with white phosphorus afforded the two rare-earth polyphosphorus complexes 26 and 27, bearing norbornene- $\left(\mathrm{PhCH}_{2}\right) \mathrm{P}_{7}{ }^{4-}$ or chain- $\left(\mathrm{PhCH}_{2}\right)_{4} \mathrm{P}_{6}{ }^{4-}$ ligands, respectively, through release of tribenzylphosphine $\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{3}$ 28. The stoichiometry
used is of crucial importance for this reaction, and by changing the molar ratios, complexes 26 and 27 were synthesized in a targeted manner. Specifically, the lutetium complex 26b was further functionalized using $\mathrm{Me}_{3} \mathrm{SiCl}$, affording the heptaphosphido cluster 29 and the lutetium dichloride 30, which was recovered and subsequently used for regeneration of the starting material $\mathbf{2 5 b}$ employing $\mathrm{KCH}_{2} \mathrm{Ph}$, thus making a fully closed synthetic cycle.

Scheme 6. Rare-earth-mediated synthesis and functionalization of P_{7} and P_{6} complexes starting from P_{4}.
In contrast to aforementioned examples of [3+1] fragmentation reactions, one-step transformation of P_{4} can also lead to cyclo- P_{3} ligands without concomitant generation of a P_{1} moieties. Wolf, Hey-Hawkins and co-workers recently reported such an unusual [3+1] fragmentation reaction in which both the generated P_{3} and P_{1} units remain coordinated to the metal center, as illustrated in Scheme 7a. ${ }^{[33]}$ Upon treatment with white phosphorus, the electron-rich bis(phosphanido) moiety in anionic $\left[\mathrm{Co}\left\{1,2(\mathrm{PMes})_{2} \mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{10}\right\}(\mathrm{cod})\right]^{-}$(31, Mes $=2,4,6-\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{2} \operatorname{cod}=1,5-$ cyclooctadiene $)$ abstracted a single phosphorus atom from P_{4}, generating a P_{3} chain. The remaining three phosphorus atoms derived from P_{4} formed the η^{3}-coordinating cyclo $-\mathrm{P}_{3}$ ligand in $\mathbf{3 2}$.

32
Scheme 7. Cobaltate mediated [3+1] fragmentation of P_{4} and synthesis of homodinuclear complex; Mes = 2,4,6- $\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{2}, \mathrm{DME}=$ dimethoxyethane .

Only few related examples that incorporate both the resulting P_{3} and P_{1} fragment in the same product have been reported in the literature. ${ }^{[27,28,34,35]}$ Additionally, in the reaction a small amount of the binuclear complex $\left[\left\{\mathrm{B}_{10} \mathrm{H}_{10} \mathrm{C}_{2}\left(\mathrm{P}_{2} \mathrm{Mes}_{2}\right) \mathrm{Co}\right\}_{2}\left(\mu-\eta^{4}: \eta^{4}-\mathrm{P}_{4}\right)\right]^{-}(\mathbf{3 3})$ was formed, featuring a P_{4} chain in its molecular structure, as shown in Scheme 7b. By applying different conditions, $\mathbf{3 3}$ was cleanly synthesized in a targeted approach.

1.3 Functionalization of P_{1} Ligands

Separating the P_{4} activation step from subsequent functionalization allows for more versatile and targeted transformations. ${ }^{[11-17,36]}$ Thus, the upcoming sections will focus on the functionalization of P_{1} to P_{4} ligands derived from P_{4}.

Cummins and co-workers demonstrated the impressive synthetic potential of niobium phosphide 33, accessible by reduction of the bridging P_{4}-derived diphosphide precursor 34 with $\mathrm{Na} / \mathrm{Hg}$ (Scheme 8a). ${ }^{[37,38]}$ The latter complex 34 was obtained from activation of P_{4} using the hydride 35. Remarkably, monophosphide $\mathbf{3 3}$ was capable of further solventdependent P_{4} activation (Scheme 8b). ${ }^{[39]}$ When performing the reaction in a coordinating solvent (THF), addition of the entire tetrahedron occurred, accompanied by the migration of one amide ligand from the niobium center onto a phosphorus atom, resulting in the functionalized cyclo- P_{5} anion 36. Conversely, when the reaction was performed in a non-coordinating solvent $\left(\mathrm{Et}_{2} \mathrm{O}\right)$, white phosphorus served as a source of P_{2}, which reacted with the phosphide moiety to give a cyclo- P_{3} ligand in the niobium complex 37. Reactions of $\mathbf{3 3}$ with phosphorus-containing electrophiles also provided formation of higher nuclearity oligophosphorus units through salt metathesis (Scheme 8c, d). Treatment of anion $\mathbf{3 3}$ with chlorophosphines at low temperatures yielded η^{2}-phosphanylphosphinidene complexes $\mathbf{3 8},{ }^{[38]}$ while reaction of the chloroiminophosphine $\mathrm{ClP}=\mathrm{NMes}^{*}$ (Mes* $=2,4,6-t \mathrm{Bu}_{3} \mathrm{C}_{6} \mathrm{H}_{2}$) resulted in 39. ${ }^{[40]}$ Compound 39 features the diphosphorus analogue of an organic azide ligand ($\mathrm{P}=\mathrm{P}=\mathrm{N}-\mathrm{Mes}^{*}$), coordinating through the $\mathrm{P}=\mathrm{P}$ unit in an η^{2}-fashion. Remarkably, heating of 39 led to thermal release of a formal $[\mathrm{P} \equiv \mathrm{P}]$ unit, which was trapped with 1,3cyclohexadiene (1,3-CHD) to form the corresponding double cycloaddition adduct 40 and the niobium imide complex 41 (Scheme 8d).

Scheme 8. Niobium phosphide mediated functionalization of $\mathrm{P}_{4} ; \mathrm{Np}=\mathrm{CH}_{2} t \mathrm{Bu}, \mathrm{Ar}=3,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$, Mes* $=2,4,6-t \mathrm{Bu}_{3} \mathrm{C}_{6} \mathrm{H}_{2}, 1,3-\mathrm{CHD}=1,3$-cyclohexadiene

The phosphide ligand in $\mathbf{3 3}$ can also act as a P_{1}^{-}transfer reagent in the synthesis of known organophosphorus reagents (Scheme $8 \mathrm{e}, \mathrm{f}) .{ }^{[41]}$ Treatment of the Lewis acid adduct 33-B $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ with a stoichiometric amount of CO_{2} led to a formal multiple bond metathesis, affording the sodium salt of the phosphaethynolate anion $\mathrm{OCP}^{-}, \mathbf{4 2}$, and oxoniobium adduct $43-\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$, featuring a strong $\mathrm{Nb} \equiv \mathrm{O}$ triple bond. The driving force of this reaction is the oxophilicity of niobium, which induces [2+2] fragmentation of the cyclic $\mathrm{Nb}-\mathrm{P}-\mathrm{C}(\mathrm{O})-\mathrm{O}$ intermediate. ${ }^{[42]}$ Applying a similar strategy, Cummins and colleagues reported the transformation of acyl chlorides into the corresponding phosphaalkynes (Scheme 8f). ${ }^{[43]}$ Treatment of $\mathbf{3 3}$ with $\mathrm{RC}(\mathrm{O}) \mathrm{Cl}$ yielded niobacycles 44, which undergo thermolysis to yield phosphaalkynes 45 and the niobium(V)-oxo product 43. This process was reported to form a closed synthetic cycle by stepwise deoxygenation of 43 , activation of P_{4} to give 33 , and regeneration of $\mathbf{4 3}$ by reduction via 35 .

1.4 Functionalization of P_{2} Ligands

The functionalization of P_{2} ligands derived from P_{4} is generally less common than that of P_{1}, P_{3} and P_{4} ligands. ${ }^{[12-15]}$ The early examples for transformations of multinuclear P_{2} complexes were reported by Scherer and co-workers as early as the 1990s and included oxidation of the phosphorus moieties using sulfur, or selenium. ${ }^{[44-46]}$ In 2000, Scheer and co-workers reported the functionalization of a $\mathrm{Cr}_{2} \mathrm{P}_{2}$ complex with $\mathrm{ECl}_{3}(\mathrm{E}=\mathrm{P}, \mathrm{As}, \mathrm{Sb})$ and $\mathrm{PCl}_{5} .{ }^{[47]}$ More recently, Ruiz and co-workers reported the activation of P_{4} with anionic dimolybdenum and ditungsten complexes (Scheme 9a). ${ }^{[48,49]}$ The triple-bonded complexes 46 incorporate half an equivalent of P_{4} under mild conditions, yielding tetrahedral and diphosphorus-bridged anions 47.

Scheme 9. Functionalization of dinuclear group $6 \mathrm{P}_{2}$-complexes with group 14 electrophiles and chlorophosphines; $\mathrm{Cp}=\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}$

The tungsten derivative 47a, generated in situ, shows high reactivity toward electrophiles such as MeI, due to retention of its anionic character. Thus, the further functionalized and more stable methyldiphosphenyl complex 48 was isolated, bearing a methyl group at the P atom (Scheme 9 b). ${ }^{[49]}$ The reactivity of the molybdenum congener 47b was more thoroughly explored by reactions with various group 14 electrophiles (C , $\mathrm{Ge}, \mathrm{Sn} \mathrm{Pb}$), all giving rise to isostructural complexes 49, bearing a functionalized P_{2} moiety. ${ }^{[50]}$ Conversely, the reaction of $\mathbf{4 7 b}$ with BrSiMe_{3} did not lead to the expected silyl diphosphenyl derivative, but instead gave the agostic diphosphenyl complex 50. The authors suggested that the undetected silyldiphosphenyl species reacts rapidly with trace amounts of water, thus hydrolyzing the newly formed $\mathrm{P}-\mathrm{Si}$ bond to give the final product

50 and a siloxane byproduct. Additionally, reactions of $\mathbf{4 7 b}$ with chlorophosphines $\mathrm{R}_{2} \mathrm{PCl}$ ($\mathrm{R}=t \mathrm{Bu}, \mathrm{Cy}, \mathrm{Me}$) selectively gave the corresponding phosphinodiphosphenyl complexes 51. ${ }^{[51]}$ For $\mathrm{R}=t \mathrm{Bu}, \mathbf{5 1}$ is in an equilibrium with an isomer in which the pendant $\mathrm{P} t \mathrm{Bu}_{2}$ group is non-coordinating to the molybdenum center.

1.5 Functionalization of P_{3} Ligands

In contrast to P_{2} ligands, the functionalization of P_{3} ligands derived from P_{4} has been subject to much more investigation. In fact, the first examples of transition-metalmediated functionalization of P_{3} ligands with carbon-based electrophiles were reported by Peruzzini and Stoppioni as early as 1986. ${ }^{[52,53]}$ Treatment of previously discussed 2a-c (vide supra, Scheme 2) with highly electrophilic alkylating agents yielded η^{3} coordinating methyl- and ethyltriphosphirene ligands in cations 52 (Scheme 10a). ${ }^{[54]}$ The cobalt complex 2c was also protonated by treatment with triflic acid, yielding $\mathbf{5 3}$ (Scheme 10b). ${ }^{[55]}$ Unlike the alkyl groups in 52, the H^{+}in 53 interacted with both the cyclo- P_{3} ligand and the cobalt center, as indicated by spectroscopic and crystallographic studies, and was thus most likely located between the two.

Three decades later, Scheer and co-workers investigated the reactivity of nickel cyclo $-\mathrm{P}_{3}$ species 54, as an isolobal analogue to P_{4}, toward main group nucleophiles (Scheme 10c). ${ }^{[56,57]}$ The reaction of LiNMe_{2} with $\mathbf{5 4}$ yielded anionic η^{2}-triphosphirene complex 55 as an isolable product, bearing a newly formed $\mathrm{P}-\mathrm{N}$ bond. In comparison, while the reaction of sandwich compound $\mathbf{5 4}$ with LiPPh_{2} initially formed an analogous triphosphirene species 55, according to variable temperature ${ }^{31} \mathrm{P}$ NMR studies, this complex rapidly reacted with another equivalent of $\mathbf{5 4}$ at room temperature to irreversible form the heptaphosphine complex 56. While 56 was not readily purified due to high sensitivity, upon protonation with HBF_{4} the product was structurally characterized. For $\mathrm{Nu}=\mathrm{NMe}^{-}$compound $\mathbf{5 6}$ was observed only in minor amounts.

Scheme 10. Reactivity of neutral cyclo- P_{3} complexes toward electrophiles and nucleophiles; $\mathrm{TfOH}=$ $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}, o-\mathrm{DFB}=1,2-\mathrm{F}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$.

More recently, Scheer and co-workers reported the related reactivity of neutral 54 toward phosphenium cations $\left[\mathrm{RP}_{2}\right]^{+}$(Scheme 10d). ${ }^{[58]}$ The cations were generated in situ from $\mathrm{R}_{2} \mathrm{PCl}$ and a halide-abstracting agent (Tl[OTf $], \mathrm{Tl}\left[\mathrm{GaCl}_{4}\right] ;[\mathrm{OTf}]^{-}=\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$) and inserted into the triphosphirene ligand in 54, yielding mononuclear cations 57 , bearing a η^{3}-coordinating cyclo- $\mathrm{P}_{4} \mathrm{R}_{2}$ ligand. However, the formation of binuclear complexes 5 was observed when cations $\left[\mathrm{Br}_{2} \mathrm{P}\right]^{+}$and $\left[\left(2,2^{\prime} \text {-biphen }\right) \mathrm{P}\right]^{+}$were employed.

Related neutral complexes bearing η^{2}-triphosphirene ligands were reported in 2008 by Cummins and co-workers, through reaction of di- and trinuclear cyclo- P_{3} complex anions 59a,b with various electrophiles. ${ }^{[59]}$ Oligonuclear anions $\mathbf{5 9}$ became initially accessible by transfer of $\left[\left(\mathrm{P}_{2}\right) \mathrm{W}(\mathrm{CO})_{5}\right]$ fragments to the $\mathrm{W}(\mathrm{CO})_{5}$ adduct of niobium phosphide $\mathrm{Nb} \equiv \mathrm{P}^{-} \mathbf{3 3}$, with an improved and aforementioned synthesis reported three years later (vide supra, Scheme 8b). ${ }^{[39]}$ Similar to the terminal niobium phosphide 33, the triphosphirene ligand was functionalized upon treatment of $\mathbf{5 9}$ with $\mathrm{CIP}=\mathrm{NMes}^{*}$, yielding NbP_{4} complex 60 through concomitant loss of one $\left[\mathrm{W}(\mathrm{CO})_{5}\right]$ fragment and migration of the second $\left[\mathrm{W}(\mathrm{CO})_{5}\right]$ moiety to the iminophosphine (Scheme 11a). As indicated by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy, the exocyclic Mes*NP[W(CO) 5^{+}group circumambulated around the cyclo $-\mathrm{P}_{3}$ ligand at room temperature, a dynamic process which was slowed upon cooling

Scheme 11. Electrophilic functionalization of oligonuclear niobium cyclo- P_{3} anions; $\mathrm{Ar}=3,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$, $\mathrm{Np}=\mathrm{CH}_{2} t \mathrm{Bu}, \mathrm{Mes} *=2,4,6-t \mathrm{Bu}_{3} \mathrm{C}_{6} \mathrm{H}_{2}$.
the solution to $-70^{\circ} \mathrm{C}$. Reactions of $\mathbf{5 9}$ with $\mathrm{Ph}_{3} \mathrm{SnCl}$ and 1-adamantoyl chloride yielded the dinuclear P-stannylated and trinuclear P-acyclated species 61a and 61b, respectively (Scheme 11b). ${ }^{[59]}$ However, the acylated derivative is thermally unstable and decomposes above temperatures of $-20^{\circ} \mathrm{C}$, in contrast to acylated niobium P_{1}-species 44 (vide supra, Scheme 8). ${ }^{[43]}$

In 2009, Cummins and co-workers reported an anionic niobium cyclo- P_{3} complex similar to 59, bearing phenolato ligands instead of anilido ligands, and its use as a P-transfer reagent. ${ }^{[60]}$ The reported synthesis involves reduction of niobium chloride $\mathbf{6 2}$ in the presence of white phosphorus affording the P_{3}-synthon 63 (Scheme 12a). ${ }^{[61]}$ Upon treatment of 63 with the molybdenum(IV) iodide complex 64, one phosphorus atom was abstracted to give the terminal molybdenum phosphide complex 65, with elimination of NaI and concomitant formation of a transient niobium P_{2}-containing species, 66 (Scheme 12b). ${ }^{[62]} 66$ rapidly underwent dimerization, quantitively yielding the dinuclear cyclo- P_{4} cluster 67 in a an overall $2 \times(3-1)$ process. However, trapping $\mathbf{6 6}$ by conducting the reaction in neat $1,3-\mathrm{CHD}$ afforded the corresponding cycloaddition product $\mathbf{6 8}$, present in an equilibrium. Subsequent addition of the oxidant pyridine- N-oxide elicited liberation of the diphosphine ligand, and the formation of the aforementioned double cycloaddition adduct 40 ($c f$. Scheme 8) with concomitant release of the niobium oxo species 69. ${ }^{[40]}$

Complex 63 also allowed access to higher polyphosphorus compounds, when used as a source of $\mathrm{P}_{3}{ }^{3-}$ (Scheme 12c). ${ }^{[61]}$ This was achieved by treatment of 63 with the electrophile $\mathrm{Ph}_{3} \mathrm{SnCl}$, yielding η^{2}-stannyltriphosphirene complex 70. The resulting $\mathrm{Ph}_{3} \mathrm{Sn}^{+}$moiety circumambulated around the cyclo- P_{3} ring in solution and no locking out of this movement was observed on the NMR timescale at temperatures down to $-90^{\circ} \mathrm{C}$ ($c f$. complex 60). Similar to the release of 40 from 68 ($c f$. Scheme 12b), the addition of pyridine- N -oxide liberated the triphosphirene moiety $\mathrm{P}_{3} \mathrm{SnPh}_{3} .{ }^{[62]}$

Scheme 12. Phosphorus transfer reactions promoted by anionic niobium cyclo- P_{3} complex; $1,3-\mathrm{CHD}=$ 1,3-cyclohexadiene, $\mathrm{Ar}=3,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$, dppe $=\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}$.

This was trapped with excess 1,3-CHD to exclusively afford the endo-cycloaddition adduct 71, along the niobium oxo dimer 69. This liberation of phosphorus-containing molecules has been elucidated by DFT and proceeds through a redox-neutral BayerVilliger oxygen insertion into the $\mathrm{Nb}-\mathrm{P}$ bond. ${ }^{[63]}$ More specifically, the formation of the strong $\mathrm{Nb} \equiv \mathrm{O}$ bond provided the driving force for the release of the $\mathrm{Ph}_{3} \mathrm{SnP}_{3}$ fragment and the P_{2} adduct 40. Owing to the reactive $\mathrm{P}-\mathrm{Sn}$ bond and the 1,3-cyclohexadiene protecting group, 71 serves as a further P_{3}-transfer reagent. ${ }^{[61]}$ Thus, transfer of the cyclo- P_{3} unit onto Wilkinson's catalyst $\left[\mathrm{ClRh}\left(\mathrm{PPh}_{3}\right)_{3}\right]$ was achieved through a $[4+2]$ retrocycloaddition with concomitant loss of $\mathrm{Ph}_{3} \mathrm{SnCl}$ and 1,3-CHD, resulting in octahedral rhodium complex 72 (c.f. complexes 2a-c). ${ }^{[11,52,53]}$ The $\mathrm{Ph}_{3} \mathrm{Sn}$-moiety in $\mathbf{7 1}$ can be replaced by other group 14 units, including $\mathrm{Ph}_{3} \mathrm{C}-, \mathrm{Ph}_{3} \mathrm{Si}$-, and $\mathrm{Me}_{3} \mathrm{Si}-$, allowing the assembly of a library of $\mathrm{P}_{3}{ }^{-}$ transfer reagents exhibiting varied reactivity properties.

Recently, Cummins and co-workers reported that the role of $\mathbf{6 3}$ as a P_{3} transfer reagent allows it to serve as a platform for the exceptional synthesis of mixed tetrahedranes. ${ }^{[64]}$ Treatment of 63 with the carbon-centered radical $\mathrm{CHCl}_{2}{ }^{\bullet}$, generated in situ by halogen abstraction from bromodichloromethane or chloroform by the Nb (IV) complex $\left[(\mathrm{DippO})_{3} \mathrm{NbI}(\right.$ thf $\left.)\right]$, generated triphosphatetrahedrane (73), and the side products [(DippO) $)_{3} \mathrm{Nb}($ thf $\left.) \mathrm{Cl}\right]$ and NaCl (Scheme 12d). Upon concentrating a solution of 73 in THF, a black precipitate was formed and polymerization to $\left(\mathrm{HCP}_{3}\right) \mathrm{x}(\mathbf{7 4})$ was observed. This is in sharp contrast to the mono- and diphosphatetrahedrane, which can be isolated neat. ${ }^{[65,66]}$ In addition, $[\mathrm{Cp} * \mathrm{Fe}($ dppe $) \mathrm{Cl}]\left(\right.$ dppe $\left.=\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)$, which has been shown to form stable adducts with P_{4}, reacted readily with tetrahedrane $\mathbf{7 3}$ under reductive conditions, yielding complex 75. ${ }^{[67]}$ In compound 75, the tetrahedrane $\mathbf{7 3}$ is coordinating η^{1} - via a single phosphorus vertex, resulting in distortion in the tetrahedrane, as corroborated by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy, where the three phosphorus atoms give rise to two distinct resonances. ${ }^{[64]}$ The authors also previously reported the facile synthesis of the binary interpnictogen tetrahedrane species EP_{3} (76) via salt metathesis reactions of 63 with $\mathrm{ECl}_{3}(\mathrm{E}=\mathrm{As}, \mathrm{Sb}, \mathrm{Scheme} 12 \mathrm{e}) .{ }^{[60]}$ The byproduct of this reaction was the niobium(V) chloride complex 62, which can be recycled to the cyclo- P_{3} precursor (Scheme 12a), thereby closing the synthetic cycle.

1.6 Functionalization of P_{4} Ligands

Considering that the generation of P_{4} ligands is most commonly observed in transition-metal-mediated P_{4} activation, the focus of research on phosphorus functionalization has unsurprisingly centered predominantly around these complexes. Various methods for the functionalization of tetrahedral P_{4} ligands, "butterfly- P_{4} " (= [1.1.0]bicyclotetraphosphane-1,4-diyl) ligands, cyclo- P_{4} units, and catena- P_{4} species using transition metals have been reported and are detailed in two recent review articles. ${ }^{[14,15]}$ However, the functionalization of cyclo- P_{4} ligands is less common than that of tetrahedral or butterfly- P_{4} ligands and significant advancements have been made in this field since the publication of these reviews. Thus, the following section gives an overview of these works, which are highly relevant to this thesis.

A two-step functionalization and fragmentation process mediated by low-valent cobalt complexes was reported by our group in 2019. ${ }^{[68]}$ The cyclo- P_{4} cobaltate 77 reacted quantitatively with $\mathrm{R}_{2} \mathrm{PCl}\left(\mathrm{R}=\mathrm{Cy}, t \mathrm{Bu}, \mathrm{Ph}, \mathrm{Mes}, \mathrm{N}(i \mathrm{Pr})_{2}\right)$, affording the neutral cyclo$\mathrm{P}_{5} \mathrm{R}_{2}$ complexes 78 (Scheme 13a). The synthesis of isostructural products was also reported from the reaction of a heterodinuclear $\mathrm{CoP}_{4} \mathrm{Ga}$ complex with
chlorophosphines, ${ }^{[69]}$ and is detailed in recent review articles. ${ }^{[14,15]}$ Upon treatment of 78 with cyanide salts distinct reaction outcomes were observed depending on the substituent R (Scheme 13b). ${ }^{[68]}$ For $\mathrm{R}=\mathrm{Cy}, t \mathrm{Bu}, \mathrm{Ph}$, or $\mathrm{N}(i \mathrm{Pr})_{2}$, the reaction with two equivalents of CN^{-}induced a [3+2] fragmentation, yielding anionic cyclotriphosphido cobalt complex 79 and 1-cyanodiphosphan-1-ide anions 80 . Conversely, the reaction of one equivalent of CN^{-}with 78, where $\mathrm{R}=$ Mes, afforded CoP_{5} complex $\mathbf{8 1}$, featuring a rearranged $\mathrm{P}_{5} \mathrm{Mes}_{2}$ ligand. Complexes similar in structure to $\mathbf{8 1}$, with partially displaced $\mathrm{P}_{5} \mathrm{R}_{2}$ ligands, may serve as key intermediates in the [3+2] fragmentations leading to $\mathbf{7 9}$ and $\mathbf{8 0}$. However, the bulky mesityl substituent in $\mathbf{8 1}$ hindered such further reactivity.

Reactions of cobaltate $\mathbf{7 7}$ with the diphosphorus reagent $\mathbf{8 2}$ also allowed access to higher nuclearity phosphorus ligands (Scheme 13c). ${ }^{[70]}$ VT-NMR spectroscopy showed the initial product of this reaction to be the hexaphosphido complex 83, featuring a cyclo- P_{5} ligand and an exocyclic $\left({ }^{\mathrm{Cl}} \mathrm{Im}^{\text {Dipp }}\right) \mathrm{P}$ moiety. However, $\mathbf{8 3}$ is thermally unstable and underwent disproportionation at room temperature into more stable $\mathrm{CoP}_{7}(\mathbf{8 4})$ and $\mathrm{CoP}_{5}(\mathbf{8 5})$ complexes.

Scheme 13. Synthesis of cyclo- $\mathrm{P}_{5} \mathrm{R}_{2}$ complexes with subsequent [3+2] fragmentation and [4+2] condensation reaction of a cyclo-P4 ligand with diphosphene; PHDI $=$ bis $(2,6-$ diisopropylphenyl)phenanthrene-9,10-diimine.

Scheer and co-workers also reported a series of functionalization reactions of end-deck cyclo- P_{4} cobalt sandwich complex 86, accessible by addition of P_{4} to triple-decker complex 87 (Scheme 14). ${ }^{[71]}$ Similar to the previously discussed reactivity of structurally related nickel cyclo- P_{3} complex 54 (cf. Scheme 10), the cyclo $-\mathrm{P}_{n}$ ligand in compound 86 was functionalized upon treatment with nucleophiles (Scheme 14a). ${ }^{[72]}$ At low
temperatures, reactions with organolithium reagents $\mathrm{RLi}\left(\mathrm{R}=t \mathrm{Bu}, \mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)$ in the presence of chelating agents allowed isolation of the axial-substituted cyclo- P_{4} complexes $\mathbf{8 8}$ as kinetic products. For $\mathrm{R}=\mathrm{CH}_{2} \mathrm{SiMe}_{3}$ the equatorial isomer $\mathbf{8 8}$ ' was also observed spectroscopically. Without complexation, $\mathbf{8 8}$ and $\mathbf{8 8}^{\prime}$ form a mixture of products including bicyclo[3.3.0]octaphosphane 89, 1,2--diorgano-substituted cyclo- P_{5} anion 90 and the cyclo- P_{3} cobaltate $\mathbf{9 1}$. This reactivity resembles those of nickel η^{2}-triphosphirene species $\mathbf{5 5}$ illustrated in Scheme 10. ${ }^{[56]}$

Scheme 14. Functionalization of P_{4} mediated by end-deck cyclo- P_{4} cobalt sandwich complex $\mathrm{Cp}{ }^{\prime \prime} \mathrm{Co}\left(\eta^{4}-\mathrm{P}_{4}\right) ; \mathrm{Cp}^{\prime \prime \prime}=\mathrm{C}_{5} \mathrm{H}_{2} t \mathrm{Bu}_{3}$.

Treatment of complex 86 with the electrophilic phosphinidene complex $\left[\mathrm{Cp} * \mathrm{P}\left\{\mathrm{W}(\mathrm{CO})_{5}\right\}_{2}\right]$ resulted in the isomeric ring expansion products 92 and 92 , through insertion into the cyclo- P_{4} ligand with concomitant shift of a $\left[\mathrm{W}(\mathrm{CO})_{5}\right]$ fragment (Scheme 14b). ${ }^{[73]}$ The authors found that the phosphinidene $\left[\mathrm{Cp} * \mathrm{P}\left\{\mathrm{W}(\mathrm{CO})_{5}\right\}_{2}\right]$ also induces ring expansion in the cyclo- P_{3} niobate 63 (vide supra, Scheme 12), and additionally examined analogous reactions of $\mathbf{8 6}$ with the corresponding arsinidene. ${ }^{[60,73]}$

Complex 86 can also undergo ring contraction, induced by N-heterocyclic carbenes (NHC, Scheme 14c). ${ }^{[74]}$ Treatment of $\mathbf{8 6}$ with two equivalents of NHC selectively abstracted one phosphorus atom and formed the cation $\left[(\mathrm{NHC})_{2} \mathrm{P}\right]^{+}$, with cyclo- P_{3} cobaltate 91 as the counteranion. Subsequently, Scheer and co-workers reported an improved synthesis for anion 91 via the triple-decker complex $\mathbf{9 3}$, synthesized by reaction between the nickel sandwich complex 54 and cobalt toluene complex 87 (Scheme 14c). ${ }^{[75]}$ Reduction of 93 with excess potassium yielded $\mathrm{K}[91]$, with concomitant loss of nickel as black precipitate. Due to the favorable salt elimination of KCl over $(\mathrm{NHC})_{2} \mathrm{PCl}$ the reactivity of $\mathrm{K}[\mathbf{9 1}]$ with main group element chlorides was examined. ${ }^{[75]}$ Salt metathesis with the chlorosilylene 94 led to insertion into the cyclo- P_{3} moiety and the formation of an η^{3}-coordinating four membered ring $\mathrm{P}_{3} \mathrm{SiL}(\mathrm{L}=$ $\left.(t \mathrm{BuN})_{2} \mathrm{CPh}\right)$ in 95 (Scheme 14e). Similarly $\mathrm{K}[91]$ was functionalized by chlorophosphines to afford 96, featuring η^{3}-coordinating cyclo- $\mathrm{P}_{4} \mathrm{R}_{2}$ ligands. These complexes are isostructural to the previously described cations $\mathrm{Cp}{ }^{\prime \prime} \mathrm{Ni}\left(\eta^{3}-\mathrm{P}_{4} \mathrm{R}_{2}\right)^{+}(\mathbf{5 7}$, Scheme 10, vide supra). During the reaction a second complex 97 was also formed, bearing a η^{2}-cyclo- P_{3} ligand with an exocyclic PR_{2} unit engaging in η^{1}-coordination. According to ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy, 97 was only formed in appreciable amounts when $\mathrm{R}=\mathrm{Ph}$.

1.7 Functionalization of $P_{\boldsymbol{n}}$ Ligands ($n \geq 5$)

The formation of phosphorus-derived P_{n} ligands with $\mathrm{n} \geq 5$ through aggregation at the metal center is less common than the formation of ligands with $\mathrm{n} \leq 4$ via degradation. ${ }^{[15]}$ Thus, the functionalization of these ligands has been scarcely explored and most of these examples have been covered in a recent review article. ${ }^{[14]}$ However, a series of transformations of the oligophosphorus-containing ferrocene analogue $\mathrm{Cp}^{*} \mathrm{FeP}_{5}$ (98), derived from P_{4} and first reported by Scherer in $1987,{ }^{[76]}$ have been reported since.

Scheme 15. Functionalization of the cyclo- P_{5} ligand in pentamethylpentaphosphaferrocene to give monophosphorus compounds; $\mathrm{Bn}=\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$

In 2014, Scheer and co-workers reported the functionalization of $\mathbf{9 8}$ with different main group nucleophiles $\left(\mathrm{Nu}=-\mathrm{NMe}_{2},-\mathrm{PH}_{2},-\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)$, yielding $\eta^{4}-\mathrm{P}_{5} \mathrm{Nu}$ ferrate complexes 99 in an envelope conformation (Scheme 15a; cf. reactivity of NiP_{3} 54, Scheme 10). ${ }^{[77]}$ Distinctively, for the nucleophiles LiPH_{2} and NaNH_{2}, the formation of dinuclear complexes 100 was also observed (Scheme 15b). In 2023, an extended scope of reactivity toward nucleophiles $(\mathrm{Nu}=t \mathrm{Bu}, \mathrm{Me}, \mathrm{C} \equiv \mathrm{CPh})$, and onward reactivity of 99 with carbon-centred electrophiles, was reported. ${ }^{[78]}$ Introduction of a second alkyl group to $99(\mathrm{Nu}=\mathrm{C} \equiv \mathrm{CPh})$ with methyl iodide afforded complex 101, bearing a $\eta^{4}-\mathrm{P}_{5}(\mathrm{CCPh})(\mathrm{Me})$ ligand (Scheme 15 c). Conversely, treatment of 99 with dihaloalkanes formed a mixture of di- and mononuclear complexes $\mathbf{1 0 2}$ and $\mathbf{1 0 3}$, which were separated by column chromatography (Scheme 15d). Other isomers were formed as side products in these reactions, by migration of the alkyl residues. The reaction was reported to tolerate pseudoalkanes (nitriles) instead of halides and various alkyl chain lengths, affording a range of functionalized $\eta^{4}-\mathrm{P}_{5} \mathrm{R}_{2}$ ligands. Moreover, the bromide group in $103(\mathrm{Nu}=t \mathrm{Bu}$, $\mathrm{n}=3$) is accessible for further reactivity (Scheme 15e). Thus, salt metathesis with KPH_{2} selectively yielded compound 104, featuring a terminal PH_{2} unit. In comparison, consecutive treatment of $\mathbf{1 0 3}$ with two equivalents of benzyl potassium (KBn) gave the asymmetrically substituted phosphine 105. The first equivalent of KBn substituted the
bromide, while the second equivalent formed 105 with concomitant formation of $\left[\mathrm{Cp} * \mathrm{Fe}\left(\eta^{4}-\mathrm{P}_{4}\right)\right]^{-}$(106).

In the same year, Scheer and co-workers reported a related approach based on the pentaphosphaferrocene dianion 107, synthesized by reduction of 98 with excess potassium (Scheme 16a). ${ }^{[79,80]}$ Treatment of 107 with dihaloalkanes of different chain lengths gave complexes 108 and 109 ($c f$. reactivity of monoanion 99 toward di-(pseudo-)haloalkanes, see Scheme 15d). Compound 108 features an $\eta^{4}-\mathrm{P}_{5}\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{Br}\right)_{2}$ ligand as a result of functionalization with two equivalents of electrophile. In contrast, compound 109 bears a spiro-cyclic ligand with a functional group similar to a phosphetane. The formation of $\mathbf{1 0 9}$ occurs by the initial formation of a monoanion $\mathbf{1 1 0}$, followed by an intramolecular salt metathesis reaction. The doubly substituted phosphorus atom was released from the $\mathrm{Cp} * \mathrm{Fe}$ fragment by successive treatment with LiAlH, or KBn to yield the corresponding secondary and tertiary cyclic phosphines, respectively (111, 112, Scheme 16c). Overall, this procedure demonstrates an elegant route to P_{4}-derived organophosphines, which are good ligands in coordination chemistry, as exemplified by the reaction of $\mathbf{1 1 1}$ with $\left[\mathrm{Pt}(\mathrm{PhCN})_{2} \mathrm{Cl}_{2}\right]$, affording complex $\mathbf{1 1 3}$.

Scheme 16. Reactivity of $\mathbf{1 0 7}$ toward dihaloalkanes and subsequent release of cyclic phosphines, $\mathrm{KBn}=$ benzyl potassium.

Scheer and co-workers also reported a major breakthrough in transition-metalmediated functionalized of P_{4} - a closed synthetic cycle for the synthesis of asymmetric, monophosphorus compounds (Scheme 17). ${ }^{[81]}$ Building on the nucleophilic functionalization of $\mathbf{9 8}$ to give the anionic species $\mathbf{9 9}$ (vide supra, Scheme 15a), treatment of these anions with alkyl halides selectively yielded 1,1-diorgano-substituted complexes 114 (Scheme 17a and b, R' $=\mathrm{Me}, i \mathrm{Pr}$). ${ }^{[77,81]}$ Treatment with a second nucleophile (KBn,
n-Buli, MeLi) facilitated installation of a third substituent and release of the corresponding tertiary phosphine (Scheme $17 \mathrm{c} ; \mathrm{R}^{\prime \prime}=\mathrm{Bn}, n-\mathrm{Bu}, \mathrm{Me}$). ${ }^{[78,81]}$ The resulting phosphines were conveniently separated from the crude mixture by distillation. Remarkably, the FeP_{4}^{-}byproduct $\mathbf{1 0 6}$ could be recycled to the starting material $\mathbf{9 8}$ by addition of P_{4} and heating to $275^{\circ} \mathrm{C}$, thereby closing the synthetic cycle (Scheme 17d). Moreover, the entire synthetic cycle could be performed as a "one-pot" reaction, by sequential addition of the relevant reagents in up to three cycles without significant loss of yield. A limitation of this synthesis is the formation of KP_{5} as a byproduct in the regeneration of $\mathbf{9 8}$ from 106, hindering the atom-economy of the reaction.

Scheme 17. Synthesis of asymmetric phosphines from $\mathrm{P}_{4} ; \mathrm{R} \neq \mathrm{R}^{\prime} \neq \mathrm{R}^{\prime \prime} ; \mathrm{R}=\mathrm{NMe}_{2}, \mathrm{CH}_{2} \mathrm{SiMe}_{3}, \mathrm{Me}, t \mathrm{Bu}, \mathrm{Ph}$; $\mathrm{R}^{\prime}=\mathrm{Me}, i \mathrm{Pr} ; \mathrm{R}^{\prime \prime}=\mathrm{Bn}, n-\mathrm{Bu}, \mathrm{Me}$

In 2023, the same group reported the activation and functionalization of P_{4} using the tantalum carbonyl complex $\mathrm{Cp} " \mathrm{Ta}(\mathrm{CO})_{4}(\mathbf{1 1 4}) .{ }^{[82]}$ Distinct reactivity was observed depending on the cyclopentadienyl ligand and the reaction conditions (Scheme 18a). Photolysis of a solution of $\mathbf{1 1 4}$ and P_{4} in toluene at room temperature afforded mononuclear cyclo $-\mathrm{P}_{4}$ complex 115, the $\mathrm{Cp} "$ analogue of which was first reported by Scherer in 1993. ${ }^{[83]}$ Conversely, heating a solution of 114 and P_{4} in 1,3-diisopropylbenzene at $203{ }^{\circ} \mathrm{C}$ afforded the $\mathrm{Ta}_{2} \mathrm{P}_{8}$ complex 116, the first example of a cyclo- P_{8} complex. ${ }^{[82]}$ The cyclo- P_{4} moiety in $\mathbf{1 1 5}$ was further functionalized with in situ generated pnictogenium ions from chlorophosphines and Tl[TEF] ([TEF] ${ }^{-}$ $=\left[\mathrm{Al}\left\{\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right\}_{4}\right]^{-}$(Scheme 18b). ${ }^{[84]}$ For $\left[\mathrm{Ph}_{2} \mathrm{P}\right]^{+}$, insertion of the cation was observed,
resembling reactivity of $\mathbf{5 4}$ and $\mathbf{8 6}$ (cf. Scheme 10 and Scheme 14). ${ }^{[58,73]}$ In contrast, when the electrophile was exchanged for the heavier arsenium $\left[\mathrm{Cy}_{2} \mathrm{As}\right]^{+}$, or stilbenium ion $\left[\mathrm{Cp}^{\prime \prime} \mathrm{SbI}\right]^{+}$, the pnictogen coordinated to the cyclo- P_{4} moiety in $\mathbf{1 1 7}$ [TEF] in the solid state. ${ }^{[84]}$ However, in the case of $\mathrm{Cy}_{2} \mathrm{As},{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR studies suggested the presence of an cyclo- $\mathrm{P}_{4} \mathrm{As}$ ring, indicating insertion in solution. The arsenium cation $\left[\mathrm{Cy}_{2} \mathrm{As}\right]^{+}$also coordinated to the cyclo $-\mathrm{P}_{8}$ ring in 116, giving rise to $\mathbf{1 1 8}\left[\mathrm{BArF}_{24}\right]\left(\left[\mathrm{BArF}_{24}\right]^{-}=[\mathrm{B}\{3,5-\right.$ $\left.\left.\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right\}_{4}\right]^{-}$), featuring an exocyclic AsCy y_{2} moiety (Scheme 18c). ${ }^{[82]}$ The Lewis acid $\left[\mathrm{W}(\mathrm{CO})_{5}(\mathrm{thf})\right]$ also served to coordinate 116 (Scheme 18d). The major product of this reaction was the tetranuclear complex 119, accompanied by the formation of unstable and trinuclear 120, hampering isolation of $\mathbf{1 1 9}$ in good yield. However, thermolysis led to selective cleavage of one $\left[\mathrm{W}(\mathrm{CO})_{5}\right]$ fragment from the P_{8}-moiety and the formation of a single new species 121, bearing the substituent at the same phosphorus atom as cation 118. This phosphorus atom has a high contribution to the HOMO, explaining the observed reactivity.

Scheme 18. Activation of P_{4} by $\mathrm{Cp} " \mathrm{Ta}(\mathrm{CO})_{4}$ and subsequent functionalization with pnictogenium ions; DIB $=1,3$-diisopropyl-benzene, o-DFB $=1,2$-difluorbenzene .

Complex 116 is susceptible to redox reactions, resulting in dimerization to give higher nuclearity species (Scheme 19). Oxidation using [Thia][TEF] yielded the dicationic P_{16} compound $\mathbf{1 2 2}[\mathrm{TEF}]_{2}$, via formation of a single new $\mathrm{P}-\mathrm{P}$ bond between the cyclo- P_{8} ligands of two molecules of 116, resulting in a remarkable pholyphosphorus ligand containing two linked cyclo- P_{8} units. In contrast, the dimerization induced by reduction using KC_{8} leads to simultaneous $\mathrm{P}-\mathrm{P}$ bond cleavage and $\mathrm{P}-\mathrm{P}$ bond formation, ultimately affording dianion $[\mathrm{K}([2.2 .2] \text { crypt })]_{2} \mathbf{1 2 3}$, in which the cyclo $-\mathrm{P}_{8}$ rings of two molecules of 116 have both been broken to afford an uninterrupted, linear P_{16} chain, coordinated to four tantalum centers.

Scheme 19. Redox mediated dimerization reaction of tantalum cyclo- P_{8} complex; Thia ${ }^{+}=\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~S}_{2}{ }^{+}$, TEF^{-} $=\left[\mathrm{Al}\left\{\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right\}_{4}\right]^{-},[2.2 .2]$ crypt $=[2.2 .2]$ Cryptand .

1.8 Conclusion and Outlook

In 1974, the first transition-metal-mediated functionalization of white phosphorus was reported by Green and co-workers. ${ }^{[85]}$ Since then, there has been significant progress in the functionalization of P_{4}-derived $\mathrm{TM}-\mathrm{P}_{n}$ complexes, which has been summarized in a series of review articles. While these results demonstrate the synthetic capabilities of transition metal complexes bearing P_{n} ligands to generate a multitude of varied and unprecedented polyphosphido ligands, the release of desirable (mono-)phosphorus compounds from the metal center has generally proven difficult.

Recently, however, important progress has been made in this field, as illustrated by the examples discussed in this chapter, employing both neutral and anionic transition metal complexes (Sections 1.2-1.7). Various approaches have given rise to remarkable (poly-)phosphorus species, such as mixed tetrahedrane compounds ($\mathrm{AsP}_{3}, \mathrm{HCP}_{3}$), and asymmetrically substituted phosphines. In particular, anionic complexes have emerged as promising platforms for P_{4} functionalization, due to the fact that most transformations are carried out using electrophiles. In contrast to nucleophilic functionalization, a significant driving force for the reaction is provided by the concomitant and metathetical halide abstraction. Besides transition metal fragments bearing "classical" cyclopentadienyl and phosphine ligands, recent advancements highlight the potential of complexes featuring
redox-active ligands as attractive precursors for the synthesis of new phosphorus compounds. Moreover, while the coordination chemistry of P_{4} has been studied extensively, the liberation of these P-rich species from the metal centers remains challenging and thus far has only been exemplary achieved, despite the potential use of these molecules as building blocks in the synthesis of new phosphorus compounds. Complexes such as 77 (see Scheme 13), which are already under investigation in the Wolf group, can be used for further functionalization. Through variation of the ligand system, distinct reactivity can be achieved, opening up avenues for new phosphorus-containing compounds directly derived from P_{4}.

References

[1] D. C. B. Whittet, I. E. Chiar, Astron. Astrophys. Rev. 1993, 5, 1-35.
[2] J. Emsley, The 13th Element: The Sordid Tale of Murder, Fire, and Phosphorus, WILEY, New York, 2002.
[3] K. Ashley, D. Cordell, D. Mavinic, Chemosphere 2011, 84, 737-746.
[4] A. F. Holleman, E. Wiberg, N. Wiberg, Lehrbuch der anorganischen Chemie, De Gruyter, Berlin, 2017.
[5] D. E. C. Corbridge, Phosphorus 2000. Chemistry, Biochemistry \& Technology, Elsevier, Amsterdam, 2002.
[6] G. Bettermann, W. Krause, G. Riess, T. Hofmann, in Ullmanns Encycl. Ind. Chem., John Wiley \& Sons, Ltd, Weinheim, 2000, pp. 1-18.
[7] J. Svara, N. Weferling, T. Hofmann, in Ullmanns Encycl. Ind. Chem., John Wiley \& Sons, Ltd, Weinheim, 2006, pp. 1-48.
[8] W. Gleason, JOM 2007, 59, 17-19.
[9] D. E. C. Corbridge, Phosphorus: An Outline of Its Chemistry, Biochemistry and Technology, Elsevier, New York, 1994.
[10] M. Scheer, G. Balázs, A. Seitz, Chem. Rev. 2010, 110, 4236-4256.
[11] M. Peruzzini, L. Gonsalvi, A. Romerosa, Chem. Soc. Rev. 2005, 34, 1038-1047.
[12] B. M. Cossairt, N. A. Piro, C. C. Cummins, Chem. Rev. 2010, 110, 4164-4177.
[13] M. Caporali, L. Gonsalvi, A. Rossin, M. Peruzzini, Chem. Rev. 2010, 110, 41784235.
[14] C. M. Hoidn, D. J. Scott, R. Wolf, Chem. Eur. J. 2020, 27, 1886-1902.
[15] L. Giusti, V. R. Landaeta, M. Vanni, J. A. Kelly, R. Wolf, M. Caporali, Coord. Chem. Rev. 2021, 441, 213927.
[16] M. Caporali, M. Serrano-Ruiz, M. Peruzzini, in Chem. Chlorine (Eds.: P. Tundo, L.-N. He, E. Lokteva, C. Mota), Springer, Cham, 2016, pp. 97-136.
[17] J. E. Borger, A. W. Ehlers, J. C. Slootweg, K. Lammertsma, Chem. - Eur. J. 2017, 23, 11738-11746.
[18] D. Scheschkewitz, Nat. Chem. 2020, 12, 785-787.
[19] N. A. Giffin, J. D. Masuda, Coord. Chem. Rev. 2011, 255, 1342-1359.
[20] T. Xin, C. C. Cummins, ACS Cent. Sci. 2023, 9, 1575-1580.
[21] M. Peruzzini, J. A. Ramirez, F. Vizza, Angew. Chem. Int. Ed. 1998, 37, 22552257.
[22] P. Barbaro, M. Peruzzini, J. A. Ramirez, F. Vizza, Organometallics 1999, 18, 4237-4240.
[23] P. Barbaro, A. Ienco, C. Mealli, M. Peruzzini, O. J. Scherer, G. Schmitt, F. Vizza, G. Wolmershäuser, Chem. - Eur. J. 2003, 9, 5195-5210.
[24] S. Du, J. Yin, Y. Chi, L. Xu, W.-X. Zhang, Angew. Chem. Int. Ed. 2017, 56, 15886-15890.
[25] L. Xu, Y. Chi, S. Du, W.-X. Zhang, Z. Xi, Angew. Chem. Int. Ed. 2016, 55, 91879190.
[26] M. Scheer, U. Becker, M. H. Chisholm, J. C. Huffman, F. Lemoigno, O. Eisenstein, Inorg. Chem. 1995, 34, 3117-3119.
[27] M. Scheer, U. Becker, Chem. Ber. 1996, 129, 1307-1310.
[28] M. Scheer, U. Becker, J. Magull, Polyhedron 1998, 17, 1983-1989.
[29] M. Di Vaira, L. Sacconi, P. Stoppioni, J. Organomet. Chem. 1983, 250, 183-195.
[30] F. Zhang, J. Zhang, Z. Chen, L. Weng, X. Zhou, Inorg. Chem. 2019, 58, 84518459.
[31] R. R. Dykstra, in Encycl. Reag. Org. Synth. EROS, John Wiley \& Sons, Ltd, 2001.
[32] F. Zhang, I. del Rosal, K. Han, J. Zhang, L. Maron, X. Zhou, Inorg. Chem. Front. 2024, 11, 1742-1753.
[33] P. Coburger, J. Leitl, D. J. Scott, G. Hierlmeier, I. G. Shenderovich, E. HeyHawkins, R. Wolf, Chem. Sci. 2021, 12, 11225-11235.
[34] M. Scheer, K. Schuster, U. Becker, Phosphorus Sulfur Silicon Relat. Elem. 1996, 109, 141-144.
[35] R. Grünbauer, G. Balázs, M. Scheer, Chem. - Eur. J. 2020, 26, 11722-11726.
[36] F. Scalambra, M. Peruzzini, A. Romerosa, in Adv. Organomet. Chem. (Ed.: P.J. Pérez), Academic Press, 2019, pp. 173-222.
[37] J. S. Figueroa, C. C. Cummins, J. Am. Chem. Soc. 2003, 125, 4020-4021.
[38] J. S. Figueroa, C. C. Cummins, Angew. Chem. Int. Ed. 2004, 43, 984-988.
[39] D. Tofan, B. M. Cossairt, C. C. Cummins, Inorg. Chem. 2011, 50, 12349-12358.
[40] N. A. Piro, J. S. Figueroa, J. T. McKellar, C. C. Cummins, Science 2006, 313, 1276-1279.
[41] I. Krummenacher, C. C. Cummins, Polyhedron 2012, 32, 10-13.
[42] G. Ménard, D. W. Stephan, J. Am. Chem. Soc. 2010, 132, 1796-1797.
[43] J. S. Figueroa, C. C. Cummins, J. Am. Chem. Soc. 2004, 126, 13916-13917.
[44] O. J. Scherer, J. Braun, P. Walther, C. Heckmann, G. Wolmershäuser, Angew. Chem. Int. Ed. Engl. 1991, 30, 852-854.
[45] O. J. Scherer, G. Berg, G. Wolmershäuser, Chem. Ber. 1995, 128, 635-639.
[46] O. J. Scherer, C. Vondung, G. Wolmershäuser, Angew. Chem. Int. Ed. Engl. 1997, 36, 1303-1305.
[47] S. Umbarkar, P. Sekar, M. Scheer, J. Chem. Soc. Dalton Trans. 2000, 1135-1137.
[48] M. A. Alvarez, M. E. García, D. García-Vivó, A. Ramos, M. A. Ruiz, Inorg. Chem. 2011, 50, 2064-2066.
[49] M. A. Alvarez, M. E. García, D. García-Vivó, M. A. Ruiz, M. F. Vega, Organometallics 2015, 34, 870-878.
[50] M. A. Alvarez, M. E. García, D. García-Vivó, A. Ramos, M. A. Ruiz, Inorg. Chem. 2012, 51, 11061-11075.
[51] M. A. Alvarez, M. E. García, D. García-Vivó, R. Lozano, A. Ramos, M. A. Ruiz, Inorg. Chem. 2013, 52, 9005-9018.
[52] M. D. Vaira, L. Sacconi, Angew. Chem. Int. Ed. Engl. 1982, 21, 330-342.
[53] G. Capozzi, L. Chiti, M. Di Vaira, M. Peruzzini, P. Stoppioni, J. Chem. Soc., Chem. Commun. 1986, 1799-1800.
[54] A. Barth, G. Huttner, M. Fritz, L. Zsolnai, Angew. Chem. Int. Ed. Engl. 1990, 29, 929-931.
[55] M. Di Vaira, P. Stoppioni, S. Midollini, F. Laschi, P. Zanello, Polyhedron 1991, 10, 2123-2129.
[56] E. Mädl, G. Balázs, E. V. Peresypkina, M. Scheer, Angew. Chem. Int. Ed. 2016, 55, 7702-7707.
[57] F. Meurer, F. Kleemiss, C. Riesinger, G. Balázs, V. Vuković, I. G. Shenderovich, C. Jelsch, M. Bodensteiner, Chem. - Eur. J. 2024, e202303762.
[58] M. Scheer, C. Riesinger, L. Duetsch, G. Balazs, M. Bodensteiner, Chem. - Eur. J. 2020, 10.1002/chem. 202003291.
[59] N. A. Piro, C. C. Cummins, J. Am. Chem. Soc. 2008, 130, 9524-9535.
$[60]$ B. M. Cossairt, M.-C. Diawara, C. C. Cummins, Science 2009, 323, 602-602.
[61] B. M. Cossairt, C. C. Cummins, Angew. Chem. Int. Ed. 2010, 49, 1595-1598.
[62] A. Velian, C. C. Cummins, Chem. Sci. 2012, 3, 1003-1006.
[63] G. R. Morello, T. R. Cundari, Organometallics 2016, 35, 3624-3634.
[64] M.-L. Y. Riu, M. Ye, C. C. Cummins, J. Am. Chem. Soc. 2021, 143, 16354-16357.
[65] G. Hierlmeier, P. Coburger, M. Bodensteiner, R. Wolf, Angew. Chem. Int. Ed. 2019, 58, 16918-16922.
[66] M.-L. Y. Riu, R. L. Jones, W. J. Transue, P. Müller, C. C. Cummins, Sci. Adv. 2020, 6 , eaaz3168.
[67] I. de los Rios, J.-R. Hamon, P. Hamon, C. Lapinte, L. Toupet, A. Romerosa, M. Peruzzini, Angew. Chem. Int. Ed. 2001, 40, 3910-3912.
[68] C. M. Hoidn, T. M. Maier, K. Trabitsch, J. J. Weigand, R. Wolf, Angew. Chem. Int. Ed. 2019, 58, 18931-18936.
[69] C. G. P. Ziegler, T. M. Maier, S. Pelties, C. Taube, F. Hennersdorf, A. W. Ehlers, J. J. Weigand, R. Wolf, Chem. Sci. 2019, 10, 1302-1308.
[70] C. M. Hoidn, K. Trabitsch, K. Schwedtmann, C. Taube, J. J. Weigand, R. Wolf, Chem. - Eur. J. 2023, e202301930.
[71] F. Dielmann, A. Timoshkin, M. Piesch, G. Balázs, M. Scheer, Angew. Chem. Int. Ed. 2017, 56, 1671-1675.
[72] M. Piesch, M. Seidl, M. Scheer, Chem. Sci. 2020, 11, 6745-6751.
[73] M. Piesch, M. Seidl, M. Stubenhofer, M. Scheer, Chem. - Eur. J. 2019, 25, 63116316.
[74] M. Piesch, S. Reichl, M. Seidl, G. Balázs, M. Scheer, Angew. Chem. Int. Ed. 2019, 58, 16563-16568.
[75] M. Piesch, S. Reichl, M. Seidl, G. Balázs, M. Scheer, Angew. Chem. Int. Ed. 2021, 60, 15101-15108.
[76] O. J. Scherer, T. Brück, Angew. Chem. Int. Ed. Engl. 1987, 26, 59-59.
[77] E. Mädl, M. V. Butovskii, G. Balázs, E. V. Peresypkina, A. V. Virovets, M. Seidl, M. Scheer, Angew. Chem. Int. Ed. 2014, 53, 7643-7646.
[78] S. Reichl, F. Riedlberger, M. Piesch, G. Balázs, M. Seidl, M. Scheer, Chem. Sci. 2023, 14, 7285-7290.
[79] M. V. Butovskiy, G. Balázs, M. Bodensteiner, E. V. Peresypkina, A. V. Virovets, J. Sutter, M. Scheer, Angew. Chem. Int. Ed. 2013, 52, 2972-2976.
[80] S. Reichl, G. Balázs, M. Scheer, Chem. Sci. 2023, 14, 3834-3838.
[81] S. Reichl, E. Mädl, F. Riedlberger, M. Piesch, G. Balázs, M. Seidl, M. Scheer, Nat. Commun. 2021, 12, 5774.
[82] C. Riesinger, F. Dielmann, R. Szlosek, A. V. Virovets, M. Scheer, Angew. Chem. Int. Ed. 2023, 62, e202218828.
[83] O. J. Scherer, R. Winter, G. Wolmershäuser, Z. Für Anorg. Allg. Chem. 1993, 619, 827-835.
[84] C. Riesinger, A. Erhard, M. Scheer, Chem. Commun. 2023, 59, 10117-10120.
[85] J. C. Green, M. L. H. Green, G. E. Morris, J. Chem. Soc. Chem. Commun. 1974, 212-213.

2 Cobalt-Mediated [3+1] Fragmentation of White Phosphorus: Access to Acylcyanophosphanides ${ }^{[a, b]}$

Abstract: Despite the accessibility of numerous transition metal polyphosphido complexes through transition-metal-mediated activation of white phosphorus, the targeted functionalization of P_{n} ligands to obtain functional monophosphorus species remains challenging. In this study, we introduce a new [3+1] fragmentation procedure for cyclo- P_{4} ligands, leading to the discovery of acylcyanophosphanides and -phosphines. Treatment of the complex $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{4}-\mathrm{P}_{4}\right)\right]([\mathrm{K}(18 \mathrm{c}-6)] \mathbf{3}, 18 \mathrm{c}-6=$ [18]crown-6, $\mathrm{Ar}^{*}=2,6$-dibenzhydryl-4-isopropylphenyl, \quad BIAN $=1,2-$ bis(arylimino)acenaphthene diimine) with acyl chlorides results in the formation of acylated tetraphosphido complexes $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{4}-\mathrm{P} 4 \mathrm{C}(\mathrm{O}) \mathrm{R}\right)\right](\mathrm{R}=t \mathrm{Bu}, \mathrm{Cy}, 1-\mathrm{Ad}$, $\mathrm{Ph} ; \mathbf{4 a - d}$). Subsequent reactions of $\mathbf{4 a - d}$ with cyanide salts yield acylated cyanophosphanides $[\mathrm{RC}(\mathrm{O}) \mathrm{PCN}]^{-}\left(\mathbf{9 a - \mathbf { d } ^ { - })}\right.$ and the cyclo- P_{3} cobaltate anion $\left[\left(\mathrm{Ar}{ }^{*} \mathrm{BIAN}\right) \mathrm{Co}\left(\eta^{3}-\mathrm{P}_{3}\right)(\mathrm{CN})\right]^{-}\left(\mathbf{8}^{-}\right)$. Further reactions of 4a-d with trimethylsilyl cyanide $\left(\mathrm{Me}_{3} \mathrm{SiCN}\right)$ and isocyanides provide insight into a plausible mechanism of this [3+1] fragmentation reaction, as these reagents partially displace the $\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) \mathrm{R}$ ligand from the cobalt center. Several potential intermediates of the [3+1] fragmentation were characterized. Additionally, the introduction of a second acyl substituent was achieved by treating $[\mathrm{K}(18 \mathrm{c}-6)] 9 \mathrm{~b}$ with $\mathrm{CyC}(\mathrm{O}) \mathrm{Cl}$, resulting in the first bis(acyl)monocyanophosphine (CyC(O)) $)_{2} \mathrm{PCN}(\mathbf{1 0})$.

${ }^{[a]}$ Reproduced from S. Hauer, T. M. Horsley Downie, G. Balázs, K. Schwedtmann, J. J. Weigand, R. Wolf, Angew. Chem. Int. Ed. 2023, e202317170.
${ }^{[b]}$ The synthetic investigations and the characterization of the reported compounds was performed by S. Hauer. G. Balázs calculated the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ chemical shifts. S. Hauer wrote the manuscript draft. T. M. Horsley Downie, R. Wolf and J. J. Weigand reviewed and edited the manuscript. R. Wolf and J. J. Weigand supervised the project.

2.1 Introduction

Transition-metal-mediated processes offer promising and atom-efficient synthetic routes to organophosphorus compounds derived from white phosphorus $\left(\mathrm{P}_{4}\right)$, but represent a challenging goal in this field. ${ }^{[1]}$ Research over several decades has led to the development of a plethora of early and late transition metal polyphosphido complexes through the activation of $\mathrm{P}_{4} .{ }^{[2]}$ While coordination chemistry approaches have demonstrated the potential for P_{4} functionalization, achieving the release of desirable (mono-)phosphorus compounds from the metal center has generally proven difficult. Seminal studies by Peruzzini and co-workers have explored the hydrogenation of P_{4} using rhodium and iridium hydride complexes. ${ }^{[3]}$ More recently, Scheer and co-workers utilized the pentaphosphaferrocene $\left[\mathrm{Cp} * \mathrm{Fe}\left(\eta^{5}-\mathrm{P}_{5}\right)\right]\left(\mathrm{Cp}^{*}=\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)$ to prepare asymmetrically substituted phosphines from $\mathrm{P}_{4}{ }^{[4]}$ Despite these notable achievements, the successful generation of organophosphorus compounds through transition-metal-mediated P_{4} functionalization remains limited.
a) Acylphosphinoxide photoinitiators

MAPO

BAPO
b) Acylation of coordinated P_{n} units

Cummins 2004, 2008

D
E

Figure 1. a) Selected industrially applied mono- and bis(acyl)phosphineoxides (MAPOs and BAPOs); $\mathrm{R}, \mathrm{R}^{\prime}=$ alkyl or aryl. b) acylation of coordinated P_{n}-ligands. c) synthesis of acylated mono- and bis(acyl)phosphines starting from P_{4} by [3+1] fragmentation of acylated tetraphosphido ligands; $\mathrm{R}=t \mathrm{Bu}$, Cy, 1-Ad, Ph.

Another highly desirable class of organophosphorus compounds is represented by mono- and bis(acyl)phosphine oxides (MAPOs and BAPOs, Figure 1a). These compounds exhibit intriguing photoactivity, allowing the generation of phosphinoyl and acyl radicals even under weak, visible-light irradiation. ${ }^{[5]}$ Recent studies have reported various methods for the synthesis of mono-, bis-, and tris(acyl)phosphines. These methods include reactions of alkali metal phosphanides $\mathrm{MPH}_{2}(\mathrm{M}=\mathrm{Li}, \mathrm{Na}, \mathrm{K}),{ }^{[6]}$ or phosphaethynolates $\mathrm{MPCO}^{[7]}$ with electrophiles, as well as the formal insertion of tert-butyl phosphinidene $(t \mathrm{Bu}-\mathrm{P})^{[8]}$ into the $\mathrm{C}-\mathrm{Cl}$ bond of acyl chlorides. More recently, a one-pot reaction of P_{4}, dilithio reagents, and acyl chlorides has also been explored. ${ }^{[9]}$ However, it is important to note that the scope of these methods is often limited, and the resulting products remain bound to the metal center. ${ }^{[10]}$ Cummins and co-workers reported the reaction of the terminal phosphide complex $\left[\mathrm{P} \equiv \mathrm{Nb}(\mathrm{N}[\mathrm{Np}] \mathrm{Ar})_{3}\right]^{-}(\mathbf{A}, \mathrm{Np}=$ neopentyl, $\mathrm{Ar}=3,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$) with acyl chlorides to give niobacycles of the form \mathbf{B} (Figure 1b). ${ }^{[11]}$ Subsequent development of this chemistry has seen the release of a P_{1} moiety through thermolysis, which induces a [2+2] fragmentation, yielding the phosphaalkynes $\mathrm{R}-\mathrm{C} \equiv \mathrm{P}(\mathrm{R}=t \mathrm{Bu}, 1-\mathrm{Ad})$ and the niobium (V)-oxo product C . This process was reported to form a closed synthetic cycle, as compound \mathbf{A} was regenerated through stepwise deoxygenation of $\mathbf{C}, \mathrm{P}_{4}$ activation, and reduction. In a separate investigation, the reaction of the trinuclear cyclo- P_{3} complex anion \mathbf{D} with 1-adamantoyl chloride was studied, which yielded the corresponding P_{3}-acylated species E. ${ }^{[12]}$ However, E exhibits thermal instability and decomposes above temperatures of $-20^{\circ} \mathrm{C}$, limiting further investigation into the reactivity of acyl-substituted P_{n} ligands. These pioneering works have demonstrated the suitability of P-acylated ligands as precursors for the synthesis of certain monophosphorus compounds. However, to date, only the P_{1}-niobacyle \mathbf{B} has been extensively studied in this regard.

Our previous investigation into the reactivity of transition metalate anions with P_{4} has indicated that anionic polyphosphorus complexes hold potential as versatile tools for the synthesis of unique phosphorus compounds. ${ }^{[13]}$ Recently, we reported on the [3+2] fragmentation of pentaphosphido ligands within the coordination sphere of cobalt, leading to new P_{2} anions $\left[\mathrm{R}_{2} \mathrm{PPCN}\right]^{-}\left(\mathrm{R}=\mathrm{Cy}, t \mathrm{Bu}, \mathrm{Ph}, \mathrm{N}(i \operatorname{Pr})_{2}\right) .{ }^{[14]}$ However, compounds containing a PCN unit remain underreported, with a particular scarcity of anionic species, the notable exception being the dicyanophosphide anion $\left[\mathrm{P}(\mathrm{CN})_{2}\right]^{-[15]}$

Advancing on this strategy, we have synthesized the first acylated cyanophosphanides $[\mathrm{RC}(\mathrm{O}) \mathrm{PCN}]^{-}\left(\mathbf{9 a -} \mathbf{d}^{-}\right)$through the intermediacy of tetraphosphido complexes
$\left[(\mathrm{Ar} * \mathrm{BIAN}) \operatorname{Co}\left(\eta^{4}-\mathrm{P}_{4}\right)\right]^{-}\left(\mathbf{3}^{-}\right)$and $\left[(\mathrm{Ar} * \mathrm{BIAN}) \operatorname{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) \mathrm{R}\right]\right.$ (4a-d). The anionic cyclo $-\mathrm{P}_{4}$ complex $\mathbf{3}^{-}$can initiate $\mathrm{P}-\mathrm{C}$ bond formation and subsequently undergo [3+1] fragmentation, liberating the acylated P_{1} unit. Furthermore, the reaction of P_{1}-species $[\mathrm{K}(18 \mathrm{c}-6)] 9 \mathrm{~b}$ with acyl chloride yielded bis(acyl)monocyanophosphine $(\mathrm{CyC}(\mathrm{O}))_{2} \mathrm{PCN}$ (10), which possesses the crucial motif found in industrial photoinitiators. ${ }^{[5]}$

2.2 Results and Discussion

Our study commenced with the preparation of the sterically demanding α-diimine Ar*BIAN (1), ${ }^{[16]}$ which was employed as a ligand in our target complexes. Our aim was to suppress the previously reported formation of dinuclear cobalt- P_{4} complexes by introducing a bulky substituent Ar* on the BIAN ligand, thus facilitating the accessibility of the $\mathrm{P}_{4}{ }^{2-}$ synthon for functionalization. ${ }^{[17]}$ Previous synthetic methods for sterically encumbered BIAN ligands required significant synthetic effort and typically resulted in poor yields. ${ }^{[16,18]}$ However, by templating with ZnCl_{2}, the α-diimine 1 was successfully obtained in a good yield $(70 \%) .{ }^{[19]}$ Subsequently, ligand 1 was treated with the cobaltate $\left[\mathrm{K}(\mathrm{thf})_{0.2}\right]\left[\mathrm{Co}(\operatorname{cod})_{2}\right](\operatorname{cod}=1,5$-cyclooctadiene) and $18 \mathrm{c}-6$ in THF to afford [K(18c-6)][(Ar*BIAN)Co(cod)] ([K(18c-6)]2). The complex was isolated as dark brown crystals in good yield (77%) from a THF/ n-hexane mixture. The ${ }^{1} \mathrm{H}$ NMR spectrum of [K(18c-6)]2 (see Figure S3, Supporting Information (SI)) exhibits signals corresponding to Ar^{*}, as well as the characteristic signals of the BIAN backbone at $\delta=4.21-6.30 \mathrm{ppm} .{ }^{[17 \mathrm{~b}, 20]}$

Monitoring via ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy shows that complex $[\mathrm{K}(18 \mathrm{c}-6)] \mathbf{2}$ reacts quantitatively with white phosphorus to afford the desired mononuclear cyclo- P_{4} complex $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{4}-\mathrm{P}_{4}\right)\right]([\mathrm{K}(18 \mathrm{c}-6)] \mathbf{3}$; Scheme 1a). This compound crystallizes as dark purple needles from a toluene $/ n$-hexane mixture. The reaction can be conducted on a multigram scale ($>2.7 \mathrm{~g}$), furnishing $[\mathrm{K}(18 \mathrm{c}-6)] \mathbf{3}$ in a good isolated yield of 63%. This provides an accessible precursor for the subsequent functionalization of the $\mathrm{P}_{4}{ }^{2-}$ ligand. Single-crystal X-ray diffraction (XRD) analysis (Figure S83, SI) of compound [$\mathrm{K}(18 \mathrm{c}-6)] \mathbf{3}$ revealed a nearly planar cyclo- P_{4} unit with $\mathrm{P}-\mathrm{P}$ bond lengths ranging from $2.1539(9)$ to $2.1772(1) \AA$ (mean: $2.17 \AA$). These bond lengths lie between typical $\mathrm{P}-\mathrm{P}$ single and $\mathrm{P}=\mathrm{P}$ double bond lengths ($\sum r_{\mathrm{PPP}} 2.22 \AA$ vs. $2.04 \AA$), ${ }^{[2]]}$ indicating the presence of a $\mathrm{P}_{4}{ }^{2-}$ ligand. ${ }^{[13 \mathrm{c}, 14,17 \mathrm{a}, 22]}$ Additionally, the $\mathrm{C}-\mathrm{C}(1.426(3) \AA)$ and $\mathrm{C}-\mathrm{N}(1.335(3) \AA$ and $1.330(3) \AA$) bond lengths in the ligand backbone of $\mathbf{3}$ indicate the presence of a radical anionic Ar^{*} BIAN ${ }^{-}$ligand. ${ }^{[23]}$

$[\mathrm{K}(18 \mathrm{c}-6)]^{+}$

Scheme 1. Activation of P_{4} by $[\mathrm{K}(18 \mathrm{c}-6)] 2$ and subsequent functionalization of the cyclo- P_{4} unit in $[\mathrm{K}(18 \mathrm{c}-6)] \mathbf{3}$ with acyl chlorides ($18 \mathrm{c}-6=[18]$-crown- $6, \mathrm{Ar}^{*}=2,6$-dibenzhydryl-4-isopropylphenyl); reagents/by-products and conditions: a) $+\mathrm{P}_{4} /-1,5$ cyclooctadiene ($1,5-\mathrm{cod}$); THF, r.t., 1 d ; b) $+\mathrm{RC}(\mathrm{O}) \mathrm{Cl} /-[\mathrm{K}(18 \mathrm{c}-6)] \mathrm{Cl}$; toluene, r.t., 1 d ; yields: $[\mathrm{K}(18 \mathrm{c}-6)] \mathbf{2}: 77 \%$, $[\mathrm{K}(18 \mathrm{c}-6)] \mathbf{3}: 63 \%$, $\mathbf{4 a}: 58 \%$, 4b: 54%, 4c: $66 \%, 4 d: 67 \%$.

The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $[\mathrm{K}(18 \mathrm{c}-6)] \mathbf{3}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ exhibits a sharp singlet at $\delta=113.0 \mathrm{ppm}$, which compares well with the value calculated by DFT ($\delta=137 \mathrm{ppm}$ at the PBE0/def2-TZVP/aug-pcSseg-2 (P) level, see Table S14, SI). In comparison, two other previously reported mononuclear cobalt cyclo- P_{4} complexes, anionic $\left[\left({ }^{\text {Dipp }} P H D I\right) C o\left(\eta^{4}-\mathrm{P}_{4}\right)\right]^{-} \quad\left({ }^{\text {Dipp }} P H D I=\operatorname{bis}(2,6-\right.$ diisopropylphenyl) $)$ phenanthrene- $9,10-\mathrm{di}$ imine) and neutral $\left[\mathrm{Cp} " ' \mathrm{Co}\left(\eta^{4}-\mathrm{P}_{4}\right)\right]\left(\mathrm{Cp} " '=\mathrm{C}_{5} \mathrm{H}_{2} t \mathrm{Bu}_{3}\right)$, exhibit ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR resonances at $\delta=136.5 \mathrm{ppm}$ and $\delta=175.2 \mathrm{ppm}$, respectively. ${ }^{[14,22 \mathrm{~b}]}$

To explore the underreported chemistry of acylated polyphosphido ligands, introducing the P -acyl group as a functional group at the tetraphosphido ligand in $[\mathrm{K}(18 \mathrm{c}-6)] \mathbf{3}$ was of particular interest. Treatment of $[\mathrm{K}(18 \mathrm{c}-6)] \mathbf{3}$ with acyl chlorides $\mathrm{RC}(\mathrm{O}) \mathrm{Cl}(\mathrm{R}=t \mathrm{Bu}, \mathrm{Cy}, 1-\mathrm{Ad}, \mathrm{Ph}$; see Scheme 1 b$)$ in toluene elicits a color change from purple to magenta.

Crystallization from the reaction mixtures yielded magenta-colored crystals of the acylated tetraphosphido complexes $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P} 4 \mathrm{C}(\mathrm{O}) \mathrm{R}\right](\mathbf{4 a} \mathbf{- d})\right.$ in good yields (54% to 67%). Crystallographic studies conducted on three of the complexes, 4a-c, revealed the presence of an acylated cyclo- P_{4} ring in a puckered conformation. The cyclo- P_{4} ring coordinates to Co via three P atoms in an η^{3} fashion and additionally via the oxygen atom through η^{1}-coordination. Complexes 4a-c are essentially isostructural. Specifically, in the case of $\mathbf{4 a}$ (see Figure 2a), the P1-P2 (2.2459(9) \AA) and P1-P4 $(2.2515(6) \AA$) bond lengths involving the acyl-substituted P atom P 1 are slightly longer than expected for typical $\mathrm{P}-\mathrm{P}$ single bonds ($\sum r_{\mathrm{PP}} 2.22 \AA$). ${ }^{[21]}$ In contrast, the $\mathrm{P} 2-\mathrm{P} 3$ (2.1610(7) \AA) and the P3-P4 (2.1547(9) \AA) bond lengths are slightly shorter, indicating partial double bond character. The C3-O1 (1.242(3) \AA) double bond length falls within the expected range for carbonyl groups ($\sum r_{\mathrm{CO}} 1.24 \AA$), while the $\mathrm{Co} 1-\mathrm{O} 1(2.0741(1) \AA$) bond length exceeds the sum of the covalent radii for a $\mathrm{Co}-\mathrm{O}$ single bond ($\sum r_{\mathrm{CoO}}$ $1.74 \AA$). ${ }^{[21]}$

Figure 2. a) Solid-state molecular structure of [(Ar*BIAN)Co($\left.\left.\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right]$ (4a); ; ${ }^{[45]}$ thermal ellipsoids are shown at the 50% probability level; hydrogen atoms and disorder are omitted for clarity. Selected bond lengths [Å] and angles [${ }^{\circ}$]: P1-P2 2.2459(9), P2-P3 2.1610(7), P3-P4 2.1547(9), P1-P4 2.2515(6), Co1-P2 2.2974(6), Co1-P3 2.2930(7), Co1-P4 2.2936(8), Co1-O1 2.0741(1), P1-C3 1.889(2), C3-O1 1.242(3), P1-P2-P3 89.83(3), P2-P3-P4 87.25(3), P4-P1-P2 82.92(2); b) experimental (upward) and simulated (downward) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{4 a}$, with nuclei assigned to an $\mathrm{AM}_{2} \mathrm{X}$ spin system: $\delta\left(\mathrm{P}_{\mathrm{A}}\right)=323.3 \mathrm{ppm}, \delta\left(\mathrm{P}_{\mathrm{M}}\right)=109.7 \mathrm{ppm}, \delta(\mathrm{PX})=59.2 \mathrm{ppm},{ }^{1} J_{\mathrm{AM}}=-342 \mathrm{~Hz},{ }^{1} J_{\mathrm{MX}}=-106 \mathrm{~Hz},{ }^{2} J_{\mathrm{AX}}=7 \mathrm{~Hz}$. The spectra of the related compounds $\mathbf{4 b} \mathbf{- d}$ are very similar (see SI); [Co] = (Ar*BIAN)Co.

Each of the complexes $\mathbf{4 a - d}$ features an $\mathrm{AM}_{2} \mathrm{X}$ spin system in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra (see Figure $2 b$ for $\mathbf{4 a}$; see SI for similar spectra of $\mathbf{4 b - d}$). The resonances of $\mathbf{4 a}$ ($\delta=323.3\left(\mathrm{P}_{\mathrm{A}}\right), 109.7\left(\mathrm{P}_{\mathrm{M}}\right), 59.2\left(\mathrm{P}_{\mathrm{X}}\right) \mathrm{ppm}$; $c . f$. the DFT-calculated chemical shifts of 315 $\left(\mathrm{P}_{\mathrm{A}}\right), 99\left(\mathrm{P}_{\mathrm{M}}\right)$ and $\left.67 \mathrm{ppm}\left(\mathrm{P}_{\mathrm{X}}\right)\right)$ - especially P_{A}, the coordinating phosphorus nucleus are deshielded in comparison to related neutral cobalt complexes and niobacycles \mathbf{B}. ${ }^{[11,24]}$ Quantum chemical calculations performed at the BP86/def2-TZVP level of theory predict the $\mathrm{C}=\mathrm{O}$ stretching vibration for 4 a at $\tilde{v}_{\mathrm{CO}}=1462 \mathrm{~cm}^{-1}$ (see Figure S92, SI), which is between the regions characteristic of a $\mathrm{C}=\mathrm{O}$ double and single bond $\left(1700 \mathrm{~cm}^{-1}\right.$ vs. $\left.1100 \mathrm{~cm}^{-1}\right)$. ${ }^{[25]}$ However, in the ATR-IR spectrum, the $\mathrm{C}=\mathrm{O}$ vibration overlaps with BIAN $\mathrm{C}-\mathrm{N}$ vibrations in the fingerprint region, making unambiguous identification challenging. Similar behavior was reported for niobacycles $\mathbf{B} .{ }^{[11]}$

Scheme 2. Rearrangement and partial release of phosphoracylic ligands in $\mathbf{4 a}$ is induced by trimethylsilyl cyanide $\left(\mathrm{Me}_{3} \mathrm{SiCN}\right)$ or isocyanides $\mathrm{R}^{\prime} \mathrm{NC}\left(\mathrm{R}^{\prime}=\mathrm{Cy}, t \mathrm{Bu}, \mathrm{Mes}, \mathrm{Ph}\right)$; reagents and conditions: a) +1.3 eq. $\mathrm{Me}_{3} \mathrm{SiCN}$; toluene, r.t., 14 h ; b) +10.0 eq. CyNC ; toluene, r.t., 2 h ; yields: $\mathbf{5 a}: 77 \%$, 6a: 57%; $[\mathrm{Co}]=$ (Ar *BIAN) Co; for further combinations see also Table S8 and Figures S46-52 in the SI.

Having demonstrated that the $\mathrm{P}_{4}{ }^{2-}$ ligand of anion 3^{-}was readily functionalized to give 4a-d, our focus shifted toward isolating new organophosphorus compounds by displacing the phosphorus moiety from the coordination sphere of the cobalt center. To achieve this, 4a-d were reacted with neutral cyanide $\mathrm{Me}_{3} \mathrm{SiCN}$ (Scheme 2a). Specifically, the addition of one equivalent of substrate to a solution of $\mathbf{4 a}(\mathrm{R}=t \mathrm{Bu})$ resulted in a color change from magenta to dark green. Analysis of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction mixture revealed the complete consumption of $\mathbf{4 a}$, with the formation of a new species $\mathbf{5 a}$, exhibiting four distinct resonances in a 1:1:1:1 ratio (vide infra). Equivalent reactions of 4b-d toward $\mathrm{Me}_{3} \mathrm{SiCN}$ gave very similar ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra, indicating the formation of compounds analogous to $\mathbf{5 a}$ (Figure S47, SI).

Compound 5a was isolated as a green crystalline solid in 75% yield after crystallization from toluene/ n-hexane at low temperature $\left(-35{ }^{\circ} \mathrm{C}\right) .{ }^{[26]}$ Analysis of $\mathbf{5 a}$ by XRD revealed an edge-bridged trigonal prismane derivative resulting from the insertion of the acyl group into one of the $\mathrm{P}-\mathrm{P}$ bonds of $\mathbf{4 a}$ (Figure 3a). ${ }^{[27]}$ The prismane core consists of two triangular planes - one formed by cobalt and two phosphorus atoms, and the other by the carbonyl carbon and two phosphorus atoms. The P4-C4 edge is bridged by the carbonyl oxygen atom. Thus, the isocyanide substrate has displaced the coordination of the carbonyl to the cobalt center in $\mathbf{4 a}$, leading to rearrangement of the $\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) \mathrm{R}$ ligand. While related compounds containing prismatic units based on catena- E_{4} $(\mathrm{E}=\mathrm{P}, \mathrm{As})$ moieties are typically stabilized by two metal fragments, 5a represents an unusual example where the P_{4} core is supported by only one metal fragment and substituted with an organic residue. ${ }^{[28]}$ The Co1-P3-P4 plane is nearly parallel to the P1-P2-C4 plane, with a twist angle of 14.2°. The P1-P2 and P2-P3 bond lengths (2.1961(1) and $2.207(1) \AA$, respectively) fall within the range of $\mathrm{P}-\mathrm{P}$ single bonds ($\sum r_{\text {PP }} 2.22 \AA$), while the shorter P3-P4 bond (2.1355(1) \AA) implies the retention of significant double bond character. ${ }^{[21]}$ Similar discrepancies between P-P bond lengths have been observed in previous prismane-derived complexes. ${ }^{[28 b, d, e]}$ This suggests that
bonding of the polyphosphorus ligand in 5a is best described as a localized Co1-P1 σ-bond, with the $\mathrm{P} 3-\mathrm{P} 4$ unit engaging in π-coordination to the cobalt center. While the cyanide $\mathrm{Me}_{3} \mathrm{SiCN}$ was used as the reactant, the crystal structure for $\mathbf{5 a}$ reveals the coordination of the corresponding isocyanide, $\mathrm{Me}_{3} \mathrm{SiNC}$. It is known that an equilibrium exists between the cyanide and isocyanide isomers of $\mathrm{Me}_{3} \mathrm{SiCN}^{[29]}$ Thus, the coordination of $\mathrm{Me}_{3} \mathrm{SiCN}$ to the cobalt center induces a quantitative isomerization, favoring the coordination of a silyl isocyanide ($-\mathrm{C} \equiv \mathrm{NSiMe}_{3}$) ligand over the cyanide $\left(-\mathrm{N} \equiv \mathrm{CSiMe}_{3}\right)$ ligand due to energetic considerations. This is supported by a sharp vibration mode at $\tilde{v}_{\mathrm{CN}}=2012 \mathrm{~cm}^{-1}$ in the infrared spectrum and a broadening of the $\mathbf{C} \equiv \mathrm{N}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR resonance at $\delta=195.0 \mathrm{ppm}\left(\Delta v_{1 / 2}=25 \mathrm{~Hz}\right)$, corroborating the coordination of the carbon to the cobalt center in 5a. ${ }^{[25]}$

Figure 3. a) Solid-state molecular structure of [(Ar*BIAN)Co(Me $\left.\left.{ }_{3} \mathrm{SiNC}\right)\left(\eta^{2}: \eta^{1}-\mathrm{P}_{4} \mathrm{CO} t \mathrm{Bu}\right)\right]$ (5a); ${ }^{[45]}$ thermal ellipsoids are shown at the 50% probability level; hydrogen atoms and disorder are omitted for clarity. Selected bond lengths [\AA] and angles [${ }^{\circ}$]: P1-P2 2.1961(1), P2-P3 2.207(1), P3-P4 2.1355(1), Co1-P1 2.2895(7), Co1-P3 2.3330(8), Co1-P4 2.2987(8), C4-O1 1.432(3), P4-O1 1.6722(2), Co1-C3 1.851(2), Co1-C3-N3 174.3(2), C3-N3-Si1 176.14(2); b) experimental (upward) and simulated (downward) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of 5 a with nuclei assigned to an AEMX spin system: $\delta\left(\mathrm{P}_{\mathrm{A}}\right)=228.1 \mathrm{ppm}$, $\delta\left(\mathrm{P}_{\mathrm{E}}\right)=-10.7 \mathrm{ppm}, \quad \delta\left(\mathrm{P}_{\mathrm{M}}\right)=-102.4 \mathrm{ppm}, \quad \delta\left(\mathrm{P}_{\mathrm{x}}\right)=-245.1 \mathrm{ppm}, \quad{ }^{1} J_{\mathrm{AM}}=-355 \mathrm{~Hz}, \quad{ }^{1} J_{\mathrm{MX}}=-267 \mathrm{~Hz}$, ${ }^{1} J_{\mathrm{EX}}=-64 \mathrm{~Hz},{ }^{2} J_{\mathrm{AX}}=8 \mathrm{~Hz},{ }^{2} J_{\mathrm{ME}}=9 \mathrm{~Hz},{ }^{3} J_{\mathrm{AE}}=-11 \mathrm{~Hz}$. The spectra of the related compounds $\mathbf{5 b}$-r are very similar (see SI, Figures S47-S52); [Co] = (Ar*BIAN)Co.

The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{5 a}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ exhibits four resonances corresponding to an AEMX spin system. These appear as two doublets $\left(\delta=228.2\left(\mathrm{P}_{\mathrm{A}}\right) \mathrm{ppm}\right.$ and $\delta=$ $\left.-10.7\left(\mathrm{P}_{\mathrm{E}}\right) \mathrm{ppm}\right)$ and two doublets of doublets $\left(\delta=-102.5\left(\mathrm{P}_{\mathrm{M}}\right) \mathrm{ppm}\right.$ and $\delta=$ $-245.2(\mathrm{Px}) \mathrm{ppm}$) (Figure 3b), characteristic of an asymmetric catena $-\mathrm{P}_{4}$ unit. ${ }^{[13 \mathrm{~d}, 30]}$ The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum was successfully simulated by an iterative fitting procedure (Figure S29, SI), which identified small ${ }^{2} J_{\mathrm{PP}}$ and ${ }^{3} J_{\mathrm{PP}}$ couplings. The ${ }^{1} J_{\mathrm{PP}}$ coupling constants vary widely from -355 to -64 Hz . The resonance attributed to P1 at $\delta=-10.7 \mathrm{ppm}$ is significantly broadened ($\Delta v_{1 / 2}=99 \mathrm{~Hz} ;{ }^{1} J_{\mathrm{PP}}=-64 \mathrm{~Hz}$), likely due to interactions with the quadrupolar ${ }^{59} \mathrm{Co}$ nucleus, which is consistent with the $\mathrm{Co}-\mathrm{P} 1$ bond constituting the major cobalt-phosphorus interaction. ${ }^{[31]}$

Considering the observed isomerization to the isocyanide for neutral cyanide, ${ }^{[29]}$ we proceeded to react compounds $\mathbf{4 a - d}$ with alkyl and aryl isocyanides $\mathrm{R}^{\prime} \mathrm{NC}\left(\mathrm{R}^{\prime}=\mathrm{Cy}, t \mathrm{Bu}\right.$, $\mathrm{Mes}, \mathrm{Ph}$) (Scheme 2b). Initially, the formation of analogues of the previously described complex, 5a were also observed in these reactions (Figure S48, SI). Continuous addition of up to 10 equivalents of isocyanide leads to a clean reaction and full conversion to two isomeric η^{3}-cyclo- P_{4} complexes endo- $\mathbf{6}$ and exo- $\mathbf{6}$. These stereoisomers only differ by the position of the acyl substituent. A similar mixture of isomers was observed in reactions with related CoP_{n} complexes. ${ }^{[30 \mathrm{c}, 32]}$ The transformation of $\mathbf{5}$ to $\mathbf{6}$ could also be induced by heat, albeit with concomitant decomposition of 5 .

A wide range of reactions of $\mathbf{4 a} \mathbf{- d}$ toward different isocyanides and isoelectronic carbon monoxide have been explored, which gave very similar results. Further details of the reactions and the resulting complexes $\mathbf{6 b}-\mathbf{p}$, observed by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy, can be found in the SI (Table S8, Figures S46-52).

Specifically, in the reaction of $\mathbf{4 a}(\mathrm{R}=t \mathrm{Bu})$ toward cyclohexyl isocyanide both exoand endo-isomers of 6a are formed at low temperature, as evidenced by a variable temperature (VT) NMR monitoring experiment (Figure S60, SI). Additional DFT calculations revealed that endo-6a and exo-6a are isoenergetic (see the SI for details).

Both stereoisomers of 6a co-crystallize from a saturated n-hexane solution in 57% overall yield as dark green crystals, which were analyzed by XRD. The molecular structures of $\mathbf{6 a}$ are analogous to $\mathbf{4 a}$, with the $\mathrm{P}_{4} \mathrm{C}(\mathrm{O})$ R ligand coordinated to the cobalt center in an η^{3} fashion (Figure 4), while the carbonyl moieties have been displaced from coordination to the cobalt by one molecule of isocyanide. The bond lengths of the $\eta^{3}-\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) \mathrm{R}$ ligand in the solid-state molecular structures of $\mathbf{6 a}$ closely agree with those of the $\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) \mathrm{R}$ ligand in 4a-c.

Figure 4. Solid-state structures of a) endo-[(Ar*BIAN)Co(CyNC) $\left.\left(\eta^{3}-\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right]$ (endo-6a) and b) exo-[(Ar*BIAN)Co(CyNC)($\left.\left.\eta^{3}-\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right]\left(\right.$ exo-6a) in the co-crystal; ${ }^{[45]}$ thermal ellipsoids are shown at the 50% probability level; hydrogen atoms, disorder and non-coordinating solvent molecules are omitted for clarity. Selected bond lengths $\left[\AA\right.$] and angles [${ }^{\circ}$] of endo-6a: P1-P2 2.218(3), P1-P4 2.232(3), P2-P3 2.191(2), P3-P4 2.165(3), Co1-P2 2.3000(2), Co1-P3 2.2983(2), Co1-P4 2.3027(2), Co1-C3-N3 178.4(5); c) experimental (upward) and simulated (downward) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of endo- $\mathbf{6 a}$ with nuclei assigned to an $\mathrm{AX}_{2} \mathrm{Y}$ spin system: $\delta\left(\mathrm{P}_{\mathrm{A}}\right)=144.5 \mathrm{ppm}, \delta\left(\mathrm{P}_{\mathrm{x}}\right)=71.7 \mathrm{ppm}, \delta\left(\mathrm{P}_{\mathrm{Y}}\right)=68.6 \mathrm{ppm}$, ${ }^{1} \mathrm{~J}_{\mathrm{AX}}=-318 \mathrm{~Hz}, \quad{ }^{1} \mathrm{~J}_{\mathrm{XY}}=-165 \mathrm{~Hz}, \quad{ }^{2} \mathrm{~J}_{\mathrm{AY}}=-5 \mathrm{~Hz} ; \quad$ exo- $6 \mathrm{a}: \quad \delta\left(\mathrm{P}_{\mathrm{A}}\right)=50.0 \mathrm{ppm}, \quad \delta\left(\mathrm{P}_{\mathrm{M}}\right)=5.2 \mathrm{ppm}$, $\delta\left(\mathrm{P}_{\mathrm{Y}}\right)=-26.1 \mathrm{ppm},{ }^{1} \mathrm{~J}_{\mathrm{AX}}=-308 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{AM}}=-207 \mathrm{~Hz},{ }^{2} \mathrm{~J}_{\mathrm{MX}}=29 \mathrm{~Hz}$.

In contrast, the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR signals of endo-6a and exo-6a differ markedly from each other and from those of $\mathbf{4 a - d}$ (Figure 4c). Endo-6a features an $\mathrm{AX}_{2} \mathrm{Y}$ spin system in $\mathrm{C}_{6} \mathrm{D}_{6}$, in which the signal for the coordinating phosphorus atom P 3 is shifted significantly upfield in comparison to $\mathbf{4 a}$ ($\delta=143.3 \mathrm{ppm}$ for endo- $\mathbf{6 a}$ versus $\delta=323.3 \mathrm{ppm}$ for $\mathbf{4 a}$). In comparison to endo-6a, the resonances constituting the $\mathrm{A}_{2} \mathrm{MX}$ spin system observed for exo-6a are shifted further upfield. The considerable differences in the chemical shifts of the endo- and exo-isomers of 6a are nicely reproduced by our DFT calculations and correlate well with the experimental values (Table S13, SI). The different orientations of the $-\mathrm{C}(\mathrm{O}) \mathrm{R}$ substituents in solution, leading to reduced orbital overlap of the phosphorus atoms, are also evident in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra, with greater ${ }^{1} J_{\mathrm{PP}}$ coupling constants observed for the exo-isomer in 6a (exo-6a: ${ }^{1} J_{\mathrm{AM}}=-207 \mathrm{~Hz}$ vs. endo-6a: ${ }^{1} J_{\mathrm{XY}}=-165 \mathrm{~Hz}$). The full set of parameters, including simulation by an iterative fitting procedure, can be
found in the SI (Figures S35-36). In the ATR-IR spectrum of 6a, the bands at $\tilde{v}_{\mathrm{CO}}=1599$ and $1640 \mathrm{~cm}^{-1}$, respectively, can be attributed to the $\mathrm{C}=\mathrm{O}$ stretching vibration. ${ }^{[25]}$

Additional single-crystal XRD data was obtained for endo-6a, where only one isomer was observed in solid-state, as well as further combinations of R and R^{\prime} in exo- $6 \mathbf{d}(\mathrm{R}=$ $\left.\mathrm{Ph}, \mathrm{R}^{\prime}=\mathrm{Cy}\right)$ and endo-6e $\left(\mathrm{R}=t \mathrm{Bu}, \mathrm{R}^{\prime}=t \mathrm{Bu}\right.$; Figures $\mathrm{S} 86-88$, SI$)$. During XRD analysis of $\mathbf{6 a}$, crystals of a minor side product, [(Ar*BIAN) $\left.\mathrm{Co}(\mathrm{CyNC})_{2}\left(\eta^{1}-\mathrm{P} 4 \mathrm{CO} t \mathrm{Bu}\right)\right]$ (7), were also discovered. Structural analysis of these revealed a cobalt complex bearing two isocyanide ligands. This saturation of the coordination sphere is facilitated by the severance of most of the cobalt-phosphorus interactions, resulting in an η^{1}-coordinated [1.1.0]bicyclotetraphosphane-1,4-diyl (" P_{4} butterfly") ligand. ${ }^{[33]}$ A more detailed discussion of 7 can be found in the Supporting Information (Figure S89).

To gain further insight into the distribution of isomers, a VT NMR spectroscopic analysis of the isolated crystalline material of $\mathbf{6 a}$ was conducted. The crystals were dissolved in toluene $-d_{8}$ at $-80^{\circ} \mathrm{C}$ and the temperature was gradually increased while monitoring by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy (Figure S94-95, SI). The spectra at low temperature show predominantly the signals assigned to exo-6a. An increase in temperature leads to an increase in signal intensity for endo-6a. This observation was attributed to crystal packing effects, which likely influence the solid-state structures and lead to a preference for the crystallization of one isomer over the other. Once the isomerization has occurred and an equilibrium established, cooling the solution back down to low temperature did not reassert a single isomer as a significantly major species in the mixture.

To investigate whether the stronger cyanide anion, CN^{-}, of certain cyanide salts would completely cleave an organophosphorus fragment from the complexes, 4a-d were reacted with two equivalents of $[\mathrm{M}] \mathrm{CN}\left([\mathrm{M}]=n \mathrm{Bu}_{4} \mathrm{~N}^{+}, \mathrm{Et}_{4} \mathrm{~N}^{+}, \mathrm{K}(18 \mathrm{c}-6)^{+}\right) .{ }^{[14,34]}$ This resulted in the selective formation of cyclo- P_{3} cobalt complex $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}(\mathrm{CN})\left(\eta^{3}-\mathrm{P}_{3}\right)\right]^{-}\left(\mathbf{8}^{-}\right)$and the acylated cyanophosphanides $[\mathrm{RC}(\mathrm{O}) \mathrm{PCN}]^{-}\left(\mathbf{9 a - \mathbf { d } ^ { - })}\right.$ (Scheme 3). This was initially indicated by the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra, in which two singlets were observed in a $3: 1$ integral ratio (Figures S53-56, SI). The observed chemical shift of $\delta=-218.7 \mathrm{ppm}$ for $[\mathrm{K}(18-6)] \mathbf{8}$ is close to the reported values for $\left[\left({ }^{\text {DippPPHDI }}\right) \mathrm{Co}\left(\eta^{3}-\mathrm{P}_{3}\right)(\mathrm{CN})\right]^{-}$ $(\delta=-193.2 \mathrm{ppm}), \quad\left[\left\{\mathrm{B}_{10} \mathrm{H}_{10} \mathrm{C}_{2}\left(\mathrm{P}_{3} \mathrm{Mes}_{2}\right)\right\} \mathrm{Co}\left(\eta^{3}-\mathrm{P}_{3}\right)\right]^{-}(\delta=-250.9 \mathrm{ppm}, \quad$ Mes $=2,4,6-$ $\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{2}$), and other related cyclo- P_{3} complexes. ${ }^{[14,24,35]}$

Scheme 3. Cyanide induced $[3+1]$ fragmentation of $\mathbf{4 b}$; reagents/by-products and conditions: +2.2 eq. KCN/+2.2 eq. 18c-6; THF, r.t., 3 d; yields: $[\mathrm{K}(18 \mathrm{c}-6)] \mathbf{8}: 60 \%$, $[\mathrm{K}(18 \mathrm{c}-6)] \mathbf{9 b}: 31 \%$.

Acylcyanophosphanides, to our knowledge, have not been reported previously. ${ }^{[36]}$ The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR signals of $\mathbf{9 a - \mathbf { d } ^ { - }}\left(\mathbf{9} \mathbf{a}^{-}: \delta=-44.0 \mathrm{ppm}, \mathbf{9 b}^{-}: \delta=-45.2 \mathrm{ppm}, \mathbf{9 c}: \delta=\right.$ $-45.5 \mathrm{ppm}, \mathbf{9 d}^{-}: \delta=-30.1 \mathrm{ppm}$) are noticeably shifted upfield compared to the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR resonance of the related anion $[\mathrm{PhPCN}]^{-}(\delta=70.3 \mathrm{ppm}) .{ }^{[37]}$ The reaction of $\mathbf{4 a} \mathbf{a} \mathbf{d}$ with the CN^{-}anion represents a remarkable [3+1] fragmentation of a tetraphosphido ligand to yield a cyclo $-\mathrm{P}_{3}^{-}$species and an organic monophosphorus compound. While a few transition-metal-mediated [3+1] fragmentations of P_{4} are known in which the generated P_{3} and P_{1} moieties remain coordinated to a transition metal atom, ${ }^{[28 b, 35 b, 38]}$ the release of P_{1} species from polyphosphorus ligands has rarely been observed. ${ }^{[3,4,33 f, 35 \mathrm{a}, 39]}$

In the case of $\mathrm{R}=\mathrm{Cy}$, the products $[\mathrm{K}(18 \mathrm{c}-6)] \mathbf{8}$ and $[\mathrm{K}(18 \mathrm{c}-6)] 9 \mathrm{~b}$ are easily separated by fractional crystallization. $[\mathrm{K}(18 \mathrm{c}-6)] \mathbf{8}$ crystallizes from the concentrated toluene reaction mixture at room temperature, affording purple crystals in 60% yield. XRD analysis confirmed the coordination of the cyclo- P_{3} and cyanide ligand to the cobalt center (Figure 5a). The $\mathrm{Co}-\mathrm{C}(1.931(9) \AA)$ and $\mathrm{C}-\mathrm{N}(1.158(4) \AA$) bond lengths, as well as the CN stretching vibration ($\tilde{v}_{\mathrm{CN}}=2069 \mathrm{~cm}^{-1}$), fall within the typical range for cobalt cyanide complexes. ${ }^{[25,40,41]}$ The cyclo- P_{3} ring coordinates to the metal center in a η^{3} fashion, with average $\mathrm{P}-\mathrm{P}(2.143(7) \AA)$ and $\mathrm{Co}-\mathrm{P}(2.302(9) \AA)$ distances comparable to reported anionic cobalt cyclo- P_{3} complexes. ${ }^{[14,24,35]}$ Colorless crystals of $[\mathrm{K}(18 \mathrm{c}-6)] 9 \mathrm{~b}$ were isolated in 31% yield from the mother liquor at $-35^{\circ} \mathrm{C}$. Due to similar solubility, further fractions of isolated crystalline material of $[\mathrm{K}(18 \mathrm{c}-6)] 9 \mathbf{b}$ contained also small amounts of $[K(18 c-6)]$. Figure $5 b$ displays the solid-state molecular structure of $[K(18 c-6)] 9 b$, which features a P_{1} anion with acyl- and cyanide substituents. Both the oxygen and the nitrogen atoms coordinate to the potassium counterion. Additional single-crystal XRD data was obtained for isostructural $[\mathrm{K}(18 \mathrm{c}-6)] 9 \mathbf{a}$ and $[\mathrm{K}(18 \mathrm{c}-6)] 9 \mathbf{d}$ and is given in the Supporting Information (Figures S90-91).
a)

b)

Figure 5. Solid-state molecular structures of a) $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}(\mathrm{CN})\left(\eta^{3}-\mathrm{P}_{3}\right)\right]([\mathrm{K}(18 \mathrm{c}-6)] 8)$ and b) $\mathrm{K}(18 \mathrm{c}-6)][\mathrm{CyC}(\mathrm{O}) \mathrm{PCN}]([\mathrm{K}(18 \mathrm{c}-6)] 9 \mathrm{~b}) ;{ }^{[45]}$ thermal ellipsoids are shown at the 50% probability level; hydrogen atoms and disorder are omitted for clarity. Selected bond lengths [\AA] and angles [${ }^{\circ}$] of [K(18c-6)]8: P1-P2 2.1318(5), P1-P3 2.1306(5), P2-P3 2.1682(4), Co1-P1 2.3070(4), Co1-P2 2.3001(4), Co1-P3 2.3014(3), Co1-C3 1.9323(1), C1-N1 1.3211(2), C3-N3 1.1583(2), C1-C2 1.4486(2), K1-N3 2.9111(1), P1-P2-P3 59.396(2), P1-P3-P2 59.452(2), P2-P1-P3 61.152(2), Co1-C3-N3 177.83(1); [K(18c-6)]9b: P1-C1 1.7789(1), P1-C2 1.7960(1), C1-N1 1.1519(2), C2-O1 1.2397(1), P1-C1-N1 176.77(9), C1-P1-C2 95.08(5).

Specifically in the case of $\mathbf{9 b}{ }^{-}$, the similar P1-C1 (1.7789(1) \AA) and P1-C2 (1.7960(1) \AA) bond lengths lie between those expected for a $\mathrm{P}=\mathrm{C}$ double and a $\mathrm{P}-\mathrm{C}$ single bond ($\sum r_{\mathrm{PC}} 1.69 \AA$ vs. $1.86 \AA$), indicating partial delocalization. ${ }^{[21]}$ Furthermore, the $\mathrm{C} 1-\mathrm{N} 1\left(1.1519(2) \AA\right.$) bond length of the nearly linear PCN group (P1-C1-N1 176.8(8) ${ }^{\circ}$) is comparable to that of the cyanophosphanide $[\mathrm{Na}(18 \mathrm{c}-6)]\left[\mathrm{P}\left(\mathrm{SiPh}_{3}\right)(\mathrm{CN})\right]$ (C-N $1.161 \AA, \mathrm{P}-\mathrm{C} 1.761 \AA$) reported by Grützmacher and co-workers. ${ }^{[42]}$ On the other hand, the $\mathrm{C}-\mathrm{N}(1.248(5) \AA)$ bond length of 1-aza-phospha-allenide $[i \mathrm{Pr}=\mathrm{N}=\mathrm{C}=\mathrm{P}]^{-}$is noticeably longer than that of $9 \mathbf{b}^{-}$, and the $\mathrm{P}-\mathrm{C}(1.603(3) \AA)$ bond length is shorter.

These observations suggest several contributing resonance structures analogous to those proposed for $\left.\left[\mathrm{P}_{\left(\mathrm{SiPh}_{3}\right)}\right)(\mathrm{CN})\right]^{-} .{ }^{[42,43]} \mathrm{A}$ natural resonance theory analysis conducted at the TPSS/def2-TZVP level of theory revealed that the phosphaenolate resonance form I (37.4%) is the primary contributor to the electronic ground state, contrasting with the contributions of 1-aza-3-phosphaallenide II and phosphide III (Scheme 4). In comparison, calculations for the related compound $\left[\mathrm{P}\left(\mathrm{SiPh}_{3}\right)(\mathrm{CN})\right]^{-}$showed a significantly higher contribution to the phosphide form (76.4\%). ${ }^{[43]}$ The IR spectrum of 9b exhibits two characteristic stretching vibrations at $\tilde{v}_{\mathrm{CN}}=2101 \mathrm{~cm}^{-1}$ and $\tilde{v}_{\mathrm{CO}}=$ $1544 \mathrm{~cm}^{-1}$, which are in good agreement with the calculated values $\left(\tilde{v}_{\mathrm{CN}}=2099 \mathrm{~cm}^{-1}\right.$ and $\tilde{v}_{\mathrm{CO}}=1565 \mathrm{~cm}^{-1}$), as well as with those of other alkyl cyanophosphanides $[\mathrm{RP}(\mathrm{CN})]^{-}$ ($\mathrm{R}=\mathrm{Me}, \mathrm{Et}, \mathrm{Ph} ; \tilde{v}_{\mathrm{CN}}=2080$ to $2160 \mathrm{~cm}^{-1}$). ${ }^{[37]}$ These values are higher than that reported for cyanodiphosphanide $\left[t \mathrm{Bu}_{2} \mathrm{PPCN}\right]^{-}\left(\tilde{v}_{\mathrm{CN}}=2049 \mathrm{~cm}^{-1}\right) .{ }^{[14]}$ In contrast, the CO stretching frequency is lower than expected for typical organic compounds $\left(\approx 1700 \mathrm{~cm}^{-1}\right)$, indicating the relatively high contribution of Lewis type formula I (Scheme 4). ${ }^{[25]}$

Scheme 4. Natural resonance theory (NRT) weights for the dominant Lewis structures of the model cyanophosphanide $\mathbf{9}-\mathbf{M e}^{-}(\mathrm{R}=\mathrm{Me})\left(\mathrm{TPSS} /\right.$ def2-TZVP) are provided. Comparable ratios for $\mathbf{9 b}{ }^{-}$can be found in the SI. ${ }^{[44]}$

The [3+1] fragmentation reaction mechanism of 4a-d by $\mathrm{M}[\mathrm{CN}]$ is proposed to involve an initial attack of a cyanide anion at the cobalt center, displacing the coordination of the carbonyl and forming an anionic species analogous in structure to neutral 6 (vide supra, also see the SI, Scheme S1). Subsequent nucleophilic attack by a second cyanide anion at the acyl-substituted P atom leads to the release of $\mathbf{9 a - \mathbf { d } ^ { - }}$ and the formation of the cyclo- P_{3} species $\mathbf{8}^{-}$. The reaction rate is influenced by the steric demands of the substituents in 4a-d and even more by the solubility of the cyanide source $[\mathrm{M}] \mathrm{CN}$. Monitoring the reaction between $4 d(\mathrm{R}=\mathrm{Ph})$ with $\left[\mathrm{Et}_{4} \mathrm{~N}\right] \mathrm{CN}$ over a 14 -hour period using ${ }^{31} \mathrm{P}$ NMR spectroscopy revealed several intermediate sets of signals that closely resemble an $\mathrm{AX}_{2} \mathrm{Y}$ and an $\mathrm{A}_{2} \mathrm{MX}$ spin system, exhibiting similar chemical shifts as observed for endo- and exo-6a (Figure S57, SI). Unfortunately, the formation of these intermediates in only minor quantities has impeded the successful isolation and characterization of them so far. Nevertheless, the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopic data indicate that analogues of the
previously described complex, 6, featuring exo- and endo- $\eta^{3}-\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) \mathrm{R}$ ligands may serve as potential intermediates in the reaction.

A second acyl substituent can be introduced to $\mathbf{9 b}$ to generate a bis(acyl)monocyanophosphine (Scheme 5). Therefore, performing salt metathesis of $[\mathrm{K}(18 \mathrm{c}-6)] 9 \mathrm{~b}$ with $\mathrm{CyC}(\mathrm{O}) \mathrm{Cl}$ yields $(\mathrm{CyC}(\mathrm{O}))_{2} \mathrm{PCN}(\mathbf{1 0})$, which was isolated as a colorless oil in 81% yield. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1 0}$ exhibits a sharp singlet at $\delta=-8.2 \mathrm{ppm}$, which is shifted slightly upfield compared to the alkyl-substituted bis(acyl)phosphine $\mathrm{P}(\mathrm{C}(\mathrm{O}) \mathrm{Ad})(\mathrm{C}(\mathrm{O}) \mathrm{Ph}) t \mathrm{Bu}(\delta=37 \mathrm{ppm}) .{ }^{[8]}$ In the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum, two characteristic doublet resonances can be assigned to the acyl ($\delta=$ $211.2 \mathrm{ppm} ;{ }^{1} J_{\mathrm{PC}}=52 \mathrm{~Hz}$) and cyano carbon atoms ($\delta=117.1 \mathrm{ppm} ;{ }^{1} J_{\mathrm{PC}}=62 \mathrm{~Hz}$). In comparison, the resonances for $[\mathrm{K}(18 \mathrm{c}-6)] 9 \mathrm{~b}$ were observed at $\delta=238.1 \mathrm{ppm}$ for the acyl and $\delta=136.7 \mathrm{ppm}$ for the cyano carbon atoms.

Scheme 5. Functionalization of $[\mathrm{K}(18 \mathrm{c}-6)] \mathbf{9 b}$ with cyclohexanecarboxylic acid chloride to $\mathbf{1 0}$; reagents/by-products and conditions: $+\mathrm{CyC}(\mathrm{O}) \mathrm{Cl} /-[\mathrm{K}(18 \mathrm{c}-6)] \mathrm{Cl} ; \mathrm{C}_{6} \mathrm{D}_{6}$, r.t., 1 h ; isolated yield: 81%.

Additionally, the IR spectrum of $\mathbf{1 0}$ displays CO stretching frequencies at $\tilde{v}_{\mathrm{CO}}=1715$ and $1681 \mathrm{~cm}^{-1}$, which agree well with the calculated values ($\tilde{v}_{\mathrm{CO}}=1709$ and $1693 \mathrm{~cm}^{-1}$), confirming the constitution of the bis(acyl)cyanophosphine $(\mathrm{CyC}(\mathrm{O}))_{2} \mathrm{PCN}$.

2.3 Conclusion

In this study, we have synthesized the acylated tetraphosphido complexes [(Ar*BIAN) $\left.\operatorname{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{COR}\right)\right]$ (4a-d) with various alkyl and aryl substituents using a two-step process involving $\mathrm{P}_{4},[\mathrm{~K}(18 \mathrm{c}-6)] 2$ and $\mathrm{RC}(\mathrm{O}) \mathrm{Cl}$. These ligands provide a platform for the study of P -acylated ligands. Treatment of the $\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) \mathrm{R}$ complexes with trimethylsilyl cyanide and isocyanides resulted in $\mathrm{P}-\mathrm{Co}$ bond cleavage, leading to the formation of pnictogen derivatives, including prismane in 5, as well as endo- and exo-isomers of η^{3}-coordinating tetraphosphido ligands (6). Additionally, treatment of 4a-d with two equivalents of the cyanide anion facilitated the release of acylcyanophosphanides $\mathrm{RC}(\mathrm{O}) \mathrm{PCN}^{-} \mathbf{9 a - \mathbf { d } ^ { - }}$ through a remarkable [3+1] fragmentation process, resulting in the formation of a cyclotriphosphido cobalt complex $\mathbf{8}^{-}$. Monitoring of the $[3+1]$ fragmentation reaction provided insight into the involvement of
intermediates similar to $\mathbf{6}$, which have rearranged polyphosphorus ligands and are considered key intermediates en route to the anions $\mathbf{8}^{-}$and ($\mathbf{9} \mathbf{a}-\mathbf{d}^{-}$). Additionally, we have synthesized the bis(acyl)cyanophosphine $(\mathrm{CyC}(\mathrm{O}))_{2} \mathrm{PCN}(\mathbf{1 0})$, highlighting the useful reactivity of these anions. Overall, our findings demonstrate the potential of metalate activation and functionalization of P_{4} in accessing new (poly-)phosphorus species. We anticipate that this approach will open up avenues for the synthesis of unique phosphorus compounds in future research endeavors. Ongoing investigations are focused on further exploring these possibilities.

2.4 Experimental Details

General Synthetic Methods

All reactions and product manipulations were carried out in flame-dried glassware under an inert atmosphere of argon using standard Schlenk-line or glovebox techniques (maintained at $<0.1 \mathrm{ppm} \quad \mathrm{H}_{2} \mathrm{O}$ and $<0.1 \mathrm{ppm} \quad \mathrm{O}_{2}$). The starting materials 2,6-bis(diphenylmethyl)-4-isopropylaniline ${ }^{[46]}, \quad\left[\mathrm{K}(\mathrm{thf})_{0.2}\right]\left[\operatorname{Co}(1,5-\operatorname{cod})_{2}\right]^{[47]} \quad$ and MesNC ${ }^{[48]}$ were prepared according to previously reported procedures. All other chemicals were purchased from commercial suppliers and used without further purification.

Solvents were dried and degassed with a MBraun SPS800 solvent purification system. All dry solvents except n-hexane and n-pentane were stored under argon over activated $3 \AA$ molecular sieves in gas-tight ampules. n-Hexane and n-pentane were instead stored over potassium mirrors.

General Analytical Techniques

NMR spectra were recorded on Bruker Avance 400 spectrometers at 300 K and were internally referenced to residual solvent resonances (${ }^{1} \mathrm{H}$ NMR: $\mathrm{C}_{6} \mathrm{D}_{6}: 7.15 \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ $\mathrm{C}_{6} \mathrm{D}_{6}$: 128.06 ppm$) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectra were referenced externally to $85 \% \mathrm{H}_{3} \mathrm{PO}_{4(\text { aq. })}$. Chemical shifts, δ, are given in ppm referring to external standards of tetramethylsilane $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\right) .{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR signals were assigned based on 2D NMR spectra (COSY, HSQC, HMBC, NOESY and ROESY). Melting points were measured on samples in sealed capillaries on a Stuart SMP10 melting point apparatus. UV/Vis spectra were recorded on an Ocean Optics Flame Spectrometer with a DH-2000-BAL light source. Mass spectra of compound $\mathbf{1 0}$ was recorded on an Agilent Q-TOF 6540 UHD device by the by the Central Analytical Department at the University of Regensburg Regensburg and compound $[\mathrm{K}(18 \mathrm{c}-6)] \mathbf{3}$ on a Finnigan MAT 95 device. Elemental analysis were performed by the Central Analytical Department of the University of Regensburg using a Vario micro cube. IR spectra were recorded with a Bruker ALPHA spectrometer equipped with a diamond ATR unit.

NMR Simulations

For compounds which give rise to a higher order spin system in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum, the resolution enhanced ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum was transferred to the software gNMR, version 5.0.6, by Cherwell Scientific. ${ }^{[49]}$ The full line shape iteration procedure of gNMR was applied to obtain the best match of the fitted to the experimental
spectrum. ${ }^{1} J\left({ }^{31} \mathrm{P}^{31} \mathrm{P}\right)$ coupling constants were set to negative values and all other signs of the coupling constants were obtained accordingly. ${ }^{[50]}$

2.4.1 Synthesis of Compounds

Ar*BIAN (1):

All preparative steps were performed under atmospheric air. To a 100 mL round bottom flask was added ZnCl_{2} $(1.50 \mathrm{~g}, \quad 11.0 \mathrm{mmol}, \quad 1.1$ equiv.), acenaphthenequinone ($1.76 \mathrm{~g}, 9.7 \mathrm{mmol}, 1.0$ equiv.), 2,6-bis(diphenylmethyl)-4isopropylaniline ($10.28 \mathrm{~g}, 22.0 \mathrm{mmol}, 2.3$ equiv.) and acetic acid (30 mL). The yellow suspension was refluxed for 5 h at $118^{\circ} \mathrm{C}$. After cooling to r.t. the reaction mixture was filtered over a P 3 glass frit, and the yellow solid was washed with acetic acid $(3 \times 25 \mathrm{~mL})$ and subsequently with $\mathrm{Et}_{2} \mathrm{O}(7 \times 25 \mathrm{~mL})$. The crude product was dissolved in $\mathrm{DCM}(150 \mathrm{~mL})$. To this, a solution of potassium oxalate ($4.00 \mathrm{~g}, 24.1 \mathrm{mmol}$, 2.5 equiv.) in $\mathrm{H}_{2} \mathrm{O}(22 \mathrm{~mL}$) was added and stirred for 1 h . The organic phase was separated and washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 75 \mathrm{~mL})$ and subsequently dried over MgSO_{4}. After removing the solvent, the orange solid was recrystallized from a mixture of n-heptane/DCM 1:1 $(100 \mathrm{~mL})$ at $-19^{\circ} \mathrm{C}$. The product was separated by filtration, washed with cold n-pentane (20 mL) and dried in vacuo to give microcrystalline orange powder. Slow diffusion of n-hexane into a saturated toluene solution of $\mathbf{1}$ yielded crystals suitable for single-crystal X-ray diffraction.
Yield: 7.32 g (70\%).
M.p.: $234{ }^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR $\left(400.30 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta / \mathrm{ppm}=1.06\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.9 \mathrm{~Hz}, 12 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $i \operatorname{Pr}$), 2.62 (sept, ${ }^{3} J_{\mathrm{HH}}=6.9 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ of $\left.i \operatorname{Pr}\right), 6.03\left(\mathrm{~s}, 4 \mathrm{H},-\mathrm{C}^{9} H(\mathrm{Ph})_{2}\right)$, 6.50-6.54 (m, 2H, $\mathrm{C}^{4}-H$ of BIAN), 6.58-6.62 ($\mathrm{m}, 6 \mathrm{H}, \mathrm{C}^{2}-H$ of BIAN overlapping with $\mathrm{C}-H_{\mathrm{Ar}}$ of Ph$), 6.70-6.73\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{C}-\mathrm{H}_{\mathrm{Ar}}\right.$ of Ph$), 6.93-6.97\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}-H_{\mathrm{Ar}}\right.$ of Ph$), 6.99-7.03$ $\left(\mathrm{m}, 8 \mathrm{H}, \mathrm{C}-H_{\mathrm{Ar}}\right.$ of Ph$), 7.09\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}^{5}-H\right.$ of BIAN$), 7.16-7.18(\mathrm{~m}, 8 \mathrm{H}$, $\mathrm{C}-H_{\mathrm{Ar}}$ of Ph overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 7.25-7.28 (m, $12 \mathrm{H}, \mathrm{C}^{11}-H$ overlapping with $\mathrm{C}-\mathrm{H}_{\mathrm{Ar}}$ of Ph).
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(100.66 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta / \mathrm{ppm}=23.9\left(\mathrm{~s},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $\left.i \mathrm{Pr}\right), 33.5$ (s, $-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ of $i \mathrm{Pr}$), $52.1\left(\mathrm{~s},-C^{9} \mathrm{H}(\mathrm{Ph})_{2}\right), 123.7\left(\mathrm{~s}, C^{3}-\mathrm{H}\right.$ of BIAN), 125.7 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), 126.1 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph) 126.6 ($\mathrm{s}, C^{4}-\mathrm{H}$ of BIAN), 126.7 ($\mathrm{s}, C^{11}-\mathrm{H}$), 127.6 ($\mathrm{s}, C^{5}-\mathrm{H}$ of BIAN overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 127.9 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), 128.1 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), 129.1 (s, C^{2} of BIAN), 129.5 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), 129.6 (s, C^{6} of BIAN), 130.0 (s ,
$C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), $131.4\left(\mathrm{~s}, C^{10}\right), 140.0\left(\mathrm{~s}, C^{7}\right.$ of BIAN), 143.3 ($\mathrm{s}, C_{\mathrm{Ar}}$ of Ph), $143.6\left(\mathrm{~s}, C^{12}\right)$, $144.1\left(C_{\text {Ar }}\right.$ of Ph$), 147.5\left(\mathrm{~s}, C^{8}-\mathrm{N}\right), 162.4\left(\mathrm{~s}, C^{1}=\mathrm{N}\right.$ of BIAN). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR signals compare well with those reported for $\mathbf{1}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2} \cdot{ }^{[51]}$
UV/Vis (THF, $\lambda_{\max } / \mathrm{nm}, \varepsilon_{\max } / \mathrm{L} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~cm}^{-1}$): 260sh (35000), 280 (31000), 310 (16000), 330sh (11000), 360 (4000).
Elemental analysis calcd. for $\mathrm{C}_{82} \mathrm{H}_{68} \mathrm{~N}_{2}\left(\mathrm{Mw}=1081.46 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\right)$:
C 91.07, H 6.34, N 2.59; found C 90.72, H 6.17, N 2.46.

$[K(18 c-6)]\left[(A r * B I A N) C o\left(\eta^{4}-1-5-c o d\right)\right]([K(18 c-6)] 2):$

To a deep yellowish green solution of $\left[\mathrm{K}(\mathrm{thf})_{0.2}\right]\left[\mathrm{Co}\left(\eta^{4}-1,5-\operatorname{cod}\right)_{2}\right] \quad(0.40 \mathrm{~g}, \quad 1.22 \mathrm{mmol}$, 1.05 equiv.) and [18]crown-6 (18c-6, 0.32 g , $1.22 \mathrm{mmol}, 1.05$ equiv.) in THF (30 mL), an orange solution of 1 ($1.25 \mathrm{~g}, 1.16 \mathrm{mmol}, 1.00$ equiv.) in THF $(30 \mathrm{~mL})$ was added slowly at $-30^{\circ} \mathrm{C}$. The resulting deep brown solution was stirred for one day while warming to r.t.. The solvent was removed under vacuum and the resulting dark solid was dissolved in THF (15 mL). Subsequently the suspension was filtered through a P3 glass frit. The filtrate was layered with n-hexane (30 mL). After one week, dark brown crystals suitable for single-crystal X-ray diffraction were obtained and isolated by filtration, washed with n-hexane $(3 \times 4 \mathrm{~mL})$ and dried in vacuo.

Yield: $1.39 \mathrm{~g}(77 \%)$.
${ }^{1} \mathbf{H}$ NMR ($400.30 \mathrm{MHz}, 300 \mathrm{~K}$, THF- d_{8}): $\delta / \mathrm{ppm}=0.24-0.26\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right.$ of COD), 1.19 (br s, $4 \mathrm{H}, \mathrm{CH}_{2}$ of COD), $1.33\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=6.9 \mathrm{~Hz}, 12 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $i \mathrm{Pr}$), $2.73(\mathrm{br} \mathrm{s}, 4 \mathrm{H}$, CH of COD), $2.94\left(\mathrm{sept},{ }^{3} J_{\mathrm{HH}}=6.9 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $\left.i \operatorname{Pr}\right), 3.66(\mathrm{~s}, 24 \mathrm{H}, 18 \mathrm{c}-6), 4.22$ $\left(\mathrm{d},{ }^{3} J_{\mathrm{HH}}=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}^{3}-H\right.$ of BIAN), $5.80-5.84\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}^{4}-H\right.$ of BIAN), $6.29(\mathrm{~d}$, ${ }^{3} J_{\mathrm{HH}}=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}^{5}-H$ of BIAN), 6.68-6.73 (m, $12 \mathrm{H}, \mathrm{C}-H_{\mathrm{Ar}}$ of Ph$), 7.08-7.12(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{C}-H_{\mathrm{Ar}}$ of Ph$), 7.22-7.28\left(\mathrm{~m}, 14 \mathrm{H}, \mathrm{C}-H_{\mathrm{Ar}}\right.$ of Ph$), 7.37\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{C}^{11}-H\right), 7.39(\mathrm{~s}, 4 \mathrm{H}$, $\left.{ }^{-} \mathrm{C}^{9} H(\mathrm{Ph})_{2}\right), 7.66-7.68\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{C}-\mathrm{H}_{\mathrm{Ar}}\right.$ of Ph$)$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(100.66 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{THF}-d_{8}\right): \delta / \mathrm{ppm}=25.5\left(\mathrm{~s},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $i \operatorname{Pr}$ overlapping with THF- d_{8} solvent signal), 31.6 ($\mathrm{s}, \mathrm{CH}_{2}$ of COD), $35.5\left(\mathrm{~s},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of ${ }_{i P r}$), $52.8\left(\mathrm{~s},-C^{9} \mathrm{H}(\mathrm{Ph})_{2}\right), 67.1(\mathrm{~s}, C \mathrm{H}$ of COD$), 71.8(\mathrm{~s}, 18 \mathrm{c}-6), 116.8\left(\mathrm{~s}, C^{3}-\mathrm{H}\right.$ of BIAN), $119.2\left(\mathrm{~s}, C^{5}-\mathrm{H}\right.$ of BIAN), $125.5\left(\mathrm{~s}, C_{\mathrm{Ar}}-\mathrm{H}\right.$ of Ph$), 125.9\left(\mathrm{~s}, C_{\mathrm{Ar}}-\mathrm{H}\right.$ of Ph$), 127.3\left(\mathrm{~s}, C^{4}-\mathrm{H}\right.$ of BIAN), $127.6\left(\mathrm{~s}, C^{11}-\mathrm{H}\right), 128.1\left(\mathrm{~s}, C_{\mathrm{Ar}}-\mathrm{H}\right.$ of Ph$), 128.6\left(\mathrm{~s}, C_{\mathrm{Ar}^{2}}-\mathrm{H}\right.$ of Ph$), 131.6(\mathrm{~s}$,
$C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), 132.4 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), 133.7 (s, C^{7} of BIAN), 138.2 (s, C^{6} of BIAN), $141.8\left(\mathrm{~s}, C^{10}\right), 141.9\left(\mathrm{~s}, C^{12}\right), 142.6\left(\mathrm{~s}, C^{1}=\mathrm{N}\right.$ of BIAN), $148.0\left(\mathrm{~s}, C_{\mathrm{Ar}}\right.$ of Ph$), 149.0\left(\mathrm{~s}, C_{\mathrm{Ar}}\right.$ of Ph$), 155.0\left(\mathrm{~s}, C^{8}-\mathrm{N}\right)$.
UV/Vis (THF, $\lambda_{\max } / \mathrm{nm}, \varepsilon_{\max } / \mathrm{L} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~cm}^{-1}$): 250 (57000), 280sh (28000), 440 (14000).
Elemental analysis calcd. for $\mathrm{C}_{102} \mathrm{H}_{104} \mathrm{CoKN}_{2} \mathrm{O}_{6}\left(\mathrm{Mw}=1551.99 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\right)$:
C 78.94, H 6.75, N 1.81; found C 78.80, H 6.68, N 1.71.

[K(18c-6)][(Ar*BIAN)Co($\left.\left.{ }^{4}-\mathbf{P}_{4}\right)\right]$ ([K(18c-6)]3):

$[\mathrm{K}(18 \mathrm{c}-6)]^{+}$

A 250 mL Schlenk flask was charged with $\mathrm{P}_{4}(339 \mathrm{mg}$, $2.73 \mathrm{mmol}, \quad 1.0$ equiv.), $[\mathrm{K}(18 \mathrm{c}-6)] 2] \quad(4.241 \mathrm{~g}$, $2.73 \mathrm{mmol}, 1.0$ equiv.) and THF (170 mL). The resulting deep brown mixture was stirred for one day, over which time the color changed to dark purple. The solvent was removed, and the dark residue extracted into toluene (100 mL). The resulting solution was filtered through a P4 glass frit, concentrated to 70 mL , and layered with n-hexane $(150 \mathrm{~mL})$. After ten days shimmering purple crystals, of sufficient quality for analysis by XRD, were isolated by decantation of the supernatant. The crystals were washed with n-pentane $(3 \times 12 \mathrm{~mL})$ and dried in vacuo.

Yield: $2.70 \mathrm{~g}(63 \%)$.
${ }^{1} \mathbf{H}$ NMR ($400.13 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta / \mathrm{ppm}=1.03\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.9 \mathrm{~Hz}, 12 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $i \mathrm{Pr}$), 2.62 (sept, ${ }^{3} J_{\mathrm{HH}}=6.9 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ of $i \mathrm{Pr}$), 3.24 (s, $24 \mathrm{H}, 18 \mathrm{c}-6$), 5.84 (d, ${ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}^{3}-H$ of BIAN $), 6.48-6.51\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}^{4}-H\right.$ of BIAN), 6.71-6.75 (m, $4 \mathrm{H}, \mathrm{C}-H_{\mathrm{Ar}}$ of Ph$), 6.79-6.83\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{C}-H_{\mathrm{Ar}}\right.$ of Ph$), 7.03-7.04\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{C}-H_{\mathrm{Ar}}\right.$ of Ph$)$, $7.27\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}^{5}-H\right.$ of BIAN $), 7.31-7.33\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{C}-\mathrm{H}_{\mathrm{Ar}}\right.$ of Ph$), 7.35(\mathrm{~s}, 4 \mathrm{H}$, $\left.\mathrm{C}^{11}-H\right), 7.45-7.47\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{C}-H_{\mathrm{Ar}}\right.$ of Ph$), 7.67\left(\mathrm{~s}, 4 \mathrm{H},-\mathrm{C}^{9} H(\mathrm{Ph})_{2}\right)$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(100.61 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta / \mathrm{ppm}=24.6\left(\mathrm{~s},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $\left.i \operatorname{Pr}\right), 34.3(\mathrm{~s}$, ${ }^{-} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ of $\left.i \mathrm{Pr}\right), 52.5\left(\mathrm{~s},-\mathrm{C}^{9} \mathrm{H}(\mathrm{Ph})_{2}\right), 70.9(\mathrm{~s}, 18 \mathrm{c}-6), 120.3\left(C^{3}-\mathrm{H}\right.$ of BIAN), 122.8
 128.2 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 128.2 ($\mathrm{s}, C^{4}-\mathrm{H}$ of BIAN overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 128.5 (s, $C_{\mathrm{Ar}}-\mathrm{H}$ of Ph overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 130.9 (s, C^{6} of BIAN), 131.3 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), 131.6 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), 134.4 (s, C^{2} of BIAN), 136.6 (s, C^{10}), 136.8 (C^{7} of BIAN), 144.5 (s, C^{12}), 145.1 ($\mathrm{s}, C_{\text {Ar }}$ of $\mathrm{Ph}), 148.2\left(\mathrm{~s}, C_{\mathrm{Ar}}\right.$ of Ph$), 156.3\left(\mathrm{~s}, C^{1}=\mathrm{N}\right.$ of BIAN), $158.4\left(\mathrm{~s}, C^{8}-\mathrm{N}\right)$.
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right): ~ \delta / \mathrm{ppm}=113.0\left(\mathrm{~s}\right.$, cyclo- $\left.\mathrm{P}_{4}\right)$.
UV/Vis (toluene, $\lambda_{\max } / \mathrm{nm}, \varepsilon_{\max } / \mathrm{L} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~cm}^{-1}$): 310 sh (49000), 570 (78000).
IR (solid state): $\mathrm{v} / \mathrm{cm}^{-1}=3055 \mathrm{w}(\mathrm{C}-\mathrm{H}), 3023 \mathrm{w}(\mathrm{C}-\mathrm{H}), 2953 \mathrm{w}(\mathrm{C}-\mathrm{H}), 2884 \mathrm{w}(\mathrm{C}-\mathrm{H})$, $1598 \mathrm{w}, 1492 \mathrm{~m}(\mathrm{C}-\mathrm{N}), 1449 \mathrm{~m}, 1417 \mathrm{w}, 1530 \mathrm{w}, 1248 \mathrm{w}, 1104 \mathrm{~s}, 1031 \mathrm{w}, ~ 961 \mathrm{w}, 837 \mathrm{w}$, 814w, 763m, 736m, 695vs, 605m.
Elemental analysis calcd. for $\mathrm{C}_{94} \mathrm{H}_{92} \mathrm{CoKN}_{2} \mathrm{O}_{6} \mathrm{P}_{4}\left(\mathrm{Mw}=1567.70 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\right)$:
C 72.02, H 5.92, N 1.79; found C 73.32, H 6.13, N 1.41.
TOF-MS (ESI, THF): $\mathrm{m} / \mathrm{z}(\%)$ calculated for $\left.\mathrm{C}_{82} \mathrm{H}_{68} \mathrm{CoN}_{2} \mathrm{P}_{4}^{-}{ }^{-} \mathrm{M}^{-}\right]: 1263.3665$; found: 1263.3157 .

$\left[(A r * B I A N) C o\left(\eta^{\mathbf{3}}: \boldsymbol{\eta}^{\mathbf{1}}-\mathbf{P} \mathbf{4} \mathbf{C}(\mathbf{O}) t \mathrm{Bu}\right)\right](4 a):$

Neat pivaloyl chloride $(15.4 \mathrm{mg}, \quad 15.6 \mu \mathrm{~L}$, $0.128 \mathrm{mmol}, 1.0$ equiv.) was added to a deep purple solution of $[\mathrm{K}(18 \mathrm{c}-6)] \mathbf{3}(200 \mathrm{mg}, 0.128 \mathrm{mmol}$, 1.0 equiv.) in toluene (2 mL). The reaction mixture was stirred overnight. A magenta suspension was formed. The solid was removed by filtration over a pad of silica ($2 \times 1 \mathrm{~cm}$) and the residue was washed with toluene (3 mL). The combined filtrates were evacuated to dryness, and the deep purple residue was extracted into $\mathrm{Et}_{2} \mathrm{O}$ $(25 \mathrm{~mL})$. The magenta extract was concentrated until incipient crystallization at one fifth of the original volume. Storage at $-19^{\circ} \mathrm{C}$ for one day gave shimmering deep magenta crystals, which were isolated by decantation of the mother liquor and dried in vacuo. Slow diffusion of n-hexane into a saturated toluene solution of $\mathbf{4 a}$ yielded crystals suitable for single-crystal X-ray diffraction.
Yield: 100 mg (58\%).
${ }^{1} \mathbf{H}$ NMR ($400.13 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta / \mathrm{ppm}=0.22\left(\mathrm{~s}, 9 \mathrm{H},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$ of $\left.t \mathrm{Bu}\right), 1.04-1.07$ (m, 12H, $-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ of $\left.i \operatorname{Pr}\right), 2.61$ (sept, ${ }^{3} J_{\mathrm{HH}}=6.9 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ of $\left.i \operatorname{Pr}\right), 4.83$ (s, $\left.2 \mathrm{H},-\mathrm{C}^{9} H(\mathrm{Ph})_{2}\right), 6.04\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}^{3}-H\right.$ of BIAN $), 6.21-6.25\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}^{4}-H\right.$ of BIAN), 6.63-6.64 (m, 6H, C $-H_{\text {Ar }}$ of Ph), 6.73-6.80 (m, 6H, C- $H_{\text {Ar }}$ of Ph), 6.91-6.98 (m, $14 \mathrm{H}, \mathrm{C}-H_{\mathrm{Ar}}$ of Ph), 7.05-7.11 (m, $6 \mathrm{H}, \mathrm{C}-H_{\mathrm{Ar}}$ of Ph), 7.15-7.16 (m, $2 \mathrm{H}, \mathrm{C}^{11}-H$ overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 7.39-7.41 (m, $4 \mathrm{H},-\mathrm{C}^{9} \mathrm{H}(\mathrm{Ph})_{2}$ overlapping with $\mathrm{C}^{5}-H$ of BIAN), 7.46-7.47 (m, 2H, $\mathrm{C}^{13}-H$), 7.72-7.73 (m, $4 \mathrm{H}, \mathrm{C}-H_{\mathrm{Ar}}$ of Ph), 7.86-7.88 (m, $4 \mathrm{H}, \mathrm{C}-H_{\mathrm{Ar}}$ of Ph).
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(100.61 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta / \mathrm{ppm}=24.4\left(\mathrm{~s},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $\left.i \mathrm{Pr}\right), 24.6(\mathrm{~s}$, ${ }^{-} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ of $\left.i \mathrm{Pr}\right), 25.8\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=3.2 \mathrm{~Hz},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$ of $\left.t \mathrm{Bu}\right), 34.4\left(\mathrm{~s},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $\left.i \mathrm{Pr}\right)$, $51.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=14.6 \mathrm{~Hz},-C\left(\mathrm{CH}_{3}\right)_{3}\right.$ of $\left.t \mathrm{Bu}\right), 51.2\left(\mathrm{~s},-C^{9} \mathrm{H}(\mathrm{Ph})_{2}\right), 52.5\left(\mathrm{~s},-C^{15} \mathrm{H}(\mathrm{Ph})_{2}\right)$,
 $C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), 127.3 (s, $C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), 128.3 (s, $C^{13}-\mathrm{H}$ overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent
 overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 128.9 (s, $\mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$ of Ph overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 129.1 ($\mathrm{s}, C_{\mathrm{Ar}^{-}}-\mathrm{H}$ of Ph), 129.2 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), 129.5 ($\mathrm{s}, C^{4}-\mathrm{H}$ of BIAN), 130.1 (s, $C_{\mathrm{Ar}}-\mathrm{H}$ of Ph$), 130.9\left(\mathrm{~s}, C_{\mathrm{Ar}}-\mathrm{H}\right.$ of Ph$), 130.9\left(\mathrm{~s}, C_{\mathrm{Ar}-\mathrm{H} \text { of } \mathrm{Ph}), 131.4\left(\mathrm{~s}, C_{\mathrm{Ar}}-\mathrm{H}\right)}\right.$ of Ph), 132.5 (s, C^{6} of BIAN), $134.8\left(\mathrm{~s}, C^{10}\right.$), 135.2 (s, C^{2} of BIAN), 135.9 (s, C^{7} of BIAN), 137.4 (s, C^{14}), 143.9 ($\mathrm{s}, C_{\mathrm{Ar}}$ of Ph), $144.8\left(\mathrm{~s}, C_{\mathrm{Ar}}\right.$ of Ph$), 145.5$ ($\mathrm{s}, C_{\mathrm{Ar}}$ of Ph), $146.5\left(\mathrm{~s}, C^{12}\right), 147.6\left(\mathrm{~s}, C_{\text {Ar }}\right.$ of Ph$), 151.6\left(\mathrm{~s}, C^{8}-\mathrm{N}\right), 166.8\left(\mathrm{~s}, C^{1}=\mathrm{N}\right.$ of BIAN), $256.9(\mathrm{~d}$, $\left.{ }^{1} J_{\mathrm{CP}}=93.2 \mathrm{~Hz}, C^{16}=\mathrm{O}\right)$.
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right):\left(\mathrm{AM}_{2} \mathrm{X}\right)$ spin system $\delta / \mathrm{ppm}=59.2(\mathrm{t}, 1 \mathrm{P}$, P_{x}), 109.7 (dd, 2P, P_{M}), 323.3 ($\mathrm{t}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{A}}$), for parameters obtained by simulation, see Figure S12 and Table S1.
UV/Vis (toluene, $\lambda_{\max } / \mathrm{nm}, \varepsilon_{\max } / \mathrm{L} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~cm}^{-1}$): 530 (8500), 750 (13000).
IR (solid state): $\mathrm{v} / \mathrm{cm}^{-1}=3023 \mathrm{w}(\mathrm{C}-\mathrm{H}), 2960 \mathrm{w}(\mathrm{C}-\mathrm{H}), 2865 \mathrm{w}(\mathrm{C}-\mathrm{H}), 1599 \mathrm{~m}, 1516 \mathrm{~m}$, 1491s (C-N), 1452m-sh (C=O), 1417m, 1362w, 1336w, 1294m, 1256m, 1192m, 1149w, 1119w, 1076w, 1031m, 967w, 943m, 893m, 820w, 761s, 736vs, 696vs, 657m, 634m, $605 \mathrm{~s}, 578 \mathrm{~m}, 540 \mathrm{~m}, 511 \mathrm{w}, 467 \mathrm{~m}, 406 \mathrm{w}$.

Elemental analysis calcd. for $\mathrm{C}_{87} \mathrm{H}_{77} \mathrm{CoN}_{2} \mathrm{OP}_{4}\left(\mathrm{Mw}=1349.41 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\right)$:
C 77.44, H 5.75, N 2.08; found C 77.69, H 5.95, N 1.83.

[(Ar*BIAN)Co($\left.\left.\boldsymbol{\eta}^{\mathbf{3}}: \boldsymbol{\eta}^{1}-\mathrm{P} 4 \mathrm{C}(\mathrm{O}) \mathrm{Cy}\right)\right]$ (4b):

Neat cyclohexanecarboxylic acid chloride (37.4 mg , $34.6 \mu \mathrm{~L}, 0.255 \mathrm{mmol}, 1.0$ equiv.) was added to a deep purple solution of $[\mathrm{K}(18 \mathrm{c}-6)] \mathbf{3}$ (400 mg , $0.255 \mathrm{mmol}, 1.0$ equiv.) in toluene (12 mL). The reaction mixture was stirred overnight. A magenta suspension was formed. The solid was removed by filtration over a pad of silica ($1.5 \times 2 \mathrm{~cm}$) and the residue was washed with toluene $(2 \times 3.5 \mathrm{~mL})$. The combined filtrates were evacuated to dryness, and the deep magenta residue was extracted into a mixture of $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ and MTBE $(8 \mathrm{~mL})$. The extract
was filtered and concentrated until incipient crystallization at one seventh of the original volume. Storage at $-19^{\circ} \mathrm{C}$ gave shimmering deep magenta crystals, which were isolated by decantation of the mother liquor and dried in vacuo. The crystalline solid contains 0.9 molecules of $\mathrm{Et}_{2} \mathrm{O}$ per molecule of compound after drying as indicated by the ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra and elemental analysis. Slow diffusion of n-hexane into a saturated toluene solution of $\mathbf{4 b}$ yielded crystals suitable for single-crystal X-ray diffraction.

Yield: 189 mg (54\%).
${ }^{1} \mathbf{H}$ NMR $\left(400.30 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right): ~ \delta / \mathrm{ppm}=0.05-0.14\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ of Cy$), 0.25-0.48$ $\left(\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}_{2}\right.$ of Cy$), 0.62-0.68(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}-\mathrm{H}$ of Cy$), 1.04-1.07\left(\mathrm{~m}, 15 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of i Pr overlapping with CH_{2} of Cy overlapping with $\mathrm{Et}_{2} \mathrm{O}$ solvent signal), 1.28-1.31 (m, 2 H , CH_{2} of Cy), 2.61 (sept, ${ }^{3} \mathrm{JHH}=6.9 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ of $\left.i \mathrm{Pr}\right), 4.96\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{C}^{9} H(\mathrm{Ph})_{2}\right)$, $6.09\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.1 \mathrm{~Hz}, \mathrm{C}^{3}-H\right.$ of BIAN $), ~ 6.19-6.23\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}^{4}-H\right.$ of BIAN), $6.60-6.67(\mathrm{~m}$, $6 \mathrm{H}, \mathrm{C}-H_{\mathrm{Ar}}$ of Ph$), 6.76-6.84\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{C}-H_{\mathrm{Ar}}\right.$ of Ph$), 6.88-7.03\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{C}-H_{\mathrm{Ar}}\right.$ of Ph$)$, 7.06-7.12 (m, 2H, C $-H_{\text {Ar }}$ of Ph$), 7.20-7.21\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}^{11}-H\right), 7.36\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{C}^{15} H(\mathrm{Ph})_{2}\right)$, $7.40\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.2 \mathrm{~Hz}, \mathrm{C}^{5}-H\right.$ of BIAN), 7.47-7.49 (m, 2H, $\left.\mathrm{C}^{13}-H\right), 7.69-7.71(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{C}-H_{\mathrm{Ar}}$ of Ph$), 7.78-7.80\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}-H_{\mathrm{Ar}}\right.$ of Ph$)$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(100.61 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right): ~ \delta / \mathrm{ppm}=24.5\left(\mathrm{~s},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $\left.i \mathrm{Pr}\right), 24.6(\mathrm{~s}$, $-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ of $i \mathrm{Pr}$), 25.7 ($\mathrm{s}, C \mathrm{H}_{2}$ of Cy), 26.3 ($\mathrm{s}, C \mathrm{H}_{2}$ of Cy), 28.5 (d, ${ }^{3} \mathrm{~J}_{\mathrm{CP}}=5.1 \mathrm{~Hz}, C \mathrm{H}_{2}$ of Cy), $34.5\left(\mathrm{~s},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $\left.i \mathrm{Pr}\right), 51.4\left(\mathrm{~s},-C^{9} \mathrm{H}(\mathrm{Ph})_{2}\right), 52.6\left(\mathrm{~s},-C^{15} \mathrm{H}(\mathrm{Ph})_{2}\right), 57.4(\mathrm{~d}$, ${ }^{2} J_{\mathrm{CP}}=16.7 \mathrm{~Hz}, C-\mathrm{H}$ of Cy), 122.3 ($\mathrm{s}, C^{3}-\mathrm{H}$ of BIAN), 125.2 ($\mathrm{s}, C^{5}-\mathrm{H}$ of BIAN), 126.7 (s, $C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), $126.7\left(\mathrm{~s}, C_{\mathrm{Ar}}-\mathrm{H}\right.$ of Ph$), 127.0\left(\mathrm{~s}, C_{\mathrm{Ar}}-\mathrm{H}\right.$ of Ph$), 127.3$ ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), $128.0\left(\mathrm{~s}, C^{13}-\mathrm{H}\right), 128.5\left(\mathrm{~s}, C_{\mathrm{Ar}}-\mathrm{H}\right.$ of Ph overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 128.5 (s, $C^{11}-\mathrm{H}$ overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 128.9 (s, $C_{\mathrm{Ar}}-\mathrm{H}$ of Ph overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 129.0 (s, $C_{\mathrm{Ar}}-\mathrm{H}$ of Ph overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 129.2 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), 129.4 ($\mathrm{s}, C^{4}-\mathrm{H}$ of BIAN), 130.1 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), 130.6 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of $\mathrm{Ph}), 130.9\left(\mathrm{~s}, C_{\mathrm{Ar}}-\mathrm{H}\right.$ of Ph$), 131.5\left(\mathrm{~s}, C_{\mathrm{Ar}}-\mathrm{H}\right.$ of Ph$), 132.4$ (s, C^{6} of BIAN), $134.5\left(\mathrm{~s}, C^{10}\right)$, 135.0 (s, C^{2} of BIAN), 136.3 (s, C^{7} of BIAN), 137.3 (s, C^{14}), 143.9 ($\mathrm{s}, C_{\mathrm{Ar}}$ of Ph), 144.9 (s, C_{Ar} of Ph), $145.4\left(\mathrm{~s}, C_{\mathrm{Ar}}\right.$ of Ph$), 146.6\left(\mathrm{~s}, C^{12}\right), 147.6\left(\mathrm{~s}, C_{\mathrm{Ar}}\right.$ of Ph$), 151.8\left(\mathrm{~s}, C^{8}-\mathrm{N}\right)$, 166.7 (s, $C^{1}=\mathrm{N}$ of BIAN), 254.1 (d low intens., ${ }^{1} J_{\mathrm{CP}}=86.2 \mathrm{~Hz}, C^{16}=\mathrm{O}$).
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right):\left(\mathrm{AM}_{2} \mathrm{X}\right)$ spin system $\delta / \mathrm{ppm}=54.2(\mathrm{t}, 1 \mathrm{P}$, P_{x}), 114.2 ($\mathrm{dd}, 2 \mathrm{P}, \mathrm{P}_{\mathrm{M}}$), $307.9\left(\mathrm{t}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{A}}\right)$, for parameters obtained by simulation, see Figure S16 and Table S2.
UV/Vis (toluene, $\lambda_{\max } / \mathrm{nm}, \varepsilon_{\max } / \mathrm{L} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~cm}^{-1}$): 375 sh (6500), 530 (7500), 740 (11000).

IR (solid state): $\mathrm{v} / \mathrm{cm}^{-1}: 3056 \mathrm{w}(\mathrm{C}-\mathrm{H}), 3023 \mathrm{w}(\mathrm{C}-\mathrm{H})$, 2955m (C-H), 2923m (C-H), 2849w (C-H), 1599m, 1526s, 1492vs (C-N), 1418s, 1381m, 1301m, 1261m, 1194m, $1149 \mathrm{~m}, 1114 \mathrm{~m}, 1076 \mathrm{~m}, 1031 \mathrm{~m}, ~ 973 \mathrm{~m}, 896 \mathrm{w}, 842 \mathrm{w}, 818 \mathrm{w}, 766 \mathrm{~s}, 736 \mathrm{vs}, 695 \mathrm{vs}, 635 \mathrm{~m}$, $606 \mathrm{~s}, 578 \mathrm{~m}, 542 \mathrm{~s}, 513 \mathrm{~m}, 465 \mathrm{~s}, 408 \mathrm{~m}$.
Elemental analysis calcd. for $\left(\mathrm{C}_{89} \mathrm{H}_{79} \mathrm{CoN}_{2} \mathrm{OP}_{4}\right) \cdot\left(\mathrm{Et}_{2} \mathrm{O}\right)_{0.9}\left(\mathrm{Mw}=1376.46 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\right)$: C 77.12, H 6.15, N 1.94; found C 77.39, H 6.22, N 1.88.

[(Ar*BIAN)Co($\left.\left.\boldsymbol{\eta}^{\mathbf{3}}: \boldsymbol{\eta}^{1}-\mathrm{P}_{4} \mathrm{C}(\mathbf{O}) \mathrm{Ad}\right)\right]$ (4c):

Neat 1-adamantanecarboxylic acid chloride ($31.7 \mathrm{mg}, 0.159 \mathrm{mmol}, 1.0$ equiv.) was added to a deep purple solution of $[\mathrm{K}(18 \mathrm{c}-6)] \mathbf{3}$ (250 mg , $0.159 \mathrm{mmol}, 1.0$ equiv.) in toluene (6 mL). The reaction mixture was stirred overnight, and a magenta suspension was formed. The solid was removed by filtration over a pad of silica ($2 \times 2 \mathrm{~cm}$). After washing the silica with toluene (3 x 4 mL) the solvent of the combined filtrates was removed. Subsequently the residue was extracted into toluene (10 mL). The magenta extract was filtered and layered with n hexane (40 mL). After two days dark shimmering magenta crystals suitable for XRD formed, which were isolated by filtration of the mother liquor, washed with n-hexane $(2 \times 4 \mathrm{~mL})$, and dried in vacuo. The crystalline solid contains 0.3 molecules of toluene and 0.5 molecules of n-hexane per molecule of compound after drying as indicated by the ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra and elemental analysis.

Yield: 150 mg (66\%).
${ }^{1} H$ NMR ($400.13 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta / \mathrm{ppm}=0.83\left(\mathrm{br} \mathrm{s}, 6 \mathrm{H}, \mathrm{C}_{\text {sek }} H_{2}\right.$ of Ad$), 0.94-0.97$ $\left(\mathrm{m}, 3 \mathrm{H}, \mathrm{C}_{\text {sek }} \mathrm{H}_{2}\right.$ of Ad$), 1.04-1.07\left(\mathrm{~m}, 12 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $\left.i \mathrm{Pr}\right), 1.12-1.18\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}_{\text {sek }} H_{2}\right.$ of Ad), 1.32 (br s, $3 \mathrm{H}, \mathrm{C}_{\text {tert }} H$ of Ad), 2.60 (sept, ${ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ of $i \mathrm{Pr}$), $4.84\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{C}^{9} H(\mathrm{Ph})_{2}\right), 6.03\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}^{3}-H\right.$ of BIAN), 6.20-6.24 (m, 2 H , $\mathrm{C}^{4}-H$ of BIAN), 6.63-6.64 (m, $6 \mathrm{H}, \mathrm{C}-H_{\mathrm{Ar}}$ of Ph), 6.73-6.81 (m, $6 \mathrm{H}, \mathrm{C}-H_{\mathrm{Ar}}$ of Ph), 6.90-7.12 (m, 20H, C- $H_{\text {Ar }}$ of Ph), 7.14-7.15 (m, $2 \mathrm{H}, \mathrm{C}^{11}-H$ overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 7.38-7.41 (m, 4H, $-\mathrm{C}^{15} H(\mathrm{Ph})_{2}$ overlapping with $\mathrm{C}^{5}-H$ of BIAN), 7.47-7.48 (m, 2H, $\mathrm{C}^{13}-H$), 7.61-7.82 (br m, 4H, C- H_{Ar} of Ph), 7.82-8.10 (br m, 4H, $\mathrm{C}-\mathrm{H}_{\mathrm{Ar}}$ of Ph).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(100.61 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta / \mathrm{ppm}=24.4\left(\mathrm{~s},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $\left.i \mathrm{Pr}\right), 24.6$ (s, $-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ of $\left.i \mathrm{Pr}\right), 28.1$ ($\mathrm{s}, C_{\text {tert }}-\mathrm{H}$ of Ad), $34.4\left(\mathrm{~s},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $i \mathrm{Pr}$), $36.2\left(\mathrm{~s}, C_{\text {sek }} \mathrm{H}_{2}\right.$
of Ad), 37.3 ($\mathrm{s}, C_{\text {sek }} \mathrm{H}_{2}$ of Ad), $51.2\left(\mathrm{~s},-\mathrm{C}^{9} H(\mathrm{Ph})_{2}\right), 52.5\left(\mathrm{~s},-{ }^{15} H(\mathrm{Ph})_{2}\right), 53.8(\mathrm{~s}, \mathrm{~d}$, ${ }^{2} J_{\mathrm{CP}}=13.6 \mathrm{~Hz}, C_{\text {quart }}$ of Ad), $122.0\left(\mathrm{~s}, C^{3}-\mathrm{H}\right.$ of BIAN), 125.1 ($\mathrm{s}, C^{5}-\mathrm{H}$ of BIAN), 126.6
 128.2 ($\mathrm{s}, C^{13}-\mathrm{H}$ overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 128.4 ($\mathrm{s}, C_{\mathrm{Ar}-\mathrm{H} \text { of Ph overlapping }}$ with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 128.9 (s, $C^{11}-\mathrm{H}$ overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 128.9 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 129.0 ($\mathrm{s}, C_{\mathrm{Ar}-\mathrm{H} \text { of Ph overlapping }}$ with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 129.1 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), 129.4 ($\mathrm{s}, C^{4}-\mathrm{H}$ of BIAN), 130.1 (s , $C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), 130.9 (s, $C_{\mathrm{Ar}}-\mathrm{H}$ of Ph$), 131.0\left(\mathrm{br} \mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}\right.$ of Ph$), 131.4$ (br s, $C_{\mathrm{Ar}-\mathrm{H} \text { of }}$ Ph), 132.5 (s, C^{6} of BIAN), 134.8 (s, C^{10}), 135.2 (s, C^{2} of BIAN), 135.9 (s, C^{7} of BIAN), $137.6\left(\mathrm{~s}, C^{14}\right), 143.9\left(\mathrm{~s}, C_{\mathrm{Ar}}\right.$ of Ph$), 144.8\left(\mathrm{~s}, C_{\mathrm{Ar}}\right.$ of Ph$), 145.5\left(\mathrm{~s}, C_{\mathrm{Ar}}\right.$ of Ph$), 146.4(\mathrm{~s}$, C^{12}), $147.8\left(\mathrm{~s}, C_{\text {Ar }}\right.$ of Ph$), 151.7\left(\mathrm{~s}, C^{8}-\mathrm{N}\right), 166.8\left(\mathrm{~s}, C^{1}=\mathrm{N}\right.$ of BIAN), $255.8(\mathrm{~d}$, ${ }^{1} J_{\mathrm{CP}}=88.0 \mathrm{~Hz}, C^{16}=\mathrm{O}$, very low intensity).
${ }^{1} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right):\left(\mathrm{AM}_{2} \mathrm{X}\right)$ spin system $\delta / \mathrm{ppm}=57.4\left(\mathrm{t}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{x}}\right)$, 111.2 ($\mathrm{dd}, 2 \mathrm{P}, \mathrm{P}_{\mathrm{m}}$), 322.6 ($\mathrm{t}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{A}}$), for parameters obtained by simulation, see Figure S20 and Table S3.
UV/Vis (toluene, $\lambda_{\max } / \mathrm{nm}, \varepsilon_{\max } / \mathrm{L} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~cm}^{-1}$): 520 (7000), 750 (10000).
IR (solid state): $\mathrm{v} / \mathrm{cm}^{-1}=3055 \mathrm{w}(\mathrm{C}-\mathrm{H}), 3023 \mathrm{w}(\mathrm{C}-\mathrm{H}), 2954 \mathrm{~m}(\mathrm{C}-\mathrm{H}), 2905 \mathrm{~m}(\mathrm{C}-\mathrm{H})$, $2852 \mathrm{~m}(\mathrm{C}-\mathrm{H}), 1599 \mathrm{~m}, 1523 \mathrm{~s}, 1492 \mathrm{vs}(\mathrm{C}-\mathrm{N}), 1451 \mathrm{~s}, 1419 \mathrm{~s}, 1382 \mathrm{w}, 1342 \mathrm{w}, 1301 \mathrm{~m}$, 1256w, 1194s, 1149m, 1070w, 1031m, 990m, 949w, 919s, 818s, 761s, 737vs, 695vs, 633m, 605s, $577 \mathrm{~m}, 541 \mathrm{~s}, 497 \mathrm{~m}, 465 \mathrm{~s}$, 408w.
Elemental analysis calcd. for $\quad\left(\mathrm{C}_{93} \mathrm{H}_{83} \mathrm{CoN}_{2} \mathrm{OP}_{4}\right) \cdot(\text { (toluene })_{0.3} \cdot(n \text {-hexane })_{0.5}$ $\left(\mathrm{Mw}=1427.53 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\right):$ C 78.64, H 6.22, N 1.87; found C 78.82, H 6.16, N 1.78.

$\left[(A r * B I A N) C o\left(\eta^{3}: \boldsymbol{\eta}^{1}-\mathbf{P 4 C}(\mathbf{O}) \mathbf{P h}\right)\right](4 d):$

Neat benzoyl chloride $(22.4 \mathrm{mg}, \quad 18.5 \mu \mathrm{~L}$, $0.159 \mathrm{mmol}, 1.0$ equiv.) was added to a deep purple solution of $[\mathrm{K}(18 \mathrm{c}-6)] \mathbf{3}(250 \mathrm{mg}, \quad 0.159 \mathrm{mmol}$, 1.0 equiv.) in toluene (5 mL). The reaction mixture was stirred overnight. A magenta suspension was formed. The solid was removed by filtration over a pad of silica ($1.5 \times 2 \mathrm{~cm}$) and the residue was washed with toluene $(3 \times 5 \mathrm{~mL})$. The combined filtrates were concentrated to approximately 10 mL and layered with n-hexane (35 mL). Storage for one day at room temperature and another two days at $-19^{\circ} \mathrm{C}$ gave shimmering deep magenta crystals, which were isolated by filtration, washed with cold
n-hexane ($1 \times 3 \mathrm{~mL}$) and dried in vacuo. The crystalline solid contains 0.3 molecules of toluene and 0.1 molecules of n-hexane per molecule of compound after drying as indicated by the ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra and elemental analysis.

Yield: 145 mg (67\%).
${ }^{1} \mathbf{H}$ NMR (400.13 MHz, $300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta / \mathrm{ppm}=1.04-1.06\left(\mathrm{~m}, 12 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $\left.i \mathrm{Pr}\right)$, 2.62 (sept, ${ }^{3} J_{\mathrm{HH}}=6.9 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ of $\left.i \mathrm{Pr}\right), 5.16\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{C}^{9} H(\mathrm{Ph})_{2}\right), 6.20(\mathrm{~d}$, ${ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}^{3}-H$ of BIAN), 6.23-6.27 (m, 4H, $\mathrm{C}^{4}-H$ of BIAN overlapping with $\mathrm{C}-H_{\text {ortho }}$ of $\left.-\mathrm{C}(\mathrm{O}) \mathrm{Ph}\right), 6.42-6.45\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}-\mathrm{H}_{\mathrm{Ar}}\right.$ of Ph$), 6.57-6.70\left(\mathrm{~m}, 11 \mathrm{H}, \mathrm{C}-H_{\mathrm{Ar}}\right.$ of Ph overlapping with $\mathrm{C}-H_{\text {meta }}$ of $\left.-\mathrm{C}(\mathrm{O}) \mathrm{Ph}\right), 6.79-6.83\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}-\mathrm{H}_{\mathrm{Ar}}\right.$ of Ph$), 6.86-6.88(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{C}-H_{\mathrm{Ar}}$ of Ph$), 6.94-7.13\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{C}-H_{\mathrm{Ar}}\right.$ of Ph overlapping with $\mathrm{C}-\mathrm{H}_{\text {para }}$ of $-\mathrm{C}(\mathrm{O}) \mathrm{Ph}$ and $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), $7.27\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}^{11}-H\right), 7.44\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}^{5}-H\right.$ of BIAN), 7.47-7.49 (m, $6 \mathrm{H}, \mathrm{C}^{13}-H$ overlapping with $\mathrm{C}-H_{\mathrm{Ar}}$ of Ph), $7.54(\mathrm{~s}, 2 \mathrm{H}$, $\left.{ }_{-} \mathrm{C}^{15} \mathrm{H}(\mathrm{Ph})_{2}\right), 7.72-7.74\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}-\mathrm{H}_{\mathrm{Ar}}\right.$ of Ph$)$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(100.66 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right): ~ \delta / \mathrm{ppm}=24.4\left(\mathrm{~s},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $\left.i \operatorname{Pr}\right), 24.6(\mathrm{~s}$, ${ }^{-} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ of $\left.i \mathrm{Pr}\right), 34.5\left(\mathrm{~s},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $\left.i \mathrm{Pr}\right), 51.6\left(\mathrm{~s},-C^{9} \mathrm{H}(\mathrm{Ph})_{2}\right), 52.6\left(\mathrm{~s},-C^{15} \mathrm{H}(\mathrm{Ph})_{2}\right)$, 122.7 ($\mathrm{s}, C^{3}-\mathrm{H}$ of BIAN), 125.4 ($\mathrm{s}, C^{5}-\mathrm{H}$ of BIAN), 126.3 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), 126.7 (s , $C_{\mathrm{Ar}}-\mathrm{H}$ of Ph$), 127.0\left(\mathrm{~s}, C_{\mathrm{Ar}}-\mathrm{H}\right.$ of Ph$), 127.3\left(\mathrm{~s}, \mathrm{~s}, \mathrm{C}_{\text {ortho }}-\mathrm{H}\right.$ of $\left.-\mathrm{C}(\mathrm{O}) \mathrm{Ph}\right), 128.0\left(\mathrm{~s}, C^{13}-\mathrm{H}\right)$, 128.2 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 128.3 ($\mathrm{s}, C^{13}-\mathrm{H}$ overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 128.5 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), $128.5\left(\mathrm{C}_{\text {para }}-\mathrm{H}\right.$ of $-\mathrm{C}(\mathrm{O}) \mathrm{Ph}$ overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 128.9 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 129.0 (s, $C_{\mathrm{Ar}}-\mathrm{H}$ of Ph overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 129.2 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), 129.4 ($\mathrm{s}, C^{4}-\mathrm{H}$ of BIAN), 130.1 ($\mathrm{s}, C_{\mathrm{Ar}-\mathrm{H} \text { of } \mathrm{Ph} \text {), }}^{\text {, }}$
 BIAN), 133.3 ($\mathrm{s}, C_{\text {meta }}-\mathrm{H}$ of $-\mathrm{C}(\mathrm{O}) \mathrm{Ph}$), 134.5 (s, C^{10}), 134.7 (s, C^{2} of BIAN), 136.6 (s , C^{7} of BIAN), $137.1\left(\mathrm{~s}, C^{14}\right), 140.4\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=19.5 \mathrm{~Hz}, C_{\mathrm{Ar}}\right.$ of $\left.-\mathrm{C}(\mathrm{O}) \mathrm{Ph}\right), 144.7\left(\mathrm{~s}, C_{\mathrm{Ar}}\right.$ of $\mathrm{Ph}), 144.9$ ($\mathrm{s}, C_{\mathrm{Ar}}$ of Ph), 145.4 ($\mathrm{s}, C_{\mathrm{Ar}}$ of Ph), 146.2 ($\mathrm{s}, C_{\mathrm{Ar}}$ of Ph), 146.7 (s, C^{12}), 151.5 ($\mathrm{s}, C^{8}-\mathrm{N}$), 166.1 ($\mathrm{s}, C^{1}=\mathrm{N}$ of BIAN), 233.4 (d, $C^{16}=\mathrm{O}$, detected via ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ HMBC NMR spectroscopy).
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right):\left(\mathrm{AM}_{2} \mathrm{X}\right)$ spin system $\delta / \mathrm{ppm}=50.1(\mathrm{t}, 1 \mathrm{P}$, P_{x}), 119.4 (dd, 2P, P_{M}), $295.0\left(\mathrm{t}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{A}}\right.$), for parameters obtained by simulation, see Figure S25 and Table S4.
UV/Vis (toluene, $\lambda_{\max } / \mathrm{nm}, \varepsilon_{\max } / \mathrm{L} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~cm}^{-1}$): 310sh (30000), 410sh (7000), 530 (12000), 740 (14000).

IR (solid state): $\mathrm{v} / \mathrm{cm}^{-1}=3057 \mathrm{w}(\mathrm{C}-\mathrm{H}), 3023 \mathrm{w}(\mathrm{C}-\mathrm{H}), 2956 \mathrm{w}(\mathrm{C}-\mathrm{H}), 1599 \mathrm{~m}, 1530 \mathrm{~m}$, $1492 \mathrm{~s}(\mathrm{C}-\mathrm{N}), 1445 \mathrm{~m}, 1417 \mathrm{~m}, 1362 \mathrm{w}, 1300 \mathrm{~m}, 1216 \mathrm{~m}, 1194 \mathrm{~m}, 1172 \mathrm{~m}, 1076 \mathrm{w}, 1031 \mathrm{~m}$, 1000w, $966 \mathrm{w}, ~ 910 \mathrm{~s}$, $820 \mathrm{~m}, 762 \mathrm{~s}, 737 \mathrm{~s}$, 696vs, $627 \mathrm{~m}, 605 \mathrm{~s}$, $578 \mathrm{~m}, 542 \mathrm{~m}, 512 \mathrm{~m}, 466 \mathrm{~m}$.
Elemental analysis calcd. for $\quad\left(\mathrm{C}_{89} \mathrm{H}_{73} \mathrm{CoN}_{2} \mathrm{OP}_{4}\right) \cdot(\text { (toluene })_{0.3} \cdot(n \text {-hexane })_{0.1}$ $\left(\mathrm{Mw}=1369.40 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\right)$: C 78.32, H 5.44, N 2.01; found C 78.22, H 5.50, N 1.92 .

$\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiNC}\right)\left(\boldsymbol{\eta}^{\mathbf{2}}: \boldsymbol{\eta}^{\mathbf{1}}-\mathrm{P} 4 \mathrm{CO} t \mathrm{Bu}\right)\right](5 a):$

Neat trimethylsilyl cyanide ($7.1 \mathrm{mg}, 8.9 \mu \mathrm{~L}$, $0.071 \mathrm{mmol}, 1.3$ equiv.) was added to a magenta solution of $4 \mathbf{a}$ ($74 \mathrm{mg}, 0.055 \mathrm{mmol}, 1.0$ equiv.) in toluene (3 mL). The reaction mixture was stirred for 14 hours. The dark green reaction mixture was filtered and layered with n-hexane (20 mL). Shimmering dark green crystals suitable for single-crystal X-ray diffraction were formed after five days at $-35^{\circ} \mathrm{C}$. The crystalline solid was isolated by decantation of the mother liquor, washed with n-hexane $(2 \times 2 \mathrm{~mL})$ and dried in vacuo. The crystalline solid contains 0.2 molecules of toluene and 0.7 molecules of n-hexane per molecule of compound after drying as indicated by the ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra and elemental analysis. Compound 5a decomposes in solution at ambient temperature over several days. The ${ }^{1} \mathrm{H}$ NMR spectrum of the decomposition solution after three weeks shows predominantly uncoordinated Ar*BIAN (1) ligand. The compound can be stored as a solid at ambient temperature without any decomposition observable by spectroscopy.
Yield: 59 mg (77\%)
${ }^{1} \mathbf{H}$ NMR (400.13 MHz, $288 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta / \mathrm{ppm}=-0.39\left(\mathrm{~s}, 9 \mathrm{H},-\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.00-1.03(\mathrm{~m}$, $12 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ of $\left.i \mathrm{Pr}\right), 1.26\left(\mathrm{~s}, 9 \mathrm{H},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$ of t Bu overlapping with n-hexane solvent signal), 2.52 (sept, ${ }^{3} J_{\mathrm{HH}}=6.9 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ of $\left.i \mathrm{Pr}\right), 2.61\left(\mathrm{sept},{ }^{3} J_{\mathrm{HH}}=6.9 \mathrm{~Hz}, 1 \mathrm{H}\right.$, ${ }^{-} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ of $\left.i \mathrm{Pr}\right), 4.99\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}^{3 / 3}-H\right.$ of BIAN), 5.59-5.60 (d, $J_{\mathrm{PH}}=4.1 \mathrm{~Hz}$ through space, $\left.1 \mathrm{H},-\mathrm{C}^{9} H(\mathrm{Ph})_{2}\right)$, $5.94-5.98\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}^{4 / 4}-H\right.$ of BIAN), 6.19 ($\mathrm{d}^{3}{ }^{3} \mathrm{HH}=7.1 \mathrm{~Hz}, \mathrm{C}^{3 / 3^{\prime}}-H$ of BIAN), 6.41-6.59 (m, $8 \mathrm{H}, \mathrm{C}^{4 / 4^{\prime}-\mathrm{H} \text { of BIAN overlapping with }}$ ${ }^{-} \mathrm{C}^{9}{ }^{\prime} H(\mathrm{Ph})_{2}$ overlapping with $\mathrm{C}-H_{\mathrm{Ar}}$ of Ph$), 6.71-6.84\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{C}-H_{\mathrm{Ar}}\right.$ of Ph$), 6.90-7.13$ $\left(\mathrm{m}, 13 \mathrm{H}, \mathrm{C}^{5 / 5^{\prime}}-H\right.$ of BIAN overlapping with $\mathrm{C}-H_{\mathrm{Ar}}$ of Ph overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 7.17-7.24 (m, 8H, $-\mathrm{C}^{15 / 15^{\prime}} H(\mathrm{Ph})_{2}$ overlapping with $\mathrm{C}^{5 / 5^{\prime}}-H$ of BIAN overlapping
with $\mathrm{C}-H_{\mathrm{Ar}}$ of Ph$), 7.27-7.28\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}-H_{\mathrm{Ar}}\right.$ of Ph$), 7.31-7.32\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}^{11 / 11^{\prime}}-H\right)$,
 7.57-7.61 (m, $3 \mathrm{H},-\mathrm{C}^{15 / 15} \mathrm{H}(\mathrm{Ph})_{2}$ overlapping with $\mathrm{C}-\mathrm{H}_{\mathrm{Ar}}$ of Ph$), 7.64-7.66(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{C}-H_{\mathrm{Ar}}$ of Ph$), 7.83-7.85\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}-H_{\mathrm{Ar}}\right.$ of Ph$), 8.03\left(\mathrm{~s} \mathrm{br}, 2 \mathrm{H}, \mathrm{C}-H_{\mathrm{Ar}}\right.$ of Ph$)$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(100.61 \mathrm{MHz}, 288 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta / \mathrm{ppm}=-0.1\left(\mathrm{~s},-\operatorname{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 23.9(\mathrm{~s}$, $-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ of $\left.i \mathrm{Pr}\right), 24.4\left(\mathrm{~s},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $\left.i \mathrm{Pr}\right), 24.5\left(\mathrm{~s},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $\left.i \mathrm{Pr}\right), 24.8(\mathrm{~s}$, $-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ of $\left.i \mathrm{Pr}\right), 31.6\left(\mathrm{~s},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$ of $\left.t \mathrm{Bu}\right), 34.1\left(\mathrm{~s},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $\left.i \mathrm{Pr}\right), 34.3(\mathrm{~s}$, $-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ of $\left.i \operatorname{Pr}\right), 37.7\left(\mathrm{~m},-C\left(\mathrm{CH}_{3}\right)_{3}\right.$ of $\left.t \mathrm{Bu}\right), 52.1\left(\mathrm{~s},-C^{9} \mathrm{H}(\mathrm{Ph})_{2}\right), 52.2$ (s, $\left.-C^{15 / 15^{\prime}} \mathrm{H}(\mathrm{Ph})_{2}\right), 52.3\left(\mathrm{~s},-C^{15 / 15}{ }^{\prime} \mathrm{H}(\mathrm{Ph})_{2}\right), 53.3 \quad\left(\mathrm{~d}, J_{\mathrm{PC}}=15.0 \mathrm{~Hz}\right.$ through space, $\left.-C^{9} \mathrm{H}(\mathrm{Ph})_{2}\right), 119.5-119.7\left(\mathrm{~m}, C^{16}\right), 123.0\left(\mathrm{~s}, \mathrm{C}^{3 / 3^{\prime}}-H\right.$ of BIAN), $123.9\left(\mathrm{~s}, C^{3 / 3^{\prime}-\mathrm{H} \text { of }}\right.$
 126.7 (s, $C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), 126.9 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), 127.0 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), 127.0 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$
 $C^{4 / 4^{\prime}-}-\mathrm{H}$ of BIAN), 128.3 (s, $C^{11 / 11^{\prime}}-\mathrm{H}$ overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 128.3 (s, $C_{\mathrm{Ar}}-\mathrm{H}$ of Ph overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 128.5 ($\mathrm{s}, C^{4 / 4^{\prime}}-\mathrm{H}$ of BIAN overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 128.6 (s, $C_{\mathrm{Ar}}-\mathrm{H}$ of Ph overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 128.7 (s, $C_{\mathrm{Ar}}-\mathrm{H}$ of Ph overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 128.8 (s, $C_{\mathrm{Ar}}-\mathrm{H}$ of Ph overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 128.9 ($\mathrm{s}, C_{\mathrm{Ar}^{2}-\mathrm{H}}$ of Ph overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 129.0 ($s, C^{11 / 11^{\prime}}-\mathrm{H}$ overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), $129.1\left(\mathrm{~s}, C_{\mathrm{Ar}}-\mathrm{H}\right.$ of Ph$), 129.1\left(\mathrm{~s}, C_{\mathrm{Ar}}-\mathrm{H}\right.$ of Ph$), 129.2\left(\mathrm{~s}, C^{13 / 13^{\prime}}-\mathrm{H}\right), 130.1\left(\mathrm{~s}, C_{\mathrm{Ar}}-\mathrm{H}\right.$ of $\mathrm{Ph}), 130.3\left(\mathrm{~s}, C^{6}\right.$ of BIAN), $130.8\left(\mathrm{~s}, C_{\mathrm{Ar}}-\mathrm{H}\right.$ of Ph$), 131.0\left(\mathrm{~s}, C^{13 / 13^{\prime}}-\mathrm{H}\right), 131.1\left(\mathrm{~s}, C^{2 / 2^{\prime}}\right.$ of BIAN), $131.2\left(\mathrm{~s}, C_{\mathrm{Ar}}-\mathrm{H}\right.$ of Ph$), 131.2\left(\mathrm{~s}, C_{\mathrm{Ar}}-\mathrm{H}\right.$ of Ph$), 131.4\left(\mathrm{~s}, C^{2 / 2}\right.$ of BIAN), 131.6 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), 131.7 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), 131.7 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph$), 131.9$ ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), 131.9 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), 135.5 ($\mathrm{s}, C^{10 / 10^{\prime}}$), 135.9 ($\mathrm{s}, C^{10 / 10^{\prime}}$), 138.1 (s, C^{7} of BIAN), 138.7 (s, $\left.C^{14 / 14^{\prime}}\right), 139.2\left(\mathrm{~s}, C^{14 / 14^{4}}\right), 142.8\left(\mathrm{~s}, C_{\mathrm{Ar}}\right.$ of Ph$), 143.1\left(\mathrm{~s}, C_{\mathrm{Ar}}\right.$ of Ph$), 143.7\left(\mathrm{~s}, C_{\mathrm{Ar}}\right.$ of Ph$)$, $144.0\left(\mathrm{~s}, C_{\mathrm{Ar}}\right.$ of Ph$), 146.3\left(\mathrm{~s}, C^{12 / 12}\right), 146.4\left(\mathrm{~s}, C^{12 / 12^{\prime}}\right), 146.6\left(\mathrm{~s}, C_{\mathrm{Ar}}\right.$ of Ph$), 147.0\left(\mathrm{~s}, C_{\mathrm{Ar}}\right.$ of Ph$), 147.4\left(\mathrm{~s}, C^{8 / 8^{\prime}}-\mathrm{N}\right), 147.5\left(\mathrm{~s}, C_{\mathrm{Ar}}\right.$ of Ph$), 147.6\left(\mathrm{~s}, C_{\mathrm{Ar}}\right.$ of Ph$), 152.5\left(\mathrm{~s}, C^{\left.8 / 8^{\prime}-\mathrm{N}\right)}\right.$, $162.2\left(\mathrm{~s}, C^{1 / 11^{\prime}}=\mathrm{N}\right.$ of BIAN), $163.6\left(\mathrm{~s}, C^{1 / 1^{\prime}}=\mathrm{N}\right.$ of BIAN), $190.5\left(\mathrm{~s}, C \equiv \mathrm{NSi}\left(\mathrm{CH}_{3}\right)_{3}\right)$.
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(161.98 \mathrm{MHz}, 288 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$: (AEMX) spin system $\delta / \mathrm{ppm}=-245.2(\mathrm{dd}$, $\left.1 \mathrm{P}, \mathrm{P}_{\mathrm{x}}\right),-102.5\left(\mathrm{dd}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{M}}\right),-10.7\left(\mathrm{br} \mathrm{d}, 1 \mathrm{P}, \Delta \mathrm{v}^{1 / 2}=99 \mathrm{~Hz}, \mathrm{P}_{\mathrm{E}}\right), 228.2\left(\mathrm{~d}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{A}}\right)$, for parameters obtained by simulation, see Figure S29 and Table S5. Spin system was assigned based on the coupling constants and shift in the $\mathrm{P}_{\mathrm{E} / \mathrm{X}} \mathrm{C}$ three-ring as reported for similar P_{3} motifs. ${ }^{[24]}$
${ }^{29} \mathbf{S i}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(79.49 \mathrm{MHz}, 288 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta / \mathrm{ppm}=4.5\left(\mathrm{~s},-\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right)$.

UV/Vis (toluene, $\lambda_{\max } / \mathrm{nm}, \varepsilon_{\max } / \mathrm{L} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~cm}^{-1}$): 310sh (26000), 440 (9000), 600 (10000), 830 (10500).

IR (solid state): $\mathrm{v} / \mathrm{cm}^{-1}=3055 \mathrm{w}(\mathrm{C}-\mathrm{H}), 3026 \mathrm{w}(\mathrm{C}-\mathrm{H}), 2955 \mathrm{w}(\mathrm{C}-\mathrm{H}), 2859 \mathrm{w}(\mathrm{C}-\mathrm{H})$, 2012vs ($\mathrm{C} \equiv \mathrm{N}$), 1600w, 1541w, 1493 m (C-N), 1451m, 1417m, 1384w, 1359w, 1296m, 1255m, 1194w, 1152w, 1077w, 1032w, 1044w, 949w, 846s, 760s, 737m, 696vs, 656m, 605m.
Elemental analysis calcd. for $\quad\left(\mathrm{C}_{91} \mathrm{H}_{86} \mathrm{CoN}_{3} \mathrm{OP}_{4} \mathrm{Si}\right) \cdot(\text { toluene })_{0.2} \cdot(n \text {-hexane })_{0.7}$ $\left(\mathrm{Mw}=1448.62 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\right):$ C $75.96, \mathrm{H} 6.43, \mathrm{~N} 2.75$; found C $75.65, \mathrm{H} 6.42, \mathrm{~N} 2.71$.
endo- and exo-[(Ar*BIAN)Co(CyNC) $\left(\eta^{3}-\mathrm{P}_{4} \mathrm{C}(\mathrm{O})\right.$ tBu)] (endo-/exo-6a):

Neat cyclohexyl isocyanide ($48.6 \mathrm{mg}, 55.3 \mu \mathrm{~L}$, $0.44 \mathrm{mmol}, 10.0$ equiv.) was added to a magenta solution of $\mathbf{4 a}(60 \mathrm{mg}, 0.044 \mathrm{mmol}, 1.0$ equiv.) in toluene (2.0 mL). The reaction mixture changed to a dark green while stirring for two hours. After removing the solvent, the resulting dark residue was taken up in n-hexane $(3 \times 3 \mathrm{~mL})$ and the resulting extracts were filtered. After storage for one day at room temperature, shimmering green crystals suitable for single-crystal X-ray diffraction had formed. The crystals were isolated by decantation of the supernatant, washed with n-hexane ($3 \times 0.5 \mathrm{~mL}$), and dried in vacuo. The crystalline solid contains 0.5 molecules of n-hexane per molecule of $\mathbf{6 a}$ after drying as indicated by the ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra and elemental analysis.
Yield: 38 mg (57\%).
${ }^{1} \mathbf{H}$ NMR ($400.13 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta / \mathrm{ppm}=0.46-0.74\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{CH}_{2}\right.$ of Cy overlapping from endo-6a and exo-6a), 0.95-1.16 (m, 39H, $-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ of $i \mathrm{Pr}$ from endo-6a and exo-6a overlapping with $-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$ of $t \mathrm{Bu}$ from exo-6a overlapping with CH_{2} of Cy from endo-6a and exo-6a), $1.43\left(\mathrm{~s}, 9 \mathrm{H},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$ of $t \mathrm{Bu}$ from endo-6a), 1.64-1.70 (m, 4H, CH2 of Cy overlapping from endo-6a and exo-6a), 2.09-2.14 (m, 1H, $\mathrm{C}-H$ of Cy from endo-6a), 2.48-2.58 (m, $4 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ of $i \mathrm{Pr}$ overlapping from endo-6a and exo-6a), 2.79-2.85 (m, 1H, C-H of Cy from exo-6a), $5.63\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.1 \mathrm{~Hz}\right.$,
$2 \mathrm{H}, \mathrm{C}^{3}-H$ of BIAN from exo- $\mathbf{6 a}$), 5.75-5.76 (m, $4 \mathrm{H}, \mathrm{C}^{3}-H$ of BIAN from endo- $\mathbf{6 a}$ overlapping with $-\mathrm{C}^{9} \mathrm{H}(\mathrm{Ph})_{2}$ from endo-6a), $5.85\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{C}^{9} \mathrm{H}(\mathrm{Ph})_{2}\right.$ from exo-6a), 6.14-6.17 (m, 2H, $\mathrm{C}^{4}-H$ of BIAN from exo-6a), 6.19-6.23 (m, 2H, $\mathrm{C}^{4}-H$ of BIAN from endo-6a), 6.57-6.75 (m, 16H, $-H_{\mathrm{Ar}}$ of Ph overlapping from endo-6a and exo-6a), 6.82-6.88 (m, 17H, C- $H_{\text {Ar }}$ of Ph overlapping from endo-6a and exo-6a), 6.96-6.99 (m, $3 \mathrm{H}, \mathrm{C}-H_{\mathrm{Ar}}$ of Ph from endo-6a or exo-6a), 7.05-7.14 (m, 24H, C $-H_{\mathrm{Ar}}$ of Ph overlapping from endo-6a and exo-6a overlapping with $\mathrm{C}^{5}-H$ of BIAN from endo-6a and exo-6a overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 7.27-7.30 (m, $6 \mathrm{H}, \mathrm{C}^{11}-H$ from endo-6a overlapping with $\mathrm{C}-\mathrm{H}_{\mathrm{Ar}}$ of Ph from endo-6a), 7.36-7.41 (m, 10H, $\mathrm{C}^{13}-H$ of endo-6a overlapping with $\mathrm{C}^{11}-H$ of exo-6a overlapping with $\mathrm{C}^{13}-H$ of exo- $\mathbf{6 a}$ overlapping with $\mathrm{C}-\mathrm{H}_{\mathrm{Ar}}$ of Ph from endo-6a or exo-6a), 7.59-7.62 (m, $8 \mathrm{H}, \mathrm{C}-H_{\mathrm{Ar}}$ of Ph overlapping from endo-6a and exo-6a), $7.67\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{C}^{15} \mathrm{H}(\mathrm{Ph})_{2}\right.$ from exo-6a), 7.74-7.76 (m, $4 \mathrm{H}, \mathrm{C}-\mathrm{H}_{\mathrm{Ar}}$ of Ph from endo-6a), 7.91-7.94 (m, 6H, $-\mathrm{C}^{15} \mathrm{H}(\mathrm{Ph})_{2}$ of endo-6a overlapping with $\mathrm{C}-\mathrm{H}_{\mathrm{Ar}}$ of Ph from exo-6a).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(100.61 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{~K}\right): \delta / \mathrm{ppm}=24.1\left(\mathrm{~s},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $i \mathrm{Pr}$ from endo-6a), $24.2\left(\mathrm{~s},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $i \mathrm{Pr}$ from exo-6a), $24.5\left(\mathrm{~s},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $i \mathrm{Pr}$ from exo-6a), 24.5 ($\mathrm{s},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ of $i \mathrm{Pr}$ from endo-6a), $25.0\left(\mathrm{~s}, \mathrm{CH}_{2}\right.$ of Cy from endo-6a), 25.1 (s, CH_{2} of Cy from exo-6a), 25.3 (s, CH_{2} of Cy from exo- $\mathbf{6 a}$), 25.3 ($\mathrm{s}, \mathrm{CH}_{2}$ of Cy from endo-6a), $28.0\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CP}}=3.6 \mathrm{~Hz},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$ of $t \mathrm{Bu}$ from exo- $\left.\mathbf{6 a}\right)$, $28.5\left(\mathrm{~s},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$ of $t \mathrm{Bu}$ from endo- $\mathbf{6 a}$), 32.3 (s, CH_{2} of Cy from endo- $\mathbf{6 a}$ or exo- $\mathbf{6 a}$), 32.3 ($\mathrm{s}, \mathrm{CH}_{2}$ of Cy from endo-6a or exo-6a), $34.2\left(\mathrm{~s},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $i \mathrm{Pr}$ from endo-6a), $34.3\left(\mathrm{~s},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $i \operatorname{Pr}$ from exo-6a), $49.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=18.5 \mathrm{~Hz},-C\left(\mathrm{CH}_{3}\right)_{3}\right.$ of $t \mathrm{Bu}$ from exo- $\mathbf{6 a}$), $49.8(\mathrm{~d}$, ${ }^{2} J_{\mathrm{CP}}=20.4 \mathrm{~Hz},-C\left(\mathrm{CH}_{3}\right)_{3}$ of $t \mathrm{Bu}$ from endo-6a), $51.8\left(\mathrm{~d}, J_{\mathrm{PC}}=5.3 \mathrm{~Hz}\right.$ (through space), ${ }^{-} C^{9} \mathrm{H}(\mathrm{Ph})_{2}$ from endo-6a), $52.1\left(\mathrm{~s}, \mathrm{~d}, J_{\mathrm{PC}}=57.1 \mathrm{~Hz}\right.$ (through space), $-C^{9} \mathrm{H}(\mathrm{Ph})_{2}$ from exo-6a), $52.6\left(\mathrm{~s},-C^{15} \mathrm{H}(\mathrm{Ph})_{2}\right.$ from endo-6a), $52.7\left(\mathrm{~s},-C^{15} \mathrm{H}(\mathrm{Ph})_{2}\right.$ from exo-6a), 56.6 (s, $C-\mathrm{H}$ of Cy from endo-6a), 57.4 ($C-\mathrm{H}$ of Cy from exo-6a), 123.1 ($\mathrm{s}, C^{3}-\mathrm{H}$ of BIAN from exo-6a), 123.4 ($\mathrm{s}, C^{3}-\mathrm{H}$ of BIAN from endo-6a), 126.2 ($\mathrm{s}, C^{5}-\mathrm{H}$ of BIAN from exo-6a), 126.5 ($\mathrm{s}, C^{5}-\mathrm{H}$ of BIAN from endo-6a), 126.6 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph from endo-6a or exo-6a), 126.6 (s, $C_{\mathrm{Ar}}-\mathrm{H}$ of Ph from endo-6a or exo-6a), 126.8 (s, $C_{\mathrm{Ar}}-\mathrm{H}$ of Ph from endo-6a or exo-6a), 127.0 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph from endo-6a or exo-6a), 127.1 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph from endo-6a or exo-6a), 127.2 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph from endo-6a or exo-6a), 127.4 (s, $C_{\mathrm{Ar}}-\mathrm{H}$ of Ph from endo-6a or exo-6a), 127.4 (s, $C_{\mathrm{Ar}^{-}}-\mathrm{H}$ of Ph from endo-6a or exo-6a), 128.1 (s , $C^{4}-\mathrm{H}$ of BIAN from endo-6a), 128.3 ($\mathrm{s}, \mathrm{C}^{4}-H$ of BIAN from exo- $\mathbf{6 a}$), 128.4 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph from endo-6a or exo-6a overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 128.6 ($\mathrm{s}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$ of

Ph from endo-6a or exo-6a overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 128.8 (s, $C_{\mathrm{Ar}}-\mathrm{H}$ of Ph from endo-6a or exo-6a overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 128.9 (s, $C_{\mathrm{Ar}}-\mathrm{H}$ of Ph from endo-6a or exo-6a overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 128.9 ($\mathrm{s}, C_{\mathrm{Ar}^{-}}-\mathrm{H}$ of Ph from endo-6a or exo-6a overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 129.0 (s, $C^{11}-\mathrm{H}$ from endo-6a), 129.1 ($\mathrm{s}, C^{11}-\mathrm{H}$ from exo-6a), 129.2 ($\mathrm{s}, C^{13}-\mathrm{H}$ from exo-6a), 129.3 ($\mathrm{s}, C^{13}-\mathrm{H}$ from endo-6a), 130.6 (s, C^{2} of BIAN from exo-6a), 130.6 (s, C^{6} of BIAN from endo-6a), 130.7 (s, C^{2} of BIAN from exo-6a), 130.8 (s, C^{2} of BIAN from endo- $\mathbf{6 a}$), $130.8\left(\mathrm{~s}, C_{\mathrm{Ar}}-\mathrm{H}\right.$ of Ph from endo-6a or exo-6a), 131.2 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph from endo-6a or exo-6a), 131.2 (s , $C_{\mathrm{Ar}}-\mathrm{H}$ of Ph from endo-6a or exo-6a), 131.3 (s, $C_{\mathrm{Ar}}-\mathrm{H}$ of Ph from endo-6a or exo-6a), 131.4 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph from endo-6a or exo-6a), 131.5 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph from endo-6a or exo-6a), 135.4 (s, C^{10} from exo-6a), 135.5 (s, C^{10} from endo- $\mathbf{6 a}$), 137.4 (s, C^{7} of BIAN from exo-6a), 138.0 (s, C^{7} of BIAN from endo-6a), 138.7 (s, C^{14} from endo-6a), 139.3 (s, C^{14} from exo-6a), 143.1 ($\mathrm{s}, C_{\mathrm{Ar}}$ of Ph from endo-6a or exo-6a), 143.2 ($\mathrm{s}, C_{\mathrm{Ar}}$ of Ph from endo-6a or exo-6a), 145.1 (s, C_{Ar} of Ph from endo-6a or exo-6a), 145.3 (s, $C^{8}-\mathrm{N}$ from endo-6a), 145.4 ($\mathrm{s}, C_{\mathrm{Ar}}$ of Ph from endo-6a or exo-6a), 145.5 ($\mathrm{s}, C^{8}-\mathrm{N}$ from exo-6a), 146.3 ($\mathrm{s}, \mathrm{C}_{\mathrm{Ar}}$ of Ph from endo-6a or exo-6a), 146.5 (s, C^{12} from exo-6a), 146.8 (s, C^{12} from endo-6a), 147.2 ($\mathrm{s}, C_{\mathrm{Ar}}$ of Ph from endo-6a or exo-6a), 147.8 ($\mathrm{s}, C_{\mathrm{Ar}}$ of Ph from endo-6a or exo-6a), 147.9 ($\mathrm{s}, C_{\mathrm{Ar}}$ of Ph from endo-6a or exo-6a), 166.2 ($\mathrm{s}, C^{1}=\mathrm{N}$ of BIAN from exo-6a), 167.6 ($\mathrm{s}, \mathrm{C}^{1}=\mathrm{N}$ of BIAN from endo-6a), 235.1 ($\mathrm{s}, \mathrm{C}^{16}=\mathrm{O}$ of endo- $\mathbf{6 a}$, detected by ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ HMBC-spectroscopy), 235.6 (s, $C^{16}=\mathrm{O}$ of exo-6a, detected by ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ HMBC-spectroscopy), the signal for $C \equiv \mathrm{~N}$ of coordinating isocyanides could not be detected.
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(161.98 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right):\left(\mathrm{AX}_{2} \mathrm{Y}\right)$ spin system for endo- $\mathbf{6 a}$ and ($\mathrm{A}_{2} \mathrm{MX}$) spin system for exo-6a $\delta / \mathrm{ppm}=-26.5\left(\mathrm{dt}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{X}}\right.$ of exo-6a), $5.0\left(\mathrm{dt}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{M}}\right.$ of exo-6a), 50.5 (dd, 2P, P_{A} of exo-6a), 67.3-73.2 (m, 3P, P_{XY} of endo-6a), 142.5-146.5 (m, $1 \mathrm{P}, \mathrm{P}_{\mathrm{A}}$ of endo-6a), for parameters obtained by simulation, see Figure S 35 and Table S6 for endo-6a and Figure S36 and Table S7 for exo-6a.
UV/Vis (toluene, $\lambda_{\max } / \mathrm{nm}, \varepsilon_{\max } / \mathrm{L} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~cm}^{-1}$): 310sh (12000), 430sh (3500), 500 (5000), 700 (8000).

IR (solid state): $\mathrm{v} / \mathrm{cm}^{-1}=3058 \mathrm{w}(\mathrm{C}-\mathrm{H}), 3025 \mathrm{w}(\mathrm{C}-\mathrm{H}), 2956 \mathrm{w}(\mathrm{C}-\mathrm{H}), 2931 \mathrm{w}(\mathrm{C}-\mathrm{H})$, 2858w ($\mathrm{C}-\mathrm{H}$), 2163w ($\mathrm{C} \equiv \mathrm{N}$), 2115m ($\mathrm{C} \equiv \mathrm{N}$), 1640m ($\mathrm{C}=\mathrm{O}$), 1599m ($\mathrm{C}=\mathrm{O}$), 1561w, 1493m (C-N), 1446m, 1419w, 1384w, 1362w, 1295m, 1254w, 1191m, 1077w, 1031m, $947 \mathrm{w}, 915 \mathrm{~m}, 823 \mathrm{~m}, 762 \mathrm{~m}, 738 \mathrm{~m}, 697 \mathrm{vs}, 655 \mathrm{~m}, 604 \mathrm{~s}$.

Elemental analysis calcd. for $\left(\mathrm{C}_{94} \mathrm{H}_{88} \mathrm{CoN}_{3} \mathrm{OP}_{4}\right) \cdot(n \text {-hexane })_{0.4}\left(\mathrm{Mw}=1458.58 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\right)$: C 77.58, H 6.38, N 2.80; found C 77.62, H 6.15, N 2.87.

$[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}(\mathrm{CN})\left(\boldsymbol{\eta}^{3}-\mathrm{P}_{3}\right)\right]([\mathrm{K}(18 \mathrm{c}-6)] 8)$ and $[\mathrm{K}(18 \mathrm{c}-6)][\mathrm{CyC}(\mathrm{O}) \mathrm{PCN}]$ ([K(18c-6)]9b):

	$\mathrm{KCN} \quad(17.5 \mathrm{mg}, \quad 0.268 \mathrm{mmol}, \quad 2.2$ equiv.), $\quad 18 \mathrm{c}-6$
${ }^{1} 1 / 2$	($70.8 \mathrm{mg}, 0.268 \mathrm{mmol}, 2.2$ equiv.) and 4b (168 mg ,
	$0.122 \mathrm{mmol}, 1.0$ equiv.) were suspended in THF
h) $2_{2} \mathrm{CC}^{9}{ }^{8}{ }^{15} \mathrm{CH}(\mathrm{Ph}$	$(7 \mathrm{~mL})$. The magenta mixture was stirred for three
11	days over which time the color changed to a deep
iPr	purple. The solvent was removed in vacuo and the
[K(18c-6) ${ }^{+}$	resulting dark solid taken up in toluene (6 mL). The

([K(18c-6)]8): Yield: 120 mg (60\%)
${ }^{1} \mathbf{H}$ NMR (400.13 MHz, $300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta / \mathrm{ppm}=1.06-1.09\left(\mathrm{~m}, 12 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $\left.i \mathrm{Pr}\right)$, 2.64 (sept, ${ }^{3} J_{\mathrm{HH}}=6.9 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ of $\left.i \mathrm{Pr}\right), 2.91(\mathrm{~s}, 24 \mathrm{H}, 18 \mathrm{c}-6), 5.73(\mathrm{~s}, 2 \mathrm{H}$, $\left.{ }^{-} \mathrm{C}^{9} H(\mathrm{Ph})_{2}\right), 5.93\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}^{3}-H\right.$ of BIAN), 6.32-6.36 (m, $2 \mathrm{H}, \mathrm{C}^{4}-H$ of BIAN), 6.68-6.75 (m, $8 \mathrm{H}, \mathrm{C}-H_{\mathrm{Ar}}$ of Ph), 6.88-6.92 (m, 4H, C- H_{Ar} of Ph), 6.97-7.03 (m, $12 \mathrm{H}, \mathrm{C}-H_{\mathrm{Ar}}$ of Ph), 7.15-7.19 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{C}^{5}-H$ of BIAN overlapping with $\mathrm{C}^{11}-H$ and $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 7.21-7.25 (m, $6 \mathrm{H}, \mathrm{C}^{13}-H$ overlapping with $\mathrm{C}-\mathrm{H}_{\mathrm{Ar}}$ of Ph), 7.39-7.41 (m, $4 \mathrm{H}, \mathrm{C}-H_{\mathrm{Ar}}$ of Ph), 7.95-7.97 (m, 4H, C $-H_{\mathrm{Ar}}$ of Ph), 8.03-8.05 (m, 4H, C $-H_{\mathrm{Ar}}$ of Ph), 8.83 (s, $\left.2 \mathrm{H},-\mathrm{C}^{15} H(\mathrm{Ph})_{2}\right)$.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(100.61 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta / \mathrm{ppm}=24.5\left(\mathrm{~s},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $\left.i \mathrm{Pr}\right), 24.7(\mathrm{~s}$, ${ }^{-} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ of $\left.i \mathrm{Pr}\right), 34.2\left(\mathrm{~s},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $\left.i \mathrm{Pr}\right), 50.9\left(\mathrm{~s},-C^{9} \mathrm{H}(\mathrm{Ph})_{2}\right), 51.9\left(\mathrm{~s},-C^{15} \mathrm{H}(\mathrm{Ph})_{2}\right)$, 69.9 (s, 18c-6), 120.9 ($\mathrm{s}, C^{3}-\mathrm{H}$ of BIAN), 123.9 ($\mathrm{s}, C^{5}-\mathrm{H}$ of BIAN), 125.8 ($\mathrm{s}, C_{\mathrm{Ar}-\mathrm{H} \text { of }}$ $\mathrm{Ph}), 126.3\left(\mathrm{~s}, C_{\mathrm{Ar}}-\mathrm{H}\right.$ of Ph$), 126.3\left(\mathrm{~s}, C_{\mathrm{Ar}}-\mathrm{H}\right.$ of Ph$), 126.7\left(\mathrm{~s}, C_{\mathrm{Ar}-\mathrm{H}}\right.$ of Ph$), 128.3(\mathrm{~s}$, $C_{\mathrm{Ar}}-\mathrm{H}$ of Ph overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 128.3 (s, $C^{4}-\mathrm{H}$ of BIAN overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 128.4 ($\mathrm{s}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$ of Ph overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 128.5 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 128.6 ($\mathrm{s}, C^{11}-\mathrm{H}$ overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 128.9 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal),

 133.7 (s, C^{6} of BIAN), $134.5\left(\mathrm{~s}, C^{10}\right), 134.5$ (s, C^{7} of BIAN), $138.5\left(\mathrm{~s}, C^{14}\right), 143.8\left(\mathrm{~s}, C_{\mathrm{Ar}}\right.$ of Ph), $144.8\left(\mathrm{~s}, C^{12}\right), 145.6\left(\mathrm{~s}, C_{\mathrm{Ar}}\right.$ of Ph$), 146.8\left(\mathrm{~s}, C_{\mathrm{Ar}}\right.$ of Ph$), 150.2\left(\mathrm{~s}, C_{\mathrm{Ar}}\right.$ of Ph$), 153.4$ (s, $\left.C^{8}-\mathrm{N}\right), 165.8\left(\mathrm{~s}, C^{1}=\mathrm{N}\right.$ of BIAN); $C \equiv \mathrm{~N}$ of coordinated cyanide not detected.
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right): ~ \delta / \mathrm{ppm}=-218.7\left(\mathrm{~s}\right.$, cyclo- $\left.\mathrm{P}_{3}\right)$.
UV/Vis (toluene, $\lambda_{\max } / \mathrm{nm}, \varepsilon_{\max } / \mathrm{L} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~cm}^{-1}$): 330sh (16000), 390sh (4000), 550 (16000), 690sh (7500).

IR (solid state): $\mathrm{v} / \mathrm{cm}^{-1}=3056 \mathrm{w}(\mathrm{C}-\mathrm{H})$, 3024w $(\mathrm{C}-\mathrm{H}), 2954 \mathrm{~m}(\mathrm{C}-\mathrm{H}), 2885 \mathrm{~m}(\mathrm{C}-\mathrm{H})$, $2069 \mathrm{~m}(\mathrm{C} \equiv \mathrm{N}), 1599 \mathrm{~m}, 1493 \mathrm{~s}(\mathrm{C}-\mathrm{N}), 1449 \mathrm{~m}, 1351 \mathrm{~m}, 1296 \mathrm{~m}, 1249 \mathrm{~m}, 1193 \mathrm{w}, 1162 \mathrm{w}$, $1105 \mathrm{vs}, 1031 \mathrm{~m}, 960 \mathrm{~m}, 829 \mathrm{w}, 763 \mathrm{~m}, 737 \mathrm{~m}, 698 \mathrm{vs}, 605 \mathrm{~s}$.

Elemental analysis calcd. for $\left(\mathrm{C}_{101} \mathrm{H}_{92} \mathrm{CoKN}_{3} \mathrm{O}_{6} \mathrm{P}_{3}\right) \cdot(\text { (toluene })_{0.8} \cdot(n \text {-hexane })_{0.2}$ $\left(\mathrm{Mw}=1634.81 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\right)$: C $75.03, \mathrm{H} 5.91, \mathrm{~N} 2.43$; found C 74.74, H 6.25, N 2.29 .
([K(18c-6)]9b): Yield: 18 mg (31\%).

$\left.[K(18 c-6)]^{+} \quad 24 H, 18 c-6\right)$.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR $\left(100.61 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta / \mathrm{ppm}=27.5\left(\mathrm{~s}, \mathrm{CH}_{2}\right.$ of Cy$)$, $27.6\left(\mathrm{~s}, \mathrm{CH}_{2}\right.$ of Cy), 32.4 ($\mathrm{s}, \mathrm{CH}_{2}$ of Cy), 32.5 ($\mathrm{s}, \mathrm{CH}_{2}$ of Cy), $54.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=66.3 \mathrm{~Hz}, C-\mathrm{H}\right.$ of Cy), 70.7 (s, 18c-6), $136.7\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=104.4 \mathrm{~Hz}, C \equiv \mathrm{~N}\right), 238.1\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=75.0 \mathrm{~Hz}, C=\mathrm{O}\right)$.
${ }^{31} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta / \mathrm{ppm}=-45.2(\mathrm{~s})$.
IR (solid state): $\mathrm{v} / \mathrm{cm}^{-1}=2885 \mathrm{~m}(\mathrm{C}-\mathrm{H}), 2852 \mathrm{~m}(\mathrm{C}-\mathrm{H}), 2101 \mathrm{~s}(\mathrm{C}=\mathrm{N}), 1544 \mathrm{~s}(\mathrm{C}=\mathrm{O})$, 1472m, 1450m, 1350s, 1284w, 1249w, 1103vs, 1038w, 961vs, 884w, 838m, 801w, 779w, 621w.

Elemental analysis calcd. for $\mathrm{C}_{20} \mathrm{H}_{35} \mathrm{KNO}_{7} \mathrm{P}\left(\mathrm{Mw}=471.57 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\right)$:
C 50.94, H 7.48, N 2.97; found C 50.93, H 7.32, N 2.84.

$(\mathrm{CyC}(\mathrm{O}))_{2} \mathrm{PCN}(10):$

Neat Cyclohexanecarboxylic acid chloride ($7.7 \mathrm{mg}, 7.2 \mu \mathrm{~L}$, 0.053 mmol , 1.0 equiv.) was added to a colorless solution of $[\mathrm{K}(18 \mathrm{c}-6)] 9-\mathrm{Cy}\left(25 \mathrm{mg}, 0.053 \mathrm{mmol}, 1.0\right.$ equiv.) in $\mathrm{C}_{6} \mathrm{D}_{6}(1 \mathrm{~mL})$. The solid was removed by filtration over a pad of silica $(1.0 \times 0.5 \mathrm{~cm})$ and the residue was washed with benzene $(3 \times 0.5 \mathrm{~mL})$. The solvent was removed from the combined filtrates in vacuo, yielding the product as a clear colorless oil.

Yield: 12 mg (81\%).
${ }^{1} \mathbf{H}$ NMR ($400.30 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta / \mathrm{ppm}=0.82-1.43\left(\mathrm{~m}, 20 \mathrm{H}, \mathrm{CH}_{2}\right.$ of Cy$), 1.64-1.77$ (m, 4H, CH H_{2} of Cy), 2.89-2.96 (m, 2H, C-H of Cy).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($\left.100.61 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right): ~ \delta / \mathrm{ppm}=25.1\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=8.8 \mathrm{~Hz} \mathrm{CH} 2\right.$ of Cy$)$, $25.6\left(\mathrm{~s}, \mathrm{CH}_{2}\right.$ of Cy), 28.2 ($\mathrm{s}, C \mathrm{H}_{2}$ of Cy), $28.6\left(\mathrm{~s}, C \mathrm{H}_{2}\right.$ of Cy$), 54.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=66.3 \mathrm{~Hz}\right.$, $C-\mathrm{H}$ of Cy$), 116.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=62.0 \mathrm{~Hz}, C \equiv \mathrm{~N}\right), 210.6\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=51.6 \mathrm{~Hz}, C=\mathrm{O}\right)$.
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right): ~ \delta / \mathrm{ppm}=-8.1(\mathrm{~s})$.
IR (solution in cyclohexane; 1 cm cuvette) $\mathrm{v} / \mathrm{cm}^{-1}=2689 \mathrm{w}, 2658 \mathrm{~s}, 1815 \mathrm{w}, 1751 \mathrm{w}$, $1715 \mathrm{~m}(\mathrm{C}=\mathrm{O}), 1681 \mathrm{~s}(\mathrm{C}=\mathrm{O}), 1257 \mathrm{vs}, 1136 \mathrm{w}, 951 \mathrm{~m}, 904 \mathrm{~m}, 864 \mathrm{~m}, 741 \mathrm{w}$.

LC-QTOF (APCI, MeCN): m/z(\%) calcd. for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{P}^{+}+\mathrm{NH}_{4}{ }^{+}$: 297.17;
found: 297.17.

2.4.2 NMR Spectra

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum ($400.30 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $\mathrm{Ar} * \operatorname{BIAN}(\mathbf{1}) ; *{ }_{6} \mathrm{D}_{6}$.

Figure S2. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($100.66 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $\mathrm{Ar} * \operatorname{BIAN}(\mathbf{1}) ; * \mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400.30 \mathrm{MHz}, 300 \mathrm{~K}\right.$, THF- $\left.d_{8}\right)$ of $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{4}-1-5-\mathrm{cod}\right)\right]$ ([K(18c-6)]2); • unknown impurity, * THF- d_{8}.

Figure S4. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(100.66 \mathrm{MHz}, 300 \mathrm{~K}\right.$, THF- $\left.d_{8}\right)$ of $[\mathrm{K}(18 \mathrm{c}-6)]\left[\left(\mathrm{Ar}{ }^{*} \mathrm{BIAN}\right) \mathrm{Co}\left(\eta^{4}-1-5-\right.\right.$ cod)] ([K(18c-6)]2); * THF- d_{8}

Figure S5. ${ }^{1} \mathrm{H}$ NMR spectrum ($400.13 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{4}-\mathrm{P}_{4}\right)\right]$ ([K(18c-6)]3); * $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S6. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(100.61 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{4}-\mathrm{P}_{4}\right)\right]$ ([K(18c-6)]3); * $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S7. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{4}-\mathrm{P}_{4}\right)\right]$ ([K(18c-6)]3).

Figure S8. ${ }^{1} \mathrm{H}$ NMR spectrum ($400.13 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$) of [(Ar*BIAN)Co($\left.\left.\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right]$ (4a); * $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S10. ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ HMBC NMR spectrum $\left(400.13 / 100.61 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\right.\right.$ $\left.\left.\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right](\mathbf{4 a}) ;{ }^{*} \mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S11. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of [(Ar*BIAN)Co($\left.\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)$] (4a).

Figure S12. Section of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $\left[\left(\mathrm{Ar}{ }^{*} \mathrm{BIAN}\right) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\right.\right.$ $\left.\left.\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right]$ (4a); experimental (upwards) and simulation (downwards).

Table S1. Chemical shifts and coupling constants from the iterative fit of the $\mathrm{AM}_{2} \mathrm{X}$ spin system and schematic representation of the $\mathrm{CoP}_{4} \mathrm{C}(\mathrm{O}) t \mathrm{Bu}$ core of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right](4 \mathbf{a})$.

$$
\begin{array}{ll}
\hline \delta(\mathrm{A})=323.3 \mathrm{ppm} & { }^{1} J_{\mathrm{AM}}=-341.6 \mathrm{~Hz} \\
\delta(\mathrm{M})=109.7 \mathrm{ppm} & { }^{1} J_{\mathrm{MX}}=-106.2 \mathrm{~Hz} \\
\delta(\mathrm{X})=59.2 \mathrm{ppm} & { }^{2} J_{\mathrm{AX}}=7.2 \mathrm{~Hz}
\end{array}
$$

Figure S13. ${ }^{1} \mathrm{H}$ NMR spectrum ($400.13 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$) of [(Ar*BIAN) $\mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) \mathrm{Cy}\right]$ (4b); - $\mathrm{Et}_{2} \mathrm{O},{ }^{*} \mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S14. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(100.61 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P} 4 \mathrm{C}(\mathrm{O}) \mathrm{Cy}\right]\right.$ (4b); $\mathrm{Et}_{2} \mathrm{O}, * \mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S15. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P} 4 \mathrm{C}(\mathrm{O}) \mathrm{Cy}\right](\mathbf{4 b})\right.$.

Figure S16. Section of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) \mathrm{Cy}\right]\right.$ (4b); experimental (upwards) and simulation (downwards).

Table S2. Chemical shifts and coupling constants from the iterative fit of the $\mathrm{AM}_{2} \mathrm{X}$ spin system and schematic representation of the $\mathrm{CoP}_{4} \mathrm{C}(\mathrm{O}) \mathrm{Cy}$ core of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) \mathrm{Cy}\right](\mathbf{4 b})\right.$.

Figure S17. ${ }^{1} \mathrm{H}$ NMR spectrum ($400.13 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$) of [(Ar*BIAN)Co($\left.\left.\eta^{3}: \eta^{1}-\mathrm{P} 4 \mathrm{C}(\mathrm{O}) \mathrm{Ad}\right)\right](4 \mathrm{c})$; $\circ n$-hexane, \cdot toluene, $*{ }_{6} \mathrm{D}_{6}$.

Figure S18. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(100.61 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of [($\left.\mathrm{Ar} * \operatorname{BIAN}\right) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) \mathrm{Ad}\right)$] (4c); o n-hexane, • toluene, ${ }^{*} \mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S19. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P} 4 \mathrm{C}(\mathrm{O}) \mathrm{Ad}\right)\right]$ (4c).

Figure S20. Section of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) \mathrm{Ad}\right)\right]$ (4c); experimental (upwards) and simulation (downwards).

Table S3. Chemical shifts and coupling constants from the iterative fit of the $\mathrm{AM}_{2} \mathrm{X}$ spin system and schematic representation of the $\mathrm{CoP}_{4} \mathrm{C}(\mathrm{O}) \mathrm{Ad}$ core of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) \mathrm{Ad}\right)\right](4 \mathrm{c})$.

	$\delta(\mathrm{A})=322.6 \mathrm{ppm}$	${ }^{1} J_{\mathrm{AM}}=-341.3 \mathrm{~Hz}$
	$\delta(\mathrm{M})=111.3 \mathrm{ppm}$	${ }^{1} J_{\mathrm{MX}}=-105.3 \mathrm{~Hz}$
	$\delta(\mathrm{X})=57.5 \mathrm{ppm}$	${ }^{2} J_{\mathrm{AX}}=6.9 \mathrm{~Hz}$

Figure S21. ${ }^{1} \mathrm{H}$ NMR spectrum (400.13 MHz, $300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$) of [(Ar*BIAN)Co($\left.\left.\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) \mathrm{Ph}\right)\right](\mathbf{4 d})$;

- toluene, o n-hexane, $* \mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S22. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($100.66 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$) of [(Ar*BIAN)Co($\left.\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) \mathrm{Ph}\right)$] (4d); ○ n-hexane, \bullet toluene, $*{ }_{6} \mathrm{D}_{6}$.

Figure S23. . ${ }^{1} \mathrm{H}^{13}{ }^{3} \mathrm{C}$ HMBC NMR spectrum $\left(400.13 / 100.66 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\right.\right.$ $\left.\left.\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) \mathrm{Ph}\right)\right](4 \mathrm{~d}) ;{ }^{*} \mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S24. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$) of [(Ar*BIAN)Co($\left.\left.\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) \mathrm{Ph}\right)\right]$ (4d).

Figure S25. Section of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of [(Ar*BIAN)Co($\left.\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) \mathrm{Ph}\right)$] (4d); experimental (upwards) and simulation (downwards).

Table S4. Chemical shifts and coupling constants from the iterative fit of the $\mathrm{AM}_{2} \mathrm{X}$ spin system and schematic representation of the $\mathrm{CoP}_{4} \mathrm{C}(\mathrm{O}) \mathrm{Ph}$ core of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) \mathrm{Ph}\right)\right](\mathbf{4 d})$.

	$\delta(\mathrm{A})=295.0 \mathrm{ppm}$	${ }^{1} J_{\mathrm{AM}}=-341.2 \mathrm{~Hz}$
$\delta(\mathrm{M})=119.4 \mathrm{ppm}$	${ }^{1} J_{\mathrm{MX}}=-104.2 \mathrm{~Hz}$	
	$\delta(\mathrm{X})=50.2 \mathrm{ppm}$	${ }^{2} J_{\mathrm{AX}}=7.8 \mathrm{~Hz}$

Figure S26. ${ }^{1} \mathrm{H}$ NMR spectrum ($400.13 \mathrm{MHz}, 288 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiNC}\right)\left(\eta^{2}: \eta^{1}-\right.\right.$ $\left.\left.\mathrm{P}_{4} \mathrm{CO} t \mathrm{Bu}\right)\right](5 \mathbf{5}) ;$ o n-hexane, \cdot toluene, $* \mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S27. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(100.61 \mathrm{MHz}, 288 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiNC}\right)\left(\eta^{2}: \eta^{1}-\right.\right.$ $\left.\left.\mathrm{P}_{4} \mathrm{CO} t \mathrm{Bu}\right)\right](\mathbf{5 a}) ; \circ n$-hexane, \cdot toluene, ${ }^{*} \mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S28. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(161.98 \mathrm{MHz}, 288 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiNC}\right)\left(\eta^{2}: \eta^{1}-\right.\right.$ $\left.\left.\mathrm{P}_{4} \mathrm{CO} t \mathrm{Bu}\right)\right]$ (5a).

simulation
Figure S29. Section of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR} \quad\left(161.98 \mathrm{MHz}, \quad 288 \mathrm{~K}, \quad \mathrm{C}_{6} \mathrm{D}_{6}\right) \quad$ of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiNC}\right)\left(\eta^{2}: \eta^{1}-\mathrm{P}_{4} \mathrm{CO} t \mathrm{Bu}\right)\right](\mathbf{5 a})$; experimental (upwards) and simulation (downwards).

Table S5. Chemical shifts and coupling constants from the iterative fit of the AEMX spin system and schematic representation of the $\mathrm{CoP}_{4} \mathrm{CO} t \mathrm{Bu}$ core of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiNC}\right)\left(\eta^{2}: \eta^{1}-\mathrm{P} 4 \mathrm{CO} t \mathrm{Bu}\right)\right](\mathbf{5 a})$.

$$
\begin{array}{ll}
\delta(\mathrm{A})=228.1 \mathrm{ppm} & { }^{1} J_{\mathrm{AM}}=-355.0 \mathrm{~Hz} \\
\delta(\mathrm{E})=-10.7 \mathrm{ppm} & { }^{1} J_{\mathrm{MX}}=-266.5 \mathrm{~Hz} \\
\delta(\mathrm{M})=-102.4 \mathrm{ppm} & { }^{1} J_{\mathrm{EX}}=-64.1 \mathrm{~Hz} \\
\delta(\mathrm{X})=-245.1 \mathrm{ppm} & { }^{2} J_{\mathrm{EM}}=9.0 \mathrm{~Hz} \\
& { }^{2} J_{\mathrm{AX}}=7.9 \mathrm{~Hz} \\
& { }^{3} J_{\mathrm{AE}}=-11.1 \mathrm{~Hz}
\end{array}
$$

Figure S30. ${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(79.49 \mathrm{MHz}, 288 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $\left[\left(\mathrm{Ar}{ }^{*} \mathrm{BIAN}\right) \mathrm{Co}\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiNC}\right)\left(\eta^{2}: \eta^{1}-\right.\right.$ $\left.\left.\mathrm{P}_{4} \mathrm{CO} t \mathrm{Bu}\right)\right]$ (5a).

Figure S31. ${ }^{1} \mathrm{H}$ NMR spectrum ($400.13 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$) of exo-/endo- $\left[\left(\mathrm{Ar}{ }^{*} \mathrm{BIAN}\right) \mathrm{Co}(\mathrm{CyNC})\left(\eta^{3}\right.\right.$ $\left.\left.\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right](6 \mathbf{a})$; o n-hexane, ${ }^{*} \mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S32. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(100.61 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of exo-/endo- $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}(\mathrm{CyNC})\left(\eta^{3}\right.\right.$ $\left.\left.\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right](6 a) ; \circ n$-hexane, ${ }^{*} \mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S33. $\quad{ }^{1} \mathrm{H} /{ }^{13} \mathrm{C} \quad \mathrm{HMBC} \quad \mathrm{NMR} \quad$ spectrum $\quad\left(400.13 / 100.61 \mathrm{MHz}, \quad 300 \mathrm{~K}, \quad \mathrm{C}_{6} \mathrm{D}_{6}\right) \quad$ of exo-/endo-[(Ar*BIAN)Co(CyNC) $\left.\left(\eta^{3}-\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right](6 \mathbf{a})$; ○ n-hexane, * $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S34. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(161.98 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of exo-/endo-[($\left.\mathrm{Ar} * \mathrm{BIAN}\right) \mathrm{Co}(\mathrm{CyNC})\left(\eta^{3}-\right.$ $\left.\left.\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right]$ (6a).

Figure S35. Section of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(161.98 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of endo-[(Ar*BIAN)Co(CyNC)(η^{3-} $\left.\left.\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right]$ (endo-6a); experimental (upwards) and simulation (downwards).

Table S6. Chemical shifts and coupling constants from the iterative fit of the $\mathrm{AX}_{2} \mathrm{Y}$ spin system and schematic representation of the endo- $\mathrm{Co}(\mathrm{CyNC}) \mathrm{P}_{4} \mathrm{C}(\mathrm{O}) t \mathrm{Bu}$ core of endo-[($\left.\mathrm{Ar} * \mathrm{BIAN}\right) \mathrm{Co}(\mathrm{CyNC})\left(\eta^{3}-\right.$ $\left.\left.\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right]$ (endo-6a).

A	$\delta(\mathrm{A})=144.5 \mathrm{ppm}$	${ }^{1} J_{\text {AX }}=-318.2 \mathrm{~Hz}$
$\mathrm{CO}_{0} / \mathrm{I}_{-P^{\prime}}$	$\delta(\mathrm{X})=71.7 \mathrm{ppm}$	${ }^{1} J_{\mathrm{XY}}=-164.5 \mathrm{~Hz}$
$\underset{N}{11}$	$\delta(\mathrm{Y})=68.6 \mathrm{ppm}$	${ }^{2} J_{\mathrm{AY}}=-5.4 \mathrm{~Hz}$
Cy		

Figure S36. Section of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(161.98 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ exo- $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}(\mathrm{CyNC})\left(\eta^{3}-\right.\right.$ $\left.\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)$] (exo-6a); experimental (upwards) and simulation (downwards).

Table S7. Chemical shifts and coupling constants from the iterative fit of the $\mathrm{A}_{2} \mathrm{MX}$ spin system and schematic representation of the exo $-\mathrm{Co}(\mathrm{CyNC}) \mathrm{P}_{4} \mathrm{C}(\mathrm{O}) t \mathrm{Bu}$ core of exo-[(Ar*BIAN)Co(CyNC)($\eta^{3}-$ $\left.\left.\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right]$ (exo-6a).

X	$\delta(\mathrm{A})=50.0 \mathrm{ppm}$	${ }^{1} J_{\mathrm{AX}}=-308.0 \mathrm{~Hz}$
$\mathrm{CCo}_{0}<!_{P}$	$\delta(\mathrm{M})=5.2 \mathrm{ppm}$	${ }^{1} J_{\mathrm{AM}}=-207.0 \mathrm{~Hz}$
	$\delta(\mathrm{X})=-26.1 \mathrm{ppm}$	${ }^{2} J_{\mathrm{MX}}=28.8 \mathrm{~Hz}$

Figure S37. ${ }^{1} \mathrm{H}$ NMR spectrum ($400.13 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}(\mathrm{CN})\left(\eta^{3}-\mathrm{P}_{3}\right)\right]$ ([K(18c-6)]8); • toluene, o n-hexane, * $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S38. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($100.61 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $[\mathrm{K}(18 \mathrm{c}-6)]\left[\left(\mathrm{Ar}\right.\right.$ *BIAN) $\mathrm{Co}\left(\eta^{3}-\right.$ $\left.\left.\mathrm{P}_{3}\right)(\mathrm{CN})\right]([\mathrm{K}(18 \mathrm{c}-6)] \mathbf{8})$; • toluene, $\circ n$-hexane, ${ }^{*} \mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S39. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \quad$ NMR \quad spectrum $\quad\left(162.04 \mathrm{MHz}, \quad 300 \mathrm{~K}, \quad \mathrm{C}_{6} \mathrm{D}_{6}\right) \quad$ of $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}(\mathrm{CN})\left(\eta^{3}-\mathrm{P}_{3}\right)\right]([\mathrm{K}(18 \mathrm{c}-6)] 8)$.

Figure S40. ${ }^{1} \mathrm{H}$ NMR spectrum ($400.30 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $[\mathrm{K}(18 \mathrm{c}-6)][\mathrm{CyC}(\mathrm{O}) \mathrm{PCN}]([\mathrm{K}(18 \mathrm{c}-6)] 9 b)$; ${ }^{*} \mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S41. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}$ spectrum ($100.61 \mathrm{MHz}, \quad 300 \mathrm{~K}, \quad \mathrm{C}_{6} \mathrm{D}_{6}$) of $[\mathrm{K}(18 \mathrm{c}-6)][\mathrm{CyC}(\mathrm{O}) \mathrm{PCN}]$ ([K(18c-6)]9b); * ${ }_{6} \mathrm{D}_{6}$.

Figure S42. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR} \quad$ spectrum $\quad\left(162.04 \mathrm{MHz}, \quad 300 \mathrm{~K}, \quad \mathrm{C}_{6} \mathrm{D}_{6}\right) \quad$ of $\quad[\mathrm{K}(18 \mathrm{c}-6)][\mathrm{CyCOPCN}]$ ([K(18c-6)]9b).

Figure S43. ${ }^{1} \mathrm{H}$ NMR spectrum ($400.30 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $(\mathrm{CyC}(\mathrm{O}))_{2} \mathrm{PCN}(\mathbf{1 0})$; unknown impurity, * $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S44. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($100.61 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $(\mathrm{CyC}(\mathrm{O}))_{2} \mathrm{PCN}(\mathbf{1 0})$; • unknown impurity, ${ }^{*} \mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S45. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $(\mathrm{CyC}(\mathrm{O}))_{2} \mathrm{PCN}(\mathbf{1 0})$.

2.4.3 Additional Experiments

$\mathbf{5 a}$ was isolated in 75% yield and $\mathbf{6 a}$ in 57% yield (vide supra). A series of reactions was performed according to the general procedure given below to further analyze the reactivity of 4a-d toward $\mathrm{Me}_{3} \mathrm{SiCN}$ and isocyanides $\mathrm{R}^{\prime} \mathrm{NC}\left(\mathrm{R}^{\prime}=\mathrm{Cy}, t \mathrm{Bu}, \mathrm{Mes}, \mathrm{Ph}\right) .5 \mathbf{5 b - r}$ and $\mathbf{6 b}-\mathbf{6 p}$ (see Table S 8 for the substitutions of these derivatives) were not isolated, but were identified by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy (Figures S47-S52) and, for selected examples, by XRD (Figures S87-88). Crystals suitable for XRD analysis for endo-6a, co-crystals of endo-/exo-6a and $\mathbf{7}$ were obtained from a concentrated n-hexane solution after work-up according to the synthesis procedure for $\mathbf{6 a}$ (vide supra). Crystals suitable for XRD analysis for exo-6d and endo-6e were obtained from a concentrated n-hexane solution after synthesis according to the general procedure given below.
General Procedure: 4a-d (0.011 mmol) was dissolved in $\mathrm{C}_{6} \mathrm{D}_{6}(0.6 \mathrm{~mL})$ in a J . Young valve NMR tube. The corresponding cyanide/ $\mathrm{Me}_{3} \mathrm{SiCN}$ was added neat. The NMR tube was sealed and the reaction mixture was analyzed by multinuclear NMR spectroscopy.

The ratio of $\mathbf{5}$ and $\mathbf{6}$ formed, and the ratio of endo- and exo- isomers of $\mathbf{6}$, was found to vary depending on the substituents R and R^{\prime}, and the stoichiometry of $\mathbf{4}$ and R'NC. For example, reactions with $\mathbf{4 d}$ generally favored the formation of exo- $\mathbf{6}$ over the endoisomer. In a similar vein, reactions with MesCN favored the formation of endo-6 (Figure S51), whereas reactions with PhCN favored the formation of exo-6 (Figure S52).
Table S8. Residues of compounds 5a-r and 6a-p; 5a was isolated in 75% yield and $\mathbf{6 a}$ in $\mathbf{5 7 \%}$; remaining compounds were not isolated and identified by NMR spectroscopy and partially XRD; ratio of endo- and exo- isomers of 6 a may vary, depending on the substituents R and R'.

	$\mathrm{R}=$	R'=	endo-/exo-	$\mathrm{R}=$	$\mathrm{R}^{\prime}=$
5a	$t \mathrm{Bu}$	SiMe_{3}	6a	$t \mathrm{Bu}$	Cy
5b	Cy	SiMe_{3}	6b	Cy	Cy
5c	1-Ad	SiMe_{3}	6c	1-Ad	Cy
5d	Ph	SiMe_{3}	6d	Ph	Cy
5e	$t \mathrm{Bu}$	Cy	6 e	$t \mathrm{Bu}$	$t \mathrm{Bu}$
5 f	Cy	Cy	6 f	Cy	$t \mathrm{Bu}$
5g	1-Ad	Cy	6g	1-Ad	$t \mathrm{Bu}$
5h	Ph	Cy	6h	Ph	$t \mathrm{Bu}$
5i	$t \mathrm{Bu}$	$t \mathrm{Bu}$	6 i	$t \mathrm{Bu}$	Mes
5j	Cy	$t \mathrm{Bu}$	6j	Cy	Mes
5k	1-Ad	$t \mathrm{Bu}$	6k	1-Ad	Mes
51	Ph	$t \mathrm{Bu}$	61	Ph	Mes
5m	$t \mathrm{Bu}$	Mes	6m	$t \mathrm{Bu}$	Ph
5n	Cy	Mes	6n	Ph	Ph
50	1-Ad	Mes			
5p	Ph	Mes			
5q	$t \mathrm{Bu}$	Ph			
5 r	Ph	Ph			

Reaction of [(Ar*BIAN)Co($\left.\left.\boldsymbol{\eta}^{\mathbf{3}}: \boldsymbol{\eta}^{\mathbf{1}}-\mathbf{P 4 C}(\mathbf{O}) \mathbf{A d}\right)\right]$ (4c) toward CO gas

[(Ar*BIAN)Co($\left.\left.\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) \mathrm{Ad}\right)\right](4 \mathbf{c})(16 \mathrm{mg}, 0.011 \mathrm{mmol}, 1.0$ equiv.) was dissolved in $\mathrm{C}_{6} \mathrm{D}_{6}(0.6 \mathrm{~mL})$ in a J . Young valve NMR tube. The purple solution was frozen using a cooling bath. The inert gas was exchanged for 1 atm CO, by evacuating the NMR tube and slowly thawing the solution until gas evolution from the solution ceased and repressurized it with CO . This process was repeated twice and the color changed to a dark blue. The J. Young valve NMR tube was closed and analyzed by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy (see Figure S46).

Figure S46. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}$ spectrum ($162.04 \mathrm{MHz}, \quad 300 \mathrm{~K}, \quad \mathrm{C}_{6} \mathrm{D}_{6}$) of the reaction between [(Ar*BIAN) $\left.\mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) \mathrm{Ad}\right)\right]$ (4c) toward CO gas exhibiting two sets of signals attributed to two proposed compounds; blue: $\delta / \mathrm{ppm}=-249.8\left(\mathrm{dd}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{X}}\right),-117.8\left(\mathrm{dd}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{M}}\right),-13.1\left(\mathrm{~d}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{E}}\right), 237.9(\mathrm{~d}$, $\left.1 \mathrm{P}, \mathrm{P}_{\mathrm{A}}\right)$. red: $\delta / \mathrm{ppm}=-33.5\left(\mathrm{dt}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{x}}\right), 5.8\left(\mathrm{dt}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{M}}\right), 62.2\left(\mathrm{dd}, 2 \mathrm{P}, \mathrm{P}_{\mathrm{A}}\right) ;[\mathrm{Co}]=(\mathrm{Ar*BIAN}) \mathrm{Co}$.
 with Me3SiCN

Figure S47. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra $\left(162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of the reaction of $\left[\left(\mathrm{Ar}{ }^{*} \mathrm{BIAN}\right) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\right.\right.$ $\left.\left.\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) \mathrm{R}\right)\right]$ ($\mathbf{4 b} \mathbf{- d}$) with $\mathrm{Me}_{3} \mathrm{SiCN}$ exhibiting an AEMX spin system attributed to proposed compounds $\mathbf{5 b} \mathbf{- d}$; red (5b): $\delta / \mathrm{ppm}=-250.7\left(\mathrm{dd}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{X}}\right),-100.0\left(\mathrm{dd}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{M}}\right),-9.8\left(\mathrm{brd}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{E}}\right), 225.7\left(\mathrm{~d}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{A}}\right) ;$ blue $(\mathbf{5 c})$: $\delta / \mathrm{ppm}=-250.7\left(\mathrm{dd}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{X}}\right),-105.2\left(\mathrm{dd}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{M}}\right),-13.7\left(\right.$ br d, 1P, $\left.\mathrm{P}_{\mathrm{E}}\right), 225.9\left(\mathrm{~d}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{A}}\right)$; green (5d): $\delta / \mathrm{ppm}=-229.4\left(\mathrm{dd}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{x}}\right),-98.4\left(\mathrm{dd}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{M}}\right), 1.6\left(\mathrm{br} \mathrm{d}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{E}}\right), 221.5\left(\mathrm{~d}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{A}}\right) ;[\mathrm{Co}]=(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}$.

Reactions of [(Ar*BIAN)Co($\boldsymbol{\eta}^{\mathbf{3}}: \boldsymbol{\eta}^{\mathbf{1}} \mathbf{- P 4 C (O) t B u)] ~ (4 a) ~ w i t h ~ i s o c y a n i d e ~} \mathbf{C y N C}$

[(Ar*BIAN) $\left.\mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right]$ (4a) was dissolved in $\mathrm{C}_{6} \mathrm{D}_{6}(0.6 \mathrm{~mL})$ in a J. Young valve NMR tube and various equivalents of cyclohexyl isocyanide were added in each case (vide infra). The purple solution changed color to a dark green. The J. Young valve NMR tube was closed and analyzed by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy (see Figure S 48).

זल.

$$
\begin{gathered}
0 \\
0 \\
0 \\
\hline
\end{gathered}
$$

\qquad

Figure S48. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra $\left(162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of the reaction of $\left[\left(\mathrm{Ar}{ }^{*} \mathrm{BIAN}\right) \mathrm{Co}\left(\eta^{3}: \eta^{1}\right.\right.$ $\left.\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)$] (4a) with different equivalents of CyNC showing three spin spin systems attributed to blue $(5 \mathrm{e}): \delta / \mathrm{ppm}=-236.9\left(\mathrm{dd}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{x}}\right),-100.5\left(\mathrm{dd}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{M}}\right),-9.1\left(\mathrm{br} \mathrm{d}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{E}}\right), 231.9\left(\mathrm{~d}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{A}}\right)$; green (endo-6a): $\delta / \mathrm{ppm}=67.0-73.0\left(\mathrm{~m}, 3 \mathrm{P}, \mathrm{P}_{\mathrm{XY}}\right), 142.5-146.4\left(\mathrm{~m}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{A}}\right)$; red $($ exo-6a): $\delta / \mathrm{ppm}=-24.5(\mathrm{dt}, 1 \mathrm{P}$, $\left.\mathrm{P}_{\mathrm{x}}\right), 5.0\left(\mathrm{dt}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{M}}\right), 50.5\left(\mathrm{dd}, 2 \mathrm{P}, \mathrm{P}_{\mathrm{A}}\right) ;[\mathrm{Co}]=(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}$.

Figure S49. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra ($162 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$) of the reactions of [(Ar*BIAN)Co($\eta^{3}: \eta^{1}$ $\left.\left.\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) \mathrm{R}\right)\right]$ (4b-d) with different equivalents of CyNC showing three spin systems attributed to different structures shown in green ($\mathbf{5 f}-\mathbf{h}$), red (endo-6b-d) and blue (exo- $\mathbf{6 b}-\mathbf{d}$); $[\mathrm{Co}]=(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}$.

Figure S50. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra ($162 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$) of the reactions of $\left[\left(\mathrm{Ar}{ }^{*} \mathrm{BIAN}\right) \mathrm{Co}\left(\eta^{3}: \eta^{1}\right.\right.$ $\left.\left.\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) \mathrm{R}\right)\right]$ (4a-d) with different equivalents of t BuNC showing three spin systems attributed to different structures shown in green $(\mathbf{5 j} \mathbf{- 1})$, red (endo-6e-h) and blue (exo-6e-h); [Co] = (Ar*BIAN)Co.

Figure S51. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra ($162 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$) of the reactions of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\right.\right.$ $\left.\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) \mathrm{R}\right)$] (4a-d) with different equivalents of MesNC showing three spin systems attributed to different structures shown in green ($\mathbf{5 m - p}$), red (endo-6j-I) and blue (exo-6j-1); Mes $=2,4,6-\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{2},[\mathrm{Co}]=$ (Ar*BIAN)Co.

Figure S52. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra ($162 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$) of the reactions of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}\right.\right.$ $\left.\left.\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) \mathrm{R}\right)\right]$ ($\mathbf{4 a}$ and $\mathbf{4 d}$) with different equivalents of PhNC showing two spin systems attributed to different structures shown in green ($\mathbf{5 q - r}$) and blue (exo-6m-n); [Co] $=(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}$.
[K(18c-6)]9b was isolated in 31% yield (vide supra). A series of reactions was performed according to the general procedure given below to further analyze the reactivity of 4a-d toward KCN. 9a-d ${ }^{-}$were not isolated, but were identified by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy (Figures S53-S56) and, for selected examples, by XRD (Figures S86-S87, $\mathrm{R}=t \mathrm{Bu}, \mathrm{Cy}$, $\mathrm{Ph})$. Crystals of $[\mathrm{K}(18 \mathrm{c}-6)]) \mathbf{9 a}$ and $[\mathrm{K}(18 \mathrm{c}-6)]) \mathbf{9 d}$ were grown from saturated toluene solutions.

General Procedure: In a glovebox, $\mathbf{4 a - d}$ (0.02 mmol), KCN (2.2 equiv.) and $18 \mathrm{c}-6$ (2.2 equiv.) were suspended in THF (2.0 mL). The magenta mixture was stirred for three days over which time the color changed to a deep purple. 0.6 mL of this reaction mixture was transferred to a J. Young valve NMR tube with a $\mathrm{C}_{6} \mathrm{D}_{6}$-capillary and the reaction mixture was analyzed by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy.

Figure S53. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($162 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$-capillary) of the reaction between $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right](\mathbf{4 a})$ toward $\mathrm{KCN} / 18 \mathrm{c}-6$ exhibiting two singlets in a $1: 3$ ratio; $[\mathrm{Co}]=$ (Ar*BIAN)Co.

Figure S54. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($162 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$-capillary) of the reaction between $\left[\left(A r^{*} B I A N\right) C o\left(\eta \eta^{3}: \eta \eta^{1}-\mathrm{P} 4 \mathrm{C}(\mathrm{O}) \mathrm{Cy}\right)\right](4 \mathrm{~b})$ toward $\mathrm{KCN} / 18 \mathrm{c}-6$ exhibiting two singlets in a $1: 3$ ratio; $[\mathrm{Co}]=$ (Ar*BIAN)Co.

Figure S55. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($162 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$-capillary) of the reaction between $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) \mathrm{Ad}\right)\right](4 \mathrm{c})$ toward $\mathrm{KCN} / 18 \mathrm{c}-6$ exhibiting two singlets in a 1:3 ratio; $[\mathrm{Co}]=$ (Ar*BIAN)Co.

Figure S56. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$-capillary) of the reaction between $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) \mathrm{Cy}\right)\right](4 \mathrm{~b})$ toward $\mathrm{KCN} / 18 \mathrm{c}-6$ exhibiting two singlets in a $1: 3 \mathrm{ratio} ;[\mathrm{Co}]=$ (Ar*BIAN)Co.

2.4.4 Reaction monitoring

In a glovebox $\left[\mathrm{Et}_{4} \mathrm{~N}\right] \mathrm{CN}(3.8 \mathrm{mg}, 0.024 \mathrm{mmol}, 2.2$ equiv.) was added to a thawing solution of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P} 4 \mathrm{C}(\mathrm{O}) \mathrm{Ph}\right)\right](\mathbf{4 d})(15.0 \mathrm{mg}, 0.011 \mathrm{mmol}, 1.0$ equiv) in 0.6 mL of THF- d_{8} in a J. Young valve NMR tube. The first NMR measurements started 15 minutes later. ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR measurements were performed at a temperature of 298 K . After $3.5 \mathrm{~h},{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{1} \mathrm{H}$ NMR measurements were performed every 25 min until a total reaction time of 14 hours. Figure S 57 (vide infra) shows the sum over 35 of $35{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra recorded during this time.

Figure S57. Sum over $35{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra $\left(242.90 \mathrm{MHz}, 298 \mathrm{~K}\right.$, THF- d_{8}) of the reaction between [(Ar*BIAN)Co $\left.\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) \mathrm{Ph}\right)\right](4 d)$ and $\left[\mathrm{Et}_{4} \mathrm{~N}\right] \mathrm{CN}$ recorded every 25 min from 3.5 h to 14 h of total reaction time. The spectrum shows two sets of intermediate signals marked in red and blue attributed to two proposed structures.

In a J. Young valve NMR tube solid $\mathbf{6 a}(15 \mathrm{mg}, 0.010 \mathrm{mmol})$ was dissolved in toluene- d_{8} $(0.6 \mathrm{~mL})$, which was precooled to $-80^{\circ} \mathrm{C}$. The dark green mixture was kept at this temperature and the first NMR measurements started 10 minutes later. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR measurements were performed and the temperature stepwise increased (vide infra; Figure S58 and Figure S59).

Figure S59. Selected spectra of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR monitoring (161.98 MHz , toluene $-d_{8}$) of [(Ar*BIAN) $\left.\mathrm{Co}(\mathrm{CyNC})\left(\eta^{3}-\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right]$ (6a) with integrals shown.

To solid $\mathbf{4 a}$ ($15 \mathrm{mg}, 0.010 \mathrm{mmol}, 1.0$ equiv.) in a J. Young valve NMR tube a precooled $\left(-80^{\circ} \mathrm{C}\right)$ solution of cyclohexyl isocyanide ($3.6 \mathrm{mg}, 4.1 \mu \mathrm{~L}, 0.033 \mathrm{mmol}, 3.0$ equiv.) in toluene- $d_{8}(0.6 \mathrm{~mL})$, was added at $-80^{\circ} \mathrm{C}$. The magenta mixture was kept at this temperature and the first NMR measurements started 10 minutes later. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR measurements were performed and the temperature stepwise increased (vide infra; Figure S60). Spectra below $-20^{\circ} \mathrm{C}$ were not plotted, as no reaction was observed and only signals for $\mathbf{4 a}$ were detected.

Figure S60. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR monitoring (161.98 MHz , toluene- d_{8}) of of the reaction between $\left[(\mathrm{Ar} * \mathrm{BIAN}) \operatorname{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P} 4 \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right]$ (4a) toward 3.0 eq. CyNC affording endo-lexo-[(Ar*BIAN) $\left.\mathrm{Co}(\mathrm{CyNC})\left(\eta^{3}-\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right]$ (6a).

2.4.5 Proposed Reaction Mechanism

Scheme S1. Proposed reaction mechanism for cyanide induced [3+1] fragmentation reactions of $\mathbf{4 a - d}$ to $\mathbf{8}^{-}$ and $9 \mathrm{a}-\mathbf{d}^{-}$.

2.4.6 UV/Vis Spectra

Figure S61. UV/Vis spectrum of Ar*BIAN (1) recorded in THF.

Figure $\mathbf{S 6 2}$ UV/Vis spectrum of $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{4}-1-5-\operatorname{cod}\right)\right]([\mathrm{K}(18 \mathrm{c}-6)] 2)$ recorded in THF.

Figure S63. UV/Vis spectrum of $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{4}-\mathrm{P}_{4}\right)\right]([\mathrm{K}(18 \mathrm{c}-6)] 3)$ recorded in toluene.

Figure S64. UV/Vis spectrum of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right]$ (4a) recorded in toluene.

Figure S65. UV/Vis spectrum of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) \mathrm{Cy}\right)\right](4 \mathbf{b})$ recorded in toluene.

Figure S66. UV/Vis spectrum of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) \mathrm{Ad}\right)\right]$ (4c) recorded in toluene.

Figure S67. UV/Vis spectrum of [(Ar*BIAN) $\left.\mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) \mathrm{Ph}\right)\right](4 d)$ recorded in toluene.

Figure S68. UV/Vis spectrum of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiNC}\right)\left(\eta^{2}: \eta^{1}-\mathrm{P}_{4} \mathrm{CO} t \mathrm{Bu}\right)\right](5 a)$ recorded in toluene.

Figure S69. UV/Vis spectrum of exo-/endo-[(Ar*BIAN)Co(CyNC) $\left.\left(\eta^{3}-\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right]$ (6a) recorded in toluene.

Figure S70. UV/Vis spectrum of $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \operatorname{Co}(\mathrm{CN})\left(\eta^{3}-\mathrm{P}_{3}\right)\right]([\mathrm{K}(18 \mathrm{c}-6)] \mathbf{8})$ recorded in toluene.

2.4.7 IR Spectra

Figure S71. Solid state ATR-IR spectrum of $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{4}-\mathrm{P}_{4}\right)\right]([\mathrm{K}(18 \mathrm{c}-6)] \mathbf{3})$.

Figure S72. Solid state ATR-IR spectrum of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right]$ (4a).

Figure S73. Solid state ATR-IR spectrum of [(Ar*BIAN)Co($\left.\left.\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) \mathrm{Cy}\right)\right]$ (4b).

Figure S74. Solid state ATR-IR spectrum of [(Ar*BIAN)Co($\left.\left.\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) \mathrm{Ad}\right)\right]$ (4c).

Figure S75. Solid state ATR-IR spectrum of [(Ar*BIAN) $\left.\mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P} 4 \mathrm{C}(\mathrm{O}) \mathrm{Ph}\right)\right]$ (4d).

Figure S76. Solid state ATR-IR spectrum of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiNC}\right)\left(\eta^{2}: \eta^{1}-\mathrm{P} 4 \mathrm{CO} t \mathrm{Bu}\right)\right]$ (5a).

Figure S77. Solid state ATR-IR spectrum of exo-/endo-[(Ar*BIAN) $\left.\mathrm{Co}(\mathrm{CyNC})\left(\eta^{3}-\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right](\mathbf{6 a})$.

Figure S78. Solid state ATR-IR spectrum of $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}(\mathrm{CN})\left(\eta^{3}-\mathrm{P}_{3}\right)\right]([\mathrm{K}(18 \mathrm{c}-6)] 8)$.

Figure S79. Solid state ATR-IR spectrum of $[\mathrm{K}(18 \mathrm{c}-6)][\mathrm{CyC}(\mathrm{O}) \mathrm{PCN}]([\mathrm{K}(18 \mathrm{c}-6)] 9 \mathrm{~b})$.

Figure S80. IR spectrum of $(\mathrm{CyC}(\mathrm{O}))_{2} \mathrm{PCN}(\mathbf{1 0})$ recorded in cyclohexane.

2.4.8 Single Crystal X-Ray Diffraction Data

Single-crystal X-ray diffraction data were recorded on Rigaku GV1000 TitanS2, SuperNova Atlas and XtaLAB Synergy R DW system HyPix-Arc 150 diffractometers with $\mathrm{Cu}-\mathrm{K} \alpha$ radiation ($\lambda=1.54184 \AA$). Crystals were selected under mineral oil, mounted on micromount loops and quench-cooled using an Oxford Cryosystems open flow N_{2} cooling device. Either semi-empirical multi-scan absorption corrections ${ }^{[52]}$ or analytical ones ${ }^{[53]}$ were applied to the data. The structures were solved with SHELXT ${ }^{[54]}$ solution program using dual methods and by using Olex2 as the graphical interface. ${ }^{[55]}$ The models were refined with ShelXL ${ }^{[56]}$ using full matrix least squares minimization on $\mathrm{F}^{2} .{ }^{[57]}$ The hydrogen atoms were located in idealized positions and refined isotropically with a riding model.
Ar*BIAN (1): The crystal of 1 contained one severely disordered toluene molecule and a solvent mask was calculated, which found 364 electrons in a volume of $2244 \AA^{3}$ in one void per unit cell. This is consistent with the presence of 1 toluene per Formula Unit which account for 400 electrons per unit cell. As $\mathbf{1}$ was crystallized by slow diffusion of n-hexane into a saturated toluene solution of $\mathbf{1}$ this serves as evidence for the presence of toluene in this position.
[K(18c-6)]2: The crystal of $[\mathrm{K}(18 \mathrm{c}-6)] \mathbf{2}$ contained two severely disordered THF molecules per asymmetric unit. One of them was modeled, while the other one was refined by using the solvent mask command: A solvent mask was calculated, and 108 electrons were found in a volume of $360 \AA^{3}$ in one void per unit cell. This is consistent with the presence of 0.5 THF per Formula Unit which account for 80 electrons per unit cell. As $[\mathrm{K}(18 \mathrm{c}-6)] \mathbf{2}$ was crystallized by slow diffusion of n-hexane into a saturated THF solution of $[\mathrm{K}(18 \mathrm{c}-6)] \mathbf{2}$ this serves as evidence for the presence of THF in this position.
[K(18c-6)]3: The crystal of $[\mathrm{K}(18 \mathrm{c}-6)] \mathbf{3}$ contained two severely disordered toluene molecules per asymmetric unit. One of them was modeled, while the other one was refined by using the solvent mask command: A solvent mask was calculated, and 51 electrons were found in a volume of $295 \AA^{3}$ in one void per unit cell. This is consistent with the presence of 0.5 toluene per Formula Unit which account for 50 electrons per unit cell. As $[\mathrm{K}(18 \mathrm{c}-6)] \mathbf{3}$ was crystallized by slow diffusion of n-hexane into a saturated toluene solution of $[\mathrm{K}(18 \mathrm{c}-6)] \mathbf{3}$ this serves as evidence for the presence of toluene in this position.
endo-lexo-6a: The cocrystal of endo-/exo-6a contained five n-hexane molecules per asymmetric unit. One of them was modeled, while the other severely disordered ones
were refined by using the solvent mask command: A solvent mask was calculated and 818 electrons were found in a volume of $2418 \AA^{3}$ in one void per unit cell. This is consistent with the presence of n-hexane per formula unit which account for 800 electrons per unit cell.
[(Ar*BIAN) $\left.\mathrm{Co}(\mathrm{CyNC})_{2}\left(\eta^{1}-\mathrm{P}_{4} \mathrm{CO} t \mathrm{Bu}\right)\right]$ (7): Structural analysis of 7 revealed that two molecules of the isocyanide are coordinated to the cobalt center. This saturation of the coordination sphere is facilitated by the severance of most of the cobalt-phosphorus interactions, resulting in an η^{1}-coordinated [1.1.0]bicyclotetraphosphane-1,4-diyl (" P_{4} butterfly") ligand (Figure S89). ${ }^{[33]}$ In complex 7, the transannular $\mathrm{P}-\mathrm{P}$ bond (2.1852(2) \AA) is shorter compared to the peripheral $\mathrm{P}-\mathrm{P}$ bonds (mean: $2.216 \AA$), which is a common feature of P_{4} butterfly complexes. Additionally, 7 features a formal radical anionic BIAN ligand (mean of Ar*BIAN $\mathrm{C}-\mathrm{N}$ bond lengths: $1.330 \AA$ and $\mathrm{C} 1-\mathrm{C} 2$: $1.455(3) \AA) .{ }^{[23]}$ Moreover, the average $\mathrm{Co}-\mathrm{C}(1.853(9) \AA)$ and $\mathrm{C} \equiv \mathrm{N}(7 \mathrm{a}: 1.152(6) \AA)$ bond lengths of the isocyanide ligands are typical for neutral cobalt isocyanide complexes. ${ }^{[58]}$
The following section provides figures of the molecular structures with selected bond lengths and angles, which were not given in section 2.2 itself.

Table S9. Crystallographic data and structure refinement for compounds 1-4a.

Compound	1	[K(18c-6)]2	[K(18c-6)]3	4a
CCDC	2269452	2269840	2269251	2269454
Empirical formula	$\mathrm{C}_{82} \mathrm{H}_{68} \mathrm{~N}_{2}$	$\mathrm{C}_{110} \mathrm{H}_{120} \mathrm{CoKN}_{2} \mathrm{O}$	$\begin{gathered} \mathrm{C}_{101} \mathrm{H}_{100} \mathrm{CoKN}_{2} \mathrm{O} \\ { }_{6} \mathrm{P}_{4} \end{gathered}$	$\mathrm{C}_{87} \mathrm{H}_{77} \mathrm{CoN}_{2} \mathrm{OP}_{4}$
Formula weight	1081.38	1696.10	1659.73	1349.31
Temperature/K	123(1)	123(2)	123(1)	100(1)
Crystal system	orthorhombic	monoclinic	triclinic	monoclinic
Space group	Pbca	C2/c	$P-1$	C2/c
a/Å	22.6338(2)	19.1104(2)	14.2821(4)	23.0284(4)
b/Å	19.97100(10)	19.07250(1)	$14.3155(5)$	15.2934(2)
c/	29.2836(2)	27.3545(2)	25.0529(7)	42.0740(6)
$\alpha /{ }^{\circ}$	90	90	103.851(3)	90
$\beta /{ }^{\circ}$	90	105.1750(1)	92.984(2)	110.503(2)
$\gamma /{ }^{\circ}$	90	90	113.699(3)	90
Volume/ A 3	13236.76(16)	9622.60(14)	4490.1(3)	13879.1(4)
Z	8	4	2	8
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.085	1.171	1.228	1.291
μ / mm^{-1}	0.469	2.226	3.013	3.196
$\mathrm{F}(000)$	4592.0	3616.0	1748.0	5664.0
Crystal size/mm ${ }^{3}$	$\begin{gathered} 0.276 \times 0.172 \times \\ 0.11 \end{gathered}$	$\begin{gathered} 0.23 \times 0.152 \times \\ 0.112 \end{gathered}$	$\begin{gathered} 0.429 \times 0.161 \times \\ 0.12 \end{gathered}$	$\begin{gathered} 0.243 \times 0.091 \times \\ 0.06 \end{gathered}$
	XtaLAB Synergy	XtaLAB Synergy		XtaLAB Synergy
Diffractometer	R, DW system,	R, DW system,	GV1000, TitanS2	R, DW system,
Radiation	$\begin{gathered} \mathrm{Cu} \mathrm{~K} \alpha(\lambda= \\ 1.54184) \end{gathered}$			
2Θ range for data collection $/{ }^{\circ}$	6.036 to 149.84	6.666 to 148.046	6.856 to 147.642	4.484 to 146.538
Index ranges	$\begin{aligned} -28 & \leq \mathrm{h} \leq 27, \\ -12 & \leq \mathrm{k} \leq 23, \\ -35 & \leq 1 \leq 36 \end{aligned}$	$\begin{aligned} -23 & \leq \mathrm{h} \leq 21, \\ -22 & \leq \mathrm{k} \leq 22, \\ -33 & \leq 1 \leq 33 \end{aligned}$	$\begin{aligned} -17 & \leq \mathrm{h} \leq 17 \\ -17 & \leq \mathrm{k} \leq 15, \\ -31 & \leq 1 \leq 31 \end{aligned}$	$\begin{aligned} -27 & \leq \mathrm{h} \leq 27, \\ -18 & \leq \mathrm{k} \leq 18, \\ -51 & \leq 1 \leq 42 \end{aligned}$
Reflections collected	95022	69479	48248	39994
Independent reflections	$\begin{gathered} 13366\left[\mathrm{R}_{\text {int }}=\right. \\ 0.0214, \\ \left.\mathrm{R}_{\text {sigma }}=0.0145\right] \end{gathered}$	$\begin{gathered} 9487\left[\mathrm{R}_{\text {int }}=\right. \\ 0.0218, \\ \left.\mathrm{R}_{\text {sigma }}=0.0139\right] \end{gathered}$	$\begin{gathered} 17336\left[\mathrm{R}_{\mathrm{int}}=\right. \\ 0.0356, \\ \left.\mathrm{R}_{\text {sigma }}=0.0325\right] \end{gathered}$	$\begin{gathered} 13214\left[\mathrm{R}_{\text {int }}=\right. \\ 0.0312, \\ \left.\mathrm{R}_{\text {sigma }}=0.0323\right] \end{gathered}$
Data/restraints/ parameters	13366/0/837	9487/863/884	17336/196/1258	13214/36/895
Goodness-of-fit on F^{2}	1.033	1.048	1.032	1.054
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$	$\begin{gathered} \mathrm{R}_{1}=0.0468 \\ \mathrm{wR}_{2}=0.1293 \end{gathered}$	$\begin{gathered} \mathrm{R}_{1}=0.0630 \\ \mathrm{wR}_{2}=0.1828 \end{gathered}$	$\begin{gathered} \mathrm{R}_{1}=0.0576 \\ \mathrm{wR}_{2}=0.1533 \end{gathered}$	$\begin{gathered} \mathrm{R}_{1}=0.0446 \\ \mathrm{wR}_{2}=0.1140 \end{gathered}$
Final R indexes [all data]	$\begin{gathered} \mathrm{R}_{1}=0.0528 \\ \mathrm{wR}_{2}=0.1341 \end{gathered}$	$\begin{gathered} \mathrm{R}_{1}=0.0683 \\ \mathrm{wR}_{2}=0.1880 \end{gathered}$	$\begin{gathered} \mathrm{R}_{1}=0.0619 \\ \mathrm{wR}_{2}=0.1578 \end{gathered}$	$\begin{gathered} \mathrm{R}_{1}=0.0580 \\ \mathrm{wR}_{2}=0.1201 \end{gathered}$
Largest diff. peak/hole / e \AA^{-3}	0.27/-0.24	0.69/-0.47	0.83/-0.47	0.48/-0.30
Flack parameter	1	/	/	1

Table S10. Crystallographic data and structure refinement for compounds 1-6a.

Compound	4b	4c	5 a	endo-/exo-6a
CCDC	2269458	2269460	2269469	2269469
Empirical formula	$\mathrm{C}_{55} \mathrm{H}_{93} \mathrm{CoN}_{2} \mathrm{OP}_{4}$	$\mathrm{C}_{99} \mathrm{H}_{97} \mathrm{CoN}_{2} \mathrm{OP}_{4}$	$\begin{gathered} \mathrm{C}_{97} \mathrm{H}_{100} \mathrm{CoN}_{3} \mathrm{OP}_{4} \\ \mathrm{Si} \end{gathered}$	$\begin{gathered} \mathrm{C}_{218} \mathrm{H}_{246} \mathrm{Co}_{2} \mathrm{~N}_{6} \mathrm{O}_{2} \\ \mathrm{P}_{8} \end{gathered}$
Formula weight	1461.52	1513.59	1534.69	3347.81
Temperature/K	123(1)	123(1)	123(1)	123(1)
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic
Space group	$P 2_{1} / c$	$P 2{ }_{1} / c$	$P 2{ }_{1} / n$	$P 2{ }_{1} / c$
a / \AA	21.8483(2)	21.7682(2)	13.62636(7)	14.29290(10)
b/Å	14.50900(10)	14.82840(10)	27.46562(15)	22.4741(2)
c/Å	26.5786(2)	26.4891(3)	$22.79365(10)$	59.8256(7)
$\alpha /{ }^{\circ}$	90	90	90	90
$\beta /{ }^{\circ}$	111.2460(10)	109.7670(10)	104.4385(5)	92.9650(10)
$\gamma /{ }^{\circ}$	90	90	90	90
Volume/A ${ }^{3}$	7852.69(12)	8046.53(14)	8261.23(7)	19191.5(3)
Z	4	4	4	4
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.236	1.249	1.234	1.159
μ / mm^{-1}	2.862	2.811	2.881	2.402
$\mathrm{F}(000)$	3088.0	3200.0	3248.0	7144.0
Crystal size/ mm^{3}	$\begin{gathered} 0.284 \times 0.14 \times \\ 0.054 \end{gathered}$	$\begin{gathered} 0.647 \times 0.072 \times \\ 0.065 \end{gathered}$	$0.2 \times 0.09 \times 0.06$	$\begin{gathered} 0.179 \times 0.081 \times \\ 0.035 \end{gathered}$
	XtaLAB Synergy	Agilent	XtaLAB Synergy	XtaLAB Synergy
Diffractometer	R, DW system, HyPix-Arc 150	Technologies SuperNova, Atlas	R, DW system, HyPix-Arc 150	R, DW system, HyPix-Arc 150
Radiation	$\begin{gathered} \operatorname{CuK} \alpha(\lambda= \\ 1.54184) \end{gathered}$	$\begin{gathered} \mathrm{Cu} \mathrm{~K} \alpha(\lambda= \\ 1.54184) \end{gathered}$	$\begin{gathered} \mathrm{Cu} \mathrm{~K} \alpha(\lambda= \\ 1.54184) \end{gathered}$	$\begin{gathered} \mathrm{Cu} \mathrm{~K} \alpha(\lambda= \\ 1.54184) \end{gathered}$
2Θ range for data collection $/{ }^{\circ}$	4.34 to 149.176	6.936 to 132.082	5.136 to 148.872	4.92 to 134.154
Index ranges	$\begin{aligned} -27 & \leq \mathrm{h} \leq 27, \\ -17 & \leq \mathrm{k} \leq 14, \\ -33 & \leq 1 \leq 33 \end{aligned}$	$\begin{aligned} -25 & \leq \mathrm{h} \leq 24 \\ -15 & \leq \mathrm{k} \leq 17 \\ -29 & \leq 1 \leq 30 \end{aligned}$	$\begin{aligned} -16 & \leq h \leq 16 \\ -33 & \leq k \leq 34, \\ -28 & \leq 1 \leq 23 \end{aligned}$	$\begin{gathered} -16 \leq h \leq 17, \\ -26 \leq k \leq 26, \\ -71 \leq 1 \leq 71 \end{gathered}$
Reflections collected	218480	28281	126409	279595
Independent reflections	$\begin{gathered} 15830\left[\mathrm{R}_{\mathrm{int}}=\right. \\ 0.0351, \\ \left.\mathrm{R}_{\text {sigma }}=0.0176\right] \end{gathered}$	$\begin{gathered} 13479\left[\mathrm{R}_{\mathrm{int}}=\right. \\ 0.0203, \\ \left.\mathrm{R}_{\text {sigma }}=0.0253\right] \end{gathered}$	$\begin{gathered} 16592\left[\mathrm{R}_{\mathrm{int}}=\right. \\ 0.0255, \\ \left.\mathrm{R}_{\text {sigma }}=0.0195\right] \end{gathered}$	$\begin{gathered} 34264\left[\mathrm{R}_{\mathrm{int}}=\right. \\ 0.0968, \\ \left.\mathrm{R}_{\text {sigma }}=0.0531\right] \end{gathered}$
Data/restraints/ parameters	15830/0/934	13479/18/969	16592/18/987	34264/310/1993
Goodness-of-fit on F^{2}	1.059	1.033	1.033	1.019
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$	$\begin{gathered} \mathrm{R}_{1}=0.0568 \\ \mathrm{wR}_{2}=0.1582 \end{gathered}$	$\begin{gathered} \mathrm{R}_{1}=0.0404 \\ \mathrm{wR}_{2}=0.1092 \end{gathered}$	$\begin{gathered} \mathrm{R}_{1}=0.0499 \\ \mathrm{wR}_{2}=0.1458 \end{gathered}$	$\begin{gathered} \mathrm{R}_{1}=0.0887 \\ \mathrm{wR}_{2}=0.2394 \end{gathered}$
Final R indexes [all data]	$\begin{gathered} \mathrm{R}_{1}=0.0627 \\ \mathrm{wR}_{2}=0.1629 \end{gathered}$	$\begin{gathered} \mathrm{R}_{1}=0.0431 \\ \mathrm{wR}_{2}=0.1116 \end{gathered}$	$\begin{gathered} \mathrm{R}_{1}=0.0554 \\ \mathrm{wR}_{2}=0.1503 \end{gathered}$	$\begin{gathered} \mathrm{R}_{1}=0.1110, \\ \mathrm{wR}_{2}=0.2542 \end{gathered}$
Largest diff. peak/hole / e \AA^{-3}	0.98/-0.57	1.17/-0.53	0.69/-0.78	0.81/-0.74
Flack parameter	1	1	1	1

Table S11. Crystallographic data and structure refinement for compounds 6a-7.

Compound	endo-6a	exo-6d	endo-6e	7
CCDC	2269471	2269474	2269477	2269521
Empirical formula	$\mathrm{C}_{94} \mathrm{H}_{88} \mathrm{CoN}_{3} \mathrm{OP}_{4}$	$\begin{gathered} \mathrm{C}_{210} \mathrm{H}_{208} \mathrm{Co}_{2} \mathrm{~N}_{6} \mathrm{O}_{2} \\ \mathrm{P}_{8} \end{gathered}$	$\mathrm{C}_{92} \mathrm{H}_{86} \mathrm{CoN}_{3} \mathrm{OP}_{4}$	$\mathrm{C}_{107} \mathrm{H}_{113} \mathrm{CoN}_{4} \mathrm{OP}_{4}$
Formula weight	1458.48	3213.43	1432.44	1653.82
Temperature/K	123(1)	123(1)	123(1)	123(1)
Crystal system	monoclinic	monoclinic	monoclinic	triclinic
Space group	$P 2_{1} / n$	$P 2{ }_{1} / n$	$P 2{ }_{1} / n$	$P-1$
a/Å	12.8517(2)	28.4861(4)	12.1922(2)	13.7757(3)
b/Å	31.8675(5)	23.2938(3)	47.9684(7)	14.8043(4)
c/Å	19.0864(3)	29.4384(4)	13.3409(2)	25.6965(5)
$\alpha /{ }^{\circ}$	90	90	90	78.281(2)
$\beta /{ }^{\circ}$	94.863(2)	115.943(2)	106.388(2)	89.374(2)
γ^{\prime}	90	90	90	62.721(2)
Volume/ $/{ }^{3}$	7788.7(2)	17565.4(5)	7485.3(2)	4540.3(2)
Z	4	4	4	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.244	1.215	1.271	1.210
μ / mm^{-1}	2.889	2.607	2.997	2.538
$\mathrm{F}(000)$	3072.0	6800.0	3016.0	1756.0
Crystal size/mm ${ }^{3}$	$\begin{gathered} 0.401 \times 0.222 \times \\ 0.16 \end{gathered}$	$\begin{gathered} 0.332 \times 0.238 \times \\ 0.175 \end{gathered}$	$\begin{gathered} 0.18 \times 0.16 \times \\ 0.04 \end{gathered}$	$\begin{gathered} 0.21 \times 0.15 \times \\ 0.07 \end{gathered}$
	XtaLAB Synergy	Agilent	XtaLAB Synergy	Agilent
Diffractometer	R, DW system,	Technologies SuperNova, Titan	R, DW system,	Technologies
	HyPix-Arc 150	SuperNova, Titan S2	HyPix-Arc 150	SuperNova, Titan S2
Radiation	$\operatorname{CuK} \alpha(\lambda=$	$\operatorname{CuK} \alpha(\lambda=$	$\operatorname{CuK} \alpha(\lambda=$	$\mathrm{CuK} \alpha(\lambda=$
	1.54184)	1.54184	1.54184)	1.54184)
2Θ range for data collection/ ${ }^{\circ}$	5.412 to 147.812	6.894 to 134.492	3.684 to 148.432	7.252 to 134.094
Index ranges	$\begin{aligned} -15 & \leq \mathrm{h} \leq 14, \\ -39 & \leq \mathrm{k} \leq 39 \\ -23 & \leq 1 \leq 23 \end{aligned}$	$\begin{aligned} -22 & \leq \mathrm{h} \leq 33, \\ -27 & \leq \mathrm{k} \leq 27, \\ -35 & \leq 1 \leq 35 \end{aligned}$	$\begin{gathered} -14 \leq \mathrm{h} \leq 15 \\ -58 \leq \mathrm{k} \leq 59 \\ -15 \leq 1 \leq 8 \end{gathered}$	$\begin{aligned} -16 & \leq h \leq 16 \\ -17 & \leq \mathrm{k} \leq 16 \\ -30 & \leq 1 \leq 30 \end{aligned}$
Reflections collected	50788	102262	125529	66404
Independent	15042 [$\mathrm{R}_{\text {in }}$	30952 [$\mathrm{R}_{\mathrm{int}}$	14717 [$\mathrm{R}_{\mathrm{int}}=$	$15564{ }^{\left[\mathrm{R}_{\text {int }}=\right.}$
reflections	$\begin{gathered} 0.0435, \mathrm{R}_{\text {sigma }}= \\ 0.0305] \end{gathered}$	$\begin{gathered} 0.0528, \mathrm{R}_{\text {sigma }}= \\ 0.0498] \end{gathered}$	$\begin{gathered} 0.0317, \mathrm{R}_{\text {sigma }}= \\ 0.0198] \end{gathered}$	$\begin{gathered} 0.0487, \mathrm{R}_{\text {sigma }}= \\ 0.0370] \end{gathered}$
Data/restraints/ parameters	15042/0/935	30952/92/2118	14717/84/1276	15564/66/1119
Goodness-of-fit on F^{2}	1.132	1.022	1.044	1.078
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$	$\begin{gathered} \mathrm{R}_{1}=0.0492 \\ \mathrm{wR}_{2}=0.1463 \end{gathered}$	$\begin{gathered} \mathrm{R}_{1}=0.0678 \\ \mathrm{wR}_{2}=0.1720 \end{gathered}$	$\begin{gathered} \mathrm{R}_{1}=0.0549 \\ \mathrm{wR}_{2}=0.1581 \end{gathered}$	$\begin{gathered} \mathrm{R}_{1}=0.0793 \\ \mathrm{wR}_{2}=0.2142 \end{gathered}$
Final R indexes [all data]	$\begin{gathered} \mathrm{R}_{1}=0.0519 \\ \mathrm{wR}_{2}=0.1477 \end{gathered}$	$\begin{gathered} \mathrm{R}_{1}=0.0848 \\ \mathrm{wR}_{2}=0.1875 \end{gathered}$	$\begin{gathered} \mathrm{R}_{1}=0.0603 \\ \mathrm{wR}_{2}=0.1629 \end{gathered}$	$\begin{gathered} \mathrm{R}_{1}=0.0893 \\ \mathrm{wR}_{2}=0.2242 \end{gathered}$
Largest diff. peak/hole / e \AA^{-3}	0.76/-0.57	1.30/-0.74	1.25/-0.86	1.84/-0.73
Flack parameter	1	1	1	1

Table S12. Crystallographic data and structure refinement for compounds 8-9d.

Compound	[K(18c-6)]8	[K(18c-6)]9a	[K(18c-6)]9b	[K(18c-6)]9d
CCDC	2269484	2269513	2269494	2269504
Empirical formula	$\begin{gathered} \mathrm{C}_{109} \mathrm{H}_{108} \mathrm{CoKN}_{3} \mathrm{O} \\ { }_{6} \mathrm{P}_{3} \end{gathered}$	$\mathrm{C}_{18} \mathrm{H}_{33} \mathrm{KNO}_{7} \mathrm{P}$	$\mathrm{C}_{20} \mathrm{H}_{35} \mathrm{KNO}_{7} \mathrm{P}$	$\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{KNO}_{7} \mathrm{P}$
Formula weight	1746.92	445.52	471.56	464.51
Temperature/K	123(1)	123(1)	100(1)	123(1)
Crystal system	triclinic	monoclinic	monoclinic	orthorhombic
Space group	$P-1$	$P 2{ }_{1} / n$	$P 2_{1} / c$	$P 2_{1} 2_{1} 2_{1}$
a/Å	14.20621(7)	10.0106(2)	9.79050 (10)	9.87640(10)
b/Å	17.37333(7)	14.0801(3)	14.09650(10)	14.78170(10)
c/Å	19.84846(12)	16.5959(4)	18.92820(10)	16.2197(2)
$\alpha /{ }^{\circ}$	82.8786(4)	90	90	90
$\beta /{ }^{\circ}$	$70.7499(5)$	94.147(2)	104.6820(10)	90
$\gamma /{ }^{\circ}$	86.3030(4)	90	90	90
Volume/A ${ }^{3}$	4587.75(4)	2333.07(9)	2527.02(4)	2367.91(4)
Z	2	4	4	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.265	1.268	1.239	1.306
μ / mm^{-1}	2.818	2.952	2.755	2.939
$\mathrm{F}(000)$	1844.0	952.0	1008.0	984.0
Crystal size $/ \mathrm{mm}^{3}$	$\begin{gathered} 0.404 \times 0.129 \times \\ 0.123 \end{gathered}$	$0.2 \times 0.13 \times 0.06$	$\begin{gathered} 0.28 \times 0.23 \times \\ 0.09 \end{gathered}$	$\begin{gathered} 0.338 \times 0.22 \times \\ 0.18 \end{gathered}$
Diffractometer	XtaLAB Synergy R, DW system, HyPix-Arc 150	Agilent Technologies SuperNova, Titan S2	XtaLAB Synergy R, DW system, HyPix-Arc 150	XtaLAB Synergy R, DW system, HyPix-Arc 150
Radiation	$\begin{gathered} \mathrm{Cu} \mathrm{~K} \alpha(\lambda= \\ 1.54184) \end{gathered}$	$\begin{gathered} \operatorname{CuK} \alpha(\lambda= \\ 1.54184) \end{gathered}$	$\begin{gathered} \mathrm{Cu} \mathrm{~K} \alpha(\lambda= \\ 1.54184) \end{gathered}$	$\begin{gathered} \mathrm{Cu} \mathrm{~K} \alpha(\lambda= \\ 1.54184) \end{gathered}$
2Θ range for data collection/ ${ }^{\circ}$	4.744 to 148.778	8.244 to 133.732	7.916 to 146.304	8.092 to 148.648
Index ranges	$\begin{aligned} -17 & \leq \mathrm{h} \leq 17 \\ -15 & \leq \mathrm{k} \leq 20 \\ -24 & \leq 1 \leq 24 \end{aligned}$	$\begin{gathered} -11 \leq h \leq 11, \\ -16 \leq k \leq 16, \\ -19 \leq 1 \leq 19 \end{gathered}$	$\begin{aligned} -12 & \leq \mathrm{h} \leq 10 \\ -17 & \leq \mathrm{k} \leq 17 \\ -22 & \leq 1 \leq 23 \end{aligned}$	$\begin{aligned} -10 & \leq h \leq 12 \\ -18 & \leq k \leq 18 \\ -20 & \leq 1 \leq 16 \end{aligned}$
Reflections collected	117206	36868	28205	17999
Independent reflections	$\begin{gathered} 18323\left[\mathrm{R}_{\text {int }}=\right. \\ 0.0166, \mathrm{R}_{\text {sigma }}= \\ 0.0097] \end{gathered}$	$\begin{gathered} 4126\left[\mathrm{R}_{\text {int }}=\right. \\ 0.0796, \mathrm{R}_{\text {sigma }}= \\ 0.0265] \end{gathered}$	$\begin{gathered} 4935\left[\mathrm{R}_{\text {int }}=\right. \\ 0.0188, \mathrm{R}_{\text {sigma }}= \\ 0.0105] \end{gathered}$	$\begin{gathered} 4623\left[\mathrm{R}_{\text {int }}=\right. \\ 0.0208, \mathrm{R}_{\text {sigma }}= \\ 0.0169] \end{gathered}$
Data/restraints/ parameters	18323/15/1179	4126/0/385	4935/0/411	4623/0/281
Goodness-of-fit on F^{2}	1.080	1.045	1.044	1.020
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$	$\begin{gathered} \mathrm{R}_{1}=0.0277 \\ \mathrm{wR}_{2}=0.0757 \end{gathered}$	$\begin{gathered} \mathrm{R}_{1}=0.0456 \\ \mathrm{wR}_{2}=0.1204 \end{gathered}$	$\begin{gathered} \mathrm{R}_{1}=0.0237, \\ \mathrm{wR}_{2}=0.0655 \end{gathered}$	$\begin{gathered} \mathrm{R}_{1}=0.0446 \\ \mathrm{wR}_{2}=0.1240 \end{gathered}$
Final R indexes [all data]	$\begin{gathered} \mathrm{R}_{1}=0.0283 \\ \mathrm{wR}_{2}=0.0760 \end{gathered}$	$\begin{gathered} \mathrm{R}_{1}=0.0485 \\ \mathrm{wR}_{2}=0.1238 \end{gathered}$	$\begin{gathered} \mathrm{R}_{1}=0.0244, \\ \mathrm{wR}_{2}=0.0660 \end{gathered}$	$\begin{gathered} \mathrm{R}_{1}=0.0454, \\ \mathrm{wR}_{2}=0.1250 \end{gathered}$
Largest diff. peak/hole / e \AA^{-3}	0.35/-0.34	0.97/-0.37	0.31/-0.22	0.75/-0.30
Flack parameter	1	1	1	-0.002(4)

Figure S81. Solid-state molecular structure of Ar*BIAN (1) shown at the 50% probability level with hydrogen atoms and disorder in one of the $i \operatorname{Pr}$ groups, as well as a phenyl group omitted for clarity. Selected bond lengths $[\AA]$ and angles [${ }^{\circ}$]: N1-C1 1.2748(2), N2-C2 1.2746(2), C1-C2 1.5294(2), N1-C1-C2 120.00(1), N2-C2-C1 121.02(1).

Figure S82. Solid-state molecular structure of $[\mathrm{K}(18 \mathrm{c}-6)]\left[\left(\mathrm{Ar}^{*} \mathrm{BIAN}\right) \mathrm{Co}\left(\eta^{4}-1-5-\mathrm{cod}\right)\right]$ ([K(18c-6)]2) shown at the 50% probability level. Hydrogen atoms, non coordinating solvent molecules and disorder in Ar*BIAN and 18c-6 omitted for clarity. The asymmetric unit contains only half of the molecule. Selected bond lengths $[\AA]$ and angles [${ }^{\circ}$]: Co1-C2 2.036(2), Co1-C3 2.022(2), Co1-N1 1.9265(2), C2-C3 1.402(3), N1-C1 1.374(3), C1-C1' 1.382(4), N1-Co1-N1' 83.13(1).

Figure S83. Solid-state molecular structure of $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{4}-\mathrm{P}_{4}\right)\right]([\mathrm{K}(18 \mathrm{c}-6)] 3)$ shown at the 50% probability level. Hydrogen atoms, non coordinating solvent molecules and disorder in the Ar*BIAN ligand and in 18c-6 omitted for clarity. Selected bond lengths [\AA] and angles [${ }^{\circ}$]: P1-P2 $2.1539(9)$, P1-P4 2.1626 (1), P3-P2 2.1763(1), P3-P4 2.1772(1), Co1-P1 2.3193(7), Co1-P2 2.3068(7), Co1-P3 2.3261(8), Co1-P4 2.2943(7), K1-P4 ${ }^{\text {centr }} 3.1726(6)$, Co1-N1 1.9077(2), Co1-N2 1.9231(2), N1-C1 1.335(3), N2-C2 1.330(3), C1-C2 1.426(3), P2-P1-P4 89.41(4), P1-P4-P3 90.95(4), P4-P3-P2 88.44(4), P3-P2-P1 91.20(4), N1-Co1-N2 84.69(8).

Figure S84. Solid-state molecular structure of [(Ar*BIAN)Co $\left.\left(\eta^{3}: \eta^{1}-P_{4} C(O) C y\right)\right]$ (4b) shown at the 50% probability level. Hydrogen atoms and non coordinating solvent molecules omitted for clarity. Selected bond lengths [\AA] and angles [${ }^{\circ}$]: P1-P2 2.2371(1), P1-P4 2.2570(1), P2-P3 2.1593(1), P3-P4 2.1559(1), Co1-P2 2.3019(8), Co1-P3 2.2844(9), Co1-P4 2.2934(7), Co1-O1 2.0933(2), P1-C3 1.876(3), C3-O1 1.239(3), Co1-N1 1.9578(2), Co1-N2 1.960(2), C1-C2 1.448(3), P2-P1-P4 82.79(4), P1-P4-P3 89.96(4), P4-P3-P2 87.05(4), P3-P2-P1 90.41(4), Co1-O1-C3 116.73(2), O1-C3-P1 117.7(2), N1-Co1-N2 82.88(8).

Figure S85. Solid-state molecular structure of [(Ar*BIAN)Co($\left.\left.\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) \mathrm{Ad}\right)\right]$ (4c) shown at the 50% probability level. Hydrogen atoms and non coordinating solvent molecules omitted for clarity. Selected bond lengths $[\AA]$ and angles [${ }^{\circ}$]: P1-P2 2.244(7), P1-P4 2.2450(8), P2-P3 2.1562(7), P3-P4 2.1626(8), Co1-P2 2.2957(5), Co1-P3 2.2793(6), Co1-P4 2.2998(5), Co1-O1 2.0925(1), P1-C3 1.879(2), C3-O1 1.245(2), Co1-N1 1.9570(2), Co1-N2 1.9624(2), C1-C2 1.446(3), P2-P1-P4 83.05(2), P1-P4-P3 89.88(3), P4-P3-P2 87.14(3), P3-P2-P1 90.05(3), Co1-O1-C3 116.54(1), O1-C3-P1 117.63(1), N1-Co1-N2 83.25(6).

Figure S86. Solid-state molecular structure of endo-[(Ar*BIAN)Co(CyNC) $\left.\left(\eta^{3}-\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right]$ (endo-6a) shown at the 50% probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths $[\AA]$ and angles [${ }^{\circ}$]: P1-P2 2.2438(8), P1-P4 2.2199(9), P2-P3 2.1686(9), P3-P4 2.1643(8), Co1-P2 2.3205(6), Co1-P3 2.2939, Co1-P4 2.3143(6), P1-C4 1.905(2), C4-O1 1.203(3), Co1-C3 1.862(2), C3-N3 1.160(3), Co1-N1 1.9775(2), Co1-N2 1.9775(2), C1-C2 1.455(3), P2-P1-P4 80.51(3), P1-P4-P3 91.51(3), P4-P3-P2 83.47(3), P3-P2-P1 90.76(3), Co1-C3-N3 177.38(2), P1-C4-O1 121.46(2), N1-Co1-N2 81.99(6).

Figure S87. Solid-state molecular structure of exo-[(Ar*BIAN) $\left.\mathrm{Co}(\mathrm{CyNC})\left(\eta^{3}-\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) \mathrm{Ph}\right)\right]$ (exo-6d) shown at the 50% probability level. Hydrogen atoms are omitted for clarity. The asymmetric unit contained a second crystallographically independent molecule and four molecules of n-hexane, which are not shown. Selected bond lengths [\AA] and angles [${ }^{\circ}$]: P1-P2 2.2299(1), P1-P4 2.2107(1), P2-P3 2.1802(1), P3-P4 2.1863(1), Co1-P2 2.3039(9), Co1-P3 2.2862(9), Co1-P4 2.307(1), P1-C4 1.872(4), C4-O1 1.224(4), Co1-C3 1.857(3), C3-N3 1.168(4), Co1-N1 1.998(3), Co1-N2 1.995(3), C1-C2 1.460(4), P2-P1-P4 81.26(4), P1-P4-P3 83.51(4), P4-P3-P2 82.94(4), P3-P2-P1 83.20(5), Co1-C3-N3 178.2(3), P1-C4-O1 119.3(3), N1-Co1-N2 81.16(1).

Figure S88. Solid-state molecular structure of endo-[($\left.\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}(t \mathrm{BuNC})\left(\eta^{3}-\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right]$ (endo-6e) shown at the 50% probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths $[\AA]$ and angles [${ }^{\circ}$]: P1-P2 2.2388(1), P1-P4 2.2332(1), P2-P3 2.1684(1), P3-P4 2.1514(8), Co1-P2 2.3164(8), Co1-P3 2.2996(8), Co1-P4 2.2876(7), P1-C4 1.874(3), C4-O1 1.216(4), Co1-C3 1.868(3), C3-N3 1.161(4), Co1-N1 1.984(2), Co1-N2 1.993(2), C1-C2 1.459(3), P2-P1-P4 80.56(4), P1-P4-P3 90.77(4), P4-P3-P2 84.03(4), P3-P2-P1 90.18(4), Co1-C3-N3 176.9(2), P1-C4-O1 119.8(3), N1-Co1-N2 82.29(8).

Figure S89. Solid-state molecular structure of [(Ar*BIAN) $\left.\mathrm{Co}(\mathrm{CyNC})_{2}\left(\eta^{1}-\mathrm{P}_{4} \mathrm{CO} t \mathrm{Bu}\right)\right]$ (7) shown at the 50% probability level. Hydrogen atoms and non coordinating solvent molecules omitted for clarity. Selected bond lengths [\AA] and angles [${ }^{\circ}$]: P1-P2 2.2095(2), P1-P3 2.2298(2), P2-P3 2.2167(2), P2-P4 2.2167(2), P3-P4 2.2083(2), Co1-P1 2.2708(1), P4-C5 1.916(5), C5-O1 1.203(6), Co1-C3 1.838(5), $\mathrm{Co} 1-\mathrm{C} 41.869(4), \mathrm{C} 3-\mathrm{N} 31.087(6), \mathrm{C} 4-\mathrm{N} 41.163(5), \mathrm{Co} 1-\mathrm{N} 11.968(3), \mathrm{Co} 1-\mathrm{N} 21.950(3), \mathrm{N} 1-\mathrm{C} 1$ $1.323(5), \mathrm{N} 2-\mathrm{C} 21.335(5), \mathrm{C} 1-\mathrm{C} 21.428(5), \mathrm{P} 1-\mathrm{P} 2-\mathrm{P} 480.00(6)$, $\mathrm{P} 1-\mathrm{P} 3-\mathrm{P} 4$ 79.75(6), P2-P1-P3 58.97(5), P2-P4-P3 59.19(6), Co1-C3-N3 174.4(4), Co1-C4-N4 176.4(4), P4-C5-O1 122.0(4), N1-Co1-N2 82.32(1).

Figure S90. Solid-state molecular structure of $[\mathrm{K}(18 \mathrm{c}-6)][\mathrm{BuC}(\mathrm{O}) \mathrm{PCN}]([\mathrm{K}(18 \mathrm{c}-6)] 9 \mathbf{a})$ shown at the 50% probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths [\AA] and angles [${ }^{\circ}$]: $\mathrm{P} 1-\mathrm{C} 1$ 1.777(2), P1-C2 1.782(2), C1-N1 1.152(3), K1-N1 3.323(2), K1-O1 2.653(2), C2-O1 1.247(3), P1-C1-N1 174.6(2), C1-P1-C2 95.41(2).

Figure S91. Solid-state molecular structure of $[\mathrm{K}(18 \mathrm{c}-6)][\mathrm{PhC}(\mathrm{O}) \mathrm{PCN}]([\mathrm{K}(18 \mathrm{c}-6)] 9 \mathrm{~d})$ shown at the 50% probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths $[\AA]$ and angles [${ }^{\circ}$]: P1-C1 $1.769(4), \mathrm{P} 1-\mathrm{C} 21.796(4), \mathrm{C} 1-\mathrm{N} 1$ 1.149(6), $\mathrm{K} 1-\mathrm{N} 13.035(4), \mathrm{K} 1-\mathrm{O} 12.741(3), \mathrm{C} 2-\mathrm{O} 11.231(5)$, $\mathrm{P} 1-\mathrm{C} 1-\mathrm{N} 1175.5(4), \mathrm{C} 1-\mathrm{P} 1-\mathrm{C} 2$ 96.06(2).

2.4.9 Quantum Chemical Calculations

General Methods

Geometry optimization and frequency analysis were carried out with the ORCA program package. ${ }^{[59]}$ All calculations were conducted in the gas phase. Geometry optimization for [(Ar*BIAN)Co($\left.\left.\eta^{3}: \eta^{1}-\mathrm{P} 4 \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right] \quad$ (4a), $\quad\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P} 4 \mathrm{C}(\mathrm{O}) \mathrm{Cy}\right)\right] \quad$ (4b), $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P} 4 \mathrm{C}(\mathrm{O}) \mathrm{Ad}\right)\right](\mathbf{4 c}),[\mathrm{CyC}(\mathrm{O}) \mathrm{PCN}]^{-}(\mathbf{9 b})$, and $(\mathrm{CyC}(\mathrm{O}))_{2} \mathrm{PCN}(\mathbf{1 0})$ have been carried out at the BP86/def2-TZVP level of theory. ${ }^{[60]} \mathrm{H}_{3} \mathrm{CC}(\mathrm{O}) \mathrm{PCN}^{-}(\mathbf{9 - M e})$ was optimized on the TPSS/def2-TZVP level of theory. Calculated IR Spectra were rendered using the software Avogadro. ${ }^{[61]}$

Calculation of the ${ }^{31} \mathbf{P}$ NMR chemical shifts

All calculations have been performed with the ORCA program package ${ }^{[59]}$ The geometry of the molecules has been optimized using the BP86, ${ }^{[62]} \mathrm{PBE}^{[63]}$ and TPSS ${ }^{[64]}$ functionals together with the def2-SVP basis set for C and H and def2-TZVP for all other atoms, using tight convergence criteria. The dispersion correction has been incorporated via the D3BJ ${ }^{[60]}$ scheme and the solvent effects by using the CPCM model ${ }^{[65]}$ with the dielectric constant of benzene. The ${ }^{31} \mathrm{P}$ chemical shifts has been calculated using the GIAO ${ }^{[66]}$ formalism as single point calculations using the aug-pcSseg-2 basis set ${ }^{[67]}$ (taken from the Basis Set Exchange library ${ }^{[68]}$) for phosphorus and the def2-TZVP basis set for all other atoms. In case of the hybrid functionals the RIJCOSX approximation has been used. ${ }^{[69]}$ The single point calculation with the $\operatorname{PBE} 0^{[70]}$ functional has been performed on the PBE optimized geometry, while the single point calculations with the TPSSh ${ }^{[71]}$ and TPSS0 (a 25% exchange version of TPSSh) functionals the TPSS optimized geometry has been used. The calculated absolute shifts has been referenced to the absolute shift of 85% $\mathrm{H}_{3} \mathrm{PO}_{4}$ using PH_{3} as a secondary standard ($\mathrm{d}_{\mathrm{PH} 3}$ in $\mathrm{C}_{6} \mathrm{D}_{6}=-240 \mathrm{ppm}$) by using the equation: $\mathrm{d}_{\text {calc, } \mathrm{X}}=\mathrm{s}_{\text {calc,PH3 }}-\mathrm{s}_{\text {calc }, \mathrm{X}}-240 \mathrm{ppm}$. The PBE0 functional reproduced best the experimental chemical shifts.

Table S13. Calculated (at the D3BJ-PBE0/def2-TZVP/aug-pcSseg-2 @P/CPCM level of theory) and experimental ${ }^{31}$ P NMR chemical shifts.

Table S14. Calculated (at the D3BJ-PBE0/def2-TZVP/aug-pcSseg-2 @P/CPCM level of theory) and experimental ${ }^{31}$ P NMR chemical shifts.

	exo-7a	endo-7a	3^{-}	
	calcd.	calcd.	calcd.	exp.
P1	-10	149	137	113.0
P2	-321	-219		
P3	-276	-229		
P4	-105	39		

Table S15. Calculated ${ }^{31} \mathrm{P}$ NMR chemical shifts using different functionals together with the D3BJ dispersion corrections, def2-TZVP/aug-pcSseg-2 @P basis sets and CPCM model.

		BP86	TPSS	PBE	PBE0	TPSSh	TPSS0
PH_{3}	P	561	581	568	576	583	585
4a	P1	181	128	180	95	103	53
	P2	194	134	190	104	108	58
	P3	139	99	143	67	74	39
	P4	371	312	368	315	299	266
endo-6a	P1	252	194	231	174	180	147
	P2	116	72	112	61	56	27
	P3	144	100	150	82	78	39
	P4	151	114	145	88	94	68
exo-6a	P1	66	27	47	-3	14	-17
	P2	111	58	92	61	49	31
	P3	125	85	129	83	70	42
	P4	59	33	56	10	18	-3
endo-6d	P1	138	94	138	89	77	49
	P2	84	36	59	8	23	-8
	P3	101	65	103	67	54	34
	P4	73	45	71	23	29	8
exo-6d	P1	120	82	121	64	63	32
	P2	254	194	230	167	177	141
	P3	183	133	183	130	116	87
	P4	127	89	120	71	72	51
exo-7a	P1	58	16	55	-10	-9	-43
	P2	-274	-304	-288	-321	-315	-332
	P3	-239	-256	-234	-276	-271	-291
	P4	-89	-106	-90	-105	-110	-117
endo-7a	P1	201	159	202	149	139	112
	P2	-176	-206	-179	-219	-220	-239
	P3	-188	-217	-203	-229	-226	-239
	P4	24	17	31	39	21	28
3^{-}	P1	157	119	152	114	109	96
	P2	162	124	157	118	113	99
	P3	170	146	169	161	146	147
	P4	172	140	164	157	140	142
	average	165	132	160	137	127	121

Frequency analysis

Figure S92. Comparison of DFT calculated (BP86/def2-TZVP, top/middle) and experimental (bottom) IR spectra of compound $\left[\left(\mathrm{Ar} r^{*} \mathrm{BIAN}\right) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right](\mathbf{4 a})$. DFT calculated IR spectra without peak broadening (top): scaling type: linear, line shape: gaussian, scale factor: 1.00 , peak width: 0.0 , points per peak 10. DFT calculated IR spectra settings (middle): scaling type: linear, line shape: gaussian, scale factor: 1.00 , peak width: 10.0 , points per peak 10 .

Figure S93. Comparison of DFT calculated (BP86/def2-TZVP, top/middle) and experimental (bottom) IR spectra of compound $\left[\left(\mathrm{Ar}{ }^{*} \mathrm{BIAN}\right) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) \mathrm{Cy}\right)\right](\mathbf{4 b})$. DFT calculated IR spectra without peak broadening (top): scaling type: linear, line shape: gaussian, scale factor: 1.00 , peak width: 0.0 , points per peak 10. DFT calculated IR spectra settings (middle): scaling type: linear, line shape: gaussian, scale factor: 1.00 , peak width: 10.0 , points per peak 10 .

Figure S94. Comparison of DFT calculated (BP86/def2-TZVP, top/middle) and experimental (bottom) IR spectra of compound $\left[\left(\mathrm{Ar}{ }^{*} \mathrm{BIAN}\right) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P} 4 \mathrm{C}(\mathrm{O}) \mathrm{Ad}\right)\right](4 \mathbf{c})$. DFT calculated IR spectra without peak broadening (top): scaling type: linear, line shape: gaussian, scale factor: 1.00 , peak width: 0.0 , points per peak 10. DFT calculated IR spectra settings (middle): scaling type: linear, line shape: gaussian, scale factor: 1.00 , peak width: 10.0 , points per peak 10 .

Figure S95. Comparison of DFT calculated (BP86/def2-TZVP, top/middle: $[\mathrm{CyC}(\mathrm{O}) \mathrm{PCN}]^{-}$(9b)) and experimental (bottom: [K(18c-6]9b]) IR spectra. DFT calculated IR spectra without peak broadening (top): scaling type: linear, line shape: gaussian, scale factor: 1.00 , peak width: 0.0 , points per peak 10 . DFT calculated IR spectra settings (middle): scaling type: linear, line shape: gaussian, scale factor: 1.00, peak width: 10.0 , points per peak 10 .

Figure S96. Comparison of DFT calculated (BP86/def2-TZVP, top/middle) and experimental (bottom) IR spectra of compound $(\mathrm{CyC}(\mathrm{O}))_{2} \mathrm{PCN}(\mathbf{1 0})$. DFT calculated IR spectra without peak broadening (top): scaling type: linear, line shape: gaussian, scale factor: 0.99 , peak width: 0.0 , points per peak 10 . DFT calculated IR spectra settings (middle): scaling type: linear, line shape: gaussian, scale factor: 0.99 , peak width: 10.0, points per peak 10 .

Natural theory analysis

$[\mathrm{CyC}(\mathrm{O}) \mathrm{PCN}]^{-}(9 b)$:
TOPO matrix for the leading resonance structure:
PCN unit: 1P 4C 3N

Resonance
RS Weight(\%)
Added(Removed)

```
    5.18
    4.29 P 1-O 2,( P 1-C 5), (O 2), C }
    4.22 P 1-N 3,( P 1-C 5), O 2-C 5,(N 3-C 4), (O 2), C 4
    4.06 (P 1-C 5), O 2-C 5, P 1, (O 2)
    3.42 P 1-C 4,(P 1-C 5), O 2-C 5, (N 3-C 4), (O 2), N }
    3.04 P 1-O 2, P 1-N 3, (P 1-C 5), (P 1-C 5), O 2-C 5, (N 3-C 4), (O 2), (O 2), C 4,C 5
    2.31 P 1-O 2, P 1-C 4, (P 1- C 5), (P 1-C 5), O 2-C 5, (N 3-C 4), (O 2), (O 2), N 3, C 5
    2.17 (P 1-C 5), O 2-C 5, O 2-C 5,( C 5-C 6), С 6-C 8,( C 8-C 11), P 1, (O 2), (O 2), C 11
    2.17 (P 1-C 5), O 2-C 5, O 2-C 5,( C 5-C 6), C 6-C 7, ( С 7-C 9), P 1, (O 2), ( O 2), C 9
    1.94 P 1-C 4, P 1-C 4, (P 1-C 5), (P 1-C 5), O 2-C 5, (N 3-C 4), (N 3-C 4), N 3-C5, (O 2), N }
    1.57 P 1-O 2, (P 1-C 5), С 5-C 6,( C 6-C 7),( C 6-C 8), С 7-C 9,( C 9-H 20), (O 2), C 8,
H20
    12 1.55 P 1-C 4, (P 1-C 5), O 2- C 5, O 2-C 5, (N 3-C 4), ( C 5-C 6), C 6-C 8, ( C 8-C 11), (O 2), (O 2),
N 3, C 11
    1.54 P 1-O 2, P 1-C 4, (P 1-C 5), (P 1-C 5), O 2-C 5, (N 3-C 4), (N 3-C 4),N 3-C 5,(O 2), (O 2),N
3, C }
    14 1.54 P 1-C 4, (P 1-C 5), O 2-C 5, O 2- C 5, (N 3-C 4), ( C 5- C 6), C 6- C 7, ( C 7- C 9), (O 2), (O
2), N 3, C }
    15 1.54 P 1-O 2, P 1-C 4, ( P 1- C 5), ( N 3- C 4), C 5- C 6, ( C 6- C 7), ( C 6- C 8), C 8- C 11, ( C 11-H 22), (P
1), (O 2),N 3, C 7, H}2
    16 1.53 P 1-N 3,(N 3-C 4), (P 1), C 4
    1.40 P 1-O 2,( O 2-C 5), ( ( 1), C 5
    1.30 C 7- C 9,( C 7- H 14), ( C 9- H 17), H }1
    1.30 C 8-C 11, ( C 8-H 13), ( C 11-H 21), H }2
    1.29 С 7-C 9, ( С 7- H 16), ( С 9- С 10), С }1
    1.29 C 8-C 11, ( C 8- H 19), ( C 10- C 11), С 10
    1.23 C 9- C 10, ( C 9- H 20), ( C 10- C 11), С }1
    1.23 ( C 9- C 10), C 10- C 11, ( C 11- H 22), С }
    1.21 C 9- C 10, ( C 9- H 17), ( C 10- H 15), H 15
    1.21 C 10- C 11, ( C 10-H 15), ( C 11-H 21), H }1
    1.19 P 1-C 4, P 1-C 4, (P 1-C 5), (P 1-C 5), O 2-C 5, O 2-C 5, (N 3-C 4), (N 3-C 4), (O 2), (O 2), N
3, N }
    1.15 (C 8-C 11), C 10- C 11, ( C 10- H 18), C }
    1.15 (С 7- С 9), С 9- С 10, ( С 10- H 18), С }
    1.13 P 1-O 2, (P 1-C 4), (P 1-C 5), (P 1-C 5), O 2-C 5, N 3-C 4, P 1, P 1, (O 2), (O 2), (N 3), C }
    1.11 C 10- C 11, ( C 10-H 15), ( C 11-H 21), H }2
    1.11 C 9-C 10,( C 9- H 17), ( C 10-H 15), H }1
    1.07 P 1-O 2, (P 1-C 4), (P 1- C 5), (P 1- C 5), P 1-H 12, O 2-C 5, N 3-C 4, ( C 6-H 12), P 1,(O 2), (O
2), ( N 3), C 5, C }
    33 1.01 P 1-O 2, P 1-C 4, (P 1-C 5), (N 3-C 4), C 5-C 6, ( C 6- C 7), ( C 6- C 8), C 8- C 11, ( C 11-H 22), (P
1),( O 2), N 3, C 6, С }
```



```
1.00 P 1-N 3,(P1-C 4), (P 1-C 5), O 2-C 5, (C 5-C 6), P 1, (O 2), (O 2), (N 3), C 4, C 5, C 6
0.99 P 1-O 2,( P 1-C 5), (P 1-C 5), O 2-C 5, P 1, (O 2), (O 2), C }
0.97 C 8- C 11, ( C 8-H 13), ( C 11-H 21), H }1
0.97 C 7- C 9, ( C 7-H 14), ( C 9- H 17), H }1
0.90 (P 1-C 5), O 2- C 5, O 2-C 5, ( C 5- C 6), С 6- C 7, ( C 6-H 12), ( С 7-H 14), P 1, (O 2), (O 2), С 6, H
(O 2),(N 3), C
420.84 (P 1-C 4), (P 1-C 5), (P 1-C 5), O 2-C 5,O 2-C 5, N 3-C 4, P 1, P 1, P 1, (O 2), (O 2), (N 3)
43 0.82 C 6-C 8,( C 6- H 12), ( C 8- H 13), H 13
44 0.81 P 1-O 2, P 1-N 3,( P 1-C 4), (P 1-C 5), (O 2), (N 3), C 4, C }
45 0.81 P 1-C 4, P 1-C 4, P 1-C 4, (P 1-C 5), (P 1-C 5), O 2-C 5, O 2-C 5, (N 3-C 4), (N 3-C 4), (N 3-
C 4),(P1),(O 2),(O 2),N 3, N 3,N N
    46 0.80 C 6-C 7, ( C 6-H 12), ( C 7- H 14), H 14
    47 0.80 С 8-C 11, ( С 8-H 19), ( C 10- С 11), Н }1
    48 0.79 С 7- C 9, ( С 7- H 16), ( С 9- C 10), H 16
    49 0.78 P 1-C 4, ( N 3-C 4), ( P 1), N 3
    50 0.76 P 1-O 2, (P 1-C 5), (N 3-C 4), (O 2), (O 2), N 3, C 4, C 5
    510.74 (P 1- C 4), N 3-C 4, P 1, ( N 3)
    52 0.71 P 1-N 3, (P 1-C 4), (P 1-C 5), O 2-C 5, P 1,( O 2), (N 3), C 4
    530.70 ( С 7- С 9), С 9- С 10, ( С 10- H 18), H 18
    54 0.70 ( С 8-C 11), С 10- С 11, ( С 10- H 18), Н }1
    550.69 (P 1-C 5), О 2- С 5, O 2-C 5, ( С 5-C 6), С 6- С 8, ( С 8-H 13),
        P 1,(O 2),(O 2), H }1
    0.69 (P 1-C 5), O 2-C 5, O 2-C 5, ( С 5-C 6), С 6- С 7, ( C 7-H 14),
        P 1,(O 2), (O 2), H }1
    0.66 P 1-O 2, (P 1-C 5), С 5- C 6, ( C 6- C 8), C 8- C 11, ( C 11-H 22), (O 2), H }2
    0.66 P 1-C 4,( P 1-C 5), (N 3-C 4), C 5
    0.63 P 1-O 2, P 1-C 4, (P 1-C 5), (N 3-C 4), C 5-C 6, ( C 6-C 7), C 7- C 9,( C 9-H 20), (P 1), (O 2),N
3, H }2
    60 0.61 P 1-C 4, P 1-C 4, (P 1-C 5), (N 3-C 4), (N 3-C 4), (P 1), N 3, C 5
    61 0.55 P 1-O 2, P 1-C 4, P 1-C 4,(P 1-C 5), (P 1-C 5), O 2-C 5, (N 3-C 4), (N 3-C 4), (N 3-C 4), N 3-
C 5, (P 1), (O 2), (O 2),N 3, N 3, C 4
```



```
H }1
    0.51 (P 1-C 5), O 2-C 5, O 2-C 5,( C 5-C 6), С 6-C 8,( C 6-H 12), ( C 8-H 13), P 1, (O 2), (O 2), C 6,
H }1
    64 0.45 C 6- C 8, ( C 6- H 12), ( C 8- H 13), H 12
    65 0.44 P 1-O 2, (P 1-C 4), (P 1-C 5), (P 1-C 5), P 1-C 6, O 2-C 5, N 3-C 4, ( C 6- H 12), P 1, (O 2), (O
2), (N 3), C 5, H }1
    66 0.43 C 6- C 7, ( C 6- H 12), ( C 7- H 14), H 12
    670.40 P 1-O 2, ( P 1- C 5), C 7- C 9, ( C 7-H 14), ( C 9- H 17), ( O 2), C 5, H }1
    680.40 P 1-O 2, (P 1-C 5), С 8- C 11, ( C 8- H 13), ( C 11-H 21), ( O 2), C 5, H }2
    690.39 P 1-O 2,( P 1- C 5), С 7- C 9, ( С 7- H 16), ( С 9- С 10), ( O 2), C 5, С }1
    70 0.39 P 1-C 4, P 1-C 4, (P 1-C 5), (P 1-C 5), O 2-C 5, O 2-C 5, (N 3-C 4), (N 3-C 4), ( C 6- C 7), C 6-
C 8,( C 8-H 19), (O 2), (O 2),N 3, N 3, H }1
    710.39 P 1-O 2,(P 1-C 5), C 8-C 11, ( C 8- H 19), ( C 10- C 11), (O 2), C 5, C 10
    72 0.36 P 1-O 2,( P 1-C 4), (P 1-C 5), (P 1-C 5), O 2-C 5, N 3-C 4, C 6-C 7,
                (C 6-C 8), (C 7-H 16), P 1, P 1, (O 2), (O 2), (N 3), C 5, H }1
    73 0.34 P 1-N 3,( P 1-C 5), O 2-C 5,(N 3-C 4), С 7-C 9,( С 7-H 14), (C 9- H 17), (O 2),
        C 4, H }1
    74 0.34 P 1-N 3, (P 1-C 5), O 2-C 5, (N 3-C 4), C 8-C 11, ( C 8-H 13),
                (C 11-H21), (O 2), C 4, H }2
    0.33 P 1-O 2, ( P 1-C 5), C 9- C 10, ( C 9- H 20), ( C 10- C 11), ( O 2), C 5, C 11
    0.33 P 1-O 2,( ( 1-C 5), ( C 9- C 10), C 10- C 11,( C 11-H 22), (O 2), С 5, C }
    0.33 P 1-N 3, (P 1-C 5), O 2-C 5, (N 3-C 4), С 7- C 9, ( С 7-H 16), ( C 9- C 10),
                (O 2), C 4, C }1
    78 0.33 P 1-N 3,(P 1-C 5), O 2-C 5,(N 3-C 4), C 8-C 11, ( C 8-H 19), ( C 10- C 11),
                (O 2),C 4, C 10
    79 0.32 P 1-C 4, P 1-C 4, (P 1-C 5), (P 1- C 5), O 2- C 5, O 2-C 5, (N 3-C 4),
                (N 3-C 4),C 6-C 7, (C 6-C 8), (C 7-H 16), (O 2), (O 2), N 3, N 3, H }1
    80 0.31 P 1-O 2, (P 1-C 5), (P 1-C 5), O 2-C 5, (N 3-C 4), N 3-C 5, P 1, (O 2), (O 2), C 4
    81 0.31 P 1-O 2, (P 1-C 5), C 9- C 10, ( C 9- H 17),( C 10-H 15), ( O 2), C 5, H }1
    820.31 P 1-O 2, ( P 1-C 5), C 10- C 11, ( C 10-H 15), ( C 11-H 21), (O 2), C 5, H 15
    83 0.30 P 1-N 3,( N 3-C 4), ( P 1), C 4
    840.28 P 1-O 2, P 1-N 3,(P 1-C 5), (N 3-C 4), (P 1), (O 2), C 4, C 5
    85 0.27 P 1-C 4, ( P 1-C 5), O 2- C 5, O 2- C 5, (N 3-C 4), ( С 5-C 6), С 6- C 7, ( С 6- H 12),( С 7- H 14), (O
2), (O 2), N 3, C 6, H 14
    86 0.27 (P 1-C 4), (P 1-C 5), (P 1-C 5), P 1-C 6,O 2-C 5, O 2-C 5, N 3-C 4,( C 6-H 12),P 1, P 1, (O 2),(
O 2), (N 3), H }1
    87 0.26 P 1-N 3,( P 1-C 5), O 2-C 5, (N 3- C 4), C 9- C 10, ( C 9- H 20), ( C 10- C 11), (O 2), C 4, C 11
    88 0.26 P 1-N 3, (P 1-C 5), O 2-C 5, ( N 3-C 4), ( C 9- C 10), С 10- C 11,
                (C 11-H22), (O 2), C 4, C }
```

```
    89 0.26 P 1-C 4, (P 1-C 5), O 2-C 5, O 2-C 5, (N 3-C 4), (C 5-C 6), C 6-C 8, ( C 6-H 12), ( C 8-H 13), (O
2), (O 2), N 3, C 6, H }1
    90 0.25 P 1-O 2, (P 1-C 5), ( C 8- C 11), C 10- C 11, ( C 10- H 18), ( O 2), C 5, C 8
    910.25 P 1-O 2, ( P 1- C 5), ( С 7- C 9), С 9- C 10, ( C 10-H 18), ( O 2), С 5, С }
    920.25 P 1-C 4, P 1-C 4, ( P 1-C 5), (P 1- C 5), O 2- C 5, O 2- C 5, (N 3-C 4), (N 3-C 4), ( C 6- C 7), C 6-
C 8,( C 8-H 19), (O 2), (O 2), N 3, N 3, C 7
    930.24 P 1-N 3,(P 1-C 5), O 2-C 5, (N 3-C 4), C 9- C 10, ( C 9- H 17), ( C 10-H 15), (O 2), C 4, H }1
    0.24 P 1-N 3, (P 1-C 5), O 2-C 5, (N 3-C 4), C 10-C 11, ( C 10-H 15), ( C 11-H 21), (O 2), C 4, H 15
    0.24 P 1-O 2,( P 1-C 4), (P 1-C 5), (P 1-C 5), O 2-C 5, N 3-C 4, ( C 6-C 7), C 6-C 8, ( C 8-H 19), P 1,
P 1, (O 2), (O 2), (N 3), C 5, H }1
    96 0.22 P 1-O 2, (P 1- C 5), C 10- C 11, ( C 10-H 15), ( C 11-H 21), (O 2), C 5, H }2
    970.22 P 1-O 2, ( P 1- C 5), C 9- C 10, ( C 9- H 17), ( C 10-H 15), ( O 2), C 5, H }1
    980.19 P 1-O 2, (P 1-C 4), ( P 1-C 5), ( P 1- C 5), O 2- C 5, N 3-C 4, C 6-C 7, ( C 6- C 8),( C 7-H 16), P 1,
P 1,(O 2),(O 2), (N 3), C 5, C }
    990.19 ( P 1-C 5), O 2-C 5, O 2- C 5, ( С 5- С 6), С 6- С 7, ( С 6- С 8), ( С 7-H 16), P 1, (O 2), (O 2), С 6, H
1 6
```



```
H 19
    101 0.19 P 1-N 3,( P 1-C 5), O 2-C 5,( N 3-C 4), ( C 8-C 11), C 10- C 11, ( C 10- H 18), ( O 2), C 4, C }
    1020.19 P 1-N 3, (P 1-C 5), O 2-C 5, (N 3-C 4), ( C 7- C 9), С 9- C 10, ( C 10-H 18), (O 2), C 4, С }
    103 0.18 (P 1-C 5), O 2- C 5, C 7- C 9, ( C 7-H 14), ( C 9- H 17), P 1, (O 2), H }1
    1040.18 (P 1-C 5), O 2-C 5, C 8- C 11, ( C 8-H 13), ( C 11-H 21), P 1, (O 2), H }2
    1050.17 (P 1- C 5), O 2- С 5, С 7- С 9, ( С 7- H 16),( С 9- С 10), P 1, (O 2), С }1
    1060.17 (P 1- C 5), O 2- C 5, C 8- C 11, ( C 8- H 19), ( C 10- C 11), P 1, (O 2), C 10
    107 0.16 (P 1-C 5), О 2- С 5, O 2-C 5, ( С 5- С 6), С 6- С 9, ( С 9-H 20), P 1, ( O 2),
                (O 2), H20
    1080.16 (P 1- C 5), O 2- C 5, O 2-C 5, ( C 5- C 6), С 6- C 11, ( C 11-H 22), P 1, (O 2),
                (O 2),H22
    109 0.15 (P 1-C 4), (P 1-C 5), (P 1-C 5), P 1-C 8, O 2-C 5, O 2-C 5, N 3-C 4,
                (C 6-C 8), P 1, P 1, (O 2), (O 2), (N 3), C }
    1100.15 P 1-N 3,( P 1-C 5), O 2-C 5, (N 3-C 4), C 10- C 11, ( C 10-H 15), ( C 11-H 21), (O 2), C 4, H }2
    1110.15 P 1-C 4, P 1-C 4, (P 1-C 5), (P 1-C 5), O 2-C 5, O 2-C 5, (N 3-C 4), (N 3-C 4), C 6-C 7, (C 6-
C 8),( ( 7-H16), (O 2), (O 2), N 3, N 3, C }
    1120.15 P 1-N 3, (P 1-C 5), O 2-C 5, (N 3-C 4), C 9- C 10, ( C 9- H 17), ( C 10- H 15), (O 2), C 4, H 17
    1130.15 ( P 1-C 4), ( P 1-C 5), ( P 1-C 5), P 1- C 7, O 2- C 5, O 2-C 5, N 3-C 4, ( C 6-C 7), P 1, P 1, (O 2),
(O 2),(N 3), C }
    1140.11 (P 1- C 5), O 2- C 5, C 9- C 10, ( C 9- H 20), ( C 10- C 11), P 1, ( O 2), C 11
    1150.11 (P 1-C 5), O 2-C 5, ( C 9- C 10), C 10- C 11, ( C 11-H 22), P 1, (O 2), C 9
others 0.73
```

100.00 * Total *

Summary of Natural Population Analysis:

Natural Population				Total
Atom No Charge	Core	Valence	Rydberg	
P 10.02284	9.99994	4.94720	0.03002	14.97716
O $2-0.62042$	1.99999	6.59325	0.02718	8.62042
N $3-0.44161$	1.99999	5.40927	0.03235	7.44161
C $4-0.04142$	1.99998	3.99147	0.04997	6.04142
C 50.20750	1.99998	3.74688	0.04564	5.79250
C 6 -0.31314	1.99998	4.29121	0.02194	6.31314
C $7-0.40977$	1.99998	4.39801	0.01178	6.40977
C 8 -0.40964	1.99998	4.39792	0.01174	6.40964
C $9-0.40261$	1.99998	4.39325	0.00937	6.40261
C $10-0.40456$	1.99998	4.39493	0.00965	6.40456
C $11-0.40258$	1.99998	4.39322	0.00938	6.40258
H 120.20452	0.00000	0.79299	0.00249	0.79548
H 130.21192	0.00000	0.78465	0.00343	0.78808
H 140.21215	0.00000	0.78442	0.00344	0.78785
H 150.19381	0.00000	0.80381	0.00238	0.80619
H 160.21326	0.00000	0.78481	0.00194	0.78674
H 170.18891	0.00000	0.80875	0.00234	0.81109
H 180.19426	0.00000	0.80400	0.00174	0.80574
H 190.21347	0.00000	0.78459	0.00194	0.78653
H 200.19709	0.00000	0.80103	0.00189	0.80291
H 210.18894	0.00000	0.80872	0.00234	0.81106
H 220.19710	0.00000	0.80101	0.00189	0.80290

[^1]
$\left[\mathrm{H}_{3} \mathrm{CC}(\mathrm{O}) \mathrm{PCN}\right]^{-}$(9-Me):

TOPO matrix for the leading resonance structure:
PCN unit: 1P 4C 3N

Atom	1	2	3	4	5	6	7	8	9
$------------------~$	---								
1. P	1	0	0	1	2	0	0	0	0
2. O	0	3	0	0	1	0	0	0	0
3. N	0	0	1	3	0	0	0	0	0
4. C	1	0	3	0	0	0	0	0	0
5. C	2	1	0	0	0	1	0	0	0
6. C	0	0	0	0	1	0	1	1	1
7. H	0	0	0	0	0	1	0	0	0
8. H	0	0	0	0	0	1	0	0	0
9. H	0	0	0	0	0	1	0	0	0

```
    Resonance
RS Weight(%) Added(Removed)
```

100.00 * Total *

```
```

 37.40
    ```
    37.40
    12.72 P 1-C 4, (P 1-C 5), O 2-C 5, (N 3-C 4), (O 2), N }
    12.72 P 1-C 4, (P 1-C 5), O 2-C 5, (N 3-C 4), (O 2), N }
    12.14 (P 1-C 5), O 2-C 5, P 1, (O 2)
    12.14 (P 1-C 5), O 2-C 5, P 1, (O 2)
    7.98 P 1-C 4, (P 1-C 5), ( P 1-C 5), O 2-C 5, O 2- C 5, (N 3-C 4), P 1, (O 2), (O 2), N }
    7.98 P 1-C 4, (P 1-C 5), ( P 1-C 5), O 2-C 5, O 2- C 5, (N 3-C 4), P 1, (O 2), (O 2), N }
    5.60 P 1-C 4, (P 1-C 5), O 2-C 5, O 2-C 5, (N 3-C 4), ( C 5-C 6), (O 2), (O 2), N 3, C 6
    5.60 P 1-C 4, (P 1-C 5), O 2-C 5, O 2-C 5, (N 3-C 4), ( C 5-C 6), (O 2), (O 2), N 3, C 6
    5.02 (P 1-C 5), O 2-C 5, O 2-C 5,( C 5-C 6), P 1, (O 2), (O 2), С }
    5.02 (P 1-C 5), O 2-C 5, O 2-C 5,( C 5-C 6), P 1, (O 2), (O 2), С }
    4.53 (P 1-C 4), ( P 1-C 5), O 2- C 5, N 3-C 4, P 1, P 1, (O 2), (N 3)
    4.53 (P 1-C 4), ( P 1-C 5), O 2- C 5, N 3-C 4, P 1, P 1, (O 2), (N 3)
    3.53 (P 1-C 5), С 5-C 6, ( С 6-H 8), H }
    3.53 (P 1-C 5), С 5-C 6, ( С 6-H 8), H }
    3.17 (P 1-C 5), (P 1-C 5), O 2-C 5, O 2-C 5, P 1, P 1,( O 2),( O 2)
    3.17 (P 1-C 5), (P 1-C 5), O 2-C 5, O 2-C 5, P 1, P 1,( O 2),( O 2)
    2.58 P 1-C 4,( P 1-C 5), ( N 3-C 4), C 5
    2.58 P 1-C 4,( P 1-C 5), ( N 3-C 4), C 5
    1.69 P 1-C 4,( P 1-C 5), (P 1-C 5), O 2-C 5,O 2-C 5,(N 3-C 4), P 1,(O 2), (O 2),N }
    1.69 P 1-C 4,( P 1-C 5), (P 1-C 5), O 2-C 5,O 2-C 5,(N 3-C 4), P 1,(O 2), (O 2),N }
    1.44 P 1-C 4, (P 1-C 5), (N 3-C 4), C 5
    1.44 P 1-C 4, (P 1-C 5), (N 3-C 4), C 5
    1.12 P 1-C 4, P 1-C 4, (P 1-C 5), (P 1-C 5), O 2-C 5, (N 3-C 4), (N 3-C 4), (O 2), N 3, C }
    1.12 P 1-C 4, P 1-C 4, (P 1-C 5), (P 1-C 5), O 2-C 5, (N 3-C 4), (N 3-C 4), (O 2), N 3, C }
    0.55 P 1-C 4, (P 1-C 5), ( P 1-C 5), O 2-C 5, (N 3-C 4), P 1, (O 2), C }
    0.55 P 1-C 4, (P 1-C 5), ( P 1-C 5), O 2-C 5, (N 3-C 4), P 1, (O 2), C }
    0.54 (P 1-C 4), N 3-C 4, P 1, (N 3)
    0.54 (P 1-C 4), N 3-C 4, P 1, (N 3)
others 0.00
```

Summary of Natural Population Analysis:

| Natural Population | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Atom | No Charge | Core | Valence | Rydberg | Total |
| P 1 | -0.02209 | 9.99996 | 4.99272 | 0.02942 | 15.02209 |
| O 2 | -0.60613 | 2.00000 | 6.57985 | 0.02628 | 8.60613 |
| N 3 | -0.45586 | 1.99999 | 5.42394 | 0.03193 | 7.45586 |
| C 4 | -0.03942 | 1.99999 | 3.99176 | 0.04767 | 6.03942 |
| C 5 | 0.21277 | 1.99999 | 3.74449 | 0.04274 | 5.78723 |
| C 6 | -0.68615 | 1.99999 | 4.67273 | 0.01343 | 6.68615 |
| H 7 | 0.20062 | 0.00000 | 0.79798 | 0.00140 | 0.79938 |
| H 8 | 0.19565 | 0.00000 | 0.80090 | 0.00345 | 0.80435 |
| H 9 | 0.20060 | 0.00000 | 0.79800 | 0.00140 | 0.79940 |

[^2]
Cartesian Coordinates of optimized structures

| [(Ar*BIAN) $\left.\mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P} 4 \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right](\mathbf{4 a})$: | | | |
| :---: | :---: | :---: | :---: |
| Co | -0.23791442339567 | 17.10780778630257 | 18.82665834535711 |
| P | 1.05371653722313 | 17.43797982415091 | 16.98043814260479 |
| P | -0.34973437857771 | 19.00619482287993 | 17.52825446364170 |
| P | 1.95498822274092 | 17.75454102825701 | 18.93016354724532 |
| O | -0.59774045798695 | 18.31520471632586 | 20.42354520734231 |
| N | -0.08694762606174 | 15.42323020862935 | 19.81382988167105 |
| N | -2.00253297339348 | 16.41053201540457 | 18.37416597531651 |
| P | 1.11438072067582 | 19.88873347826631 | 19.04457966289441 |
| C | -0.04731356720664 | 19.44758636362659 | 20.45870414116053 |
| C | 1.07646287386509 | 14.81797753986962 | 20.38136757685911 |
| C | -1.25107071753523 | 14.80096967657001 | 19.90347022763536 |
| C | -2.31436468272720 | 15.33018810214740 | 19.06598640306961 |
| C | -2.91644905435905 | 16.94197826217013 | 17.41697580338694 |
| C | -0.37405800036221 | 20.40703533382257 | 21.57326290982164 |
| C | 1.75349548866575 | 13.83077658529404 | 19.62967098952934 |
| C | 1.57123507686204 | 15.21677773362480 | 21.63568658361240 |
| C | -1.76130842869823 | 13.62557009245580 | 20.60567665606347 |
| C | -3.48619994032585 | 14.46757816976897 | 19.20647344464238 |
| C | -2.91026683441970 | 16.43054852741347 | 16.10330340382767 |
| C | -3.76020001663094 | 18.01472429932841 | 17.76713878002937 |
| C | 0.93153771210847 | 20.88069341996508 | 22.26753010400154 |
| C | -1.30062232236001 | 19.76201424870951 | 22.62328169627748 |
| C | -1.08918535419141 | 21.64823681978421 | 20.96125694622807 |
| C | 1.27553767772404 | 13.42941477986338 | 18.24151411689443 |
| C | 2.90299956920214 | 13.24716586442449 | 20.16475407634974 |
| C | 2.75011100497993 | 14.62793615230441 | 22.11260570159945 |
| C | 0.80853491670584 | 16.22312069971905 | 22.48316145660290 |
| C | -3.10592508301084 | 13.47017535961609 | 20.15261141875418 |
| C | -1.25957279094015 | 12.72750779141412 | 21.53434316363093 |
| C | -4.76018848939128 | 14.43058802406687 | 18.67190069865611 |
| C | -3.77595857874331 | 16.99746139016188 | 15.16342323680320 |
| C | -2.01353876476070 | 15.25543382477512 | 15.72864647932268 |
| C | -4.64158934708316 | 18.51571267923015 | 16.80390284767358 |
| C | -3.71994106778780 | 18.56178485796529 | 19.18945175284854 |
| H | 1.44941358435023 | 20.01370593121884 | 22.69652125109465 |
| H | 1.60711995738220 | 21.33290771858788 | 21.52308166050644 |
| C | 0.59425291134554 | 21.89582559451433 | 23.37446898161143 |
| H | -0.79560665029291 | 18.88413294215871 | 23.05427384616901 |
| H | -2.22360701992578 | 19.40840277300610 | 22.13603192689552 |
| C | -1.62976137189779 | 20.77791738417278 | 23.73169999853917 |
| C | -1.41618714883830 | 22.65855141256850 | 22.07617015129594 |
| H | -0.44397664901637 | 22.11315026835787 | 20.19781875765910 |
| H | -2.01170085707083 | 21.32776265459865 | 20.46065699035632 |
| C | 1.26180086197285 | 11.90961491900130 | 18.08605667479537 |
| H | 0.23188499642690 | 13.76625060609822 | 18.15894253795661 |
| C | 2.01991267361108 | 14.12939958479258 | 17.10759795576390 |
| C | 3.42880705596358 | 13.63733251994910 | 21.40108723928845 |
| H | 3.40427431049306 | 12.47278542268420 | 19.58053434252042 |
| H | 3.15258818406362 | 14.96815084181599 | 23.06961272616665 |
| C | -0.15243167594134 | 15.52935108858323 | 23.44690099865783 |
| H | 0.18433082034398 | 16.81401471152438 | 21.79363224759258 |
| C | 1.73443114018836 | 17.22360164674030 | 23.18138571230637 |
| C | -3.96124711009629 | 12.44401434374988 | 20.58943469614039 |
| H | -0.23749470470636 | 12.80585571660441 | 21.90124596058483 |
| C | -2.11190584143784 | 11.69156889488749 | 21.99748802362229 |
| H | -5.08876602643947 | 15.17034127140719 | 17.94375426846211 |
| C | -5.63714730267681 | 13.39780357480511 | 19.09576999374042 |
| H | -3.73163652097026 | 16.63066287763577 | 14.13604265840563 |
| C | -4.66603782011511 | 18.02345312736083 | 15.49590177546497 |
| C | -1.40055716701214 | 15.39819432174373 | 14.33649597012419 |
| H | -1.16119233785958 | 15.26616035090962 | 16.43220833892741 |
| C | -2.75668355044958 | 13.93817679159308 | 15.94393986760474 |
| H | -5.30144521263966 | 19.34269404547270 | 17.07498250823608 |
| C | -4.03549282212535 | 20.04955075680198 | 19.29771668361703 |
| H | -2.67504358733043 | 18.45550811242079 | 19.52450283232146 |
| C | -4.54766953921722 | 17.66458418288418 | 20.09988027065772 |
| C | -0.11465962894021 | 23.11777476063929 | 22.75982034280426 |
| H | 1.53468016317790 | 22.20878698570220 | 23.85677415543498 |
| C | -0.32564178828478 | 21.23037789895483 | 24.41534310411013 |
| H | -2.28999622179237 | 20.29665126440057 | 24.47157147038297 |
| C | -2.34076924861032 | 21.99628718126491 | 23.11456440817521 |

| H | -1.93011250965900 | 23.51936348990575 | 25 |
| :---: | :---: | :---: | :---: |
| C | 0.23556286312337 | 11.16848057470815 | 18.69055224357745 |
| C | 2.26389474331931 | 11.22213718714491 | 17.38953551709218 |
| C | 3.21722720110129 | 14.83073609954743 | 17.29008621981200 |
| C | 1.47684724725200 | 14.05300700592884 | 15.81411196118765 |
| C | 4.70537137734058 | 13.01643254361048 | 21.94015017044984 |
| C | 0.21384981260592 | 14.38507646700712 | 24.17005188719818 |
| C | -1.42713577316471 | 16.06851908062874 | 23.66253175800452 |
| C | 1.51412075683521 | 17.65531690058278 | 24.49588279774245 |
| C | 2.82367005998144 | 17.76564002624519 | 22.47697695573245 |
| C | -3.41816161697914 | 11.54000280675877 | 21.54754067294373 |
| C | -5.26887387664953 | 12.43349849852503 | 20.02277802399440 |
| H | -1.72010837154105 | 10.98984524181746 | 22.73514743617195 |
| H | -6.64139847271078 | 13.36721047777076 | 18.67119895109731 |
| C | -5.60147094287378 | 18.61193546826439 | 14.45404972735981 |
| C | -0.82227859302879 | 16.62251444314920 | 13.96308413764666 |
| C | -1.32941133854449 | 14.32602639067528 | 13.43920798809854 |
| C | -2.17682119187835 | 12.91321955629942 | 16.69860128378553 |
| C | -4.03888912091002 | 13.72534756696507 | 15.41591479450741 |
| C | -3.47402582429856 | 20.95124613233458 | 18.37575704107198 |
| C | -4.79041881422216 | 20.56840759426157 | 20.35750407142885 |
| C | -5.91736591862248 | 17.46622050345463 | 19.87356075262077 |
| C | -3.92717171055883 | 16.95528656644078 | 21.13331483572071 |
| H | 0.54592050602396 | 23.60998596487343 | 22.02659234990960 |
| H | -0.34074392048292 | 23.85896775931351 | 23.54442308400963 |
| H | -0.55146386938117 | 21.94042226344653 | 25.22853438440979 |
| H | 0.18671044145956 | 20.36483825597707 | 24.86499964349790 |
| H | -3.27887191568108 | 21.68333337914193 | 22.63030503799833 |
| H | -2.60203736731000 | 22.72216427252865 | 23.90282639877739 |
| H | -0.54908680747594 | 11.69105436931716 | 19.23953208436522 |
| C | 0.21020644065838 | 9.77641138215792 | 18.60413740055947 |
| H | 3.05858123803954 | 11.78729629908312 | 16.89983804899035 |
| C | 2.24421193414245 | 9.82640318141480 | 17.30489465146043 |
| H | 3.64983681028057 | 14.91580387869404 | 18.28710559023671 |
| C | 3.85361453512091 | 15.44442665918368 | 16.20386955308190 |
| H | 0.54646884343366 | 13.50558680698046 | 15.65127958139530 |
| C | 2.10459205149228 | 14.66545676877258 | 14.73269645446127 |
| H | 4.89684572146250 | 13.47187039018686 | 22.92675101436554 |
| C | 5.90547818409072 | 13.33963152818571 | 21.03213984121580 |
| C | 4.55507394398847 | 11.49847571165446 | 22.14123757852648 |
| H | 1.19707344891260 | 13.94071545190124 | 24.01298037124321 |
| C | -0.66983648620618 | 13.79343146590480 | 25.07458097446077 |
| H | -1.72695889226366 | 16.96079881077855 | 23.11257269885524 |
| C | -2.30818521876750 | 15.49204574109162 | 24.58142734528559 |
| H | 0.67447714824756 | 17.25157100173187 | 25.06260426282581 |
| C | 2.36163773820852 | 18.59499532718540 | 25.09364389247171 |
| C | 3.67253784480297 | 18.69861353277337 | 23.07258865553718 |
| H | 3.00668077185349 | 17.44630459462081 | 21.44893467594118 |
| H | -4.03562252312498 | 10.72496653297327 | 21.93090993100770 |
| H | -5.98012157300302 | 11.65998099405339 | 20.31914640490080 |
| H | -6.22718220198393 | 19.36274416560275 | 14.96606188529638 |
| C | -6.53725945941040 | 17.54394169918614 | 13.86194538922284 |
| C | -4.81165283137145 | 19.33246761884320 | 13.34646869253585 |
| H | -0.87393645339152 | 17.46984931791889 | 14.64899586899265 |
| C | -0.19263383842862 | 16.77117876492811 | 12.72847106719398 |
| H | -1.76703131421617 | 13.36546655765556 | 13.71363626210779 |
| C | -0.70000948310081 | 14.47222022510654 | 12.19750289332913 |
| H | -1.18369185685339 | 13.05623292955321 | 17.12184184917981 |
| C | -2.85618684678608 | 11.71855405296550 | 16.94662234685023 |
| H | -4.51851560222623 | 14.51056323161895 | 14.83076749629475 |
| C | -4.72217619742478 | 12.53193906386313 | 15.65327322576187 |
| H | -2.86533743232132 | 20.56494501338425 | 17.55664647783079 |
| C | -3.66499560158204 | 22.32637354415861 | 18.50984569466021 |
| H | -5.22625954578212 | 19.88762822201758 | 21.08968828329203 |
| C | -4.98154278656912 | 21.94772071944302 | 20.49460347283163 |
| H | -6.40835419459298 | 18.00635753146620 | 19.06175946768541 |
| C | -6.64582395906137 | 16.57112113129237 | 20.65778590159997 |
| H | -2.85507878962711 | 17.08717166861186 | 21.29081821637048 |
| C | -4.64624054288336 | 16.03572127285712 | 21.90236388136158 |
| H | -0.60040704771053 | 9.22082412185040 | 19.07943198371408 |
| C | 1.21764437093497 | 9.09789087667196 | 17.91049547344227 |
| H | 3.03306037648229 | 9.30785060285230 | 16.75710981676272 |
| H | 4.77724589940065 | 16.00146321567232 | 16.36879038568363 |
| C | 3.30105680182197 | 15.36444368110867 | 14.92523031151034 |
| H | 1.64429742823511 | 14.61538970299390 | 13.74529538244202 |
| H | 5.77073836220504 | 12.89836807703631 | 20.03298817591466 |
| H | 6.83665777376660 | 12.93470039376520 | 21.45585647701810 |

| H | 6.02491043589925 | 14.42505095326543 | 20.90650858585316 |
| :---: | :---: | :---: | :---: |
| H | 3.71049422876802 | 11.26835155406930 | 22.80631532143008 |
| H | 5.46876104191269 | 11.07151664415493 | 22.58102250700028 |
| H | 4.37429154542525 | 10.98901631807756 | 21.18289187722278 |
| H | -0.36619721322467 | 12.89685857897705 | 25.61789880844286 |
| C | -1.93582914000107 | 14.34576302347342 | 25.28664636005745 |
| H | -3.28787509668747 | 15.94329568906748 | 24.74559184083797 |
| C | 3.44663619955641 | 19.11781362630096 | 24.38794698297699 |
| H | 2.17045417844584 | 18.91546808199189 | 26.11919817373128 |
| H | 4.50770260289360 | 19.10718989841457 | 22.50140256506577 |
| H | -7.10836666212672 | 17.03498949516717 | 14.65160054109452 |
| H | -5.96626777889188 | 16.77960169769674 | 13.31320955801959 |
| H | -7.24953003345839 | 17.99698923998637 | 13.15636000324358 |
| H | -4.16934487891628 | 18.62538075583074 | 12.80001041292654 |
| H | -4.16454223165040 | 20.11422749755555 | 13.76838391036352 |
| H | -5.49368588263572 | 19.79973254250043 | 12.62032074815026 |
| C | -0.13038730758195 | 15.69478902788700 | 11.83642755796338 |
| H | 0.25615997807308 | 17.72996815669383 | 12.46417564342493 |
| H | -0.65460616111644 | 13.62310356247398 | 11.51335889570739 |
| H | -2.37841817748494 | 10.94721641160203 | 17.55147140724420 |
| C | -4.13705816757255 | 11.52567738325670 | 16.42808313792126 |
| H | -5.72347807538639 | 12.39249334437608 | 15.24185068822538 |
| H | -3.21031173899972 | 23.00616997737559 | 17.78737338486198 |
| C | -4.41974472052557 | 22.83288769281539 | 19.57317518479703 |
| H | -5.56940985093953 | 22.32928099160112 | 21.33114331025591 |
| H | -7.70940168827759 | 16.42135030576994 | 20.46405895971152 |
| C | -6.00804411273008 | 15.84237269978907 | 21.66745176710371 |
| H | -4.12817565712274 | 15.44346332907256 | 22.65587439621445 |
| H | 1.19931258701815 | 8.00928617449143 | 17.83868427843247 |
| H | 3.78944786224143 | 15.85711305635133 | 14.08326679910628 |
| H | -2.62593516977976 | 13.88703925274404 | 25.99622058256032 |
| H | 4.10812906086385 | 19.84851683166463 | 24.85553123090474 |
| H | 0.36171247854497 | 15.80901763358270 | 10.86928580370431 |
| H | -4.67955717790642 | 10.60126294779885 | 16.63067742802849 |
| H | -4.56650388978318 | 23.90846453445966 | 19.68219322078091 |
| H | -6.56663918524128 | 15.11092778336351 | 22.25280657939208 |
| $\left[\left(A r^{*} \mathrm{BIAN}\right) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P} 4 \mathrm{C}(\mathrm{O}) \mathrm{Cy}\right)\right](\mathbf{4 b}):$ | | | |
| Co | -0.77223824912580 | 5.02304271680318 | 18.63471930306901 |
| P | 0.60414494961996 | 4.65313496954498 | 16.85022380963121 |
| P | 1.35107227215012 | 4.18229846008975 | 18.83309619593093 |
| P | -0.95137516575728 | 3.19650662192121 | 17.25439744786162 |
| O | -1.31211997194016 | 3.82656424057116 | 20.16441559642739 |
| N | -0.52152914029469 | 6.69398604210486 | 19.61601996773186 |
| N | -2.52121877570629 | 5.78727176314776 | 18.25728248553376 |
| P | 0.30952953292303 | 2.12506879350639 | 18.83457457802747 |
| C | -0.85255015834969 | 2.65506518156620 | 20.21305468737115 |
| C | 0.67808251206861 | 7.22434935536510 | 20.18068430965033 |
| C | -1.65213023713603 | 7.37098213756275 | 19.74254741273635 |
| C | -2.77413344986754 | 6.86906509227516 | 18.96683132114361 |
| C | -3.46546086986556 | 5.23137559568703 | 17.34942944241893 |
| C | -1.23889311738539 | 1.75761798324124 | 21.35654990685025 |
| C | 1.39566211728599 | 8.20507484695669 | 19.46311949960267 |
| C | 1.15438303009660 | 6.75271466296101 | 21.41838278065241 |
| C | -2.08589058433106 | 8.57467779405517 | 20.44907022346817 |
| C | -3.91077946802432 | 7.76626797861678 | 19.15929847920177 |
| C | -4.33767069869237 | 4.20647510103760 | 17.75892158085583 |
| C | -3.40405006442472 | 5.63625000151785 | 15.99900782693822 |
| H | -1.85738719919095 | 0.95840082391222 | 20.89754881811247 |
| C | -2.07614842151418 | 2.47815456049612 | 22.42225116903222 |
| C | -0.00265883137712 | 1.08044977311545 | 21.99283945970690 |
| C | 2.56353184647006 | 8.72453550334579 | 20.02597366439430 |
| C | 0.93699056950607 | 8.65167680983308 | 18.08194652237101 |
| C | 2.34444785342193 | 7.28274846653161 | 21.92881345908960 |
| C | 0.31854662961241 | 5.75325865390744 | 22.20381527260699 |
| C | -3.44984077709742 | 8.76306153238034 | 20.06893878814604 |
| C | -1.50706848679375 | 9.47483750434210 | 21.32820271381388 |
| C | -5.20971046685042 | 7.83459521405490 | 18.69002848043761 |
| C | -4.41006745534908 | 3.80968221567128 | 19.22884828984696 |
| C | -5.14199726086500 | 3.59251306984412 | 16.79104747497068 |
| C | -4.23056478768983 | 4.99755734253710 | 15.07338398041619 |
| C | -2.48414238013712 | 6.78450509897372 | 15.59758124484111 |
| H | -2.95815528617147 | 2.94045753672167 | 21.95745879893836 |
| H | -1.46972660200432 | 3.29399416868515 | 22.84906729629804 |
| C | -2.49502721138776 | 1.51492385815319 | 23.53728719523471 |
| H | 0.65473577701999 | 1.86340666789008 | 22.4025892250661 |

| H | 0.57446952436910 | 0.54591422890516 | 21.222725 |
| :---: | :---: | :---: | :---: |
| C | -0.42393001801746 | 0.12315580919501 | 23.11475885785796 |
| H | 3.10056519280994 | 9.49742798080010 | 19.47247057297387 |
| C | 3.06106604760457 | 8.27524141001577 | 21.25477314525214 |
| C | 1.64104880056188 | 7.92390635806862 | 16.93919326006558 |
| C | 0.99780844257713 | 10.16938006835903 | 17.93338443014056 |
| H | -0.12238972684828 | 8.36992666289422 | 18.00033166976113 |
| H | 2.72251353515686 | 6.89979433209516 | 22.87966109967736 |
| C | 1.13101141911201 | 4.74403033392326 | 23.00842980855027 |
| C | -0.74004361216094 | 6.49157399535191 | 23.01256494843871 |
| H | -0.23212676980452 | 5.16083452132719 | 21.45779575319940 |
| C | -4.25039813370068 | 9.82086913295854 | 20.53391622089057 |
| H | -0.46907302747399 | 9.37146803348124 | 21.64102693009513 |
| C | -2.30263058796987 | 10.54429473641415 | 21.81751198211795 |
| H | -5.60075398125370 | 7.08963518464162 | 17.99836136502292 |
| C | -6.03304243450552 | 8.89614181966711 | 19.14548188056646 |
| H | -3.47588453650278 | 4.16741095260395 | 19.69277975373418 |
| C | -4.41482534514572 | 2.30355452138061 | 19.48102056735496 |
| C | -5.54632648802973 | 4.56214627865786 | 19.91620986959641 |
| C | -5.10506952488953 | 3.96927288718655 | 15.44660111568444 |
| H | -5.78815460888395 | 2.76524294035901 | 17.09337635619863 |
| H | -4.15936276698592 | 5.29613175275262 | 14.02563661497167 |
| C | -1.88676057932789 | 6.63182587910535 | 14.20174138042947 |
| H | -1.62297420567226 | 6.75397328471124 | 16.29076810149107 |
| C | -3.19314965502489 | 8.11651111910965 | 15.83008901832707 |
| H | -3.07418994541798 | 2.05887879080080 | 24.29988141656827 |
| H | -3.16822366722173 | 0.74918693899746 | 23.11380082414534 |
| C | -1.27575414514734 | 0.83491934188054 | 24.17326998179292 |
| H | -1.00161670858072 | -0.71210568661888 | 22.68017058330952 |
| H | 0.47408431187886 | -0.31590393637141 | 23.57692907469752 |
| C | 4.35089570609368 | 8.83720803489090 | 21.82677728516371 |
| C | 2.82583246693932 | 7.19734823777577 | 17.10423171043384 |
| C | 1.07252237400690 | 7.99962211419067 | 15.65673423923856 |
| C | 2.06541904259314 | 10.81148178954124 | 17.29254931946999 |
| C | -0.02792074202856 | 10.95449243113361 | 18.47980980720080 |
| C | 2.23208596059302 | 4.10763298497483 | 22.40947536355058 |
| C | 0.76565057446213 | 4.35996802985618 | 24.30526908591555 |
| C | -0.40013836858289 | 7.51557740874998 | 23.90799042879980 |
| C | -2.08995064675321 | 6.16371273706944 | 22.84895182763122 |
| C | -3.62765854451417 | 10.72586789894131 | 21.44231662888107 |
| C | -5.58623114007481 | 9.86068314813407 | 20.03892707957766 |
| H | -1.84893745391390 | 11.24785161070863 | 22.51694487298966 |
| H | -7.05888540308747 | 8.94790028067504 | 18.77902576648075 |
| C | -3.67481442461920 | 1.44134801782961 | 18.65554205260156 |
| C | -5.04914609078572 | 1.76038266146386 | 20.60774832232405 |
| C | -6.88205182302369 | 4.40105407732395 | 19.51867588375939 |
| C | -5.26340980672594 | 5.47197636989531 | 20.94053521363990 |
| C | -5.96140976211224 | 3.26226530797923 | 14.41062826225133 |
| C | -1.82204881711121 | 7.69811131681754 | 13.29702526731780 |
| C | -1.30731204339617 | 5.40614835179689 | 13.83365606871664 |
| C | -2.56600931530822 | 9.14047140613724 | 16.54831115487464 |
| C | -4.49346605454993 | 8.34083945867805 | 15.35433021625487 |
| H | -1.59385879622665 | 0.12213149603082 | 24.95050592940326 |
| H | -0.65572836927186 | 1.59950727371672 | 24.67169553988927 |
| H | 4.51796408002307 | 8.34270866043992 | 22.79887120724979 |
| C | 5.55044293403717 | 8.50830321425776 | 20.92004702571307 |
| C | 4.24553487311752 | 10.35137435925434 | 22.07884760825924 |
| H | 3.27425557245476 | 7.10872929241553 | 18.09417584149992 |
| C | 3.42835843626367 | 6.56330334043042 | 16.01057556572061 |
| H | 0.14969198502516 | 8.56359387236759 | 15.50749771583573 |
| C | 1.66349473639938 | 7.36194990512961 | 14.56887945467902 |
| H | 2.85789321234935 | 10.21051026725707 | 16.84307609736724 |
| C | 2.11213864570986 | 12.20640393935476 | 17.21020312121516 |
| H | -0.86324005760865 | 10.46632623254115 | 18.98392331338238 |
| C | 0.01284057413666 | 12.34663036777114 | 18.39497595954931 |
| H | 2.52259133754369 | 4.38967662128388 | 21.39551955387807 |
| C | 2.94644557185077 | 3.12033893793521 | 23.08859813344465 |
| H | -0.08990399771176 | 4.83597692040816 | 24.78582672124746 |
| C | 1.48087318278010 | 3.37011843578455 | 24.98799862494469 |
| H | 0.64872493557296 | 7.78766782851039 | 24.03730406540117 |
| C | -1.38878485568678 | 8.20082250752663 | 24.61541769495457 |
| H | -2.35184332767794 | 5.37060299688381 | 22.14636204910469 |
| C | -3.08308123956870 | 6.84453901113352 | 23.55761559659723 |
| H | -4.19837774396329 | 11.56557379444530 | 21.84427287658412 |
| H | -6.25870502077087 | 10.65717446468649 | 20.36387679977559 |
| H | -3.17463311183948 | 1.84547386050955 | 17.77334845811832 |
| C | -3.56141088869231 | 0.08190711397435 | 18.95239011531135 |

| H | -5.62803381382046 | 2.41217847385387 | 21.2 |
| :---: | :---: | :---: | :---: |
| C | -4.93802086389935 | 0.39973957496377 | 20.90749288927669 |
| H | -7.12632210399032 | 3.69483723711395 | 18.72457330302877 |
| C | -7.90094745382749 | 5.14064748733026 | 20.12047218535438 |
| H | -4.22593477322772 | 5.62701714197466 | 21.23576878214747 |
| C | -6.27784782087818 | 6.22083901284175 | 21.54238285145842 |
| H | -6.57476618104808 | 2.51900972097864 | 14.94815231666664 |
| C | -6.91776885035240 | 4.23765103841368 | 13.70271003289049 |
| C | -5.08750442314957 | 2.50596772148199 | 13.39385381757086 |
| H | -2.26018133211267 | 8.65962102238529 | 13.56737558814873 |
| C | -1.19626237414963 | 7.54555956929519 | 12.05420424127369 |
| H | -1.35568192931799 | 4.56211589910256 | 14.52437397188829 |
| C | -0.68188700313836 | 5.25110342268785 | 12.59777050939923 |
| H | -1.55870058818515 | 8.98457065919586 | 16.93313979400243 |
| C | -3.21684083459287 | 10.34833156073076 | 16.80892899676180 |
| H | -5.00610187687919 | 7.55247975605044 | 14.80118178094874 |
| C | -5.14838917975854 | 9.54751493726364 | 15.60513612954327 |
| H | 5.44126642466868 | 8.98903518865726 | 19.93609773267626 |
| H | 5.63714361907608 | 7.42478859019932 | 20.75668890718218 |
| H | 6.48906080992406 | 8.86799006465787 | 21.36753054538079 |
| H | 5.16763749894412 | 10.73445966464952 | 22.54096296689277 |
| H | 3.40204506219676 | 10.58451174286735 | 22.74422203404277 |
| H | 4.08986210588380 | 10.89858029096649 | 21.13701831642618 |
| H | 4.34452187766625 | 5.98994799089526 | 16.16081967535217 |
| C | 2.85045180967064 | 6.64228832299098 | 14.74296282924033 |
| H | 1.18207084537304 | 7.40951023177377 | 13.59131143190763 |
| H | 2.95114497822800 | 12.68987897091172 | 16.70665281186006 |
| C | 1.08660973443604 | 12.97951321817086 | 17.76052142902601 |
| H | -0.79813158819096 | 12.93785578442474 | 18.82438731751254 |
| H | 3.79254353076338 | 2.63502989243461 | 22.59928697479961 |
| C | 2.57358419643036 | 2.74580394625941 | 24.38401439198685 |
| H | 1.17805678062512 | 3.08674174676318 | 25.99749130873796 |
| H | -1.10814903163615 | 9.00259743365692 | 25.30061086266431 |
| C | -2.73613675391484 | 7.87000110262363 | 24.43896846222212 |
| H | -4.12943800600844 | 6.57097480945260 | 23.42191858939846 |
| C | -4.19030059737169 | -0.44624935371874 | 20.08392343960605 |
| H | -2.97146396289549 | -0.56321704977224 | 18.29919237679738 |
| H | -5.43783884973010 | 0.00099170655455 | 21.79184217113846 |
| H | -8.93351902033176 | 5.00407461407922 | 19.79429621865356 |
| C | -7.60154273931137 | 6.05927372226323 | 21.13259502291740 |
| H | -6.02853251234384 | 6.95632493637681 | 22.30846619543020 |
| H | -7.54997949335546 | 4.76986235568899 | 14.42782628034765 |
| H | -7.57247176247280 | 3.70104023891791 | 12.99994339435674 |
| H | -6.35780208132465 | 4.99037491504936 | 13.12732268250948 |
| H | -4.45748898745587 | 3.20425577307021 | 12.82238615867331 |
| H | -5.71220293022470 | 1.95152511808248 | 12.67753099700337 |
| H | -4.42143601465466 | 1.79291928497905 | 13.89958421215540 |
| H | -1.15501278115249 | 8.39045936252388 | 11.36459559153279 |
| C | -0.62460491136477 | 6.32229644306772 | 11.69902550026849 |
| H | -0.23196003889667 | 4.29160967692967 | 12.33798469776261 |
| H | -2.70485265663201 | 11.12014500411892 | 17.38461733569944 |
| C | -4.51543374396523 | 10.55411729957316 | 16.34123174507682 |
| H | -6.16453553908351 | 9.69746131839761 | 15.23605002307119 |
| H | 3.31092022186005 | 6.13181084052453 | 13.89590480079246 |
| H | 1.12011781011141 | 14.06783387540557 | 17.68981361398883 |
| H | 3.12964147133450 | 1.97225178521343 | 24.91566117192295 |
| H | -3.51064172683892 | 8.41214859108123 | 24.98314856554769 |
| H | -4.10096056718895 | -1.50763611437965 | 20.32016473791339 |
| H | -8.39570799694061 | 6.64949615459951 | 21.59207965596205 |
| H | -0.13475655341997 | 6.20341581815548 | 10.73130765785388 |
| H | -5.03552366285453 | 11.48865425500175 | 16.55552821927652 |

$\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) \mathrm{Ad}\right)\right](4 \mathrm{c})$:

| Co | -0.23791442339567 | 17.10780778630257 | 18.82665834535711 |
| :--- | :--- | :---: | :---: |
| P | 1.05371653722313 | 17.43797982415091 | 16.98043814260479 |
| P | -0.34973437857771 | 19.00619482287993 | 17.52825446364170 |
| P | 1.95498822274092 | 17.75454102825701 | 18.93016354724532 |
| O | -0.59774045798695 | 18.31520471632586 | 20.42354520734231 |
| N | -0.08694762606174 | 15.42323020862935 | 19.81382988167105 |
| N | -2.00253297339348 | 16.41053201540457 | 18.37416597531651 |
| P | 1.11438072067582 | 19.88873347826631 | 19.04457966289441 |
| C | -0.04731356720664 | 19.44758636362659 | 20.45870414116053 |
| C | 1.07646287386509 | 14.81797753986962 | 20.38136757685911 |
| C | -1.25107071753523 | 14.80096967657001 | 19.90347022763536 |
| C | -2.31436468272720 | 15.33018810214740 | 19.06598640306961 |

| C | -2.91644905435905 | 16.94197826217013 | 17.41697580338694 |
| :---: | :---: | :---: | :---: |
| C | -0.37405800036221 | 20.40703533382257 | 21.57326290982164 |
| C | 1.75349548866575 | 13.83077658529404 | 19.62967098952934 |
| C | 1.57123507686204 | 15.21677773362480 | 21.63568658361240 |
| C | -1.76130842869823 | 13.62557009245580 | 20.60567665606347 |
| C | -3.48619994032585 | 14.46757816976897 | 19.20647344464238 |
| C | -2.91026683441970 | 16.43054852741347 | 16.10330340382767 |
| C | -3.76020001663094 | 18.01472429932841 | 17.76713878002937 |
| C | 0.93153771210847 | 20.88069341996508 | 22.26753010400154 |
| C | -1.30062232236001 | 19.76201424870951 | 22.62328169627748 |
| C | -1.08918535419141 | 21.64823681978421 | 20.96125694622807 |
| C | 1.27553767772404 | 13.42941477986338 | 18.24151411689443 |
| C | 2.90299956920214 | 13.24716586442449 | 20.16475407634974 |
| C | 2.75011100497993 | 14.62793615230441 | 22.11260570159945 |
| C | 0.80853491670584 | 16.22312069971905 | 22.48316145660290 |
| C | -3.10592508301084 | 13.47017535961609 | 20.15261141875418 |
| C | -1.25957279094015 | 12.72750779141412 | 21.53434316363093 |
| C | -4.76018848939128 | 14.43058802406687 | 18.67190069865611 |
| C | -3.77595857874331 | 16.99746139016188 | 15.16342323680320 |
| C | -2.01353876476070 | 15.25543382477512 | 15.72864647932268 |
| C | -4.64158934708316 | 18.51571267923015 | 16.80390284767358 |
| C | -3.71994106778780 | 18.56178485796529 | 19.18945175284854 |
| H | 1.44941358435023 | 20.01370593121884 | 22.69652125109465 |
| H | 1.60711995738220 | 21.33290771858788 | 21.52308166050644 |
| C | 0.59425291134554 | 21.89582559451433 | 23.37446898161143 |
| H | -0.79560665029291 | 18.88413294215871 | 23.05427384616901 |
| H | -2.22360701992578 | 19.40840277300610 | 22.13603192689552 |
| C | -1.62976137189779 | 20.77791738417278 | 23.73169999853917 |
| C | -1.41618714883830 | 22.65855141256850 | 22.07617015129594 |
| H | -0.44397664901637 | 22.11315026835787 | 20.19781875765910 |
| H | -2.01170085707083 | 21.32776265459865 | 20.46065699035632 |
| C | 1.26180086197285 | 11.90961491900130 | 18.08605667479537 |
| H | 0.23188499642690 | 13.76625060609822 | 18.15894253795661 |
| C | 2.01991267361108 | 14.12939958479258 | 17.10759795576390 |
| C | 3.42880705596358 | 13.63733251994910 | 21.40108723928845 |
| H | 3.40427431049306 | 12.47278542268420 | 19.58053434252042 |
| H | 3.15258818406362 | 14.96815084181599 | 23.06961272616665 |
| C | -0.15243167594134 | 15.52935108858323 | 23.44690099865783 |
| H | 0.18433082034398 | 16.81401471152438 | 21.79363224759258 |
| C | 1.73443114018836 | 17.22360164674030 | 23.18138571230637 |
| C | -3.96124711009629 | 12.44401434374988 | 20.58943469614039 |
| H | -0.23749470470636 | 12.80585571660441 | 21.90124596058483 |
| C | -2.11190584143784 | 11.69156889488749 | 21.99748802362229 |
| H | -5.08876602643947 | 15.17034127140719 | 17.94375426846211 |
| C | -5.63714730267681 | 13.39780357480511 | 19.09576999374042 |
| H | -3.73163652097026 | 16.63066287763577 | 14.13604265840563 |
| C | -4.66603782011511 | 18.02345312736083 | 15.49590177546497 |
| C | -1.40055716701214 | 15.39819432174373 | 14.33649597012419 |
| H | -1.16119233785958 | 15.26616035090962 | 16.43220833892741 |
| C | -2.75668355044958 | 13.93817679159308 | 15.94393986760474 |
| H | -5.30144521263966 | 19.34269404547270 | 17.07498250823608 |
| C | -4.03549282212535 | 20.04955075680198 | 19.29771668361703 |
| H | -2.67504358733043 | 18.45550811242079 | 19.52450283232146 |
| C | -4.54766953921722 | 17.66458418288418 | 20.09988027065772 |
| C | -0.11465962894021 | 23.11777476063929 | 22.75982034280426 |
| H | 1.53468016317790 | 22.20878698570220 | 23.85677415543498 |
| C | -0.32564178828478 | 21.23037789895483 | 24.41534310411013 |
| H | -2.28999622179237 | 20.29665126440057 | 24.47157147038297 |
| C | -2.34076924861032 | 21.99628718126491 | 23.11456440817521 |
| H | -1.93011250965900 | 23.51936348990575 | 21.61815386197025 |
| C | 0.23556286312337 | 11.16848057470815 | 18.69055224357745 |
| C | 2.26389474331931 | 11.22213718714491 | 17.38953551709218 |
| C | 3.21722720110129 | 14.83073609954743 | 17.29008621981200 |
| C | 1.47684724725200 | 14.05300700592884 | 15.81411196118765 |
| C | 4.70537137734058 | 13.01643254361048 | 21.94015017044984 |
| C | 0.21384981260592 | 14.38507646700712 | 24.17005188719818 |
| C | -1.42713577316471 | 16.06851908062874 | 23.66253175800452 |
| C | 1.51412075683521 | 17.65531690058278 | 24.49588279774245 |
| C | 2.82367005998144 | 17.76564002624519 | 22.47697695573245 |
| C | -3.41816161697914 | 11.54000280675877 | 21.54754067294373 |
| C | -5.26887387664953 | 12.43349849852503 | 20.02277802399440 |
| H | -1.72010837154105 | 10.98984524181746 | 22.73514743617195 |
| H | -6.64139847271078 | 13.36721047777076 | 18.67119895109731 |
| C | -5.60147094287378 | 18.61193546826439 | 14.45404972735981 |
| C | -0.82227859302879 | 16.62251444314920 | 13.96308413764666 |
| C | -1.32941133854449 | 14.32602639067528 | 13.43920798809854 |
| C | -2.17682119187835 | 12.91321955629942 | 16.69860128378553 |

| C | -4.03888912091002 | 13.72534756696507 | 15.41591479450741 |
| :---: | :---: | :---: | :---: |
| C | -3.47402582429856 | 20.95124613233458 | 18.37575704107198 |
| C | -4.79041881422216 | 20.56840759426157 | 20.35750407142885 |
| C | -5.91736591862248 | 17.46622050345463 | 19.87356075262077 |
| C | -3.92717171055883 | 16.95528656644078 | 21.13331483572071 |
| H | 0.54592050602396 | 23.60998596487343 | 22.02659234990960 |
| H | -0.34074392048292 | 23.85896775931351 | 23.54442308400963 |
| H | -0.55146386938117 | 21.94042226344653 | 25.22853438440979 |
| H | 0.18671044145956 | 20.36483825597707 | 24.86499964349790 |
| H | -3.27887191568108 | 21.68333337914193 | 22.63030503799833 |
| H | -2.60203736731000 | 22.72216427252865 | 23.90282639877739 |
| H | -0.54908680747594 | 11.69105436931716 | 19.23953208436522 |
| C | 0.21020644065838 | 9.77641138215792 | 18.60413740055947 |
| H | 3.05858123803954 | 11.78729629908312 | 16.89983804899035 |
| C | 2.24421193414245 | 9.82640318141480 | 17.30489465146043 |
| H | 3.64983681028057 | 14.91580387869404 | 18.28710559023671 |
| C | 3.85361453512091 | 15.44442665918368 | 16.20386955308190 |
| H | 0.54646884343366 | 13.50558680698046 | 15.65127958139530 |
| C | 2.10459205149228 | 14.66545676877258 | 14.73269645446127 |
| H | 4.89684572146250 | 13.47187039018686 | 22.92675101436554 |
| C | 5.90547818409072 | 13.33963152818571 | 21.03213984121580 |
| C | 4.55507394398847 | 11.49847571165446 | 22.14123757852648 |
| H | 1.19707344891260 | 13.94071545190124 | 24.01298037124321 |
| C | -0.66983648620618 | 13.79343146590480 | 25.07458097446077 |
| H | -1.72695889226366 | 16.96079881077855 | 23.11257269885524 |
| C | -2.30818521876750 | 15.49204574109162 | 24.58142734528559 |
| H | 0.67447714824756 | 17.25157100173187 | 25.06260426282581 |
| C | 2.36163773820852 | 18.59499532718540 | 25.09364389247171 |
| C | 3.67253784480297 | 18.69861353277337 | 23.07258865553718 |
| H | 3.00668077185349 | 17.44630459462081 | 21.44893467594118 |
| H | -4.03562252312498 | 10.72496653297327 | 21.93090993100770 |
| H | -5.98012157300302 | 11.65998099405339 | 20.31914640490080 |
| H | -6.22718220198393 | 19.36274416560275 | 14.96606188529638 |
| C | -6.53725945941040 | 17.54394169918614 | 13.86194538922284 |
| C | -4.81165283137145 | 19.33246761884320 | 13.34646869253585 |
| H | -0.87393645339152 | 17.46984931791889 | 14.64899586899265 |
| C | -0.19263383842862 | 16.77117876492811 | 12.72847106719398 |
| H | -1.76703131421617 | 13.36546655765556 | 13.71363626210779 |
| C | -0.70000948310081 | 14.47222022510654 | 12.19750289332913 |
| H | -1.18369185685339 | 13.05623292955321 | 17.12184184917981 |
| C | -2.85618684678608 | 11.71855405296550 | 16.94662234685023 |
| H | -4.51851560222623 | 14.51056323161895 | 14.83076749629475 |
| C | -4.72217619742478 | 12.53193906386313 | 15.65327322576187 |
| H | -2.86533743232132 | 20.56494501338425 | 17.55664647783079 |
| C | -3.66499560158204 | 22.32637354415861 | 18.50984569466021 |
| H | -5.22625954578212 | 19.88762822201758 | 21.08968828329203 |
| C | -4.98154278656912 | 21.94772071944302 | 20.49460347283163 |
| H | -6.40835419459298 | 18.00635753146620 | 19.06175946768541 |
| C | -6.64582395906137 | 16.57112113129237 | 20.65778590159997 |
| H | -2.85507878962711 | 17.08717166861186 | 21.29081821637048 |
| C | -4.64624054288336 | 16.03572127285712 | 21.90236388136158 |
| H | -0.60040704771053 | 9.22082412185040 | 19.07943198371408 |
| C | 1.21764437093497 | 9.09789087667196 | 17.91049547344227 |
| H | 3.03306037648229 | 9.30785060285230 | 16.75710981676272 |
| H | 4.77724589940065 | 16.00146321567232 | 16.36879038568363 |
| C | 3.30105680182197 | 15.36444368110867 | 14.92523031151034 |
| H | 1.64429742823511 | 14.61538970299390 | 13.74529538244202 |
| H | 5.77073836220504 | 12.89836807703631 | 20.03298817591466 |
| H | 6.83665777376660 | 12.93470039376520 | 21.45585647701810 |
| H | 6.02491043589925 | 14.42505095326543 | 20.90650858585316 |
| H | 3.71049422876802 | 11.26835155406930 | 22.80631532143008 |
| H | 5.46876104191269 | 11.07151664415493 | 22.58102250700028 |
| H | 4.37429154542525 | 10.98901631807756 | 21.18289187722278 |
| H | -0.36619721322467 | 12.89685857897705 | 25.61789880844286 |
| C | -1.93582914000107 | 14.34576302347342 | 25.28664636005745 |
| H | -3.28787509668747 | 15.94329568906748 | 24.74559184083797 |
| C | 3.44663619955641 | 19.11781362630096 | 24.38794698297699 |
| H | 2.17045417844584 | 18.91546808199189 | 26.11919817373128 |
| H | 4.50770260289360 | 19.10718989841457 | 22.50140256506577 |
| H | -7.10836666212672 | 17.03498949516717 | 14.65160054109452 |
| H | -5.96626777889188 | 16.77960169769674 | 13.31320955801959 |
| H | -7.24953003345839 | 17.99698923998637 | 13.15636000324358 |
| H | -4.16934487891628 | 18.62538075583074 | 12.80001041292654 |
| H | -4.16454223165040 | 20.11422749755555 | 13.76838391036352 |
| H | -5.49368588263572 | 19.79973254250043 | 12.62032074815026 |
| C | -0.13038730758195 | 15.69478902788700 | 11.83642755796338 |
| H | 0.25615997807308 | 17.72996815669383 | 12.46417564342493 |

| H | -0.65460616111644 |
| :--- | :--- |
| H | -2.37841817748494 |
| C | -4.13705816757255 |
| H | -5.72347807538639 |
| H | -3.21031173899972 |
| C | -4.41974472052557 |
| H | -5.56940985093953 |
| H | -7.70940168827759 |
| C | -6.00804411273008 |
| H | -4.12817565712274 |
| H | 1.19931258701815 |
| H | 3.78944786224143 |
| H | -2.62593516977976 |
| H | 4.10812906086385 |
| H | 0.36171247854497 |
| H | -4.67955717790642 |
| H | -4.56650388978318 |
| H | -6.56663918524128 |

| 13.62310356247398 | 11.51335889570739 |
| :---: | :---: |
| 10.94721641160203 | 17.55147140724420 |
| 11.52567738325670 | 16.42808313792126 |
| 12.39249334437608 | 15.24185068822538 |
| 23.00616997737559 | 17.78737338486198 |
| 22.83288769281539 | 19.57317518479703 |
| 22.32928099160112 | 21.33114331025591 |
| 16.42135030576994 | 20.46405895971152 |
| 15.84237269978907 | 21.66745176710371 |
| 15.44346332907256 | 22.65587439621445 |
| 8.00928617449143 | 17.83868427843247 |
| 15.85711305635133 | 14.08326679910628 |
| 13.88703925274404 | 25.99622058256032 |
| 19.84851683166463 | 24.85553123090474 |
| 15.80901763358270 | 10.86928580370431 |
| 10.60126294779885 | 16.63067742802849 |
| 23.90846453445966 | 19.68219322078091 |
| 15.11092778336351 | 22.25280657939208 |

$[\mathrm{CyC}(\mathrm{O}) \mathrm{PCN}]^{-}(\mathbf{9 b}):$

| O | 0.18555743948105 | 3.24463881502523 | 11.59947762093877 |
| :--- | :--- | :---: | :---: |
| C | 1.00854395399100 | 3.45792858564996 | 10.69388945608590 |
| P | 2.81206136648738 | 3.61207530023323 | 10.73948888884219 |
| C | 0.47281383472175 | 3.63415339008194 | 9.24731476870133 |
| C | 3.10534798114151 | 3.37335885495585 | 12.47243745453704 |
| C | -0.25734901171295 | 2.35670818214954 | 8.79807450000557 |
| C | -0.47283207306619 | 4.84607277526959 | 9.18255367115064 |
| H | 1.32899183484303 | 3.81305980115539 | 8.56892555391658 |
| N | 3.42700312360801 | 3.23562179810640 | 13.59579388119928 |
| C | -0.90388698968286 | 2.51293436260107 | 7.41526512878192 |
| H | -1.02887907933871 | 2.13160485169430 | 9.55438758400118 |
| H | 0.45017374941145 | 1.51201267089605 | 8.80405759230764 |
| C | -1.12010693267677 | 5.00507595237032 | 7.80035620590337 |
| H | -1.25147457071389 | 4.70153496254547 | 9.95117566221330 |
| H | 0.08286703101453 | 5.75641149912940 | 9.45915003751034 |
| C | -1.84859821714549 | 3.72262056240381 | 7.37332769351212 |
| H | -0.11226102493422 | 2.65054490964404 | 6.65535493908965 |
| H | -1.44771380400147 | 1.59316144683833 | 7.13788301102703 |
| H | -0.33717447984541 | 5.23716588792007 | 7.05457834481115 |
| H | -1.81850008458328 | 5.86004121293342 | 7.79770713892543 |
| H | -2.69186569151542 | 3.54264266154613 | 8.06472822494128 |
| H | -2.28339835548305 | 3.84054151685037 | 6.36565264159814 |

$\left[\mathrm{H}_{3} \mathrm{CC}(\mathrm{O}) \mathrm{PCN}\right]^{-}$(9-Me):

| P | 2.82210438582387 | 3.61888508995228 | 10.75980268906573 |
| :--- | :---: | :---: | :---: |
| O | 0.19635772691127 | 3.24157861924754 | 11.59534027817413 |
| N | 3.40841608248689 | 3.23351538529857 | 13.61227777333043 |
| C | 3.09144915982999 | 3.37650772950377 | 12.49100058960958 |
| C | 1.01339838305646 | 3.45886217909980 | 10.69049855011384 |
| C | 0.47800819139630 | 3.63190533599939 | 9.24538204756455 |
| H | 0.90428488745784 | 2.87517875645300 | 8.57566190610907 |
| H | -0.61148838655483 | 3.52958333921713 | 9.26488183411588 |
| H | 0.74562256959221 | 4.61631556522850 | 8.84265733191674 |

$(\mathrm{CyC}(\mathrm{O}))_{2} \mathrm{PCN}(\mathbf{1 0})$:

| O | 0.22709231889085 |
| :--- | :--- |
| C | 0.97427138806159 |
| C | 0.50162723579965 |
| C | 3.00836360983912 |
| C | -0.59861101784957 |
| C | -0.00272942407097 |
| H | 1.36208479592963 |
| N | 3.11824709133838 |
| C | -1.08900041259200 |
| H | -1.42904954073290 |
| H | -0.22377353451329 |
| C | -0.49732466159760 |
| H | -0.82185842239141 |
| H | 0.79972990681240 |
| C | -1.57931942733673 |
| H | -0.26205629499883 |
| H | -1.88913282318864 |
| H | 0.35567823621491 |

| 1.83858576430081 | 10.65933419973752 |
| :---: | :---: |
| 1.46731690323529 | 9.78418553815327 |
| 0.88716087289605 | 8.46038279505726 |
| 2.51710109942375 | 11.44222132638720 |
| -0.16972894113403 | 8.65543808357745 |
| 2.05024770824315 | 7.56990179091697 |
| 0.42880296579191 | 7.94210888613393 |
| 3.11326481168564 | 12.43916086722088 |
| -0.69766703406437 | 7.30183380552396 |
| 0.29219257257126 | 9.21197117101721 |
| -0.99566008481654 | 9.28109128128811 |
| 1.51596854321384 | 6.21945082719011 |
| 2.55918888990431 | 8.10368582542993 |
| 2.79045017520364 | 7.42560865991900 |
| 0.44290134786151 | 6.39982809715745 |
| -1.23122785581659 | 6.79879259509431 |
| -1.43738784774417 | 7.45735763701187 |
| 1.08674692289874 | 5.66467076870363 |

| H | -0.87899275586193 | 2.35047265951168 | 5.61124544584613 |
| :--- | :---: | :---: | :---: |
| H | -2.47336433383939 | 0.90361086331666 | 6.85497650862677 |
| H | -1.89160539787676 | 0.04866202730775 | 5.42066831863052 |
| O | 4.23320966733138 | -0.13371415237281 | 11.35926924485404 |
| C | 3.50645255936111 | -0.03276617766285 | 10.40113226787750 |
| P | 2.88052127203014 | 1.72945714687753 | 9.86539831470816 |
| C | 3.10814099725886 | -1.18420185168983 | 9.49416021228673 |
| C | 3.73675262647751 | -1.02741962971545 | 8.08889176848104 |
| C | 3.46302788684272 | -2.54906570334375 | 10.10006165158543 |
| H | 2.01067370073530 | -1.12892902683790 | 9.37512998308968 |
| C | 3.26249710827344 | -2.15817189197116 | 7.16688514488024 |
| H | 4.83451919575617 | -1.05846774621276 | 8.19268784166549 |
| H | 3.49215783010418 | -0.04572648821223 | 7.65356638255399 |
| C | 2.99360297472097 | -3.68104644418171 | 9.17605537914213 |
| H | 4.55381991444802 | -2.60161563349863 | 10.24469523987419 |
| H | 3.01310392569980 | -2.64246001941826 | 11.09915098003054 |
| C | 3.57670733115946 | -3.53666430668131 | 7.76371641987767 |
| H | 2.17161934917085 | -2.06243447162268 | 7.01683762741715 |
| H | 3.72832312464739 | -2.04993960531941 | 6.17547666400563 |
| H | 1.89046090768477 | -3.66864490671070 | 9.11737901052049 |
| H | 3.27150646472451 | -4.65454747259340 | 9.60767857951696 |
| H | 4.67210139945890 | -3.66695017646284 | 7.80930336365505 |
| H | 3.19239522807797 | -4.33178380616013 | 7.10658949535409 |

Cartesian coordinates of the optimized geometry of [(Ar*BIAN) $\operatorname{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)$] (4a) at the D3BJ-PBE/def2-TZVP/def2SVP@C,H/CPCM $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ level:

| | 6.12899167623824 | |
| :---: | :---: | :---: |
| 3.44062694386576 | 7.86107261551146 | 17.37906622434346 |
| 5.42929552022738 | 5.7 | 16 |
| 4.59543354229073 | 6.40745388543398 | 18. |
| 4.94 | 7.7 | |
| O 2.65349946371380 | 4.99157510819918 | 17.46993818051366 |
| N 3.34894031147856 | . 80919741364497 | 14.44660307213436 |
| N 1.6039637 | 6.63612307115839 | |
| C 2.18804578 | 4.74393466831244 | 13.81287667681369 |
| 3.21867877009092 | 5.13579742800565 | 18.58601303586127 |
| C 1.20 | 5.76901979606329 | 14.16956123815733 |
| -0.0481294817346 | 7.88065890075 | 16.45355375075235 |
| C 4.41629416109805 | 422 | 14 |
| C 0.30659503028659 | 4.43773493543624 | 56 |
| C 1.07029028263068 | 8.96103743931108 | 14.54905767396383 |
| C 4.68225262313801 | 2.7 | 14.70966284734874 |
| 1.61462569127871 | 3.90355624549958 | 77 |
| C 3.77288219389419 | 2.29797885490253 | 15.84923365460065 |
| H 3.36324337975384 | 3.22062592370293 | 16.30915344408270 |
| C 0.84468989976818 | 7.81567882438962 | 15.35484563096687 |
| C 2.79516295402935 | 4.29934618177613 | 19.78643577471354 |
| 0.01739664255989 | 5.577898804 | 8 |
| C 4.99937300226234 | . 65613317197063 | 12.18322713605493 |
| H 3.97139104098972 | . 9920705612384 | 12.42160197919576 |
| C 5.21136838084299 | 4.33144958926051 | 12.90686220130621 |
| C -0.4968808662480 | . 00015814358355 | 18.80105587182581 |
| 31514317 | 6.655153847283 | |
| H 0.59063657573213 | . 0152079201748 | 17.25938573963709 |
| C -0.72470990122146 | 08562391341 | 16.70481438402104 |
| H -1.41008920498 | . 1282856279 | 17.56464885360361 |
| C 2.57962842723081 | 1.54301797387340 | 15.26776103595290 |
| 1.99460799903269 | 8.90181121559429 | 13.33710019044860 |
| H 2.71897306255171 | 8.07827839209605 | 13 |
| C -1.4708097459995 | . 82291966627307 | 16.76190800354864 |
| C 5.73320948759529 | 1.92500894791499 | 14.25984158985098 |
| H 5.94572939975322 | . 988888887806581 | 552346167609 |
| C 5.9243874198396 | 6. | 12.66746701036169 |
| C 0.21153651982829 | 8.27922854466381 | 20.76780013330942 |
| H 0.87227636848385 | 9.03894419096149 | 21.21315966180621 |
| C -1.38021508273511 | 41778220030993 | 6.74775522205572 |
| H -0.45897492649877 | 3.93717011517010 | 17.11018016962450 |
| C 1.27992038719831 | 2.0638549775595 | 15.39952309773677 |
| H 1.13632552283583 | 3.00130999973346 | 15.95656863175310 |
| C 2.84297093778260 | 10.16622026308352 | 13.18276706763934 |
| C -2.66283956855854 | 6.42102889960084 | 16.30591408834161 |
| H -2.75522187063750 | 7.51720445265127 | 16.30338912427852 |
| C 1.20604934048494 | 8.52860042051204 | 12.08123901677150 |
| C -0.59652944943587 | 3.90553493778572 | 11.57193331034864 |
| -3.73059716459942 | 5.6375523719990 | 15.84282224982693 |

H -4.64929821965328
C 3.50551810457320
H 3.35659231141465
C 3.95277929392743
H 3.04050169869402
C 0.33466453314651
H 1.09280324791246
C 7.05416574816760
H 7.29081349307015
C -0.74126816043325
H -0.83906897865647
C 1.66002696683912
H 2.58753758892321
C -0.52187778090582
C 4.50429797611378
C 5.06558699439084
C 2.03079258745838
H 3.02274957202403
C -1.44539803118227
H -2.10469226110942
C 0.38745797972062
H 0.59120498530261
C -3.62981197628725
H - 4.46698634152240
C 2.33730090304385
H 3.14110801101509
H 2.08173826880099
H 1.44573865845713
C 6.24172709819515
H 6.84169851784077
C 6.52446994133775
C - 0.14165397113385
H - 0.80282094521383
C - 1.56427236337504
H - 2.31367258533997
C 4.03382927657319
H 4.39725007027105
H 3.76070133316823
H 4.86461566119325
C 1.65862837397005
H 0.76065413063240
H 1.37899872260616
H 1.96309113222956
C 3.04290438564167
H 2.53878449274776
C -2.45167781036267
H -2.36739776684747
C 4.33927723676128
H 4.84737042322116
C 5.64026221933643
H 4.76043838897270
C 0.00909641474578
H -0.37366918372194
C 5.77775972595354
H 6.24922335896061
C - 1.21116285945490
H -1.46922568254171
C 1.13140764420983
H 1.45846893426632
C 7.58826555889796
H 8.23113127479227
C 3.99696646406663
H 3.11335500916285
C 4.52889803872699
H 5.18195921610871
C 2.75557392892178
H 3.76578954592918
C 7.88070023510506
H 8.75506122394680
C 3.87876243794363
H 4.01904404713415
C 6.46052486649816
H 6.20441302488946
C 0.18198155068943
H -0.81963538456576
C 0.93878605697683
H 1.31535040678794
6.12643660651791 10.69455434487527 10.22188700003276 4.94489456127472 4.69760849622308 7.96931104580577 8.48357598979641 6.54454715374456 5.52412681316019 7.61781710471895 7.85956733642081 7.49857562749512 6.96682848620721 10.23690550820251 1.55515140875728 5.47303098700128 2.79586365550683 2.34808977477130 6.34179954093232 5.58334802849092 10.15170032318039 11.05013424937640 4.23688521283803 3.62059498301122 5.26282460542796 5.97725400646718 4.67307269811578 5.84223654927854 3.47335866860693 3.76989823045180 2.26510485646146 2.76659869488398 2.30523314387546 6.64431561394142 6.11546386781298 3.50942006930047 2.81275673276438 2.91936802706144 4.19037231547724 3.33745896295520 3.89235162575001 2.72988142507107 2.64844103430320 10.79131580681653 10.39407509398234 3.62932024212831 2.53216816387647 11.81494176772750 12.20546460502342 8.09412847263001 8.28834863470749 9.19011534237881 9.99448394478597 1.99413172487488 2.85080840427181 6.21375689133213 7.10204258141840 2.24088357185302 1.36150416188912 8.92260173487882 9.75939790891302 4.72263032513843 4.31206385423743 12.43407220081882 13.31569464641115 0.34833642279266 -0.07197669320290 7.61441220303067 7.41811432786869 11.91647452047574 12.39048626392646 9.16042495254038 10.18342811024184 1.42297783170091 1.86820043068344 7.12175040662809 6.30464067379000
15.48343153477568
14.31223750865814
15.29565982588455
9.97931457527456
10.54146078990202
19.40599054099449 18.79539279366844 13.47467400916860 13.80912401346076 21.56146164803293 22.63082249526504 11.23752936808043 11.49158409392851 15.92456395809740 16.96626880446751 10.66539954941420 12.02056857530553 12.16846154155328 19.60839361209334 19.16220995452010 14.85973366179452 14.25601238321192 15.83597410405618 15.47450883919076 20.90496628792154 21.17571043256193 21.80870836598773 20.60126623891120 12.49140216954413 11.61756958965671 13.15185110244993 10.83577286063438 10.08581621911461 20.97614698911712 21.58512949225162 20.26878005764844 19.49127280671001 21.16724751522372 20.54479502888623 19.41156421431280 19.07751296462484 20.29507245365862 18.59971641341198 11.93788047519903 11.04462820316238 16.29754355485723 16.31456138480796 14.20145687704740 15.09653789632175 12.26058088050413 11.62775428371361 11.73809358532841 12.38300571875619 17.39226093702404 16.88663636112987 13.19074388501948 13.78185506385317 11.06485278655186 10.48971198848244 13.45270635803423 13.76570490785656 8.59527490874815 8.08209869848738 12.95353232465854 12.86438478451577 14.53885366710724 14.42025569700609 13.86409027822746 14.50343022640203 11.82311298821162 10.83931678048082 12.64733692449559 12.33326161594370 14.80256451783204 14.88803484738188 10.09411353844919 9.46064477247862

C 6.44307085656366
H 7.43560483664667
C 5.16176607676445
H 5.19905947543632
C -0.25583597413018
H -0.83050359271598
C -1.85764089388819
H - 2.60446069040900
C -2.13864395840302
H -3.11227206567764
C 3.90904849728818
H 2.91413907413478
C -0.71420051517764 H - 1.65033624786198 C 7.66102580607139 H 7.64909085263158 C 6.22701309354666 H 7.10097729866436 C 9.02282168142976 H 9.09268551000982 H 9.85293051373834 H 9.17971815905694 C 1.66032403048941 H 1.81730877050596 C 0.36852003454723 H -0.48911588429740 C 5.84274188980322 H 6.36357339678772 C 6.27638904775964 H 7.19399476551770 C 4.57012860355170 H 4.08427854510146 C 7.45795889347428 H 6.48768549522624 H 8.26649915043927 H 7.46930977433209 C - 1.24555078355433 H - 0.92341928037576 C -2.77098116317422 H -3.28366695655598 H -3.15692270704657 H - 3.06228632211372 C - 0.83933931167020 H 0.25706130747960 H - 1.13021048282130 H -1.33514328283965
1.35956708063761 1.71978242877373 5.02337458762814 4.85186698312123 7.78113844626077 7.48303597636362 4.57089358584601 4.19984976565640 5.68785125053982 6.18886506881166 0.47598195096642 0.12274210829444 8.82226329480797 9.34769999031127 1.36746036958226 0.46788750195770 5.77532758696361 6.19877180636602 2.06050457796774 2.97023204250655 1.38404153211059 2.36902037953166 -0.30336077957600 -1.23440897377250 0.23736037823400 -0.26119357515434 0.27810312564514 -0.22070763288052 5.54914630080680 5.79104658708528 -0.15551592674019 -0.99659789302689 0.89890464500065 0.37653102605309 0.20366746021180 1.75647261242884 11.53608422170752 12.27879615419422 11.37675630119437 12.34500898042950 10.65512651788689 11.00810200134816 12.07446922980917 12.22451981737975 11.36741121903606 13.04491007400187
18.45136770577339 18.76296090908608 7.86936966537888 6.78271075338128 9.76981294846496 8.87968805076194 11.45730422294790 10.73836109560312 12.24492737814364 12.13510560218393 17.64921579225891 17.34054734763659 10.59411144388027 10.34935778560213 12.68811976711075 13.34145790327728 9.92741600332895 10.44494640590485 12.86908206223487 12.23691393925442 12.57882946021344 13.92233103095521 13.95456928714266 13.38814996562379 14.07751972911742 13.60081723986440 19.11812340824930 19.94964428517755 8.54173545948534 7.98343224239717 18.71651929161620 19.23489966711610 11.23740300931786 11.11516169156012 10.93149761770049 10.53271036896236 16.24294767661776 15.48098717469252 16.12740231965145 16.30188180736471 16.87768622230641 15.12304776751928 17.62579880944550 17.69094100896612 18.43076244433843 17.83417116080592

Cartesian coordinates of the optimized geometry of endo-[(Ar*BIAN)Co(CyNC) $\left.\left(\eta^{3}-\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right]$ (endo-6a) at the D3BJ-PBE/def2-TZVP/def2-SVP@C,H/CPCM($\mathrm{C}_{6} \mathrm{H}_{6}$) level (Total Energy: -6619,22324940716 a.u.):

Co 0.06759365009705 P - 2.09856408385219 P - 1.73233775690348 P -1.26663942184504 P -2.03094494573090 O -4.61346827797852 N 1.17992601098463 N 0.89929219080685 N 1.47239098550814 C 1.89668450364526 C 0.54379047231451 C 3.66644069826536 C 1.09533075020023 C 2.03857640627395 C 2.93821140702968 C 0.53460883823088 C 3.15284642847719 C 4.00614048345428 C -1.78561410618232 C 0.54932579937569 H 0.89572069053993 C -0.35456826596717 C -0.76841974293238 H -1.45009465086002 С 0.29184167687226 C 2.59768440779951 H 2.16191476206880

| -0.07934735940167 | -0.01388424198693 |
| :---: | :---: |
| -0.69626360639027 | -0.46551892524205 |
| 0.54921498066403 | 1.28909702252991 |
| 1.02595740169519 | -1.52264250071416 |
| 2.41463826274560 | 0.07516992623888 |
| 1.61840986050765 | 0.47204749302320 |
| -1.01550488400905 | -1.33393802984771 |
| -1.37244072500707 | 1.21974078136489 |
| 2.48342706580620 | 0.64604460239913 |
| -2.03093267386776 | 0.66026195534216 |
| -1.59248330562325 | 2.58659037815628 |
| -3.31275431691605 | -0.06880816038468 |
| -0.87164884058791 | -2.75076668359348 |
| -1.84963790090371 | -0.78370796224974 |
| -2.95903752788239 | 1.11325575784783 |
| -4.18397256573669 | -2.78477541056460 |
| -2.68344779457487 | -1.24795624195823 |
| 0.60626522469735 | -2.43638280112508 |
| -3.25675053878793 | -3.33397195798817 |
| -0.87444972359989 | 4.90829846783065 |
| -0.16375340718123 | 5.67464960188216 |
| -2.64220874550607 | 2.91295871438063 |
| -2.77579790755727 | 4.25129957187361 |
| -3.60033678461539 | 4.51170788053917 |
| -1.78036244551120 | -3.48671677982948 |
| 1.16889194398526 | -2.58146250099026 |
| 1.16743623979008 | -1.56246952088053 |

C 4.51621252265685
H 3.88816517679947
C - 0.86816293209196
H $\quad-0.24188603221939$
C - 2.31052774031617
C - 0.38257177524759
H -0.53702940450256
C 3.33613063384225
H 2.80703805273532
C 1.73206700616143
C - 0.64587779518444
C 4.88630441318771
H 5.37176111423966
C 2.11364463904211
H 2.09279424983355
C 3.76350010732153
H 3.40228394002841
C 3.50928115197352
C - 0.35421809849850
C -2.24510660193613
H -1.55945499046717
C 1.83623919805274
C 1.03033983782772
C 4.77933273758401
C 0.15952533801792
H -0.49213125502064
C 0.93691307801995
C 0.76164022487436
H 0.27447798875970
C 2.52823823271156
C 1.58079713944460
H 2.06572551551817
C 0.79986207050958
C 0.52811941818309
H $\quad-0.28106757276391$
C 5.78708982316282
H 6.15386174483099
C 1.17211455708137
H 1.01440923044925
C - 2.76607354421280
H -2.08280326963014
C -4.46008126345399
H -5.49850492137495
C 5.39053140507782
H 6.26243910305982
C -2.68924332010115
H -2.34857580005688
C 4.45880205777182
H 4.77826656167251
C -3.88796076340793
C 1.26821364150096
H 0.36492948958648
C 4.80559576395165
H 4.41803988510888
C 4.56491229588272
H 4.35880410478214
C - -4.01199029772240
H -4.69893192231123
C 5.16565766887596
H 6.02816477665299
C -0.86991203690580
H - 1.51476857612763
C -3.20218737960787
H -2.86800570317669
C 5.86549321501299
H 6.67405961983504
C 3.79440331871181
H 2.98964588747301
C 6.13352897960493
H 7.14977117649423
C 3.66888613652317
H 4.65909772939955
C 5.09168938575350
H 5.28812098621483
C -4.51011367749099
H -5.18350459746643
C 1.61253073958051
$0.31761650242515-1.15735870368171$ $0.52682243738267-0.27817209373474$
-3.62147628500937 1.86008504734776 $\begin{array}{lll}-3.47081243528782 & 0.95968276122357\end{array}$ $-3.385467092529351 .40991803694729$ $-2.96316763676919-2.79907164391249$ $-2.67031169057738-1.73638622863805$ $-3.49632471842676 \quad 2.33558365908921$ $-3.25508374362776 \quad 3.26713546972015$ $0.21651917124383-3.39570477935570$ $-5.06893493087367 \quad 2.30640554578508$ $-3.82164396556376-2.49104892907082$ $-4.02414869775406-3.45757093570205$ $0.29598233129838 \quad 3.28870051340035$ $0.45191292853114 \quad 2.19167490827880$ $-2.94432307277457-2.46922775610551$ $-2.48294125947061-3.39810637507537$ $-0.24357633881753 \quad 3.60346804773333$ 5.26029584694867 -3.54626120247069 -3.39096078216761 3.89224027486452 3.59802250936423 -0.06932987484933 -4.87150204048053 -5.43220984192008 0.37996837991640 -1.58344794033200 -0.66217505897496 -3.04361856996409 -4.78549657347980 -5.28722261274916 -5.54442525415151 3.82873420086181 3.40225441120040 -0.99715375011073 0.01082151308913 -3.95432684832446 -4.90504274234049 0.26220652968301 -0.26747457408739 -4.14089223080554 -4.45228295365871 -1.33967989632433 -1.40381212673847
-3.53695745084516 -3.38428129396228 2.35600830925506 3.32292422979262 -0.24008386255861 -3.32100244177342 -3.25330311464601 -3.56076103772865 -4.56982761054484 2.70572538674219 1.78956378428262 -3.93321023476291 -4.07587907791642 1.20111160004106 1.26458382488270 6.68485144881658 6.70951671846782 2.07334662019082 2.96251535424319 2.96054886530990 2.24605421820362 4.77142547316560 5.48591716871138 4.12280574681035 4.32213088726552 -3.11406015930337 -2.89684906923855 5.02755068100239 5.94294351820239 1.58950889650790 2.10796369563227
-1.53795083329661

H 1.77947988316691 C 0.60461950693063 H 1.40100693298610 C -3.57022274082099 H $\quad-3.90658611336748$ C 2.85848455718724 H 3.88407872363577 C -1.65553969785063 H -2.64663939837830 C 6.08105494232798 H 6.69101272644404 C 2.03019974908123
H 1.75081241608046 C -4.94346912051554 H -5.96080552055576 C 6.57449701413581 H 7.56773512430533
C 2.02024013066382 H 2.51456994962290 C -4.06484097899089 H -4.38271041045237 C 2.24955366283434
H 2.92592729262125 C 0.27445542550277 H 0.88843192658640 H -0.12402808935268 H 0.94739447516974 C 0.25304770788919 H -0.77311766743207 C 1.15391797355676 H 0.15941564740711 C -4.47851467345968 C 0.60836435777691 H 1.28650366781335 C -0.83425976566625 H -1.55940954489635 H -0.96532793463846 H -1.10016177216059 C -1.74100517464204 H -1.14908267982274 H -2.15494196621775 H -2.58789998333177 C 0.84686112970411 H 1.83179372061275 C 1.42488365409359 H 0.32205148361395 H 1.63903335405908 C 3.56588371304399 H 3.84556266425080 H 3.96113563177814 C 1.28290366336862 H 1.06903267952029 C - 1.41516460306830 H -2.21686104622112 C 2.58504864577821 H 3.39990367645432 C 3.55659602435607 H 3.85660743528312 H 3.97231430661018 C -0.16316623615371 H 0.02216088481552 C -3.46567133027304 H -2.53745504153829 H -3.90736882734941 H -3.18108400750304 C 3.55608126292761 H 4.46158955738210 C 2.29975244346034 H 2.21211624634752 C 2.02480278021033 H 1.60450804667709 H 1.71867807147932 C 4.15073310905063 H 3.93463484538795 H 5.25554522571750 C -5.74343752143750 H -5.49781249270168
-6.51270593649443 -5.68398768517892 -5.12329812489215 -4.81447820307246 -5.85051350286636 2.47883892421057 2.08616092102835 -5.80787271923814 -5.35287130482332 -0.24598069904256 -0.46872415132748 3.74707387194226 3.94307856997547 -3.01010829455256 -2.84795577792520 -0.53987694190024 -0.99842305392384 -5.76106539857838 -6.10077642775078 -3.88640792710388 -4.40720038321767 -6.43729394659335 -7.30501765718648 -2.23768811067065 -3.12132151863640 -2.39107507590341 -1.35540626492756 3.50120404474984 3.89382242003751 4.55261347609566 4.97864469554951 3.24146334724617 -0.32294824534514 0.50519775767036 0.11631371256778 -0.67196830955268 0.31303041168109 1.03854537799791 -0.81797334274104 0.12107081847877 -0.93885308165003 -0.69277685282387 -6.99671391961656 -7.45503747087985 4.84982591355521 4.84626436436403 4.60192806964590 3.71489590506938 3.43871807782308 2.92822731445619 4.29874691011614 5.31851965821727 -7.12009892086007 -7.68058552245423 3.78063523153664 4.39222663214997 6.19655805065710 6.02533092071050 7.18310862396725 -7.72027231045243 -8.75119299250486 3.54027603931082 4.00110655604735 4.25129234062792 2.61996208905951 4.80490939625910 5.42940279464285 5.36488140018008 6.42945925053533 6.21478719553751 6.98894284281614 6.49570849388591 5.08607721272523 5.30262130916695 5.05665936490784 2.59480196827349 1.64455760872805
-0.58126141379014 2.09460129666904
1.58476669103997 -3.94794047030724 -4.10848210986604 4.43158249036520 4.49199741688669 2.95500315868122 3.10504666186929 -3.40611665228408 -4.29526578218340 0.97939022723995 2.03855100975050 0.43982041611533 0.05241538685200 -2.12300769553809 -2.00284474978959 -3.91719004408444 -4.84052445361229 -0.22295251331365 -1.13896477058201 -2.70714706567894 -2.67607016342234 7.69021325454271 7.42265097194028 8.71404789793784 7.72396494792082 4.28231973114663 4.21334798684027 -3.66322311447752 -3.86817655540024 -1.32491197944933 -7.03965953364566 -7.34026441816900 -7.34872420695832 -7.05681999484166 -8.43281016311204 -6.79406760020955 7.07029192412506 7.05431135011190 8.09254052720738 6.36608483149019 2.52659402438908 2.34616826956882 0.09256301043469 0.21137903058083 -0.96768436184948 0.87901101076082 -0.16064499611300 1.55327263030541 4.81345903724495 5.16823447179601 3.39318762580899 3.89853978865546 4.88783880349157 5.30518292107942 0.35966256110976 -0.69825283280777 0.65287221861935 3.18181395336253 3.52026290613185 -2.44200607272907 -2.04351544223554 -3.16993584515643 -2.99078069181301 -3.45380909089182 -3.50132923969543 -3.73111544450371 -3.99664606927961 0.44733386237770 -0.22761783812337 1.48007358882092 1.23635375843423 2.30669990581918 1.13730308373533 -1.91270605189457
-2.42934898673615

H -6.21077918286542
H -6.48244272868098
C -4.84084689613508
H -5.56702725794436
H -5.29614916249287
H -3.94014940891556
C 0.99996770333481
H 2.04208029580664
H 0.91660413484596
H 0.33487808235989
$3.27954342016182-2.64921054403473$
$2.37066648992167-1.12013718259612$
$4.55297837436039-0.58826892183117$ 4.362937244458530 .22697359037148 $5.26981750743288-1.30292314238914$ $5.02822351412884-0.14915162912157$ $-1.56928798305103-7.84960167860141$ $-1.88054943693717-7.63385704889708$ $-1.37258455914621-8.93811011599081$ $-2.42683049642844-7.61613556687365$

Cartesian coordinates of the optimized geometry of exo-[(Ar*BIAN)Co(CyNC) $\left.\left(\eta^{3}-\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right]($ exo-6a) at the D3BJ-PBE/def2-TZVP/def2-SVP@C,H/CPCM $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ level (Total Energy: -6619,22319541952 a.u.):

Co 0.11116053453340
P -2.00929247628637 P -1.68119863158105 P -1.29255499387046 P -2.55985400517661 O -1.30105856763041 N 1.20893964964215 N 0.96741409584694 N 1.54574781945170 C 1.93690399509644
C 0.60447634165002
C 3.64991172057967
C 1.09145850525051
C 2.06008614804387
C 2.95033396027095
C 0.52929623619334
C 3.13897188877965
C 4.02388124930758
C -1.79801480166440
C 0.60250112936824
H 0.96035155420016
C -0.30691893761770
C -0.72726048365590
H - 1.41414545370408
C 0.27104188199426
C 2.64249987870456
H 2.21528153694112
C 4.55031746680330
H 3.95266800409730
C -0.82762699194189
H -0.22080164356832
C -2.28430564891213
C -0.38513352600229
H -0.51201660924395
C 3.33585657314695
H 2.82039631923209
C 1.72858801914921
C -0.58878376555589
C 4.79936145970829
H 5.25540716516330
C 2.21874798118130
H 2.17123039844039
C 3.71275471378468
H 3.34711523650040
C 3.58622197858310
C -0.31307778282133
C -2.25720336393804
H -1.56921466592869
C 2.03964956768309
C 1.09381165125704
C 4.72417594793341
C 0.11523394173695
H -0.54988072937434
C 0.98055268871875
C 0.79018551736967
H 0.33892535632914
C 2.64976238155292
C 1.55630061465707
H 2.04867422464546
C 0.75264825570768
C 0.86498566615436
H 0.08527693141252
C 5.80376313194925
C 5.80376313194925
0.01261097090254 -0.71655466849947 0.52042336172885 1.09432538224969 2.12679115392436 3.74365048236790 -0.94979263204670 -1.30767800779133 2.58064769839354 -1.98321991331782 -1.55460219007915 -3.31997766703759 -0.83691959197776 -1.79628221696542 -2.95528600704772 -4.16552920107701 -2.66493514772431 0.55364373902682 -3.24042982073947 -0.87137730577709 -0.17942158104661 -2.60071772803620 -2.74916170238585 -3.57346873051994 -1.75621949119988 1.17521546016833 1.25059944263044 0.34614403452923 0.64757532673216 -3.57370101477377 -3.40854306928032 -3.36171574880042 -2.94190854375224 -2.65705061533372 -3.53127890299274 -3.29160188647668 0.22817443485902 -5.02509749440993 -3.86809910331941 -4.08703648952058 0.28008865228478 0.54356942188495 -2.94761337551147 -2.47572513786412 -0.36307849989046 -1.88489503214825 -4.55776511740338 -5.40055874125081 1.59411171060651 -0.71043134967173 -4.23935055744811 -1.58332068612585 -2.27750903710764 1.56418099529693 -4.86961415531758 -4.51831203441164 2.59716780831932 0.34400662316901 1.17538684151526 -0.54924312269384 2.34640125630778 1.96354024307062 -0.26078469469609
0.00415011575000 -0.43897322700745 1.34506387408016 -1.44956251210415 0.08394982831302 1.86723815611290 -1.34911679503647 1.22176319378515 0.56436118744070 0.63915078009946 2.58269790625401 -0.12989668888439 -2.76705614876172 -0.80944365351157 1.06498112512452 -2.79526292456524 -1.29562686843687 -2.51546385324081 -3.28292989128089 4.91799519642959 5.69606156924250 2.89137242792815 4.22721984204241 4.47347567958968 -3.47448397922428 -2.68294396528042 -1.66261063668272 -1.22743419151805 -0.35309531979577 1.83435362883802 0.92305627565310 1.41660567053416 -2.77359962092354 -1.70533313684521 2.27319717227446 3.21210706201557 -3.45011216759582 2.26593201987561 -2.57714721870489 -3.55433548047065 3.34663508571898 2.27095793237851 -2.52990151374675 -3.45129946378216 3.57287854720197 5.25100852392224 -3.47484364756843 -3.31464410214875 4.10996656556709 3.61382936163040 -0.15622764247933 -4.86026192828718 -5.39627689157614 0.35587993754307 -1.60607685631252 -0.66719142650484 -3.23698318829594 -4.84016796346509 -5.36869497260349 -5.56718777697772 3.89340020580236 3.21680846957751 -1.04945949994315

H 6.18726645096700
C 1.12107837882620
H 0.93744255604711 C -2.74083554151582
H -2.04470419602298 C -4.47697827942986 H -5.51632166166865
C 5.30160714414438 H 6.14260630893983
C -2.70590707911470
H -2.36776445402757
C 4.42254730718837
H 4.73265932638094
C -1.78587245662229
C 1.41640815654076 H 0.47835003775093 C 4.78596765238228 H 4.38157653662715 C 4.63363312396345 H 4.44274471033547 C -4.03046628119455 H -4.71956894619418 C 5.10339304686872 H 5.93730950562280 C -0.83724389033077 H -1.48472987018945 C -3.19375659210312 H -2.86029652973520 C 5.90917957405239
H 6.71486666955007
C 3.85359371137869 H 3.05163229130749 C 6.16030614432794 H 7.15766750127879 C 3.83788001476953 H 4.80915355952768 C 5.12682761232527 H 5.31075422960382 C -4.52073499947405 H -5.21198539828191 C 1.62935720222982 H 1.82440209604461 C 0.65314670084321 H 1.43517795919511 C -3.58385231265789 H -3.91822693898234 C 3.02014316136892 H 3.94421698483972 C -1.57982698051177 H -2.56712943291665 C 6.04385693447524 H 6.62451288300066 C 2.22368337303752 H 1.61657990442109 C - 4.95555085531041 H -5.98976339072255 C 6.55560997785767 H 7.53463605842997 C 1.95548525285883 H 2.41255404796327 C -4.05774099496822 H -4.37580228070844 C 2.21849699273736 H 2.88475634635364 C 0.30094386913235 H 0.91511584313835 H -0.10372326196556 H 0.97473328370105 C 0.68449043343838 H -0.23234062070104 C 1.37434944220189 H 0.40130679047553 C -2.02002994117527 C 0.54437074413200 H 1.21866446990136 C -0.90163358481112 H - 1.62334866692755
-0.43544619736529 -4.62742842040635 -4.09102999745655 -4.02700269485904 -4.66041652781630 -3.74759849884720 -3.94437811364685 -4.49854701790896 -5.20414959532231 -2.17936149066950 -1.14097071810043 -4.45197252136314 -4.89808974705882 3.72327249227307 3.24842831976775 2.69763073005912 0.14457597752647 0.28686060451659 -0.10745175696336 0.53850396528107 -2.42850230814798 -1.58336787163779 -4.80398907264143 -5.52178772910762 -2.03430810993949 -2.93793660837332 -2.56065336813607 -2.02386856927935 -0.66064161042052 -0.44436690372893 -1.18498102660676 -1.40631539005221 -1.48561623672637 -1.92647287908349 3.32043279371383 2.83563448746042 -1.74167249561189 -2.38531544853056 -2.41447710871755 -1.77040432101800 -5.99424040879502 -6.51751326042221 -5.64147016656132 -5.08092766830373 -4.81039411236319 -5.84932236087419 2.11216795643967 1.54317717390682 -5.76884588232208 -5.31659486925793 -0.45118449555001 -0.76613895323987 3.78460185445743 4.26559680254729 -3.06566297797920 -2.93777527402464 -0.66063287579562 -1.14420535939653 -5.75489185889139 -6.09629815189668 -3.87813711961040 -4.38017594112161 -6.43979315350480 -7.31583051125885 -2.25896104006446 -3.14052085138911 -2.42320817371917 -1.37806932473261 3.58996721625693 4.16234521883305 4.58078455365880 5.06871607269916 5.01612298999312 -0.38096187815302 $0.43965443023575-7.39328021018841$ $0.04870741259774-7.37057135272491$ $-0.73307122106384-7.05360594046584$

| | | | |
| :---: | :---: | :---: | :---: |
| | -1 | . 98364028068488 | -6.83575450766239 |
| | -1.70672623426365 | | |
| | -1.11125745612593 | 0.1097839246551 | 7.06069288655524 |
| | -2. | -0.95729820996194 | |
| | -2 | | |
| | 0.90 | -6. | |
| | 1.8 | -7.41325675945032 | |
| | 2.31392982499785 | 3069150299529 | . 30377529181227 |
| | 1. | 93495843024305 | |
| | 2.86616162141829 | 4.21353690730143 | |
| | 3.6261 | | |
| | 4.20064934855885 | 2.93372558859116 | .68984255712091 |
| | 3.53655381220829 | 82208014136071 | . 34959661197924 |
| | 1. | | |
| | 252081053830 | 5.08005182075382 | 8 |
| | -1.32794931194496 | 834204679 | . 36221687910659 |
| | -2.1157352996805 | 46078 | |
| | 2.83780756638541 | 356865 | . 60646761856275 |
| | 3.61799494158683 | 74477920148654 | - |
| | 4.42705009472056 | | |
| | 5.06223362760653 | 29773191065056 | -0.14548637807000 |
| | 20857609152 | .6963052594755 | . 95 |
| | -0.08297691175272 | -7.683499137924 | |
| | 0.1113057890796 | -8.7 | 43982307360713 |
| | | | |
| | -4.15324417632283 | 429276 | 0.41134132299545 |
| | -3.7387621810703 | 迷 | . |
| | -3.83 | 5.48035637191328 | . 08933782868598 |
| | 79750939039 | 917711 | -3.88327764804277 |
| | | | |
| | 2.56692373904 | 7830247163 | -4.103525038027 |
| | 2.534783579146 | 34371281182323 | 1 |
| | . 033 | 6.02942451010646 | |
| | 069096249 | 2513 | . 82238452074109 |
| | 2.42690496451129 | | |
| | 4.34857662059712 | 8338254062305 | 46360621 |
| | 3.8033571723 | 27083366996992 | 2.67802581669996 |
| | 位 | 4.54591650875646 | 6 |
| | -1.1998509446452 | 691983540572 | 195 |
| | -1.48407853341110 | 35649 | . 57275099091398 |
| | -1.37307658078 | 9711644856 | . 062102815 |
| | -0.115417921453 | 94750766204670 | . 5014633 |
| | -1.64946292 | | 2 |
| | -0.58389586694302 | 8232993517 | . |
| | -1.82887155133673 | 6973611526786 | .14337059580603 |
| | -2.26027705870920 | . 96546104514807 | -1.99936318041553 |
| | 0.92938747928104 | -1.6480842940009 | -7.845369158 |
| | 1.97604168952048 | -1.94882237255440 | -7.63669424073450 |
| | 0.82855141985899 | -1.48319479039706 | 8.93767327627026 |
| | | | |

Cartesian coordinates of the optimized geometry of exo-[(Ar*BIAN)Co(CyNC) $\left.\left(\eta^{3}-\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) \mathrm{Ph}\right)\right]$ (exo-6d) at the D3BJ-PBE/def2-TZVP/def2-SVP@C,H/CPCM $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ level:

| Co | -0.01451841218233 | 0.01099817456756 | -0.01948309017288 |
| :---: | :---: | :---: | :---: |
| P | 1.53151926975108 | -1.43016895440028 | 0.86024910892057 |
| P | 2.21223576756554 | 0.13574432126923 | -0.51730280518018 |
| P | 1.41984267772202 | 1.45172879138093 | 1.05022950983932 |
| P | 2.34806781885155 | -0.04895546994329 | 2.41431472220683 |
| N | -0.79768513998581 | -1.24460119557731 | -1.33416280632781 |
| O | 0.66327175641310 | 0.85644463864629 | 4.35284272779612 |
| N | -0.93378662226302 | 1.34289494403959 | -1.17797148309571 |
| N | -1.82077181894194 | -0.16743285078562 | 2.36373217161060 |
| C | -1.10639812389231 | -3.56669302361935 | -0.57103848311297 |
| C | -1.72156958531192 | 0.78506343351622 | -2.07365213691052 |
| C | -1.09834962412701 | -0.09508681408584 | 1.43346438107037 |
| C | -1.63795671510363 | -0.67371706648365 | -2.17095386749993 |
| C | -2.69825825351516 | 1.25985743992613 | -3.06039001183037 |
| C | -2.26732687128505 | -3.12241950356928 | 0.30888528997070 |
| H | -2.09090616705754 | -2.05047285945070 | 0.52830975366017 |
| C | 0.27351579629309 | 4.82982173313175 | -1.75317093037450 |
| H | 0.97619170244114 | 5.35912792787495 | -2.41409739261270 |
| C | -3.17814851843235 | 0.07838116653967 | -3.71127132929947 |
| C | -2.72667524131005 | 2.79258238939130 | 0.59799531500815 |
| H | -2.51065493963344 | 1.70587633187312 | 0.56859575840551 |
| C | 0.34614963550258 | -5.33978169752929 | -1.45691470511034 |

Co -0.01451841218233
P 1.53151926975108
P 2.21223576756554
P 1.41984267772202
P 2.34806781885155
N -0.79768513998581
O 0.66327175641310
-0.93378662226302
N -1.82077181894194
C 1.10639812389231
.72156958531192
C -1.09834962412701
-1.63795671510363
C -2.69825825351516
C
H -2.09090616705754
H 0.97619170244114
C -3.17814851843235
C
C 0.34614963550258
$0.01099817456756-0.01948309017288$ 5.33978169752929

| | -1.9 | 4.85663755916756 | 0.01714712058679 |
| :---: | :---: | :---: | :---: |
| | -1.918 | 5.4 | 3 |
| C | -2.3 | -3.81 | |
| C | -0.68670057336094 | -4.9 | |
| H | -1.173 | -5.62 | |
| C | -3.57959374851376 | -3.187462 | -0.46 |
| C | -2.35452631310063 | -4.97774620015523 | 4.255 |
| H | -2.36912613938295 | -5.4259436730948 | 5.26076257908626 |
| C | 1.38535271754563 | -1.38049919553473 | 4.79701834363817 |
| C | -0.81604339716950 | 2.7639076255047 | -1.095 |
| C | -3.51494572118795 | -4.2967065951087 | 2.22526246779453 |
| H | -4.4485216823 | -4.21 | 1.6 |
| C | 0.11599666542 | 3.44466634 | -1.92 |
| C | -3.53712097193202 | | |
| H | -4.48909408113807 | -5.2 | |
| | 0.95828616642560 | -4.388397083060 | -2.289 |
| H | 1.7852533422728 | -4.7034668445412 | -2.9455002622 |
| C | -0.46975837485231 | -2.6291903702637 | -1.4222681343 |
| C | -2.79974357082497 | 3.1575158439686 | 2.08007376523741 |
| C | -1.58907009819752 | 3.4801570120734 | -0.14774753603191 |
| C | -4.04535710411954 | 2.97515173323028 | -0.15324757380439 |
| C | -1.15007950412834 | -4.49779206390425 | 3.71223399586194 |
| H | -0.2189315871219 | -4.55328813152 | 4.2 |
| C | 1.226333748542 | -2.03383829363 | -3.24351182801 |
| | 1.15738618048 | -1.03764058480 | -2.75121905124478 |
| | -2.92143195989936 | -2.33701677165156 | -3.78 |
| | -2.46635042541488 | -3.2779838540733 | -3.449 |
| C | -1.13128307525702 | -3.9192033529364 | 2.43564579983 |
| | -0.18539125842422 | -3.5310893431608 | 2.02452018693 |
| | 2.04651825633486 | -2.53803907499884 | 4.33133447584045 |
| H | 2.49149935444405 | -2.54817984276308 | 3.32418700354612 |
| | 2.72467688499277 | -2.26188545704416 | -3.46000708139304 |
| | -4.164457993289 | 0.0920830440577 | -4.72 |
| | 42 | 5.5531916851511 | -0.77082352744685 |
| | -3.9 | 361403870 | -1.12667556209299 |
| | -3.3564169298 | 5826 | -1.09081371783865 |
| | 0.7387580863793 | 4160973455943 | -4.36 |
| | 0.82562751851307 | -6.78311374987116 | -1.434418742 |
| | 1.54147184119095 | -6.89735289647094 | -2.27736321591290 |
| | -1.65280018776408 | 3.40930615736937 | 4.22764982949331 |
| | -0.71388176176007 | 3.40352784957022 | 4.80062393143818 |
| | 0.57560188171986 | -3.03413685057450 | -2.29277804331210 |
| | -4.027648471904 | 3.3598 | |
| | -4.9641806141800 | 3.3312887746 | 2.16423426492416 |
| C | 3.32186041021914 | -2.13284120123 | -4.728 |
| | 2.691343203752 | -1.933821366105 | . 6075 |
| | -2.555149455381 | -1.117396468842 | -3.22772209301303 |
| | 0.43901666921324 | -1.9292600436323 | -4.54726877766321 |
| | 0.91786778048514 | 2.72591344246887 | -3.01122710790110 |
| | 0.48434898132066 | 1.71176428228904 | -3.11094255891182 |
| C | -4.40394159840496 | -2.05023475433953 | -0.53906475035034 |
| H | -4.07988662730794 | -1.1301859446653 | -0.03110571595756 |
| | -1.61276114970588 | 3.189771852867 | 2.84355609774221 |
| H | -0.64450980182 | 3.0140870675 | 2.34906633344787 |
| | -2.77539831131762 | -0.11618487726 | . 4196302 |
| | -2.70223624028907 | 0.905016986785 | 3.8544652 |
| C | 0.0939101358246 | -0.6671859245071 | -5.06446160322 |
| | 0.3904586480348 | 2362163090630 | -4.511833936 |
| | 2.39893225448779 | 2.5140111436691 | -2.69366272374924 |
| C | 0.05071707400490 | -3.07602293584651 | -5.26796898054214 |
| H | 0.30614027955952 | -4.07336440401658 | -4.87969663847166 |
| C | -4.54816693461735 | 4.25188296805832 | -0.47784918280753 |
| H | -3.98769535707587 | 5.1501874683947 | -0.18105633655438 |
| | -2.88380574900129 | 3.6090222769480 | 4.87703877252592 |
| H | -2.916742559544 | 3.779167380908 | 5.9640535757 |
| C | 2.13797528242208 | -3.6786460842101 | 5.141490303513 |
| H | 2.65621431660304 | -4.5747688481046 | 4.76828171421937 |
| C | 5.53501851278361 | -2.49175896091140 | -3.77552878483190 |
| | 6.62551951151401 | -2.57914460739785 | -3.8975968920038 |
| C | -5.20020461164958 | -4.3929550756764 | -1.84145141128287 |
| , | -5.50588775689561 | -5.31730178273854 | -2.35561592472789 |
| C | -0.35706936121239 | 3.0826943196704 | -5.18765370144564 |
| H | -1.06105571838611 | 2.30583693488737 | -4.85887317816093 |
| C | -6.47893204124835 | 3.25675274600571 | -1.58014743764063 |
| H | -7.41984410516843 | 3.3673901341399 | -2.14037838106069 |
| C | -4.68049664622942 | 1.3758017859872 | -5.08617176006467 |
| | -5.45239342011963 | 1.449474469257 | -5.8680082173 |

C -5.75168762279093
H -6.12388495237851
C 0.81964189744101
H 0.32231083529847
C 1.58840490557688
H 2.44006461773437
H 1.98388094048381
H 0.92219818196408
C -3.91710683968452
H -4.21110841233078
C - 4.21363193164824
H -4.62976945085106
C 4.71416319454649
H 5.15689571516985
C 1.28704295824430
C 3.56157689858989
H 3.11628670183105
C 4.95017477466177
H 5.58065321803889
C -0.18199661828604
H -0.86941293390578
C - -4.78500655052427
H - 4.39188939633822
C - -6.01257144404108
H -6.95398752463444
C -4.07020794333872
H -5.04120700202104
C -4.52902739396183
H -5.29465539607185
C - 0.63178855503037
H -0.89512786110034
C 3.07970097066609
H 2.54036794760259
C - 4.19825118973073
H - 4.24114669612876
H -4.40957583553695
C 1.63451561818426
H 2.51583064347768
C - 1.01996774029829
H - 1.59703115031347
C - 5.61123622657227
H -6.23691841466094
C 0.90401157862909
H 0.45985640086574
C 3.11965520972330
H 2.60251696266212
C 1.56487695462213
H 1.63525896395038
C -5.99148348440940
H -6.54404618072337
C - -0.67016371863718
H -0.96956410162357
C - 0.51932466892591
H -0.38449947128014
H - 1.56708485634174
H 0.14102549365744
C -5.22947871830374
H -5.23342918576741
H -6.24445911442618
C -2.45314888523879
H -1.43297163252231
H -2.45507663593243
C - 0.56642125057600
H - 1.43167683382845
C -4.91289909307096
H -5.65150987201935
H -5.00903038155842
C - 0.32013248120712
H -1.05281213964733
H 0.06937694356789
H -0.86676491586251
C 1.42597539818390
H 2.13715033562214
C 0.32318114202325
H 0.16322709193523
C -3.48750405319579
H -3.24853622647241
$4.39249862152172-1.18461422050139$
$5.39895648925189-1.43099762651793$
$-1.38707574949696 \quad 6.09160163740817$ $-0.47360834578612 \quad 6.45088761859687$ $-7.07625865198442-0.12941336410085$ $-6.37877530636276 \quad 0.00063524855733$ $-8.11297643737256-0.12469370659948$ $-6.961672156269320 .75132879594587$ $-2.34497343183496-4.80445460920372$ $-3.31242885201969-5.23844554385094$ 2.53041883580568 -4.45366872230825 $3.50639833520572-4.74501274716218$ $-2.24689272324240-4.88660622379767$ $-2.14127640755321 \quad-5.88915136853984$ $-0.13705824512341 \quad 3.96031961843429$ $-2.51243337734796-2.35032308841969$ $-2.61926142719858-1.34908034620259$ $-2.62484579660674-2.50442334401807$ $-2.81356004980129-1.62185854174253$ $7.04208158765749-0.57702515206146$ $7.37857081621079 \quad 0.22933068567732$ $1.84704573427937-0.55549598174460$ $0.84511715514969-0.33112715820767$ $-3.24812510917331-1.91077990527379$ $-3.26992696865329-2.48041361601005$ 3.585320231061724 .12718810380112 3.739731269348074 .62278353392917 $-1.17999624513424-5.26801588300569$ $-1.23414482635586-6.05740810051819$ $-0.54477444918674-6.25928815527482$ $0.45540436723909-6.63553154311935$ $3.17624674247815-1.65649130483449$ $3.88174878255808-1.00869671890846$ $-0.31881735980085 \quad 2.86658269425818$ $-1.31090279612774 \quad 2.36825593602086$ $0.45006887186734 \quad 2.09674425405121$ $4.40754019571865-4.81684053989513$ $4.65783973799189-4.20651367417787$ -6.96362969416638 -7.89648849232360 -1.25400313116478 -1.30416194966781 6.89788951128889 7.90507246294601 -3.49699477826196 -4.31092479413398 6.42491937429539 7.06018215013913 -1.26006325528225 -1.57520830978003 -6.46582680093089 -7.01127632867886 -1.84782482329218 -1.67741075770284 -2.16612904975957 -2.69105115275847 3.99897958089567 4.42318398196791 3.58540527175694 4.51327321375111 4.89842846238496 4.05937541517006 -6.41423805639012 -7.03565928238850 5.10845324910506 5.93239769574396 4.70107583762174 -1.65042010789527 -0.81754525897472 -1.69836649389527 -2.59269361219270 -6.04127065351516 -6.37322431768734 -6.84476360192877 -7.80680852219297 5.64129781530772 6.40901639718549

| H | -3.41238097442021 | -0.08265930604440 | 6.14556183764718 |
| :--- | :--- | :--- | :--- |
| C | 1.25853285855379 | 7.31312581700876 | -0.10966721365928 |
| H | 1.99296804218899 | 6.99734485724414 | -0.88003164671611 |
| H | 1.49006064674906 | 6.76000207290984 | 0.82272417007772 |
| H | 1.41544487287324 | 8.39475919469517 | 0.08092388806095 |
| C | 4.47273661489266 | 1.33889156955719 | -3.25671232202102 |
| H | 5.00014263329956 | 0.59583122895637 | -3.87418652686762 |
| C | 4.44228841335358 | 2.91999436799790 | -1.41711596999125 |
| H | 4.95254913571220 | 3.43729521794165 | -0.59022861652725 |
| C | 5.14103179391939 | 1.99872392508700 | -2.20941301874372 |
| H | 6.20260922402903 | 1.78740057826439 | -2.00973637827871 |
| C | -3.21892313507015 | 2.49633972354342 | -3.43539670532899 |
| H | -2.88211258614159 | 3.42809418662147 | -2.96120431467298 |

Cartesian coordinates of the optimized geometry of endo-[(Ar*BIAN)Co(CyNC) $\left.\left(\eta^{3}-\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) \mathrm{Ph}\right)\right]$ (endo-6d) at the D3BJ-PBE/def2-TZVP/def2-SVP@C,H/CPCM $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ level:

| | -0 | 0.06482392141395 | 0.08629658466317 |
| :---: | :---: | :---: | :---: |
| P | | -1.36370123023954 | 1.14484677370286 |
| P | 2.1 | 0.1 | -0. |
| | 1.25555702575301 | 1.5 | 1.20 |
| P | 1.65627668203809 | 0.04805603897943 | 2.87 |
| N | -0.821971426 | -1. | -1.22367343584362 |
| O | 296322939 | 1.49242089484252 | 3.20390570389359 |
| N | -0.92519782609468 | 1.3669523779650 | |
| N | -1.931 | -0.0 | 2.46111688298634 |
| C | -1.17569713400860 | . 52824 | |
| C | -1. | 0.79464819806527 | |
| C | -1 | 51 | 1.50784271492890 |
| C | -1.60673407401125 | -0.66634960846831 | . 1 |
| C | -2.585562266 | 1.25695748847117 | -3 |
| C | -2.38215031454939 | -3.07542017820445 | 0.39665302 |
| H | -2.23860342748 | -1.99107085935899 | |
| C | 0.27190646 | 2383 | -1 |
| H | 1.00443313601824 | 5.37181022662735 | -2.39274903486466 |
| C | -3.0571793022003 | 06452513482917 | -3.758808410604 |
| C | -2.7662994652403 | 8093729 | 0.54427207751325 |
| H | -2.48035953982507 | 1.7395824999049 | 0.5772708021662 |
| C | 0.34674700267160 | -5.31329048473016 | -1.14818113476470 |
| C | -1.45169092195158 | 4.90580775161622 | -0.07718229032637 |
| H | -2.0680309555853 | . 4645076373767 | 0.64509842235003 |
| C | -2.4543893768 | -3.7229 | |
| C | -0.7411025182753 | 86284063334442 | .390919630 |
| H | -1.25991170483802 | 56107976740289 | |
| C | -3.674920705876 | 20204893454378 | -0.40425711655118 |
| C | -2.53613329274812 | -4.8010067066276 | . 40233584467508 |
| H | -2.56804575 | -5.21891630064922 | |
| C | 4.46640769491990 | -0.69684278097543 | 43985138973127 |
| C | -0.814512921550 | 2.79013955448884 | |
| C | -3.64477908455789 | -4.26747724879980 | 1089 |
| H | -4.5537653711974 | -4.27465158233185 | 1.68006673620112 |
| C | 0.1 | 3.45906879813133 | -1.88834051946447 |
| C | -3.68677064003160 | 79961170356481 | 0015 |
| H | -4.62921845612236 | -5.21858316038160 | 3.98536537434737 |
| C | 1.00072557574834 | -4.38192513497967 | 1.97134725762730 |
| H | 1.8713706026549 | -4.70772874429769 | -2.5622 |
| C | -0.49535214614600 | -2.61126227 | |
| C | -2.91032926659162 | 415011684832 | 606711106587 |
| C | -1.64044516641736 | 51804354228635 | -0.1967565 |
| C | -4.06020109510046 | 8658258309628 | . 263736308 |
| | -1.3411203757535 | 2619262157171 | 324318 |
| H | -0.43144133702475 | -4.249973293958 | 9.513234433407 |
| C | 1.31416261616802 | -2.05388929318746 | -2.97160140032556 |
| H | 1.22328578279152 | -1.04916009187419 | -2.49900575335824 |
| C | -2.84799596898877 | 3563321382608 | .7421836336 |
| H | -2.4253639913118 | .29410599175997 | .3592781044 |
| | -1.3028679107838 | -3.725883646066 | |
| H | -0.36533385379469 | -3.29601348287513 | 2.20868208438102 |
| C | 4.18510369310891 | -2.06499849374923 | 64084720954459 |
| H | 3.25299251468950 | -2.36254322061932 | 3.14531909369764 |
| C | 2.82118474456706 | -2.28925500315963 | -3.09291737994096 |
| C | -3.99629449498393 | 6373284534887 | .81598968877994 |
| C | -0.50023265127585 | 59531963701531 | -0.8458366880728 |
| C | -3.96277078006063 | -4.33898951161299 | -1.1849899 |
| H | -3.23010137718947 | -5.15793823959293 | -1.24324352536567 |
| C | 0.98618071370014 | 3.35961909751016 | -4.26193883003492 |
| C | 0.84 | -6.74646076 | -1.04396252057402 |

| | | | |
| :---: | :---: | :---: | :---: |
| | -1.85259327009352 | 3.64229558972288 | |
| | | | |
| | 0.60 | . | -2.04058617893028 |
| | -4. | | |
| | | | |
| | 3.49247364942445 | | |
| | | | |
| | -2.48195513559086 | -1.12634506155306 | |
| | 0. | | |
| | | | |
| | | | |
| | -4.62895363081813 | | |
| | -4.42346426 | 556 | |
| | | | |
| | -0.76016537721610 | 28137911589483 | |
| | -2 | | |
| | -2. | | |
| | 0.30997554012312 | | |
| | | | |
| | 2.48271895932061 | 2.49811550798529 | -2.40973777814864 |
| | 0.222710036 | -3.13417108002469 | |
| | 0.4341502708367 | | |
| | -4.62 | | |
| | -4 | | |
| | -3. | 7514099245986 | |
| | -3.19485924876459 | | |
| | 5.100 | | |
| | 4 | -4.10678756652479 | |
| | 5.6 | -2.52120909931527 | -3.23076184973838 |
| | | | |
| | -5 | -4.4315925386614 | |
| | -5.36 | . 25 | |
| | -0. | | |
| | -0.80 | . 28578295774106 | |
| | | | |
| | -7.31916063917 | 8803 | . 46488528750982 |
| | -4.47223 | | .23878975448639 |
| | | | |
| | -5. | 85 | |
| | -6.22337 | , | |
| | 5.66 | | |
| | 5.87 | 0.7500708837969 | |
| | | | |
| | 2.40087456041228 | -6.2478332632318 | |
| | | -7.934123226313 | ,36589871002945 |
| | 0.86619589143 | -6.8236533086600 | . 14944865897385 |
| | -3.79792542986 | -2.379197887052 | 4.80480224942719 |
| | -4 | | |
| | -4.013 | | |
| | -4.3 | | |
| | 15 | 53981748 | |
| | 5.394 | 19 | 51 |
| | | | |
| | 3.59089277644188 | 656 | |
| | 888 | -2.570039 | |
| | 4.986 | 0850023369010 | |
| | 5584643 | -2.75528100335355 | -1.06415110298301 |
| | | | |
| | -1.03500462389 | 216955728 | |
| | -4.6946389 | , | |
| | 25050615940 | 5946238629 | |
| | -6.10393 | 8320 | . |
| | -7.04 | . | 18767 |
| | -4.27254469696830 | 25007559551 | |
| | -5.26703073 | 68561268482807 | |
| | -4.3633311318139 | 21855302876470 | 3333026080 |
| | -5.0944119298752 | (2839953783109 | |
| | S | | |
| | -0.5778787873452 | 37031903667128 | 迷 |
| | 3.04743483566246 | , 500094026209 | -1.29880003912344 |
| | 2.44544572078043 | 6142086930072 | -0.716075568966 |
| | -4.17384226816938 | . 50222881762689 | 238 |
| | -4.06541482920995 | -1.54814064441948 | 2.91020813494248 |
| | -4.60762154174078 | . 09352113231014 | 2.43859004070510 |
| | 1.94003366755770 | .31307683636748 | -4.67143365622972 |
| | 2.77891489803480 | 4.56000255563269 | -4.00274470190431 |

| | | | |
| :---: | :---: | :---: | :---: |
| H | -1.26381112754803 | -1.71377606599039 | -7.77179929660636 |
| C | -5.83383280264785 | -2.25621114217785 | 1.06 |
| H | -6.56618287522631 | -1.43677951748052 | 1.00476133989546 |
| C | 6.57104239554864 | -1.29836000744746 | 1.36747710270224 |
| H | 7.49816695931948 | -1.00064782631527 | 0.85427583018022 |
| C | 3.28127037713257 | 1.58028654348053 | -3.12981898306184 |
| H | 2.85449576496874 | 1.05950930197508 | -4.0 |
| C | 6.29035050377011 | -2.66022719351204 | 1.58101985785765 |
| H | 7.00 | -3.4 | 1.24167472297512 |
| C | -5.85839215590736 | 1.68173138144394 | -1. |
| H | -6.32010514276719 | 0.73159571198960 | 1. |
| C | -0.43632379238690 | -3.04255093222816 | -6. |
| H | -0.72957308852469 | -3.96146167227766 | -6.78785743 |
| C | -0.61857264036460 | 7.83245193353505 | -2.018 |
| H | -0.51757 | 8.92971496967867 | -1. |
| H | -1.64959162258677 | 7.61791548986277 | -2.36487105318128 |
| H | 0.07864021365043 | 7.52289087904642 | -2.82457070315692 |
| C | -5.07778195599686 | -0.46104830315200 | 4.50558834594693 |
| H | -5.25621018917119 | 0.60007418044717 | 4.79063588032725 |
| H | -6.06928182261148 | -0.89175969860113 | |
| C | -2.13177672350564 | -0.69669172955404 | 4.7887926 |
| H | -1.14366729998050 | -0.24289665480673 | 5.007639030 |
| H | -1.95041252206272 | -1.749028 | 4.48601608538554 |
| C | -0.15826003722050 | 3.64633240285568 | -6.40638375851677 |
| H | -0.98352556037439 | | |
| C | -4.44514752225992 | -1.20739519953450 | 5.68782899072899 |
| H | -5.10429460891120 | -1.14685960017709 | 6.578762 |
| H | -4.35245796080034 | -2.28637393203625 | 5.42980633184155 |
| C | -0.27476994056239 | -7.77684068490376 | 1.253204 |
| H | -1.03312219731100 | -7.71849094688181 | |
| H | 0.13443853016561 | -8.80773037093548 | -1.24711193424106 |
| H | -0.7956166377823 | -7.61764830373173 | -2.21910117145263 |
| C | 1.84049247402981 | 4.93415948266408 | -5.92698883547305 |
| H | 2.59523597968965 | 5.67706363317707 | -6.22808965134118 |
| C | 0.79039634300795 | 4.60462952043540 | -6.79950704565793 |
| H | 0.71626136391883 | 5.08811930219594 | -7.78559835732937 |
| C | -3.05291474681658 | -0.65053281925370 | 6.0131715405350 |
| H | -2.58949659592723 | -1.21744376318008 | 6.84686420547501 |
| H | -3.14897783551012 | 0.40222608629270 | 6.36184228463482 |
| C | 1.10575673003966 | 7.43075715647043 | -0.19408415791196 |
| H | 1.87834166823957 | 7.10707333488036 | -0.92255590756634 |
| H | 1.31716547015050 | 6.92249418251270 | 0.76813433622013 |
| H | 1.22350599310482 | 8.52339771375715 | -0.04231406978252 |
| C | 4.59367412288090 | 1.29954222791209 | -2.73483473539034 |
| H | 5.18051935094638 | 0.55171767194805 | -3.28980563392746 |
| C | 4.36805857717887 | 2.87114637809602 | -0.89978056435973 |
| H | 4.78108137647265 | 3.37277488213175 | -0.01121761709714 |
| C | 5.14149016726955 | 1.94232264502433 | -1.60925982169745 |
| H | 6.16689528313051 | 1.70990803996882 | -1.28322098389389 |
| C | -3.06575504716080 | 2.49007854656926 | -3.55750771491520 |
| H | -2.73461741940533 | 3.43001709471891 | -3.0955296609690 |

Cartesian coordinates of the optimized geometry of exo/exo-[(Ar*BIAN)Co(CyNC) $\left.)_{2}\left(\eta^{1}-\mathrm{P}_{4} \mathrm{CO} t \mathrm{Bu}\right)\right]$ (exo/exo-7) at the D3BJ-PBE/def2-TZVP/def2-SVP@C,H/CPCM $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ level:

Co -0.03082667691455 P - 1.80993988349175 P -2.18150645607041 P -1.14724882852924 P - 3.35619730449219 N -0.99655758097927 N 1.15015674009438 N 1.60016498790671 C -0.32973772577386 C - 0.50394412768904 C 0.86600129970735 C 0.62347759299444 C 0.47257142303985 C $\quad-3.83429062429645$ C -3.42211812778449 H -2.37541277488326 O -2.83814553405803 C -2.23021391049728 C 1.89844490886248 N 0.68051889548174 C 2.19353506581973
$0.06922619916802-0.01005177771540$ $-1.07274266738333-0.79781780383026$ $-0.85659645640020-3.00756623244490$ $-2.64437488161893-2.25435196431299$ $-2.67168434255183-2.52629934391688$ $0.34440641444310 \quad 1.66244975936011$ $1.45483962331066 \quad 0.75142175303663$ -2.44086713642075 1.11576984100971 1.50865713120817 1.73327678082815 2.34381255507140 4.86081363813365 1.77617789633736 1.88052662342692 2.24176194318783 -2.93800137646449 -0.22328767763012 3.35417475240176 0.68660480270630 2.12647392714512 -0.60137537621426 -2.82862435592163 0.05301842280664 0.11784938327556
2.53157534794904 3.93511546381026 2.02173306559445 4.23199013033420 0.84187522260575 -0.20069712225660 1.26801696822946 1.26381781832077 -5.25334985633241 2.10891869228625

C 3.47830657876607
C 1.48968548949433
C - 1.42073671831767
H -2.29669062051707
C 4.43546056739083
H 5.41492881537258
C -3.42213167659876
C 4.52360401435694
C 2.89518255399809
H 2.65725292546461
C 0.87212185504703
C - 0.69350164428520
H - 1.55160744425047
C - 4.23859440741639
C 3.83965264526265
H 2.87887665932926
C 0.52949919202215
H -0.19362660908632
C - -2.26780031348456
C -0.09381559674833
H 0.04436357277592
C 4.17086219051603
C -1.17166590477782
C - 3.49604443184881
H - 3.51823967630146
C 0.95090091594998
C -4.62074738285209
H -5.53800836218966
C 2.64819208906432
H 3.34721376337783
C -4.68398151492289
C - -4.74667953251289
H -5.14576454257713
C 0.36077365077800
C 0.09015706164394
C - 1.19731200715285
H -1.92481859816941
C 1.55518089622508
H 2.48219035573765
C 4.59790126507731
C - 3.31630024484630
H -2.60070801537185
C -0.98479554817223
H -0.28553354798074
C - 0.77365417850420
H - 1.69247135694867
C 2.07296362847395
H 2.32413127104006
C 4.00138005232170
H 3.14541626980125
C 2.92424567556032
H 3.84656382629900
C -0.58706473230865
H -0.01972648708939
C 5.61449249470734
H 6.03792015531956
C -0.33585093789519
C 5.23250928174824
H 4.70209642631193
C -6.00054360077867
H -6.76639233048193
C 2.35997246334016
H 3.22829649850812
C 1.47634107249735
H 2.33790269473949
C 0.31374227234312
H 0.25750883639827
C -5.13736025900581
H -5.84359934421313
C -3.71734672170669
H -2.73086381394334
C -0.35617739676261
H $\quad-0.42064708090647$
C -0.98070809776868
H - 1.95860926238648
C -1.43497248049687
H -1.53718872007634
1.54576725059987 2.50980288996674 1.24831387001907 0.60592686177806 2.18160144142397 1.69478161576046 0.53379425980488 -0.75986992965924 3.96336968937936 4.90580561268373 2.90927312279829 4.86748583556962 4.24540817520904 2.92225635337779 0.27718943276213 -0.18620761204081 4.00786338827995 3.17671959143849 -1.52465068549738 2.63070500245175 3.04722790548820 3.39514002858347 -3.81880950421577 -2.03454707113682 -3.05651857265999 -1.45420793585219 -0.00201195531445 0.60525422996558 3.26373156870083 3.41462274812121 -1.28499038650125 0.81440535993200 0.05509649816668 0.46387683346692 4.76244499772401 1.82607892802882 1.61516304949492 5.66907039981733 5.66557911133896 0.57039792076942
2.71546874752964 3.47541737725886 -2.33384185127379 -1.95602070470305 5.64385991101340 5.61722380305504 3.67826741280031 4.13816052000651 -1.00227327589014 -0.40897519647010 3.83684789688066 4.42560065090473 -4.83096717642198 -4.55795994187997 -1.53651330517987 -1.36447777268617 -2.01611734706475 4.10609327155315 4.86909980768378 -1.86015786755747 -1.06323521079308 -3.63679329683404 -3.52831435439473 6.45579994359339 7.07191948316169 6.44198214895049 7.04518108341666 0.79778240097599 0.0297472991385 3.44079881831266 3.10122584075024 4.01908618447356 2.92486171489186 -2.29856482551597 -2.80378943342124 -6.55130248051736 -7.61142886454113
-0.08034101488686
3.10253201401220
4.95155576238731
4.78580712138441
-0.89276520086034
-1.01728845792507
1.98307723574531
-0.21731950951959
-1.38124935947448
-1.89993107971375
5.50108763051906
1.63178774480916
1.33678457548548 2.03537529566321 0.67760930222230 0.98372055578858 -0.42388455529256 -0.28459264945591 2.66935449903731 6.52067726371438 7.53055807384427 -1.54795313196819 2.52581308566411 3.12010935148636 3.52886133994060 0.10154460735858 2.48729647746510 2.42586614234342 3.25754177282208 2.42459383572929 3.05620807298035 -0.67549987109232 0.01174666149558 -1.71210570257135 -1.67883343335391 6.23724864363790 7.03595516689113 1.24154789488490 0.64853522760818 1.97239470460188 -1.11661080458463 -0.76607617394261 2.82806354568359 2.05491312729138 2.79733522350762 3.40228324401307 5.62796365511280 6.59647257527898 -1.50773848431313 -1.86169631827668 4.53454642113753 4.65429320277112 3.31087582712333 4.21280898201910 0.21694155246563 1.21731345377479 4.17038405105735 -2.37424484032423 -2.98498288917644 3.55590346813920 3.43616366575258 0.22878558877786 -0.45934528136536 2.40125069696473 2.70164494221635 3.18755013614498 4.10646572388457 -2.02479109509266 -2.37536743768803 3.23992461364912 3.59022726569387 -2.79234817658280 -2.71038501218608 5.39223211855783 5.38878878894054 1.80589827671158
1.52801668132870

C 5.58178972686052
H 5.80682983535010
C 5.63472167239281 H 6.06508259002660
C - 1.88796810253499
H -2.33799650932825
C -4.61838365926738
H -4.91766422356749
C -5.50205132175838
H -5.92053409506335
C -2.01972306205951
H -2.57760271508371
C - 0.71848633560233 H $\quad-0.25514552846689$ C 4.54861916758242 H 4.11956870771006 C 6.21746267156939 H 6.76896026321440 H 5.68670928871711 H 6.96405229057490 C -3.70253794194102 H -3.27616376369699 C 6.16492550353203 H 7.01781050117596 C -0.65309353470196 H -0.94092100715994 C -0.72115678584288 H - 1.06801742151084 C 0.14166831181458 H 0.46956751180706 C -6.43546748079372 H -6.51613291095237 H -7.41956313149894 H -5.70038874269571 C 2.89435517111015 H 2.02931092653394 H 3.51989723823905 C -4.43971855587186 H -4.01130849565141 C 1.52226766056720 H 1.18198821149164 H 0.61197054191887 C - 3.29158550629696 C - 0.22510236265165 H - 0.17760125994701 C 5.97556977541590 H 6.67378344260330 H 5.27179137705977 H 6.57886002093566 C 0.90511620824984 H 1.40091949047954 C -5.70246499011279 H -6.27108176878142 C - 0.39826979796500 H -0.91874430436442 C 4.32680881607662 H 3.56062109695944 C -3.89532376928096 C -5.93498534449299 H -5.19437765441787 H -6.91924271872603 H -5.64250836311986 C 2.86766730690763 H 2.00955425703216 H 3.47331686648146 C 1.08801586927442 H 0.23883802211229 C 2.32657857512900 H 1.68616625878525 H 3.17635508023581 C 0.83491634188188 H 1.28109562824059 C 6.26490050273158 H 7.02196819897262 C -5.40765022848126 H -5.59479604159585 H -5.88116995244606
1.57493828527585
2.20306733558712
-2.76743127222087 -3.54713249992732 -4.19942602297050 -3.41989953321774 1.74139998033700 1.72171074695646 3.36823495571304 2.98370155192813 -5.54859448596703 -5.81608974703383 -6.18560478859459 -6.95954963537489 -1.99305658117059 -2.16624579599382 4.84921690901786 4.13013167566831 5.55803014097497 5.42072331753123 2.70217075856554 3.44317419754361 -2.53304061551162 -3.12778349452316 6.05535030380299 6.55846861802675 4.65496201140054 4.05217363466361 6.16509340790524 6.76478795187520 -3.06352560465411 -2.78688820665123 -3.45243627915419 -3.89180048351979 -3.79977732453943 -3.81032121712120 -2.92097069904525 4.37548049953105 4.76553268493156 -4.85255148048723 -4.70852824674942 -4.89143155644454 -3.50465199173469 6.80621276901627 7.90432428467925 3.16764232180823 3.74127019638610 2.62022930992310 2.41515879404433 -1.35418616190561 -1.10426786632188 4.81207228549837 5.54758204323119 -1.92678600462552 -2.15198108367531 -0.20241177191112 -0.99034699824432 -4.92425393080783 -2.22659475539548 -3.03304236728874 -2.59032876619370 -1.35287056776864 -6.31683573087806 -6.43405691602499 -7.24373216451373 0.84421387759140 1.32070800820364 -6.14911769134674 -7.01202470485070 -6.14165415579579 -1.25274485654690 -0.94069174060713 1.80507227922692 2.60287066152902 -4.78888258586095 -4.35482745045329 -5.79168039883463
2.06768073913157
1.19399703200883
-1.88687463481356
-2.53360140079880
1.36806652514225
0.73245558147363
-2.92484562922122
-3.98379163312931
1.60379581079405
0.66153292692816
1.01207127964436
0.10113121894228
2.95552375337426 3.58690403326684
-2.33373134839025
-3.33318991997175
-1.45221259245727
-0.81011748061538 -0.78514838974144 -2.04159781673243
-2.46456861231503
-3.15738823540888
-0.60911343682910
-0.24717410609703
-4.09041407989861
-5.02615735083182 -3.98743000637208 -4.84153829860283 -1.78871829962287 -0.92682322250504
2.70091493782508 1.63034509946005 3.03474546461117 2.77865657323504 1.66384276962434 2.36146059395984 1.91888924252996 3.99462706554717 4.93123648656743 -0.20650833901616 -1.25226043835066 0.42694592662239 -4.27089542827962 -2.98497028773612 -3.04942564612679 -3.33634970890719 -3.97933251922085 -3.99463077264289 -2.78757071074622 4.20550862508940 3.25535928653764 3.55696224743428 4.14638479992490 6.61274970669117 7.55653056879832 3.11965616020476 3.06642017243735 -4.32805400184793 5.04794419781796 5.23121494247686 5.40822555625576 5.66463231093821 1.36832274309027 2.06596999845729 1.44592071184584 -4.17944311702671 -4.72262154276346 -0.05752393493185 -0.33471628335999 -0.77669723780542 6.63242257095001 7.58892246567250 3.27233898216528 3.32346697863664 -4.03817109126676 -3.03497057725236
-4.06957930254361

H $\quad-5.90527571104634 \quad-4.14748084249117 \quad-4.79315928130696$
C 3.69709684402068 -5.09874578212183 $\quad 1.79531281774899$
H $4.60891063337936-5.02840396100745$
H 4.05073127692750
C -6.22922396077588
H -7.21578815641311
C 1.48546305062483
H 2.43812874442343
C 1.83058490602798
H 0.99483574517827
H 2.05742060694232
C 5.01251487018205
H 4.78320976136868
C 3.04767243191173
H 3.34455194809206
H 3.91364798490296
C 5.98293918837803
H 6.51528114199863
C 1.36669162163948
H 2.15478265580616
H 0.45469247033077
C 2.31044452737828
H 3.12691541276123
H 2.06362043290879
C 2.76460705812740
H 1.97146275812109
H 3.66385342710178
C -3.67059073673070
H -4.14317031431364
H -4.10783488198439
H -2.59009725953760
C -3.23159759475021
H -2.13914378727496
H -3.67120058794473
H -3.38984824163881
1.79531281774899
1.16042757196668 2.84110512310339 2.35977901700603 2.00476788071468 5.42331964005995 5.42224983551691 -6.27589167983938 -6.87672412123154 -6.71432438832676 4.32435573935497 5.20451201063113 -6.37553979107249 -7.43647331674753 -5.86271596619701 4.40758967064632 5.35338273282790 -4.82502743256985 -4.22761842712968 -4.76115093224596 -4.26782901502747 -3.65608417353600 -3.80752338585351 -5.72199078912932 -6.29625957420324 -5.76215619032280 -5.71889413288018 -6.50787343816564 -5.75990080445722 -5.95205008922440 -3.24325278533881 -3.40987019455918 -3.26519235160189
-2.22775303308240

Cartesian coordinates of the optimized geometry of exolendo-[(Ar*BIAN)Co(CyNC) $\left.)_{2}\left(\eta^{1}-\mathrm{P}_{4} \mathrm{CO} t \mathrm{Bu}\right)\right]$ (exo,endo-7) at the D3BJ-PBE/def2-TZVP/def2-SVP@C,H/CPCM $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ level:

| Co | -0.08607990773448 | -0.10926806420533 | 0.03180688599930 |
| :---: | :--- | :---: | :---: |
| P | -1.80848086493792 | -1.34390005839220 | -0.77253847109711 |
| P | -2.06919321650502 | -1.13927906548501 | -2.99950609274181 |
| P | -0.98018189454829 | -2.89565724747810 | -2.17160205348566 |
| P | -2.98299411377887 | -3.13741345655193 | -3.05810702328958 |
| N | -1.05699466722538 | 0.22238494038289 | 1.70089989821765 |
| N | 1.05964888406978 | 1.34007593953030 | 0.73038854628998 |
| N | 1.64527126919928 | -2.54217497736475 | 0.31073779870590 |
| C | -0.40168555928079 | 1.03952588652941 | 2.53368176760106 |
| C | -0.56948479367500 | 1.48761593450811 | 3.92194399577946 |
| C | 0.77142751372290 | 1.67142519655501 | 1.98517393333315 |
| C | 0.52660988791727 | 2.37979029250071 | 4.16388669491154 |
| C | 0.26686047086824 | 4.71068906849822 | 0.68182594763421 |
| C | -4.25203011987706 | 1.78138916490603 | 0.06029293901170 |
| C | -3.52488423385453 | 1.74657915932281 | 1.40447673919073 |
| H | -2.46950903556311 | 2.00122444523692 | 1.17631033790684 |
| O | -3.96404743179086 | -4.21206753567920 | -0.75822502531356 |
| C | -2.27508424147023 | -0.36855627680853 | 2.15778070249116 |
| C | 1.70568657060409 | 3.20224985117396 | -0.71936186797882 |
| N | 0.69700133471893 | 0.43006531219675 | -2.78504188127109 |
| C | 2.06695423949531 | 2.02548374270979 | -0.00808535497537 |
| C | 3.37808452012893 | 1.50474475754155 | -0.11918962414222 |
| C | 1.37049787969668 | 2.52942915666869 | 3.01624375447718 |
| C | -1.44957496144877 | 1.22619510626666 | 4.96807574592191 |
| H | -2.28409779868322 | 0.52253415568842 | 4.85101048819813 |
| C | 4.29873303521861 | 2.14906575472227 | -0.96686219340941 |
| H | 5.30223661953779 | 1.70920991786009 | -1.07278882642674 |
| C | -3.49502562920240 | 0.34187365238174 | 2.00356389714117 |
| C | 4.54599189437774 | -0.74721366777054 | -0.13831157717201 |
| C | 2.66393875684767 | 3.82040182421561 | -1.53838252676308 |
| H | 2.37414875724498 | 4.71979914112081 | -2.10491832711960 |
| C | 0.76822860172076 | 3.01431655019555 | 5.40167720611203 |
| C | -0.79764143295438 | 4.59480670520905 | 1.59344961559339 |
| H | -1.58046789416049 | 3.84653168107083 | 1.40867471507074 |
| C | -4.03056361849679 | | |
| C | 3.80137425062087 | 2.83610846462800 | 2.35651495663619 |
| H | 2.86395577332924 | -0.20153409328108 | 0.69997075302523 |
| C | 0.31074741659332 | 3.797045227572866 | 1.02513368829820 |
| | -0.54104453966799 | | |

 .01624375447718 4.96807574592191 4.85101048819813 -0.96686219340941 -1.07278882642674 2.00356389714117 . 53838252676308 -1.53838252676308 5.40167720611203 1.59344961559339 1.40867471507074 2.35651495663619 1.02513368829820 -0.54104453966799

| | -0.36229140780395 | 2.94251159290608 | -0.3 |
| :---: | :---: | :---: | :---: |
| C | -2.26981129709151 | -1.67064192631891 | 2.72111718254000 |
| C | -0.16722901035347 | 2.73858605207707 | 8 |
| H | -0.03 | 3.20730200388682 | |
| C | 3.966 | 3.3101619 | -1.68 |
| C | -1.023 | -3.90 | |
| C | -3.48859854988534 | -2.24271670 | |
| H | -3.47310214719838 | -3.2597248465420 | 3.54023548672771 |
| C | 0.94731956904643 | -1.59295506260829 | 0.23320767562934 |
| C | -4.68636232663002 | -0.27762020019359 | 2.41715258627200 |
| H | -5.63733654375745 | 0.26222448359188 | 2.28911972424838 |
| | 2.49099766263581 | 3.34729428180579 | 3.11332497630356 |
| H | 3.16771352521703 | 3.4921800478838 | 2.261040014 |
| C | -4.7113772584055 | -1.565280434863 | 2.97843753528198 |
| C | -5.65550486274139 | 123032 | -0.02420140337389 |
| H | -6.25109333511618 | 1.98389012 | |
| | 0.33833053723272 | 0.23482027221925 | -1.67 |
| | -0.22174031878757 | 4.4394484876747 | -1.82038099498903 |
| C | -1.23343599304557 | 1.8683712017295 | 6.2231807453993 |
| H | -1.93461930707445 | 1.65575462385741 | 7.04468814527720 |
| C | 1.27453120122964 | 5.66011635173852 | 0.94659954951855 |
| H | 2.13266972314430 | 5.75064608071566 | 0.26332580115587 |
| C | 4.53373302128832 | 0.68930636153101 | 1.98238560833492 |
| C | -3.51031341709166 | 1.714026500413 | . 13440991974819 |
| H | -2.413315654338 | 1.63464042662725 | 2 |
| C | -0.94933957780936 | 2.40085171093 | 析 |
| | -0.25705623660559 | -2.0178512892874 | 2.16767479368224 |
| | -0.86049259325542 | 5.39272114964927 | 2.74505634725650 |
| | -1.69992394026250 | 5.2662950641022 | 3.44561758856574 |
| | 1.93115231603079 | 3.8458898214049 | 5.47082147238010 |
| | 2.17379911298478 | 4.36331655007683 | 6.41212534785238 |
| | 4.05083763396539 | -1.07881079831887 | -1.41931412541412 |
| H | 3.17337610456456 | -0.54151882783342 | -1.80902074874107 |
| | 2.75545105920886 | 3.99617947152404 | 4.355730979 |
| | 3.646881421643 | 4.6374868 | 4.43055527189675 |
| | -0.3449679467595 | -4.825715047 | 3.54632792712039 |
| | 0.20823766167175 | -4.45778965976 | 4.42279264520906 |
| | 5.66747167595776 | -1.4478458625094 | 16553556 |
| | 6.07046453705239 | -1.20549535651203 | 1.33878345181723 |
| | -0.34206515590788 | -1.99596489626467 | 4.28280411021098 |
| | 4.98648446516951 | 4.02756536861709 | -2.55673228084659 |
| H | 4.41589465971688 | 4.73501914243532 | -3.19760246707706 |
| | -6.02655968668866 | -2.16837478921895 | 3.45119609292734 |
| | -6.83177179860600 | -1.66687954523416 | 2.87005527853101 |
| | 2.48961368327233 | -3.67879752778022 | 0.4342 |
| H | 3.31395678595282 | -3.53958691418 | -0.3008 |
| C | 1.21173511877600 | 6.47070261106405 | 05877 |
| | 2.01175279953624 | 7.20193021018649 | 8456798885611 |
| | 0.14725123970449 | 6.33666159443405 | 2.99693504220709 |
| | 0.11034485048123 | 6.95799290931241 | 3.90468146063659 |
| C | -6.29922394252981 | 1.91053598316114 | -1.27020657028056 |
| H | -7.39611677389409 | 1.99357556982906 | -1.31632959529343 |
| C | -4.26555814883689 | 2.61405285228307 | 3.72632448417122 |
| | -4.14453876979302 | 1.60431053149861 | 4.13903828600522 |
| | -0.76145204669602 | 3.60159115833 | -2.81998091 |
| H | -0.81073971852413 | 2.518614975162 | -2.63772403797466 |
| C | -1.01244129875106 | -2.235712413616 | 5.49957832168665 |
| H | -1.98680410706318 | -2.74805373758222 | 5.49162516643750 |
| | -1.06676637960277 | -6.68967429733155 | 2.15149260291807 |
| H | -1.08530602075732 | -7.76866003517276 | 1.93400216437073 |
| | 5.48631792904388 | 1.72707388576808 | 2.02439172444622 |
| H | 5.70087358911315 | 2.30848880127663 | 1.11628017485840 |
| | 5.77033194341923 | -2.78052860827253 | -1.69338513159466 |
| H | 6.24378658930992 | -3.57079719001614 | -2.29557815446015 |
| C | -1.71810975271705 | -4.41079309663345 | 1.59600756292400 |
| H | -2.24982389698447 | -3.7187092095439 | 0.92557626712652 |
| C | -5.54884779512183 | 1.8361019461104 | -2.45628794147183 |
| | -6.05384810573984 | 1.85894934819777 | -3.4339978690380 |
| | -4.20765100025658 | 4.14587963487572 | 1.85647170065519 |
| H | -4.03664239509704 | 4.34213342283874 | 0.78703035086671 |
| C | -1.74423352255353 | -5.78405032665942 | 1.31641058601572 |
| H | -2.29832774129337 | -6.13770952530144 | 0.43383606195127 |
| C | -0.36545938026971 | -6.20343941230146 | 3.26572765861665 |
| H | 0.17078173186147 | -6.90021088975581 | 3.92865230932720 |
| C | 4.65415585194819 | -2.08255017665191 | -2.18887412259193 |
| H | 4.24561188575371 | -2.32763469068639 | -3.18182736483964 |
| | 5.94577256999274 | 4.8595626298522 | -1.68480453647143 |

| | | | |
| :---: | :---: | :---: | :---: |
| | | | |
| | 6.65832808003422 | 5.43470844278329 | -2.31155368872138 |
| | | | |
| | -3.5 | | |
| | 6.27403270230668 | | |
| | | | |
| | -1.1749440001065 | 5.5127037472241 | -4.26609206044946 |
| | -1 | | |
| | -1. | | |
| | -1.65504461947 | | |
| | 8 | . 82599896787929 | |
| | 21320959374359 | . 501 | 88 |
| | -6.13152067903345 | . 6778403328688 | |
| | -5.9300014283872 | -3.926444372687 | 2.13170296196956 |
| | -7.1460543187826 | | |
| | 109320 | , | |
| | 3.10559155229723 | 3.74839102733276 | |
| | 2.28091068703825 | | |
| | 3.66850943797972 | -2 | . 04224427616402 |
| | 64998957874408 | 2020 | |
| | -4.82057092205722 | 3.4638970577023 | |
| | 232 | 9674 | 08959881597678 |
| | | -4.88572639398759 | - |
| | 0.86315004743094 | 590 | . 78388444439393 |
| | 8855978606 | , | 50 |
| | 650806262312 | | |
| | . 6101981562810 | 7.44510725599729 | |
| | 5.76269520955002 | 7801439569210 | |
| | 6.42954764277958 | .6507252052093 | |
| | 407 | 46988826249670 | 873 |
| | , | | -2.90412151926603 |
| | 89 | -1.33027306286200 | |
| | 1.41462896916297 | -1. | 02990217123 |
| | -4.811859577857 | | |
| | 1760702047 | 8881909 | 73177244331671 |
| | 4564 | , | |
| | 99 | | |
| | 256727731619 | .0204910567715 | 3.17154393986199 |
| | , | | |
| | 6059 | 024715035 | -1.70435254797912 |
| | 2539 | .83885191957 | |
| | 46 | -2.301044301307 | |
| | 23407245 | -2.22374672766038 | |
| | . 2282 | -0.74 | |
| | 281138289 | 2683337804933 | 7686026582 |
| | 484114370 | 4468343 | . 36844352945060 |
| | 3.97291907206308 | -7.13458427633031 | |
| | 68 | 0.55105471373456 | -4.15042531899718 |
| | 0.1425516128450 | , 813 | .71371489354261 |
| | 64042132438 | 18906638513 | 859 |
| | . 058762011 | 109669526 | . 00751344657152 |
| | 3.4405129923522 | 087 | |
| | 7590160881 | 44074611 | 6.73968189001385 |
| | 20245878354 | 7990706939093 | . 69379167313999 |
| | 15063090 | 4878417546 | 5 |
| | 6.88407794350740 | | 3.22810218940354 |
| | -6.686692477646 | -3.7856268685709 | |
| | . 67563754926662 | 51591581860838 | 645699823667 |
| | -7.6882814226001 | . 31085978405 | . |
| | -6.52905173194180 | . 337098229185 | . 56473302684865 |
| | .02288808130300 | 9709865100397 | 67488410320 |
| | | 388728363264 | 50 |
| | 4333076154668 | . 02312782352235 | 29615592568 |
| | -4.59099601712598 | 1977661978954 | |
| | 7130074348388 | .21020140627607 | 61240458981 |
| | 15 | 89900541309 | |
| | 2.40345630578565 | .34911378079899 | .53498832865293 |
| | 2.03127026513958 | . 66851608343479 | . 14689572917706 |
| | 14053768418533 | . 45471719627097 | .7906057362384 |
| | 2.43654956944455 | -1.63992163997908 | . 49814686471840 |
| | 93961822123135 | 29179222096326 | 524 |
| | 4.72068505850861 | -0.28101384656908 | 5.28064368403062 |
| | 3.06586112810951 | . 44987102349795 | -6.32992329923456 |
| | 3.35127657125239 | 0.54218449192530 | -7.39843505118342 |
| | 3.99359963752583 | 0.18224578907275 | -5.77528544555972 |
| | 5.88020161663095 | 1.33336472861353 | 4.3958 |

H 6.39849034029318
C 1.59415183279298
H 2.45849574289357
H 0.80948806903110
C 2.09647397149022
H 2.96996982304958
H 1.66241427202850
C 2.53513992894866
H 1.67005309560920
H 3.30512089815906
C -5.64691267826010
H -5.50881457130879
H -6.62455991319716
H -4.85111923356942
C - 5.82655740187287
H -5.09911751720672
H -6.84002329712077
H -5.75354532284343
1.58743835745829 -0.79518702001948 -1.10079917719851 -1.56851759001220 1.68009643388857 1.46372683489781 2.63342462001420 1.78783881931799 2.11501109737271 2.58140133040666 -1.70219590454028 -2.22264880022230 -1.17928796841993 -0.93734245841148 -1.96433121160895 -1.14067662441990 -1.51363102769849 -2.64744879552457
5.33297698360927
-4.68338866511901
-4.05580040694846 -4.55489032729104 -4.33518679412747 -3.68408095701569 -3.97376234902799 -5.79912498877762 -6.41822132430744 -5.89571371883947 -0.53196162786993 0.43384029105394 -0.51888222672867 -0.61915788333595 -3.03276095290239 -3.16847161775178 -3.04024621969061 -3.90340947926198

Cartesian coordinates of the optimized geometry of exolendo-[(Ar*BIAN)Co $\left.\left(\eta^{4}-\mathrm{P}_{4}\right)\right]$ (3) at the D3BJ-PBE/def2-TZVP/def2SVP@C,H/CPCM $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ level:

Co 0.13628919339096 P 1.75895756710467 P 1.01812206887727 P 2.38359582459124 P 0.34390822519680 N -0.65930794131445 N - 1.06126333240632 C -0.36428190743016 C -1.28726532484166 C -2.32727807693829 C -0.44032599877544 C -2.48313077487359 H -3.25133098411902 C -0.82766588652729 C 0.66311494014400 H 1.02681085182244 C -1.66554204510355 C -1.51243251993127 C 0.09831445399197 C 0.36371195318696 H 0.97855372725313 C -0.15178566458343 H 0.06021484309017 C -0.94490814907125 H -1.36165179055756 C -1.21515813857230 H -1.84620463899013 C -0.70096324894900 H -0.93484739991072 C -1.61459816369927 C 0.35453045339332 C 0.98349782060644 H 0.39529049605845 C 0.87412819142738 C -0.25467093420970 H -1.03392964588435 C -0.39602753589033 H - 1.28750133119152 C 0.59400976137271 H 0.48574028288208 C 1.72998229533494 H 2.51843204450374 C 1.86993643396334 H 2.77278069322236 C 0.53057148328535 H 1.07017841908124 C -1.81925370304778 C -0.65327644834892 H 0.01875659464574 C 0.03508555319639 C 1.86815588046528 C 2.35264890189086 H 1.84350495643829 C 3.48169633694048 H 3.84223310760074
0.12729354455756 -1.32612884529092 1.50841750370778 0.66440643166293 -0.47341168824218 -1.05527375525647 1.41398480772524 -2.41103246390137 2.73641386520155 2.97108339961448 3.79583308080325 4.26807303972696 4.44327112436663 -3.46186625639895 3.51355607807133 2.48611723744969 5.33730009593862 -3.15695539054486 3.45513270053869 2.33684783301702 1.52262813960035 2.24847101412014 1.35848206123179 3.28810242575623 3.21749715297558 4.41114040442193 5.22541081441411 4.49133567309656 5.36368201290006 -0.45694257394264 -2.71236352956401 -1.60000699307441 -0.68205547940602 -1.87094335193976 -1.42600262500765 -0.85576960401587 -1.70434894758686 -1.34431954627637 -2.43372924835163 -2.65251613773484 -2.87191615840316 -3.43505758689745 -2.58769872279809 -2.91499147625772 -4.05662067040017 -4.27959739580036 0.92867217728280 5.07896664043734 5.89134164244984 -5.11483283319203 4.43529014975531 5.26255341778960 5.26887063781631 6.07752808223684 6.71667536967487
0.29482010975562 -0.50306330763690 -1.36471423282833 0.11960310235598 -1.94247165739533 1.55287070673243 1.02010660948917 1.87471541617576 0.55035437251901 -0.38243106791344 0.96506958382690 -0.90612076037222 -1.67671015201621 1.03929701675251 1.97926180995487 1.75017786958696 -0.50453133558899 -0.28926063863040 3.39228075378796 4.20355349412948 3.79185192449182 5.50579788993296 6.11791102489962 6.01823223504674 7.03471236775516 5.21893969370248 5.60808213279390 3.91545976015564 3.28521794899194 2.29861917665175 3.06589754434600 3.90659428283255 3.70930386471739 5.40527607059160 6.12316500835365 5.59816458401874 7.49180743538949 8.02867494380404 8.17031297160051 9.24395402032999 7.46933335290768 7.99280205439821 6.10153568883289 5.56314931682779 3.42901078423640 4.36152494045402 2.01734217877715 0.44019435760126 0.75776735615700 2.64684938946963 1.81817966694320 2.84829789393036 3.82316013008336 2.64790490881313 3.46922101169431

C 4.14690232320220
H 5.03146700837359
C 3.67542414370271
H 4.19081058646001
C 2.55070828405913
H 2.18094095986019
C -2.53457051245593
C - 3.00482086519874
C - 3.81851266324748
H $\quad-3.35880748355487$
C - 5.21041924823374
H -5.82998970658479
C -5.80676966170918
H -6.89542181934748
C -4.99981679789084
H -5.45020367703533
C - 3.61233160044565
H -2.98009997229598
C -1.83642304624610
H -2.72765211226596
C 2.42134467925338
C 3.10429132018455
H 2.60419020595468
C 4.41244191776403
H 4.91844366188917
C 5.06236495952078
H 6.08261584806862
C 4.39487737862749
H 4.89017690073415
C 3.08993550256023
H 2.57986483153517
C - 0.62273375483744
H -0.98626560308539
C - 1.21410556170866
C -2.15643905819788
H -3.15789670497503
C - 1.83524393181420
H - 2.58744398773655
C - 0.56541144316132
H -0.31475524329352
C 0.38167609147560
H 1.38020375411523
C 0.05926051607836
H 0.81059486544834
C - -2.85925043386362
H -2.34661036249515
C -2.84095360514642
C 0.22415008379194
H -0.26285385792801
C -3.24765763975849
C -3.47085816798780
C - -2.34911756429897
H - -1.35018736210721
C -2.49127355615860
H - 1.59977233567783
C - 3.76292048832090
H \quad-3.87624648596472
C -4.88481057021712
H -5.88649235291822
C -4.73902954712779
H -5.62326188409944
C - -3.24330399807327
C -2.10454189711300
H -2.99364724914484
H -2.27759929348325
H -1.23967760083821
C -4.53174234595918
C -5.36900989331816
H -5.10156004984934
C -6.53361776993869
H -7.17108807037987
C -6.88104052954849
H -7.78697195944305
C - -6.05750083922833
H -6.30654474747599
C -4.89521428178578
H -4.24548503813017
6.07623465793127 6.71294980933758 5.24872956723763 5.22974432853191 4.43893570315708 3.79868832316359 -0.86565377294990 -2.86883176289988 -3.33162259797685 -3.86079047087445 -3.13072377726882 -3.49325508157684 -2.47250896858276 -2.31181947545604 -1.99085606373780 -1.44314926799924 -2.17978865605821 -1.79360532794840 6.72529406861634 6.68191385364999 -1.27899920334611 -1.99823516480402 -2.83674702015862 -1.64237944035207 -2.20866812921999 -0.56856256311919 -0.28502685265238 0.14819058402211 0.99650508645534 -0.20617659461022 0.35483402357395 -4.79216914504260 -5.60540697403745 -4.23763115501916 -5.22295441449540 -5.20280122150837 -6.22422206029021 -6.98448443625648 -6.25411870809523 -7.03459183049738 -5.27448461852961 -5.28089450063448 -4.27973439537776 -3.52144053533470 -2.04705872862079 -2.99276319787189 1.45437219391761 -6.56217194999192 -7.19399083968356 1.82903663174757 1.77252163185149 1.84420921906989 2.00710129643701 1.71202722337162 1.76315116432934 1.50787847317993 1.40259777428650 1.43699955464020 1.27638424006202 1.56669919697917 1.50153837609663 0.33224935471381 7.78889677871124 7.52947755711614 8.78433659606267 7.88499066865856 1.81530687527893 2.94633404777550 3.86680338902755 2.91890397849588 3.81505988591450 1.75739787516114 1.73976730215912 0.62516685994242 -0.29087187764310 0.65758354750686 -0.22726632050302
1.41347123167585
1.25688307075584
0.37808037544653 -0.59474162861386 0.58043868129728 -0.23774405766099 3.36273932716360 -0.20656824357852 0.84324740290950 1.69079384675408 0.81311714069746 1.64831589206978 -0.27291140820011 -0.29477354471410 -1.31893250993813 -2.16095199764189 -1.28004374059932 -2.09573729956173 -1.10504744659128 -1.76877811764171 3.48806872865460 2.49070068128136 1.98694052967927 2.11685359579333 1.31992789449536 2.74200952823592 2.44153306075683 3.75002356953738 4.24730819388216 4.11766742286830 4.91590150616587 1.44907814440836 0.80153954105095 -1.32993431500374 -1.68569826468080 -1.23002943316734 -2.61808567229952 -2.88124347901913 -3.21514319720851 -3.95030290566188 -2.86958879898959 -3.33368398858450 -1.93588430023857 -1.65824272018049 4.03307770353387 3.80839970359418 2.92640445804356 3.07681558325104 2.30215914132471 -0.80357889564818 -2.31397142926221 -3.16950990852545 -2.73147040474640 -4.55718744536433 -5.20128692250360 -5.12186970336226 -6.21200482111324 -4.28247862613937 -4.71141773513397 -2.88962853440009 -2.23860363439387 3.72539716258850 -0.02719095313517 0.58257751125417 -0.48646753095448 0.66196498931334 0.02174751694849 0.11113454062525 -0.42854157012230 0.89312533789706 0.95424846514209 1.60373651442744 2.22931188688670 1.51889066340815 2.07549881459746 0.73358957965319 0.68325579068350

Chapter 2. Cobalt-Mediated [3+1] Fragmentation of P_{4} : Access to Acylcyanophosphanides

| C | -3.86157977276623 | -2.00705728615812 | 5.04864600604961 |
| :--- | :--- | :---: | :---: |
| H | -4.10439575479681 | -2.94240721008102 | 5.57696363020826 |
| C | -3.45853212331385 | 2.68130964772956 | 3.15254532888022 |
| H | -3.19894469551884 | 3.56716767536734 | 2.55739545586782 |
| C | -0.62337055232952 | 7.10400324193043 | -1.97344688897935 |
| H | 0.30141491668780 | 7.15631061079382 | -1.36139072443811 |
| H | -0.76922812208078 | 8.09468231060199 | -2.45270357997494 |
| H | -0.45373890071481 | 6.35322573100113 | -2.77109952324619 |
| C | -4.23506412817030 | 0.39284597213394 | 4.72554177547418 |
| C | 1.71295583477724 | -6.94603171956980 | 3.12597411924439 |
| H | 2.25358776767461 | -6.34492735407194 | 3.88674282402666 |
| H | 2.20533289802326 | -6.77145428695171 | 2.14814316251453 |
| H | 1.83870467103638 | -8.01636134641156 | 3.39170128464498 |
| C | -4.45660898004315 | 2.76735112995833 | 4.16803858555255 |
| H | -4.94303430331082 | 3.74033867987707 | 4.33915025272630 |
| C | -4.53308481259773 | -0.83552569903713 | 5.40164679265309 |
| H | -5.29741644095523 | -0.85023779796424 | 6.19457501593060 |
| C | -4.84356768687286 | 1.67235344728511 | 4.94015324897718 |
| H | -5.62418149333486 | 1.78234718522201 | 5.70930749146564 |
| C | -0.46951655193387 | -6.84702278721113 | 4.42008169208607 |
| H | -0.01920672125711 | -6.24544507054950 | 5.23723901117013 |
| H | -0.37266187223707 | -7.91715803967915 | 4.69834589417649 |
| H | -1.54890332587315 | -6.59724428390573 | 4.37543050751113 |
| H | -2.70374780005839 | 0.89039642014925 | -0.56007983211418 |
| H | -1.04757340938161 | -2.21591104566192 | -0.66265667879799 |

References

[1] Selected literature for the synthesis of phosphorus compounds: a) D. E. C. Corbridge, Phosphorus 2000. Chemistry, Biochemistry \& Technology, Elsevier, Amsterdam, 2002; b) G. Bettermann, W. Krause, G. Riess, T. Hofmann, in Ullmann's Encyclopedia of Industrial Chemistry, John Wiley \& Sons, Ltd, Weinheim, 2000, pp. 1-18; c) J. Svara, N. Weferling, T. Hofmann, in Ullmann's Encyclopedia of Industrial Chemistry, John Wiley \& Sons, Ltd, Weinheim, 2006, pp. 1-48; d) M. Caporali, M. Serrano-Ruiz, M. Peruzzini, in Chemistry Beyond Chlorine, Springer, Cham, 2016, pp. 97-136; e) W. Gleason, JOM 2007, 59, 17-19; f) J. E. Borger, A. W. Ehlers, J. C. Slootweg, K. Lammertsma, Chem. Eur. J. 2017, 23, 11738-11746.
[2] Reviews on the coordination chemistry of phosphorus: a) M. Peruzzini, L. Gonsalvi, A. Romerosa, Chem. Soc. Rev. 2005, 34, 1038-1047; b) B. M. Cossairt, N. A. Piro, C. C. Cummins, Chem. Rev. 2010, 110, 4164-4177; c) M. Scheer, G. Balázs, A. Seitz, Chem. Rev. 2010, 110, 4236-4256; d) M. Caporali, L. Gonsalvi, A. Rossin, M. Peruzzini, Chem. Rev. 2010, 110, 4178-4235; e) C. M. Hoidn, D. J. Scott, R. Wolf, Chem. Eur. J. 2021, 1886-1902; f) L. Giusti, V. R. Landaeta, M. Vanni, J. A. Kelly, R. Wolf, M. Caporali, Coord. Chem. Rev. 2021, 441, 213927.
[3] M. Peruzzini, J. A. Ramirez, F. Vizza, Angew. Chem. Int. Ed. 1998, 37, 2255-2257; Angew. Chem. 1998, 110, 2376-2378.
[4] S. Reichl, E. Mädl, F. Riedlberger, M. Piesch, G. Balázs, M. Seidl, M. Scheer, Nat. Commun. 2021, 12, 5774.
[5] Selected literature on MAPOs and BAPOs: a) W. Rutsch, K. Dietliker, D. Leppard, M. Köhler, L. Misev, U. Kolczak, G. Rist, Prog. Org. Coat. 1996, 27, 227-239; b) U. Kolczak, G. Rist, K. Dietliker, J. Wirz, J. Am. Chem. Soc. 1996, 118, 6477-6489; c) K. Dietliker, A Compilation of Photoinitiators: Commercially Available for UV Today, SITA Technology, London, 2002; d) J. P. Fouassier, J. Lalev'ee, Photoinitiators for Polymer Synthesis Scope, Reactivity and Efficiency, Wiley-VCH, Weinheim, 2012; e) K. Dietliker, T. Jung, J. Benkhoff, H. Kura, A. Matsumoto, H. Oka, D. Hristova, G. Gescheidt, G. Rist, Macromol. Symp. 2004, 217, 77-98; f) M. Griesser, D. Neshchadin, K. Dietliker, N. Moszner, R. Liska, G. Gescheidt, Angew. Chem. Int. Ed. 2009, 48, 9359-9361; Angew. Chem. 2009,121, 9523 -9525; g) Recent work on coordination properties: A. Widera, R. Conti, E. Schrader, M. Aebli, M. Wörle, H. Grützmacher, ChemPlusChem 2023, 88, e202200451.
[6] a) C. L. Liotta, M. L. MeLaughlin, B. A. O’Brien, Tetrahedron Lett. 1984, 25, 12491252; b) G. Becker, W. Schwarz, N. Seidler, M. Westerhausen, Z. Anorg. Allg. Chem. 1992, 612, 72-82; c) A. Huber, A. Kuschel, T. Ott, G. Santiso-Quinones, D. Stein, J. Bräuer, R. Kissner, F. Krumeich, H. Schönberg, J. Levalois-Grützmacher, H. Grützmacher, Angew. Chem. Int. Ed. 2012, 51, 4648-4652; Angew. Chem. 2012,124, $4726-4730$. d) J. Wang, G. Siqueira, G. Müller, D. Rentsch, A. Huch, P. Tingaut, J. Levalois-Grützmacher, H. Grützmacher, Chem. Commun. 2016, 52, 2823-2826; e) K. X. Bhattacharyya, S. Dreyfuss, N. Saffon-Merceron, N. Mézailles, Chem. Comтип. 2016, 52, 5179-5182; f) A. Eibel, M. Schmallegger, M. Zalibera, A. Huber, Y. Bürkl, H. Grützmacher, G. Gescheidt, Eur. J. Inorg. Chem. 2017, 2017, 24692478.
[7] a) D. Heift, Z. Benkő, R. Suter, R. Verel, H. Grützmacher, Chem. Sci. 2016, 7, 61256131; b) J. M. Goicoechea, H. Grützmacher, Angew. Chem. Int. Ed. 2018, 57, 1696816994; Angew. Chem. 2018, 130, 17214-17240.
[8] K. M. Szkop, M. B. Geeson, D. W. Stephan, C. C. Cummins, Chem. Sci. 2019, 10, 3627-3631.
[9] J. Hu, Z. Chai, W. Liu, J. Wei, Z.-J. Lv, W.-X. Zhang, Green Synthesis and Catalysis 2022, accepted, DOI: 10.1016/j.gresc.2022.12.008.
[10] P. Kumar, U. Sharma, G. S. Ananthnag, Appl. Organomet. Chem. 2022, 36, e6672.
[11] J. S. Figueroa, C. C. Cummins, J. Am. Chem. Soc. 2004, 126, 13916-13917.
[12] N. A. Piro, C. C. Cummins, J. Am. Chem. Soc. 2008, 130, 9524-9535.
[13] Selected examples for the synthesis of unusual phosphorus compounds from our group: a) E.-M. Schnöckelborg, J. J. Weigand, R. Wolf, Angew. Chem. Int. Ed. 2011, 50, 6657-6660; Angew. Chem. 2011, 123, 6787-6790; b) S. Pelties, D. Herrmann, B. de Bruin, F. Hartl, R. Wolf, Chem. Commun. 2014, 50, 7014-7016; c) U. Chakraborty, J. Leitl, B. Mühldorf, M. Bodensteiner, S. Pelties, R. Wolf, Dalton Trans. 2018, 47, 3693-3697. d) C. M. Hoidn, C. Rödl, M. L. McCrea-Hendrick, T. Block, R. Pöttgen, A. W. Ehlers, P. P. Power, R. Wolf, J. Am. Chem. Soc. 2018, 140, 13195-13199; e) G. Hierlmeier, P. Coburger, N. P. van Leest, B. de Bruin, R. Wolf, Angew. Chem. Int. Ed. 2020, 59, 14148-14153; Angew. Chem. 2020, 132, 1425214257; f) J. A. Kelly, V. Streitferdt, M. Dimitrova, F. F. Westermair, R. M. Gschwind, R. J. F. Berger, R. Wolf, J. Am. Chem. Soc. 2022, 144, 20434-20441.
[14] C. M. Hoidn, T. M. Maier, K. Trabitsch, J. J. Weigand, R. Wolf, Angew. Chem. Int. Ed. 2019, 58, 18931-18936; Angew. Chem. 2019, 131, 19107-1911.
$[15]$ a) A. Schmidpeter, F. Zwaschka, Angew. Chem. Int. Ed. Engl. 1977, 16, 704-705; Angew. Chem. 1977, 89, 747-747; b) W. S. Sheldrick, J. Kroner, F. Zwaschka, A. Schmidpeter, Angew. Chem. Int. Ed. Engl. 1979, 18, 934-935; Angew. Chem. 1979, 91, 998-1000; c) Y. Mei, Z. Yan, L. L. Liu, J. Am. Chem. Soc. 2022, 144, 1517-1522.
[16] Y. Zeng, Q. Mahmood, Q. Zhang, T. Liang, W.-H. Sun, Eur. Polym. J. 2018, 103, 342-350.
[17] Dinuclear Cobalt P_{4} complexes: a) S. Yao, N. Lindenmaier, Y. Xiong, S. Inoue, T. Szilvási, M. Adelhardt, J. Sutter, K. Meyer, M. Driess, Angew. Chem. Int. Ed. 2015, 54, 1250-1254; Angew. Chem. 2015, 127, 1266-1270; b) S. Pelties, T. Maier, D. Herrmann, B. de Bruin, C. Rebreyend, S. Gärtner, I. G. Shenderovich, R. Wolf, Chem. Eur. J. 2017, 23, 6094-6102; c) F. Spitzer, C. Graßl, G. Balázs, E. Mädl, M. Keilwerth, E. M. Zolnhofer, K. Meyer, M. Scheer, Chem. Eur. J. 2017, 23, 27162721.
[18] J. L. Rhinehart, N. E. Mitchell, B. K. Long, ACS Catal. 2014, 4, 2501-2504.
[19] L. Guo, W. Kong, Y. Xu, Y. Yang, R. Ma, L. Cong, S. Dai, Z. Liu, J. Organomet. Chem. 2018, 859, 58-67.
[20] C. G. P. Ziegler, T. M. Maier, S. Pelties, C. Taube, F. Hennersdorf, A. W. Ehlers, J. J. Weigand, R. Wolf, Chem. Sci. 2019, 10, 1302-1308.
[21] Calculated single- and double-bond lengths: a) P. Pyykkö, M. Atsumi, Chem. Eur. J. 2009, 15, 186-197; b) P. Pyykkö, M. Atsumi, Chem. Eur. J. 2009, 15, 1277012779.
[22] Related cyclo-P4 complexes: a) O. J. Scherer, J. Vondung, G. Wolmershäuser, Angew. Chem. Int. Ed. Engl. 1989, 28, 1355-1357; Angew. Chem. 1989, 101, 13951397; b) F. Dielmann, A. Timoshkin, M. Piesch, G. Balázs, M. Scheer, Angew. Chem. Int. Ed. 2017, 56, 1671-1675; Angew. Chem. 2017, 129, 1693-1698; c) A. Cavaillé, N. Saffon-Merceron, N. Nebra, M. Fustier-Boutignon, N. Mézailles, Angew. Chem. Int. Ed. 2018, 57, 1874-1878; Angew. Chem. 2018, 130, 1892-1896; d) K. A. Mandla, C. E. Moore, A. L. Rheingold, J. S. Figueroa, Angew. Chem. Int. Ed. 2019, 58, 17791783; Angew. Chem. 2019, 131,1793-1797; e) K. A. Mandla, M. L. Neville, C. E. Moore, A. L. Rheingold, J. S. Figueroa, Angew. Chem. Int. Ed. 2019, 58, 1532915333; Angew. Chem. 2019, 131,15473-15477.
[23] For BIAN in different oxidation states see: M. M. Khusniyarov, K. Harms, O. Burghaus, J. Sundermeyer, Eur. J. Inorg. Chem. 2006, 2985-2996; and references herein.
[24] M. Piesch, S. Reichl, M. Seidl, G. Balázs, M. Scheer, Angew. Chem. Int. Ed. 2021, 60, 15101-15108; Angew. Chem. 2021, 133, 15228-15236.
[25] G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts, Wiley, Chichester, 2004.
[26] Note: Compound 5a decomposes in solution at ambient temperature over several days. The ${ }^{1} \mathrm{H}$ NMR spectrum of the decomposition solution after three weeks shows predominantly uncoordinated Ar*BIAN (1) ligand.
[27] T. J. Katz, Nancy. Acton, J. Am. Chem. Soc. 1973, 95, 2738-2739.
[28] Related prismatic catena- $\mathrm{E}_{4}(\mathrm{E}=\mathrm{P}$, As) units: a) O. J. Scherer, J. Braun, P. Walther, G. Wolmershäuser, Chem. Ber. 1992, 125, 2661-2665; b) M. Scheer, U. Becker, Chem. Ber. 1996, 129, 1307-1310; c) S. Yao, Y. Xiong, C. Milsmann, E. Bill, S. Pfirrmann, C. Limberg, M. Driess, Chem. Eur. J. 2010, 16, 436-439; d) T. Li, N. Arleth, M. T. Gamer, R. Köppe, T. Augenstein, F. Dielmann, M. Scheer, S. N. Konchenko, P. W. Roesky, Inorg. Chem. 2013, 52, 14231-14236; e) V. Heinl, M. Schmidt, M. Eckhardt, M. Eberl, A. E. Seitz, G. Balázs, M. Seidl, M. Scheer, Chem. Eur. J. 2021, 27, 11649-11655.
[29] Isomerization of cyanide to isocyanide: a) T. A. Bither, W. H. Knoth, R. V. Lindsey, W. H. Sharkey, J. Am. Chem. Soc. 1958, 80, 4151-4153; b) D. Seyferth, N. Kahlen, J. Am. Chem. Soc. 1960, 82, 1080-1082; c) O. Dietz, V. M. Rayón, G. Frenking, Inorg. Chem. 2003, 42, 4977-4984; d) G. Ballmann, H. Elsen, S. Harder, Angew. Chem. Int. Ed. 2019, 58, 15736-15741; Angew. Chem. 2019, 131,1588315888; e) Z.-J. Lv, Z. Chai, M. Zhu, J. Wei, W.-X. Zhang, J. Am. Chem. Soc. 2021, 143, 9151-9161.
[30] Related catena-P 4 units: a) O. J. Scherer, G. Berg, G. Wolmershäuser, Chem. Ber. 1995, 128, 635-639; b) P. Barbaro, M. Di Vaira, M. Peruzzini, S. Seniori Costantini, P. Stoppioni, Inorg. Chem. 2009, 48, 1091-1096; c) M. Piesch, M. Seidl, M. Stubenhofer, M. Scheer, Chem. Eur. J. 2019, 25, 6311-6316; d) J. Müller, G. Balázs, M. Scheer, Chem. Commun. 2021, 57, 2257-2260.
[31] a) K. Heinze, G. Huttner, L. Zsolnai, A. Jacobi, P. Schober, Chem. Eur. J. 1997, 3, 732-743; b) M. Di Vaira, M. P. Ehses, M. Peruzzini, P. Stoppioni, Polyhedron 1999, 18, 2331-2336.
[32] M. Piesch, M. Seidl, M. Scheer, Chem. Sci. 2020, 11, 6745-6751.
[33] Selected examples of [1.1.0]bicyclotetraphosphane-1,4-diyl (P_{4} butterfly) compounds: a) O. J. Scherer, G. Schwarz, G. Wolmershäuser, Z. Anorg. Allg. Chem. 1996, 622, 951-957; b) O. J. Scherer, T. Hilt, G. Wolmershäuser, Organometallics 1998, 17, 4110-4112; c) C. Schwarzmaier, A. Y. Timoshkin, G. Balázs, M. Scheer, Angew. Chem. Int. Ed. 2014, 53, 9077-9081; Angew. Chem. 2014, 126, 9223-9227; d) S. Pelties, A. W. Ehlers, R. Wolf, Chem. Commun. 2016, 52, 6601-6604; e) J. E. Borger, A. W. Ehlers, M. Lutz, J. C. Slootweg, K. Lammertsma, Angew. Chem. Int. Ed. 2014, 53, 12836-12839; Angew. Chem. 2014, 126, 13050-13053; f) J. E. Borger, A. W. Ehlers, M. Lutz, J. C. Slootweg, K. Lammertsma, Angew. Chem. Int. Ed. 2017, 56, 285-290; Angew. Chem. 2017, 129, 291-296; g) J. Bresien, K. Faust, C. HeringJunghans, J. Rothe, A. Schulz, A. Villinger, Dalton Trans. 2016, 45, 1998-2007; h) J. E. Borger, M. K. Jongkind, A. W. Ehlers, M. Lutz, J. C. Slootweg, K. Lammertsma, ChemistryOpen 2017, 6, 350-353.
[34] Application of cyanide to release polyphosphorus molecules from a copper(I)iodide matrix: A. Pfitzner, M. F. Bräu, J. Zweck, G. Brunklaus, H. Eckert, Angew. Chem. Int. Ed. 2004, 43, 4228-4231; Angew. Chem. 2004, 116, 4324-4327.
[35] Related cyclo-P3 complexes: a) M. Piesch, S. Reichl, M. Seidl, G. Balázs, M. Scheer, Angew. Chem. Int. Ed. 2019, 58, 16563-16568; Angew. Chem. 2019, 131,

16716-16721; b) P. Coburger, J. Leitl, D. J. Scott, G. Hierlmeier, I. G. Shenderovich, E. Hey-Hawkins, R. Wolf, Chem. Sci. 2021, 12, 11225-11235.
[36] The conjugate acids have been studied computationally: A. C. Tsipis, Organometallics 2006, 25, 2774-2781.
[37] R. M. K. Deng, K. B. Dillon, J. Chem. Soc., Chem. Commun. 1981, 1170.
$[38] \quad$ a) R. Grünbauer, G. Balázs, M. Scheer, Chem. Eur. J. 2020, 26, 11722-11726; b) M. Scheer, U. Becker, J. Magull, Polyhedron 1998, 17, 1983-1989; c) M. Scheer, K. Schuster, U. Becker, Phosphorus Sulfur Silicon Relat. Elem. 1996, 109, 141-144.
$[39]$ a) L. Xu, Y. Chi, S. Du, W.-X. Zhang, Z. Xi, Angew. Chem. Int. Ed. 2016, 55, 9187-9190; Angew. Chem. 2016, 128, 9333-9336; b) S. Du, J. Yin, Y. Chi, L. Xu, W.-X. Zhang, Angew. Chem. Int. Ed. 2017, 56, 15886-15890; Angew. Chem. 2017, 129, 16102-16106; c) F. Zhang, J. Zhang, Z. Chen, L. Weng, X. Zhou, Inorg. Chem. 2019, 58, 8451-8459.
[40] P. Rigo, A. Turco, Coord. Chem. Rev. 1974, 13, 133-172.
[41] A search of the Cambridge Crystal Structure Database (CCSD), version 5.44, 04/2023, revealed 120 cobalt complexes bearing only one terminal cyanide ligand with a mean $\mathrm{Co}-\mathrm{C}$ Distance of $1.899 \AA$ (Median $1.888 \AA$) and a mean $\mathrm{C} \equiv \mathrm{N}$ distance of $1.137 \AA$ (median $1.144 \AA$).
[42] G. Le Corre, J. J. Gamboa-Carballo, Z. Li, H. Grützmacher, Angew. Chem. Int. Ed. 2021, 60, 24817-24822; Angew. Chem. 2021,133, 25021 -25026.
[43] G. Becker, H. Brombach, S. T. Horner, E. Niecke, W. Schwarz, R. Streubel, E.U. Würthwein, Inorg. Chem. 2005, 44, 3080-3086.
[44] Note: Natural Resonance Theory (NRT) analysis was performed on model compound $\mathbf{9}-\mathbf{M e}^{-}$to avoid no bond resonance structures in the cyclohexyl residue.
[45] Deposition Numbers 2269452 (for 1), 2269840 (for [K(18c-6)]2), 2269251 (for [K(18c-6)]3), 2269454 (for 4a), 2269458 (for 4b), 2269460 (for 4c), 2269469 (for 5a), 2302117 (for endo-/exo-6a), 2269471 (for endo-6a), 2269474 (for exo-6d), 2269477 (for endo-6e), 2269521 (for 7), 2269484 (for [K(18c-6)]8), 2269513 (for $[\mathrm{K}(18 \mathrm{c}-6)] 9 \mathbf{9}$), 2269494 (for $[\mathrm{K}(18 \mathrm{c}-6)] 9 \mathrm{~b}$), and 2269504 (for [K(18c-6)]9d) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
[46] T. Suzuki, Y. Kajita, H. Masuda, Dalton Trans. 2014, 43, 9732-9739.
[47] a) K. Jonas, R. Mynott, C. Krüger, J. C. Sekutowski, Y.-H. Tsay, Angew. Chem. Int. Ed. Engl. 1976, 15, 767 -768; Angew. Chem. 1976, 88, $808-809$; b) K. Jonas, USpatent 4169845, 1979.
[48] Bardsley, Kathryn, K. Bardsley, M. Hagigeorgiou, I. Lengyel, V. Cesare, Synth. Comтии. 2013, 43, 1727-1733.
[49] P. H. M. Budzelaar, in IvorySoft: gNMR for Windows, NMR Simulation Program, 2006.
[50] a) E. G. Finer, R. K. Harris, Mol. Phys. 1967, 13, 65-75; b) S. Aime, R. K. Harris, E. M. McVicker, M. Fild, J. Chem. Soc. Dalton Trans. 1976, 2144-2153; c) J. P. Albrand, H. Faucher, D. Gagnaire, J. B. Robert, Chem. Phys. Lett. 1976, 38, 521-523; d) H. C. E. McFarlane, W. McFarlane, J. A. Nash, J. Chem. Soc. Dalton Trans. 1980, 240-244; e) M. A. M. Forgeron, M. Gee, R. E. Wasylishen, J. Phys. Chem. A 2004, 108, 4895-4908; f) J. E. Del Bene, J. Elguero, I. Alkorta, J. Phys. Chem. A 2004, 108, 3662-3667.
[51] Y. Zeng, Q. Mahmood, Q. Zhang, T. Liang, W. Sun, Eur. Polym. J. 2018, 103, 342-350.
[52] a) G. M. Sheldrick, SADABS, Bruker AXS, Madison, USA, 2007; b) CrysAlisPro, Scale3 Abspack, Rigaku Oxford Diffraction, 2019.
$[53] \quad$ R. C. Clark, J. S. Reid, Acta Crystallogr. Sect. A 1995, 51, 887-897.
[54] G. M. Sheldrick, Acta Crystallogr. Sect. Found. Adv. 2015, 71, 3-8.
[55] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. a. K. Howard, H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339-341.
[56] G. M. Sheldrick, Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3-8.
[57] G. M. Sheldrick, Acta Crystallogr. A 2008, 64, 112-122.
[58] A search of the Cambridge Crystal Structure Database (CCSD), version 5.44, 04/2023, revealed 67 cobalt complexes bearing only one terminal isocyanide ligand with a mean $\mathrm{Co}-\mathrm{C}$ distance of $1.839 \AA$ (median $1.833 \AA$) and a mean $\mathrm{C} \equiv \mathrm{N}$ distance of $1.162 \AA$ (median $1.164 \AA$).
[59] a) R. A. Kendall, H. A. Früchtl, Theor. Chem. Acc. 1997, 97, 158-163. b) F. Neese, WIREs Comput. Mol. Sci. 2012, 2, 73-78. c) F. Neese, WIREs Comput. Mol. Sci. 2018, 8, 1327.
[60] a) S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456-1465. b) S.Grimme, J.Antony, S.Ehrlich, H.Krieg, J. Chem. Phys., 132, 2010, 154104. c) F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 7, 2005, 3297-3305. (d) F. Weigend, Phys. Chem. Chem. Phys., 8, 2006, 1057-1065.
[61] M. . D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek, G. R. Hutchison, J. Cheminformatics 2012, 4, 17.
[62] A. D. Becke, Phys. Rev. A 1988, 38, 3098-3100; J. P. Perdew, Phys. Rev. B 1986, 33, 8822-8824. Erratum: Phys. Rev. B 1986, 34, 7406-7406.
[63] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865-3868.
[64] J. Tao, J. P. Perdew, V. N. Staroverov, G. E. Scuseria, Phys. Rev. Letters 2003, 91, 146401.
[65] a) J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 2005, 105, 2999-3094; b) V. Barone, M. Cossi, J. Phys. Chem. A 1998, 102, 1995-2001.
[66] a) J. R. Cheeseman, G. W. Trucks, T. A. Keith, M. J. Frisch, J. Chem. Phys. 1996, 104, 5497-5509; b) K. Wolinski, J. F. Hinton, P. Pulay, J. Am. Chem. Soc. 1990, 112, 8251-8260; c) R. Ditchfield, Molec. Phys. 1974, 27, 789-807; d) R. McWeeny, Phys. Rev. 1962, 126, 1028-1034; e) F. London, J. Phys. Radium 1937, 8, 397-409; g) G. L. Stoychev, A. A. Auer, R. Izsák, F. Neese, J. Chem. Theory Comput. 2018, 14, 619-637.
[67] F. Jensen, J. Chem. Theory Comput. 2015, 11, 132-138.
[68] B. P. Pritchard, D. Altarawy, B. Didier, T. D. Gibson, T. L. Windus, J. Chem. Inf. Model. 2019, 59, 4814-4820.
[69] F. Neese, F. Wennmohs, A. Hansen, U. Becker, Chem. Phys. 2009, 356, 98-109.
[70] J. P. Perdew, M. Ernzerhof, K. Burke, J. Chem. Phys. 1996, 105, 9982-9985.
[71] a) V. N. Staroverov, G. E. Scuseria, J. Tao, J. P. Perdew, J. Chem. Phys. 2003, 119, 12129-12137; b) V. N. Staroverov, G. E. Scuseria, J. Tao, J. P. Perdew, J. Chem. Phys. 2004, 121, 11507-11507

3 Functionalization of Tetraphosphido Ligands by Heterocumulenes ${ }^{[a, b]}$

Abstract: Although numerous polyphosphido complexes have been accessed through the transition-metal-mediated activation and functionalization of white phosphorus $\left(\mathrm{P}_{4}\right)$, the selective functionalization of the resulting polyphosphorus ligands in these compounds remains underdeveloped. In this study, the reactions between cyclotetraphosphido cobalt complexes and heterocumulenes are explored, leading to functionalized P_{4} ligands. Specifically, the reaction of carbon disulfide (CS_{2}) with $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{4}-\mathrm{P}_{4}\right)\right]([\mathrm{K}(18 \mathrm{c}-6)] \mathbf{1}, 18 \mathrm{c}-6=[18] \mathrm{crown}-6)$ affords the adduct $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{CS}_{2}\right)\right]([\mathrm{K}(18 \mathrm{c}-6)] 3)$, in which CS_{2} is attached to a single phosphorus atom ($\mathrm{Ar}^{*}=2,6$-dibenzhydryl-4-isopropylphenyl, BIAN $=1,2$ bis(arylimino)acenaphthene diimine). In contrast, the insertion of bis(trimethylsilyl)sulfur diimide $\mathrm{S}\left(\mathrm{NSiMe}_{3}\right)_{2}$ into a $\mathrm{P}-\mathrm{P}$ bond of $\mathbf{1}^{-}$yields $\left.[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{SN}_{2}\left(\mathrm{SiMe}_{3}\right)_{2}\right)\right](\mathrm{K}(18 \mathrm{c}-6)] 4\right)$. This salt further reacts with $\mathrm{Me}_{3} \mathrm{SiCl}$ to form $\left[\left(\mathrm{Ar}{ }^{*} \mathrm{BIAN}\right) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{SN}_{2}\left(\mathrm{SiMe}_{3}\right)_{3}\right]\right.$ (5), featuring a rare azatetraphosphole ligand. Moreover, treatment of the previously reported complex [($\left.\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P} 4 \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right]$ (2) with isothiocyanates results in $\mathrm{P}-\mathrm{C}$ bond insertion, yielding [(Ar*BIAN) $\left.\mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{C}(\mathrm{S}) \mathrm{N}(\mathrm{R}) \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right](6 \mathbf{a}-\mathbf{b} ; \mathrm{R}=\mathrm{Cy}, \mathrm{Ph})$.

${ }^{[a]}$ Reproduced from S. Hauer, G. Balázs, F. Gliese, F. Meurer, T. M. Horsley Downie, C. Hennig, J. J. Weigand, and R. Wolf, Inorg. Chem. 2024, 10.1021/acs.inorgchem.4c00808
${ }^{[b]}$ S. Hauer performed the synthetic investigations and characterization of the reported compounds. G. Balázs conducted the DFT calculations. F. Gliese performed synthetic investigations as part of his B.Sc. thesis. F. Meurer and C. Hennig collected SCXRD data of compounds $[\mathrm{K}(18 \mathrm{c}-6)] \mathbf{4}$ and 5 and assisted in the structure solution and refinement. S. Hauer wrote the manuscript draft. T. M. Horsley Downie, R. Wolf and J. J. Weigand reviewed and edited the manuscript. R. Wolf and J. J. Weigand supervised the project.

3.1 Introduction

The reaction of white phosphorus with transition metal complexes represents a powerful strategy in the synthesis of distinctive phosphorus-based compounds. ${ }^{[1]}$ Transition-metal-mediated P_{4} functionalization processes typically involve two principal steps, which have been subject to considerable investigation: Initially, a transition metal complex facilitates the cleavage of one or more $\mathrm{P}-\mathrm{P}$ bonds of the P_{4} tetrahedron, yielding metal complexes that incorporate an activated polyphosphido ligand. Subsequently, these P_{n} units undergo functionalization through reactions with suitable nucleophiles or electrophiles. The first step $-\mathrm{P}_{4}$ activation - has been widely investigated and can result in a wide variety of polyphosphorus structures, with ligands containing from one to eight P atoms. ${ }^{[1]}$ In particular, P_{4} ligands such as [1.1.0]bicyclotetraphosphane-1,4-diide (commonly referred to as "butterfly- $\mathrm{P}_{4}{ }^{2-"}$) and cyclotetraphosphide (cyclo- $\mathrm{P}_{4}{ }^{2-}$) units, emerge as prevalent structural motifs (see Figure 1a). ${ }^{[2,3]}$ The subsequent functionalization of the coordinated P_{n} units typically constitutes a separate step. ${ }^{[1]}$ While the reactivity in this step can vary based on the electronic properties of the transition metal
a P_{4} Activation

Wolf 2023

Figure 1. a) Activation and b) functionalization of white phosphorus; [Ni$]=[\mathrm{CpNi}(\mathrm{IMes})]$ (IMes $=1,3-$ $\operatorname{bis}\left(2,4,6\right.$-trimethylphenyl)imidazolin-2-ylidene); $\quad[\mathrm{Co}]=\left[\mathrm{Cp}^{\prime \prime \prime} \mathrm{Co}\left(\eta^{4}-\mathrm{P}_{4}\right)\right] \quad\left(\mathrm{Cp}^{\prime \prime \prime}=\mathrm{C}_{5} \mathrm{H}_{2} t \mathrm{Bu} 3\right), \quad \mathrm{R}=$ $\mathrm{CH}_{2} \mathrm{SiMe}_{3}, t \mathrm{Bu} ; \mathrm{Ar}^{*}=2,6$-dibenzhydryl-4-isopropylphenyl; c) $[\mathrm{LCo}]=[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}], \mathrm{R}=\mathrm{Cy}, \mathrm{Ph}$.
fragment, it is generally acknowledged that functionalization of P_{4} has not been as thoroughly explored as its activation. Several routes for the functionalization of butterflyP_{4} complexes have been reported, including reactions such as the addition and insertion of nucleophiles and electrophiles (including alkylation), fragmentation, and the transition metal coordination. ${ }^{[2,4]}$ During our prior work, in which we reported the synthesis of the nickel butterfly- P_{4} complex \mathbf{A}, it was found that phenyl isothiocyanate (PhNCS) inserts into a $\mathrm{P}-\mathrm{P}$ bond of the butterfly moiety. This reaction facilitated the formation of unusual bicyclo[3.1.0]heterohexane isomers \mathbf{B} and \mathbf{C} (Figure 1b). ${ }^{[2 d, 5]}$

While several cyclo- P_{4} complexes have been reported, their reactivity has not been as extensively investigated as the butterfly- P_{4} counterparts. ${ }^{[1,3]}$ A study by Scheer and co-workers demonstrated that treatment of the cyclo- P_{4} complex $\left[\mathrm{Cp} " \mathrm{Co}\left(\eta^{4}-\mathrm{P}_{4}\right)\right]$ (D, $\left.\mathrm{Cp}{ }^{\prime \prime}=\mathrm{C}_{5} \mathrm{H}_{2} t \mathrm{Bu} u_{3}\right)$ with carbon-centered nucleophiles leads to isomeric compounds \mathbf{E} and \mathbf{F} (Figure 1b). ${ }^{[6]}$

In a recent study, we reported the anionic cyclo- P_{4} complex $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{4}-\mathrm{P}_{4}\right)\right]^{-}$ ($\mathbf{1}^{-}$, Figure 1b) and its reaction with acyl chlorides, yielding the functionalized cyclo- P_{4} complex [(Ar*BIAN) $\mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right]$ (2). ${ }^{[7]}$ When compound $\mathbf{2}$ was treated with nitriles or isocyanides, there was a partial displacement of the $\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) \mathrm{R}$ ligand from the cobalt center. Moreover, reaction with two equivalents of KCN induced a [3+1] fragmentation process, releasing a monophosphorus species in the form of an acylcyanophosphide.

Our previous work has revealed that polyphosphido complexes exhibit promising reactivity toward electrophiles and nucleophiles, indicating that transition-metal- P_{n} complexes hold potential as precursors for the targeted synthesis of unique (poly-)phosphorus compounds (Figure 1). ${ }^{[5,8]}$ Building upon these insights, we herein report the functionalization of the anionic complex $\mathbf{1}^{-}$and its acylated, neutral counterpart 2 with electrophilic heterocumulenes. In this study, we present the synthesis of anionic cobalt complexes 3^{-}and 4^{-}, featuring $\mathrm{CoP}_{4} \mathrm{CS}_{2}{ }^{-}$and $\mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{SN}_{2}\left(\mathrm{SiMe}_{3}\right)_{2}\right)^{-}$cores, respectively. We investigate their structural and electronic properties, as revealed by X-ray crystallography using synchrotron radiation and density functional theory (DFT). Additionally, the reactivity of complexes $\mathbf{3}^{-}$and $\mathbf{4}^{-}$toward electrophiles in salt metathesis is examined. We also demonstrate the feasibility of further functionalizing the polyphosphido ligand in $\mathrm{CoP}_{4} \mathrm{C}(\mathrm{O}) t \mathrm{Bu}$ with isothiocyanates, resulting in the formation of $\left[\mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P} 4 \mathrm{C}(\mathrm{S}) \mathrm{N}(\mathrm{R}) \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right]$ complexes $(\mathbf{6}, \mathrm{R}=\mathrm{Cy}, \mathrm{Ph})$.

3.2 Results and Discussion

The addition of carbon disulfide to a purple solution of $[\mathrm{K}(18 \mathrm{c}-6)] \mathbf{1}$ in THF resulted in a blue coloration within a few hours. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy confirmed the complete conversion of the anionic $\mathbf{1}^{-}$into a single new species, $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{CS}_{2}\right)\right]([\mathrm{K}(18 \mathrm{c}-6)] 3)$, exhibiting an AXY_{2} spin system (vide infra). This new complex crystallized in 89% yield as dark blue blocks from a THF/n-hexane mixture (Scheme 1).

Single crystal X-ray diffraction (SCXRD) analysis elucidated the structure of the complex, revealing a puckered cyclo- P_{4} ligand in a η^{3}-coordinating mode (Figure 2a). A CS_{2} moiety is bound via the carbon atom to the non-coordinating phosphorus atom P 4 . Additionally, one sulfur atom from the CS_{2} moiety exhibits η^{1}-coordination to the cobalt center. The similar $\mathrm{C}-\mathrm{S}$ bond distances, 1.698(5) \AA and 1.664(5) \AA, are intermediate between those of typical $\mathrm{C}-\mathrm{S}$ single and double bonds ($\sum r_{\mathrm{CS}} 1.78 \AA$ vs. $1.61 \AA$). ${ }^{[9]}$ The $\mathrm{Co}-\mathrm{S} 1$ bond length $(2.2724(1) \AA$) is notably longer than the $\mathrm{Co}-\mathrm{S}$ distance in the structurally related complex $\quad\left[(\right.$ triphos $\left.) \operatorname{Co}\left(\eta^{2}-\mathrm{CS}_{2}\right)\right] \quad(2.206(4) \AA$; triphos $=$ $\left.\mathrm{MeC}\left(\mathrm{CH}_{2} \mathrm{PPh}_{2}\right)_{3}\right)$ and exceeds the length of a typical $\mathrm{Co}-\mathrm{S}$ single bond $\left(\sum_{\mathrm{Cos}} 2.14 \AA\right.$). ${ }^{[10]}$ These observations support the description of the $\mathrm{P}_{4} \mathrm{CS}_{2}$ ligand as featuring a delocalized exocyclic CS_{2}-moiety acting as a pendant donor ligand, as depicted in Scheme 1. The delocalization of the η^{3}-coordinated P1-P2-P3 moiety is apparent by shorter bond lengths among the coordinating phosphorus atoms (P1-P2 2.169(2) \AA and P2-P3 2.169(7) Å) compared to those involving the non-coordinating ones (P1-P4 2.228(6) \AA and P3-P4 $2.222(7) \AA$). This structural motif is similar to the behavior observed in the related complex [(Ar*BIAN) $\left.\mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P} 4 \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right]$ (2, vide infra) and in the series of complexes $\left[\mathrm{Cp}{ }^{\prime \prime} \mathrm{Co}\left(\eta^{3}-\mathrm{P}_{4} \mathrm{R}_{2}\right)\right](\mathrm{R}=\mathrm{Ph}, \mathrm{Cy}, t \mathrm{Bu}) .{ }^{[7,11]}$

Scheme 1. Addition of CS_{2} to the tetraphosphido ligand in $[\mathrm{K}(18 \mathrm{c}-6)] \mathbf{1}$; reagents and conditions: +1.2 equiv. CS_{2}; THF, r.t., 1 d; yield: $[\mathrm{K}(18 \mathrm{c}-6)] 3$: 89%.

The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $[\mathrm{K}(18 \mathrm{c}-6)] \mathbf{3}$ features an AXY_{2} spin system, corroborating the existence of a C_{s} symmetric tetraphosphido ligand (Figure 2b). The simulated $\mathrm{P}-\mathrm{P}$ coupling constants are in agreement with those of $\left[\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Co}\left(\eta^{3}-\mathrm{P}_{4} \mathrm{R}_{2}\right)\right]$ complexes, reported to exhibit AMM'X spin systems, and the previously reported complex 2, which gives rise to an $\mathrm{AM}_{2} \mathrm{X}$ spin system. ${ }^{[7,11]}$ The resonance for the coordinating phosphorus atom P_{x} at $\delta=99.6 \mathrm{ppm}$ is shifted significantly upfield in comparison to 2 ($\delta=323.3 \mathrm{ppm}$), but appears downfield shifted relative to the equivalent phosphorus atom of $\left[\mathrm{Cp} " \mathrm{Co}\left(\eta^{3}-\mathrm{P}_{4} \mathrm{Ph}_{2}\right)\right](\delta=-80.7 \mathrm{ppm})$.

Figure 2. (a) Solid-state molecular structure of $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{CS}_{2}\right)\right]([\mathrm{K}(18 \mathrm{c}-6)] \mathbf{3})$; thermal ellipsoids are shown at the 50% probability level; hydrogen atoms, solvent molecules and disorder are omitted for clarity. Selected bond lengths [\AA] and angles [${ }^{\circ}$]: P1-P2 2.169(2), P2-P3 2.1697(2), P3-P4 $2.230(2)$, P1-P4 2.2286(2), Co1-P1 2.2936(1), Co1-P2 2.3031(2), Co1-P3 2.2815(2), Co1-S1 2.2725(1), Co1-N1 1.998(4), Co1-N2 1.976(4), P4-C3 1.850(6), C3-S1 1.698(5), C3-S2 1.664(5), P1-P2-P3 85.08(7), P2-P3-P4 88.93(7), P3-P4-P1 82.44(6), P4-P1-P2 88.81(8). b) experimental (upward) and simulated (downward) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $[\mathrm{K}(18 \mathrm{c}-6)] 3$ in THF- d_{8} with nuclei assigned to an AXY ${ }_{2}$ spin system: $\delta\left(\mathrm{P}_{\mathrm{A}}\right)=127.6 \mathrm{ppm}, \delta\left(\mathrm{P}_{\mathrm{X}}\right)=99.6 \mathrm{ppm}, \delta\left(\mathrm{P}_{\mathrm{Y}}\right)=84.9 \mathrm{ppm},{ }^{1} J_{\mathrm{XY}}=-320 \mathrm{~Hz},{ }^{1} J_{\mathrm{AY}}=-110 \mathrm{~Hz}$, ${ }^{2} J_{\mathrm{AX}}=5 \mathrm{~Hz}$.

The anionic nature of $\mathbf{3}^{-}$renders it a suitable precursor for further functionalization via salt metathesis with electrophiles. Addition of one equivalent of $\left[\mathrm{Ph}_{3} \mathrm{C}\right] \mathrm{OTf}(\mathrm{OTf}=$
$\left.\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}\right)$to a $[\mathrm{K}(18 \mathrm{c}-6)] 3$ solution in $\mathrm{C}_{6} \mathrm{D}_{6}$ induces an immediate color change from blue to magenta, accompanied by the precipitation of $[\mathrm{K}(18 \mathrm{c}-6)] \mathrm{OTf}$, as confirmed by X-ray diffraction (XRD) analysis. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum features a single AXY_{2} spin system, verifying the selective formation of a new phosphorus-containing species (see Figure S25 and Scheme S1 in the Supporting Information (SI)). Iterative simulation identified two large ${ }^{1} J_{\text {PP }}$ coupling constants of -308 Hz and -287 Hz , alongside a ${ }^{2} J_{\mathrm{PP}}$ coupling constant of 27 Hz (Figure S26 and Table S5), indicating a structural similarity to 3^{-}, likely with an alkylated CS_{2} component. Despite repeated efforts to crystallize the product and its adducts with coordinating Lewis acids such as $\mathrm{W}(\mathrm{CO})_{5}, \mathrm{Al}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3}$, and AuCl , single crystals suitable for analysis by XRD have remained elusive.

Inspired by the successful functionalization of the cyclo- P_{4} ligand in $\mathbf{1}^{-}$with CS_{2} (vide supra), we extended our investigation to include reactions with other heterocumulenes. While attempts to functionalize the P_{n} moieties with isocyanates and isothiocyanates led to complex mixtures of products that impeded characterization, the use of sulfur diimide $\mathrm{S}\left(\mathrm{NSiMe}_{3}\right)_{2}$ resulted in the selective formation of $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\right.\right.$ $\left.\left.\mathrm{P}_{4} \mathrm{SN}_{2}\left(\mathrm{SiMe}_{3}\right)_{2}\right)\right]$ ([K(18c-6)]4, Scheme 2a). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopic monitoring revealed a quantitative reaction and complete conversion within six days at $35^{\circ} \mathrm{C}$, using a slight excess of the diimide (1.5 equiv.). Surprisingly, the diimide variant with alkyl substituents, $\mathrm{S}(\mathrm{N} t \mathrm{Bu})_{2}$, did not undergo any reaction under similar conditions, or at further elevated temperature.

A SCXRD analysis, using synchrotron radiation at the Rossendorf Beamline BM20 (ESRF), conducted on crystals obtained from a toluene $/ n$-hexane mixture, revealed the structure of anion $\mathbf{4}^{-}$, featuring an η^{3}-coordinating azatetraphosphole ring (Figure 3a). ${ }^{[12]}$ The structure bears an exocyclic NSiMe_{3} group alongside a sulfur atom, both bound to the same phosphorus atom, indicating the insertion of a $\mathrm{Me}_{3} \mathrm{SiN}^{\mathrm{S}}$ moiety into a $\mathrm{P}-\mathrm{P}$ bond. The azaphosphole ring adopts an envelope conformation with the nitrogen atom N3 positioned at the apex, at a distance of $0.700(6) \AA$ above the plane formed by P1, P2, P3, and P4. This conformation resembles cyclic $\mathrm{P}_{4} \mathrm{~N}$ frameworks observed in oligophosphines such as cyclo- $\left[\mathrm{NP}\left(\mathrm{PPh}_{2}\right)_{2}\right]_{2}, \quad$ cyclo- $\left[(\mathrm{PMe})\left(\mathrm{PPh}_{2}\right) \mathrm{N}\right]_{2}, \quad$ and cyclo-[(PPh) $\left.{ }_{4} \mathrm{NR}\right](\mathrm{R}=\mathrm{Me}, \mathrm{Cy}),{ }^{[13 c, h]}$ as well as related compounds. ${ }^{[13]}$ To our knowledge, $[\mathrm{K}(18 \mathrm{c}-6)] 4$ is the first example of a transition metal complex bearing a cyclo- $\mathrm{P}_{4} \mathrm{~N}$ ligand framework. The P1-P2 and the P3-P4 bond lengths of 2.205(2) \AA and $2.200(8) \AA$, respectively, agree with typical $\mathrm{P}-\mathrm{P}$ single bonds ($\sum r_{\mathrm{PP}} 2.22 \AA$), whereas the $\mathrm{P} 2-\mathrm{P} 3$ bond length at $2.047(2) \AA$ suggests partial $\mathrm{P}=\mathrm{P}$ double bond character. ${ }^{[9]}$ This interpretation is
supported by calculated bond orders of $0.89,1.05$ and 1.13 , despite the optimized P2-P3 distance in the theoretical models ($2.155 \AA$) being slightly longer than the experimental value (vide infra).

Figure 3. (a) Solid-state molecular structure of $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{SN}_{2}\left(\mathrm{SiMe}_{3}\right)_{2}\right)\right]$ ($[\mathrm{K}(18 \mathrm{c}-6)] 4)$; thermal ellipsoids are shown at the 50% probability level; hydrogen atoms, solvent molecules, $[\mathrm{K}(18 \mathrm{c}-6)]^{+}$and disorder are omitted for clarity. Selected bond lengths $[\AA]$ and angles [$\left.{ }^{\circ}\right]$: $\mathrm{P} 1-\mathrm{P} 2$ 2.205(2), P2-P3 2.047(2), P3-P4 2.200(8), P1-N3 1.681(4), P4-N3 1.749(5), P1-S1 2.049(2), P1-N4 1.567(5), Co1-P2 2.336(2), Co1-P3 2.235(2), Co1-P4 2.327(2), Co1-S1 2.391(2), P1-P2-P3 103.00(7), P2-P3-P4 95.57(8), P3-P4-N3 104.75(2), P4-N3-P1 109.5(3), Co1-S1-P1 81.90(8), Si1-N3-P1 124.6(3), Si2-N4-P1 134.0(3). (b) experimental (upward) and simulated (downward) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of 4^{-} with nuclei assigned to an AMXY spin system: $\delta\left(\mathrm{P}_{\mathrm{A}}\right)=118.8 \mathrm{ppm}, \delta\left(\mathrm{P}_{\mathrm{M}}\right)=29.2 \mathrm{ppm} \delta\left(\mathrm{P}_{\mathrm{X}}\right)=-12.4 \mathrm{ppm}$, $\delta(\mathrm{PY})=-43.2 \mathrm{ppm},{ }^{1} J_{\mathrm{XY}}=-431 \mathrm{~Hz},{ }^{1} J_{\mathrm{AX}}=-343 \mathrm{~Hz},{ }^{1} J_{\mathrm{MY}}=-331 \mathrm{~Hz}, J_{\mathrm{MX}}=17 \mathrm{~Hz}, J_{\mathrm{AY}}=10 \mathrm{~Hz}, J_{\mathrm{AM}}=$ -32 Hz .

To corroborate the molecular structure derived from SCXRD data, we carried out geometry optimization for anion $\mathbf{4}^{-}$using the TPSS-D4/def2-TZVP CPCM level of theory. Subsequent intrinsic bond orbital analysis (IBO, see SI for details) identified single bonds within the cyclic $\mathrm{P}_{4} \mathrm{~N}$ moiety and a polarized $\mathrm{P}=\mathrm{N}(\mathrm{P} 1-\mathrm{N} 4)$ double bond (see IBO 155 in Figure S43 in SI). ${ }^{[14]}$ Additionally, a lone pair was observed on N4, residing in a p-type orbital with slight delocalization over the $\mathrm{P}_{2} \mathrm{~N}$ unit, which contributes to the stabilization of the planar geometry at N4. The Mayer Bond Order (MBO) analysis further supports the double bond character of the P1-N4 bond, with a calculated MBO of

Scheme 2. Reaction of $[\mathrm{K}(18 \mathrm{c}-6)] 1$ with sulfur diimide and subsequent functionalization with trimethylsilylchloride; reagents/by-products and conditions: a) +1.5 equiv. $\mathrm{S}\left(\mathrm{NSiMe}_{3}\right)_{2}$; THF, $35{ }^{\circ} \mathrm{C}, 6 \mathrm{~d}$; b) $+\mathrm{Me}_{3} \mathrm{SiCl} /-[\mathrm{K}(18 \mathrm{c}-6)] \mathrm{Cl}$; toluene, r.t., 3 h ; c) +1.0 equiv. $\left[n \mathrm{Bu}_{4} \mathrm{~N}\right] \mathrm{CN}$; $\mathrm{C}_{6} \mathrm{D}_{6}$, r.t., 3 h or +1.0 equiv. $\mathrm{KOPh} /+1.0$ equiv. $18 \mathrm{c}-6 ; \mathrm{C}_{6} \mathrm{D}_{6}$, r.t., 3 d; yields: $[\mathrm{K}(18 \mathrm{c}-6)] 4: 63 \%, 5: 63 \%$.
1.57. These theoretical insights align well with the $\mathrm{P} 1-\mathrm{N} 4$ bond length of $1.567(5) \AA$, which falls in the expected range for a $\mathrm{P}=\mathrm{N}$ double bond ($\sum r_{\mathrm{PN}} 1.62 \AA$). ${ }^{[9]}$ Conversely, the MBO value of the endocyclic $\mathrm{P} 1-\mathrm{N} 3$ and $\mathrm{P} 4-\mathrm{N} 3$ bonds are 1.05 and 0.95 , respectively, indicative of single bonds.

The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $[\mathrm{K}(18 \mathrm{c}-6)] 4$ in $\mathrm{CD}_{3} \mathrm{CN}$ exhibits an AMXY spin system, distinguished by large ${ }^{1} J_{\mathrm{PP}}$ coupling constants ranging from -331 Hz to -431 Hz , with chemical shifts recorded at $\delta=118.8\left(\mathrm{P}_{\mathrm{A}}\right), 29.2\left(\mathrm{P}_{\mathrm{E}}\right),-12.4\left(\mathrm{P}_{\mathrm{M}}\right)$, and -43.2 (Px) ppm (Figure 3b and Figure S7, SI). These findings are characteristic for an asymmetric catena- P_{4} unit, consistent with previous observations for similar systems. ${ }^{[7,8 b, 15]}$ The largest ${ }^{1} J_{\mathrm{PP}}$ coupling constant was observed between phosphorus atoms P 2 and P 3 , further supporting partial $\mathrm{P}=\mathrm{P}$ double bond character. In the ${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum, two distinct doublets emerge: one at $\delta=-17.9 \mathrm{ppm}$ corresponding to the imino- group, and one at $\delta=3.6 \mathrm{ppm}$, assigned to the amino- group. These groups feature ${ }^{2} J_{\text {SiP }}$ coupling constants of 16.6 Hz and 6.1 Hz , respectively. For comparison, the resonance of $\mathrm{S}\left(\mathrm{NSiMe}_{3}\right)_{2}$ appears at $\delta=1.6 \mathrm{ppm}$ in toluene- $d_{8}{ }^{[16]}$ The more pronounced ${ }^{2} J_{\text {SiP }}$ coupling associated with the exocyclic NSiMe_{3} group is likely a consequence of its involvement in the $\mathrm{P} 1=\mathrm{N} 4$ multiple bond.

Given the ionic nature of $\mathbf{4}^{-}$and the anticipated nucleophilicity of the phosphaimino nitrogen N4 (Mulliken charge -0.48), we hypothesized that it would readily undergo salt metathesis reaction with electrophiles. Our assumption was confirmed when the addition of $\mathrm{Me}_{3} \mathrm{SiCl}$ to a solution of $[\mathrm{K}(18 \mathrm{c}-6)] 4$ in toluene resulted in an immediate color change from blue to purple due to the formation of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{SN}_{2}\left(\mathrm{SiMe}_{3}\right)_{3}\right)\right](\mathbf{5}$, Scheme 2b), which was crystallized as purple needles from n-hexane at $-35^{\circ} \mathrm{C}$ in 63% isolated yield. Synchrotron SCXRD analysis of 5 revealed the silylation of the imino moiety, resulting in a bis(trimethylsilyl)amino group (Figure 4a). ${ }^{[12]}$ The structural characteristics of $\mathbf{5}$ closely resemble those of its precursor $\mathbf{4}^{-}$(vide supra), including the presence of a central η^{3}-coordinating azatetraphosphole ring. However, the P1-N4 bond length (1.666(4) Å) is elongated due to its increased single bond character. The silylated
nitrogen atom N4 in $\mathbf{5}$ adopts an almost trigonal planar geometry ($\sum \Varangle 358^{\circ}$) positioned $0.144(4) \AA$ above the plane defined by $\mathrm{Si} 2, \mathrm{Si} 3$, and the chiral phosphorus atom P1. The presence of the trimethylsilyl groups attached to N 4 is reflected in the ${ }^{1} \mathrm{H}$ NMR spectrum by two distinct signals, which persist even when the sample is subjected to a variable temperature (VT) NMR experiment at up to $100^{\circ} \mathrm{C}$ (Figure S11, SI). This phenomenon is attributed to restricted rotation around the $\mathrm{P} 1-\mathrm{N} 4$ bond, which frustrates chemical equivalence of the trimethylsilyl groups on the NMR timescale. In addition, the three inequivalent silicon atoms are discernible in the ${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum, giving rise to two doublets at $\delta=7.4\left(\mathrm{Si} 3,{ }^{2} J_{\text {SiP }}=11 \mathrm{~Hz}\right)$ and $\delta=11.6 \mathrm{ppm}\left(\mathrm{Si} 2,{ }^{2} J_{\text {SiP }}=6 \mathrm{~Hz}\right)$, as well as a singlet at $\delta=9.3 \mathrm{ppm}$ for Si1. The assignment of the signals has been facilitated through both homo- and heteronuclear 2D NMR spectroscopy, further supported by the

Figure 4. (a) Solid-state molecular structure of [(Ar*BIAN)Co $\left.\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{SN}_{2}\left(\mathrm{SiMe}_{3}\right)_{3}\right)\right]$ (5); thermal ellipsoids are shown at the 50% probability level; hydrogen atoms, solvent molecules and disorder are omitted for clarity. Selected bond lengths [\AA] and angles [${ }^{\circ}$]: P1-P2 2.1966(2), P2-P3 2.1451(2), P3-P4 2.1789(2), Co1-P2 2.3297(1), Co1-P3 2.3210(1), Co1-P4 2.2935(1), Co1-S1 2.3416(1), Co1-N1 $1.970(4), \mathrm{P} 1-\mathrm{N} 31.670(4), \mathrm{P} 4-\mathrm{N} 31.782(4), \mathrm{P} 1-\mathrm{N} 41.666(4), \mathrm{P} 1-\mathrm{S} 12.0261(2)$, $\mathrm{P} 1-\mathrm{P} 2-\mathrm{P} 3100.50(6)$, P2-P3-P4 94.04(6), P2-P1-N4 120.79(1), P1-N3-P4 106.3(2), P1-N4-Si3 120.1(2), Si3-N4-Si2 120.8(2). (b) experimental (upward) and simulated (downward) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of 5 with nuclei assigned to an AMXY spin system: $\delta\left(\mathrm{P}_{\mathrm{A}}\right)=134.5 \mathrm{ppm}, \delta\left(\mathrm{P}_{\mathrm{M}}\right)=49.3 \mathrm{ppm} \delta\left(\mathrm{P}_{\mathrm{X}}\right)=-51.8 \mathrm{ppm}, \delta\left(\mathrm{P}_{\mathrm{Y}}\right)=-59.9 \mathrm{ppm},{ }^{1} J_{\mathrm{XY}}$ $=-423 \mathrm{~Hz},{ }^{1} J_{\mathrm{MY}}=-425 \mathrm{~Hz},{ }^{1} J_{\mathrm{AX}}=-350 \mathrm{~Hz}, J_{\mathrm{MX}}=31 \mathrm{~Hz}, J_{\mathrm{AY}}=11 \mathrm{~Hz}, J_{\mathrm{AM}}=-21 \mathrm{~Hz}$.
observed ${ }^{2} J_{\text {SiP }}$ coupling constants (vide supra). The P_{4} in 5 unit gives rise to an AMXY spin system in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (Figure S 4 b), featuring chemical shifts and coupling constants akin to those of the precursor 4^{-}and related asymmetric $\mathrm{P}_{4}-$ chains. ${ }^{[7,8 b, 15]}$ In contrast, the symmetrical, uncoordinated, and cyclic azaphosphane $\left[(\mathrm{PPh})_{4} \mathrm{NMe}\right]$ exhibits two multiplet resonances at $\delta=126.0 \mathrm{ppm}$ and $\delta=13.2 \mathrm{ppm}$, which are distinct from the resonances of compound $5 .{ }^{[13 \mathrm{~h}]}$ In particular, the resonances of the middle phosphorus atoms in the chain of $\mathbf{5}$ are observed at higher field at $\delta=-51.8 \mathrm{ppm}$ and $\delta=-59.9 \mathrm{ppm}$.

The addition of the $-\mathrm{SiMe}_{3}$ group is a reversible process, as treatment of $\mathbf{5}$ with either cyanide or alkoxide salts regenerate anion $\mathbf{4}^{-}$. These feature either $\left[n \mathrm{Bu} \mathrm{H}_{4}\right]^{+}$or $[\mathrm{K}(18 \mathrm{c}-6)]^{+}$cations, depending on the salt used (Scheme 2c), resembling classic acidbase reactivity (Figure S27).

Shifting our focus from anionic cyclo- P_{4} complex $\mathbf{1}^{-}$, we investigated the acylated and neutral [(Ar*BIAN)Co($\left.\left.\eta^{3}: \eta^{1}-\mathrm{P} 4 \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right]$ (2), anticipating it might exhibit similar reactivity toward electrophilic heterocumulenes. However, likely due to the reduced nucleophilicity of the acylated phosphorus atoms in 2, no significant reactivity was observed with either CS_{2} or $\mathrm{S}(\mathrm{NR})_{2}$. Nonetheless, the addition of sulfur-containing isothiocyanates, specifically CyNCS or PhNCS, to a solution of $\mathbf{2}$ resulted in a notable color change from magenta to purple (Scheme 3). The reaction with PhNCS (1.1 equiv.) led to the complete conversion of 2 within three hours, according to ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopic monitoring. In contrast, the reaction with CyNCS (1.4 equiv.) proceeded at a markedly slower pace and achieved full conversion after three days. We propose a reaction mechanism for the isothiocyanate insertion that begins with the attack of the acylated phosphorus atom on the carbon atom of the heterocumulene. This is followed by attack of the nitrogen on the carbonyl carbon atom, and finally the coordination of the sulfur atom to the cobalt center (see the SI, Scheme S2). The resulting complexes $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P} 4 \mathrm{C}(\mathrm{S}) \mathrm{N}(\mathrm{R}) \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right](\mathrm{R}=\mathrm{Cy}(\mathbf{6 a}) ; \mathrm{R}=\mathrm{Ph}(\mathbf{6 b}))$ were isolated in 80% and 64% yield, respectively.

Scheme 3. Insertion of isothiocyanates into the $\mathrm{P}-\mathrm{C}$ bond of 2; reagents and conditions: +1.4 equiv. CyNCS; toluene, r.t., 3 d (6a); +1.1 equiv. PhNCS; toluene, r.t., 3 h ($\mathbf{6 b}$); yields: $\mathbf{6 a}: 80 \% \mathbf{6 b}: 63 \%$.

Single-crystal XRD analysis performed on large block-shaped crystals, grown from toluene, confirmed the insertion of the isothiocyanate into the $\mathrm{P}-\mathrm{C}$ bond of $\mathbf{2}$, forming $\mathbf{6 a}$ (Figure 5). While there are documented instances of isothiocyanates undergoing insertion into $\mathrm{P}-\mathrm{P}, \mathrm{P}-\mathrm{Si}$, and $\mathrm{P}-\mathrm{H}$ bonds, to our knowledge this marks the first example of a reaction involving a $\mathrm{P}-\mathrm{C}$ bond. ${ }^{[5,17]}$ In $\mathbf{6 a}$, the thioacyl group coordinates to the cobalt via the sulfur atom, rather than through the oxygen atom of the remote acyl group. ${ }^{[7]}$ This coordination shift is reflected in the ATR-IR spectrum, where the $\mathrm{C}=\mathrm{O}$ stretching vibration in 6a was distinctly observed at $\tilde{v}_{\mathrm{CO}}=1727 \mathrm{~cm}^{-1}$, a band typical for thioacyl groups. ${ }^{[18]}$ This contrasts the $\mathrm{C}=\mathrm{O}$ stretch in 2, which was predicted to occur at \tilde{v}_{CO} $=1462 \mathrm{~cm}^{-1}$, thus overlapping with the BIAN C-N vibrations in the fingerprint region. ${ }^{[7]}$ The puckered cyclo- P_{4} moiety observed in complex $\mathbf{6 a}$ closely resembles that in complexes 2, 3- ${ }^{-}$and $\left[\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Co}\left(\eta^{3}-\mathrm{P}_{4} \mathrm{R}_{2}\right)\right]\left(\mathrm{Cp}^{\prime \prime \prime}=\mathrm{C}_{5} \mathrm{H}_{2} t \mathrm{Bu} 3 ; \mathrm{R}=\mathrm{Ph}, \mathrm{Cy}, t \mathrm{Bu}\right),{ }^{[7,11]}$ featuring elongated P1-P2 (2.2437(8) \AA) and P1-P4 (2.2360(7) \AA) bond lengths alongside shorter P2-P3 (2.1697(7) \AA) and P3-P4 (2.1669(8) Å) bond lengths, indicative of some degree of multiple bond character. Furthermore, the bond lengths of S1-C3 (1.696(2) A) and C3-N3 (1.343(3) \AA) are elongated relative to those in free aryl isothiocyanate ($\mathrm{S}-\mathrm{C}$, $1.566 \AA ; \mathrm{C}-\mathrm{N} 1.152 \AA$), indicating increased single bond character in 6a. ${ }^{[19]}$ The coordination sphere of the cobalt center is completed by an Ar*BIAN ${ }^{--}$radical anion. ${ }^{[20]}$ The phenyl-substituted derivative is essentially isostructural with $\mathbf{6 b}$ (Figure S38, SI).

Figure 5. Solid-state molecular structure of [(Ar*BIAN)Co($\left.\left.\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{C}(\mathrm{S}) \mathrm{N}(\mathrm{Cy}) \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right]$ (6a); thermal ellipsoids are shown at the 50% probability level; hydrogen atoms and solvent molecules are omitted for clarity. Selected bond lengths [\AA] and angles [${ }^{\circ}$]: P1-P2 2.2437(8), P2-P3 2.1697(7), P3-P4 2.1669(8), P1-P4 2.2360(7), Co1-P2 2.2881(5), Co1-P3 2.2915(6), Co1-P4 2.2838(8), Co1-S1 2.2583(6), Co1-N1 1.9701(2), Co1-N2 1.9693(2), S1-C3 1.696(2), C3-N3 1.343(3), C4-N3 1.471(3), P1-C3 1.856(2), C4-O1 1.196(3), P1-P2-P3 88.80(3), P2-P3-P4 85.38(3), P3-P4-P1 89.07(3), P4-P1-P2 82.05(3).

The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{6 a}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ features two triplets at $\delta=86.3\left(\mathrm{P}_{\mathrm{M}}\right) \mathrm{ppm}$ and $\delta=117.3\left(\mathrm{P}_{\mathrm{A}}\right) \mathrm{ppm}$, as well as a significantly broadened signal $\left(\Delta \nu_{1 / 2}=2500 \mathrm{~Hz}\right)$ at $\delta=93.0\left(\mathrm{P}_{\mathrm{E} / \mathrm{X}}\right) \mathrm{ppm}$. This broadening suggests a dynamic process occurring in solution. Given the solid-state molecular structure of $\mathbf{6 a}$, two distinct signals are expected for the phosphorus atoms P2 and P4 if the rotation is restricted around the C4-N3 or the C3-N3 axis, with the latter axis exhibiting partial multiple bond character (1.343(3) \AA vs. $\sum r_{\mathrm{CN}} 1.46 \AA$ for a single bond; labeling according to Figure 5). VT ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy elucidated this phenomenon further, revealing that the broad resonance at ambient temperature separates into two distinct signals at $0^{\circ} \mathrm{C}$. These resolve below $-40^{\circ} \mathrm{C}$ into resonances, indicative of an AEMX spin system (Figure 6). In contrast, the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{6 b}$, which possesses nearly identical $\mathrm{C} 3-\mathrm{N} 3$ and $\mathrm{C} 4-\mathrm{N} 3$ bond lengths, displays well-resolved signals conforming to an $\mathrm{AB}_{2} \mathrm{X}$ spin system with similar chemical shifts akin to those of $\mathbf{6 a}$ (see Figure S23, SI). This distinct behavior in solution is probably due to hindered rotational motion resulting from the steric demand of the substituent.

Figure 6. (a) Variable temperature ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $6 \mathbf{a}$ in toluene- d_{8}. (b) experimental (upward) and simulated (downward) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{6 a}$ at $-60{ }^{\circ} \mathrm{C}$ in toluene- d_{8} with nuclei assigned to an AEMX spin system: $\delta\left(\mathrm{P}_{\mathrm{A}}\right)=117.9 \mathrm{ppm}, \delta\left(\mathrm{P}_{\mathrm{E}}\right)=105.4 \mathrm{ppm}, \delta\left(\mathrm{P}_{\mathrm{M}}\right)=85.5 \mathrm{ppm}, \delta\left(\mathrm{P}_{\mathrm{X}}\right)=77.6 \mathrm{ppm}$, ${ }^{1} J_{\mathrm{AE}}=-324 \mathrm{~Hz},{ }^{1} J_{\mathrm{AX}}=-321,{ }^{1} J_{\mathrm{EM}}=-129 \mathrm{~Hz},{ }^{1} J_{\mathrm{MX}}=-133 \mathrm{~Hz},{ }^{2} J_{\mathrm{AM}}=18 \mathrm{~Hz},{ }^{2} J_{\mathrm{EX}}=20 \mathrm{~Hz}$.

Complex 6a, which incorporates the alkyl-substituted isothiocyanate CyNCS, demonstrates stability in solution even when heated to $50^{\circ} \mathrm{C}$ for up to three weeks. In sharp contrast, the phenyl-substituted counterpart, $\mathbf{6} \mathbf{b}$ undergoes chemical transformation within just a few hours at room temperature to more thermally-stable species. Although the specific products resulting from 6b's reactivity have not been successfully isolated for detailed characterization so far, continuous monitoring via ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy has provided valuable insights. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of the reaction mixture involving $\mathbf{6 b}$ display the selective emergence of two distinct sets of signals. These were simulated and identified as ABMX and AEMX spin systems (Figure S28-30 and Table S6-7, SI), and bear strong resemblance to those observed in previously reported cyclo- P_{4} and catena- P_{4} complexes, suggesting that $\mathbf{6 b}$'s reactivity in solution might lead to similar structural motifs. ${ }^{[7,11,15]}$

3.3 Conclusion

The reaction of anionic cyclo- P_{4} complex $\mathbf{1}^{-}$with CS_{2} leads to the electrophilic addition of the heterocumulene to the cyclo- P_{4} ligand, resulting in the formation of $\mathbf{3}^{-}$, which features a puckered $\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{CS}_{2}$ ligand. Initial reactivity studies of $\mathbf{3}^{-}$toward electrophiles indicate a propensity for salt metathesis reactions, suggesting new pathways for subsequent functionalization. Upon employing the sulfur diimide $\mathrm{S}\left(\mathrm{NSiMe}_{3}\right)_{2}$ as the reactant, $\mathrm{P}-\mathrm{P}$ bond insertion was facilitated for cyclo- P_{4} complex $\mathbf{1}^{-}$, yielding complex 4^{-}, with a novel $\mathrm{CoP}_{4} \mathrm{~N}^{-}$core. Compound 3^{-}represents the first azatetraphosphole complex and undergoes further functionalization to yield $\mathbf{5}$ upon reaction with $\mathrm{Me}_{3} \mathrm{SiCl}$. These compounds, $\mathbf{4}^{-}$and $\mathbf{5}$, have been characterized with various analytical techniques, including single crystal X-ray structural analysis at synchrotron facilities and computational chemistry studies. The neutral complex 2 exhibits discrepant reactivity, undergoing insertion of isothiocyanates into the $\mathrm{P}-\mathrm{C}$ bond of the acylated tetraphosphido ligand, yielding the highly derivatized complexes $\mathbf{6 a}$ and $\mathbf{6 b}$. This new reaction type expands the repertoire of $\mathrm{P}-\mathrm{C}$ bond insertion reactions available for the strategic functionalization of tetraphosphido ligands.

Overall, our findings highlight the versatility and potential of low-valent polyphosphido complexes for effecting targeted and diverse transformations of P_{4}. With increased availability of routes to various cyclo- P_{4} complexes, particularly highlighted by recent advancements, this paves the way to unique phosphorus compounds. Ongoing research in this area is instrumental in deepening our understanding of reactivity patterns and mechanisms, laying the essential groundwork for the development of systems capable of facilitating the efficient transition-metal-mediated functionalization of P_{4}.

3.4 Experimental Details

General Synthetic Methods

All reactions and product manipulations were carried out in flame-dried glassware under an inert atmosphere of argon using standard Schlenk-line or glovebox techniques (maintained at $<0.1 \mathrm{ppm} \mathrm{H}_{2} \mathrm{O}$ and $\left.<0.1 \mathrm{ppm} \mathrm{O} 2\right)$. [K(18c-6)][(Ar*BIAN)Co $\left.\left(\eta^{4}-\mathrm{P}_{4}\right)\right]$ $([K(18 \mathrm{c}-6)] \mathbf{1})$ and $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right]$ (2) were prepared according to previously reported procedures. ${ }^{[7]} \mathrm{S}\left(\mathrm{NSiMe}_{3}\right)_{2}$ and $\mathrm{CS}_{2}(\mathrm{c}=5.0 \mathrm{M}$ in THF) were purchased from Sigma Aldrich; PhNCS, CyNCS from Alfa Aesar; and all were used as received. $\mathrm{S}(\mathrm{N} t \mathrm{Bu})_{2}$ was provided by D. Stalke (University of Göttingen).
Solvents were dried and degassed with a MBraun SPS800 solvent purification system. All dry solvents except n-hexane was stored under argon over activated $3 \AA$ molecular sieves in gas-tight ampules. n-Hexane was instead stored over potassium mirrors.

General Analytical Techniques

NMR spectra were recorded on Bruker Avance 400 spectrometers at 300 K and were internally referenced to residual solvent resonances (${ }^{1} \mathrm{H}$ NMR: $\mathrm{C}_{6} \mathrm{D}_{6}$: 7.15 ppm , THF- d_{8} : 1.72 ppm , MeCN- $d_{3}: 1.96 \mathrm{ppm}$, toluene- $d_{8}: 2.11 \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{C}_{6} \mathrm{D}_{6}: 128.06 \mathrm{ppm}$, THF- $d_{8}: 25.31 \mathrm{ppm}, \mathrm{MeCN}-d_{3}: 1.79$, toluene- $\left.d_{8}: 21.37 \mathrm{ppm}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectra were referenced externally to $85 \% \mathrm{H}_{3} \mathrm{PO}_{4 \text { (aq.). }}$. Chemical shifts, δ, are given in ppm referring to external standards of tetramethylsilane $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\right) .{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR signals were assigned based on 2D NMR spectra (COSY, HSQC, HMBC, NOESY and ROESY).

UV/Vis spectra were recorded on an Ocean Optics Flame Spectrometer with a DH-2000BAL light source. Elemental analysis were performed by the Central Analytics Department of the University of Regensburg using a Vario micro cube. Mass spectra of compound $[\mathrm{K}(18 \mathrm{c}-6)] 4$ was recorded on a Finnigan MAT 95 spectrometer. IR spectra were recorded with a Bruker ALPHA spectrometer equipped with a diamond ATR unit.

NMR Simulations

For compounds which give rise to a higher order spin system in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum, the resolution enhanced ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum was transferred to the software gNMR, version 5.0.6, by Cherwell Scientific. ${ }^{[21]}$ The full line shape iteration procedure of gNMR was applied to obtain the best match of the fitted to the experimental spectrum. ${ }^{1} J\left({ }^{31} \mathrm{P}^{31} \mathrm{P}\right)$ coupling constants were set to negative values and all other signs of the coupling constants were obtained accordingly. ${ }^{[22]}$

3.4.1 Synthesis of Compounds
 $[K(18 c-6)]\left[\left(\mathrm{Ar}^{*} \operatorname{BIAN}\right) \mathrm{Co}\left(\boldsymbol{\eta}^{\mathbf{3}}: \boldsymbol{\eta}^{1}-\mathrm{P}_{4} \mathrm{CS}_{2}\right)\right]([K(18 \mathrm{c}-6)] 3):$

A stock solution of $\mathrm{CS}_{2}(30.6 \mu \mathrm{~L}, \mathrm{c}=5.0 \mathrm{M}$ in THF, $0.153 \mathrm{mmol}, 1.2$ equiv.) was added to a deep purple solution of $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{4}-\right.\right.$ P_{4})] ($200 \mathrm{mg}, 0.128 \mathrm{mmol}, 1.0$ equiv.) in THF $(4 \mathrm{~mL})$ at room temperature. The reaction mixture was stirred overnight, resulting in a blue solution which was filtered. The filtrate was layered with n-hexane (12 mL). After three days, blue shimmering crystals had formed, which were isolated by decantation of the mother liquor, washed with n-hexane $(2 \times 1 \mathrm{~mL})$ and dried in vacuo. The solid contained 0.4 molecules of n-hexane and 0.7 molecules of THF after drying as indicated by ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra and elemental analysis. Slow diffusion of n-hexane into a saturated toluene solution of $[\mathrm{K}(18 \mathrm{c}-6)] \mathbf{3}$ yielded crystals suitable for single-crystal X-ray diffraction.
Yield: 186 mg ($0.115 \mathrm{mmol}, 89 \%$).
${ }^{1} \mathbf{H}$ NMR ($\left.400.13 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{THF}-d_{8}\right): \delta / \mathrm{ppm}=1.11-1.16\left(\mathrm{~m}, 12 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $\left.i \mathrm{Pr}\right)$, 2.78 (sept, ${ }^{3} J_{\mathrm{HH}}=6.9 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ of $i \mathrm{Pr}$), $3.45(\mathrm{br} \mathrm{s}, 24 \mathrm{H}, 18 \mathrm{c}-6), 5.06(\mathrm{~s}, 2 \mathrm{H}$, $\left.{ }^{-} \mathrm{C}^{9} H(\mathrm{Ph})_{2}\right), 5.50\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}^{3}-H\right.$ of BIAN), 6.22-6.26 (m, $2 \mathrm{H}, \mathrm{C}^{4}-H$ of BIAN), 6.41-6.46 (m, $8 \mathrm{H}, \mathrm{C}-\mathrm{H}_{\mathrm{Ar}}$ of Ph$), 6.51-6.59\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}-H_{\mathrm{Ar}}\right.$ of Ph$), 6.65-6.70(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{C}-H_{\mathrm{Ar}}$ of Ph$), 6.79-6.81\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}-H_{\mathrm{Ar}}\right.$ of Ph$), 6.85-6.86\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}^{11}-H\right), 6.90-7.10$ $\left(\mathrm{m}, 14 \mathrm{H}, \mathrm{C}-H_{\mathrm{Ar}}\right.$ of Ph overlapping with $\left.\mathrm{C}^{13}-H\right), 7.23\left(\mathrm{~d},{ }^{3} \mathrm{JHH}_{\mathrm{HH}}=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}^{5}-H\right.$ of BIAN), 7.31-7.33 (m, 4H, C $-H_{\mathrm{Ar}}$ of Ph), 7.57-7.59 (m, 4H, C $-H_{\mathrm{Ar}}$ of Ph), $7.96(\mathrm{~s}, 2 \mathrm{H}$, $\left.{ }_{-} \mathrm{C}^{15} \mathrm{H}(\mathrm{Ph})_{2}\right)$.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(100.66 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{THF}-d_{\delta}\right): \delta / \mathrm{ppm}=23.9\left(\mathrm{~s},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $\left.i \mathrm{Pr}\right), 24.3$ (s, $-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ of $\left.i \operatorname{Pr}\right), 34.2\left(\mathrm{~s},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $\left.i \operatorname{Pr}\right), 51.1\left(\mathrm{~s},-C^{9} \mathrm{H}(\mathrm{Ph})_{2}\right), 52.5$ (s, $\left.{ }^{-} C^{15} \mathrm{H}(\mathrm{Ph})_{2}\right), 71.1$ ($\mathrm{s}, 18 \mathrm{c}-6$), 120.7 ($\mathrm{s}, C^{3}-\mathrm{H}$ of BIAN), 122.9 ($\mathrm{s}, C^{5}-\mathrm{H}$ of BIAN), 125.3 (s, $C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), 125.6 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), 125.7 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), 125.9 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), $127.4\left(\mathrm{~s}, C^{11}-\mathrm{H}\right), 127.5\left(\mathrm{~s}, C^{13}-\mathrm{H}\right), 127.6\left(\mathrm{~s}, C_{\mathrm{Ar}}-\mathrm{H}\right.$ of Ph$), 127.7\left(\mathrm{~s}, C_{\mathrm{Ar}}-\mathrm{H}\right.$ of Ph$), 127.7$ ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), $128.0\left(\mathrm{~s}, C_{\mathrm{Ar}}-\mathrm{H}\right.$ of Ph$), 128.2\left(\mathrm{~s}, C^{4}-\mathrm{H}\right.$ of BIAN), 130.6 ($\mathrm{s}, C_{\mathrm{Ar}-\mathrm{H} \text { of }}$ $\mathrm{Ph}), 130.8\left(\mathrm{~s}, C_{\mathrm{Ar}}-\mathrm{H}\right.$ of Ph$), 130.9\left(\mathrm{~s}, C^{6}\right.$ of BIAN), $131.2\left(\mathrm{~s}, C_{\mathrm{Ar}-\mathrm{H} \text { of } \mathrm{Ph}), 131.5(\mathrm{~s} \text {, }}^{\text {, }}\right.$ $C_{\mathrm{Ar}}-\mathrm{H}$ of Ph$), 134.0\left(\mathrm{~s}, C^{2}\right.$ of BIAN), $134.1\left(\mathrm{~s}, C^{10}\right), 134.4\left(\mathrm{~s}, C^{7}\right.$ of BIAN), $138.8\left(\mathrm{~s}, C^{14}\right)$, $143.6\left(\mathrm{~s}, C_{\mathrm{Ar}}\right.$ of Ph$), 143.9\left(\mathrm{~s}, C^{12}\right), 145.0\left(\mathrm{~s}, C_{\mathrm{Ar}}\right.$ of Ph$), 146.6\left(\mathrm{~s}, C_{\mathrm{Ar}}\right.$ of Ph$), 147.6\left(\mathrm{~s}, C_{\mathrm{Ar}}\right.$ of Ph), $150.9\left(\mathrm{~s}, C^{8}-\mathrm{N}\right), 159.8\left(\mathrm{~s}, C^{1}=\mathrm{N}\right.$ of BIAN); $C=\mathrm{S}:$ not detected.
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{THF}-d_{8}\right):\left(\mathrm{AXY}_{2}\right)$ spin system $\delta / \mathrm{ppm}=83.3-86.1$ $\left(\mathrm{m}, 2 \mathrm{P}, \mathrm{P}_{\mathrm{Y}}\right)$, 97.8-101.7 (m, 1P, P_{X}), $127.6\left(\mathrm{t}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{A}}\right)$, for parameters obtained by simulation, see Figure S3 and Table S1.
UV/Vis (THF, $\lambda_{\max } / \mathrm{nm}, \varepsilon_{\max } / \mathrm{L} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~cm}^{-1}$): 330 (22000), 375 sh (14000), 570 (15000), 725 (10500).
Elemental analysis calcd. for $\left(\mathrm{C}_{95} \mathrm{H}_{92} \mathrm{CoKN}_{2} \mathrm{O}_{6} \mathrm{P}_{4} \mathrm{~S}_{2}\right) \cdot(n \text {-hexane })_{0.4}(\mathrm{THF})_{0.7}$ $\left(\mathrm{M}_{\mathrm{w}}=1643.84 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\right): \mathrm{C} 69.62, \mathrm{H} 6.02, \mathrm{~N} 1.62, \mathrm{~S} 3.71$; found C 69.25 , H 6.07, N 1.48, S 4.11.

$\mathrm{N}, \mathrm{N}-\mathrm{Bis}($ trimethylsilyl)sulfurdiimide ($19.8 \mathrm{mg}, 22.6 \mu \mathrm{~L}, 0.096 \mathrm{mmol}, 1.5$ equiv.) was added to a deep purple solution of $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{4}-\mathrm{P}_{4}\right)\right] \quad(100 \mathrm{mg}$, $0.064 \mathrm{mmol}, 1.0$ equiv.) in THF (2 mL). The reaction mixture was stirred at $35^{\circ} \mathrm{C}$ for six days, resulting in a blue solution which was filtered. n-Hexane (40 mL) was added while stirring, precipitating a purple solid, which was isolated by filtration, washed with n-hexane ($3 \times 2 \mathrm{~mL}$) and dried in vacuo. Slow diffusion of n-hexane into a saturated toluene solution of $[\mathrm{K}(18 \mathrm{c}-6)] \mathbf{4}$ yielded crystals suitable for single-crystal X-ray diffraction.

Yield: 71 mg ($0.040 \mathrm{mmol}, 63 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(400.30 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{MeCN}-d_{3}\right): \delta / \mathrm{ppm}=-0.14\left(\mathrm{~s}, 9 \mathrm{H},-\operatorname{Si}\left(\mathrm{C}^{16} H_{3}\right)_{3}\right), 0.06(\mathrm{~s}$, $\left.9 \mathrm{H},-\mathrm{Si}\left(\mathrm{C}^{17} \mathrm{H}_{3}\right)_{3}\right), 1.11-1.17\left(\mathrm{~m}, 12 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $\left.i \mathrm{Pr}\right), 2.76-2.88\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $i \operatorname{Pr}), 3.55(\mathrm{~s}, 24 \mathrm{H}, 18 \mathrm{c}-6), 4.66\left(\mathrm{~s}, 1 \mathrm{H},-\mathrm{C}^{9 / 9} H(\mathrm{Ph})_{2}\right), 4.98\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}^{3 / 3^{\prime}}-H\right.$ of BIAN), $5.19\left(\mathrm{~s}, 1 \mathrm{H},-\mathrm{C}^{9 / 9} H(\mathrm{Ph})_{2}\right), 5.71\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}^{3 / 3^{\prime}}-H\right.$ of BIAN), 6.06-6.19 (m, $7 \mathrm{H}, \mathrm{C}^{4 / 4^{\prime}-H}$ of BIAN overlapping with $\mathrm{C}-H_{\mathrm{Ar}}$ of Ph), 6.32-6.36 (m, 2 H , $\mathrm{C}-H_{\mathrm{Ar}}$ of Ph$)$, 6.47-6.59 $\left(\mathrm{m}, 7 \mathrm{H}, \mathrm{C}^{4 / 4^{4}}-H\right.$ of BIAN overlapping with $\mathrm{C}-H_{\mathrm{Ar}}$ of Ph$)$,
 overlapping with $\mathrm{C}-H_{\mathrm{Ar}}$ of Ph$), 7.03-7.32\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{C}^{5 / 5^{\prime}}-H\right.$ of BIAN overlapping with $\mathrm{C}-H_{\mathrm{Ar}}$ of Ph), 7.43-7.48 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{C}^{5 / 5^{\prime}-}-H$ of BIAN overlapping with $\mathrm{C}-H_{\mathrm{Ar}}$ of Ph), 7.95 (s, 1H, - $\left.\mathrm{C}^{15 / 15^{\prime}} H(\mathrm{Ph})_{2}\right), 8.49\left(\mathrm{~s}, 1 \mathrm{H},-\mathrm{C}^{15 / 15}{ }^{\prime} H(\mathrm{Ph})_{2}\right)$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(100.61 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{MeCN}-d_{3}\right): \delta / \mathrm{ppm}=1.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=3.9 \mathrm{~Hz}\right.$, $-\mathrm{Si}\left(C^{17} \mathrm{H}_{3}\right)_{3}$ overlapping with $\mathrm{MeCN}-d_{3}$ solvent signal), $4.7\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=3.1 \mathrm{~Hz}\right.$, $\left.-\mathrm{Si}\left(\mathrm{C}^{16} \mathrm{H}_{3}\right)_{3}\right), 24.2\left(\mathrm{~s},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $\left.i \mathrm{Pr}\right), 24.4\left(\mathrm{~s},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $\left.i \mathrm{Pr}\right), 24.4\left(\mathrm{~s},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $i \mathrm{Pr}$), $24.6\left(\mathrm{~s},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $\left.i \mathrm{Pr}\right), 34.3\left(\mathrm{~s},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $\left.i \mathrm{Pr}\right), 34.4\left(\mathrm{~s},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $i \operatorname{Pr}), 50.9\left(\mathrm{~s},-C^{9 / 9} \mathrm{H}(\mathrm{Ph})_{2}\right), 51.3\left(\mathrm{~s},-C^{15 / 15} \mathrm{H}(\mathrm{Ph})_{2}\right), 51.6\left(\mathrm{~s},-C^{9 / 9} \mathrm{H}(\mathrm{Ph})_{2}\right), 52.0(\mathrm{~s}$, $\left.-C^{15 / 15^{\prime}} \mathrm{H}(\mathrm{Ph})_{2}\right), 71.0(\mathrm{~s}, 18 \mathrm{c}-6), 120.5\left(\mathrm{~s}, C^{3 / 3^{\prime}}-\mathrm{H}\right.$ of BIAN), $120.7\left(\mathrm{~s}, C^{3 / 3^{\prime}}-\mathrm{H}\right.$ of BIAN),
 $C_{\mathrm{Ar}}-\mathrm{H}$ of Ph$), 126.1\left(\mathrm{~s}, C_{\mathrm{Ar}}-\mathrm{H}\right.$ of Ph$), 126.1\left(\mathrm{~s}, C_{\mathrm{Ar}^{-}}-\mathrm{H}\right.$ of Ph$), 126.2\left(\mathrm{~s}, C_{\mathrm{Ar}}-\mathrm{H}\right.$ of Ph$)$, $126.2\left(\mathrm{~s}, C_{\mathrm{Ar}}-\mathrm{H}\right.$ of Ph$), 126.6\left(\mathrm{~s}, C_{\mathrm{Ar}}-\mathrm{H}\right.$ of Ph$), 127.5\left(\mathrm{~s}, C^{13 / 13^{\prime}}-\mathrm{H}\right), 127.7\left(\mathrm{~s}, C^{13 / 13^{\prime}}-\mathrm{H}\right)$,
 128.2 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), 128.3 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), 128.4 ($\mathrm{s}, C^{4 / 4}-\mathrm{H}$ of BIAN), 128.7 (s ,
 $130.7\left(\mathrm{~s}, C_{\mathrm{Ar}}-\mathrm{H}\right.$ of Ph$), 131.2\left(\mathrm{~s}, C_{\mathrm{Ar}}-\mathrm{H}\right.$ of Ph$), 131.2\left(\mathrm{~s}, C_{\mathrm{Ar}}-\mathrm{H}\right.$ of Ph$), 131.3\left(\mathrm{~s}, C_{\mathrm{Ar}}-\mathrm{H}\right.$

 132.9 ($\mathrm{s}, C^{10 / 10^{\prime}}$), 134.2 ($\mathrm{s}, C^{10 / 10^{\prime}}$), 134.6 (s, C^{7} of BIAN), 134.7 ($\mathrm{s}, C^{2 / 2^{\prime}}$ of BIAN), 134.9 ($\mathrm{s}, C^{2 / 2^{\prime}}$ of BIAN), 137.9 ($\mathrm{s}, C^{14 / 14^{4}}$), 139.3 ($\mathrm{s}, C^{14 / 14^{4}}$), 143.1 ($\mathrm{s}, C_{\mathrm{Ar}}$ of Ph), 144.1 ($\mathrm{s}, C_{\mathrm{Ar}}$ of $\mathrm{Ph}), 144.4\left(\mathrm{~s}, C^{12 / 12^{\prime}}\right), 144.5\left(\mathrm{~s}, C^{12 / 12^{2}}\right), 144.6\left(\mathrm{~s}, C_{\mathrm{Ar}}\right.$ of Ph$), 145.0\left(\mathrm{~s}, C_{\mathrm{Ar}}\right.$ of Ph$), 146.7(\mathrm{~s}$, C_{Ar} of Ph$), 147.9\left(\mathrm{~s}, C_{\mathrm{Ar}}\right.$ of Ph$), 148.5\left(\mathrm{~s}, C_{\mathrm{Ar}}\right.$ of Ph$), 150.0\left(\mathrm{~s}, C_{\mathrm{Ar}}\right.$ of Ph$), 153.8(\mathrm{~s}$,

${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(161.98 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{MeCN}-d_{3}\right):(\mathrm{AMXY})$ spin system $\delta / \mathrm{ppm}=-43.2$ (dd, 1P, Py), -12.4 (ddd, 1P, Px), 29.2 (ddd, 1P, P_{M}), 118.8 (dd, 1P, P_{A}), for parameters obtained by simulation, see Figure S 7 and Table S2.
${ }^{29} \mathbf{S i}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(79.49 \mathrm{MHz}, 300 \mathrm{~K}, ~ M e C N-d_{3}\right): \delta / \mathrm{ppm}=-17.9\left(\mathrm{~d},{ }^{2} J_{\mathrm{SiP}}=16.6 \mathrm{~Hz}\right.$, $\left.-\operatorname{Si}\left(\mathrm{C}^{16} \mathrm{H}_{3}\right)_{3}\right), 3.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{SiP}}=6.1 \mathrm{~Hz},-\operatorname{Si}\left(\mathrm{C}^{17} \mathrm{H}_{3}\right)_{3}\right)$.
UV/Vis (THF, $\lambda_{\max } / \mathrm{nm}, \varepsilon_{\max } / \mathrm{L} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~cm}^{-1}$): 320sh (17000), 550 (10000), 710 (9000).
Elemental analysis calcd. for $\left(\mathrm{C}_{100} \mathrm{H}_{110} \mathrm{CoKN}_{4} \mathrm{O}_{6} \mathrm{P}_{4} \mathrm{SSi}_{2}\right)\left(\mathrm{Mw}=1774.15 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\right)$:
C 67.70, H 6.25, N 3.16, S 1.81; found C 67.29, H 6.29, N 3.04, S 1.72.
TOF-MS (ESI, THF): m/z(\%) calculated for $\left(\mathrm{C}_{88} \mathrm{H}_{86} \mathrm{CoN}_{4} \mathrm{P}_{4} \mathrm{SSi}_{2}\right)^{-}\left[\mathrm{M}^{-}\right]: 1470.4424$; found 1470.4298 .

A stock solution of $\mathrm{Me}_{3} \mathrm{SiCl}(53.5 \mu \mathrm{~L}, 1.58 \mathrm{M}$ in toluene, $0.085 \mathrm{mmol}, 1.0$ equiv.) was added to a blue solution of $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\right.\right.$ $\left.\mathrm{P}_{4} \mathrm{SN}_{2}\left(\mathrm{SiMe}_{3}\right)_{2}\right] \quad(150 \mathrm{mg}, \quad 0.085 \mathrm{mmol}$, 1.0 equiv.) in toluene (3.5 mL). The reaction mixture was stirred for 3 hours, over which the color changed to purple. The suspension was filtered through a pad of silica $(0.5 \times 1 \mathrm{~cm})$ and washed with toluene $(3 \times 1 \mathrm{~mL})$. The solvent was removed, and the purple residue extracted with n-hexane (8 mL). The filtrate was concentrated to half of the original volume. Storage for one day at room temperature and one day at $-35^{\circ} \mathrm{C}$ gave numerous shimmering purple crystals of sufficient quality for XRD, which were isolated by decantation of the mother liquor and dried in vacuo. The crystalline solid contained 0.1 equivalents of n-hexane and 0.1 equivalents of toluene after drying as indicated by ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra and elemental analysis.
Yield: 82 mg ($0.053 \mathrm{mmol}, 63 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(400.13 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta / \mathrm{ppm}=0.05\left(\mathrm{~s}, 9 \mathrm{H},-\mathrm{Si}\left(\mathrm{C}^{16} \mathrm{H}_{3}\right)_{3}\right), 0.20(\mathrm{~s}, 9 \mathrm{H}$, $\left.-\mathrm{Si}\left(\mathrm{C}^{18} \mathrm{H}_{3}\right)_{3}\right), 0.38\left(\mathrm{~s}, 9 \mathrm{H},-\mathrm{Si}\left(\mathrm{C}^{17} \mathrm{H}_{3}\right)_{3}\right), 1.09-1.14\left(\mathrm{~m}, 12 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $\left.i \mathrm{Pr}\right), 2.58-2.71$ $\left(\mathrm{m}, 2 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $\left.i \operatorname{Pr}\right), 5.40\left(\mathrm{~s}, 1 \mathrm{H},-\mathrm{C}^{9 / 9} H(\mathrm{Ph})_{2}\right), 5.43\left(\mathrm{~s}, 1 \mathrm{H},-\mathrm{C}^{9 / 9} H(\mathrm{Ph})_{2}\right), 5.55(\mathrm{~d}$, ${ }^{3} J_{\mathrm{HH}}=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}^{3 / 3}-H$ of BIAN), $6.02\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}^{3 / 3^{\prime}}-H\right.$ of BIAN),
 $4 \mathrm{H}, \mathrm{C}-H_{\mathrm{Ar}}$ of Ph$), 6.62-6.76\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{C}-H_{\mathrm{Ar}}\right.$ of Ph$), 6.92-6.94\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}-H_{\mathrm{Ar}}\right.$ of Ph$)$, 7.03-7.21 (m, 10H, d ($\left.{ }^{3} J_{\mathrm{HH}}=8.1 \mathrm{~Hz}\right)$ of $\mathrm{C}^{4 / 4}-\mathrm{H}$ of BIAN overlapping with $\mathrm{C}-\mathrm{H}_{\mathrm{Ar}}$ of Ph overlapping with $\mathrm{d}\left({ }^{3} J_{\mathrm{HH}}=8.2 \mathrm{~Hz}\right)$ of $\mathrm{C}^{4 / 44^{\prime}}-\mathrm{H}$ of BIAN overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 7.27-7.34 (m, $8 \mathrm{H}, \mathrm{C}-\mathrm{H}_{\mathrm{Ar}}$ of Ph), 7.37-7.37 (m, $1 \mathrm{H}, \mathrm{C}^{\left.11 / 11^{\prime}-H\right), ~ 7.41-7.44(\mathrm{~m}, 7 \mathrm{H} \text {, }}$ $\mathrm{C}^{11 / 11^{\prime}}-H$ overlapping with $C^{13 / 13^{\prime}}-\mathrm{H}$ overlapping with $\mathrm{C}-H_{\mathrm{Ar}}$ of Ph), $7.46(\mathrm{~s}, 1 \mathrm{H}$, $\left.{ }^{-} \mathrm{C}^{15 / 15^{\prime}} \mathrm{H}(\mathrm{Ph})_{2}\right), 7.51-7.53\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}-H_{\mathrm{Ar}}\right.$ of Ph$), 7.72-7.74\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}-H_{\mathrm{Ar}}\right.$ of Ph$), 7.97$ (s, $\left.1 \mathrm{H},-\mathrm{C}^{15 / 15} H(\mathrm{Ph})_{2}\right)$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(100.61 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta / \mathrm{ppm}=2.8\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{PC}}=8.1 \mathrm{~Hz},-\mathrm{Si}\left(C^{17} \mathrm{H}_{3}\right)_{3}\right)$, $5.2\left(\mathrm{dd},{ }^{3} J_{\mathrm{PC}}=5.9 \mathrm{~Hz}, 3.5 \mathrm{~Hz},-\operatorname{Si}\left(C^{18} \mathrm{H}_{3}\right)_{3}\right), 5.7\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=1.8 \mathrm{~Hz},-\operatorname{Si}\left(C^{16} \mathrm{H}_{3}\right)_{3}\right), 24.0(\mathrm{~s}$, ${ }^{-} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ of $\left.i \operatorname{Pr}\right), 24.0\left(\mathrm{~s},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $\left.i \mathrm{Pr}\right), 24.1\left(\mathrm{~s},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $\left.i \operatorname{Pr}\right), 24.1(\mathrm{~s}$, $-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ of $\left.i \operatorname{Pr}\right), 33.8\left(\mathrm{~s},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $\left.i \mathrm{Pr}\right), 33.9\left(\mathrm{~s},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $\left.i \mathrm{Pr}\right), 51.1$ (s,
$\left.{ }^{-} C^{9 / 9} \mathrm{H}(\mathrm{Ph})_{2}\right), 51.7\left(\mathrm{~s},-C^{9 / 9} \mathrm{H}(\mathrm{Ph})_{2}\right), 52.0\left(\mathrm{~s},-C^{15 / 15^{\prime}} \mathrm{H}(\mathrm{Ph})_{2}\right), 52.4\left(\mathrm{~s},-C^{15} \mathrm{H}(\mathrm{Ph})_{2}\right), 121.8$ ($\mathrm{s}, C^{3 / 3^{\prime}}-\mathrm{H}$ of BIAN), $122.0\left(\mathrm{~s}, C^{3 / 3^{\prime}}-\mathrm{H}\right.$ of BIAN), $124.4\left(\mathrm{~s}, C^{5 / 5^{\prime}}-\mathrm{H}\right.$ of BIAN), 124.4 (s , $C^{5 / 5^{\prime}}-\mathrm{H}$ of BIAN), 125.7 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), 125.7 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), 125.9 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), $126.0\left(\mathrm{~s}, C_{\mathrm{Ar}}-\mathrm{H}\right.$ of Ph$), 126.1\left(\mathrm{~s}, C_{\mathrm{Ar}}-\mathrm{H}\right.$ of Ph$), 126.2\left(\mathrm{~s}, C_{\mathrm{Ar}}-\mathrm{H}\right.$ of Ph$), 127.0\left(\mathrm{~s}, C_{\mathrm{Ar}}-\mathrm{H}\right.$ of Ph), 127.7 ($\mathrm{s}, C^{4 / 4^{\prime}-\mathrm{H} \text { of BIAN overlapping with } \mathrm{C}_{6} \mathrm{D}_{6} \text { solvent signal), } 127.7 \text { (} \mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}, ~}$ of Ph overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 127.8 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 127.9 (s, $C_{\mathrm{Ar}}-\mathrm{H}$ of Ph overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 128.0 ($\mathrm{s}, C^{4 / 4^{4}-\mathrm{H}}$ of BIAN overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 128.0 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 128.1 (s, $C_{\mathrm{Ar}}-\mathrm{H}$ of Ph overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 128.1 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 128.2 (s , $C_{\mathrm{Ar}}-\mathrm{H}$ of Ph overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 128.3 ($\mathrm{s}, C_{\mathrm{Ar}^{2}}-\mathrm{H}$ of Ph overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 128.3 (s, $C^{13 / 13^{\prime}}-\mathrm{H}$ overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 128.4 ($\mathrm{s}, C^{13 / 13^{\prime}}-\mathrm{H}$ overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), $128.5\left(\mathrm{~s}, C^{11 / 11^{\prime}}-\mathrm{H}\right), 128.6(\mathrm{~s}$, $C^{11 / 11^{\prime}}-\mathrm{H}$), $130.2\left(\mathrm{~s}, C_{\mathrm{Ar}}-\mathrm{H}\right.$ of Ph$), 130.5$ (s, C^{6} of BIAN), 130.7 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), 130.8 (s, $C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), $130.8\left(\mathrm{~s}, C_{\mathrm{Ar}}-\mathrm{H}\right.$ of Ph$), 131.0\left(\mathrm{~s}, C_{\mathrm{Ar}}-\mathrm{H}\right.$ of Ph$), 131.0\left(\mathrm{~s}, C_{\mathrm{Ar}}-\mathrm{H}\right.$ of Ph$)$, $131.0\left(\mathrm{~s}, C_{\mathrm{Ar}}-\mathrm{H}\right.$ of Ph$), 131.3\left(\mathrm{~s}, C_{\mathrm{Ar}}-\mathrm{H}\right.$ of Ph$), 131.4\left(\mathrm{~s}, C_{\mathrm{Ar}}-\mathrm{H}\right.$ of Ph$), 132.3\left(\mathrm{~s}, C^{2 / 2}\right.$ of BIAN), 132.4 ($\mathrm{s}, C^{2 / 2}$ of BIAN), 132.9 ($\mathrm{s}, C^{10 / 10^{\prime}}$), 135.2 ($\mathrm{s}, C^{10 / 10^{\prime}}$), 136.5 (s, C^{7} of BIAN), $137.9\left(\mathrm{~s}, C^{14 / 14^{\prime}}\right), 138.8\left(\mathrm{~s}, C^{14 / 14^{\prime}}\right), 142.8\left(\mathrm{~s}, C_{\mathrm{Ar}}\right.$ of Ph$), 143.1\left(\mathrm{~s}, C_{\mathrm{Ar}}\right.$ of Ph$), 143.4\left(\mathrm{~s}, C_{\mathrm{Ar}}\right.$ of Ph), 143.8 ($\mathrm{s}, C_{\mathrm{Ar}}$ of Ph), 145.3 ($\mathrm{s}, C^{12 / 12^{\prime}}$), 145.5 ($\mathrm{s}, C^{12 / 12^{\prime}}$), 146.1 ($\mathrm{s}, C_{\mathrm{Ar}}$ of Ph), 146.5 ($\mathrm{s}, C_{\mathrm{Ar}}$ of Ph), $147.8\left(\mathrm{~s}, C_{\mathrm{Ar}}\right.$ of Ph$), 148.1\left(\mathrm{~s}, C_{\mathrm{Ar}}\right.$ of Ph$), 150.9\left(\mathrm{~s}, C^{8 / 8}-\mathrm{N}\right), 152.2(\mathrm{~s}$, $\left.C^{8 / 88^{\prime}}-\mathrm{N}\right), 163.1\left(\mathrm{~s}, C^{1 / l^{\prime}}=\mathrm{N}\right.$ of BIAN), $164.2\left(\mathrm{~s}, C^{1 / l^{\prime}}=\mathrm{N}\right.$ of BIAN $)$.
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$: (AMXY) spin system $\delta / \mathrm{ppm}=-60.1(\mathrm{dd}$, $\left.1 \mathrm{P}, \mathrm{P}_{\mathrm{Y}}\right),-54.2$ - -49.0 (m, 1P, P_{X}), 47.9-50.8 (m, 1P, P_{M}), 133.4-135.7 (m, 1P, P_{A}), for parameters obtained by simulation, see Figure S13 and Table S3.
${ }^{29} \mathbf{S i}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(79.49 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right): ~ \delta / \mathrm{ppm}=7.4\left(\mathrm{~d},{ }^{2} J_{\mathrm{SiP}}=10.9 \mathrm{~Hz},-\operatorname{Si}\left(\mathrm{C}^{17} \mathrm{H}_{3}\right)_{3}\right)$, $9.3\left(\mathrm{~s},-\operatorname{Si}\left(\mathrm{C}^{18} \mathrm{H}_{3}\right)_{3}\right), 11.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{SiP}}=6.1 \mathrm{~Hz},-\operatorname{Si}\left(\mathrm{C}^{16} \mathrm{H}_{3}\right)_{3}\right)$.
UV/Vis (THF, $\lambda_{\max } / \mathrm{nm}, \varepsilon_{\max } / \mathrm{L} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~cm}^{-1}$): 330sh (17000), 550 (11000), 700 (14000).
Elemental analysis calcd. for $\left(\mathrm{C}_{91} \mathrm{H}_{95} \mathrm{CoN}_{4} \mathrm{P}_{4} \mathrm{SSi}_{3}\right) \cdot(\text { toluene })_{0.1} \cdot(n \text {-hexane })_{0.1}$ $\left(\mathrm{M}_{\mathrm{w}}=1543.93 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\right)$: C 70.98, H 6.27, N 3.59, S 2.05; found C 71.33, H 5.88, N 3.51, S 2.07.

[(Ar*BIAN)Co($\left.\left.\boldsymbol{\eta}^{3}: \boldsymbol{\eta}^{1}-\mathbf{P} 4 \mathrm{C}(\mathbf{S}) \mathrm{N}(\mathbf{C y}) \mathbf{C}(\mathbf{O}) t \mathrm{Bu}\right)\right]$ (6a):

Neat cyclohexyl isothiocyanate $(7.3 \mathrm{mg}$, $7.4 \mu \mathrm{~L}, 0.052 \mathrm{mmol}, 1.4$ equiv.) was added to a magenta-colored solution of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P} 4 \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right] \quad(50 \mathrm{mg}$, $0.037 \mathrm{mmol}, 1.0$ equiv.) in toluene (1.5 mL). The reaction mixture was stirred for three days, giving a purple solution. The solvent was removed in vacuo. Subsequently, the resulting purple residue was washed with n-hexane $(3 \times 0.5 \mathrm{~mL})$ and dried in vacuo yielding a deep purple powder. Crystals of suitable for XRD were grown by slow evaporation of a concentrated toluene solution containing $\mathbf{6 a}$.
Yield: 44 mg ($0.030 \mathrm{mmol}, 80 \%$).
${ }^{1} \mathbf{H}$ NMR ($400.13 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta / \mathrm{ppm}=0.60-0.65\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{2}\right.$ of Cy$), 0.92(\mathrm{~s}$, $9 \mathrm{H},-\mathrm{C}\left(\mathrm{C}^{18} \mathrm{H}_{3}\right)_{3}$ of $\left.t \mathrm{Bu}\right), 1.02-1.05\left(\mathrm{~m}, 12 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $\left.i \mathrm{Pr}\right), 1.16-1.22\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}\right.$ of Cy), 1.46-1.49 (m, 2H, CH2 of Cy), 2.58 (sept, ${ }^{3} J_{\mathrm{HH}}=6.9 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ of $i \mathrm{Pr}$), 3.43-3.48 (m, 1H, C-H of Cy), $5.50\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{C}^{9} H(\mathrm{Ph})_{2}\right), 5.89\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}^{3}-H\right.$ of BIAN), 6.22-6.26 (m, 2H, $\mathrm{C}^{4}-H$ of BIAN), 6.64-6.65 (m, 6H, C $-H_{\mathrm{Ar}}$ of Ph$), ~ 6.71-6.75$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{C}-H_{\mathrm{Ar}}\right.$ of Ph$), 6.82-6.98\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{C}-H_{\mathrm{Ar}}\right.$ of Ph$), 7.06-7.15\left(\mathrm{~m}, 14 \mathrm{H}, \mathrm{C}-H_{\mathrm{Ar}}\right.$ of Ph overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), $7.19\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}^{5}-H\right.$ of BIAN), 7.29-7.29 (m, 2H, $\left.\mathrm{C}^{11}-H\right), 7.36-7.37\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}^{13}-H\right), 7.64-7.65\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{C}-\mathrm{H}_{\mathrm{Ar}}\right.$ of Ph$)$, $7.92\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{C}^{15} \mathrm{H}(\mathrm{Ph})_{2}\right)$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(100.66 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right): ~ \delta / \mathrm{ppm}=24.4\left(\mathrm{~s},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $\left.i \operatorname{Pr}\right), 24.5(\mathrm{~s}$, ${ }^{-} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ of $i \mathrm{Pr}$), 26.1 ($\mathrm{s}, \mathrm{CH}_{2}$ of Cy), 26.6 ($\mathrm{s}, \mathrm{CH}_{2}$ of Cy), $29.0\left(\mathrm{~s},-\mathrm{C}\left(C^{18} \mathrm{H}_{3}\right)_{3}\right.$ of $\left.t \mathrm{Bu}\right)$, $31.2\left(\mathrm{~s}, \mathrm{CH}_{2}\right.$ of Cy$), 34.4\left(\mathrm{~s},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $\left.i \mathrm{Pr}\right), 44.1\left(\mathrm{~s},-C^{17}\left(\mathrm{CH}_{3}\right)_{3}\right.$ of $\left.t \mathrm{Bu}\right), 51.7(\mathrm{~s}$, $\left.{ }^{-} C^{9} \mathrm{H}(\mathrm{Ph})_{2}\right), 53.3\left(\mathrm{~s},-C^{15} \mathrm{H}(\mathrm{Ph})_{2}\right), 67.1\left(\mathrm{~s}, C \mathrm{H}\right.$ of Cy), 122.6 (s, $C^{3}-\mathrm{H}$ of BIAN), 125.4 ($\mathrm{s}, C^{5}-\mathrm{H}$ of BIAN), $126.5\left(\mathrm{~s}, C_{\mathrm{Ar}}-\mathrm{H}\right.$ of Ph$), 126.6\left(\mathrm{~s}, C_{\mathrm{Ar}}-\mathrm{H}\right.$ of Ph$), 126.9\left(\mathrm{~s}, C_{\mathrm{Ar}}-\mathrm{H}\right.$ of $\mathrm{Ph}), 127.3$ ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), 128.4 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 128.5 ($\mathrm{s}, C^{13}-\mathrm{H}$ overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 128.6 ($\mathrm{s}, C^{4}-\mathrm{H}$ of BIAN overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 128.6 (s, $C_{\mathrm{Ar}}-\mathrm{H}$ of Ph overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 128.8 ($\mathrm{s}, C^{11}-\mathrm{H}$ overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 128.9 (s, $C_{\mathrm{Ar}}-\mathrm{H}$ of Ph overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 129.2 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), 130.6 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), 130.9 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), 131.1 (s, C^{6} of BIAN overlapping with $C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), 131.1 (s, C^{6} of BIAN overlapping with $C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), $131.4\left(\mathrm{~s}, C_{\mathrm{Ar}}-\mathrm{H}\right.$ of Ph$), 132.6\left(\mathrm{~s}, C^{2}\right.$ of BIAN), $135.2\left(\mathrm{~s}, C^{10}\right), 136.8\left(\mathrm{~s}, C^{7}\right.$ of BIAN), $139.0\left(\mathrm{~s}, C^{14}\right), 143.5\left(\mathrm{~s}, C_{\mathrm{Ar}}\right.$ of Ph$), 145.3$
(s, C_{Ar} of Ph), $146.0\left(\mathrm{~s}, C_{\mathrm{Ar}}\right.$ of Ph$), 146.3\left(\mathrm{~s}, C^{12}\right), 148.5\left(\mathrm{~s}, C_{\mathrm{Ar}}\right.$ of Ph$), 149.7\left(\mathrm{~s}, C^{8}-\mathrm{N}\right)$, 164.3 ($\mathrm{s}, C^{1}=\mathrm{N}$ of BIAN), 183.1 ($\left.\mathrm{s}, C^{16}(\mathrm{O}) t \mathrm{Bu}\right) ; C=\mathrm{S}$: not detected.
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta / \mathrm{ppm}=86.3(\mathrm{t}, 1 \mathrm{P}), 93.0(\mathrm{br} \mathrm{s}$, $\Delta v_{1 / 2}=2500 \mathrm{~Hz}, 2 \mathrm{P}$), 117.3 (t, 1P); (161.98 MHz , toluene- $d_{8}, 213 \mathrm{~K}$): (AEMX) spin system $\delta / \mathrm{ppm}=77.6\left(\mathrm{dd}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{E} / \mathrm{X}}\right), 85.5$ (t, 1P, P_{M}), 105.3 (dd, 1P, $\mathrm{P}_{\mathrm{E} / \mathrm{X}}$), 118.0 (t, 1P, P_{A}), for parameters obtained by simulation, see Figure S 19 and Table S4. Spin system was assigned based on DFT calculated values (vide infra).
UV/Vis (toluene, $\lambda_{\max } / \mathrm{nm}, \varepsilon_{\max } / \mathrm{L} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~cm}^{-1}$): 330 (12000), 430 (2500), 550 (5000), 720 (8000).
IR (solid state): v/ cm ${ }^{-1}=3058 w, 3023 w, 2953 w, 2928 w, 1944 w, 1805 w, 1727 \mathrm{~m}(\mathrm{C}=\mathrm{O})$, $1600 \mathrm{w}, 1533 \mathrm{~m}, 1492 \mathrm{~s}, 1446 \mathrm{~m}, 1417 \mathrm{~m}, 1369 \mathrm{~s}, 1322 \mathrm{~m}, 1297 \mathrm{~m}, 1255 \mathrm{w}, 1193 \mathrm{~m}, 1153 \mathrm{w}$, 1101w, 1076w, 1035m, 1007m, 920w, 895w, 842w, 820m, 761m, 736s, 736m, 696s, $654 \mathrm{~m}, 634 \mathrm{~m}, 606 \mathrm{~s}$.
Elemental analysis calcd. for $\left(\mathrm{C}_{94} \mathrm{H}_{88} \mathrm{CoN}_{3} \mathrm{OP}_{4} \mathrm{~S}\right)\left(\mathrm{M}_{\mathrm{w}}=1490.65 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\right)$:
C 75.74, H 5.95, N 2.82, S 2.15; found: C 75.60, H 5.93, N 2.58, S 1.75.
$\left[(A r * B I A N) C o\left(\eta^{3}: \boldsymbol{\eta}^{1}-\mathbf{P} 4 C(S) N(P h) C(O) t B u\right)\right](6 b):$

Neat PhNCS ($11.0 \mathrm{mg}, 9.7 \mu \mathrm{~L}, 0.081 \mathrm{mmol}$, 1.1 equiv.) was added to a magenta-colored solution of [(Ar*BIAN) $\mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)$] ($100 \mathrm{mg}, 0.074 \mathrm{mmol}, 1.0$ equiv.) in toluene $(2 \mathrm{~mL})$. The reaction mixture was stirred for three hours, over which the color changed to purple. The solvent was removed in vacuo, and the purple residue extracted with n-hexane $(30 \mathrm{~mL})$. The mixture was filtered, and the filtrate concentrated until incipient crystallization. Purple crystals formed upon storage for two days at $-35^{\circ} \mathrm{C}$. The crude product (84 mg) was isolated by decantation of the supernatant. Recrystallization from $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ at $-35^{\circ} \mathrm{C}$ gave shimmering deep purple crystals, which were isolated by decantation of the mother liquor and dried in vacuo. The compound decomposes to new species (identified by ABMX and AEMX spin systems in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum) in solution at ambient temperature over the course of hours (see the SI for details). Crystals of sufficient quality of $\mathbf{6 b}$ were grown by slow diffusion of n-hexane into a concentrated toluene solution containing $\mathbf{6 b}$.
Yield: 69 mg ($0.046 \mathrm{mmol}, 63 \%$).
${ }^{1}$ H NMR $\left(400.13 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right.$) : $\delta / \mathrm{ppm}=0.76\left(\mathrm{~s}, 9 \mathrm{H},-\mathrm{C}\left(\mathrm{C}^{18} \mathrm{H}_{3}\right)_{3}\right.$ of $\left.t \mathrm{Bu}\right)$, 1.00-1.03 (m, 12H, $-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ of $\left.i \mathrm{Pr}\right), 2.55\left(\mathrm{sept},{ }^{3} \mathrm{JHH}=6.9 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $\left.i \mathrm{Pr}\right)$, $5.45\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{C}^{9} H(\mathrm{Ph})_{2}\right), 5.80-5.82\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}-H_{\text {ortho }}\right.$ of PhNCS$), 5.85\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.1 \mathrm{~Hz}\right.$, $2 \mathrm{H}, \mathrm{C}^{3}-H$ of BIAN), 6.21-6.25 (m, 2H, $\mathrm{C}^{4}-H$ of BIAN), 6.57-6.82 ($\mathrm{m}, 17 \mathrm{H}, \mathrm{C}-H_{\text {meta/para }}$ of PhNCS overlapping with $\mathrm{C}-H_{\mathrm{Ar}}$ of Ph), 7.01-7.16 (m, $16 \mathrm{H}, \mathrm{C}^{5}-H$ of BIAN overlapping with $\mathrm{C}-\mathrm{H}_{\mathrm{Ar}}$ of Ph overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 7.25-7.29 (m, 6 H , $\mathrm{C}^{11}-H$ overlapping with $\mathrm{C}-H_{\mathrm{Ar}}$ of Ph), 7.31-7.34 (m, $6 \mathrm{H}, \mathrm{C}^{13}-H$ overlapping with $\mathrm{C}-H_{\mathrm{Ar}}$ of Ph), $7.57\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{C}^{15} \mathrm{H}(\mathrm{Ph})_{2}\right), 7.74-7.76\left(\mathrm{br} \mathrm{m}, 4 \mathrm{H}, \mathrm{C}-\mathrm{H}_{\mathrm{Ar}}\right.$ of Ph$)$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(100.61 \mathrm{MHz}, 273 \mathrm{~K}\right.$, toluene- $\left.d_{8}\right): \delta / \mathrm{ppm}=24.3\left(\mathrm{~s},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $\left.i \mathrm{Pr}\right)$, $24.5\left(\mathrm{~s},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $\left.i \mathrm{Pr}\right), 28.5\left(\mathrm{~s},-\mathrm{C}\left(C^{18} \mathrm{H}_{3}\right)_{3}\right.$ of $\left.t \mathrm{Bu}\right), 34.3\left(\mathrm{~s},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $\left.i \mathrm{Pr}\right), 43.3$ $\left(\mathrm{s},-\mathrm{C}^{17}\left(\mathrm{CH}_{3}\right)_{3}\right.$ of $\left.t \mathrm{Bu}\right), 51.4\left(\mathrm{~s},-C^{9} \mathrm{H}(\mathrm{Ph})_{2}\right), 52.9\left(\mathrm{~s},-C^{15} \mathrm{H}(\mathrm{Ph})_{2}\right), 122.5\left(\mathrm{~s}, C^{3}-\mathrm{H}\right.$ of BIAN), 125.5 ($\mathrm{s}, C^{5}-\mathrm{H}$ of BIAN overlapping with toluene- d_{8} solvent signal), 126.5 (s , $C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), 126.5 (s, $C_{\mathrm{Ar}}-\mathrm{H}$ of PhNCS), 126.6 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), 127.2 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of $\mathrm{Ph}), 127.9\left(\mathrm{~s}, C_{\mathrm{Ar}}-\mathrm{H}\right.$ of Ph$), 128.3$ ($\mathrm{s}, C^{4}-\mathrm{H}$ of BIAN overlapping with toluene- d_{8} solvent signal), 128.3 ($\mathrm{s}, C_{\text {ortho }}-\mathrm{H}$ of PhNCS overlapping with toluene- d_{8} solvent signal), 128.4 (s, $C_{\mathrm{Ar}}-\mathrm{H}$ of Ph overlapping with toluene- d_{8} solvent signal), 128.5 ($\mathrm{s}, C^{11}-\mathrm{H}$ overlapping with toluene $-d_{8}$ solvent signal), 128.6 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph overlapping with toluene- d_{8} solvent signal), 128.8 ($\mathrm{s}, C^{13}-\mathrm{H}$ overlapping with toluene- d_{8} solvent signal), 128.7 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph overlapping with toluene- d_{8} solvent signal), 128.9 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph overlapping with
 C^{6} of BIAN), $130.9\left(\mathrm{~s}, C_{\mathrm{Ar}}-\mathrm{H}\right.$ of Ph$), 131.1\left(\mathrm{~s}, C_{\mathrm{Ar}}-\mathrm{H}\right.$ of Ph$), 132.0\left(\mathrm{~s}, C^{2}\right.$ of BIAN), $135.2\left(\mathrm{~s}, C^{10}\right), 136.6$ (s, C^{7} of BIAN), 138.7 (s, C^{14}), 141.6 ($\mathrm{s}, C_{\mathrm{ipso}}$ of PhNCS), 142.7 (s , C_{Ar} of Ph$), 145.0\left(\mathrm{~s}, C_{\mathrm{Ar}}\right.$ of Ph$), 145.8\left(\mathrm{~s}, C_{\mathrm{Ar}}\right.$ of Ph$), 146.2\left(\mathrm{~s}, C^{12}\right), 148.5\left(\mathrm{~s}, C_{\mathrm{Ar}}\right.$ of Ph$)$, $149.0\left(\mathrm{~s}, C^{8}-\mathrm{N}\right), 164.4\left(\mathrm{~s}, C^{l}=\mathrm{N}\right.$ of BIAN), $182.2\left(\mathrm{~s}, C^{16}=\mathrm{O}\right.$ of $\left.-C(\mathrm{O}) t \mathrm{Bu}\right) ; C=\mathrm{S}$: not detected.
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right):\left(\mathrm{AB}_{2} \mathrm{X}\right)$ spin system $\delta / \mathrm{ppm}=95.5-98.8(\mathrm{~m}$, $1 \mathrm{P}, \mathrm{P}_{\mathrm{x}}$), 103.8-109.5 (m, 3P, $\mathrm{P}_{\mathrm{A}} / \mathrm{P}_{\mathrm{B}}$), for parameters obtained by simulation, see Figure S23 and Table S5.
UV/Vis (toluene, $\lambda_{\max } / \mathrm{nm}, \varepsilon_{\max } / \mathrm{L} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~cm}^{-1}$): 325 (22500), 530 (9000), 710 (13000). IR (solid state): $\mathrm{v} / \mathrm{cm}^{-1}=3056 \mathrm{w}, 3023 \mathrm{w}, 2956 \mathrm{w}, 2924 \mathrm{w}, 2160 \mathrm{w}, 2031 \mathrm{w}, 1735 \mathrm{w}(\mathrm{C}=\mathrm{O})$, 1685w, 1598w, 1530w, 1492m, 1450m, 1471m, 1361w, 1296w, 1253w, 1192w, 1163w, 1075w, 1030w, 949w, 917w, 894w, 820m, 737m, 695s, 655m, 605m.
Elemental analysis calcd. for $\left(\mathrm{C}_{94} \mathrm{H}_{82} \mathrm{CoN}_{3} \mathrm{OP}_{4} \mathrm{~S}\right)\left(\mathrm{M}_{\mathrm{w}}=1484.60 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\right): \mathrm{C} 76.05$, H 5.57, N 2.83, S 2.16; found: C 76.34, H 5.69, N 2.82, S 1.97.

3.4.2 NMR Spectra

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400.30 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{THF}-d_{8}\right)$ of $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \operatorname{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{CS}_{2}\right)\right]$ ($[\mathrm{K}(18 \mathrm{c}-6)] \mathbf{3})$; ○ n-hexane, • THF, * THF- d_{8}.

Figure S2. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(100.66 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{THF}-d_{8}\right)$ of $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\right.\right.$ $\left.\left.\mathrm{P}_{4} \mathrm{CS}_{2}\right)\right]([\mathrm{K}(18 \mathrm{c}-6)] 3)$; ○ n-hexane, • THF, * THF- d_{8}.

Figure S3. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{THF}-d_{8}\right)$ of $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\right.\right.$ $\left.\left.\mathrm{P}_{4} \mathrm{CS}_{2}\right)\right]$ ([K(18c-6)]3).

Figure S4. Section of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum ($162.04 \mathrm{MHz}, \quad 300 \mathrm{~K}$, THF- $\left.d_{8}\right)$ of $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{CS}_{2}\right)\right] \quad([\mathrm{K}(18 \mathrm{c}-6)] 3)$; experimental (upwards) and simulation (downwards).

Table S1. Chemical shifts and coupling constants from the iterative fit of the AXY_{2} spin system and schematic representation of the $\mathrm{CoP}_{4} \mathrm{CS}_{2}$ core of $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{CS}_{2}\right)\right]([\mathrm{K}(18 \mathrm{c}-6)] 3)$.

| ${ }^{\text {P }}$ | $\delta(\mathrm{A})=127.6 \mathrm{ppm}$ | ${ }^{1} J_{\mathrm{XY}}=-320.5 \mathrm{~Hz}$ |
| :--- | :--- | :--- |
| | $\delta(\mathrm{X})=99.6 \mathrm{ppm}$ | ${ }^{1} J_{\mathrm{AY}}=-110.1$ |
| $\delta(\mathrm{Y})=84.9 \mathrm{ppm}$ | ${ }^{2} J_{\mathrm{AX}}=5.4 \mathrm{~Hz}$ | |

Figure S5. ${ }^{1} \mathrm{H}$ NMR spectrum ($400.30 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{MeCN}-d_{3}$) of $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\right.\right.$ $\left.\left.\mathrm{P}_{4} \mathrm{SN}_{2}\left(\mathrm{SiMe}_{3}\right)_{2}\right)\right]([\mathrm{K}(18 \mathrm{c}-6)] 4)$; $\circ n$-hexane, $* \mathrm{MeCN}-d_{3}$.

Figure S6. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($100.66 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{MeCN}-d_{3}$) of $[\mathrm{K}(18 \mathrm{c}-6)]\left[\left(\mathrm{Ar}\right.\right.$ *BIAN) $\mathrm{Co}\left(\eta^{3}: \eta^{1-}\right.$ $\left.\left.\mathrm{P}_{4} \mathrm{SN}_{2}\left(\mathrm{SiMe}_{3}\right)_{2}\right)\right]([\mathrm{K}(18 \mathrm{c}-6)] 4)$; o n-hexane, * MeCN- d_{3}.

Figure S7. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(161.98 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{MeCN}-d_{3}\right)$ of $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\right.\right.$ $\left.\left.\mathrm{P}_{4} \mathrm{SN}_{2}\left(\mathrm{SiMe}_{3}\right)_{2}\right)\right]$ ([K(18c-6)]4); o unknown impurity.

Figure S8. Section of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}$ spectrum ($161.98 \mathrm{MHz}, \quad 300 \mathrm{~K}$, $\mathrm{MeCN}-d_{3}$) of $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{SN}_{2}\left(\mathrm{SiMe}_{3}\right)_{2}\right)\right]$ ([K(18c-6)]4); experimental (upwards) and simulation (downwards).

Table S2. Chemical shifts and coupling constants from the iterative fit of the AMXY spin system and schematic representation of the $\mathrm{CoP}_{4} \mathrm{SN}_{2}\left(\mathrm{SiMe}_{3}\right)_{2}$ core of $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{4}-\mathrm{P}_{4} \mathrm{SN}_{2}\left(\mathrm{SiMe}_{3}\right)_{2}\right)\right]$ ([K(18c-6)]4).

| | $\delta(\mathrm{A})=118.8 \mathrm{ppm}$ | ${ }^{1} J_{\mathrm{XY}}=-431.2 \mathrm{~Hz}$ |
| :---: | :---: | :---: |
| | $\delta(\mathrm{M})=29.2 \mathrm{ppm}$ | ${ }^{1} J_{\mathrm{AX}}=-342.6 \mathrm{~Hz}$ |
| | $\delta(\mathrm{X})=-12.4 \mathrm{ppm}$ | ${ }^{1} J_{\mathrm{MY}}=-331.1 \mathrm{~Hz}$ |
| | $\delta(\mathrm{Y})=-43.2 \mathrm{ppm}$ | $J_{\mathrm{MX}}=16.8 \mathrm{~Hz}$ |
| | | $J_{\text {AY }}=10.4 \mathrm{~Hz}$ |
| | | $J_{\text {AM }}=-31.7 \mathrm{~Hz}$ |

$$
\stackrel{\infty}{\Gamma} \stackrel{\infty}{\infty}_{\stackrel{\infty}{\infty}}^{\stackrel{\infty}{\infty}}
$$

Figure S9. ${ }^{29} \operatorname{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($79.49 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{MeCN}-d_{3}$) of $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\right.\right.$ $\left.\left.\mathrm{P}_{4} \mathrm{SN}_{2}\left(\mathrm{SiMe}_{3}\right)_{2}\right)\right]([\mathrm{K}(18 \mathrm{c}-6)] 4)$; o background signal from glass tube.

Figure S10. ${ }^{1} \mathrm{H}$ NMR spectrum ($400.30 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{SN}_{2}\left(\mathrm{SiMe}_{3}\right)_{3}\right)\right]$ (5); - n-hexane, \cdot toluene, ${ }^{*} \mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S11. ${ }^{1} \mathrm{H}$ NMR monitoring (400.13 MHz, toluene- d_{8}) of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{SN}_{2}\left(\mathrm{SiMe}_{3}\right)_{3}\right)\right]$ (5).

Figure S12. $\quad{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}$ spectrum $\left(100.60 \mathrm{MHz}, \quad 300 \mathrm{~K}, \quad \mathrm{C}_{6} \mathrm{D}_{6}\right) \quad$ of $\quad\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\right.\right.$ $\left.\left.\mathrm{P}_{4} \mathrm{SN}_{2}\left(\mathrm{SiMe}_{3}\right)_{3}\right)\right](\mathbf{5}) ;$ o n-hexane, ${ }^{*} \mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S13. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}$ spectrum $\quad\left(162.04 \mathrm{MHz}, \quad 300 \mathrm{~K}, \quad \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $\quad\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\right.\right.$ $\left.\left.\mathrm{P}_{4} \mathrm{SN}_{2}\left(\mathrm{SiMe}_{3}\right)_{3}\right)\right]$ (5).

simulation
Figure S14. Section of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1-}\right.\right.$ $\left.\left.\mathrm{P}_{4} \mathrm{SN}_{2}\left(\mathrm{SiMe}_{3}\right)_{3}\right)\right]$ (5); experimental (upwards) and simulation (downwards).

Table S3. Chemical shifts and coupling constants from the iterative fit of the AMXY spin system and schematic representation of the $\mathrm{CoP}_{4} \mathrm{SN}_{2}\left(\mathrm{SiMe}_{3}\right)_{3}$ core of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{SN}_{2}\left(\mathrm{SiMe}_{3}\right)_{3}\right)\right]$ (5).

| | $\delta(\mathrm{A})=134.5 \mathrm{ppm}$ | ${ }^{1} J_{\mathrm{XY}}=-422.6 \mathrm{~Hz}$ |
| :---: | :---: | :---: |
| | $\delta(\mathrm{M})=49.3 \mathrm{ppm}$ | ${ }^{1} J_{\mathrm{MY}}=-425.4 \mathrm{~Hz}$ |
| | $\delta(\mathrm{X})=-51.8 \mathrm{ppm}$ | ${ }^{1} J_{\mathrm{AX}}=-349.5 \mathrm{~Hz}$ |
| | $\delta(\mathrm{Y})=-59.9 \mathrm{ppm}$ | $J_{\mathrm{MX}}=30.6 \mathrm{~Hz}$ |
| | | $J_{\text {AY }}=10.9 \mathrm{~Hz}$ |
| | | $J_{\text {AM }}=-21.3 \mathrm{~Hz}$ |

Figure S15. ${ }^{29}$ Si $\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (79.49 MHz, $\left.300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $\left[\left(\mathrm{Ar}{ }^{*} \mathrm{BIAN}\right) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{SN}_{2}\left(\mathrm{SiMe}_{3}\right)_{3}\right)\right]$ (5); o background signal from glass tube.

Figure S16. $\quad{ }^{1} \mathrm{H} \quad \mathrm{NMR} \quad$ spectrum $\quad\left(400.13 \mathrm{MHz}, \quad 300 \mathrm{~K}, \quad \mathrm{C}_{6} \mathrm{D}_{6}\right.$, $)$ of $\quad\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\right.\right.$ $\left.\left.\mathrm{P}_{4} \mathrm{C}(\mathrm{S}) \mathrm{N}(\mathrm{Cy}) \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right](6 a) ;{ }^{*} \mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S17. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}$ spectrum $\quad\left(100.66 \mathrm{MHz}, \quad 300 \mathrm{~K}, \quad \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $\quad\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\right.\right.$ $\left.\left.\mathrm{P}_{4} \mathrm{C}(\mathrm{S}) \mathrm{N}(\mathrm{Cy}) \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right](6 a) ; * \mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S18. $\quad{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}$ spectrum $\quad\left(162.04 \mathrm{MHz}, \quad 300 \mathrm{~K}, \quad \mathrm{C}_{6} \mathrm{D}_{6}\right) \quad$ of $\quad\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\right.\right.$ $\left.\left.\mathrm{P}_{4} \mathrm{C}(\mathrm{S}) \mathrm{N}(\mathrm{Cy}) \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right]$ (6a).

simulation
Figure S20. Section of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($161.98 \mathrm{MHz}, \quad 213 \mathrm{~K}$, toluene $-d_{8}$) of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P} 4 \mathrm{C}(\mathrm{S}) \mathrm{N}(\mathrm{Cy}) \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right]$ (6a); experimental (upwards) and simulation (downwards).

Figure S21. $\quad{ }^{1} \mathrm{H} \quad \mathrm{NMR} \quad$ spectrum $\quad\left(400.13 \mathrm{MHz}, \quad 300 \mathrm{~K}, \quad \mathrm{C}_{6} \mathrm{D}_{6}\right) \quad$ of $\quad\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\right.\right.$ $\left.\left.\mathrm{P}_{4} \mathrm{C}(\mathrm{S}) \mathrm{N}(\mathrm{Ph}) \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right](\mathbf{6 b}) ;{ }^{*} \mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S22. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($100.61 \mathrm{MHz}, 273 \mathrm{~K}$, toluene- d_{8}) of $\left[\left(\mathrm{Ar}{ }^{*} \mathrm{BIAN}\right) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\right.\right.$ $\left.\left.\mathrm{P}_{4} \mathrm{C}(\mathrm{S}) \mathrm{N}(\mathrm{Ph}) \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right](\mathbf{6 b}) ; *$ toluene $-d_{8}$.

Figure S23. $\quad{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \quad$ NMR spectrum $\left(162.04 \mathrm{MHz}, \quad 300 \mathrm{~K}, \quad \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $\quad\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\right.\right.$ $\left.\left.\mathrm{P}_{4} \mathrm{C}(\mathrm{S}) \mathrm{N}(\mathrm{Ph}) \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right](\mathbf{6 b})$.

Figure S24. Section of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\right.\right.$ $\left.\left.\mathrm{P}_{4} \mathrm{C}(\mathrm{S}) \mathrm{N}(\mathrm{Ph}) \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right](\mathbf{6 b})$; experimental (upwards) and simulation (downwards).

Table S4. Chemical shifts and coupling constants from the iterative fit of the $\mathrm{AB}_{2} \mathrm{X}$ spin system and schematic representation of the $\mathrm{CoP}_{4} \mathrm{C}(\mathrm{S}) \mathrm{N}(\mathrm{Ph}) \mathrm{C}(\mathrm{O}) t \mathrm{Bu}$ core of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\right.\right.$ $\left.\left.\mathrm{P}_{4} \mathrm{C}(\mathrm{S}) \mathrm{N}(\mathrm{Ph}) \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right](\mathbf{6 b})$.

3.4.3 Additional Experiments

Reaction of $[K(18 c-6)]\left[(A r * B I A N) C o\left(\eta^{3}: \boldsymbol{\eta}^{1}-\mathbf{P}_{4} \mathrm{CS}_{2}\right)\right]([K(18 c-6)] 3)$ with $\left[\mathrm{Ph}_{3} \mathrm{C}\right] O T f$ In a J. valve NMR tube $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{CS}_{2}\right)\right]([\mathrm{K}(18 \mathrm{c}-6)] 3)(20 \mathrm{mg}$, $0.012 \mathrm{mmol}, 1.0$ equiv.) was dissolved in $\mathrm{C}_{6} \mathrm{D}_{6}(0.7 \mathrm{~mL})$. To the resulting blue solution, solid $\left[\mathrm{Ph}_{3} \mathrm{C}\right] \mathrm{OTf}(5 \mathrm{mg}, 0.012 \mathrm{mmol}, 1.0$ equiv.) was added inducing a color change to magenta within a few minutes. The NMR tube was closed and analyzed by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy (Figure S25). The resulting signal sets were successfully simulated as AXY 2 spin system (Figure S26 and Table S5).

Scheme S1. Reaction of $[\mathrm{K}(18 \mathrm{c}-6)] \mathbf{3}$ toward $\left[\mathrm{Ph}_{3} \mathrm{C}\right] \mathrm{OTf}$ with proposed reaction product; reagents and conditions: +1.0 eq. $\left[\mathrm{Ph}_{3} \mathrm{C}\right] \mathrm{OTf} ; \mathrm{C}_{6} \mathrm{D}_{6}$, r.t., 1 h .
$\dot{\circ} \dot{\circ}$

Figure S25. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}$ spectrum $\left(162.04 \mathrm{MHz}, \quad 300 \mathrm{~K}, \quad \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of the reaction between $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{CS}_{2}\right)\right]([\mathrm{K}(18 \mathrm{c}-6)] 3)$ and $\left[\mathrm{Ph}_{3} \mathrm{C}\right] \mathrm{OTf}$.

Figure S26. Section of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$) of the reaction between ($[\mathrm{K}(18 \mathrm{c}-6)] 3$) and $\left[\mathrm{Ph}_{3} \mathrm{C}\right] \mathrm{OTf}$; experimental (upwards) and simulation (downwards).

Table S5. Chemical shifts and coupling constants from the iterative fit of the AXY_{2} spin of the reaction between ($[\mathrm{K}(18 \mathrm{c}-6)] \mathbf{2})$ and $\left[\mathrm{Ph}_{3} \mathrm{C}\right] \mathrm{OTf}$.

$$
\begin{array}{ll}
\delta(\mathrm{A})=97.6 \mathrm{ppm} & { }^{1} J_{\mathrm{AY}}=-307.5 \mathrm{~Hz} \\
\delta(\mathrm{X})=68.9 \mathrm{ppm} & { }^{1} J_{\mathrm{XY}}=-286.9 \mathrm{~Hz} \\
\delta(\mathrm{Y})=34.9 \mathrm{ppm} & { }^{2} J_{\mathrm{AX}}=27.3 \mathrm{~Hz}
\end{array}
$$

To a purple solution of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{SN}_{2}\left(\mathrm{SiMe}_{3}\right)_{3}\right)\right](5)(13 \mathrm{mg}, 0.008 \mathrm{mmol}$, 1.0 equiv.) in $\mathrm{C}_{6} \mathrm{D}_{6}(0.7 \mathrm{~mL}),[n \mathrm{Bu} 4 \mathrm{~N}] \mathrm{CN}(2.3 \mathrm{mg}, 0.008 \mathrm{mmol}, 1.0$ equiv.) was added. The color changed immediately to blue and after 3 h the reaction mixture was transferred to a J. valve NMR tube and analyzed by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy (see Figure S27).

Reaction of [(Ar*BIAN)Co($\left.\left.\boldsymbol{\eta}^{\mathbf{3}}: \boldsymbol{\eta}^{\mathbf{1}}-\mathrm{P}_{4} \mathbf{S N}_{2}\left(\mathrm{SiMe}_{3}\right) 3\right)\right]$ (5) with $\mathrm{KOPh} / \mathbf{1 8 c}-6$

To a purple solution of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{SN}_{2}\left(\mathrm{SiMe}_{3}\right)_{3}\right)\right](5)(20 \mathrm{mg}, 0.013 \mathrm{mmol}$, 1.0 equiv.) in $\mathrm{C}_{6} \mathrm{D}_{6}(0.7 \mathrm{~mL}) \mathrm{KOPh}(1.7 \mathrm{mg}, 0.013 \mathrm{mmol}, 1.0$ equiv.) and [18]crown-6 ($18 \mathrm{c}-6,3.3 \mathrm{mg}, 0.013 \mathrm{mmol}, 1.0$ equiv.) was added. The color changed to blue and after 3 h the reaction mixture was transferred to a J. valve NMR tube and analyzed by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy (see Figure S27).

Figure S27. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \quad$ NMR spectra $\left(162.04 \mathrm{MHz}, \quad 300 \mathrm{~K}, \quad \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of the reactions between $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{SN}_{2}\left(\mathrm{SiMe}_{3}\right)_{3}\right)\right]$ (5) with $\left[n \mathrm{Bu} \mathrm{H}_{4} \mathrm{~N}\right] \mathrm{CN}$ (top) and $\mathrm{KOPh} / 18 \mathrm{c}-6$ (middle); as well as $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{SN}_{2}\left(\mathrm{SiMe}_{3}\right)_{2}\right)\right]([\mathrm{K}(18 \mathrm{c}-6)] 4)$ (bottom) for comparison.

Rearrangement of [(Ar*BIAN)Co($\left.\left.\boldsymbol{\eta}^{\mathbf{3}}: \boldsymbol{\eta}^{1}-\mathbf{P} \mathbf{4} \mathbf{C}(\mathbf{S}) \mathbf{N}(\mathbf{P h}) \mathbf{C}(\mathbf{O}) \boldsymbol{t B u}\right)\right]$ (6b)

A purple solution of [(Ar*BIAN)Co($\left.\left.\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{C}(\mathrm{S}) \mathrm{N}(\mathrm{Ph}) \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right]$ ($\mathbf{6 b}$) (20 mg , $0.013 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{C}_{6} \mathrm{D}_{6}(0.7 \mathrm{~mL})$ was heated to $45^{\circ} \mathrm{C}$ for 1 d to complete the reaction. The reaction mixture was transferred to a J. Young valve NMR tube and analyzed by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy (see Figure S 28).

Figure S28. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$) after the thermally induced rearrangement of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{C}(\mathrm{S}) \mathrm{N}(\mathrm{Ph}) \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right](\mathbf{6 b})$ exhibiting two sets of signals attributed to two proposed spin systems marked in blue (ABMX) and red (AEMX).

Figure S29. Section of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of the thermally induced rearrangement of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{C}(\mathrm{S}) \mathrm{N}(\mathrm{Ph}) \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right]$ (6b); experimental (upwards) and simulation (downwards); simulations as AA'MX and $\mathrm{A}_{2} \mathrm{MX}$ spin systems did not converge.

Table S6. Chemical shifts and coupling constants from the iterative fit of the ABMX spin of the thermally induced rearrangement of [(Ar*BIAN)Co $\left.\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{C}(\mathrm{S}) \mathrm{N}(\mathrm{Ph}) \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right](6 \mathrm{~b})$; simulations as AA'MX and $\mathrm{A}_{2} \mathrm{MX}$ spin systems did not converge.

$$
\begin{array}{ll}
\hline \delta(\mathrm{A})=160.4 \mathrm{ppm} & { }^{1} J_{\mathrm{AM}}=-312.5 \mathrm{~Hz} \\
\delta(\mathrm{~B})=160.7 \mathrm{ppm} & { }^{1} J_{\mathrm{BM}}=-314.5 \mathrm{~Hz} \\
\delta(\mathrm{M})=98.9 \mathrm{ppm} & { }^{1} J_{\mathrm{AX}}=-263.9 \mathrm{~Hz} \\
\delta(\mathrm{X})=-4.4 \mathrm{ppm} & { }^{1} J_{\mathrm{BX}}=-268.3 \mathrm{~Hz} \\
& { }^{2} J_{\mathrm{MX}}=33.5 \mathrm{~Hz} \\
& { }^{2} J_{\mathrm{AB}}=6.3 \mathrm{~Hz}
\end{array}
$$

Figure S30. Section of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of the thermally induced rearrangement of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{C}(\mathrm{S}) \mathrm{N}(\mathrm{Ph}) \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right] \quad(6 \mathbf{b})$; experimental (upwards) and simulation (downwards).

Table S7. Chemical shifts and coupling constants from the iterative fit of the AEMX spin of the thermally induced rearrangement of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{C}(\mathrm{S}) \mathrm{N}(\mathrm{Ph}) \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right](\mathbf{6 b})$.

$$
\begin{array}{ll}
\hline \delta(\mathrm{A})=70.1 \mathrm{ppm} & { }^{1} J_{\mathrm{AX}}=-425.3 \mathrm{~Hz} \\
\delta(\mathrm{E})=58.1 \mathrm{ppm} & { }^{1} J_{\mathrm{EX}}=-480.5 \mathrm{~Hz} \\
\delta(\mathrm{M})=8.4 \mathrm{ppm} & { }^{1} J_{\mathrm{AM}}=-347.8 \mathrm{~Hz} \\
\delta(\mathrm{X})=-53.7 \mathrm{ppm} & { }^{2} J_{\mathrm{AE}}=6.8 \mathrm{~Hz} \\
& { }^{2} J_{\mathrm{MX}}=-10.7 \mathrm{~Hz} \\
& { }^{3} J_{\mathrm{EM}}=-11.2 \mathrm{~Hz}
\end{array}
$$

3.4.4 Proposed Reaction Mechanism

Scheme S2. Proposed reaction mechanism for insertion reaction of isothiocyanates RNCS ($\mathrm{R}=\mathrm{Cy}, \mathrm{Ph}$) in $\mathrm{P}-\mathrm{C}$ bonds of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right](\mathbf{2})$ yielding $\mathbf{6 a}$ and $\mathbf{6 b}$.

3.4.5 UV/Vis Spectra

Figure S31. UV/Vis spectrum of $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{CS}_{2}\right)\right]([\mathrm{K}(18 \mathrm{c}-6)] 3)$ recorded in THF.

Figure S32 UV/Vis spectrum of $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{SN}_{2}\left(\mathrm{SiMe}_{3}\right)_{2}\right)\right]([\mathrm{K}(18 \mathrm{c}-6)] 4)$ recorded in THF.

Figure S33. UV/Vis spectrum of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{SN}_{2}\left(\mathrm{SiMe}_{3}\right)_{3}\right)\right](5)$ recorded in THF.

Figure S34. UV/Vis spectrum of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{C}(\mathrm{S}) \mathrm{N}(\mathrm{Cy}) \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right]$ (6a) recorded in toluene.

Figure S35. UV/Vis spectrum of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{C}(\mathrm{S}) \mathrm{N}(\mathrm{Ph}) \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right](\mathbf{6 b})$ recorded in toluene.

3.4.6 IR Spectra

Figure S36. Solid state ATR-IR spectrum of [(Ar*BIAN) $\left.\mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{C}(\mathrm{S}) \mathrm{N}(\mathrm{Cy}) \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right]$ (6a).

Figure S37. Solid state IR spectrum of $\left[\left(A r^{*} B I A N\right) C o\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{C}(\mathrm{S}) \mathrm{N}(\mathrm{Ph}) \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right]$ (6b).

3.4.7 Single Crystal X-Ray Diffraction Data

The single-crystal X-ray diffraction data were recorded on Rigaku Oxford Diffraction SuperNova Atlas (TitanS2) or XtaLAB Synergy DW (HyPix-Arc 150) diffractometers with $\mathrm{Cu}-\mathrm{K} \alpha$ radiation $(\lambda=1.54184 \AA)$. The solid state structures for $[\mathrm{K}(18 \mathrm{c}-6)] \mathbf{4}$ and $\mathbf{5}$ were measured at the European Synchrotron BM20 $(\lambda=0.56385) .{ }^{[12]}$ Crystals were selected under mineral oil, mounted on micromount loops and quench-cooled using an Oxford Cryosystems open flow N_{2} cooling device.
Either semi-empirical multi-scan absorption corrections ${ }^{[23]}$ or analytical ones ${ }^{[24]}$ were applied to the data. The structures were solved with SHELXT ${ }^{[25]}$ solution program using dual methods and by using Olex2 as the graphical interface. ${ }^{[26]}$ The models were refined with ShelXL ${ }^{[27]}$ using full matrix least squares minimization on $\mathrm{F}^{2} .{ }^{[28]}$ The hydrogen atoms were located in idealized positions and refined isotropically with a riding model. $[K(18 c-6)] 4$: The crystal of $[K(18 c-6)] 4$ contained two severely disordered toluene molecules per asymmetric unit. They were refined by using the solvent mask command: A solvent mask was calculated and 376 electrons were found in a volume of $1704 \AA^{3}$ in one void per unit cell. This is consistent with the presence of 2.0 toluene per Asymmetric Unit which account for 400 electrons per unit cell. As [K(18c-6)]4 was crystallized by slow diffusion of n-hexane into a saturated toluene solution of $[\mathrm{K}(18 \mathrm{c}-6)] 4$ this serves as evidence for the presence of toluene in this position. One molecule of toluene is clearly visible in vicinity of the crown ether but could not be properly modelled due to severe disorder.
5: The crystal of $\mathbf{5}$ contained $1.75 n$-hexane molecules per in two voids per asymmetric unit. They were refined by using the solvent mask command: A solvent mask was calculated and 169 electrons were found in a volume of $924 \AA^{3}$ in two voids per unit cell. This is consistent with the presence of $0.75 n$-hexane and $1.0 n$-hexane per Formula Unit which account for 175 electrons per unit cell. As 5 was crystallized from n-hexane this serves as evidence for the presence of n-hexane in these positions, though they proved to be severely disordered.
$\mathbf{6 b}$: The crystal of $\mathbf{6 b}$ contained 1.5 severely disordered toluene molecules and 1 severely disordered n-hexane molecules per asymmetric unit. They were refined by using the solvent mask command: A solvent mask was calculated, and 268 electrons were found in a volume of $1313 \AA^{3}$ in two voids per unit cell. This is consistent with the presence of 1.5 molecules toluene and 1.0 molecule of n-hexane per Formula Unit which account for 250 electrons per unit cell. As $\mathbf{6 b}$ was crystallized from a mixture slow diffusion of n-hexane
and concentrated toluene solution of $\mathbf{6 b}$ this serves as evidence for the presence of toluene and n-hexane in these positions, though they were severely disordered.
The following section provides figures of the molecular structures with selected bond lengths and angles, which were not given in section 3.2 itself.

Figure S38. Solid-state molecular structure of [(Ar*BIAN)Co($\left.\left.\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{C}(\mathrm{S}) \mathrm{N}(\mathrm{Ph}) \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right]$ (6b) shown at the 50% probability level. Hydrogen atoms, and disorder in the t Bu-group omitted for clarity. The asymmetric unit contained a second crystallographically independent molecule which is not shown. Selected bond lengths [\AA] and angles [${ }^{\circ}$]: P1-P2 2.240(2), P2-P3 2.163(2), P3-P4 2.169(2), P1-P4 $2.2339(2)$, Co1-P2 2.2818(2), Co1-P3 2.2994(2), Co1-P4 2.2851(2), Co1-S1 2.2597(1), Co1-N1 $1.976(3), \mathrm{Co} 1-\mathrm{N} 21.984(4), \mathrm{C} 1-\mathrm{N} 11.295(6), \mathrm{C} 2-\mathrm{N} 21.325(5), \mathrm{C} 1-\mathrm{C} 21.446(6), \mathrm{P} 1-\mathrm{C} 31.861(6), \mathrm{C} 4-\mathrm{O} 1$ 1.211(8), C3-N3 1.343(7), C4-N3 1.462(7), P1-P2-P3 89.20(8), P2-P3-P4 84.96(8), P3-P4-P1 89.20(8), P4-P1-P2 81.68(7), Co1-S1-C3 104.8(2), C3-N3-C4 119.2(5).

Table S8. Crystallographic data and structure refinement for compounds 1-4a.

| Compound | [K(18c-6)] ${ }^{\text {a }}$ | [K(18c-6)]4 | 5 |
| :---: | :---: | :---: | :---: |
| CCDC | 2279508 | 2325202 | 2279478 |
| Empirical formula | $\begin{gathered} \mathrm{C}_{102} \mathrm{H}_{100} \mathrm{CoKN}_{2} \mathrm{O}_{6} \mathrm{P} 4 \mathrm{~S} \\ 2 \end{gathered}$ | $\begin{gathered} \mathrm{C}_{114} \mathrm{H}_{126} \mathrm{CoKN}_{4} \mathrm{O}_{6} \mathrm{P}_{4} \mathrm{~S} \\ \mathrm{Si}_{2} \end{gathered}$ | $\mathrm{C}_{91} \mathrm{H}_{95} \mathrm{CoN}_{4} \mathrm{P}_{4} \mathrm{SSi}_{3}$ |
| Formula weight | 1735.86 | 1958.33 | 1543.84 |
| Temperature/K | 123.0(1) | 100.0(1) | 100.0(1) |
| Crystal system | triclinic | monoclinic | triclinic |
| Space group | P-1 | $P 2_{1 / c}$ | P-1 |
| a/Å | 13.3668(6) | 18.4952(7) | 12.2911(3) |
| b/Å | 14.1612(7) | 21.7710(3) | 13.8135(4) |
| c/Å | 26.4289(10) | 33.4049(12) | 27.6744(6) |
| $\alpha /{ }^{\circ}$ | 91.088(3) | 90 | 88.140(2) |
| $\beta /{ }^{\circ}$ | 102.650(3) | 128.156(6) | 80.963(2) |
| $\gamma /{ }^{\circ}$ | 114.462(4) | 90 | 83.427(2) |
| Volume/ A 3 | 4409.1(4) | 10576.8(9) | 4609.3(2) |
| Z | 2 | 4 | 2 |
| $\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$ | 1.308 | 1.230 | 1.112 |
| μ / mm^{-1} | 3.523 | 0.191 | 0.193 |
| F(000) | 1824.0 | 4144.0 | 1628.0 |
| Crystal size $/ \mathrm{mm}^{3}$ | $0.307 \times 0.202 \times 0.08$ | $0.2 \times 0.1 \times 0.1$ | $0.4 \times 0.1 \times 0.05$ |
| Diffractometer | SuperNova, Atlas | Synchrotron BM20, Pilatus 2M | Synchrotron BM20,
 Pilatus 2M |
| Radiation | $\mathrm{Cu} \mathrm{K} \alpha(\lambda=1.54184)$ | $\begin{aligned} & \text { Synchrotron } \\ & (\lambda=0.56356) \end{aligned}$ | $\begin{array}{r} \text { Synchrotron } \\ (\lambda=0.56385) \end{array}$ |
| 2Θ range for data collection $/{ }^{\circ}$ | 7.436 to 147.114 | 2.872 to 39.346 | 3.09 to 39.366 |
| Index ranges | $\begin{gathered} -16 \leq h \leq 16, \\ -17 \leq \mathrm{k} \leq 13, \\ -32 \leq 1 \leq 32 \end{gathered}$ | $\begin{aligned} & -22 \leq \mathrm{h} \leq 22, \\ & -26 \leq \mathrm{k} \leq 26, \\ & -39 \leq 1 \leq 39 \end{aligned}$ | $\begin{gathered} -14 \leq h \leq 14, \\ -16 \leq \mathrm{k} \leq 16, \\ -33 \leq 1 \leq 33 \end{gathered}$ |
| Reflections collected | 30775 | 173474 | 80554 |
| Independent reflections | $\begin{gathered} 17336\left[R_{\text {int }}=0.0751,\right. \\ \left.R_{\text {sigma }}=0.1100\right] \end{gathered}$ | $\begin{gathered} 18869\left[R_{\text {int }}=0.0731,\right. \\ \left.R_{\text {sigma }}=0.0355\right] \end{gathered}$ | $\begin{gathered} 16392\left[\mathrm{R}_{\text {int }}=\right. \\ 0.01258, \mathrm{R}_{\text {sigma }}= \\ 0.0945] \end{gathered}$ |
| Data/restraints/ parameters | 16938/3/1091 | 18869/2086/1357 | 16392/93/1005 |
| Goodness-of-fit on F^{2} | 1.023 | 1.064 | 1.079 |
| Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$ | $\begin{gathered} \mathrm{R}_{1}=0.0812, \\ \mathrm{wR}_{2}=0.2011 \end{gathered}$ | $\begin{gathered} \mathrm{R}_{1}=0.0741, \\ \mathrm{wR}_{2}=0.2131 \end{gathered}$ | $\begin{gathered} \mathrm{R}_{1}=0.0818 \\ \mathrm{wR}_{2}=0.1648 \end{gathered}$ |
| Final R indexes [all data] | $\begin{gathered} \mathrm{R}_{1}=0.1305, \\ \mathrm{wR}_{2}=0.2373 \end{gathered}$ | $\begin{gathered} \mathrm{R}_{1}=0.1047 \\ \mathrm{wR}_{2}=0.2366 \end{gathered}$ | $\begin{gathered} \mathrm{R}_{1}=0.1119 \\ \mathrm{wR}_{2}=0.1779 \end{gathered}$ |
| Largest diff. peak/hole / e \AA^{-3} | 0.8/-0.54 | 0.67/-0.55 | 1.27/-0.30 |
| Flack parameter | 1 | 1 | 1 |

Table S9. Crystallographic data and structure refinement for compounds 1-6a.

| Compound | 6 a | 6 b |
| :---: | :---: | :---: |
| CCDC | 2279472 | 2279703 |
| Empirical formula | $\mathrm{C}_{216} \mathrm{H}_{208} \mathrm{Co}_{2} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{P}_{8} \mathrm{~S}_{2}$ | $\mathrm{C}_{188} \mathrm{H}_{164} \mathrm{Co}_{2} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{P}_{8} \mathrm{~S}_{2}$ |
| Formula weight | 3349.61 | 2968.98 |
| Temperature/K | 123.0(1) | 294.0(3) |
| Crystal system | monoclinic | triclinic |
| Space group | $P 2_{1 / c}$ | P-1 |
| a/Å | 30.2915(4) | 13.8753(3) |
| b/Å | 23.9570(2) | 23.4656(6) |
| c/Å | 27.2607(4) | 27.8232(3) |
| $\alpha /{ }^{\circ}$ | 90 | 86.0020(10) |
| $\beta /{ }^{\circ}$ | 116.0843(17) | 86.5260(10) |
| $\gamma /{ }^{\circ}$ | 90 | 82.975(2) |
| Volume/ A 3 | 17768.0(4) | 8956.7(3) |
| Z | 4 | 2 |
| $\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$ | 1.252 | 1.101 |
| μ / mm^{-1} | 2.814 | 2.734 |
| $\mathrm{F}(000)$ | 7072.0 | 3112.0 |
| Crystal size/ $/ \mathrm{mm}^{3}$ | $0.279 \times 0.147 \times 0.12$ | $0.24 \times 0.2 \times 0.12$ |
| Diffractometer | SuperNova, TitanS2 | Synergy DW, HyPix-Arc 150 |
| Radiation | $\mathrm{CuK} \alpha(\lambda=1.54184)$ | $\mathrm{Cu} \mathrm{K} \alpha(\lambda=1.54184)$ |
| 2Θ range for data collection $/{ }^{\circ}$ | 6.946 to 133.7 | 3.802 to 134.16 |
| Index ranges | $\begin{gathered} 35 \leq \mathrm{h} \leq 36, \\ -28 \leq \mathrm{k} \leq 27, \\ -32 \leq 1 \leq 29 \end{gathered}$ | $\begin{gathered} -16 \leq h \leq 16, \\ -28 \leq \mathrm{k} \leq 28, \\ -20 \leq 1 \leq 33 \end{gathered}$ |
| Reflections collected | 161149 | 111416 |
| Independent reflections | $\begin{gathered} 31309\left[R_{\text {int }}=0.0411,\right. \\ \left.R_{\text {sigma }}=0.0277\right] \end{gathered}$ | $\begin{gathered} 31704\left[R_{\text {int }}=0.0765,\right. \\ \left.R_{\text {sigma }}=0.0785\right] \end{gathered}$ |
| Data/restraints/ parameters | 31309/66/2154 | 31704/209/1925 |
| Goodness-of-fit on F^{2} | 1.021 | 1.013 |
| Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$ | $\begin{gathered} \mathrm{R} 1=0.0436, \\ \mathrm{wR} 2=0.1105 \end{gathered}$ | $\begin{gathered} \mathrm{R}_{1}=0.0856, \\ \mathrm{wR}_{2}=0.2506 \end{gathered}$ |
| Final R indexes [all data] | $\begin{gathered} \mathrm{R}_{1}=0.0538 \\ \mathrm{wR}_{2}=0.1180 \end{gathered}$ | $\begin{gathered} \mathrm{R}_{1}=0.1331, \\ \mathrm{wR}_{2}=0.2816 \end{gathered}$ |
| Largest diff. peak/hole / e \AA^{-3} | 0.67/-0.59 | 1.11/-0.49 |
| Flack parameter | 1 | 1 |

3.4.8 Quantum Chemical Calculations

General Methods

All calculations were performed with the ORCA 5.0 program. ${ }^{[29]}$ The geometry was optimized starting from the X-ray coordinates at the $\mathrm{TPSS}^{[30]} / \mathrm{def} 2-\mathrm{TZVP}^{[31]}$ level. Dispersion correction was included via the Grimme's D4 model, ${ }^{[32]}$ and the solvent effects by using the CPCM model. ${ }^{[33]}$ The Intrinsic Bonding Orbitals ${ }^{[34]}$ were calculated as implemented in ORCA and visualized using ChemCraft. ${ }^{[35]}$

Calculation of the ${ }^{31} P$ NMR chemical shifts

The geometry of the molecules has been optimized using the $\mathrm{PBE}^{[36]}$ functional together with the def2-SVP basis set for C and H and def2-TZVP for all other atoms, using tight convergence criteria. The dispersion correction has been incorporated via the D3BJ ${ }^{[37]}$ scheme and the solvent effects by using the CPCM model with the dielectric constant of benzene. The ${ }^{31} \mathrm{P}$ chemical shifts has been calculated using the GIAO ${ }^{[38]}$ formalism as single point calculations with the $\operatorname{PBE} 0^{[39]}$ functional using the aug-pcSseg-2 basis set ${ }^{[40]}$ (taken from the Basis Set Exchange library ${ }^{[41]}$) for phosphorus and the def2-TZVP basis set for all other atoms. In case of the hybrid functional PBE0 the RIJCOSX approximation has been used. ${ }^{[42]}$ The calculated absolute shifts has been referenced to the absolute shift of $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ using PH_{3} as a secondary standard ($\mathrm{d}_{\mathrm{PH} 3}$ in $\mathrm{C}_{6} \mathrm{D}_{6}=-240 \mathrm{ppm}$) by using the equation: $\mathrm{d}_{\text {calc }, \mathrm{X}}=\mathrm{s}_{\text {calc,PH3 }}-\mathrm{s}_{\text {calc }, \mathrm{X}}-240 \mathrm{ppm}$.

Table S10. Calculated (at the D3BJ-PBE0/def2-TZVP/aug-pcSseg-2 @P/CPCM level of theory) and experimental ${ }^{31} \mathrm{P}$ NMR chemical shifts of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{C}(\mathrm{S}) \mathrm{N}(\mathrm{Cy}) \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right]$ (6a).

| | calcd. | exp. (at 213K) |
| :--- | :--- | :--- |
| P3 | 91 | 85.5 |
| P4 | 123 | 105.4 |
| P5 | 125 | 117.9 |
| P6 | 110 | 77.6 |
| | | |

IBO 155

IBO 153

IBO 143

IBO 156

IBO 154

IBO 157

IBO 152

Figure S39. Selected Intrinsic Bonding Orbitals of [(Ar*BIAN)Co($\left.\left.\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{SN}_{2}\left(\mathrm{SiMe}_{3}\right)_{2}\right)\right]^{-}\left(\mathbf{4}^{-}\right)$at the TPSS-D4/def2-TZVP CPCM(THF) level of theory.

Selected IBOs

MO 158: 10Si - 0.336766 and $8 \mathrm{~N}-0.668073$
MO 157: 9N - 0.579533 and 5P - 0.422175
MO 156: 9N - 0.840853 and 5P - 0.079905
MO 155: $9 \mathrm{~N}-0.754930$ and 5P -0.142491
MO 154: $8 \mathrm{~N}-0.576713$ and 5P - 0.404438
MO 153: $8 \mathrm{~N}-0.848485$ and 5P -0.050514
MO 152: $8 \mathrm{~N}-0.597646$ and $2 \mathrm{P}-0.363415$
MO 151: $7 \mathrm{~N}-0.861723$ and $0 \mathrm{Co}-0.192947$
MO 150: $6 \mathrm{~N}-0.883734$ and $0 \mathrm{Co}-0.186604$
MO 149: 5P - 0.575444 and 4P - 0.471926
MO 148: 5P - 0.445004 and 1S - 0.576771
MO 147: 4P - 0.518845 and 3P - 0.490022
MO 146: $4 \mathrm{P}-0.519738$ and $0 \mathrm{Co}-0.423037$
MO 145: 3P -0.526900 and 2P -0.492273
MO 144: 2P - 0.555703 and 0Co - 0.424569
MO 143: $1 \mathrm{~S}-0.717700$ and 0Co - 0.162893
MO 142: $1 \mathrm{~S}-0.920644$ and $0 \mathrm{Co}-0.012502$

Figure S40. Optimized geometry of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{SN}_{2}\left(\mathrm{SiMe}_{3}\right)_{2}\right)\right]^{-}\left(4^{-}\right)$at the TPSS-D4/def2TZVP CPC (THF) level of theory and atom labeling.

Cartesian coordinates of the optimized geometry of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{SN}_{2}\left(\mathrm{SiMe}_{3}\right)_{2}\right)\right]^{-}\left(4^{-}\right)$at the TPSS-D4/def2-TZVP CPC(THF) level of theory.

| Co | 0.12269356182392 | 0.03991539174372 | -0.13889055865780 |
| :--- | ---: | :---: | ---: |
| S | 0.84479587300004 | 0.70002707086195 | -2.22766303871057 |
| P | -0.88606923754045 | -1.78612115898880 | -1.04896118972262 |
| P | -2.01200657282663 | -0.58398514621266 | 0.38497795984413 |
| P | -1.75020275403189 | 1.22751560740456 | -0.75261021887770 |
| P | -1.15064602338650 | 0.45278294418441 | -2.74203118573080 |
| N | 0.76167137813099 | 1.39614444767224 | 1.12139684371542 |
| N | 1.57856146334266 | -1.00047295723704 | 0.60683032464767 |
| N | -1.40224592359920 | -1.22027605899079 | -2.62204451323577 |
| N | -1.68623245955753 | 0.97312815055237 | -4.10823310259208 |
| Si | -2.79769524983070 | -1.97701436244346 | -3.41777109865314 |
| C | -4.37156968466898 | -1.06472598032021 | -2.94473019272394 |
| H | -4.35455950920002 | -0.03767999951167 | -3.32398760488712 |
| H | -4.48067425935328 | -1.02444706530140 | -1.85442876917244 |
| H | -5.25402453115864 | -1.56992503454872 | -3.35783614294479 |
| C | -2.58058706890929 | -2.00498280959929 | -5.28008717615475 |
| H | -3.45890459787620 | -2.46597012374279 | -5.75066044890539 |
| H | -1.69988756543358 | -2.59041011171975 | -5.56668721449442 |
| H | -2.46384211210174 | -0.99034383708004 | -5.66919052558307 |
| C | -2.88278220332523 | -3.74943983058860 | -2.79169498492441 |
| H | -3.11431728032464 | -3.80318300287393 | -1.72239747966050 |
| H | -1.93804645845318 | -4.27973472427433 | -2.96005840328807 |
| H | -3.67221746904939 | -4.28462779548853 | -3.33646683683761 |
| Si | -2.32086730726717 | 2.39413167600414 | -4.79209156571552 |
| C | -3.15877459076805 | 3.50492738230990 | -3.51298610457000 |
| H | -4.01497945348585 | 2.98852899852379 | -3.06055719598702 |

| | -3.52624998988070 | 4.43492324411170 | |
| :---: | :---: | :---: | :---: |
| | -2.47157645134069 | 3.77017491623192 | |
| | -3.62447063118935 | 1.90969535421571 | -6.07174676481380 |
| | | | |
| | | | |
| | -4.44291418257556 | | |
| | 538733 | | |
| | -0.15443618085484 | . 62675507417076 | -5.01003010269327 |
| | -1.3551650119058 | | |
| | 54 | | |
| | 1.86683098903642 | 1.02023755055618 | |
| | 0.28920153814980 | 2.71707281759608 | |
| | 2.32510278528900 | -0.31516239797778 | |
| | 2023 | -2 | |
| | 2.76375767862345 | | |
| | -0. | | |
| | 995 | 3.81023985193477 | 0.72208808867120 |
| | 640528177855 | 5736567488655 | |
| | 2.38130900595660 | | |
| | 290 | -3.24188113611826 | 1.47844481156767 |
| | , | 0.61549620982097 | |
| | 2103 | 2.8139341293888 | |
| | -1.46578099256443 | 7748995063636 | 02 |
| | -1.04 | | |
| | 30998963 | 98 | -0. |
| | 0.475476379 | 5.10299255956962 | |
| | 07179 | | |
| | 98116030887036 | -2.0899315877 | -1.72299981876452 |
| | 仿 | -4.36627313415159 | . 7 |
| | | 650 | |
| | 3146 | 63 | . 30048132232229 |
| | 8103682292466 | 805277053 | |
| | 23803398 | 3.61557189175779 | 23665116120234 |
| | 3.91331454070753 | 2.99595251205991 | 4.32960847279746 |
| | -0.8806785752405 | | |
| | -1.45016582437758 | 988 | .30678093047279 |
| | -2.9342931166352 | | |
| | -1.80867399 | 4.41332526015408 | |
| | -0.44744377857210 | 18 | 2.10097131285011 |
| | 1.63082958628788 | | |
| | 28436 | 081717238605 | -0.80765504152135 |
| | 27385115563 | 57558791856956 | . 13623112701944 |
| | 9038654837 | 93803038 | 0.53538025005485 |
| | 8317078924 | 9081063 | . 28721813165616 |
| | 4.25389640146436 | | |
| | 462126012 | 447937467016 | 8 |
| | 41593554772173 | 1.6797334243 | -1.43531904765400 |
| | 17000 | 2394 | -3.10405179410171 |
| | 96850716 | 014 | . 6401 |
| | 1.8633870706775 | | |
| | -0.7403855859 | 7200663353017 | . 09366664490501 |
| | 56324036510 | . 64749132637428 | 88 |
| | 0.29844682597628 | 20 | |
| | 0.76588193268252 | 862 | . 04123632376745 |
| | 4.86868052206779 | | |
| | 9961905808 | . 31795140413970 | . 01257327649106 |
| | 17688098 | 93252100 | 85705112462673 |
| | | 945325591725 | 5.09552714499931 |
| | -1.37056738538857 | . 03139435574132 | 82380 |
| | -3.43804217022165 | . 2631223387182 | |
| | -3.80031739418711 | 8902659459452 | 1335929486 |
| | -0.83887696757911 | 619 | , |
| | 32644792015392 | 483783675 | -2.023 |
| | 67715709033526 | 5348082072312 | -2.171698 |
| | 12834454 | , | -0.03 |
| | .80033307499746 | 6382216482837 | . 84170376213 |
| | 1754070424403 | 31274909834305 | . 410 |
| | 4819843 | 839976755161 | -0.70925664729638 |
| | 89603579644057 | . 48436882290841 | 1.985234 |
| | 3.91461068823776 | -3.38070104999715 | 3.73281114200399 |
| | .61406720304794 | -2.66793743010540 | -3.756913300632 |
| | 1.88226261339648 | . 71665465221698 | 0.013233 |
| | -1.07371034584772 | 68571988845618 | . 41401998599152 |
| | -1.66829156317852 | 3.66376812868338 | . 08451907796643 |
| | 2.27271641740629 | -3.79702476315118 | 4.25565559196267 |
| | 1.77971305021178 | -1.47234420855757 | 4.60846841217971 |
| | 5.66815342335762 | 2.20916602743064 | 5 |

H 6.54851241971582
H 0.41599629632846
C 0.43668188407370
H -2.07247170096419
C -0.98564466440678
H -2.78527798023388
C - 4.77170640580610
H -3.42021619103197
C -5.13377039279292
H -1.54068265286402
C 0.38092728735601
C -1.55982185194987
H -0.49467652700542
C 0.07220015328601
H $\quad 3.69653131184715$
C 2.42702360435213
H 3.66453760273329
C 5.34330074761814
H 3.19527619883296
C 5.08417253364919
H 4.94161855028864
C 6.62947442846268
H 4.21804326483380
C 6.22498637087979
H 4.88463234181096
C 3.74318671872602
H 0.78501502412840
C 1.44209414076247
H 2.42519920880457
C 2.62481333477282
C 0.45345715283028
H -0.36895652328684
C - 2.30472770405136
H -1.41923655833107
C -2.89724759788866
H 2.12605609313859
C 3.17685817136680
H 1.23937735295461
C 2.68753539921455
H 1.15268143227244
C -0.08240217572150
H -1.37845437752725
C -5.62668926711210
H -5.14111874624063
H -5.78887440946479
H 1.11235156881446
H 0.87714173221350
H 0.07669029364822
H -1.88348413997936
H -2.44014910609059
H -0.89209116593386
C 1.12403378902685
H -0.94656258924720
H 3.25557242157335
H 5.92963293798837
C 5.85590657734131
H 5.47590325377920
H 7.29922478073047
C 7.09861367369052
H 6.57767631221902
H 4.57985234595423
C 2.50545871369069
H 0.47767045129051
H 3.65190107681446
H 2.65995618222237
H 2.11591260564059
H -0.12604884701413
H 0.47718246140758
H -0.06925519156918
C -3.22246419898538
H -2.54344233731686
H -3.60201046543197
H 3.72111463699498
C 3.38959165268723
H 2.84840427847618
H 0.22598231469533
H -6.66621915450047
0.24873239557353
2.91338193489794
1.49872682832281 -0.54442995332827 -0.42971707583991 2.50983557183605 2.91273815964566 1.91647741021113 2.56701036444202 6.68467637771642 7.57443013537040 7.46601988368548 4.23419625902011 5.64408706717603 5.10705930905692 6.12892908819647 1.58800008099345 2.36871065054528 5.55490949589180 4.60866734845617 -3.41556374277222 -2.10368560840868 0.14477310157881 -0.10239442019265 -3.42259387067228 -3.98240088935974 -2.14805897187081 -3.26312319825487 -6.92468892171921 -7.41484615731609 -7.27158216826606 -3.46870687802614 -4.27070060827415 -3.44042732932825 -4.24529923720254 -4.72157559447949 -3.77008305054322 -0.57251428978942 -1.43777661379700 2.07155862674372 0.30694365661504 -1.37116184656779 2.93333743001854 3.19689245463918 2.57464275880539 7.67049749582900 7.09237989317703 8.58289647755122 8.46902278221502 6.89749455238975 7.56924566878940 6.33421822542652 5.78439991169517 6.65287544854745 1.46241440264212 3.45359294912839 5.45941512225486 -2.73945568639967 -0.91209665269843 0.83148033814281 -4.49155403823214 -3.92685819887950 -3.20504348019304 -7.04417014019111 -8.49782349986586 -7.23420263402155 -7.09029721782012 -8.35280933698761 -6.79228863346311 -4.55257891436466 -4.50601068604078 -4.45868658691952 -4.67249953362284 -2.58640902776572 -0.50783468536724 -0.05686573210703 3.22792708022596
4.69316469991384
4.72444796852054
6.34757468227072
4.22558076750736
6.07860689675644
5.35392287505689
4.63675442373340
1.15227833253070
2.27965076617571
3.32568329625067
2.94768997711809
1.32247480823462 -1.55270070528835
-3.07422434118352
-1.82746407225554
-3.23294934359819 -0.57607335421880 0.52447839324573 0.98524419448422 1.37874816598618 -0.27862531131755 -0.53115015756233 -2.55739488265452 -1.81455373528953 -3.24529732916891 -4.98195288954532 -3.28524936631279 -5.00535007087598 -0.91796164132218 1.16612757828301 -0.13241867882048 5.21025095670592 4.72217041869925 1.05000661688239 2.38662736980336 3.70575744309949 5.31566862348882 4.33421623957755 5.66664909434078 6.93146206442066 6.84936571099277 6.45142875222190 3.53443247111013 5.61887747149086 1.41207056818518 2.13682822002069 3.79701852260202 3.25066875958770 1.62385670232907 1.00460753477887 0.45917125627653 -3.68335177639520 -3.42370166420840 -3.70293508700843 0.40932867849542 1.23340450785922 1.93062052316315 0.04222835117118 -1.08353030617770 -2.24395197482249 -5.45382423125569 -5.62296652674816 -5.50217655960381 1.25328606479957 1.00070089074107 2.12013201485053 0.78033119949034 -0.31107790230214 -0.96698373813244 3.71062030005028 5.75635473898498 1.58689410010987 5.58290419294290 6.02548968885352 6.20320328474843 7.82564047096066 3.65138546515506

H 0.92767006962581
H 6.84671519975256
H 8.13405001422095
H 2.37114150295188
H $\quad-4.17973900112879$
H 4.10304825818226

| 7.01904682590681 | -4.50395219663733 |
| ---: | ---: |
| 3.39864876119587 | 1.67633300780840 |
| -0.61314032264633 | -0.94413182447121 |
| -4.38972624427076 | -6.59710497270153 |
| -5.00857577051287 | 3.94893584779469 |
| -2.55997255854244 | 6.84502326123710 |

Selected Mayer bond orders

B(0-Co, 1-S) : 0.5380 B(0-Co, 2-P) : 0.7770 B(0-Co, 3-P) : 0.5890 $\mathrm{B}(0-\mathrm{Co}, 4-\mathrm{P}): 0.6590 \mathrm{~B}(0-\mathrm{Co}, 6-\mathrm{N}): 0.6346 \mathrm{~B}(0-\mathrm{Co}, 7-\mathrm{N}): 0.6431$ B(0-Co, 36-C) : 0.1026 B(0-Co, 38-C) : 0.1067 B(1-S, $5-\mathrm{P})$: 1.0783 B(2-P, 3-P) : 1.0473 B(2-P, 8-N) : 0.9456 B(2-P, 39-C) : 0.1375 B(3-P, 4-P) : 1.1267 B(4-P, 5-P) : 0.8914 B(4-P, 37-C) : 0.1155 $\mathrm{B}(5-\mathrm{P}, 8-\mathrm{N}): 1.0454 \mathrm{~B}(5-\mathrm{P}, 9-\mathrm{N}): 1.5552 \mathrm{~B}(6-\mathrm{N}, 36-\mathrm{C}): 1.3603$ $\mathrm{B}(6-\mathrm{N}, 37-\mathrm{C}): 0.5935 \mathrm{~B}(7-\mathrm{N}, 38-\mathrm{C}): 1.4323 \mathrm{~B}(7-\mathrm{N}, 39-\mathrm{C}): 0.5138$ $\mathrm{B}(8-\mathrm{N}, 10-\mathrm{Si}): 0.9672 \mathrm{~B}(9-\mathrm{N}, 23-\mathrm{Si}): 1.2503 \mathrm{~B}(10-\mathrm{Si}, 11-\mathrm{C}): 0.9915$ B(10-Si, 15-C) : 0.9869 B(10-Si, 19-C) : 1.0217 B($11-\mathrm{C}, 12-\mathrm{H}): 0.9573$ B($11-\mathrm{C}, 13-\mathrm{H}): 0.9434 \mathrm{~B}(11-\mathrm{C}, 14-\mathrm{H}): 0.9355 \mathrm{~B}(15-\mathrm{C}, 16-\mathrm{H}): 0.9345$

IBO 152

IBO 151

IBO 162

IBO 172

Figure S41. Selected Intrinsic Bonding Orbitals of [(Ar*BIAN)Co($\left.\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{SN}_{2}\left(\mathrm{SiMe}_{3}\right)_{3}\right)\right]$ (5) at the TPSS-D4/def2-TZVP CPCM(THF) level.

Selected IBOs

MO 174: $16 \mathrm{Si}-0.338160$ and $9 \mathrm{~N}-0.663503$
MO 173: $15 \mathrm{Si}-0.343615$ and $9 \mathrm{~N}-0.664794$
MO 172: $14 \mathrm{Si}-0.335445$ and $8 \mathrm{~N}-0.672070$
MO 164: 9N - 0.591659 and 2P -0.393448
MO 163: $9 \mathrm{~N}-0.805886$ and 2P -0.080942
MO 162: $8 \mathrm{~N}-0.603899$ and 5P -0.342525
MO 161: $8 \mathrm{~N}-0.551419$ and 2P - 0.426669
MO 160: 8N - 0.827895 and 2P - 0.059011
MO 159: $7 \mathrm{~N}-0.861832$ and $0 \mathrm{Co}-0.201273$
MO 158: $6 \mathrm{~N}-0.874984$ and 0Co - 0.188600
MO 157: 5P - 0.483267 and $4 \mathrm{P}-0.524460$
MO 156: 5P - 0.571919 and 0Co - 0.396117
MO 155: 4P - 0.464757 and 3P -0.540127
MO 154: 3P - 0.411902 and 2P - 0.631653
MO 153: 3P - 0.550641 and $0 \mathrm{Co}-0.373465$
MO 152: 2P - 0.461122 and $1 \mathrm{~S}-0.553043$
MO 151: 1S - 0.725958 and 0Co - 0.176304
MO 150: 1S - 0.922476 and 0Co - 0.011767

Figure S42. Optimized geometry of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{SN}_{2}\left(\mathrm{SiMe}_{3}\right)_{3}\right)\right]$ (5) at the TPSS-D4/def2-TZVP CPC (THF) level and atom labeling.

Cartesian coordinates of the optimized geometry of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{SN}_{2}\left(\mathrm{SiMe}_{3}\right)_{3}\right)\right](5)$ at the TPSS-D4/def2-TZVP CPC(THF) level.

Co -0.09491285559101 S -0.43758113871060 P 1.06351249244783
P 2.10983498656390
P 1.40998884037338
P - 0.24156958314395
N 0.12090780909033
N - 1.84976104826616
N 0.42593744943622
N 1.76046545833374
C - 0.98770819879779
C 1.30687993094590
C -2.09621934326781
C -2.81767633773818
Si 0.99699924430022
Si 3.52700064746981
Si 0.68162593518606
C - 1.39720322906195
C 1.66721821282111
C 2.12640449752048
C - 3.22502897601255
C -3.71298790466434
C -2.85349914727277
C 0.90143367924085
C -0.14532340563707
C 2.72887265121664
C 4.53741191234800

| 0.09500971359674 | -0.06058070639845 |
| :---: | :---: |
| 0.68105869098351 | -2.26809467208034 |
| -0.67327259434489 | -2.52249480281810 |
| 0.01092835683576 | -0.70917108808589 |
| -1.43883335706982 | 0.71582167167789 |
| -2.09610730513094 | -0.55371779030161 |
| 1.76813418781937 | 0.93077059467113 |
| 0.09986326302084 | 0.77225026667929 |
| -2.18805583308749 | -2.19556710861261 |
| -0.63470465725289 | -4.03954690856217 |
| 2.14410153247410 | 1.53285667461906 |
| 2.54298395393614 | 1.11972998887270 |
| 1.22384646241014 | 1.42218089525790 |
| -0.95159183735568 | 0.89899111965175 |
| -3.80773792396743 | -2.66929279885406 |
| -0.71903740663204 | -4.34630417887549 |
| -0.21258686641089 | -5.43237191668832 |
| 3.26289456414438 | 2.37096328428113 |
| 3.51131308088877 | 0.16541723775578 |
| 2.29885581249682 | 2.23303416766509 |
| 1.76868969691861 | 2.16264453328530 |
| -1.23970424881904 | -0.14240726772966 |
| -1.70489561991058 | 2.09103687523521 |
| -4.02753284215595 | -4.52549343023048 |
| -5.06288772392562 | -1.86641917157360 |
| -4.07731673111963 | -1.99906501707251 |
| -0.58862876844361 | -2.77282138457006 |

C 4.04238552557411
C 4.00564813758730
C 1.34593867997946
C -1.04264860391426
C 0.61017086404505
C - 2.74980026323338
C -0.79937084093615
C 0.75363726127796
C 2.83282452700577
C 1.72032067113197
C 3.31714123924692
C -4.52867061516229
C -3.65633258727912
C -4.66213211272211
C -1.84640837432442
C -3.81730581513418
H -0.14246920485397
H 1.37639755433068
H 1.40563711474536
H - 0.02279664781286
H 0.10043360633811
H -1.19913338159458
H 3.45146128610677
H 3.09249022189348
H 2.71448545942078
H 4.45249369412681
H 5.58562919923385
H 4.29657444433604
H 3.63240149138503
H 5.13681997967403
H 3.76046001700821
H 3.84872083920769
H 5.07942865290987
H 3.47910358881924
H 2.36655968952239
H 0.68615517540953
H 1.28094522881415
H - 1.02828319427558
H -1.53924487550017
H -1.64552476523080
H 0.26937389952094
H -0.10063935511693
H 1.58229427451973
C -3.52783949041979
H 0.23150593252918
C - 1.56769026322766
C 1.50668326083688
H 0.30881662364054
C -0.38680069053735
H 3.09831987074220
C 3.68263809667392
H 0.98672573211041
C 1.02293212697755
C 2.89188774728991
H 3.98262164544400
H -4.93538618047734
C -5.33534093161819
H -2.61609439145096
C -4.50612889891065
C - -3.95410789796794
C -4.73848023031591
H -5.35188388189473
H - 1.41211304952992
C - 0.68195270820391
C -2.53714780197576
H -3.84067738064536
C - 2.88768414929912
C -4.86447750929923
H -1.09589513411945
C 2.69961920542503
C 1.02922435750134
C - 0.13753514260430
C - 1.70721082169453
C 4.96982284160767
C -0.24240137355522
C 1.62447165715174
C 3.05363839327704
$0.72526926331413-5.42846652149554$ $-2.32616050262610-5.19254765554989$ $-0.99167612294648-7.01163838037692$ $-0.91209712316507-5.21713443021472$ $1.65113984705592-5.62842126211666$ $2.99252781547286 \quad 2.71257716386654$ $4.40537590732842 \quad 2.86116353119793$ $3.76835567275620-1.02189452060950$ $4.24791914000832 \quad 0.35947088884899$ $\begin{array}{ll}1.31935360860966 & 3.32435202495447\end{array}$ $3.02334445926034 \quad 2.35417185828721$ $1.38339977607343 \quad 2.41816079201224$ $-0.47081848489300-1.44793171939488$ $-2.24755683095941 \quad 0.03998203903984$ $-1.49607022648696 \quad 3.21373638646201$ $-2.70292739169702 \quad 2.22490572478236$ $-4.06664972003051-4.85531501094617$ $-4.97810155645022-4.79940422218061$ $-3.23063522089039-5.07431107641804$ $-5.10392850513013-0.78004307749247$ $-6.05363797780107-2.27295284488136$ $-4.86258074281651-2.08390730242953$ $-3.34689564273211 \quad-2.37311888365932$ $-5.07760857487544-2.26528700791428$ $-3.99891696596578-0.90547331159672$ $0.39691850737967-2.30546227709349$ $-0.73439815060345-3.06870692661177$ $-1.34400900404364-2.01937737621311$ $0.70446117480955-6.44130315080324$ $0.70521199922134-5.51448478035264$ $1.67540081840316-4.96716138072246$ $-3.19825527773514-4.55104322999613$ $-2.27141944307711 \quad-5.41739128418877$ $-2.49822282138872-6.13510925679230$ $-0.71387216236433-7.28378921832273$ $-0.64643862812618-7.81952246057873$ $-2.08424919465954-6.98319483183409$ $-1.95954084786758-4.90781073080057$ $-0.85874521035950-6.19528093980904$ $-0.35803359037548-4.49553277900526$ $2.13155741782014-4.70598398224016$ $1.90254769668927-6.42629806986016$ $2.07561462100576-5.89572222131263$ $3.83245555123357 \quad 3.52281733585113$ $4.64999219754059 \quad 2.63571947245276$ $5.26464130502963 \quad 3.68461888154033$ $4.24240635984979-2.25703652493812$ $2.80014922608394-1.28381120874880$ $4.67915238556125-0.59885192380632$ $5.00308857869331-0.37458083277982$ $4.00907816800999 \quad 1.44214021041736$ $0.62548285430477 \quad 2.89019518145972$ $2.06224241100110 \quad 4.46083344662404$ $\begin{array}{ll}0.46574992611694 & 3.80668882217948\end{array}$ $2.80340596211421 \quad 3.18528268696379$ $0.45489966098405 \quad 2.03560237367746$ 2.227505732319963 .22123950146552 $-0.14439337896649-1.57122817121410$ $0.78812711115849-1.43678940271726$ $-1.37829093980142-2.63964835205681$ $-2.98813650996685 \quad 1.21690499488977$ $-2.46819990816986-0.77111813232404$ $-0.49990808338132 \quad 3.08639452503608$ $-2.48229833652786 \quad 3.17561440949760$ $-1.52227854270601 \quad 4.57669446559206$ -3.27374111416610 $\quad 3.14899580346618$ $5.00432676148603 \quad 4.01220702702540$ $3.41234973704386 \quad 3.76626342562295$ $6.16275040813511 \quad 4.07290045387857$ $3.60172984666935-2.62407367084122$ $5.27261942043668-3.07266702279556$ $5.95168119760517-0.07215126929078$ $4.23531774183260 \quad-0.68771620448893$ $4.79214907175091 \quad 1.61531676329236$ $\begin{array}{ll}1.66028080890535 & 4.89033353094728\end{array}$ $3.15335826005189 \quad 5.09876997748183$ $0.13040376051081 \quad 5.15414662484226$

C 3.80163547401538
H -6.35920445468128
C - -4.09381629262127
C -5.71265607917484
C - 3.22925861249765
C - -4.89959437512280
C -5.76751039646457
C -0.68182553977004
C 0.42485026405511
C -3.15987410622429
C - 2.59816016684219
H -3.43749437508139
H - 5.51752530593575
H 3.07773103628207
C 3.41746865979447
H 0.10175436420180
C 1.73403909199347
H 0.88722022928434
C - 1.18745204742462
H - 1.90810078069768
C -2.76186568065352
C 4.68180741227331
H 5.47345132026605
C 5.90646070077918
H - 0.72641206817703
C -0.90353713059178
H 2.60724886863713
C 0.97208635941598
H 2.36073716714655
C 4.09456153173581
C 4.83817370232240
H 3.69764056895508
H -3.16018281117445
C -4.86809865308369
H -6.05035913683841
C -6.48777683722827
H -2.49405654034521
C -3.44290364099149
H - 5.47395874912760
C -5.11625283638628
H -6.38144438668375
C -5.08680751001872
C -6.69301703496333
H - 1.52862430512711
C 0.40622223533288
H 0.43561019309409
C 1.50803772900533
C - 3.27922244167399
H -3.11708749219627
C -3.83695445363218
H -2.10585438127053
H 4.35846938076214
C 2.93812449003395
H $\quad 1.34318023772967$
H - 0.97797659802340
C -2.50483522249708
H -3.77963773284812
H 4.17734616870393
H 5.61507303746653
H 4.03708690886505
H 6.13514631687242
H 6.84763140958032
H 5.44325507802381
H -1.89275940916610
C - 0.29756704994169
H 1.45458643183090
C 4.99067575266855
H 4.20117407000027
H $\quad 5.52890743175485$
C - 6.06912147419302
H -4.52962684918355
H -7.41938674504271
C -4.39121886042506
H -2.86722919054414
H -5.85772017676073
H -4.44406579322890
H -5.83801462828138
-0.05631047372578
1.92453474213789
1.88970278993861 0.87138198673536 -2.57149756438903 -1.06464012153411 -4.08856375717916 -3.64029262415715 -2.22476509125071 -0.36880567227280 -2.69084377898211 5.69363950710834 4.02317920034943 2.78753105173712 4.01489300101024 5.77447951374621 5.67177135488365 6.30400456956044 6.76265638068976 3.24294334488222 5.03667667688237 6.28458748151051 4.39229999251179 4.60486428318928 0.82209235060224 2.32959842219590 3.49021025617694 3.82566683952822 0.52260208370337 -0.70620319406259 -0.89482820499151 0.20176013312009 1.82954662968064 3.04738569595326 0.02612863815246 2.03106765582147 -2.82616403016954 -3.42755751299057 -0.14656267326871 -1.92138207215480 -4.10035705984661 -5.46311554131764 -3.81701418975814 -3.85990023916304 -4.51798924918649 -1.32942008648065 -3.09541873274547 -2.71004775217477 0.54716382965285 -0.38153906575229 -3.59169722662663 3.53096183130917 5.05390155839923 6.47570668559465 7.74725546733005 6.30429580399400 4.66282160936290 6.72670278800037 6.83441979566018 6.42143421509587 3.54550177091885 5.14350076267794 4.99253438747438 2.00282432210726 3.41779338659714 4.67393403802751 -1.22393505820707 -0.95335929020585 -1.29042660385886 3.12334289183020 3.89288827229812 2.08070198115423 -3.10590435184678 -4.34577011035909 -1.65930222850668 -5.66812546182610 -6.25801940296478
2.87704803758043
3.42214806443361
-2.19646672876520 -0.73693233122011
-2.76908397174936
-3.61886806968999
1.38413910849466
2.39618038582902
3.99710577033891
5.06585215824446
5.34497844800891
4.64788303953204
4.38448270914462 -2.01184630362472 -3.74319766036023 -2.81376797424826 -4.21177649083814 0.01575393200506 0.35279568878065 -1.08212663984949 -0.24713283851943 1.85864458673197 2.50481635955640 0.40857612746466 4.40104387093999 5.91994213399317 4.78426953028704 6.13036858519920 5.89241773044533 5.56459244410350 3.28070260677095 1.82731506892601 -2.75071005009572 -2.25652949555957 -0.14442643128599 -0.78713554884602 -2.00990463620288 -3.84445786704982 -3.53945847519257 -4.70282335756578 0.47432219140617 1.51849155781949 2.58333020378723 1.75534015271856 2.42852755606463 4.61237053694184 4.03315722976128 6.56290383961449 4.48687807379757 6.28459532943396 4.98947406459483 -3.98852198258847 -4.54501660783600 -4.83015616889594 0.76288639052484 0.27207183322348 -0.30340281512859 0.99158802012509 2.02563556257813 2.73340702174870 0.25035579295193 0.56702180846072 -0.50622483658409 6.22578416701989 6.54434073539958 6.60914523347273 4.62986841716475 6.61768455169773 2.54047154572984 -1.54769645722279 -2.84908655871625 -0.22947835723830 -4.81998528898523 -3.92695438437161 -5.45322569595081 0.65572687529081 1.58833024185958

| H | -4.46675574274802 | -5.50093911070014 | 2.42179923650108 |
| ---: | ---: | ---: | ---: |
| H | -6.12106720241090 | -3.79418215717760 | 3.51815688060109 |
| H | -7.45028838447253 | -4.60458895741550 | 2.66839938838053 |
| H | -7.20505921503299 | -2.85500887852493 | 2.47379384991250 |
| H | 0.39330473461980 | -5.40958644207438 | 1.80715050003459 |
| C | 1.50287681584319 | -4.24951006098061 | 3.24379630860657 |
| H | 2.36202134020811 | -2.86697432376454 | 4.66398171526828 |
| H | -4.30972837858460 | 0.52770041876543 | 6.64687940313556 |
| C | -3.90252660197352 | -1.55507178675549 | 7.03815036659192 |
| H | -3.31805775686919 | -3.62843266068431 | 7.14283419181615 |
| H | 3.49790629798271 | 5.37557733867489 | -5.41899387714135 |
| H | -3.32255661121833 | 6.92748310521434 | 0.62364318420738 |
| H | -0.81079198554926 | 3.94882841595559 | 7.34137224717146 |
| H | 5.80085893191382 | -1.87466286138259 | 4.94767269677720 |
| H | -6.67079624338290 | 4.02732577733406 | -1.58619250625917 |
| H | -4.56046457266618 | -3.77237654425158 | -5.66141319075986 |
| H | 2.35065964844377 | -4.92911748050359 | 3.26313432165118 |
| H | -4.42803417281821 | -1.56786038485034 | 7.98909943662863 |

Selected Mayer bond orders

B(0-Co, 1-S) : 0.5148 B(0-Co, 2-P) : 0.1152 B(0-Co, 3-P) : 0.5962 B(0-Co, 4-P) : 0.6023 B(0-Co, 5-P) : 0.7655 B(0-Co, 6-N) : 0.6067 $\mathrm{B}(0-\mathrm{Co}, 7-\mathrm{N}): 0.6431 \mathrm{~B}(0-\mathrm{Co}, 10-\mathrm{C}): 0.1037 \mathrm{~B}(1-\mathrm{S}, 2-\mathrm{P}): 1.1306$ B(2-P, 3-P) : $0.9243 \mathrm{~B}(2-\mathrm{P}, 5-\mathrm{P}): 0.1200 \mathrm{~B}(2-\mathrm{P}, 8-\mathrm{N}): 1.1307$ B(2-P, 9-N) : $1.0679 \mathrm{~B}(3-\mathrm{P}, 4-\mathrm{P}): 1.1568 \mathrm{~B}(3-\mathrm{P}, 11-\mathrm{C}): 0.1393$ B(4-P, 5-P) : 0.9993 B($5-\mathrm{P}, 8-\mathrm{N}): 0.8822 \mathrm{~B}(5-\mathrm{P}, 13-\mathrm{C}): 0.1126$ B($6-\mathrm{N}, 10-\mathrm{C}): 1.4624 \mathrm{~B}(6-\mathrm{N}, 11-\mathrm{C}): 0.5041 \mathrm{~B}(7-\mathrm{N}, 12-\mathrm{C}): 1.4878$ $\mathrm{B}(7-\mathrm{N}, 13-\mathrm{C}): 0.5416 \mathrm{~B}(8-\mathrm{N}, 14-\mathrm{Si}): 0.9525 \mathrm{~B}(9-\mathrm{N}, 15-\mathrm{Si}): 0.9312$ B($9-\mathrm{N}, 16-\mathrm{Si}): 0.8669 \mathrm{~B}(10-\mathrm{C}, 12-\mathrm{C}): 1.1445 \mathrm{~B}(10-\mathrm{C}, 17-\mathrm{C}): 0.8632$ $\mathrm{B}(11-\mathrm{C}, 18-\mathrm{C}): 1.3677 \mathrm{~B}(11-\mathrm{C}, 19-\mathrm{C}): 1.4178 \mathrm{~B}(12-\mathrm{C}, 20-\mathrm{C}): 1.0060$ B(13-C, 21-C) : 1.3306 B (13-C, 22-C) : 1.2937 B(14-Si, 23-C) : 1.0166 B($14-\mathrm{Si}, 24-\mathrm{C}$) : $1.0322 \mathrm{~B}(14-\mathrm{Si}, 25-\mathrm{C})$: $1.0167 \mathrm{~B}(15-\mathrm{Si}, 26-\mathrm{C}): 1.0334$ B($15-\mathrm{Si}, 27-\mathrm{C}): 1.0216 \mathrm{~B}(15-\mathrm{Si}, 28-\mathrm{C}): 1.0080 \mathrm{~B}(16-\mathrm{Si}, 29-\mathrm{C}): 1.0018$

Figure S43. Optimized geometry of [(Ar*BIAN)Co($\left.\left.\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{C}(\mathrm{S}) \mathrm{N}(\mathrm{Cy}) \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right]$ (6a) at the D3BJ-PBE0/def2-SVP@C,H/def2-TZVP@Co,P,N,S CPC(Benzene) level and atom labeling.

Cartesian coordinates of the optimized geometry of [(Ar*BIAN)Co($\left.\left.\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{C}(\mathrm{S}) \mathrm{N}(\mathrm{Cy}) \mathrm{C}(\mathrm{O}) t \mathrm{Bu}\right)\right]$ (6a) at the D3BJ-PBE0/def2-
SVP@C,H/def2-TZVP@Co,P,N,S CPC(Benzene) level and atom labeling.

| Co | 0.06464451910644 | 0.05278912545616 | 0.03711093113424 |
| :--- | :--- | :---: | :---: |
| S | 2.24720515022026 | -0.11091573874997 | -0.40370262897884 |
| P | 1.91910580868605 | -0.19273919980089 | 2.59981971230055 |
| P | 0.56823734319903 | 1.41612637869779 | 1.78502751683577 |
| P | -1.12666571282865 | 0.06028989457554 | 1.99595867626874 |
| P | 0.34532747331950 | -1.51382153237536 | 1.65859714135848 |
| N | -0.49127094337635 | 1.48781009463051 | -1.19125324096054 |
| N | -0.72155464031940 | -1.09912109041212 | -1.37625290597672 |
| O | 5.36175273656963 | 0.89330833167595 | 2.99270877704679 |
| N | 4.35754282794314 | -0.24133829223673 | 1.24027071759658 |
| C | 3.02111642492179 | -0.21221745257880 | 1.11056690254058 |
| C | -1.78632476300401 | 0.54027027562380 | -4.42897670534360 |
| C | -1.05327973262111 | -0.40903040360409 | -2.45802430112203 |
| C | -1.01226482289554 | -2.50131306923242 | -1.35353747102305 |

C - 0.94032196201516
C - 0.45149688254322
C -1.42170276804657
C 0.72590161871987
C -2.87845234117937
H - 2.59968295222906
C -1.57772750817770
C -0.00518508218900
C - 0.33566559242573
H 0.45510541992209
C -1.92539962630095
H - 1.81564201960946
C 1.39699314821149 H 1.56709350814763
C -3.74720650245982
C -3.44110389834174
H - 3.11246642796267
C 3.25887196015961
C -1.63271424545153
C -2.33351740417611
C 1.90268766933263
H 1.82807371973003
C -1.48869503785890 H -2.35520780035583 C -1.58854009189787 C - -4.74044011809553 C -2.61250129833198 H -3.64023369625065 C - 1.59077366393197 H - 1.33196034296207 C 2.48489452656857 C 1.60585211669312 H 1.58577219555480 C 1.53784019588471 C 1.76914155407367 C 0.76369961323729 H 1.69014203939903 C -0.32741951721320 C -3.62303403842291 C -4.27439747650590 H -4.04976366028383 C - 1.96256676109206 H -1.05717384220563 C 3.46144257576344 H 2.62086581135908 C 2.49624198801862 H 1.70814046414802 C -2.30786355742483 C 1.12068309714015 H 0.63705355397506 C 5.23213013199754 H 4.68896908990535 C 2.33181553260899 H 2.81563140578449 C 3.50549420761272 H 3.51647199727672 C -4.93165212160315 H - 4.15500947994170 C 1.45248026896112 H 1.32259621112861 C -3.67220987070028 C -5.06200176038462 H -5.45178679879209 C -3.12552649964982 H -2.48137758194322 C - 2.44074399942132 H - 2.70177566032043 C 0.94119536685517 H 0.31891018858714 C -2.63138274882234 H -3.03675811606692 C 3.49327051378175 H 3.47799853095663 C -3.57209343296258 H -2.98978208511862 C - 2.10891593395294 H -2.23691864339066
1.04168901692047 2.88350421250118
1.64466883236138 3.63426968247363 2.69953093062278 1.62377120741675 3.48084919348291 -3.45695526669215 -4.82394853694098 -5.56042550900314 -1.88697001068095 -2.87960183372674 -3.01304136133722 -2.04251091662281 2.86809941369730 -1.93528461570988 -0.94643943793275 3.40369735762527 -5.27346812447967 -2.92841430501000 3.01042938564346 1.91580900708097 4.82375147331919 5.27107039440637 -0.72717926379055 -2.27217126408244 -4.30486851845593 -4.62659907263311 2.93729492301827 3.81368079290408 -3.94379428238780 4.48980918722018 5.37627960352692 -2.72623823715132 3.21078921188892 4.97574519145787 5.55214941417659 5.59038171952140 2.98787798877821 1.74066222003752 0.73966815807262 -6.75757265023512 -7.29885914741893 3.28708690541398 2.97369147488902 -4.25775441924021 -3.84556649202448 0.68586232148330 -3.26855757130901 -3.91064988985017 -0.15058400303664 0.54715715565524 -1.63986564466810 -1.00590001413470 -4.46924296537826 -4.23560949726898 -1.83231839632286 -1.22289011300627 4.64266187263487 5.64939782734800 -1.75887796369753 1.87066769335149 0.96890927630480 -2.61741466977724 -3.45240797789209 -1.76170442754715 -2.67984002265815 -3.54071493199040 -4.39369163349724 -0.52507730484952 -0.47635234113349 -5.08040902525112 -5.31825889071745 3.22885099957300 3.27557579024450 3.10490335506634 4.12818804970492
-2.34823577096379 -0.89838314421950
-3.59521835366330 -1.13200635844513
-0.11700152663689
-0.06518413221082 -0.27369893364434
-1.63978642928847
-1.61322603847583
-1.82641974358894
-4.48290920281175
-4.02762736967805
-2.02950286383867
-1.51748815315849
-1.36381637907457 -0.69810038364818 -1.07167996257233
-1.29399603417648
-1.32083202663854
-1.04437455238772
-1.87380969098569
-1.70605205261889
0.12860004056782
0.63947801753627
-3.78790377897839
-1.43273975232206 -1.04227158212253 -0.81622671955384 -4.07952110114249 -3.47108531993650 -1.49263408498939 -3.94974522036828
-3.29807654662941
-3.51964173537533
-3.37992402500542
-0.71162559348180 -0.86398090023971 -0.07567798838068 1.18743337434178 -2.01959628814883
-1.62509313973727 -1.27789120122752 -1.62911091431232 0.09974336248259 0.73966524438758 -0.11543840781370 0.53562291458070 -5.73511016569570 -5.86662946668707 -6.61890232208411 0.04010923204884 -0.63808013099858 -3.93957382267810 -3.17925565683696 -2.30791043326720 -3.38234335708916 -2.75808751132802 -3.24133584236497 -5.33609519029639 -5.76275534396845 0.80349466873437 -3.17384015369476 -3.66965711889744 1.77459531032244 1.46344277235907 -5.80598989225975 -6.35390515208804 -4.50114564206708 -4.19099266227652 -6.42479545554414 -7.44745422521353 0.42600120688433 1.50046489243398 3.62389737083388 4.55699917561403 -5.39543201716478 -5.77916752832397

C -2.90653981457738
H - 1.80778173693103
C - 0.24588014852003
H 0.73640258003687
C 4.93095252067490
C 4.51333976155152
H 5.30287402048490
C - 2.45796662315145
H -2.85558058779224
C -4.03983099980179
H -3.63254446499109
C 1.90779874828091
H 2.04540024051033
C - 2.24837375708915
H -3.14497079838536
H -1.39547929053188
H -2.43560926237665
C - -4.48494910419969
H -4.91894897632430
C -5.34086605274007
H -5.95018608817157
C 4.34433977239045
H 4.21114214985406
C - 4.83022750154259
H -5.04183219134192
C 4.70839999598573
H 4.84579691107314
C 1.77651133396138
H 1.88213734966448
C 5.33530047484215
H 4.32699923691826
H 5.88756265404384
C 4.51110042334980
H 5.29616729940766
C 6.62213206920962
H 7.19686064144031
H 6.53912137624671
C 1.45333305957914
H 1.31780275893166
C 5.78313998124896
H 6.76442542273315
C - 3.38209067181891
H -2.93559944204320
C - 5.02632067297605
H -5.60443448973649
C 5.09619758052738
C 2.51954857840529
H 3.14487889543886
C 1.61705269169676
H 1.60171781092797
C - 4.73795280707280
H -5.35048589703725
C -5.75181131424793
H -5.63004128787281
C -4.97319528534588
H -5.49709342825302
C -3.12294061809663
H -3.30857660587944
H -2.90655257167823
H -4.06452962020989
C -5.69658892550610
H -6.79446969599799
C 6.07214343145211
H 5.46244018373456
H 6.15205495287013
C - 6.09403862366163
H -6.22013267273440
C 7.36612116587783
H 6.83237815637251
H 8.37926367733545
C - 4.18603703961649
H -4.37570021665516
C 7.45659803355946
H 8.09988787116103
H 7.95383409273698
C 4.79075047375817
H 3.72238833073653
3.05945177643705 2.98589713235285
7.03194535558370 7.42735688899970 -0.17320711768230 -5.28467001946021 -5.68305594234185 2.02665656408048 2.20344689774225 4.14257846953815 5.04034944681183 -2.17941826190446 -1.96330418749728 -7.21178700902007 -6.69866390219542 -6.97992286404784 -8.30459947993707 -0.68575019742384 -0.00118518791680 3.14432110140435 3.25232566454398 3.80094469843536 3.88705980178714 4.28055082425246 5.28514294916944 3.56449167261020 3.44097655335494 2.09219583177249 1.08674236930554 -1.51767221509882 -1.94854392018084 -2.21945540068160 -5.59569821778352 -6.23959712646432 0.43478189635366 -0.23905696117501 1.41238957710492 3.51682410948314 3.63620428487501 3.97067176006328 4.19014962322577 -2.40650812096765 -3.08275116551978 3.09667515838129 3.04061681318382 -1.48605629239665 -1.36822338163314 -0.51504206646721 2.23904950799355 1.34609681424915 -0.47131759353035 0.38933195815037 -3.04818849700575 -3.37991225443704 3.33462272545732 3.46896419986766 -7.11716050676048 -8.21076978328201 -6.80794993774290 -6.61795577196939 3.26903934681601 3.35173825519251 -1.37328727958565 -0.73682393847121 -2.36611104391913 -2.16667369610068 -1.80955022995649 0.58439125968495 1.33807543540136 0.99659065686805 -1.33497119678048 -1.16369746662956 -0.74226897775262 -1.44938592759958 -0.58696688928931 -1.19659409196078 -0.93184718582077
2.40185960717567
2.38825804320205
0.40293722868467 0.06412384716440 2.60635890881872 -1.76372181888541 -2.41971408894074 -6.20984216363496 -7.22122631607680 -1.89060193179993 -1.40230580073728 -6.27377882255147 -7.34426789780629 0.16472265542092 0.57141542075148 0.83383537986456 0.20724892533367 1.23254756034354 0.48711186005746 -3.69117233187234 -4.60138794563888 -2.09683113083476 -3.18533520774585 -3.04118714990309 -3.43910854277259 0.67441663599862 1.75906293713845 -4.23464344226815 -3.80052328904132 -0.65860844449803 -0.81362394499222 0.00314614843270 -0.39595189106690 0.02928312169102 0.30124803723021 0.97183341273069 0.81043511900956 -6.17718671021039 -7.26298003574236 -0.13666394432252 0.31140603108691
3.14185722829150 3.88692957559429 1.23404238342535 0.30011028219608 3.39348450876679 -5.30366680853086 -5.60820406637193 -5.62121700454740 -6.26451285693964 2.59211742656424 2.90094831106368 -0.83127711573494 0.21120242574199 3.65817421937505 4.61692518425212 -2.22003306552518 -2.21518239281399 -3.26252504241530 -1.90960349781251 2.45760067336814 2.46822850259666 -1.99468582667651 -2.67478322016191 -2.48420866365225 -3.46917550991785 -4.50325409091953 -1.03502570730760 -1.65528936816910 -0.84788024601922 3.55505629698757 4.62560794387982 -1.80079303540240 -1.23008784344675 -2.78105679865452 4.87499742194516 5.00332079830207

| H | 5.40659913827538 | -0.35551371926017 | 5.24618841298801 |
| :--- | :--- | :---: | :---: |
| H | 5.01044554245477 | -2.09569508549837 | 5.48415440027166 |
| C | 5.59630903751778 | 4.08597059156418 | -1.5224152090859 |
| H | 6.43142779886180 | 4.39955658023314 | -2.16770191502045 |
| C | 4.24271440344703 | -2.64877195155828 | 2.87359292892042 |
| H | 4.48569865240818 | -3.56451400749197 | 3.44870742499930 |
| H | 4.43215934183435 | -2.86023320221887 | 1.80535429215844 |
| H | 3.15777212844397 | -2.45699455762207 | 2.99937325570506 |
| C | -1.34496617051310 | 7.90720279953986 | -0.22169356112455 |
| H | -1.31226751814251 | 7.86660010743709 | -1.32928507693340 |
| H | -1.22927968834433 | 8.96587344737740 | 0.08906676589976 |
| H | -2.35450830826990 | 7.57536387107062 | 0.09940272691467 |
| C | -7.09029768658438 | -2.95052042098469 | -2.86412587695213 |
| H | -8.00400740582672 | -3.21323484711833 | -3.41890109170836 |
| C | 6.59695571433983 | -1.85909755668123 | 3.24477315089174 |
| H | 7.24845530237685 | -1.02552631832636 | 3.57165756310826 |
| H | 6.85251895037434 | -2.12326870342901 | 2.19950389511558 |
| H | 6.8090219521055 | -2.74374280672049 | 3.87791350999595 |
| C | -0.27537967716099 | 7.10493641719621 | 1.93980708610451 |
| H | -0.15676161400739 | 8.15158739537595 | 2.28853570199467 |
| H | 0.53694486356243 | 6.49637626206913 | 2.38527688511805 |
| H | -1.23882538701565 | 6.72338405000703 | 2.33834991185842 |
| C | -6.91428706581741 | -3.38904900176191 | -1.54168901944343 |
| H | -7.69172076983169 | -3.99723342929321 | -1.05391711156402 |

Selected Mayer bond orders

B(0-Co, 1-S) : 0.6756 B(0-Co, 3-P) : 0.8753 B(0-Co, 4-P) : 0.6587 $\mathrm{B}(0-\mathrm{Co}, 5-\mathrm{P}): 0.8884 \mathrm{~B}(0-\mathrm{Co}, 6-\mathrm{N}): 0.6422 \mathrm{~B}(0-\mathrm{Co}, 7-\mathrm{N}): 0.6420$ B(0-Co, 12-C) : 0.1128 B(0-Co, 14-C) : 0.1231 B(1-S, 9-N) : 0.1308 B(1-S, 10-C) : 1.2942 B(2-P, 3-P) : 0.9688 B(2-P, 5-P) : 0.9674 B($2-\mathrm{P}, 10-\mathrm{C}): 0.9788 \mathrm{~B}(3-\mathrm{P}, 4-\mathrm{P}): 1.0906$ B(4-P, 5-P) : 1.0799 B($6-\mathrm{N}, 14-\mathrm{C}): 1.4179 \mathrm{~B}(6-\mathrm{N}, 15-\mathrm{C}): 0.8827 \mathrm{~B}(7-\mathrm{N}, 12-\mathrm{C}): 1.4100$ B($7-\mathrm{N}, 13-\mathrm{C}): 0.8900 \mathrm{~B}(8-\mathrm{O}, 95-\mathrm{C}): 2.1220 \mathrm{~B}(9-\mathrm{N}, 10-\mathrm{C}): 1.2811$ B(9-N, 64-C) : 0.9179 B(9-N, 95-C) : 0.8634 B(11-C, 16-C): 1.1890 B(11-C, 38-C) : 1.1992 B(11-C , 61-C) : 1.2639 B(12-C, 14-C) : 1.0896

References

[1] Reviews on the coordination chemistry of phosphorus: a) M. Peruzzini, L. Gonsalvi, A. Romerosa, Chem. Soc. Rev. 2005, 34, 1038-1047; b) M. Caporali, L. Gonsalvi, A. Rossin, M. Peruzzini, Chem. Rev. 2010, 110, 4178-4235; c) B. M. Cossairt, N. A. Piro, C. C. Cummins, Chem. Rev. 2010, 110, 4164-4177; d) M. Scheer, G. Balázs, A. Seitz, Chem. Rev. 2010, 110, 4236-4256; e) M. Caporali, M. Serrano-Ruiz, M. Peruzzini, in Chemistry Beyond Chlorine (Eds.: P. Tundo, L.-N. He, E. Lokteva, C. Mota), Springer, Cham, 2016, pp. 97-136; f) J. E. Borger, A. W. Ehlers, J. C. Slootweg, K. Lammertsma, Chem. Eur. J. 2017, 23, 11738-11746; g) C. M. Hoidn, D. J. Scott, R. Wolf, Chem. Eur. J. 2021, 1886-1902; h) L. Giusti, V. R. Landaeta, M. Vanni, J. A. Kelly, R. Wolf, M. Caporali, Coord. Chem. Rev. 2021, 441, 213927.
[2] Selected examples of [1.1.0]bicyclotetraphosphane-1,4-diyl (P_{4} butterfly) compounds: a) P. Binger, B. Biedenbach, C. Krüger, M. Regitz, Angew. Chem. Int. Ed. Engl. 1987, 26, 764-765; b) O. J. Scherer, G. Schwarz, G. Wolmershäuser, Z. Anorg. Allg. Chem. 1996, 622, 951-957; c) O. J. Scherer, T. Hilt, G. Wolmershäuser, Organometallics 1998, 17, 4110-4112; d) C. Schwarzmaier, A. Y. Timoshkin, G. Balázs, M. Scheer, Angew. Chem. Int. Ed. 2014, 53, 9077-9081; e) S. Pelties, D. Herrmann, B. de Bruin, F. Hartl, R. Wolf, Chem. Commun. 2014, 50, 7014-7016; f) J. E. Borger, M. K. Jongkind, A. W. Ehlers, M. Lutz, J. C. Slootweg, K. Lammertsma, ChemistryOpen 2017, 6, 350-353.
[3] Selected examples for cyclo-P4 complexes: a) O. J. Scherer, J. Vondung, G. Wolmershäuser, Angew. Chem. Int. Ed. Engl. 1989, 28, 1355-1357; b) S. Yao, N. Lindenmaier, Y. Xiong, S. Inoue, T. Szilvási, M. Adelhardt, J. Sutter, K. Meyer, M. Driess, Angew. Chem. Int. Ed. 2015, 54, 1250-1254; c) F. Dielmann, A. Timoshkin, M. Piesch, G. Balázs, M. Scheer, Angew. Chem. Int. Ed. 2017, 56, 16711675; d) A. Cavaillé, N. Saffon-Merceron, N. Nebra, M. Fustier-Boutignon, N. Mézailles, Angew. Chem. Int. Ed. 2018, 57, 1874-1878; e) K. A. Mandla, M. L. Neville, C. E. Moore, A. L. Rheingold, J. S. Figueroa, Angew. Chem. Int. Ed. 2019, 58, 15329-15333; f) K. A. Mandla, C. E. Moore, A. L. Rheingold, J. S. Figueroa, Angew. Chem. Int. Ed. 2019, 58, 1779-1783; g) C. M. Hoidn, T. M. Maier, K. Trabitsch, J. J. Weigand, R. Wolf, Angew. Chem. Int. Ed. 2019, 58, 18931-18936.
[4] a) O. J. Scherer, T. Hilt, G. Wolmershäuser, Angew. Chem. Int. Ed. 2000, 39, 14251427; b) M. Scheer, S. Deng, O. J. Scherer, M. Sierka, Angew. Chem. Int. Ed. 2005, 44, 3755-3758; c) C. Schwarzmaier, M. Bodensteiner, A. Y. Timoshkin, M. Scheer, Angew. Chem. Int. Ed. 2014, 53, 290-293; d) C. Schwarzmaier, S. Heinl, G. Balázs, M. Scheer, Angew. Chem. Int. Ed. 2015, 54, 13116-13121; e) A. E. Seitz, M. Eckhardt, A. Erlebach, E. V. Peresypkina, M. Sierka, M. Scheer, J. Am. Chem. Soc. 2016, 138, 10433-10436; f) J. E. Borger, A. W. Ehlers, M. Lutz, J. C. Slootweg, K. Lammertsma, Angew. Chem. Int. Ed. 2017, 56, 285-290; g) J. Müller, S. Heinl, C. Schwarzmaier, G. Balázs, M. Keilwerth, K. Meyer, M. Scheer, Angew. Chem. Int. Ed. 2017, 56, 7312-7317; h) J. E. Borger, M. K. Jongkind, A. W. Ehlers, M. Lutz, J. C. Slootweg, K. Lammertsma, ChemistryOpen 2017, 6, 350-353; i) R. Grünbauer, G. Balázs, M. Scheer, Chem. Eur. J. 2020, 26, 11722-11726; j) S. Reichl, R. Grünbauer, G. Balázs, M. Scheer, Chem. Commun. 2021, 57, 3383-3386; k) R. Grünbauer, C. Schwarzmaier, M. Eberl, G. Balázs, M. Scheer, Inorganica Chim. Acta 2021, 518, 120234 ; l) M. Weber, G. Balázs, A. V. Virovets, E. Peresypkina, M. Scheer, Molecules 2021, 26, 3920.
[5] S. Pelties, A. W. Ehlers, R. Wolf, Chem. Commun. 2016, 52, 6601-6604.
[6] M. Piesch, M. Seidl, M. Scheer, Chem. Sci. 2020, 11, 6745-6751.
[7] S. Hauer, T. M. H. Downie, G. Balázs, K. Schwedtmann, J. J. Weigand, R. Wolf, Angew. Chem. Int. Ed. 2023, e202317170.
[8] a) U. Chakraborty, J. Leitl, B. Mühldorf, M. Bodensteiner, S. Pelties, R. Wolf, Dalton Trans. 2018, 47, 3693-3697; b) C. M. Hoidn, C. Rödl, M. L. McCrea-Hendrick, T. Block, R. Pöttgen, A. W. Ehlers, P. P. Power, R. Wolf, J. Am. Chem. Soc. 2018, 140, 13195-13199; c) C. G. P. Ziegler, T. M. Maier, S. Pelties, C. Taube, F. Hennersdorf, A. W. Ehlers, J. J. Weigand, R. Wolf, Chem. Sci. 2019, 10, 1302-1308; d) A. K. Adhikari, C. G. P. Ziegler, K. Schwedtmann, C. Taube, Jan. J. Weigand, R. Wolf, Angew. Chem. Int. Ed. 2019, 58, 18584-18590.
[9] Calculated single- and double-bond lengths: a) P. Pyykkö, M. Atsumi, Chem. Eur. J. 2009, 15, 186-197; b) P. Pyykkö, M. Atsumi, Chem. Eur. J. 2009, 15, 12770-12779.
[10] C. Bianchini, D. Masi, C. C. Mealli, A. Meli, Inorg. Chem. 1984, 23, 2838-2844.
[11] M. Piesch, S. Reichl, M. Seidl, G. Balázs, M. Scheer, Angew. Chem. Int. Ed. 2021, 60, 15101-15108.
[12] A. C. Scheinost, J. Claussner, J. Exner, M. Feig, S. Findeisen, C. Hennig, K. O. Kvashnina, D. Naudet, D. Prieur, A. Rossberg, M. Schmidt, C. Qiu, P. Colomp, C. Cohen, E. Dettona, V. Dyadkin, T. Stumpf, J Synchrotron Rad 2021, 28, 333-349.
[13] Related cyclic P4N frameworks: a) K. Issleib, Ch. Rockstroh, I. Duchek, E. Fluck, Z. Anorg. Allg. Chem. 1968, 360, 77-87; b) M. Baudler, J. Vesper, P. Junkes, H. Sandmann, Angew. Chem. Int. Ed. Engl. 1971, 10, 940-940; c) M. Baudler, E. Tolls, E. Clef, B. Kloth, D. Koch, ZAAC 1977, 435, 21-32; d) M. Baudler, P. Lütkecosmann, Z. Anorg. Allg. Chem. 1981, 472, 38-44; e) A. Hinz, A. Schulz, A. Villinger, Chem. Eur. J. 2014, 20, 3913-3916; f) S. C. Kosnik, G. J. Farrar, E. L. Norton, B. F. T. Cooper, B. D. Ellis, C. L. B. Macdonald, Inorg. Chem. 2014, 53, 13061-13069; g) F. Dielmann, G. Bertrand, Chemistry - A European Journal 2015, 21, 191-198; h) M. Höhne, M. Joksch, K. Konieczny, B. H. Müller, A. Spannenberg, N. Peulecke, U. Rosenthal, Chem. Eur. J. 2017, 23, 4298-4309; i) J. Bresien, A. Hinz, A. Schulz, A. Villinger, European Journal of Inorganic Chemistry 2018, 2018, 1679-1682.
[14] a) F. Weigend, M. Häser, H. Patzelt, R. Ahlrichs, Chem. Phys. Lett. 1998, 294, 143-152; b) J. Tao, J. P. Perdew, V. N. Staroverov, G. E. Scuseria, Phys. Rev. Lett. 2003, 91, 146401; c) V. N. Staroverov, G. E. Scuseria, J. Tao, J. P. Perdew, J. Chem. Phys. 2003, 119, 12129-12137; d) V. N. Staroverov, G. E. Scuseria, J. Tao, J. P. Perdew, J. Chem. Phys. 2004, 121, 11507; e) F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297-3305; f) J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 2005, 105, 2999-3094; g) F. Weigend, Phys. Chem. Chem. Phys. 2006, 8, 1057-1065; h) E. Caldeweyher, C. Bannwarth, S. Grimme, J. Chem. Phys. 2017, 147, 034112; i) E. Caldeweyher, S. Ehlert, A. Hansen, H. Neugebauer, S. Spicher, C. Bannwarth, S. Grimme, J. Chem. Phys. 2019, 150, 154122.
[15] Related catena-P 4 units: a) O. J. Scherer, G. Berg, G. Wolmershäuser, Chem. Ber. 1995, 128, 635-639; b) P. Barbaro, M. Di Vaira, M. Peruzzini, S. Seniori Costantini, P. Stoppioni, Inorg. Chem. 2009, 48, 1091-1096; c) M. Piesch, M. Seidl, M. Stubenhofer, M. Scheer, Chem. Eur. J. 2019, 25, 6311-6316; d) Müller, G. Balázs, M. Scheer, Chem. Commun. 2021, 57, 2257-2260.
[16] M. Herberhold, S. Gerstmann, B. Wrackmeyer, H. Borrmann, J. Chem. Soc., Dalton Trans. 1994, 633-636.
[17] a) L. Weber, S. Uthmann, H. Bögge, A. Müller, H.-G. Stammler, B. Neumann, Organometallics 1998, 17, 3593-3598; b) J. Barluenga, E. Rubio, M. Tomás, in Comprehensive Organic Functional Group Transformations II (Eds.: A.R. Katritzky, R.J.K. Taylor), Elsevier, Oxford, 2005, pp. 545-572.
[18] G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts, Wiley, Chichester, 2004.
[19] D. Laliberté, T. Maris, J. D. Wuest, Can. J. Chem. 2004, 82, 386-398.
[20] M. M. Khusniyarov, K. Harms, O. Burghaus, J. Sundermeyer, Eur. J. Inorg. Chem. 2006, 2006, 2985-2996.
[21] P. H. M. Budzelaar, in IvorySoft: gNMR for Windows, NMR Simulation Program, 2006.
[22] a) E. G. Finer, R. K. Harris, Mol. Phys. 1967, 13, 65-75; b) S. Aime, R. K. Harris, E. M. McVicker, M. Fild, J. Chem. Soc. Dalton Trans. 1976, 2144-2153; c) J. P. Albrand, H. Faucher, D. Gagnaire, J. B. Robert, Chem. Phys. Lett. 1976, 38, 521-523; d) H. C. E. McFarlane, W. McFarlane, J. A. Nash, J. Chem. Soc. Dalton Trans. 1980, 240-244; e) M. A. M. Forgeron, M. Gee, R. E. Wasylishen, J. Phys. Chem. A 2004, 108, 4895-4908; f) J. E. Del Bene, J. Elguero, I. Alkorta, J. Phys. Chem. A 2004, 108, 3662-3667.
[23] a) G. M. Sheldrick, SADABS, Bruker AXS, Madison, USA, 2007; b) CrysAlisPro, Scale3 Abspack, Rigaku Oxford Diffraction, 2019.
[24] R. C. Clark, J. S. Reid, Acta Crystallogr. Sect. A 1995, 51, 887-897.
[25] G. M. Sheldrick, Acta Crystallogr. Sect. Found. Adv. 2015, 71, 3-8.
[26] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. a. K. Howard, H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339-341.
[27] G. M. Sheldrick, Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3-8.
[28] G. M. Sheldrick, Acta Crystallogr. A 2008, 64, 112-122.
[29] a) F. Neese, Wiley Interdiscip. Rev.-Comput. Mol. Sci. 2012, 2, 73-78; b) F. Neese, Comput. Mol. Sci. 2018, 8, e1327.
[30] a) J. Tao, J. P. Perdew, V. N. Staroverov, G. E. Scuseria, Phys. Rev. Lett. 2003, 91, 146401; b) V. N. Staroverov, G. E. Scuseria, J. Tao, J. P. Perdew, The Journal of Chemical Physics 2004, 121, 11507.
[31] a) F. Weigend, Phys. Chem. Chem. Phys. 2006, 8, 1057-1065; b) F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297-3305; c) F. Weigend, M. Häser, H. Patzelt, R. Ahlrichs, Chemical Physics Letters 1998, 294, 143-152.
[32] a) E. Caldeweyher, S. Ehlert, A. Hansen, H. Neugebauer, S. Spicher, C. Bannwarth, S. Grimme, J. Chem. Phys. 2019, 150, 154122; b) E. Caldeweyher, S. Ehlert, A. Hansen, H. Neugebauer, S. Spicher, C. Bannwarth, S. Grimme, J. Chem. Phys. 2019, 150, 154122.
[33] a) J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 2005, 105, 2999-3094; b) V. Barone, M. Cossi, J. Phys. Chem. A 1998, 102, 1995-2001.
[34] G. Knizia, J. Chem. Theory Comput. 2013, 9, 4834-4843.
[35] Chemcraft - graphical software for visualization of quantum chemistry computations. https://www.chemcraftprog.com
[36] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865-3868.
[37] a) S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456-1465; b) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
[38] a) F. London, J. Phys. Radium 1937, 8, 397-409; b) R. McWeeny, Phys. Rev. 1962, 126, 1028-1034; c) R. Ditchfield, Molec. Phys. 1974, 27, 789-807; d) K. Wolinski, J. F. Hinton, P. Pulay, J. Am. Chem. Soc. 1990, 112, 8251-8260; e) J. R. Cheeseman, G. W. Trucks, T. A. Keith, M. J. Frisch, J. Chem. Phys. 1996, 104, 54975509; f) G. L. Stoychev, A. A. Auer, R. Izsák, F. Neese, J. Chem. Theory Comput. 2018, 14, 619-637.
[39] J. P. Perdew, M. Ernzerhof, K. Burke, J. Chem. Phys. 1996, 105, 9982-9985.
[40] F. Jensen, J. Chem. Theory Comput. 2015, 11, 132-138.
[41] B. P. Pritchard, D. Altarawy, B. Didier, T. D. Gibson, T. L. Windus, J. Chem. Inf. Model. 2019, 59, 4814-4820.
[42] F. Neese, F. Wennmohs, A. Hansen, U. Becker, Chem. Phys. 2009, 356, 98-109.

Synthesis of Polyphosphido Cobalt Complexes through P-P Bond

 Condensation ${ }^{[a, b]}$
Abstract

: Transition metal polyphosphido complexes are latent tools for the targeted synthesis of extended phosphorus frameworks by $\mathrm{P}-\mathrm{P}$ condensation reactions. This chapter presents a reactivity study of the tri- and tetraphosphido cobalt complexes $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}(\mathrm{CN})\left(\eta^{3}-\mathrm{P}_{3}\right)\right](\mathbf{1})$ and $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{4}-\mathrm{P}_{4}\right)\right]$ (3) toward diorganochlorophosphines and cationic phosphorus species (18c-6 = [18]-crown-6; $\mathrm{Ar}^{*}=2,6$-dibenzhydryl-4-isopropylphenyl; \quad BIAN $=1,2-$ bis(arylimino)acenaphthene diimine). Treatment of complexes $\mathbf{1}$ and $\mathbf{3}$ with $\mathrm{R}_{2} \mathrm{PCl}$ leads to cyclo- $\mathrm{P}_{4} \mathrm{R}_{2}$ and cyclo- $\mathrm{P}_{5} \mathrm{R}_{2}$ frameworks in complexes $\mathbf{2}$ and $\mathbf{4}$. Further reactions of $\mathbf{1}$ and 3 with tetracationic $\left[\left(\mathrm{L}_{C} \mathrm{P}\right)_{4}\right][\mathrm{OTf}]_{4}\left(\mathrm{~N}[\mathrm{OTf}]_{4} ; \mathrm{L}_{\mathrm{C}}=4,5\right.$-dimethyl-1,3-diisopropyl-imidazol-2-yl) afford expanded polyphosphorus frameworks, as evidenced by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy. From these reactions the heptaphosphido complex [(Ar*BIAN) $\left.\mathrm{Co}\left(\eta^{2}: \eta^{2}-\mathrm{P}_{7} \mathrm{~L}_{\mathrm{C}}\right)\right]$ (7) was isolated in good yield and characterized by single crystal X-ray diffraction, and spectroscopic methods. The pentaphosphido complex [(Ar*BIAN)Co($\left.\left.\eta^{4}-\mathrm{P}_{5} \mathrm{~L}_{\mathrm{C}}\right)\right](8)$ was identified by ${ }^{31} \mathrm{P}$ NMR spectroscopy alongside 7. Complexes $\mathbf{7}$ and $\mathbf{8}$ likely result from the disproportionation of the intermediate complex $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{4}-\mathrm{P}_{5} \mathrm{~L}_{\mathrm{C}}\left(\mathrm{PL}_{C}\right)\right] \mathrm{OTf}(9)\right.$.

${ }^{[a]}$ S. Hauer, K. Trabitsch, R. Wolf, J. J. Weigand, unpublished results.
${ }^{[b]}$ S. Hauer performed the synthetic investigations and the characterization of the reported compounds. P. Royla synthesized the precursor compound $\mathrm{N}[\mathrm{OTf}]_{4}$. K. Trabitsch performed the reactions with the related PHDI cobalt complexes that are discussed for comparison. S. Hauer wrote the chapter. R. Wolf and J. J. Weigand supervised the project.

4.1 Introduction

Phosphorus possesses a pronounced tendency to form extended frameworks, which becomes evident in its various allotropes. This tendency is supported by the relative strength of the $\mathrm{P}-\mathrm{P}$ single bond ($200 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$), as well as the phosphorus carbon diagonal relationship, since carbon is known to form extended homoatomic structures, e.g. in diamond. ${ }^{[1,2]}$ Over the past several decades, early and late transition metal polyphosphido complexes have attracted considerable attention as latent tools for the synthesis of distinct (poly-)phosphorus compounds. ${ }^{[3-8]}$ In principle, the phosphorus framework in such complexes can be expanded by $\mathrm{P}-\mathrm{P}$ condensation reactions of suitable cationic and anionic building blocks. However, the targeted synthesis of extended polyphosphorus frameworks remains a challenging goal in this field. ${ }^{[9]}$

Studies in our group have shown that tetraphosphido complexes A and \mathbf{B} can undergo salt metathesis reactions with monochlorophosphines, leading to insertion of $\mathrm{R}_{2} \mathrm{P}$ - units and providing access to pentaphosphido ligands $\left[\mathrm{P}_{5} \mathrm{R}_{2}\right]^{-}$in \mathbf{C} and \mathbf{D} (Scheme 1a). ${ }^{[10-12]}$ The resulting isostructural cyclo- $\mathrm{P}_{5} \mathrm{R}_{2}$ ligands feature an envelope conformation and may be regarded as transition metal complexes of the corresponding $\left[\mathrm{P}_{5} \mathrm{R}_{2}\right]^{+}$cage cations. ${ }^{[13-16]}$ In subsequent work, Scheer and co-workers extended this concept of ring expansion reactions to the insertion of in situ generated $\left[\mathrm{R}_{2} \mathrm{P}\right]^{+}$moieties. ${ }^{[17-20]}$ The cations are generated from chlorophosphines and suitable halide abstractors, e.g. $\mathrm{Tl}(\mathrm{I})$ salts. Using this approach, the neutral cyclo- P_{3} complex \mathbf{E} can be transformed to cationic \mathbf{G}, containing a cyclo $-\mathrm{P}_{4} \mathrm{R}_{2}$ scaffold (Scheme 1b). ${ }^{[17]}$ Furthermore, $\mathrm{R}_{2} \mathrm{PCl}$ also reacts with strained cyclo- P_{3} ligands to afford the ring-expanded product, $\mathbf{H} .{ }^{[21]}$

Scheme 1. Expansion reactions of a) tetra- to pentaphosphido ligands and b) tri- to tetraphosphido ligands with $\mathrm{R}_{2} \mathrm{PCl} ; \mathrm{R}=$ alky, or aryl; Dipp $=2,6-i \mathrm{Pr}_{2} \mathrm{C}_{6} \mathrm{H}_{3} ; \mathrm{Mes}=2,4,6-\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{2} ; \mathrm{X}=\mathrm{OTf}^{-}, \mathrm{SbF}_{6}^{-}, \mathrm{GaCl}_{4}^{-}, \mathrm{BAr}^{\mathrm{F}-}$, $\mathrm{TEF}^{-} ; \mathrm{BAr}^{\mathrm{F-}}=\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]^{-} ; \mathrm{TEF}^{-}=\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right]^{-}$.

The cyclo $-\mathrm{P}_{3}$ unit found in the anion $\left[(\mathrm{PHDI}) \mathrm{Co}(\mathrm{CN})\left(\eta^{3}-\mathrm{P}_{3}\right)\right]^{-}(\mathrm{PHDI}=\operatorname{bis}(2,6-$ diisopropylphenyl)phenanthrene-9,10-diimine), derived from the [3+2] fragmentation of CoP_{5} complexes of type \mathbf{C}, can also be functionalized in salt metathesis reactions involving $\mathrm{R}_{2} \mathrm{PCl} .{ }^{[22]}$ Apart from the ring expansion reactions of cyclo $-\mathrm{P}_{n}$ complexes with chlorophosphines, or phosphenium cations (vide supra), the targeted expansion of P_{n} ligands with other electrophiles to attain extended frameworks remains highly challenging. ${ }^{[18,20]}$ The use of phosphenium cations is complicated by their instability and the formation of $\mathrm{R}_{2} \mathrm{ClP}-\mathrm{PR}_{2}{ }^{+}$type adducts that inhibit their reactivity. ${ }^{[23]}$

Recently, our group reported the reaction of \mathbf{A} with the diphosphorus species $\left[\left({ }^{\mathrm{Cl}} \mathrm{Im}^{\text {Dipp }}\right) \mathrm{P}_{2}(\mathrm{Dipp})\right] \mathrm{Cl}(\mathbf{I}[\mathrm{Cl}])\left({ }^{\mathrm{Cl}} \mathrm{Im}^{\text {Dipp }}=4,5\right.$-dichloro-1,3-bis(2,6-diisopropylphenyl)-imidazol-2-yl) (Scheme 2). ${ }^{[9]}$ Salt metathesis reactions of the corresponding chloride $\mathbf{I}[\mathrm{Cl}]$, or triflate $\mathbf{I}[\mathrm{OTf}]$ with the cyclo $-\mathrm{P}_{4}$ complex \mathbf{A} initially leads to hexaphosphido complex \mathbf{J}, featuring a cyclo $-\mathrm{P}_{5}$ ring and an exocyclic $\left({ }^{\mathrm{Cl}} \mathrm{Im}^{\text {Dipp }}\right) \mathrm{P}$ moiety. \mathbf{J} is thermally unstable at ambient temperature and disproportionates into \mathbf{K}, which contains a CoP_{7} core, and the CoP_{5} complex $\mathbf{L} .{ }^{[9]}$ The resulting products feature extended phosphorus frameworks and highlight the potential of (NHC)-stabilized polyphosphorus cations as suitable reagents for transition metal polyphosphido complexes. ${ }^{[24-27]}$

Scheme 2. Formation of \mathbf{J}, \mathbf{K} and \mathbf{L} by P-P condensation of cyclotetraphosphido cobalt complex \mathbf{A} with $\mathbf{I}[\mathrm{OTf}]$ or $\mathbf{I}[\mathrm{Cl}] ;{ }^{\mathrm{Cl}} \mathrm{Im}^{\text {Dipp }}=4,5$-dichloro-1,3-bis(2,6-diisopropylphenyl)-imidazol-2-yl; [LCo] $=(\mathrm{PHDI}) \mathrm{Co}$.

The cyclo-tetraphosphane $\left[\left(\mathrm{L}_{\mathrm{C}}-\mathrm{P}\right)_{4}\right]^{4+}\left(\mathbf{N}^{4+}\right)$ was reported in 2019. This tetracation is easily obtained as the triflate salt $\mathbf{N}[\mathrm{OTf}]_{4}$ ($\mathrm{L}_{\mathrm{C}}=4,5$-dimethyl-1,3-diisopropyl-imidazol2 -yl). Recently, a more efficient synthetic route has been reported, allowing its synthesis on a scale exceeding 50 grams with 88% yield, providing easy access to a suitable cationic building block. ${ }^{[27,28]} \mathbf{N}^{4+}$ can be considered a formal tetramer of the cationic phosphinidene $\left[\mathrm{L}_{\mathrm{C}}-\mathrm{P}\right]^{+}$. Computational studies suggest a high electrophilicity of the P_{4} ring, due to the four imidazoliumyl substituents. Thus, the addition of $\left[\mathrm{M}\left(\mathrm{PPh}_{3}\right)_{4}\right](\mathrm{M}=$ $\mathrm{Pd}, \mathrm{Pt})$ induces transition metal mediated [2+2] fragmentation, resulting in the formation of group 10 complexes \mathbf{O} (Scheme 3a). ${ }^{[27]}$ These complexes feature an η^{2}-coordinating
$\left[\mathrm{L}_{\mathrm{C}} \mathrm{P}=\mathrm{PL}_{\mathrm{C}}\right]^{2+}$ ligand. In contrast, treatment of $\mathbf{N}[\mathrm{OTf}]_{4}$ with an excess of $\mathrm{AuCl}($ tht $)$ leads to a reductive insertion of the gold atom into the P_{4} ring and the formation of \mathbf{P}, featuring a five-membered $\mathrm{P}_{4} \mathrm{Au}$ core (Scheme $3 b$). Moreover, \mathbf{N}^{4+} is readily cleaved via nucleophilic fragmentation with tertiary phosphines $\mathrm{R}_{3} \mathrm{P}(\mathrm{R}=\mathrm{Ph}, \mathrm{Me}, \mathrm{Et}, \mathrm{Cy})$, affording the phosphonio-phosphanides \mathbf{Q} (Scheme 3c). ${ }^{[28]}$ The latter act as cationic phosphinidene transfer reagents in phospha-Wittig-type reactions toward various substrates, such as thioketones to yield cationic phosphaalkenes $\left[\mathrm{L}_{\mathrm{C}}-\mathrm{P}=\mathrm{CR}_{2}\right]^{+}(\mathbf{R}$, Scheme 3c). Strikingly, these phosphaalkenes proved to be excellent precursors for the preparation of very rare metallaphosphiranes $\left[\eta^{2}-\left(\mathrm{L}_{\mathrm{C}} \mathrm{P}=\mathrm{CR}_{2}\right) \mathrm{M}\right]\left(\mathrm{M}=\mathrm{Pd}^{0}\right.$ and $\left.\mathrm{Pt}^{0}(\mathbf{S})\right)$ when treated with $\left[\mathrm{M}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ (Scheme 3d). Additionally, reaction of \mathbf{R} with one equivalent of $\left[\mathrm{Fe}_{2}(\mathrm{CO})_{9}\right]$ yielded the κ^{1}-phosphaalkene complex \mathbf{T} (Scheme 3e). Thus, $\mathbf{N}[\mathrm{OTf}]_{4}$ has proven to be an excellent precursor for the synthesis of various new phosphorus species, including (poly-)phosphorus transition metal complexes. ${ }^{[27,28]}$

Scheme 3. a) Transition metal mediated [2+2] fragmentation, b) reductive insertion and c) nucleophilic fragmentation of tetraphosphetane $\mathbf{N}[\mathrm{OTf}]_{4}$. d) Conversion to phosphaalkenes and subsequent e) η^{2} - and f) κ^{1}-coordinating complexes; tht = tetrahydrothiophene; $\mathrm{R}=$ Aryl, Alkyl; R' = Aryl, Alkyl, OMe.

In this chapter, the synthesis and characterization of complexes with a cyclo- $\mathrm{P}_{4} \mathrm{R}_{2}$ ligand is presented, starting from the cyclotriphosphido complex $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}(\mathrm{CN})\left(\eta^{3}-\right.\right.$ $\left.\left.\mathrm{P}_{3}\right)\right]^{-}$via insertion of $\mathrm{R}_{2} \mathrm{P}$ - units. Moreover, the expansion of the cyclo- P_{4} ring in $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{4}-\mathrm{P}_{4}\right)\right]^{-}$to a pentaphosphido ligand has been achieved, applying a similar synthetic strategy. In addition, rthe general applicability of these anionic polyphosphido complexes for $\mathrm{P}-\mathrm{P}$ condensation reactions toward tetracationic tetraphosphane $\mathbf{N}[\mathrm{OTf}]_{4}$
is demonstrated. This is illustrated in the synthesis and characterization of bicyclo[2.2.1]heptaphosphide $\left[(\operatorname{Ar} * \operatorname{BIAN}) \operatorname{Co}\left(\eta^{2}: \eta^{2}-\mathrm{P}_{7} \mathrm{~L}_{\mathrm{C}}\right)\right]$.

4.2 Results and Discussion

This study started with the investigation of the reactivity of recently reported (see Chapter 2) cyclotriphosphido cobaltate $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}(\mathrm{CN})\left(\eta^{3}-\mathrm{P}_{3}\right)\right](\mathbf{1}, 18 \mathrm{c}-6$ $=18$-crown-6; $\mathrm{Ar}^{*}=2,6$-dibenzhydryl-4-isopropylphenyl; $\operatorname{BIAN}=1,2-$ bis(arylimino)acenaphthene diimine) toward $\mathrm{R}_{2} \mathrm{PCl}\left(\mathrm{R}=t \mathrm{Bu}, \mathrm{N}(i \operatorname{Pr})_{2}, \mathrm{Cy}\right) .{ }^{[29]}$ No reaction was observed for $\mathrm{R}=t \mathrm{Bu}$ in toluene. Neither prolonged stirring of the reaction mixture nor heating resulted in a reaction, according to ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopic monitoring. This lack of reactivity was attributed to the steric hindrance exhibited by both reaction partners. In contrast, a color change from purple to cyan was observed at $40^{\circ} \mathrm{C}$ for $\mathrm{R}=$ $\mathrm{N}(i \mathrm{Pr})_{2}, \mathrm{Cy}$. According to ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopic analyses of the reaction solutions, the reaction is completed within one week and leads to the selective formation of complexes 2a and 2b (Scheme 4).

Scheme 4. Ring expansion of $\mathbf{1}$ with $\mathrm{R}_{2} \mathrm{PCl}$ yielding the cyclo- $\mathrm{P}_{4} \mathrm{R}_{2}$ complexes $\mathbf{2}$; reagents/by-products and conditions: $+\mathrm{R}_{2} \mathrm{PCl} /-[\mathrm{K}(18 \mathrm{c}-6)] \mathrm{Cl}$; toluene, $40^{\circ} \mathrm{C}, 7 \mathrm{~d}$; isolated yields: 2a: $34 \%, \mathbf{2 b}: 11 \%$.

Crystallization from a toluene/ n-hexane solution yielded cyan colored crystals of 2a $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}(\mathrm{CN})\left(\eta^{3}-\mathrm{P}_{4} \mathrm{R}_{2}\right)\right]$ in moderate yield (34\%). The relatively low yield is due to the high solubility of 2a in common organic solvents. X-ray diffraction (XRD) analysis conducted on single crystals of 2a revealed the presence of a cyclo-P4R2 ligand in a puckered conformation coordinated η^{3} to the cobalt center (Figure 1a). Additionally, a formally radical anionic Ar*BIAN*- ligand (C1-N1 1.307(7), C2-N2 1.309(7), C1-C2 $1.459(7) \AA$) and a cyanide ligand complete the coordination sphere. ${ }^{[30]}$ The $\mathrm{Co}-\mathrm{C}$ (1.900(6) \AA) and $\mathrm{C} \equiv \mathrm{N}(1.135(8) \AA)$ bond lengths, as well as the CN stretching vibration $\left(\tilde{v}_{\mathrm{CN}}=2091 \mathrm{~cm}^{-1}\right)$, fall within the typical range for cobalt cyanide complexes. ${ }^{[31-33]}$ Additionally, the P2-P3 (2.202(2) A) and P3-P4 (2.2015(2) \AA) bond lengths are in a common range for $\mathrm{P}-\mathrm{P}$ single bonds $\left(\sum_{\mathrm{PP}} 2.22 \AA\right)$) ${ }^{[34,35]}$ In contrast, the bond lengths P1-P2 (2.1703(2) A) and P1-P4 (2.176(2) A), which involve the organo-substituted phosphorus atom P 1 , are slightly shorter than expected for typical $\mathrm{P}-\mathrm{P}$ single bonds,
suggesting a delocalized system and a phosphonium-like character for P1. Furthermore, the bond lengths observed in $\mathbf{2 a}$ align closely with those reported for $\mathrm{NiP}_{4} \mathrm{R}_{2} \mathbf{G}(\mathrm{R}=\mathrm{Ph}$, Mes, $\mathrm{Cy}, 2,2^{\prime}$-biphen, Me$), \mathrm{CoP}_{4} \mathrm{R}_{2} \mathbf{H}(\mathrm{R}=\mathrm{Ph}, \mathrm{Cy}, t \mathrm{Bu})$, and the $\left[(\mathrm{PHDI}) \mathrm{Co}(\mathrm{CN})\left(\eta^{3}-\mathrm{P}_{4} \mathrm{R}_{2}\right)\right]$ analogue $(\mathrm{R}=\mathrm{Cy}, \mathrm{Ph})$ (see Scheme 1$) .{ }^{[17,21,22]}$
a)
b)

Y

Figure 1. a) Solid-state molecular structure of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}(\mathrm{CN})\left(\eta^{3}-\mathrm{P}_{4} \mathrm{Cy}_{2}\right)\right](\mathbf{2 a})$; thermal ellipsoids are shown at the 50% probability level; hydrogen atoms and non-coordinating solvent molecules omitted for clarity. Selected bond lengths $[\AA]$ and angles [${ }^{\circ}$]: P1-P2 2.1703(2), P1-P4 2.176(2), P2-P3 2.202(2), P3-P4 2.2015(2), Co1-P2 2.2922(2), Co1-P3 2.2692(2), Co1-P4 2.2933(2), Co1-C3 1.901(6), C3-N3 1.135(8), Co1-N1 1.970(5), Co1-N2 2.002(4), N1-C1 1.307(7), N2-C2 1.309(7), C1-C2 1.459(7), P1-P2-P3 82.71(7), P2-P3-P4 86.36(7), P3-P4-P1 82.60(7), P4-P1-P2 87.79(7), Co1-C3-N3 177.8(5), N1-Co1-N2 82.26(2), N1-C1-C2 115.6(5); b) experimental (upward) and simulated (downward) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of 2a, with nuclei assigned to an $\mathrm{AX}_{2} \mathrm{Y}$ spin system: $\delta\left(\mathrm{P}_{\mathrm{A}}\right)=59.9 \mathrm{ppm}, \delta\left(\mathrm{P}_{\mathrm{X}}\right)=-24.7 \mathrm{ppm}$, $\delta\left(\mathrm{P}_{\mathrm{Y}}\right)=-45.2 \mathrm{ppm},{ }^{1} J_{\mathrm{AX}}=-289 \mathrm{~Hz},{ }^{1} J_{\mathrm{XY}}=-272 \mathrm{~Hz},{ }^{2} J_{\mathrm{AY}}=24 \mathrm{~Hz}$. The spectra of the related compound $\mathbf{2 b}$ is very similar (see the SI for further details); [Co] = (Ar*BIAN)Co.

Both complexes 2a and 2b exhibit an $\mathrm{AX}_{2} \mathrm{Y}$ spin system in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum, consistent with the observed solid-state molecular structure and confirmed through an iterative fitting procedure (Figure 1b). Specifically, the resonances of 2a ($\delta=$ $\left.59.9\left(\mathrm{P}_{\mathrm{A}}\right),-24.7(\mathrm{Px}),-45.2(\mathrm{Py}) \mathrm{ppm}\right)$ are shifted significantly upfield compared to
related acylated CoP_{4} complexes [(Ar*BIAN)Co($\left.\left.\eta^{1}: \eta^{1} \mathrm{P}_{4} \mathrm{C}(\mathrm{O}) \mathrm{R}\right)\right]\left(\delta=323.3\left(\mathrm{P}_{\mathrm{A}}\right), 109.7\right.$ $\left(\mathrm{P}_{\mathrm{M}}\right), 59.2\left(\mathrm{P}_{\mathrm{X}}\right) \mathrm{ppm}$ for $\left.\mathrm{R}=t \mathrm{Bu}\right) \cdot{ }^{[29]}$ In addition, the observed coupling pattern is similar to that reported for $\mathrm{Cp}^{\prime \prime} \mathrm{CoP}_{4} \mathrm{R}_{2} \mathbf{H}\left(\mathrm{R}=\mathrm{Cy} ; \mathrm{AMM}^{\prime} \mathrm{X}\right)$ and PDHI analogue $\left[(\mathrm{PHDI}) \mathrm{Co}(\mathrm{CN})\left(\eta^{3}-\mathrm{P}_{4} \mathrm{Cy}_{2}\right)\right]$, featuring an $\mathrm{AM}_{2} \mathrm{X}$ spin system. ${ }^{[21,22]}$

In order to probe if this type of ring expansion reaction can be extended to other P_{n} ligands, we investigated the reactivity of cyclo- P_{4} complex $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{4}-\mathrm{P}_{4}\right)\right]$ (3) toward $\mathrm{R}_{2} \mathrm{PCl}$. Gratifyingly, 3 also reacts selectively with one equivalent of $\mathrm{R}_{2} \mathrm{PCl}\left(\mathrm{R}=t \mathrm{Bu}, \mathrm{N}(i \mathrm{Pr})_{2}\right)$ in a salt metathesis reaction yielding 4 (Scheme 5). In contrast to triphosphido complex 1, CoP_{4} species 3 readily reacts with the sterically congested $t \mathrm{Bu}_{2} \mathrm{PCl}$ and the reaction with $\left(\mathrm{N}(i \mathrm{Pr})_{2}\right)_{2} \mathrm{PCl}$ is notably faster (1 d vs. 7 d), highlighting the increased nucleophilicity and thus reactivity of $\mathbf{3}$ toward electrophiles.

Scheme 5. Salt metathesis of $\mathbf{3}$ with $\mathrm{R}_{2} \mathrm{PCl}$ affording the ring-expanded cyclo- $\mathrm{P}_{5} \mathrm{R}_{2}$ complexes $\mathbf{4}$; reagents/by-products and conditions: $+\mathrm{R}_{2} \mathrm{PCl} /-[\mathrm{K}(18 \mathrm{c}-6)] \mathrm{Cl}$; $\mathbf{4 a}$: toluene, $32^{\circ} \mathrm{C}, 4$ weeks, $\mathbf{4 b}$: toluene, r.t., 1 d ; isolated yields: 4a: $\mathbf{7 9 \%}, \mathbf{4 b}: \mathbf{7 3 \%}$.

Complexes [(Ar*BIAN)Co($\left.\left.\eta^{4}-\mathrm{P}_{5} \mathrm{R}_{2}\right)\right]\left(\mathbf{4 a}: \mathrm{R}=t \mathrm{Bu} ; \mathbf{4} \mathbf{b}: \mathrm{R}=\mathrm{N}(i \operatorname{Pr})_{2}\right)$ were obtained as turquoise needles in good isolated yields of 79% and 73% for $\mathbf{4 a}$ and $\mathbf{4 b}$, respectively. Single crystal X-ray diffraction (SCXRD) analysis of these confirmed the insertion of the $\mathrm{R}_{2} \mathrm{P}$ - moiety into one $\mathrm{P}-\mathrm{P}$ bond of the cyclo- P_{3} unit, leading to the formation of η^{4} coordinating cyclo- $\mathrm{P}_{5} \mathrm{R}_{2}$ ligands in $\mathbf{4 a}$ and $\mathbf{4 b}$ (Figure 2a). These complexes exhibit structural characteristics akin to those observed in \mathbf{C} and \mathbf{D}, bearing cobalt ${ }^{\text {Mes }}$ BIAN and PHDI backbones, respectively (vide supra) ${ }^{[10,11]}$ In $\mathbf{4 a}$, the $\mathrm{P}-\mathrm{P}$ bond lengths range from $2.133(1)$ to $2.163(3) \AA$. These bond lengths lie between typical $\mathrm{P}-\mathrm{P}$ single and $\mathrm{P}=\mathrm{P}$ double bond lengths ($\sum r_{\text {PP }} 2.22 \AA$ vs. $2.04 \AA$), suggesting delocalization within the $\mathrm{P}_{5} \mathrm{R}_{2}$ ligand. ${ }^{[34,35]}$

Figure 2. a) Solid-state molecular structure of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{4}-\mathrm{P}_{5} t \mathrm{Bu}_{2}\right)\right]$ (4a); thermal ellipsoids are shown at the 50% probability level; The asymmetric unit cell contained a second crystallographically independent molecule with very similar structural parameters; only one of these molecules is shown. Hydrogen atoms, disorder in the $t \mathrm{Bu}$ group and non-coordinating solvent molecules are omitted for clarity. Selected bond lengths $\left[\AA\right.$] and angles [${ }^{\circ}$]: P1-P2 2.158(1), P1-P5 2.1632(1), P2-P3 2.1633(1), P3-P4 2.1330(1), P4-P5 2.1544(1), Co1-P2 2.3407(8), Co1-P3 2.3193(8), Co1-P4 2.3169(9), Co1-P5 $2.3510(8), \mathrm{Co} 1-\mathrm{N} 11.935(2), \mathrm{Co} 1-\mathrm{N} 21.945(2), \mathrm{N} 1-\mathrm{C} 11.331(3), \mathrm{N} 2-\mathrm{C} 21.341(3), \mathrm{C} 1-\mathrm{C} 21.424(4)$, P1-P2-P3 101.26(4), P1-P5-P4 102.45(4), P2-P3-P4 104.11(4), P3-P4-P5 103.29(4), N1-Co1-N2 83.90(9), N1-C1-C2 115.4(2), N2-C2-C1 116.5(2); b) experimental (upward) and simulated (downward) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{4 a}$, with nuclei assigned to an AMM'XX' spin system: $\delta\left(\mathrm{P}_{\mathrm{A}}\right)=176.0 \mathrm{ppm}$, $\delta\left(\mathrm{P}_{\mathrm{M}}\right)=70.2 \mathrm{ppm}, \delta\left(\mathrm{P}_{\mathrm{X}}\right)=-178 \mathrm{ppm},{ }^{1} J_{\mathrm{AX}}={ }^{1} J_{\mathrm{AX}}=-413 \mathrm{~Hz},{ }^{1} J_{\mathrm{MX}}={ }^{1} J_{\mathrm{M}^{\prime} \mathrm{X}^{\prime}}=-369 \mathrm{~Hz},{ }^{1} J_{\mathrm{MM}^{\prime}}=-411 \mathrm{~Hz}$, ${ }^{2} J_{\mathrm{MX}}={ }^{2} J_{\mathrm{MX}}=39 \mathrm{~Hz},{ }^{2} J_{\mathrm{AM}}={ }^{2} J_{\mathrm{AM}}{ }^{\prime}=6 \mathrm{~Hz},{ }^{2} J_{\mathrm{XX}}=19 \mathrm{~Hz}$. The spectra of the related compound $\mathbf{4 b}$ is very similar (see Figure S13); $[\mathrm{Co}]=(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}$.

The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 4 a revealed an $\mathrm{AMM}^{\prime} \mathrm{XX}^{\prime}$ spin system, which was simulated by an iterative fitting procedure, identifying large ${ }^{1} J_{\mathrm{PP}}$ coupling constants ranging from -369 Hz to -413 Hz (Figure 2a). The chemical shifts and coupling pattern compare well with those reported for the PHDI analogue $\mathbf{C}(\mathrm{R}=t \mathrm{Bu})$ and the ${ }^{\text {Mes }}$ BIAN cobalt complex $\mathbf{D}(\mathrm{R}=t \mathrm{Bu}) .{ }^{[10,11]}$

Thus, the selective reactions to give $\mathbf{2}$ and $\mathbf{4}$ demonstrated that $\mathbf{1}$ and $\mathbf{3}$ are suitable precursors for ring expansion reactions and complexes containing extended oligophosphorus frameworks. To extend the scope of this type of reaction to other
electrophiles, the reactions of $\mathbf{1}$ and $\mathbf{3}$ with the phosphinidene $\left[\mathrm{Lc}_{\mathrm{c}}-\mathrm{P}\right]^{+}$transfer reagent $\mathbf{N}[\mathrm{OTf}]_{4}$ (see introduction Scheme 3) were investigated next. To this end, a deep purple solution of $\mathbf{1}$ in THF was treated with half an equivalent of $\mathrm{N}_{\mathrm{TOTf}}^{4} 4$, resulting in a rapid transition to blue color (Scheme 6).

Scheme 6. Reaction of cyclo- P_{3} complex 1 with $\left.\mathrm{N}^{2} \mathrm{OTf}\right]_{4}$ affording the polyphosphido complexes $\mathbf{5}$ and $\mathbf{6}$; reagents/by-products and conditions: +0.5 eq. $\mathbf{N}[\mathrm{OTf}]_{4} /-[\mathrm{K}(18 \mathrm{c}-6)] \mathrm{OTf}$; THF, r.t. ${ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$.

The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction mixture revealed the emergence of two distinct sets of signals (Figure 3). Despite efforts, single crystals of the resulting products and its adducts with $\mathrm{W}(\mathrm{CO})_{5}, \mathrm{Al}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3}$, and AuCl suitable for SCXRD could not be obtained. Nevertheless, from the analogous reactions of $\left[(n \mathrm{Bu})_{4} \mathrm{~N}\right]\left[(\mathrm{PHDI}) \mathrm{Co}(\mathrm{CN})\left(\eta^{3}-\mathrm{P}_{3}\right)\right]$ with $\mathrm{N}[\mathrm{OTf}]_{4}$, the resulting products $\left[(\mathrm{PHDI}) \mathrm{Co}(\mathrm{CN})\left(\eta^{3}-\mathrm{P}_{4} \mathrm{~L}_{\mathrm{C}}\right)\right]$ and $\left[(\mathrm{PHDI}) \mathrm{Co}(\mathrm{CN})\left(\eta^{3}-\mathrm{P}_{5} \mathrm{LC}_{2}\right)\right] \mathrm{OTf}$ could be isolated in 36% and 14% yield, respectively, and structurally characterized. ${ }^{[36]}$

Figure 3. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$-capillary) of the reaction solution of $\mathbf{1}$ and 0.5 eq. $\mathrm{N}[\mathrm{OTf}]_{4}$ in THF exhibiting two sets of signals attributed to two proposed species; blue: $\mathrm{A}_{2} \mathrm{MX}$ spin system assigned to $\mathbf{5}$; red: ABCDE spin system assigned to $\mathbf{6} ;[\mathrm{Co}]=(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}$.

Both sets of signals could be assigned by comparison with the very similar ${ }^{31} \mathrm{P}$ NMR data of the related PHDI compounds,. ${ }^{[36]}$ The signals with higher intensity (highlighted in blue in Figure 3) were assigned to the salt metathesis product [(Ar*BIAN) $\left.\mathrm{Co}(\mathrm{CN})\left(\eta^{3}-\mathrm{P}_{4} \mathrm{~L}_{\mathrm{C}}\right)\right]$ (5) in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (vide supra). $\mathbf{5}$ constitutes the product resulting from the insertion of a $\left[\mathrm{L}_{\mathrm{C}}-\mathrm{P}\right]^{+}$unit into the cyclo $^{-} \mathrm{P}_{3}$ ring in 1, with concomitant elimination of KOTf. On the other hand, the set of signals with lower intensity (marked in red in Figure 3) was assigned to the cationic cyclo- P_{5} complex 6. Complex 6 gives rise to an ABCDE spin system in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum. This is presumably due to a hindered rotation of the imidazolium-2-yl caused by steric crowding. Similar observations have been made for the PHDI analogue.

The formation of $\mathbf{6}$ can be explained by the cleavage of \mathbf{N}^{4+} into two $\mathrm{P}_{2}{ }^{2+}$ units and the subsequent insertion of one $\left[\mathrm{L}_{\mathrm{C}}-\mathrm{P}\right]_{2}{ }^{2+}$ moiety into a $\mathrm{P}-\mathrm{P}$ bond in $\mathbf{1}$. Similar transition metal-induced [2+2] fragmentation of \mathbf{N}^{4+} has been reported for the synthesis of dicationic diphosphene complexes \mathbf{O} of Pd and Pt (vide supra, Scheme 3). ${ }^{[27]}$ Whereas the $\mathrm{Ar} *$ BIAN system preferentially gives $\mathbf{5}$, the reaction of the PHDI cyclo- P_{3} complex toward $\mathbf{N}[\mathrm{OTf}]_{4}$ mainly affords the analogue of $\mathbf{6}$, according to ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopic monitoring. This is possibly due to the lower steric hindrance offered by the PHDI ligand compared to the Ar*BIAN ligand, allowing the presence of two L_{C} substituents. A similar distribution of products was observed regardless of the reactions solvent (toluene, THF), contrasting the high solvent dependency exhibited by the PHDI system. ${ }^{[36]}$

Next, to explore whether this strategy is restricted to triphosphido complexes, the reactivity of the CoP_{4} complex $\mathbf{3}$ toward $\left.\mathrm{N}^{[\mathrm{OTf}}\right]_{4}$ was investigated. Indeed, addition of half an equivalent of solid $\mathbf{N}[\mathrm{OTf}]_{4}$ to a solution of $\mathbf{3}$ in THF causes a rapid color change from purple to dark blue (Scheme 7).

Scheme 7. Reaction of cyclo- P_{4} complex $\mathbf{3}$ with $\mathbf{N}[\mathrm{OTf}]_{4}$ affording the polyphosphido complexes $\mathbf{7}$ and $\mathbf{8}$; reagents/by-products and conditions: +0.5 eq. $\mathbf{N}[\mathrm{OTf}]_{4} /-[\mathrm{K}(18 \mathrm{c}-6)] \mathrm{OTf}$; THF, r.t. ${ }^{\circ} \mathrm{C}, 1 \mathrm{~d}$; isolated yield 7 : 39\%.

The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction solution revealed two sets of signals (Figure 4). The set of signals marked in blue was assigned to an AMM'XX'YY' spin system, which is very similar to previously reported anionic P_{7} cage compound
$\left[(\text { PHDI }) \mathrm{Co}\left(\eta^{4}-\mathrm{P}_{7} \mathrm{Dipp}\right)\right]^{-}(\mathbf{K}$, Scheme 2$){ }^{[9]}$ Compared to \mathbf{K}, the entire set of resonances $\left(\delta=46.8\left(\mathrm{P}_{\mathrm{A}}\right),-22.3\left(\mathrm{P}_{\mathrm{M}}\right),-74.6\left(\mathrm{P}_{\mathrm{X}}\right),-133.8\left(\mathrm{P}_{\mathrm{Y}}\right) \mathrm{ppm}\right)$ is shifted upfield (Figure S 17 , SI) ${ }^{9]}$

Figure 4. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$-capillary) of the reaction solution of $\mathbf{3}$ and $\left.\mathrm{N}^{[\mathrm{OTf}}\right]_{4}$ in THF exhibiting two sets of signals attributed to two proposed species; blue: AMM'XX'YY' spin system assigned to 7; green: AA'MXX' spin system assigned to $\mathbf{8} ;[\mathrm{Co}]=(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}$.

After work-up, dark blue crystals of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{2}: \eta^{2}-\mathrm{P}_{7} \mathrm{~L}_{\mathrm{C}}\right)\right]$ (7) were isolated in a 39% yield from a 1,4-dioxane n-hexane mixture. SCXRD analysis of 7 confirmed the presence of a bicyclo[2.2.1]heptaphosphide framework coordinating $\eta^{2}: \eta^{2}$ to the cobalt atom (Figure 5). Several transition metal complexes featuring a norbornadiene-like P_{7} framework have been previously reported, such as $\left[\mathrm{Cp} * \mathrm{Fe}\left(\eta^{4}-\mathrm{P}_{7}\right)\right]^{-},{ }^{[37]}\left[\mathrm{Fe}\left(\mathrm{HP}_{7}\right)_{2}\right]^{2-},{ }^{[38]}$ $\left[\mathrm{P}_{7} \mathrm{M}(\mathrm{CO})_{3}\right]^{3-}(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W}),{ }^{[39]}\left[\mathrm{P}_{7} \mathrm{Ni}(\mathrm{CO})\right]^{3-},{ }^{[40]}$ and more recently in anionic K (vide supra). ${ }^{[9]}$ These examples were synthesized by reacting P_{4} with ferrate, or Zintl phase $\mathrm{K}_{3} \mathrm{P}_{7}$ with metal halides, or carbonyls. Thus, heptaphosphide \mathbf{K} was afforded by a completely different "bottom up" approach. Building upon the synthetic pathway toward \mathbf{K}, we have found that through use of different cationic organophosphorus reagents, such as $\mathbf{N}[\mathrm{OTf}]_{4}$, further phosphorus frameworks, in neutral $\mathbf{7}$, are made accessible.

The second set of signals, marked in green, was assigned to an AA'MXX' spin system which strongly resembles those of the previously reported iron pentaphosphido complexes $\left[\mathrm{Cp} * \mathrm{Fe}\left(\eta^{4}-\mathrm{P}_{5} \mathrm{R}\right)\right]^{-[41]}\left(\mathrm{Cp}^{*}=\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5} ; \mathrm{R}=\mathrm{CH}_{2} \mathrm{SiMe}_{3}, \mathrm{NMe}_{2}\right)$ and $\left[\mathrm{Cp} * \mathrm{Fe}\left(\eta^{4}-\mathrm{P}_{5}(\mathrm{NHC})\right)\right]^{[42]}(\mathrm{NHC}=\mathrm{IMes} \quad[1,3-\mathrm{bis}(2,4,6$-trimethylphenyl)imidazolin-2ylidene], $\operatorname{IPr} \quad[1,3-\operatorname{bis}(2,6-d i i s o p r o p y l p h e n y l) i m i d a z o l i n-2-y l i d e n e])$, $\left[\mathrm{Cp}^{\mathrm{Ar}} \mathrm{Co}\left(\eta^{4}-\mathrm{P}_{5} \mathrm{R}_{2}\right)\right]\left[\mathrm{GaCl}_{4}\right]^{[12]} \quad\left(\mathrm{C}_{5}\left(\mathrm{C}_{6} \mathrm{H}_{4}-4-\mathrm{Et}\right)_{5} ; \quad \mathrm{R} \quad=\quad i \mathrm{Pr}, \quad \mathrm{Cy}\right)$ and
$\left[\mathrm{Cp} " \mathrm{Ta}(\mathrm{CO})_{2}\left(\eta^{4}-\mathrm{P}_{5} \mathrm{Ph}_{2}\right)\right]{ }^{[20]}$ Although no crystals suitable for SCXRD have been obtained for the corresponding complex [(Ar*BIAN)Co($\left.\left.\eta^{4}-\mathrm{P}_{5} \mathrm{~L}_{\mathrm{C}}\right)\right]$ (8) so far, the PHDI analogue has been isolated in 18% yield as the dinuclear $\mathrm{W}(\mathrm{CO})_{5}$-adduct. ${ }^{[36]}$ The structure is related to cyclo- P_{5} complexes $\mathbf{C},{ }^{[11]} \mathbf{D}^{[10]}$ and $\mathbf{4 a} \mathbf{- b}$, resulting from an insertion of $\mathrm{R}_{2} \mathrm{P}$ units into cyclo- P_{4} ligands (vide supra, Scheme 1).

Figure 5. Solid-state molecular structure of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{2}: \eta^{2}-\mathrm{P}_{7} \mathrm{~L}_{\mathrm{C}}\right)\right]$ (7); thermal ellipsoids are shown at the 50% probability level; hydrogen atoms, non coordinating solvent molecules and disorder in der Ar*BIAN ligand are omitted for clarity. Selected bond lengths [\AA] and angles [${ }^{\circ}$]: P1-P2 2.1627(8), P1-P5 2.1967(7), P2-P3 2.2235(7), P3-P4 2.1788(7), P3-P7 2.2138(6), P4-P5 2.1758(6), P5-P6 2.2249(6), P6-P7 2.1397(7), Co1-P1 2.3118(5), Co1-P2 2.3349(5), Co1-P6 2.3513(5), Co1-P7 2.3002(5), P4-C3 $1.855(2), \mathrm{C} 3-\mathrm{N} 31.350(2), \mathrm{C} 3-\mathrm{N} 41.356(2)$, $\mathrm{Co} 1-\mathrm{N} 11.9699(2), \mathrm{Co} 1-\mathrm{N} 219.481(1)$, N1-C1 1.332(2), N2-C2 1.345(2), C1-C2 1.421(2), P1-P2-P3 104.49(3), P2-P3-P4 92.46(3), P3-P4-P5 103.21(2), P4-P5-P6 110.36(3), P5-P6-P7 104.96(2), P2-P3-P7 79.61(2), N3-C3-N4 106.81(2), N1-Co1-N2 82.81(6).

In a similar, previously reported reaction, heptaphosphido complex \mathbf{K} and pentaphosphido complex (PHDI)Co $\left\{\eta^{4}\right.$-cyclo- $\left.\mathrm{P}_{5}\left({ }_{(1)} \mathrm{Cl}^{\mathrm{Dipp}}\right)\right\}$ (\mathbf{L}) are formed by disproportionation of two molecules of a hexaphosphido complex, [(PHDI)Co $\left\{\eta^{4}\right.$-cyclo$\left.\left.\mathrm{P}_{5} \operatorname{Dipp}\left(\mathrm{P}^{(\mathrm{Cl}} \mathrm{Im}^{\text {Dipp }}\right)\right\}\right](\mathbf{J})$. Thus, a similar reaction sequence could be operating in the reaction of $\mathbf{3}$ with $\mathbf{N}[\mathrm{OTf}]_{4}$ (Scheme 8). Thus far, no intermediates have been detected by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopic monitoring of the reaction. Nevertheless, electrospray ionization mass spectrometry (ESI-MS) of the reaction solution detected a molecular ion peak at $m / z=1686.602$, suggesting the presence of a hexaphosphido complex, $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left\{\eta^{4}\right.\right.$-cyclo- $\left.\left.\mathrm{P}_{5} \mathrm{~L}_{C}\left(\mathrm{PL}_{C}\right)\right\}\right] \mathrm{OTf}(\mathbf{9})$, as an intermediate. Monocationic 9 arises from the formal insertion of a diphosphene cation $\left[\mathrm{L}_{\mathrm{C}}-\mathrm{P}\right]_{2}{ }^{2+}\left("={ }^{1} / 2 \mathbf{N}^{4+"}\right)$ into the tetraphosphido ligand in 3. Insertion of the $\left[\mathrm{L}_{\mathrm{C}}-\mathrm{P}\right]_{2}{ }^{2+}$ fragment into the cyclo- P_{4} ring of $\mathbf{3}$ could yield two possible structural motifs for the phosphorus framework in 9: a structure analogous to 6 , featuring a cyclo $-\mathrm{P}_{6}$ ligand, or a cyclo $-\mathrm{P}_{5}$ ligand with an exocyclic $\mathrm{P}-\mathrm{LC}^{+}$
moiety. In our previous study such an η^{4}-coordinating hexaphosphido complex with an envelope structure could be isolated (J, Scheme 2). Structural analysis elucidated an exocyclic two-coordinate phosphorus atom at the apex in \mathbf{J}. Thus, the second option as depicted in Scheme 8 is more likely, as ${ }^{[9]}$ Subsequently, 9 quickly disproportionates to complexes 7 and 8 .

Scheme 8. Proposed reaction sequence for the $\mathrm{P}-\mathrm{P}$ condensation reaction of $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{4}-\mathrm{P}_{4}\right)\right](\mathbf{3})$ with $\mathbf{N}[\mathrm{OTf}]_{4}$.

After work-up further by-products are apparent in the ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectra of the reaction solutions. These include the free carbene, L_{C}, and Ar *BIAN, as well as minor amounts of white phosphorus and the dinuclear oxidation product, [(Ar*BIAN) $\left.)_{2} \mathrm{Co}_{2}\left(\mu, \eta^{4}: \eta^{4}-\mathrm{P}_{4}\right)\right]$, as evidenced by a singlet at $\delta=216 \mathrm{ppm}$ in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum. ${ }^{[43]}$ These by-products are most likely formed during the disproportionation. ${ }^{[9]}$ After the successful isolation of compound 7, the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum of the mother liquor clearly shows the presence of cobalt pentaphosphido complex 8 (Figure 6). Current research efforts are focused on crystallizing the pentaphosphido complex from this enriched mother liquor.

Figure 6. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$-capillary) of the mother liquor after isolation of $\mathbf{7}$ in toluene; green: AA'MXX' spin system assigned to $\mathbf{8}$; signals of residual CoP_{7} complex $\mathbf{7}$ is marked with 7; traces of oxidation product at $\delta=216 \mathrm{ppm}$ are not depicted; $[\mathrm{Co}]=(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}$.

4.3 Conclusion

In this work, we have demonstrated that the tetraphosphido complexes 2a,b, featuring a puckered cyclo- $\mathrm{P}_{4} \mathrm{R}_{2}$ ligand, are accessible through ring expansion reactions of triphosphido complex 1 with $\mathrm{R}_{2} \mathrm{PCl}$. The CoP_{5} complexes $\mathbf{4}$ are similarly synthesized in high yield by insertion of $\mathrm{R}_{2} \mathrm{P}$ - moieties into the cyclo- P_{4} ligands in 3 . These reactions highlight the accessibility of cyclo- P_{n} ligands for the synthesis of extended phosphorus frameworks. Using this approach, reactions of the phosphinidene $\left[\mathrm{L}_{\mathrm{C}}-\mathrm{P}\right]^{+}$transfer reagent $\mathbf{N}[\mathrm{OTf}]_{4}$ with $\mathbf{1}$ and $\mathbf{3}$ were examined. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopic monitoring of the reaction of \mathbf{N}^{4+} with $\mathbf{1}$ revealed the formation of neutral cyclotetraphosphido complex $\mathbf{5}$ as the major product and cationic $\mathrm{CoP}_{5} \mathrm{~L}_{\mathrm{C} 2}{ }^{+}$complex $\mathbf{6}$ as a side product. Despite the good selectivity observed in these insertion reactions, the resulting products have, thus far, eluded crystallization. Strikingly, ESI-MS spectra suggest that the reaction of CoP_{4} complex $\mathbf{3}$ with $\mathbf{N}[\mathrm{OTf}]_{4}$ initially yields a CoP_{6} intermediate, $\mathbf{9}$, via 1,1 -insertion of a $\left[\mathrm{L}_{\mathrm{C}}-\mathrm{P}\right]_{2}{ }^{2+}$ fragment into the cyclo- P_{4} ring. Disproportionation of compound $\mathbf{9}$ gives rise to extended P_{n}-frameworks in both the CoP_{7} complex 7 and the CoP_{5} complex $\mathbf{8}$. These results illustrate that the strategic combination of cationic $\mathrm{P}_{n}{ }^{+}$and anionic transition metal polyphosphides $\mathrm{TM}-\mathrm{P}_{n}{ }^{-}$represents a fruitful strategy for the synthesis of unique (poly-)phosphorus compounds.

4.4 Experimental Details

General Synthetic Methods

All reactions and product manipulations were carried out in oven-dried glassware under an inert atmosphere of argon using standard Schlenk line or glovebox techniques (maintained at $<0.1 \mathrm{ppm} \mathrm{H}_{2} \mathrm{O}$ and $<0.1 \mathrm{ppm} \mathrm{O}_{2}$). [($\left.\left.\mathrm{L}_{\mathrm{C}}\right)_{4} \mathrm{P}_{4}\right][\mathrm{OTf}]_{4}\left(\mathrm{~L}_{\mathrm{C}}=4,5\right.$-dimethyl-1,3-diisopropylimidazol-2-yl ${ }^{[27,28]}$ was prepared and kindly provided by Philipp Royla (research group of Prof. Jan J. Weigand, TU Dresden), [K(18c-6)][(Ar*BIAN)Co($\left.\left.\eta^{4}-\mathrm{P}_{4}\right)\right]$, as well as $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}(\mathrm{CN})\left(\eta^{3}-\mathrm{P}_{3}\right)\right]$ were prepared according to procedures previously reported within this thesis (Chapter 2). All other chemicals were purchased from commercial suppliers and used without further purification.
Solvents were dried and degassed with an MBraun SPS800 solvent purification system. All dry solvents except n-hexane and n-pentane were stored under argon over activated $3 \AA$ molecular sieves in gas-tight ampules. n-Hexane and n-pentane were instead stored over potassium mirrors.

General Analytical Techniques

NMR spectra were recorded on Bruker Avance 400 spectrometers at 300 K and were internally referenced to residual solvent resonances (${ }^{1} \mathrm{H}$ NMR: $\mathrm{C}_{6} \mathrm{D}_{6}: 7.15 \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ $\mathrm{C}_{6} \mathrm{D}_{6}$: 128.06 ppm). Chemical shifts δ are given in ppm referring to external standards of tetramethylsilane $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\right)$ or $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}($ aq. $)\left({ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\right) .{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR signals were assigned based on 2D NMR spectra (COSY, HSQC, HMBC, NOESY and ROESY).

UV/Vis spectra were recorded on an Ocean Optics Flame Spectrometer with a DH-2000BAL light source. Mass spectra were recorded by the Central Analytical Department at the University of Regensburg using a Jeol AccuTOF GCX. Elemental analysis were performed by the Central Analytical Department of the University of Regensburg using a Vario micro cube. IR spectra were recorded with a Bruker ALPHA spectrometer equipped with a diamond ATR unit.

NMR Simulations

For compounds which give rise to a higher order spin system in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum, the resolution enhanced ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum was transferred to the software gNMR, version 5.0.6, by Cherwell Scientific. ${ }^{[44]}$ The full line shape iteration procedure of gNMR was applied to obtain the best match of the fitted to the experimental
spectrum. ${ }^{1} J\left({ }^{31} \mathrm{P}^{31} \mathrm{P}\right)$ coupling constants were set to negative values and all other signs of the coupling constants were obtained accordingly. ${ }^{[45-50]}$

4.4.1 Synthesis of Compounds [(Ar*BIAN)Co(CN)($\left.\boldsymbol{\eta}^{3}-\mathbf{P}_{4} \mathbf{C y} 2\right)$] (2a):

A stock solution of $\mathrm{Cy}_{2} \mathrm{PCl}(273 \mu \mathrm{~L}, \mathrm{c}=0.112 \mathrm{M}$ in n-hexane, $0.031 \mathrm{mmol}, 1.1$ equiv.) was added to a deep purple solution of $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}(\mathrm{CN})\left(\eta^{3}-\mathrm{P}_{3}\right)\right] \quad(50 \mathrm{mg}$, $0.031 \mathrm{mmol}, 1.0$ equiv.) in toluene (1.5 mL). The reaction mixture was stirred for two weeks at $40^{\circ} \mathrm{C}$.

The color slowly changed to cyan during that period. The solid was removed by filtration over a pad of silica $(1 \times 0.5 \mathrm{~cm})$ and the residue was washed with toluene $(2 \times 0.5 \mathrm{~mL})$. The combined filtrates were concentrated to approx. 1 mL and layered with n-hexane (3.5 mL). Storage of the solution at room temperature for five days and one day at $-35^{\circ} \mathrm{C}$ gave shimmering cyan crystals formed, which were isolated by decantation of the mother liquor, washed with n-hexane ($2 \times 1 \mathrm{~mL}$) and dried in vacuo.

Yield: 15 mg (34\%)
${ }^{1} \mathbf{H}$ NMR (400.13 MHz, $300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta / \mathrm{ppm}=0.79-0.91\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right.$ of Cy$), 0.97-1.01$ (m, 12H, $-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ of $\left.i \operatorname{Pr}\right), 1.05-1.35\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right.$ of Cy$), 1.48-1.63\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right.$ of Cy), 1.71-1.78 (m, $5 \mathrm{H}, \mathrm{CH}$ of Cy overlapping with CH_{2} of Cy), 2.55 (sept, ${ }^{3} J_{\mathrm{HH}}=6.9 \mathrm{~Hz}$, $2 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ of $i \mathrm{Pr}$), $3.72-3.81(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}$ of Cy$), 5.71\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{C}^{9} H(\mathrm{Ph})_{2}\right), 5.89(\mathrm{~d}$, ${ }^{3} J_{\mathrm{HH}}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}^{3}-H$ of BIAN), 6.25-6.29 (m, 2H, C ${ }^{4}-H$ of BIAN), 6.60-6.66 (m, $8 \mathrm{H}, \mathrm{C}-H_{\mathrm{Ar}}$ of Ph$), 6.81-6.85\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{C}-H_{\mathrm{Ar}}\right.$ of Ph$), 7.02-7.23\left(\mathrm{~m}, 14 \mathrm{H}, \mathrm{d}\left({ }^{3} J_{\mathrm{HH}}=8.2 \mathrm{~Hz}\right.\right.$, $2 \mathrm{H}, \mathrm{C}^{5}-H$ of BIAN) overlapping with $\mathrm{C}-H_{\mathrm{Ar}}$ of Ph overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), $7.27\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}^{11}-H\right), 7.31-7.35\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}-H_{\text {Ar }}\right.$ of Ph$), 7.55-7.56\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}^{13}-H\right)$, 7.93-7.97 (m, $8 \mathrm{H}, \mathrm{C}-\mathrm{H}_{\mathrm{Ar}}$ of Ph$), 9.02\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{C}^{15} \mathrm{H}(\mathrm{Ph})_{2}\right)$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(100.61 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right): ~ \delta / \mathrm{ppm}=23.7\left(\mathrm{~s},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $\left.i \mathrm{Pr}\right), 23.9(\mathrm{~s}$, ${ }^{-} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ of $\left.i \mathrm{Pr}\right), 25.4\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=3.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$ of Cy$), 25.9\left(\mathrm{~s}, \mathrm{CH}_{2}\right.$ of Cy$), 26.2\left(\mathrm{~s}, \mathrm{CH}_{2}\right.$ of Cy), 26.3 ($\mathrm{s}, C \mathrm{H}_{2}$ of Cy), 27.0 (d, ${ }^{2} J_{\mathrm{PC}}=11.3 \mathrm{~Hz}, C \mathrm{H}_{2}$ of Cy), 30.8 ($\mathrm{s}, C \mathrm{H}_{2}$ of Cy), 33.6 $\left(\mathrm{s},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $\left.i \mathrm{Pr}\right), 37.6\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=13.4 \mathrm{~Hz}, C-\mathrm{H}\right.$ of Cy$), 40.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=7.1 \mathrm{~Hz}, C-\mathrm{H}\right.$ of Cy), $51.0\left(\mathrm{~s},-C^{9} \mathrm{H}(\mathrm{Ph})_{2}\right), 51.2\left(\mathrm{~d}, J_{\mathrm{PC}}=4.7 \mathrm{~Hz}\right.$ through space, $\left.-C^{15} \mathrm{H}(\mathrm{Ph})_{2}\right), 123.3$ (s, $C^{3}-\mathrm{H}$ of BIAN), 125.7 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), 125.9 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), 126.2 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), 126.2 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), 126.4 ($\mathrm{s}, C^{5}-\mathrm{H}$ of BIAN), 127.4 ($\mathrm{s}, C^{4}-\mathrm{H}$ of BIAN), 127.7 (s , $C_{\mathrm{Ar}}-\mathrm{H}$ of Ph overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 127.9 (s, $C_{\mathrm{Ar}-\mathrm{H} \text { of } \mathrm{Ph} \text { overlapping }}$
with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 127.9 ($\mathrm{s}, \mathrm{C}^{11}-\mathrm{H}$ overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 128.1
 $C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), $128.8\left(\mathrm{~s}, C^{13}-\mathrm{H}\right), 129.4\left(\mathrm{~s}, C^{2}\right.$ of BIAN), 129.8 (s, C^{6} of BIAN), 130.4 (s , $C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), $130.6\left(\mathrm{~s}, C_{\mathrm{Ar}}-\mathrm{H}\right.$ of Ph$), 131.1\left(\mathrm{~s}, C_{\mathrm{Ar}}-\mathrm{H}\right.$ of Ph$), 134.4\left(\mathrm{~s}, C^{10}\right), 138.1\left(\mathrm{~s}, C^{7}\right.$ of BIAN), $139.8\left(\mathrm{~s}, C^{14}\right), 143.3\left(\mathrm{~s}, C_{\text {Ar }}\right.$ of Ph$), 144.4\left(\mathrm{~s}, C_{\mathrm{Ar}}\right.$ of Ph$), 145.1\left(\mathrm{~m}, C_{\mathrm{Ar}}\right.$ of Ph$)$, $146.2\left(\mathrm{~s}, C^{12}\right), 146.6\left(\mathrm{~s}, C^{8}-\mathrm{N}\right), 147.2\left(\mathrm{~s}, C_{\mathrm{Ar}}\right.$ of Ph$), 168.6\left(\mathrm{~s}, C^{1}=\mathrm{N}\right.$ of BIAN); $C \equiv \mathrm{~N}$ of coordinated cyanide not detected.
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$: $\mathrm{AX}_{2} \mathrm{Y}$ spin system $\delta / \mathrm{ppm}=-47.0--43.5$ $\left(\mathrm{m}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{Y}}\right),-26.4-22.9\left(\mathrm{~m}, 2 \mathrm{P}, \mathrm{P}_{\mathrm{x}}\right), 58.1-61.8\left(\mathrm{~m}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{A}}\right)$ for parameters obtained by simulation, see Figure S 4 and Table S 1 .
UV/Vis (THF, $\lambda_{\max } / \mathrm{nm}, \varepsilon_{\max } / \mathrm{L} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~cm}^{-1}$): 240 (60000), 310sh (15000), 390 (6000), 490 (6000), 680 (15000).
IR (solid state): $\mathrm{v} / \mathrm{cm}^{-1}=3056 \mathrm{w}(\mathrm{C}-\mathrm{H}), 3023 \mathrm{w}(\mathrm{C}-\mathrm{H}), 2921 \mathrm{~m}(\mathrm{C}-\mathrm{H}), 2848 \mathrm{~m}(\mathrm{C}-\mathrm{H})$, 2091m ($\mathrm{C} \equiv \mathrm{N}$), 1599w, 1565w, 1492s (C-N), 1439m, 1417m, 1296w, 1192w, 1030w, 695vs, 604s, 585s.
Elemental Analysis calcd. for $\left(\mathrm{C}_{95} \mathrm{H}_{90} \mathrm{CoN}_{3} \mathrm{P}_{4}\right)\left(\mathrm{Mw}=1456.61 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\right)$:
C 78.34, H 6.23, N 2.88; found C 78.24, H 6.62, N 2.43 .
$\left[(\mathbf{A r} * \mathbf{B I A N}) \mathbf{C o}\left(\mathbf{C N}\left(\eta^{3}-\mathbf{P}_{4}\left(\mathbf{N}\left(\mathbf{i P r}_{2}\right)_{2}\right)\right](2 b):\right.\right.$

Neat $\quad\left(i \mathrm{Pr}_{2} \mathrm{~N}\right)_{2} \mathrm{PCl} \quad(8.2 \mathrm{mg}, \quad 0.031 \mathrm{mmol}$, 1.0 equiv.) was added to a deep purple solution of $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}(\mathrm{CN})\left(\eta^{3}-\mathrm{P}_{3}\right)\right] \quad(50 \mathrm{mg}$, $0.031 \mathrm{mmol}, 1.0$ equiv.) in toluene (2.0 mL). The reaction mixture was stirred for one week at $40^{\circ} \mathrm{C}$. The color slowly changed to cyan during that time. The solid was removed by filtration over a pad of silica ($1.5 \times 0.5 \mathrm{~cm}$) and the residue washed with toluene $(2 \times 0.5 \mathrm{~mL})$. Volatiles of the combined filtrates were removed in vacuo and the remaining residue taken up in n-hexane. -Storage of the solution at $-35^{\circ} \mathrm{C}$ for four days gave shimmering cyan crystals formed, which were isolated by decantation of the mother liquor, washed with n-hexane $(1 \times 0.5 \mathrm{~mL})$ and dried in vacuo.

Yield: 5 mg (11\%).
${ }^{1} \mathbf{H}$ NMR $\left(400.30 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta / \mathrm{ppm}=0.95-0.99\left(\mathrm{~m}, 12 \mathrm{H},-\mathrm{N}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right)$, 1.15-1.19 (m, 24H, $-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ of $i \operatorname{Pr}$ overlapping with $\left.-\mathrm{N}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right)$, 2.54 (sept, ${ }^{3} J_{\mathrm{HH}}=6.9 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ of $\left.i \mathrm{Pr}\right), 3.87$ (br sept, $\left.2 \mathrm{H},-\mathrm{N}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right), 4.24$ (br sept,
$\left.2 \mathrm{H},-\mathrm{N}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right)$, $5.76-5.78\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}-H\right.$ of BIAN overlapping with $\left.-\mathrm{CH}(\mathrm{Ph})_{2}\right)$, 6.26-6.30 (m, $2 \mathrm{H}, \mathrm{C}-H$ of BIAN), 6.57-7.34 (m, $36 \mathrm{H}, \mathrm{C}-\mathrm{H}_{\mathrm{Ar}}$ of Ph overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal $)$, $7.56\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}-H_{\mathrm{Ar}}\right), 7.84-7.86\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}-\mathrm{H}_{\mathrm{Ar}}\right.$ of Ph$), 8.00-8.01$ $\left(\mathrm{m}, 4 \mathrm{H}, \mathrm{C}-\mathrm{H}_{\mathrm{Ar}}\right.$ of Ph$), 8.88\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}(\mathrm{Ph})_{2}\right)$.
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \mathrm{AB}_{2} \mathrm{X}$ spin system $\delta / \mathrm{ppm}=-118.9--115.6$ ($\mathrm{m}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{X}}$), $-63.3-65.6\left(\mathrm{~m}, 3 \mathrm{P}, \mathrm{P}_{\mathrm{AB}}\right)$.

No further characterization has been carried out due to the low amount of sample and small scale of the reaction.
[(Ar*BIAN)Co($\left.\left.\boldsymbol{\eta}^{4}-\mathrm{P}_{5} t \mathrm{Bu}_{2}\right)\right]$ (4a):

A stock solution of $t \mathrm{Bu}_{2} \mathrm{PCl}(1.23 \mathrm{~mL}, \mathrm{c}=0.078 \mathrm{M}$ in toluene, $0.096 \mathrm{mmol}, 1.0$ equiv.) was added dropwise to a deep purple solution of $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{4}-\mathrm{P}_{4}\right)\right] \quad(150 \mathrm{mg}$, 0.096 mmol , 1.0 equiv.) in toluene (25 mL). The reaction mixture was stirred for four weeks at $32{ }^{\circ} \mathrm{C}$. The color slowly changed to dark turquoise during that time. The mixture was filtered over a pad of silica $(1.5 \times 1 \mathrm{~cm})$ and washed with toluene $(10 \mathrm{~mL})$. The volume of the dark turquoise filtrate was reduced to one third and layered with n-pentane (12 mL). After twelve days shimmering dark turquoise crystals had formed, which were isolated by decantation of the mother liquor, washed with n-pentane (1 mL) and dried in vacuo. A second crop of crystals was obtained by further concentrating the mother liquor and storing the solution in the freezer at $-35^{\circ} \mathrm{C}$. The second fraction was isolated and combined with the first fraction.

Yield: 107 mg (79%, combined yield of the first and second crop of crystals).
${ }^{1} \mathbf{H}$ NMR $\left(400.13 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta / \mathrm{ppm}=0.23\left(\mathrm{~d},{ }^{3} J_{\mathrm{PH}}=13.9 \mathrm{~Hz}, 9 \mathrm{H},-\mathrm{C}\left(\mathrm{C}^{14} H_{3}\right)_{3}\right)$, $0.92\left(\mathrm{~d},{ }^{3} J_{\mathrm{PH}}=12.9 \mathrm{~Hz}, 9 \mathrm{H},-\mathrm{C}\left(\mathrm{C}^{16} H_{3}\right)_{3}\right), 1.17\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=6.9 \mathrm{~Hz}, 12 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $i \mathrm{Pr}), 2.74\left(\mathrm{sept},{ }^{3} J_{\mathrm{HH}}=6.9 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $\left.i \mathrm{Pr}\right), 5.24\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}^{3}-H\right.$ of BIAN), 6.12-6.16 (m, 2H, C ${ }^{4}-H$ of BIAN), 6.54 (br. s, $\left.4 \mathrm{H},-\mathrm{C}^{9} \mathrm{H}(\mathrm{Ph})_{2}\right), 6.64-6.74(\mathrm{~m}$, $12 \mathrm{H}, \mathrm{C}-H_{\mathrm{Ar}}$ of Ph), 7.10-7.21 (m, $22 \mathrm{H}, \mathrm{C}^{5}-H$ of BIAN overlapping with $\mathrm{C}-H_{\mathrm{Ar}}$ of Ph overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), $7.70\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{C}^{11}-H\right), 7.79-7.81\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{C}-\mathrm{H}_{\mathrm{Ar}}\right.$ of $\mathrm{Ph})$.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(100.61 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta / \mathrm{ppm}=24.6\left(\mathrm{~s},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $\left.i \mathrm{Pr}\right), 29.4(\mathrm{~s}$, $\left.{ }^{-} \mathrm{C}\left(\mathrm{C}^{14} \mathrm{H}_{3}\right)_{3}\right), 32.2\left(\mathrm{~s},-\mathrm{C}\left(\mathrm{C}^{16} \mathrm{H}_{3}\right)_{3}\right), 34.6\left(\mathrm{~s},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $\left.i \mathrm{Pr}\right), 41.7\left(\mathrm{~m},-\mathrm{C}^{15}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $43.6\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=5.5 \mathrm{~Hz},-C^{13}\left(\mathrm{CH}_{3}\right)_{3}\right), 53.1\left(\mathrm{~s},-C^{9} \mathrm{H}(\mathrm{Ph})_{2}\right), 121.8\left(\mathrm{~s}, C^{3}-\mathrm{H}\right.$ of BIAN), 124.1 ($\mathrm{s}, C^{5}-\mathrm{H}$ of BIAN), 126.6 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), 126.8 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), 128.1 ($\mathrm{s}, C^{4}-\mathrm{H}$ of
 overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 130.4 (s, C^{6} of BIAN), 131.3 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), 132.3 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), 133.6 (s, C^{2} of BIAN), 137.6 (s, C^{7} of BIAN), 138.4 (s, C^{10}), $145.2\left(\mathrm{~s}, C_{\mathrm{Ar}}-\mathrm{H}\right.$ of Ph$), 146.0\left(\mathrm{~s}, C^{12}\right), 146.6\left(\mathrm{~s}, C_{\mathrm{Ar}}-\mathrm{H}\right.$ of Ph$), 150.7\left(\mathrm{~s}, C^{8}-\mathrm{N}\right), 156.7(\mathrm{~s}$, $C^{1}=\mathrm{N}$ of BIAN).
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right): ~ \mathrm{AMM}^{\prime} \mathrm{XX}^{\prime}$ spin system $\delta / \mathrm{ppm}=$ -182.7-174.0 (m, 2P, P_{XX}), 67.1-73.3 (m, 2P, P_{Mm}), $176.0\left(\mathrm{t}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{A}}\right)$, for parameters obtained by simulation, see Figure S10 and Table S2.
UV/Vis (toluene, $\lambda_{\max } / \mathrm{nm}, \varepsilon_{\max } / \mathrm{L} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~cm}^{-1}$): 400sh (4500), 580 (6000), 670 (6000).
Elemental Analysis calcd. for $\left(\mathrm{C}_{90} \mathrm{H}_{86} \mathrm{CoN}_{2} \mathrm{P}_{5}\right)\left(\mathrm{Mw}=1409.49 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\right)$:
C 76.69, H 6.15, N 1.99; found C 76.91, H 6.19, N 1.90 .

$\left[(\mathbf{A r} * \operatorname{BIAN}) \mathbf{C o}\left(\boldsymbol{\eta}^{4}-\mathbf{P}_{5}\left(\mathbf{N}\left(\mathbf{i P r}_{2}\right) 2\right)\right](4 b):\right.$

Toluene (11 ml) was added to neat $\left(i \mathrm{Pr}_{2} \mathrm{~N}\right)_{2} \mathrm{PCl}$ ($34 \mathrm{mg}, \quad 0.128 \mathrm{mmol}, \quad 1.0$ equiv.) and $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{4}-\mathrm{P}_{4}\right)\right] \quad(200 \mathrm{mg}$, $0.128 \mathrm{mmol}, 1.0$ equiv.). The purple reaction mixture was stirred for one day. The color slowly changed to dark turquoise during that time. The mixture was filtered over a pad of silica
$(2 \times 1.5 \mathrm{~cm})$ and washed with toluene $(3 \times 10 \mathrm{~mL})$. The volume of the dark turquoise filtrate was reduced to approximately 8 mL and layered with n-pentane (32 mL). Storage of the solution a room temperature gave shimmering dark turquoise crystals, which were isolated by decantation of the mother liquor, washed with n-pentane $(1 \times 3 \mathrm{~mL})$ and dried in vacuo. The crystalline solid contains 0.5 molecules of toluene per molecule of compound after drying as indicated by the ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra and elemental analysis.
Yield: 139 mg (73\%).
${ }^{1} \mathbf{H}$ NMR $\left(400.13 \mathrm{MHz}, \quad 300 \mathrm{~K}, ~ \mathrm{C}_{6} \mathrm{D}_{6}\right): ~ \delta / \mathrm{ppm}=0.64\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, 12 \mathrm{H}\right.$, $\left.-\mathrm{N}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right), 0.79\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.9 \mathrm{~Hz}, 12 \mathrm{H},-\mathrm{N}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right), 1.12\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=\right.$
$6.9 \mathrm{~Hz}, 12 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ of $\left.i \mathrm{Pr}\right), 2.70\left(\mathrm{sept},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.9 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $\left.i \mathrm{Pr}\right), 3.13$ $\left(\mathrm{sept},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.7 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{N}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right), 3.58\left(\mathrm{br}\right.$ sept, $\left.2 \mathrm{H},-\mathrm{N}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right), 5.23(\mathrm{~d}$, ${ }^{3} J_{\mathrm{HH}}=7.1 \mathrm{~Hz}, \mathrm{C}^{3}-H$ of BIAN), 6.13-6.17 (m, 2H, C ${ }^{4}-H$ of BIAN), 6.57-6.70 (m, 16H, $\mathrm{C}-H_{\text {Ar }}$ of Ph overlapping with $\left.-\mathrm{C}^{9} H(\mathrm{Ph})_{2}\right), 7.09-7.26\left(\mathrm{~m}, 22 \mathrm{H}, \mathrm{C}-H_{\text {Ar }}\right.$ of Ph overlapping with $\mathrm{d}\left({ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.2 \mathrm{~Hz}\right.$ of $\mathrm{C}^{5}-\mathrm{H}$ of BIAN, 2 H) overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 7.65 $\left(\mathrm{s}, 4 \mathrm{H}, \mathrm{C}^{11}-H\right), 7.86-7.88\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{C}-H_{\mathrm{Ar}}\right.$ of Ph$)$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(100.61 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta / \mathrm{ppm}=24.2\left(\mathrm{~s},-\mathrm{N}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right), 24.6(\mathrm{~s}$, ${ }^{-} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ of $\left.i \mathrm{Pr}\right), 24.8\left(\mathrm{~s},-\mathrm{N}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right), 34.5\left(\mathrm{~s},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $\left.i \operatorname{Pr}\right), 48.1$ (s, $\left.-\mathrm{N}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right)$, $52.4\left(\mathrm{~s},-\mathrm{N}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right)$, $53.1\left(\mathrm{~s},-\mathrm{C}^{9} \mathrm{H}(\mathrm{Ph})_{2}\right), 121.6\left(\mathrm{~s}, C^{3}-\mathrm{H}\right.$ of BIAN), 123.9 ($\mathrm{s}, C^{5}-\mathrm{H}$ of BIAN), 126.6 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), 126.9 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), 128.1 (s, $C^{4}-\mathrm{H}$ of BIAN), 128.5 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 128.5 (s, $C_{\mathrm{Ar}}-\mathrm{H}$ of Ph overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), $129.3\left(\mathrm{~s}, C^{11}-\mathrm{H}\right.$), 130.4 (s, C^{6} of BIAN), 131.3 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph$), 132.4$ ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), 133.6 (s, C^{2} of BIAN), 137.4 (s , C^{7} of BIAN), $138.6\left(\mathrm{~s}, C^{10}\right), 145.0\left(\mathrm{~s}, C_{\mathrm{Ar}}\right.$ of Ph), $145.9\left(\mathrm{~s}, C^{12}\right), 147.0\left(\mathrm{~s}, C_{\mathrm{Ar}}\right.$ of Ph$), 151.2$ ($\mathrm{s}, C^{8}-\mathrm{N}$), $156.9\left(\mathrm{~s}, C^{1}=\mathrm{N}\right.$ of BIAN).
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$: AMM'XX' spin system $\delta / \mathrm{ppm}=-144.3-$ -135.8(m, 2P, P XX' $^{\prime}$), 39.4 - 45.4 ($\mathrm{m}, 2 \mathrm{P}, \mathrm{P}_{\mathrm{Mm}}$), 135.4 ($\mathrm{t}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{A}}$), for parameters obtained by simulation, see Figure S14 and Table S3.
UV/Vis (toluene, $\lambda_{\text {max }} / \mathrm{nm}, \varepsilon_{\max } / \mathrm{L} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~cm}^{-1}$): 425 (14500), 580 (23500), 675 (21000).
Elemental analysis calcd. for $\left(\mathrm{C}_{94} \mathrm{H}_{96} \mathrm{CoN}_{4} \mathrm{P}_{5}\right) \cdot(\text { (toluene })_{0.5}\left(\mathrm{Mw}=1495.63 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\right)$: C 75.96, H 6.54, N 3.63; found C 76.31, H 6.47, N 3.52.

[(Ar*BIAN) $\left.\mathbf{C o}\left(\boldsymbol{\eta}^{4}-\mathrm{P}_{7} \mathrm{Lc}\right)\right](7):$

Tetracation $\mathbf{M}[\mathrm{OTf}]_{4}(69 \mathrm{mg}, 0.048 \mathrm{mmol}$, 0.5 eq.) was added to a deep purple solution of $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{4}-\right.\right.$ P_{4})] ($150 \mathrm{mg}, 0.096 \mathrm{mmol}, 1.0$ eq.) in THF $(4 \mathrm{~mL})$. After stirring at ambient temperature overnight, the color had changed to a deep blue. Subsequently, the solvent was evaporated to dryness. The remaining dark solid was extracted with 1,4-dioxane $(5 \times 1 \mathrm{~mL})$. The extracts were filtered over a pad of silica ($2 \times 0.5 \mathrm{~cm}$) and washed with 1,4 -dioxane $(2 \times 1 \mathrm{~mL})$. The dark blue filtrate was concentrated to approx. 5 mL and layered with n-hexane (20 mL). Storage of the solution for five days gave shimmering dark blue crystals, which were
isolated by decantation of the mother liquor, washed with n-hexane ($4 \times 1 \mathrm{~mL}$) and dried in vacuo. To remove residual [$\mathrm{K}(18 \mathrm{c}-6)]$ OTf the solids were dissolved in toluene $(4 \mathrm{~mL})$. The resulting solution was filtered over a pad of silica $(2 \times 0.5 \mathrm{~cm})$ and washed with 1,4 -dioxane $(2 \times 1 \mathrm{~mL})$. The solvent was evaporated, the residue washed with n-hexane $(3 \times 1 \mathrm{~mL})$ and dried in vacuo.
Yield: 57 mg (39\%).
${ }^{1} \mathbf{H}$ NMR $\left(400.13 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta / \mathrm{ppm}=0.60\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=6.6 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{C}^{15}-H\right)$, $1.01\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}^{17}-H\right), 1.18\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=6.9 \mathrm{~Hz}, 12 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $i \mathrm{Pr}$), 2.77 (sept, ${ }^{3} J_{\mathrm{HH}}=6.9 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ of $\left.i \operatorname{Pr}\right), 3.67$ (br. s, $\left.2 \mathrm{H}, \mathrm{C}^{14}-H\right), 5.58\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.1 \mathrm{~Hz}\right.$, $2 \mathrm{H}, \mathrm{C}^{3}-H$ of BIAN), $6.36-6.40\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}^{4}-H\right.$ of BIAN), $6.65-6.68\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}-H_{\mathrm{Ar}}\right.$ of $\mathrm{Ph}), 6.73-6.79\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{C}-\mathrm{H}_{\mathrm{Ar}}\right.$ of Ph overlapping with $\left.-\mathrm{C}^{9} H(\mathrm{Ph})_{2}\right), 7.13-7.17(\mathrm{~m}, 6 \mathrm{H}$, $\mathrm{C}-H_{\mathrm{Ar}}$ of Ph overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), $7.23-7.27\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{C}-H_{\mathrm{Ar}}\right.$ overlapping with $\mathrm{C}^{5}-H$ of BIAN), $7.54\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{C}^{11}-H\right), 7.92-7.94\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{C}-H_{\mathrm{Ar}}\right.$ of Ph$)$. ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(100.61 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta / \mathrm{ppm}=9.4\left(\mathrm{~s}, C^{17}-\mathrm{H}\right), 20.9\left(\mathrm{~s}, C^{15}-\mathrm{H}\right)$, $24.2\left(\mathrm{~s},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $\left.i \mathrm{Pr}\right), 34.0\left(\mathrm{~s},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $\left.i \mathrm{Pr}\right), 52.2\left(\mathrm{~s},-\mathrm{C}^{9} \mathrm{H}(\mathrm{Ph})_{2}\right), 52.4(\mathrm{br} . \mathrm{s}$,
 (s, $C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), 127.7 ($\mathrm{s}, C^{4}-\mathrm{H}$ of BIAN overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 127.8
 $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 128.0 (s, $C^{11}-\mathrm{H}$ overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 128.1 (s , $C_{\mathrm{Ar}}-\mathrm{H}$ of Ph overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 130.3 (s, C^{2} of BIAN), 130.8 (s , $C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), 131.6 ($\mathrm{s}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$ of Ph), 134.1 (s, C^{6} of BIAN), $136.1\left(\mathrm{~s}, C^{10}\right), 136.9\left(\mathrm{~s}, C^{7}\right.$ of BIAN), 144.7 (s, C^{12}), $145.0\left(\mathrm{~s}, C_{\text {Ar }}\right.$ of Ph$), 146.5\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right.$ of Ph$), 152.6\left(\mathrm{~s}, C^{1}=\mathrm{N}\right.$ of BIAN), 154.9 (s, $\left.C^{8}-\mathrm{N}\right)$.
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(161.98 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$: AMM'XX'YY' spin system $\delta / \mathrm{ppm}=$ -136.1--131.5 (m, 2P, $\left.\mathrm{P}_{\mathrm{YY}}\right),-76.1-72.1$ (m, 2P, $\left.\mathrm{P}_{\mathrm{XX}}\right),-25.8-19.9$ (m, 2P, $\left.\mathrm{P}_{\mathrm{Mm}}\right), 46.8$ ($\mathrm{t}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{A}}$).
UV/Vis (toluene, $\lambda_{\max } / \mathrm{nm}, \varepsilon_{\max } / \mathrm{L} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~cm}^{-1}$): 320 sh (13000), 440 (6000), 560 (9000), 660 (14000).
Elemental analysis calcd. for $\left(\mathrm{C}_{93} \mathrm{H}_{88} \mathrm{CoN}_{4} \mathrm{P}_{7}\right)\left(\mathrm{Mw}=1537.5 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\right)$
C 72.65, H 5.77, N 3.64; found C 73.06, H 6.24, N 3.48.

Reaction of $[K(18 c-6)]\left[(A r * B I A N) C o(C N)\left(\boldsymbol{\eta}^{3}-\mathbf{P}_{3}\right)\right]$ (1) with N[OTf $]_{4}$:

Tetracation $\mathbf{N}[\mathrm{OTf}]_{4}(6 \mathrm{mg}, 0.004 \mathrm{mmol}, 0.5 \mathrm{eq}$.) was added to a deep purple solution of $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}(\mathrm{CN})\left(\eta^{3}-\mathrm{P}_{3}\right)\right](14 \mathrm{mg}, 0.008 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) in THF (2 \mathrm{~mL})$. After stirring at ambient temperature for one hour, the color had changed to a deep blue and a ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum of the reaction mixture was recorded using a $\mathrm{C}_{6} \mathrm{D}_{6}$-capillary (Figure 3). Subsequently, all volatiles were removed in vacuo. The dark solid was extracted with small portions of toluene, benzene, 1,4-dioxane and THF. No crystals have been obtained so far from these concentrated extracts, or by slow vapor diffusion of n-hexane into these. The ${ }^{31} \mathrm{P}$ NMR spectrum of the reaction mixture looks similar to the spectrum obtained when conducting the reaction in toluene (see Section 4.2 Figure 3). The salt metathesis product, showing signals marked in blue, is the major component of the reaction solution, while cationic insertion product (showing signals marked in red) is the minor component.

Figure S18. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$-capillary) of the reaction solution of $\mathbf{1}$ and 0.5 eq. $\mathrm{N}[\mathrm{OTf}]_{4}$ in toluene exhibiting two sets of signals attributed to two proposed species; blue: $\mathrm{A}_{2} \mathrm{MX}$ spin system assigned to $\mathbf{5}$; red: ABCDE spin system assigned to $\mathbf{6} ;[\mathrm{Co}]=(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}$.

4.4.2 NMR Spectra

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum ($400.13 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$,) of [($\left.\left.\mathrm{Ar}{ }^{*} \mathrm{BIAN}\right) \mathrm{Co}(\mathrm{CN})\left(\eta^{3}-\mathrm{P}_{4} \mathrm{Cy}_{2}\right)\right]$ (2a); * $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S2. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($\left.100.61 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $\left[\left(\mathrm{Ar}{ }^{*} \mathrm{BIAN}\right) \mathrm{Co}(\mathrm{CN})\left(\eta^{3}-\mathrm{P}_{4} \mathrm{Cy}_{2}\right)\right]$ (2a); * $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S3. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($\left.162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}(\mathrm{CN})\left(\eta^{3}-\mathrm{P}_{4} \mathrm{Cy} \mathrm{Cy}_{2}\right)\right]$ (2a).

Figure S4. Section of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ spectra of $\left[\left(\mathrm{Ar}{ }^{*} \mathrm{BIAN}\right) \mathrm{Co}(\mathrm{CN})\left(\eta^{3}-\right.\right.$ $\left.\mathrm{P}_{4} \mathrm{Cy}_{2}\right)$] (2a); experimental (upwards) and simulation (downwards).

Table S1. Chemical shifts and coupling constants from the iterative fit of the $\mathrm{AX}_{2} \mathrm{Y}$ spin system and schematic representation of the $\mathrm{CoP}_{4} \mathrm{Cy}_{2}$ core of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}(\mathrm{CN})\left(\eta^{3}-\mathrm{P}_{4} \mathrm{Cy}_{2}\right)\right]$ (2a).

| P^{Y} | $\delta(\mathrm{A})=59.9 \mathrm{ppm}$ | ${ }^{1} J_{\mathrm{AX}}=-289.2 \mathrm{~Hz}$ |
| :---: | :---: | :---: |
| | $\delta(\mathrm{X})=-24.7 \mathrm{ppm}$ | ${ }^{1} J_{\mathrm{XY}}=-272.3 \mathrm{~Hz}$ |
| | $\delta(\mathrm{Y})=-45.2 \mathrm{ppm}$ | ${ }^{2} J_{\text {AY }}=23.8 \mathrm{~Hz}$ |

Figure S5. ${ }^{1} \mathrm{H}$ NMR spectrum ($400.30 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$, $)$ of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}(\mathrm{CN})\left(\eta^{3}-\mathrm{P}_{4}\left(\mathrm{~N}\left(i \mathrm{Pr}_{2}\right)_{2}\right)\right]\right.$ (2b); - free Ar^{*} BIAN ligand; * $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S6. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}(\mathrm{CN})\left(\eta^{3}-\mathrm{P}_{4}\left(\mathrm{~N}\left(i \mathrm{Pr}_{2}\right)_{2}\right)\right]\right.$ (2b).

Figure S7. ${ }^{1} \mathrm{H}$ NMR spectrum ($400.13 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{4}-\mathrm{P}_{5} t \mathrm{Bu}_{2}\right)\right](\mathbf{4 a}) ;{ }^{*} \mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S8. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($100.61 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$) of [($\left.\left.\mathrm{Ar} * \mathrm{BIAN}\right) \mathrm{Co}\left(\eta^{4}-\mathrm{P}_{5} t \mathrm{Bu}_{2}\right)\right]$ (4a); * $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S9. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($\left.162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{4}-\mathrm{P}_{5} t \mathrm{Bu}_{2}\right)\right](\mathbf{4 a})$.

Figure S10. Section of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR} \quad\left(162.04 \mathrm{MHz}, \quad 300 \mathrm{~K}, \quad \mathrm{C}_{6} \mathrm{D}_{6}\right)$ spectra of [(Ar*BIAN)Co($\left.\left.\eta^{4}-\mathrm{P}_{5} t \mathrm{Bu}_{2}\right)\right](\mathbf{4 a})$; experimental (upwards) and simulation (downwards).

Table S2. Coupling constants from the iterative fit of the AMM'XX' spin system and schematic representation of the $\operatorname{CoP}_{5}(t \mathrm{Bu})_{2}$ core of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{4}-\mathrm{P}_{5} t \mathrm{Bu}_{2}\right)\right](\mathbf{4 a})$.

| | $\begin{aligned} & \delta(\mathrm{A})=176.0 \mathrm{ppm} \\ & \delta(\mathrm{M})=70.2 \mathrm{ppm} \\ & \delta(\mathrm{X})=-178.4 \mathrm{ppm} \end{aligned}$ | $\begin{aligned} & { }^{1} J_{\mathrm{AX}}={ }^{1} J_{\mathrm{AX}}=-413.4 \mathrm{~Hz} \\ & { }^{1} J_{\mathrm{MX}}={ }^{1} J_{\mathrm{MX}^{\prime}}=-368.8 \mathrm{~Hz} \\ & { }^{1} J_{\mathrm{MM}}=-411.3 \mathrm{~Hz} \\ & { }^{2} J_{\mathrm{MX}}={ }^{2} J_{\mathrm{MX}}=39.2 \mathrm{~Hz} \\ & { }^{2} J_{\mathrm{AM}}={ }^{2} J_{\mathrm{AM}}=6.4 \mathrm{~Hz} \\ & { }^{2} J_{\mathrm{XX}}=18.5 \mathrm{~Hz} \end{aligned}$ |
| :---: | :---: | :---: |

\bigcirc O

Figure S11. ${ }^{1} \mathrm{H}$ NMR spectrum ($400.13 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $\left[\left(\mathrm{Ar}{ }^{*} \mathrm{BIAN}\right) \mathrm{Co}\left(\eta^{4}-\mathrm{P}_{5}\left(\mathrm{~N}\left(i \mathrm{Pr}_{2}\right)_{2}\right)\right]\right.$ (4b); - toluene, ${ }^{*} \mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S12. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($100.61 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{4}-\mathrm{P}_{5}\left(\mathrm{~N}\left(i \mathrm{Pr}_{2}\right)_{2}\right)\right](\mathbf{4 b})\right.$; - toluene, ${ }^{*} \mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S13. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($\left.162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{4}-\mathrm{P}_{5}\left(\mathrm{~N}\left(i \mathrm{Pr}_{2}\right)_{2}\right)\right](\mathbf{4 b})\right.$.

Figure S14. Section of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR} \quad\left(162.04 \mathrm{MHz}, \quad 300 \mathrm{~K}, \quad \mathrm{C}_{6} \mathrm{D}_{6}\right)$ spectra of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{4}-\mathrm{P}_{5}\left(\mathrm{~N}\left(i \mathrm{Pr}_{2}\right)_{2}\right)\right](\mathbf{4 b})\right.$; experimental (upwards) and simulation (downwards).

Table S3. Coupling constants from the iterative fit of the AMM'XX' spin system and schematic representation of the $\mathrm{CoP}_{5}\left(\mathrm{~N}(\mathrm{iPr})_{2}\right)_{2}$ core of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{4}-\mathrm{P}_{5}\left(\mathrm{~N}\left(i \mathrm{Pr}_{2}\right)_{2}\right)\right](\mathbf{4 b})\right.$.

Figure S15. ${ }^{1} \mathrm{H}$ NMR spectrum (400.13 MHz, $300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$, of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{4}-\mathrm{P}_{7} \mathrm{~L}_{\mathrm{C}}\right)\right](7)$; * $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S16. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(100.61 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{4}-\mathrm{P}_{7} \mathrm{~L}_{\mathrm{C}}\right)\right](7) ;{ }^{*} \mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S17. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{4}-\mathrm{P}_{7} \mathrm{~L}_{\mathrm{C}}\right)\right]$ (7).

4.4.3 UV/Vis Spectra

Figure S19. UV/Vis spectrum of $\left[\left(\mathrm{Ar}^{*} \mathrm{BIAN}\right) \mathrm{Co}(\mathrm{CN})\left(\eta^{3}-\mathrm{P}_{4} \mathrm{Cy}_{2}\right)\right]$ (2a) recorded in THF.

Figure S20. UV/Vis spectrum of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{4}-\mathrm{P}_{5} t \mathrm{Bu}_{2}\right)\right]$ (4a) recorded in toluene.

Figure S21. UV/Vis spectrum of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{4}-\mathrm{P}_{5}\left(\mathrm{~N}\left(i \mathrm{Pr}_{2}\right)_{2}\right)\right](\mathbf{4 b})\right.$ recorded in toluene.

Figure S22. UV/Vis spectrum of [(Ar*BIAN)Co($\left.\left.\eta^{4}-P_{7} L_{C}\right)\right]$ (7) recorded in THF.

4.4.4 IR Spectra

Figure S23. Solid state ATR-IR spectrum of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}(\mathrm{CN})\left(\eta^{3}-\mathrm{P}_{4} \mathrm{Cy}_{2}\right)\right]$ (2a).

4.4.5 Single Crystal X-Ray Diffraction Data

Single crystal X-ray diffraction data were recorded on Rigaku Oxford Diffraction SuperNova Atlas or XtaLAB Synergy R (DW system, Hypix-Arc 150) devices with CuK_{α} radiation ($\lambda=1.54184 \AA$). Crystals were selected under mineral oil, mounted on micromount loops and quench-cooled using an Oxford Cryosystems open flow N_{2} cooling device. Either semi-empirical multi-scan absorption corrections ${ }^{[51,52]}$ or analytical ones ${ }^{[53]}$ were applied to the data. The structures were solved with SHELXT ${ }^{[54]}$ solution program using dual methods and by using Olex2 as the graphical interface. ${ }^{[55]}$ The models were refined with ShelXL ${ }^{[56]}$ using full matrix least squares minimization on $\mathrm{F}^{2} .{ }^{[57]}$ The hydrogen atoms were located in idealized positions and refined isotropically with a riding model.
[(Ar*BIAN)Co(CN)($\left.\left.\eta^{3}-\mathrm{P}_{4} \mathrm{Cy}_{2}\right)\right]$ (2a): Crystals were obtained by slow diffusion of n-hexane into a saturated toluene solution of 2a. The crystal structure of 2a contained two severely disordered n-hexane molecules per asymmetric unit. One molecule of n-hexane was modelled for disorder in a 55:45 ratio, while the other, which did not lend itself to effective modeling, was accounted for by use of a solvent mask. The solvent mask was calculated, and 102 electrons were found in a volume of $462 \AA^{3}$ in one void per unit cell. This is consistent with the presence of $1.0 n$-hexane per formula unit which account for 100 electrons per unit cell.
[(Ar*BIAN) $\left.\operatorname{Co}\left(\eta^{4}-\mathrm{P}_{5} t \mathrm{Bu}_{2}\right)\right]$ (4a): Crystals were obtained by slow diffusion of n-pentane into a saturated toluene solution of $\mathbf{4 a}$. The crystal structure of $\mathbf{4 a}$ contained two times half a molecule of n-pentane and two toluene molecules each per asymmetric unit. One toluene molecule was modeled without disorder and the other one was modelled for disorder in a 55:45 ratio. The n-pentane molecules were severely disordered and refined by using the solvent mask command: A solvent mask was calculated, and 93 electrons were found in a volume of $500 \AA^{3}$ in two voids per unit cell. This is consistent with the presence of $2 \times 0.5 n$-pentane per formula unit which account for 84 electrons per unit cell.
[(Ar*BIAN) $\left.\operatorname{Co}\left(\eta^{4}-\mathrm{P}_{7} \mathrm{~L}_{\mathrm{C}}\right)\right]$ (7): Crystals were obtained by slow diffusion of n-hexane into a saturated toluene solution of $\mathbf{7}$. The crystal structure of 7 contained one full and additional 0.75 severely disordered 1,4-dioxane molecules per asymmetric unit. A solvent mask was calculated which found 153 electrons in a volume of $697 \AA^{3}$ in one void per unit cell. This is consistent with the presence of 1.75 1,4-dioxanes per formula unit which account for 168 electrons per unit cell.

The following section provides figures of the molecular structures with selected bond lengths and angles, which were not given in section 4.2 itself.

Table S4. Crystallographic data and structure refinement for compounds 2-5.

| Compound | 2a | 4a | 4b | 7 |
| :---: | :---: | :---: | :---: | :---: |
| Empirical formula | $\mathrm{C}_{101} \mathrm{H}_{104} \mathrm{CoN}_{3} \mathrm{P}_{4}$ | $\mathrm{C}_{194} \mathrm{H}_{188} \mathrm{Co}_{2} \mathrm{~N}_{4} \mathrm{P}_{10}$ | $\mathrm{C}_{94} \mathrm{H}_{96} \mathrm{CoN}_{4} \mathrm{P}_{5}$ | $\mathrm{C}_{93} \mathrm{H}_{88} \mathrm{CoN}_{4} \mathrm{P}_{7}$ |
| Formula weight | 1628.85 | 3003.03 | 1495.52 | 1663.57 |
| Temperature/K | 123(1) | 100(1) | 123(1) | 123(1) |
| Crystal system | monoclinic | triclinic | orthorhombic | triclinic |
| Space group | $P 2_{1}$ | $P-1$ | Pna 2_{1} | $P-1$ |
| a / A | 15.2435(2) | 13.60598(10) | 30.9069(4) | 14.31880(10) |
| b/Å | 18.9554(2) | 23.98531(15) | 19.5965(3) | 15.61740(10) |
| c/Å | 15.8508(2) | 26.39734(19) | 13.02160(10) | 21.9186(2) |
| $\alpha /{ }^{\circ}$ | 90 | 98.3571(6) | 90 | 90.5700(10) |
| $\beta /{ }^{\circ}$ | 102.2540(10) | 104.1729(6) | 90 | 108.1410(10) |
| $\gamma /{ }^{\circ}$ | 90 | 91.1376(6) | 90 | 108.5180(10) |
| Volume/ \AA^{3} | 4475.68(10) | 8249.88(10) | 7886.76(17) | 4384.35 (7) |
| Z | 2 | 2 | 4 | 2 |
| $\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$ | 1.209 | 1.209 | 1.260 | 1.260 |
| μ / mm^{-1} | 2.553 | 2.906 | 3.044 | 3.140 |
| $\mathrm{F}(000)$ | 1736.0 | 3168.0 | 3160.0 | 1752.0 |
| Crystal size/mm ${ }^{3}$ | $\begin{gathered} 0.251 \times 0.107 \times \\ 0.079 \end{gathered}$ | $\begin{gathered} 0.221 \times 0.162 \times \\ 0.103 \end{gathered}$ | $\begin{gathered} 0.204 \times 0.072 \times \\ 0.051 \end{gathered}$ | $\begin{gathered} 0.164 \times 0.063 \times \\ 0.046 \end{gathered}$ |
| Diffractometer | SuperNova, Dualflex, TitanS2 | XtaLAB Synergy R, DW system, HyPix-Arc 150 | XtaLAB Synergy R, DW system, HyPix-Arc 150 | XtaLAB Synergy R, DW system, HyPix-Arc 150 |
| Radiation | $\begin{gathered} \mathrm{CuK} \alpha \\ (\lambda=1.54184) \end{gathered}$ | $\begin{gathered} \mathrm{CuK} \alpha \\ (\lambda=1.54184) \end{gathered}$ | $\begin{gathered} \mathrm{Cu} \mathrm{~K} \alpha \\ (\lambda=1.54184) \end{gathered}$ | $\begin{gathered} \mathrm{Cu} \mathrm{~K} \alpha \\ (\lambda=1.54184) \end{gathered}$ |
| 2Θ range for data collection $/{ }^{\circ}$ | 7.37 to 133.918 | 3.73 to 148.554 | 5.34 to 146.13 | 6.012 to 151.58 |
| Index ranges | $\begin{aligned} -17 & \leq \mathrm{h} \leq 17, \\ -22 & \leq \mathrm{k} \leq 20, \\ -18 & \leq 1 \leq 17 \end{aligned}$ | $\begin{aligned} -16 & \leq \mathrm{h} \leq 16, \\ -26 & \leq \mathrm{k} \leq 29, \\ -32 & \leq 1 \leq 32 \end{aligned}$ | $\begin{aligned} -37 & \leq h \leq 36, \\ -22 & \leq k \leq 23, \\ -11 & \leq 1 \leq 15 \end{aligned}$ | $\begin{gathered} -17 \leq \mathrm{h} \leq 17, \\ -18 \leq \mathrm{k} \leq 19 \\ -27 \leq 1 \leq 26 \end{gathered}$ |
| Reflections collected | 36708 | 127795 | 30252 | 86378 |
| Independent | 13451 | 31983 | 11704 | 17859 |
| reflection | $\left[\mathrm{R}_{\text {int }}=0.0733\right.$, | [$\mathrm{R}_{\text {int }}=0.030$ | [$\mathrm{R}_{\text {int }}=0.0248$, | $\left[\mathrm{R}_{\text {int }}=0.0287\right.$, |
| | $\left.\mathrm{R}_{\text {sigma }}=0.0601\right]$ | $\left.\mathrm{R}_{\text {sigma }}=0.0269\right]$ | $\left.\mathrm{R}_{\text {sigma }}=0.0307\right]$ | $\left.\mathrm{R}_{\text {sigma }}=0.0257\right]$ |
| Data/restraints/ parameters | 13451/26/999 | 31983/269/2010 | 11704/1/1146 | 17859/96/1014 |
| Goodness-of-fit on F^{2} | 1.024 | 1.034 | 1.032 | 1.081 |
| Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$ | $\begin{gathered} \mathrm{R}_{1}=0.0599 \\ \mathrm{wR}_{2}=0.1525 \end{gathered}$ | $\begin{gathered} \mathrm{R}_{1}=0.0574 \\ \mathrm{wR}_{2}=0.1517 \end{gathered}$ | $\begin{gathered} \mathrm{R}_{1}=0.0422 \\ \mathrm{wR}_{2}=0.1114 \end{gathered}$ | $\begin{gathered} \mathrm{R}_{1}=0.0403 \\ \mathrm{wR}_{2}=0.1083 \end{gathered}$ |
| Final R indexes [all data] | $\begin{gathered} \mathrm{R}_{1}=0.0627 \\ \mathrm{wR}_{2}=0.1559 \end{gathered}$ | $\begin{gathered} \mathrm{R}_{1}=0.0626 \\ \mathrm{wR}_{2}=0.1550 \end{gathered}$ | $\begin{gathered} \mathrm{R}_{1}=0.0477 \\ \mathrm{wR}_{2}=0.1153 \end{gathered}$ | $\begin{gathered} \mathrm{R}_{1}=0.0474 \\ \mathrm{wR}_{2}=0.1120 \end{gathered}$ |
| Largest diff. peak/hole / e \AA^{-3} | 0.40/-0.74 | 1.09/-0.86 | 0.70/-0.34 | 0.50/-0.36 |
| Flack parameter | -0.036(3) | 1 | -0.033(2) | 1 |

Figure S24. Solid-state molecular structure of [(Ar*BIAN)Co $\left(\eta^{4}-P_{5}\left(N\left(i \operatorname{Pr}_{2}\right)_{2}\right)\right]$ (4b) shown at the 50% probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths [\AA] and angles [${ }^{\circ}$]: P1-P2 2.1613(1), P2-P3 2.1481(2), P3-P4 2.1404(2), P4-P5 2.1497(2), Co1-P2 2.3095(1), Co1-P3 2.3369(1), Co1-P4 2.3488(1), Co1-P5 2.3365(1), P1-N3 1.678(5), P1-N4 1.655(4), Co1-N1 1.947(3), Co1-N2 1.941(3), N1-C1 1.335(5), N2-C2 1.334(5), C1-C2 1.416(6), P1-P2-P3 98.76(6), P1-P5-P4 100.07(6), P2-P3-P4 104.21(6), P3-P4-P5 103.00(6), N1-Co1-N2 84.07(1), N1-C1-C2 116.4(3), N2-C2-C1 116.4(3).

References

[1] J. J. Weigand, N. Burford, in Compr. Inorg. Chem. II Second Ed. (Eds.: J. Reedijk, K. Poeppelmeier), Elsevier, Amsterdam, 2013, pp. 119-149.
[2] A. F. Holleman, E. Wiberg, N. Wiberg, Lehrbuch der anorganischen Chemie, De Gruyter, Berlin, 2017.
[3] M. Peruzzini, L. Gonsalvi, A. Romerosa, Chem. Soc. Rev. 2005, 34, 1038-1047.
[4] B. M. Cossairt, N. A. Piro, C. C. Cummins, Chem. Rev. 2010, 110, 4164-4177.
[5] M. Scheer, G. Balázs, A. Seitz, Chem. Rev. 2010, 110, 4236-4256.
[6] M. Caporali, L. Gonsalvi, A. Rossin, M. Peruzzini, Chem. Rev. 2010, 110, 41784235.
[7] C. M. Hoidn, D. J. Scott, R. Wolf, Chem. - Eur. J. 2021, 1886-1902.
[8] L. Giusti, V. R. Landaeta, M. Vanni, J. A. Kelly, R. Wolf, M. Caporali, Coord. Chem. Rev. 2021, 441, 213927.
[9] C. M. Hoidn, K. Trabitsch, K. Schwedtmann, C. Taube, J. J. Weigand, R. Wolf, Chem. - Eur. J. 2023, e202301930.
[10] C. G. P. Ziegler, T. M. Maier, S. Pelties, C. Taube, F. Hennersdorf, A. W. Ehlers, J. J. Weigand, R. Wolf, Chem. Sci. 2019, 10, 1302-1308.
[11] C. M. Hoidn, T. M. Maier, K. Trabitsch, J. J. Weigand, R. Wolf, Angew. Chem. Int. Ed. 2019, 58, 18931-18936.
[12] A. K. Adhikari, C. G. P. Ziegler, K. Schwedtmann, C. Taube, Jan. J. Weigand, R. Wolf, Angew. Chem. 2019, 131, 18757-18763.
[13] I. Krossing, I. Raabe, Angew. Chem. Int. Ed. 2001, 40, 4406-4409.
[14] M. H. Holthausen, S. K. Surmiak, P. Jerabek, G. Frenking, J. J. Weigand, Angew. Chem. Int. Ed. 2013, 52, 11078-11082.
[15] M. H. Holthausen, A. Hepp, J. J. Weigand, Chem. - Eur. J. 2013, 19, 9895-9907.
[16] M. H. Holthausen, K.-O. Feldmann, S. Schulz, A. Hepp, J. J. Weigand, Inorg. Chem. 2012, 51, 3374-3387.
[17] C. Riesinger, L. Dütsch, G. Balázs, M. Bodensteiner, M. Scheer, Chem. - Eur. J. 2020, 26, 17165-17170.
[18] M. Piesch, M. Seidl, M. Stubenhofer, M. Scheer, Chem. - Eur. J. 2019, 25, 63116316.
[19] M. Weber, G. Balázs, A. V. Virovets, E. Peresypkina, M. Scheer, Molecules 2021, 26, 3920.
[20] C. Riesinger, A. Erhard, M. Scheer, Chem. Commun. 2023, 59, 10117-10120.
[21] M. Piesch, S. Reichl, M. Seidl, G. Balázs, M. Scheer, Angew. Chem. Int. Ed. 2021, 60, 15101-15108.
[22] K. Trabitsch, Reactivity Studies of an Anionic Cyclotriphosphido Cobalt Complex, Masterarbeit, Universität Regensburg, 2020.
[23] A. H. Cowley, R. A. Kemp, Chem. Rev. 1985, 85, 367-382.
[24] J. J. Weigand, K.-O. Feldmann, F. D. Henne, J. Am. Chem. Soc. 2010, 132, 16321-16323.
[25] F. D. Henne, A. T. Dickschat, F. Hennersdorf, K.-O. Feldmann, J. J. Weigand, Inorg. Chem. 2015, 54, 6849-6861.
[26] C. Taube, K. Schwedtmann, M. Noikham, E. Somsook, F. Hennersdorf, R. Wolf, J. J. Weigand, Angew. Chem. Int. Ed. 2020, 59, 3585-3591.
[27] K. Schwedtmann, J. Haberstroh, S. Roediger, A. Bauzá, A. Frontera, F. Hennersdorf, J. J. Weigand, Chem. Sci. 2019, 10, 6868-6875.
[28] P. Royla, K. Schwedtmann, Z. Han, J. Fidelius, D. P. Gates, R. M. Gomila, A. Frontera, J. J. Weigand, J. Am. Chem. Soc. 2023, 145, 10364-10375.
[29] S. Hauer, T. M. H. Downie, G. Balázs, K. Schwedtmann, J. J. Weigand, R. Wolf, Angew. Chem. Int. Ed. 2023, e202317170.
[30] M. M. Khusniyarov, K. Harms, O. Burghaus, J. Sundermeyer, Eur. J. Inorg. Chem. 2006, 2006, 2985-2996.
[31] P. Rigo, A. Turco, Coord. Chem. Rev. 1974, 13, 133-172.
[32] G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts, Wiley, Chichester, 2004.
[33] A Search of the Cambridge Crystal Structure Database (CCSD), Version 5.44, 04/2023, Revealed 120 Cobalt Complexes Bearing Only One Terminal Cyanide Ligand with a Mean Co-C Distance of 1.899 A (Median 1.888 A) and a Mean $C \equiv N$ Distance of $1.137 \AA$ (Median $1.144 \AA$), 2023.
[34] P. Pyykkö, M. Atsumi, Chem. - Eur. J. 2009, 15, 186-197.
[35] P. Pyykkö, M. Atsumi, Chem. - Eur. J. 2009, 15, 12770-12779.
[36] K. Trabitsch, Unpublished Results, Universität Regensburg, 2024.
[37] E.-M. Schnöckelborg, J. J. Weigand, R. Wolf, Angew. Chem. Int. Ed. 2011, 50, 6657-6660.
[38] C. M. Knapp, J. S. Large, N. H. Rees, J. M. Goicoechea, Chem. Commun. 2011, 47, 4111-4113.
[39] S. Charles, B. W. Eichhorn, A. L. Rheingold, S. G. Bott, J. Am. Chem. Soc. 1994, 116, 8077-8086.
[40] S. Charles, J. C. Fettinger, S. G. Bott, B. W. Eichhorn, J. Am. Chem. Soc. 1996, 118, 4713-4714.
[41] E. Mädl, M. V. Butovskii, G. Balázs, E. V. Peresypkina, A. V. Virovets, M. Seidl, M. Scheer, Angew. Chem. Int. Ed. 2014, 53, 7643-7646.
[42] F. Riedlberger, S. Todisco, P. Mastrorilli, A. Y. Timoshkin, M. Seidl, M. Scheer, Chem. - Eur. J. 2020, 26, 16251-16255.
[43] S. Pelties, T. Maier, D. Herrmann, B. de Bruin, C. Rebreyend, S. Gärtner, I. G. Shenderovich, R. Wolf, Chem. - Eur. J. 2017, 23, 6094-6102.
[44] P. H. M. Budzelaar, in IvorySoft: gNMR for Windows, NMR Simulation Program, 2006.
$[45]$ E. G. Finer, R. K. Harris, Mol. Phys. 1967, 13, 65-75.
[46] S. Aime, R. K. Harris, E. M. McVicker, M. Fild, J. Chem. Soc. Dalton Trans. 1976, 2144-2153.
[47] J. P. Albrand, H. Faucher, D. Gagnaire, J. B. Robert, Chem. Phys. Lett. 1976, 38, 521-523.
[48] H. C. E. McFarlane, W. McFarlane, J. A. Nash, J. Chem. Soc. Dalton Trans. 1980, 240-244.
[49] M. A. M. Forgeron, M. Gee, R. E. Wasylishen, J. Phys. Chem. A 2004, 108, 48954908.
[50] J. E. Del Bene, J. Elguero, I. Alkorta, J. Phys. Chem. A 2004, 108, 3662-3667.
[51] G. M. Sheldrick, SADABS, Bruker AXS, Madison, USA, 2007.
[52] CrysAlisPro, Scale3 Abspack, Rigaku Oxford Diffraction, 2019.
[53] R. C. Clark, J. S. Reid, Acta Crystallogr. Sect. A 1995, 51, 887-897.
[54] G. M. Sheldrick, Acta Crystallogr. Sect. Found. Adv. 2015, 71, 3-8.
[55] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. a. K. Howard, H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339-341.
[56] G. M. Sheldrick, Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3-8.
[57] G. M. Sheldrick, Acta Crystallogr. A 2008, 64, 112-122.

5 Reactivity of Cyclotetraphosphido and Cyclotriphosphido Cobalt Complexes toward Group 14 Ambiphiles ${ }^{[a, b]}$

${ }^{[a]}$ S. Hauer, K. Trabitsch, R. Wolf, unpublished results.
${ }^{[b]}$ S. Hauer performed the synthetic investigations and the characterization of the reported compounds. K. Trabitsch performed the reactions with the related PHDI cobalt complexes that are discussed for comparison. S. Hauer wrote the chapter. R. Wolf supervised the project.

5.1 Introduction

Tetrahedranes (tricyclo[1.1.0.0 $0^{2,4}$ butanes) have attracted considerable attention due to their highly strained molecule structure and the ensuing high reactivity. However, synthetic access to these species remains challenging. ${ }^{[1]}$ In particular, neutral heteroatomic tetrahedranes are extremely scarce. Transition metal polyphosphido complexes emerged as promising vehicles to such unique phosphorus-containing compounds, inaccessible by other synthetic pathways. ${ }^{[2-8]}$ Two remarkable examples are the mixed binary group 15 tetrahedranes $\mathrm{EP}_{3}(\mathrm{E}=\mathrm{As}, \mathrm{Sb}) .{ }^{[9,10]}$ The syntheses of these interpnictogen compounds proceed via salt metathesis of the niobate complex $\left[\left(\eta^{3}-\mathrm{P}_{3}\right) \mathrm{Nb}(\mathrm{ODipp})_{3}\right]^{-}$with ECl_{3} (Dipp $\left.=2,6-i \mathrm{Pr}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)$. Furthermore, the first tetrahedranes comprised of carbon and phosphorus have become accessible in recent years: $(t \mathrm{BuCP})_{2},(t \mathrm{BuC})_{3} \mathrm{P}$ and $\mathrm{HCP}_{3} .{ }^{[11-13]}$ Replacing the CR fragment by heavier homologues within the series of tetrels could give rise to further heteroatomic species. Thus, mixed group 14/15 ligands are of particular interest, for the synthesis of heavier homologues of the well-known tetrahedrane.

To the best of our knowledge, Figure 1 summarizes all reported complexes bearing such a functionalized and P_{4}-derived polyphosphido ligand in a chronological order. In the period 2004-2008, Cummins and co-workers reported a series of niobium complexes A-D which are products of salt metathesis of anionic niobium P_{1} or P_{3} complexes, with group 14 halides. ${ }^{[14-17]}$ Specifically, the silylation and stannylation at the nucleophilic phosphorus atom in $\left[\mathrm{P} \equiv \mathrm{Nb}\{\mathrm{N}(\mathrm{Np}) \mathrm{Ar}\}_{3}\right]^{-}\left(\mathrm{Np}=\mathrm{CH}_{2} t \mathrm{Bu}, \mathrm{Ar}=3,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)$ was achieved by treatment with $\mathrm{Me}_{3} \mathrm{ECl}(\mathrm{E}=\mathrm{Si}, \mathrm{Sn})$, affording complexes \mathbf{A}. The reaction of the same P_{1} niobate with divalent group 14 element salts $\mathrm{EX}_{2}(\mathrm{E}=\mathrm{Ge}, \mathrm{Sn} \mathrm{Pb} ; \mathrm{X}=\mathrm{Cl}$, $\mathrm{SO}_{3} \mathrm{CF}_{3}{ }^{-}$) leads to dinuclear compounds \mathbf{B} containing a bridging $\mu, \eta^{3}: \eta^{3}$-cyclo- EP_{2} ligand. Moreover, the stannylation of cyclo- P_{3} complexes $\left[\left\{(\mathrm{OC})_{5} \mathrm{~W}\right\}\left(\eta^{3}-\right.\right.$ $\left.\left.\mathrm{P}_{3}\right) \mathrm{Nb}\{\mathrm{N}(\mathrm{Np}) \mathrm{Ar}\}_{3}\right]^{-}$and $\left[\left(\eta^{3}-\mathrm{P}_{3}\right) \mathrm{Nb}(\mathrm{ODipp})_{3}\right]^{-}$afforded \mathbf{C} and \mathbf{D}, respectively. More recently, Ruiz and co-workers reported the functionalization of anionic molybdenum P_{2} complex with $\mathrm{ClER}_{3}(\mathrm{E}=\mathrm{Ge}, \mathrm{Sn}, \mathrm{Pb} ; \mathrm{R}=\mathrm{Ph}, \mathrm{Me})$, yielding tetryldiphosphenyl bridged species E. ${ }^{[18,19]}$ In 2020, Roesky and Scheer reported the synthesis of complexes \mathbf{F} and \mathbf{G} involving the reaction of $\left[\mathrm{Cp}{ }^{*} \mathrm{Fe}\left(\eta^{5}-\mathrm{P}_{5}\right)\right]\left(\mathrm{Cp}^{*}=\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)$ with a silylene, or bisgermylene, respectively. ${ }^{[20,21]}$ In the same work the authors also reported a to \mathbf{F} structurally related complex which was afforded from the insertion of two Si moieties. A year later, Scheer and co-workers reported \mathbf{H}, also from the reaction of $\left[\mathrm{Cp} * \mathrm{Fe}\left(\eta^{5}-\mathrm{P}_{5}\right)\right]$ with a silylene. ${ }^{[22]}$ Interestingly, en route to FeP_{4} complex \mathbf{F}, the formation of a neutral
complex related to \mathbf{H} is initially observed, which undergoes simultaneous P atom extrusion and insertion of $\mathrm{LSi}\left(\mathrm{L}=\left[\mathrm{PhC}(\mathrm{N} t \mathrm{Bu})_{2}\right]\right)$, affording silaphosphaferrocene \mathbf{F}. The analogous reaction employing $\left[\mathrm{Cp} " \mathrm{Co}\left(\eta^{3}-\mathrm{P}_{3}\right)\right]\left(\mathrm{Cp}{ }^{\prime \prime \prime}=\mathrm{C}_{5} \mathrm{H}_{2} t \mathrm{Bu}_{3}\right)$ affords \mathbf{I}, bearing a P_{3} SiL heterocycle. ${ }^{[23]}$ Very recently, Scheer, Roesky and co-workers reported the synthesis of \mathbf{J}, from the reaction of $\left[\mathrm{Cp} * \mathrm{Fe}\left(\eta^{5}-\mathrm{P}_{5}\right)\right]$ with a gallasilylene, as end-product of a sequence of isomerization reactions. ${ }^{[24]}$

Figure 1. Functionalized polyphosphido ligands accessible via derivatization with group 14 electrophiles; $\mathrm{Np}=\mathrm{CH}_{2} t \mathrm{Bu}, \mathrm{Ar}=3,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}, \mathrm{Dipp}=2,6-\mathrm{Pr}_{2} \mathrm{C}_{6} \mathrm{H}_{3} ; \mathrm{Cp}^{*}=\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5} ; \mathrm{Cp}=\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5} ; \mathrm{R}=\mathrm{Ph}, \mathrm{Me}$.

As highlighted by this overview, complexes of the TM- ${ }_{n}$ type are suitable precursors for the synthesis of mixed group 14/15 ligands. However, only selected examples have been reported so far (vide supra) and their subsequent chemistry remains underdeveloped. In particular, germylated P_{n} ligands remain scarce and only complexes \mathbf{B}, \mathbf{E} and \mathbf{G} have been reported so far, further limiting further studies into their chemistry. By subsequent and targeted release of these functionalized P_{n} ligands new (poly-)phosphorus compounds become accessible. This might ultimately pave the way to remarkable tetrahedrenes, in which one or more of the CR fragments are substituted by heavier homologues within the series of tetrels. Thus, the reactivity of cyclo- P_{3} complex $\mathbf{1}$ and its cyclo- P_{4} counterpart $\mathbf{3}$ toward group 14 halides will be investigated in the following.

5.2 Results and Discussion

Initially, the cyclotriphosphido cobaltate $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}(\mathrm{CN})\left(\eta^{3}-\mathrm{P}_{3}\right)\right](\mathbf{1}$, 18c-6 = 18-crown-6, Ar* = 2,6-dibenzhydryl-4-isopropylphenyl; BIAN $=1,2-$ bis(arylimino)acenaphthene diamine) was treated with 0.5 equivalents of the terphenylsupported tetrylene halide complexes $\left[\operatorname{Ar} r^{\prime} \mathrm{E}(\mu-\mathrm{X})\right]_{2}\left(\mathrm{Ar}^{\prime}=2,6-\mathrm{Dipp}_{2} \mathrm{C}_{6} \mathrm{H}_{3} ; \mathrm{E}=\mathrm{Ge}, \mathrm{Sn}: \mathrm{X}\right.$ $=\mathrm{Cl} ; \mathrm{E}=\mathrm{Pb}: \mathrm{X}=\mathrm{Br})$. For $\mathrm{E}=\mathrm{Sn}$, a highly broadened signal at $\delta=-195 \mathrm{ppm}$ was
observed in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction mixture, which was shifted slightly downfield with respect to the signal of the starting material (see the Supporting Information (SI), Figure S8). This was taken to indicate the stannylene acts as a Lewis acid, forming an adduct with $\mathbf{1}$ via the coordination of the cyanide ligand. ${ }^{[25]}$ For $\mathrm{E}=\mathrm{Pb}$, no reaction was observed by ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy. In contrast, the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum after four days of the reaction mixture involving a slight excess (0.66 equiv.) of $[\operatorname{Ar} \operatorname{Ge}(\mu-\mathrm{Cl})]_{2}$ and $\mathbf{1}$ displays the emergence of an $\mathrm{A}_{2} \mathrm{X}$ spin system (Scheme 1).

Scheme 1. Insertion of $[\mathrm{Ar} \mathrm{Ge}(\mu-\mathrm{Cl})]_{2}$ into cyclo- P_{3} moiety in 1, yielding anionic cyclo- $\mathrm{P}_{3} \mathrm{GeAr}^{\prime} \mathrm{Cl}$ complex 2; reagents and conditions: $+0.5[\mathrm{Ar} \mathrm{Ge}(\mu-\mathrm{Cl})]_{2}$; toluene, r.t., 4 d ; isolated yield: 65%; $\operatorname{Dipp}=2,6-i \mathrm{Pr}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$.

After work-up dark purple crystals were obtained in 65% isolated yield. X-ray diffraction analysis (XRD) of these crystals revealed the nucleophilic insertion of the germanium moiety into the triphosphido ligand, yielding $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}(\mathrm{CN})\left(\eta^{3}-\mathrm{P}_{3} \mathrm{GeAr}{ }^{\prime} \mathrm{Cl}\right)\right]$ (2). The reactions of the related complex $\left[(\mathrm{PHDI}) \mathrm{Co}(\mathrm{CN})\left(\eta^{3}-\mathrm{P}_{3}\right)\right]^{-}$with $\left[\mathrm{Ar} \mathrm{r}^{\prime} \mathrm{Ge}(\mu-\mathrm{Cl})\right]_{2}$ yielded the analogous compound to 2. ${ }^{[26]}$ Complex $\mathbf{2}$ features a η^{3}-coordinating cyclo- $\mathrm{P}_{3} \mathrm{GeAr}$ ' Cl ligand in a puckered conformation (Figure 2a) with $\mathrm{P}-\mathrm{P}$ bond lengths of 2.1787 (6) \AA and $2.1882(6) \AA$ within the P_{3} moiety. They thus lie between typical $\mathrm{P}-\mathrm{P}$ single and $\mathrm{P}=\mathrm{P}$ double bonds ($\Sigma_{r} \mathrm{PP} 2.22 \AA$ vs. $2.04 \AA$), indicating a delocalized system. ${ }^{[27,28]}$ In comparison, the $\mathrm{Ge}-\mathrm{P}$ bond lengths (2.2996(5) \AA and $2.3114(5) \AA$) are well within the typical range for calculated $\mathrm{Ge}-\mathrm{P}$ single bonds ($\Sigma_{r \text { GeP }} 2.32 \AA$) ${ }^{[27,28]}$ Additionally, the IR spectrum of 2 exhibits a characteristic stretching vibration at $\tilde{v}_{\mathrm{CN}}=2076 \mathrm{~cm}^{-1}$, within the typical range for cobalt cyanide complexes, as are the $\mathrm{Co}-\mathrm{C}(1.931(9) \AA)$ and $\mathrm{C}-\mathrm{N}\left(1.158(4) \AA\right.$) bond lengths. ${ }^{[29-31]}$ Germaniumsubstituted polyphosphido ligands are very scarce (vide supra). So far, only two binuclear examples have been reported, bearing bridging P_{2}-ligands. These niobium (B) and molybdenum (\mathbf{E}) complexes are synthesized from germanium halides and their anionic precursors $\left[\mathrm{P} \equiv \mathrm{Nb}\left\{\mathrm{N}(\mathrm{Np}) \mathrm{Ar}_{3}\right\}_{3}\right]^{-}$, or $\left[\mathrm{Mo}_{2} \mathrm{Cp}_{2}\left(\mu-\mathrm{PCy} y_{2}\right)(\mathrm{CO})_{2}\left(\mu-\kappa^{2}: \kappa^{2}-\mathrm{P}_{2}\right)\right]^{-}$, respectively (vide supra, Figure 1). ${ }^{[15,19]}$ Thus, 2 represents the first mononuclear complex bearing such germanium-functionalized polyphosphido ligand.

Figure 2. a) Solid-state molecular structure of $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}(\mathrm{CN})\left(\eta^{3}-\mathrm{P}_{3} \mathrm{GeAr} \mathrm{Cl}\right)\right]$ (2); thermal ellipsoids are shown at the 50% probability level; hydrogen atoms, disorder and non coordinating solvent molecules omitted for clarity. The halogen at Ge 1 was refined with a split model as a Cl atom with a chemical occupancy of 0.8 and an I atom with the occupancy of 0.2 . Residual iodide was attributed to insufficient washing during synthesis of the starting material. Selected bond lengths [\AA] and angles [${ }^{\circ}$]: P1-P2 2.1787(6), P2-P3 2.1882(6), Ge1-P1 2.2996(5), Ge1-P3 2.3114(5), Ge1-Cl1 2.4564(4), Ge1-I1 2.45637(2), Co1-P1 2.3295(5), Co1-P2 2.2545(5), Co1-P3 2.3064(5), Co1-C3 1.9241(2), C3-N3 1.159(3), Co1-N1 2.0254(1), Co1-N2 1.9794(1), C1-N1 1.316(2), C2-N2 1.315(2), C1-C2 1.459(2), N3-K1 2.9038(2), P1-P2-P3 90.38(3), P2-P3-Ge1 79.437(2), P3-Ge1-P1 84.84, P1-Ge1-Cl1 111.349(2), Co1-C3-N3 177.94(2), N1-Co1-N2 81.90(6), N1-C1-C2 116.58(2), Co1-N2-C2 112.58(1); b) experimental (upward) and simulated (downward) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of 2, with nuclei assigned to an $\mathrm{A}_{2} \mathrm{X}$ spin system: $\delta\left(\mathrm{P}_{\mathrm{A}}\right)=160.6 \mathrm{ppm}, \delta\left(\mathrm{P}_{\mathrm{X}}\right)=-30.6 \mathrm{ppm},{ }^{1} J_{\mathrm{AX}}=-295 \mathrm{~Hz} ;[\mathrm{Co}]=(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}$.

Compound 2 exhibits an $\mathrm{A}_{2} \mathrm{X}$ spin system in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum, which readily lent itself to iterative simulation (Figure 2 b), identifying a ${ }^{1} J_{\mathrm{PP}}$ coupling constant of $-295 \mathrm{~Hz}\left(c . f\right.$. the PHDI analogue: $\left.{ }^{1} J_{\mathrm{PP}}=-303 \mathrm{~Hz}\right) .{ }^{[26]}$ However, a second set of signals composed of a doublet and a triplet (ca. 15\%) was observed, which could not be removed by repeated recrystallization of the isolated material (Figure S3, see SI). This second compound was also observed in the ${ }^{1} \mathrm{H}$ NMR spectrum as an $\mathrm{Ar} *$ BIAN containing species
with very similar chemical shifts to 2 (Figure S1, see SI). Nevertheless, C,H,N analysis on an isolated sample is in excellent agreement with the elemental composition of $\mathbf{2}$ (see also SI for details). These observations suggest that the second set of signals observed in the NMR spectra can be attributed to a configurational isomer of $\mathbf{2}$ (c.f. the exo-/endoisomers of compound $\mathbf{6}$ in Chapter 2). Note that a closely related PHDI analogue of $\mathbf{2}$ features a similar, second set of signals in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum. ${ }^{[26]}$ Moreover, in the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 2 a downfield shifted singlet was detected at $\delta=$ 8.83 ppm for the dibenzyhdryl protons. This observed deshielding is in contrast to all other $\mathrm{Ar} *$ BIAN containing compounds within this thesis and the free Ar*BIAN ligand, which features a resonance at $\delta=8.83 \mathrm{ppm}$

An attempt to abstract the chloride anion from 2 using $\mathrm{NaBAr}_{4}\left(\mathrm{Bar}^{\mathrm{F}}{ }_{4}^{-}=\right.$ [\{3,5-($\left.\left.\left.\left.\mathrm{CF}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right\}_{4} \mathrm{~B}\right]^{-}\right)$yielded dark blue crystals upon work-up, from a saturated diethyl ether fraction. XRD analysis revealed the neutral complex $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}(\mathrm{CN})\left(\eta^{3}-\mathrm{P}_{3} \mathrm{GeAr}^{\prime} \mathrm{Cl}\right)\right]$ (Figure S 12 , see SI), presumably resulting from the oxidation of $\mathbf{2}$. During the reaction, the radical anionic $\mathrm{Ar}^{*} \mathrm{BIAN}^{*-}$ ligand is retained, suggesting that oxidation occurs at the metal center. ${ }^{[32]}$ Nonetheless, this neutral species features very similar structural parameters to $\mathbf{2}$. This compound was not reliably obtained in a meaningful yield, precluding further characterization.

Next, the reactivity of cyclo- P_{4} complex $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{4}-\mathrm{P}_{4}\right)\right]$ (3) toward $[\operatorname{Ar} \mathrm{Ge}(\mu-\mathrm{Cl})]_{2}$ was also examined (Scheme 2). From the reaction of half an equivalent of $\left[\mathrm{Ar} \mathrm{r}^{\prime} \mathrm{Ge}(\mu-\mathrm{Cl})\right]_{2}$ with $\mathbf{3}$ in toluene a dark green reaction mixture was obtained, from which large crystals of $\left.\left[(\operatorname{Ar} * \operatorname{BIAN}) \operatorname{Co}\left(\mu-\eta^{4}: \eta^{3}-\mathrm{P}_{4}\right) \mathrm{GeAr} r^{\prime}\right)\right]$ (4) were isolated in 35% yield (Scheme 5). XRD analysis revealed the formation of the salt metathesis product 4 (Figure 3), featuring a chain of four P atoms sandwiched between cobalt and germanium in a $\mu-\eta^{4}: \eta^{3}$ coordination mode. To the best of our knowledge, only a single related tetraphosphido complex, F, has been reported (see Figure 1). ${ }^{[20]}$

Scheme 2. Reaction of $\mathbf{3}$ with $[\operatorname{Ar'Ge}(\mu-\mathrm{Cl})]_{2}$ via salt metathesis affording complex $\mathbf{4}$; reagents/by-products and conditions: $+0.5\left[\mathrm{Ar} \mathrm{He}^{\prime}(\mu-\mathrm{Cl})\right]_{2} /-[\mathrm{K}(18 \mathrm{c}-6)] \mathrm{Cl}$; toluene, r.t., 1 d ; isolated yield: 35%.

In contrast to the former planar cyclo- P_{4} ligand, the now bridging P_{4} chain is slightly bent, exhibiting a dihedral angle of 12°. The $\mathrm{Ge}-\mathrm{P}$ bond lengths to the terminal phosphorus
atoms P1 and P4 are significantly shorter (2.2561(1) A and 2.2610(1) \AA) than the remote $\mathrm{Ge}-\mathrm{P}$ bond (2.6128(1) \AA) to P3. The terminal P-P bonds (P1-P2 2.1131(2) and P3-P4 $2.1485(2) \AA$) exhibit shorter bond lengths compared to the internal P2-P3 bond (2.2952(2) Å). Additionally, there is a significant distance between the terminal phosphorus atoms P 1 and P 4 of 3.4008 (2) \AA, suggesting no significant interaction (c.f. $\Sigma r_{\text {PP }} 2.22 \AA$ for a single bond). ${ }^{[27,28]}$ Similar discrepancies have been reported for the related complex $\left[\left(C p^{\prime \prime \prime} \mathrm{Co}_{2}\left(\mu_{3}, \eta^{2}: \eta^{2}: \eta^{2}-\mathrm{P}_{4}\right) \mathrm{SmCp}^{*}{ }_{2}\right]\right.$, accessible via an intramolecular $\mathrm{P}-\mathrm{P}$ coupling process, though the P_{4}-chain is significantly more bent $\left(63^{\circ}\right) .{ }^{[33]}$ Further dinuclear and structurally related complexes have been reported, including $\left[\mathrm{Cp} p^{\prime} \mathrm{Rh}\left(\mu, \eta^{4}: \eta^{2}-\mathrm{P}_{4}\right)\left\{\mathrm{Rh}(\mathrm{CO}) \mathrm{Cp}^{\prime}\right\}\right] \quad\left(\mathrm{Cp}^{\prime}=\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{Et}\right), \quad\left[\left\{\mathrm{Cp}{ }^{\prime \prime} \mathrm{Fe}\right\}_{2}\left(\mu, \eta^{4}: \eta^{4}-\mathrm{P}_{4}\right)\right]$, $\left[\operatorname{LSi}\left(\mu, \eta^{2}: \eta^{2}-\mathrm{P}_{4}\right)-\mathrm{NiL}^{\prime}\right]\left(\mathrm{L}=\mathrm{CH}\left[\left(\mathrm{C}=\mathrm{CH}_{2}\right) \mathrm{Cme}\right][\mathrm{N}(\mathrm{Dipp})]_{2} ; \mathrm{L}^{\prime}=\mathrm{CH}[\mathrm{CmeN}(\mathrm{Dipp})]_{2}\right)$, $\left[\left\{\mathrm{Cp}^{\mathrm{R}} \mathrm{Fe}\right\}_{2}\left(\mu, \eta^{4}: \eta^{4}-\mathrm{P}_{4}\right)\right] \quad\left(\mathrm{Cp}^{\mathrm{R}}=1,3-\left(\mathrm{Me}_{3} \mathrm{Si}_{2}\right)_{2} \mathrm{C}_{5} \mathrm{H}\right.$ or $1,3,4-\left(\mathrm{Me}_{3} \mathrm{Si}_{3}{ }_{3} \mathrm{C}_{5} \mathrm{H}_{3}\right)$, $\left[\left\{\left(\mathrm{P}_{2} \mathrm{~N}_{2}\right) \mathrm{Zr}\right\}_{2}\left(\mu, \eta^{4}: \eta^{4}-\mathrm{P}_{4}\right)\right]\left(\mathrm{P}_{2} \mathrm{~N}_{2}=\mathrm{PhP}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{2} \mathrm{NsiMe}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{PPh}\right)$ and more recently a heterobimetallic cobalt gallium complex from our group, [$\left.{ }^{\text {Mes }} \operatorname{BIAN}\right) \mathrm{Co}\left(\mu, \eta^{4}: \eta^{2}\right.$ $\left.\left.\mathrm{P}_{4}\right) \mathrm{GaL}^{\prime}\right]$. ${ }^{[34-40]}$

Figure 3. Solid-state molecular structure of [(Ar*BIAN)Co($\left.\left.\left.\mu-\eta^{4}: \eta^{3}-\mathrm{P}_{4}\right) \mathrm{GeAr} r^{\prime}\right)\right]$ (4); thermal ellipsoids are shown at the 50% probability level; hydrogen atoms and non coordinating solvent molecules omitted for clarity. Selected bond lengths [\AA] and angles [${ }^{\circ}$]: P1-P2 2.1131(2), P2-P3 2.2952(2), P3-P4 2.1485(2), P1-P4 3.4008(2), Co1-P1 2.3623(1), Co1-P2 2.2622(1), Co1-P3 2.3494(1), Co1-P4 2.3453(1), Ge1-P1 2.2561(1), Ge1-P3 2.6128(1), Ge1-P4 2.2610(1), Co1-N1 1.953(4), Co1-N2 1.915(3), N1-C1 1.327(5), N2-C2 1.327(5), C1-C2 1.442(6), P1-P2-P3 102.24(7), P2-P3-P4 107.04(6), P1-Ge1-P3 89.38(4), P3-Ge1-P4 51.70(4), N1-Co1-N2 83.75(1), N1-C1-C2 115.6(4), N2-C2-C1 115.2(3).

In sharp contrast to the solid-state structure, compound 4 gives rise to a single, slightly broadened $\left(\Delta v_{1 / 2}=380 \mathrm{~Hz}\right)$ signal at $\delta=75.7 \mathrm{ppm}$, in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum, suggesting circumambulation of the Ar'Ge substituent around the P_{4} moiety on the NMR time scale. Similar behavior was reported for stannylated cyclo- P_{3} complex \mathbf{D}, which gives rise to a sharp singlet at $\delta=-235 \mathrm{ppm}$, even at $-90^{\circ} \mathrm{C}$. ${ }^{[17]}$ In comparison, variable temperature (VT) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy of compound 4 revealed that the single resonance splits into four distinct, albeit broad signals at $-80^{\circ} \mathrm{C}$, in good agreement with the asymmetric catena- P_{4} unit observed in the solid state (Figure 4). Additionally, an increase in temperature up to $60^{\circ} \mathrm{C}$ leads to sharper resolution of the signal, suggesting a faster dynamic process in solution. This movement of the Ar'Ge substituent is also reflected in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra, where $\mathbf{4}$ gives rise to symmetric Ar*BIAN and Ar' groups.

Figure 4. Variable temperature ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{4}$ in toluene- d_{8}.

5.3 Conclusion

The first mononuclear example of a germanium functionalized polyphosphido complex is accessible via insertion of $[\operatorname{Ar} \operatorname{Ge}(\mu-\mathrm{Cl})]_{2}$ into the cyclo- P_{3} ligand of $\mathbf{1}$. The resulting anionic complex, $\mathbf{2}$, features a puckered cyclo $-\mathrm{P}_{3} \mathrm{GeAr}$ ' Cl ligand and can be isolated in high yield (65\%). Upon employing cyclo- P_{4} complex 3 as the reactant, salt metathesis was facilitated, yielding complex 4 , with a distinct $\operatorname{Co}\left(\mu-\eta^{4}: \eta^{3}-\mathrm{P}_{4}\right) \mathrm{GeAr}$ core. In solution, the Ar'Ge moiety exhibits circumambulatory behavior around the catena-P 4 unit at room temperature, while variable temperature ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy revealed the chemical inequivalence of the phosphorus atoms at low temperature. The novel complexes 2 and 4 were characterized using single-crystal X-ray diffraction analysis and spectroscopic methods.

Overall, these findings highlight the potential of P_{4}-derived polyphosphido complexes for targeted functionalization with group 14 halides. In particular, $\mathrm{P}-\mathrm{Ge}$ bond formation was achieved, resulting in mixed group 14/15 ligands. Ongoing investigation in this field plays a crucial role in enhancing our understanding of reactivity patterns and mechanisms, establishing the necessary groundwork for developing systems capable of achieving the release of the functionalized polyphosphido moiety, including mixed binary group 14/15 tetrahedranes, e.g. $\mathrm{Ar}^{\prime} \mathrm{GeP}_{3}$.

5.4 Experimental Details

General Synthetic Methods

All reactions and product manipulations were carried out in flame-dried glassware under an inert atmosphere of argon using standard Schlenk-line or glovebox techniques (maintained at $<0.1 \quad \mathrm{ppm} \quad \mathrm{H}_{2} \mathrm{O}$ and $<0.1 \mathrm{ppm} \quad \mathrm{O}_{2}$). S. Hauer prepared $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{4}-\mathrm{P}_{4}\right)\right]$, as well as $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}(\mathrm{CN})\left(\eta^{3}-\mathrm{P}_{3}\right)\right]$, according to procedures previously reported within this thesis (Chapter 2). ${ }^{[41]}$ $\left\{[\operatorname{Ar} \operatorname{Ge}(\mu-\mathrm{Cl})]_{2},{ }^{[42]}\left[\mathrm{Ar} \mathrm{S}^{\prime} \mathrm{Sn}(\mu-\mathrm{Cl})\right]_{2}{ }^{[42]}\right.$ and $[\mathrm{Ar} \operatorname{Pb}(\mu-\mathrm{Br})]_{2}{ }^{[43]}$ were prepared according to literature procedures. All other chemicals were purchased from commercial suppliers and used without further purification.
Solvents were dried and degassed with a Mbraun SPS800 solvent purification system. All dry solvents except n-hexane were stored under argon over activated $3 \AA$ molecular sieves. n-Hexane was instead stored over a potassium mirror.

General Analytical Techniques

NMR spectra were recorded on Bruker Avance 400 spectrometers at 300 K and were internally referenced to residual solvent resonances (${ }^{1} \mathrm{H}$ NMR: $\mathrm{C}_{6} \mathrm{D}_{6}: 7.15 \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ $\mathrm{C}_{6} \mathrm{D}_{6}$: 128.06 ppm$) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectra were referenced externally to $85 \% \mathrm{H}_{3} \mathrm{PO}_{4(\text { aq. })}$. Chemical shifts, δ, are given in ppm referring to external standards of tetramethylsilane $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\right) .{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR signals were assigned based on 2D NMR spectra (COSY, HSQC, HMBC, NOESY and ROESY).
UV/Vis spectra were recorded on an Ocean Optics Flame Spectrometer with a DH-2000-BAL light source. Elemental analysis were performed by the Central Analytics Department of the University of Regensburg using a Vario micro cube. IR spectra were recorded with a Bruker ALPHA spectrometer equipped with a diamond ATR unit.

NMR Simulations

For compounds which give rise to a higher order spin system in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum, the resolution enhanced ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum was transferred to the software gNMR, version 5.0.6, by Cherwell Scientific. ${ }^{[44]}$ The full line shape iteration procedure of gNMR was applied to obtain the best match of the fitted to the experimental spectrum. ${ }^{1} J\left({ }^{31}{ }^{31} \mathrm{P}\right)$ coupling constants were set to negative values and all other signs of the coupling constants were obtained accordingly. ${ }^{[45-50]}$

5.4.1 Synthesis of Compounds
 [K(18c-6)][(Ar*BIAN)Co(CN)($\left.\left.\boldsymbol{\eta}^{3}-\mathrm{P}_{3} \mathrm{GeAr}^{\prime} \mathrm{Cl}\right)\right]$ (2):

Solid $\quad \operatorname{Ar} \mathrm{Ge}(\mu-\mathrm{Cl})]_{2} \quad(20.5 \mathrm{mg}$, $0.020 \mathrm{mmol}, 0.66$ equiv.) was added to a purple solution of
$[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}(\mathrm{CN})\left(\eta^{3}-\mathrm{P}_{3}\right)\right]$ ($50 \mathrm{mg}, 0.031 \mathrm{mmol}, 1.0$ equiv.) in toluene (3 mL). The reaction mixture was stirred for four days. The color changed to dark purple during that period. The suspension was filtered, and the filtrate was concentrated to approximately 4 mL . Slow vapor diffusion of n-hexane into this solution for one day at room temperature and one week at $-35{ }^{\circ} \mathrm{C}$ afforded dark purple crystals of $\mathbf{2}$ suitable for single-crystal X-ray diffraction. The crystals were isolated by filtration, washed with n-hexane $(4 \times 1 \mathrm{~mL})$ and dried in vacuo. The crystalline solid contains 0.7 molecules of n-hexane and 0.5 molecules of toluene per molecule of compound after drying as indicated by the ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra and elemental analysis.
Yield: 41 mg (65%, based on 1).
${ }^{1} \mathbf{H}$ NMR ($400.13 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta / \mathrm{ppm}=1.19-1.24\left(\mathrm{~m}, 24 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $i \mathrm{Pr}$ overlapping with $\left.-\mathrm{CH}\left(\mathrm{C}^{25 / 26} \mathrm{H}_{3}\right)_{2}\right)$, 1.59-1.66 (br m, $\left.12 \mathrm{H},-\mathrm{CH}\left(\mathrm{C}^{25 / 26} \mathrm{H}_{3}\right)_{2}\right)$, 2.71 (sept, ${ }^{3} J_{\mathrm{HH}}=6.9 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ of $\left.i \operatorname{Pr}\right), 2.83(\mathrm{~s}, 24 \mathrm{H}, 18 \mathrm{c}-6), 3.42$ (br sept, 4 H , $\left.{ }^{-} \mathrm{C}^{24} H\left(\mathrm{CH}_{3}\right)_{2}\right), 5.38\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{C}^{9} H(\mathrm{Ph})_{2}\right), 5.72\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}^{3}-H\right.$ of BIAN), 6.19-6.23 (m, 2H, $\mathrm{C}^{4}-H$ of BIAN), 6.51-6.57 (m, $8 \mathrm{H}, \mathrm{C}-H_{\text {Ar }}$ of Ph overlapping with $\mathrm{C}-H$ of Ar'), 6.74-6.85 (m, 8H, C- H_{Ar} of Ph overlapping with $\mathrm{C}-H$ of Ar^{\prime}), 7.00-7.18 (m, $15 \mathrm{H}, \mathrm{C}-H_{\mathrm{Ar}}$ of Ph overlapping with $\mathrm{C}-H$ of Ar' overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 7.24-7.43 (m, $16 \mathrm{H}, \mathrm{C}-H_{\mathrm{Ar}}$ of Ph overlapping with $\mathrm{C}-H$ of Ar'), 7.87-8.04 (m, $8 \mathrm{H}, \mathrm{C}-\mathrm{H}_{\mathrm{Ar}}$ of Ph$), 8.83\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{C}^{15} \mathrm{H}(\mathrm{Ph})_{2}\right)$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(100.61 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta / \mathrm{ppm}=24.8\left(\mathrm{~s},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $\left.i \operatorname{Pr}\right), 24.8(\mathrm{~s}$, $\left.{ }^{-} \mathrm{CH}\left(C^{25 / 26} \mathrm{H}_{3}\right)_{2}\right), 25.3\left(\mathrm{~s},-\mathrm{CH}\left(C^{25 / 26} \mathrm{H}_{3}\right)_{2}\right), 31.9\left(\mathrm{br} \mathrm{s},-\mathrm{C}^{24} \mathrm{H}\left(\mathrm{CH}_{3}\right)_{2}\right), 34.6\left(\mathrm{~s},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $i \operatorname{Pr}$), $51.1\left(\mathrm{~s},-C^{15} \mathrm{H}(\mathrm{Ph})_{2}\right), 51.7\left(\mathrm{~s},-C^{9} \mathrm{H}(\mathrm{Ph})_{2}\right), 69.9(\mathrm{~s}, 18 \mathrm{c}-6), 124.0\left(\mathrm{~s}, C^{5}-\mathrm{H}\right.$ of BIAN), 125.9 (s), 126.2 (s), 126.3 (s , 126.3 (s$), 126.5$ (s), 127.0 (s$), 127.1$ (s$), 129.9$ (s$)$, 130.4 (s, C^{6} of BIAN), $131.2(\mathrm{~s}), 131.5(\mathrm{~s}), 131.5(\mathrm{~s}), 132.0\left(\mathrm{~s}, C_{\mathrm{Ar}-\mathrm{H} \text { of } \mathrm{Ph}), 132.3(\mathrm{~s} \text {, }, ~(\mathrm{~s}}\right.$
 145.6 (s), 145.8 (s), 146.1 (s), 146.1 (s), 147.3 (s), $149.2\left(\mathrm{~s}, C^{8}-\mathrm{N}\right), 165.5\left(\mathrm{~s}, C^{1}=\mathrm{N}\right.$ of

BIAN); $C \equiv \mathrm{~N}$ of coordinated cyanide not detected; not all signals could be assigned unambiguously.
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right):\left(\mathrm{A}_{2} \mathrm{X}\right)$ spin system $\delta / \mathrm{ppm}=-30.6\left(\mathrm{t}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{X}}\right)$, $160.6\left(\mathrm{~d}, 2 \mathrm{P}, \mathrm{P}_{\mathrm{A}}\right) ;{ }^{1} \mathrm{~J}_{\mathrm{AX}}=-294.8 \mathrm{~Hz}$ see also Figure S4 and Table S1.
UV/Vis (THF, $\lambda_{\max } / \mathrm{nm}, \varepsilon_{\max } / \mathrm{L} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~cm}^{-1}$): 320 (16000), 460sh (4000), 550 (7000), 710 (1000).
IR (solid state): $\mathrm{v} / \mathrm{cm}^{-1}=3057 \mathrm{w}(\mathrm{C}-\mathrm{H}), 3028 \mathrm{w}(\mathrm{C}-\mathrm{H}), 2954 \mathrm{~m}(\mathrm{C}-\mathrm{H}), 2919 \mathrm{~m}(\mathrm{C}-\mathrm{H})$, 2861w (C-H), 2076m (C=N), 1598w, 1532m, 1489s, 1435m, 1380m, 1354m, 1290m, $1251 \mathrm{~m}, 1189 \mathrm{~m}, 1110 \mathrm{~s}, 1035 \mathrm{~m}, 1004 \mathrm{w}, 952 \mathrm{~m}, 890 \mathrm{w}, 842 \mathrm{~m}, 818 \mathrm{~m}, 744 \mathrm{~s}, 700 \mathrm{vs}, 633 \mathrm{~m}$, 605 m .

Elemental Analysis calcd. for $\left(\mathrm{C}_{125} \mathrm{H}_{129} \mathrm{ClCoGeKN}_{3} \mathrm{O}_{6} \mathrm{P}_{3}\right) \cdot(n \text {-hexane })_{0.7}$ (toluene $)_{0.5}$ $\left(\mathrm{Mw}=2068.41 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\right): \mathrm{C} 73.29, \mathrm{H} 6.62, \mathrm{~N} 1.93$; found C 73.30, H 6.55, N 1.84 ; compare this with the calculated elemental analysis for:
$\left(\mathrm{C}_{125} \mathrm{H}_{129} \mathrm{ICoGeKN} 3 \mathrm{O}_{6} \mathrm{P}_{3}\right)_{0.2}\left(\mathrm{C}_{125} \mathrm{H}_{129} \mathrm{ClCoGeKN}_{3} \mathrm{O}_{6} \mathrm{P}_{3}\right)_{0.8} \cdot(n \text {-hexane })_{0.7} \cdot(\text { toluene })_{0.5}$ $\left(\mathrm{Mw}=2193.14 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\right): \mathrm{C} 72.67, \mathrm{H} 6.56, \mathrm{~N} 1.95$.

$\left.\left[\left(\mathbf{A r}^{*} \operatorname{BIAN}\right) \mathbf{C o}\left(\mu-\eta^{4}: \eta^{3}-\mathbf{P}_{4}\right) \mathbf{G e A r}{ }^{\prime}\right)\right](4):$

Solid $\quad[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\eta^{4}-\mathrm{P}_{4}\right)\right]$ $(50 \mathrm{mg}, \quad 0.032 \mathrm{mmol}, \quad 1.0$ equiv.) and $\left[\operatorname{Ar}{ }^{\prime} \mathrm{Ge}(\mu-\mathrm{Cl})\right]_{2} \quad(21 \mathrm{mg}, \quad 0.021 \mathrm{mmol}$, 0.65 equiv.) were dissolved in toluene (3 mL). The resulting purple reaction mixture was stirred for one day while the color gradually changed to dark green. The suspension was filtered over a pad of silica $(1 \times 0.5 \mathrm{~cm})$ and the solid residues were washed with toluene $(4 \times 1 \mathrm{~mL})$. Volatiles were removed from combined filtrates in vacuo. The resulting dark solid was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 1 \mathrm{~mL})$. Concentration by slow evaporation of the solvent over the course of three days afforded large, dark green crystals of $\mathbf{4}$, which were isolated by decantation of the mother liquor and dried in vacuo. Slow evaporation of a saturated n-hexane solution containing 4 yielded crystals suitable for single-crystal X-ray diffraction.
Yield: 19 mg (35\%).
${ }^{1} \mathbf{H}$ NMR $\quad\left(400.13 \mathrm{MHz}, \quad 300 \mathrm{~K}, \quad \mathrm{C}_{6} \mathrm{D}_{6}\right) \quad \delta / \mathrm{ppm}=0.99\left(\mathrm{~d}, \quad{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, \quad 12 \mathrm{H}\right.$ $\left.{ }^{-} \mathrm{CH}\left(\mathrm{C}^{22 / 23} H_{3}\right)_{2}\right), 1.09\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=6.9 \mathrm{~Hz},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $\left.i \mathrm{Pr}\right), 1.41\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, 12 \mathrm{H}\right.$ $\left.{ }^{-} \mathrm{CH}\left(\mathrm{C}^{22 / 23} \mathrm{H}_{3}\right)_{2}\right), 2.50\left(\mathrm{sept},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, 4 \mathrm{H},-\mathrm{C}^{21} \mathrm{H}_{(}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.65\left(\mathrm{sept},{ }^{3} J_{\mathrm{HH}}=6.9 \mathrm{~Hz}\right.$,
$2 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ of $\left.i \operatorname{Pr}\right), 5.51\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}^{3}-H\right.$ of BIAN), $6.17(\mathrm{~s}, 4 \mathrm{H}$, $\left.{ }^{-} \mathrm{C}^{9} \mathrm{H}(\mathrm{Ph})_{2}\right), 6.22-6.26\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}^{4}-H\right.$ of BIAN), 6.53-6.62 (m, $8 \mathrm{H}, \mathrm{C}-H_{\text {Ar }}$ of Ph), 6.82-6.90 (m, 3H, C $\left.{ }^{15 / 16}-H\right), 6.96\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}^{5}-H\right.$ of BIAN), 7.01-7.03 (m, $8 \mathrm{H}, \mathrm{C}-\mathrm{H}_{\mathrm{Ar}}$ of Ph), 7.14-7.17 (m, $6 \mathrm{H}, \mathrm{C}^{12 / 20}-H$ overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 7.22-7.31 ($\mathrm{m}, 16 \mathrm{H}, \mathrm{C}^{11}-H$ overlapping with $\mathrm{C}-H_{\mathrm{Ar}}$ of Ph), 7.49-7.51 ($\mathrm{m}, \mathrm{C}-H_{\mathrm{Ar}}$ of Ph).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(100.61 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta / \mathrm{ppm}=23.7\left(\mathrm{~s},-\mathrm{CH}\left(\mathrm{C}^{22 / 23} \mathrm{H}_{3}\right)_{2}\right), 24.6(\mathrm{~s}$, ${ }^{-} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ of $\left.i \mathrm{Pr}\right), 26.7\left(\mathrm{~s},-\mathrm{CH}\left(\mathrm{C}^{22 / 23} \mathrm{H}_{3}\right)_{2}\right), 31.9\left(\mathrm{~s},-\mathrm{C}^{21} \mathrm{H}\left(\mathrm{CH}_{3}\right)_{2}\right), 34.4\left(\mathrm{~s},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of $i \operatorname{Pr}$), $52.4\left(\mathrm{~s},-C^{9} \mathrm{H}(\mathrm{Ph})_{2}\right), 121.7\left(\mathrm{~s}, C^{3}-\mathrm{H}\right.$ of BIAN), $124.1\left(\mathrm{~s}, C^{19}-\mathrm{H}\right), 125.4\left(\mathrm{~s}, C^{5}-\mathrm{H}\right.$ of BIAN), 126.5 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), $127.0\left(\mathrm{~s}, C_{\mathrm{Ar}}-\mathrm{H}\right.$ of Ph), 127.6 ($\mathrm{s}, C^{4}-\mathrm{H}$ of BIAN), 128.9 (s, $C^{11}-$ H overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 128.9 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal), 129.1 ($\mathrm{s}, C_{\mathrm{Ar}}-\mathrm{H}$ of Ph), 129.7 ($\mathrm{s}, C^{16}-\mathrm{H}$), 130.2 (s, C^{6} of BIAN), $130.3\left(\mathrm{~s}, C^{20}-\mathrm{H}\right), 130.9\left(\mathrm{~s}, C_{\mathrm{Ar}}-\mathrm{H}\right.$ of Ph$), 131.5\left(\mathrm{~s}, C_{\mathrm{Ar}}-\mathrm{H}\right.$ of Ph$), 132.0(\mathrm{~s}$, $C^{15}-\mathrm{H}$), 132.2 (s, C^{2} of BIAN), $136.4\left(\mathrm{~s}, C^{17}\right), 137.5\left(\mathrm{~s}, C^{10}\right), 138.3\left(\mathrm{~s}, C^{7}\right.$ of BIAN), 140.3 (s, C^{13}), 143.7 ($\mathrm{s}, C_{\mathrm{Ar}}$ of Ph), 145.9 (s, C^{12} overlapping with C^{14}), 147.1 ($\mathrm{s}, C_{\mathrm{Ar}}$ of Ph), $147.3\left(\mathrm{~s}, C^{18}\right), 154.4\left(\mathrm{~s}, C^{8}-\mathrm{N}\right), 156.0\left(\mathrm{~s}, C^{1}=\mathrm{N}\right.$ of BIAN).
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R} \quad\left(162.04 \mathrm{MHz}, \quad 300 \mathrm{~K}, \quad \mathrm{C}_{6} \mathrm{D}_{6}\right): \quad \delta / \mathrm{ppm}=75.7 \quad\left(\mathrm{br} \mathrm{s}, \quad \Delta v_{1 / 2}=380 \mathrm{~Hz}\right)$; (161.98 MHz, toluene- $d_{8}, 193 \mathrm{~K}$): $\delta / \mathrm{ppm}=-63.6\left(\mathrm{br} \mathrm{s}, \Delta v_{1 / 2}=1500 \mathrm{~Hz}, 1 \mathrm{P}\right),-26.9(\mathrm{br} \mathrm{s}$, $\Delta v_{1 / 2}=1500 \mathrm{~Hz}, 1 \mathrm{P}$), $63.8\left(\mathrm{br} \mathrm{s}, \Delta v_{1 / 2}=1800 \mathrm{~Hz}, 1 \mathrm{P}\right), 137.1$ (br s, $\Delta v_{1 / 2}=1800 \mathrm{~Hz}, 1 \mathrm{P}$). UV/Vis (THF, $\lambda_{\max } / \mathrm{nm}, \varepsilon_{\max } / \mathrm{L} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~cm}^{-1}$): 340sh (7000), 490 (4000), 630 (6000).
Elemental Analysis calcd. For $\left(\mathrm{C}_{112} \mathrm{H}_{105} \mathrm{CoGeN}_{2} \mathrm{P}_{4}\right)\left(\mathrm{Mw}=1734.50 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\right)$:
C 77.56, H 6.10, N 1.62; found C 77.94, H 6.56, N 1.44 .

5.4.2 NMR Spectra

Figure S1. $\quad{ }^{1} \mathrm{H} \quad \mathrm{NMR} \quad$ spectrum $\quad\left(400.13 \mathrm{MHz}, \quad 300 \mathrm{~K}, \quad \mathrm{C}_{6} \mathrm{D}_{6}\right.$, $) \quad$ of $[\mathrm{K}(18 \mathrm{c}-6)]\left[\left(\mathrm{Ar}{ }^{*} \mathrm{BIAN}\right) \mathrm{Co}(\mathrm{CN})\left(\eta^{3}-\mathrm{P}_{3} \mathrm{GeAr}{ }^{\prime} \mathrm{Cl}\right)\right](2) ;{ }^{*} \mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S2. $\quad{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \quad$ NMR \quad spectrum $\quad\left(100.66 \mathrm{MHz}, \quad 300 \mathrm{~K}, \quad \mathrm{C}_{6} \mathrm{D}_{6}\right) \quad$ of $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}(\mathrm{CN})\left(\eta^{3}-\mathrm{P}_{3} \mathrm{GeAr}{ }^{\prime} \mathrm{Cl}\right)\right](2) ; \circ n$-hexane; \bullet toluene; * $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S3. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR} \quad$ spectrum $\quad\left(162.04 \mathrm{MHz}, \quad 300 \mathrm{~K}, \quad \mathrm{C}_{6} \mathrm{D}_{6}\right) \quad$ of $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}(\mathrm{CN})\left(\eta^{3}-\mathrm{P}_{3} \mathrm{GeAr}{ }^{\prime} \mathrm{Cl}\right)\right]$ (2); • unknown phosphorus containing compound attributed to an isomer of $\mathbf{2}$, or the iodide-substituted derivative of $\mathbf{2}$.

Figure S4. Section of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR} \quad\left(162.04 \mathrm{MHz}, \quad 300 \mathrm{~K}, \quad \mathrm{C}_{6} \mathrm{D}_{6}\right)$ spectra of $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}(\mathrm{CN})\left(\eta^{3}-\mathrm{P}_{3} \mathrm{GeAr} \mathrm{Cl}\right)\right]$ (2); experimental (upwards) and simulation (downwards).

Table S1. Chemical shifts and coupling constants from the iterative fit of the $\mathrm{A}_{2} \mathrm{X}$ spin system and schematic representation of the $\mathrm{CoP}_{3} \mathrm{GeAr}^{\prime}$ core of $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}(\mathrm{CN})\left(\eta^{3}-\mathrm{P}_{3} \mathrm{GeAr}^{\prime} \mathrm{Cl}\right)\right]$ (2).

Figure S5. ${ }^{1} \mathrm{H}$ NMR spectrum ($400.13 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$,) of [(Ar*BIAN)Co($\left.\left.\mu-\eta^{4}: \eta^{3}-\mathrm{P}_{4}\right) \mathrm{GeAr}\right)$] (4); * $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S6. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($100.61 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $\left.\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\mu-\eta^{4}: \eta^{3}-\mathrm{P}_{4}\right) \mathrm{GeAr}\right)\right]$ (4); * $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S7. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($\left.162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $\left.\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}\left(\mu-\eta^{4}: \eta^{3}-\mathrm{P}_{4}\right) \mathrm{GeAr}\right)\right]$ (4).

5.4.3 Additional Experiments

Reactions of $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}(\mathrm{CN})\left(\boldsymbol{\eta}^{3}-\mathrm{P}_{3}\right)\right]$ (1) with $[\mathrm{Ar} \cdot \mathrm{Sn}(\mu-\mathrm{Cl})]$, or $\left[\mathrm{Ar}{ }^{\prime} \mathrm{Pb}(\mu-\mathrm{Br})\right]_{2}:$

Solid $[\operatorname{Ar} \operatorname{Sn}(\mu-\mathrm{Cl})]_{2}(5.0 \mathrm{mg}, 0.00453 \mathrm{mmol}, 0.50$ equiv.) was added to a purple solution of $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}(\mathrm{CN})\left(\eta^{3}-\mathrm{P}_{3}\right)\right]\left(15 \mathrm{mg}, 0.0092 \mathrm{mmol}, 1.0\right.$ equiv.) in $\mathrm{C}_{6} \mathrm{D}_{6}$ $(0.5 \mathrm{~mL})$ and a ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR was recorded (Figure S8, vide infra). The reaction between $\left[\mathrm{Ar}{ }^{\prime} \mathrm{Pb}(\mu-\mathrm{Br})\right]_{2} \quad(8.4 \mathrm{mg}, \quad 0.0061 \mathrm{mmol}, \quad 1.00$ equiv. $)$ and $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}(\mathrm{CN})\left(\eta^{3}-\mathrm{P}_{3}\right)\right](10 \mathrm{mg}, 0.0092 \mathrm{mmol}, 1.0$ equiv. $)$ was performed in an analogous fashion. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR and ${ }^{1} \mathrm{H}$ NMR spectra of the reaction mixture revealed only unreacted starting material.

Figure S8. $\quad{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR} \quad\left(162.04 \mathrm{Mz}, \quad 300 \mathrm{~K}, \quad \mathrm{C}_{6} \mathrm{D}_{6}\right) \quad$ of \quad the \quad reaction between $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}(\mathrm{CN})\left(\eta^{3}-\mathrm{P}_{3}\right)\right](\mathbf{1})$ and $\left[\mathrm{Ar} \mathrm{Sn}^{2}(\mu-\mathrm{Cl})\right]_{2}$.

Reaction of [K(18c-6)][(Ar*BIAN)Co(CN)($\left.\left.\boldsymbol{\eta}^{\mathbf{3}} \mathbf{- P}_{\mathbf{3}} \mathrm{GeAr}^{\prime} \mathrm{Cl}\right)\right]$ (2) with $\mathrm{NaBAr}^{\mathrm{F}} \mathbf{4}$:

Solid $[\operatorname{Ar} \operatorname{Ge}(\mu-\mathrm{Cl})]_{2}(13.9 \mathrm{mg}, 0.0137 \mathrm{mmol}, 1.50$ equiv.) was added to a purple solution of $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}(\mathrm{CN})\left(\eta^{3}-\mathrm{P}_{3}\right)\right]\left(15 \mathrm{mg}, 0.0092 \mathrm{mmol}, 1.0\right.$ equiv.) in $\mathrm{C}_{6} \mathrm{D}_{6}$ (0.5 mL) to generate $\mathbf{2}$ in situ. $\mathrm{NaBAr}^{\mathrm{F}} 4$ ($8.1 \mathrm{mg}, 0.0092 \mathrm{mmol}, 1.0$ equiv.) was added and the reaction mixture was stirred for three days. Volatiles were removed in vacuo. The resulting dark solid was extracted with n-hexane $(2 \times 125 \mu \mathrm{~L})$ and subsequently with $\mathrm{Et}_{2} \mathrm{O}$ $(2 \times 200 \mu \mathrm{~L})$. The extracts were filtered and concentrated to half of their original volume. After four days, dark blue crystals of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}(\mathrm{CN})\left(\eta^{3}-\mathrm{P}_{3} \mathrm{GeAr}^{\prime} \mathrm{Cl}\right)\right]$ of sufficient quality for XRD analysis were obtained from the $\mathrm{Et}_{2} \mathrm{O}$ fraction.

Figure S9. UV/Vis spectrum of $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}(\mathrm{CN})\left(\eta^{3}-\mathrm{P}_{3} \mathrm{GeAr}{ }^{\prime} \mathrm{Cl}\right)\right](\mathbf{2})$ recorded in THF.

Figure S10. UV/Vis spectrum of [(Ar*BIAN) $\left.\left.\operatorname{Co}\left(\mu-\eta^{4}: \eta^{3}-\mathrm{P}_{4}\right) \mathrm{GeAr}^{\prime}\right)\right]$ (4) recorded in THF.

5.4.5 IR Spectra

Figure S11. Solid state IR spectrum of $[\mathrm{K}(18 \mathrm{c}-6)]\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}(\mathrm{CN})\left(\eta^{3}-\mathrm{P}_{3} \mathrm{GeAr}{ }^{\prime} \mathrm{Cl}\right)\right]$ (2).

5.4.6 Single Crystal X-Ray Diffraction Data

Single-crystal X-ray diffraction data were recorded on Rigaku Oxford Diffraction XtaLAB Synergy R (DW system, Hypix-Arc 150) device with $\mathrm{Cu}-\mathrm{K}_{\alpha}$ radiation ($\lambda=1.54184 \AA$). Crystals were selected under mineral oil, mounted on micromount loops and quench-cooled using an Oxford Cryosystems open flow N_{2} cooling device. Either semi-empirical multi-scan absorption corrections ${ }^{[51,52]}$ or analytical ones ${ }^{[53]}$ were applied to the data. The structures were solved with SHELXT ${ }^{[54]}$ solution program using dual methods and by using Olex2 as the graphical interface. ${ }^{[55]}$ The models were refined with ShelXL ${ }^{[56]}$ using full matrix least squares minimization on $\mathrm{F}^{2} .{ }^{[57]}$ The hydrogen atoms were located in idealized positions and refined isotropically with a riding model.
$\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}(\mathrm{CN})\left(\eta^{3}-\mathrm{P}_{3} \mathrm{Ge} \mathrm{Ar} \mathrm{Cl}^{\prime}\right)\right]$ (2): The crystal contained two severely disordered $\mathrm{Et}_{2} \mathrm{O}$ molecules per asymmetric unit, which were refined using the solvent mask command: A solvent mask was calculated and 330 electrons were found in a volume of $2816 \AA^{3}$ in one void per unit cell. This is consistent with the presence of $2 \mathrm{Et}_{2} \mathrm{O}$ molecules per Formula Unit which account for 336 electrons per unit cell.
The single crystal XRD data of 2 could only be refined satisfactorily, if the halogen substituent at Ge 1 was refined using a split model as a Cl atom with a chemical occupancy of 0.8 and an I atom with the occupancy of 0.2 (Figure 2a). The origin of the iodine atom for this partial occupancy was attributed to the synthetic route, where the terphenyl iodide Ar'-I is utilized. ${ }^{[42]}$ The insufficient purity of the starting material and thus the presence of residual iodide might have caused the observed halogen exchange. For the PHDI analogue of $\mathbf{2}$ no such halogen substitution was observed, and the corresponding $\mathrm{Ge}-\mathrm{Cl}$ bond length is $2.239(4) \AA .{ }^{[26]}$ This discrepancy strongly suggests that the observed, seemingly long $\mathrm{Ge}-\mathrm{Cl}$ bond distance in $2(2.4564(4) \AA$) can be attributed to the mixed chlorine/iodine position.
[(Ar*BIAN) $\left.\left.\operatorname{Co}\left(\mu-\eta^{4}: \eta^{3}-\mathrm{P}_{4}\right) \mathrm{GeAr}^{\prime}\right)\right]$ (4): The crystal of 4 contained 1.5 severely disordered n-hexane molecules per asymmetric unit. The n-hexane molecules were refined by using the solvent mask command: A solvent mask was calculated, and 666 electrons were found in a volume of $3320 \AA^{3}$ in one void per unit cell. This is consistent with the presence of $1.5 n$-hexane per Formula Unit which account for 600 electrons per unit cell.

The following section provides figures of the molecular structures with selected bond lengths and angles, which were not given in section 5.2 itself.

Table S2. Crystallographic data and structure refinement for compounds 2-4.

| Compound | 2 | $\begin{gathered} {\left[\left(\mathrm{Ar}^{*} \mathbf{B I A N}\right) \mathrm{Co}(\mathrm{CN})\right.} \\ \left.\left(\boldsymbol{\eta}^{3}-\mathrm{P}_{3} \mathrm{GeAr} \mathbf{r}^{\prime} \mathrm{Cl}\right)\right] \\ \hline \end{gathered}$ | 4 |
| :---: | :---: | :---: | :---: |
| Empirical formula | $\begin{gathered} \mathrm{C}_{132} \mathrm{H}_{137} \mathrm{Cl}_{0.77} \mathrm{CoGeI}_{0.23} \mathrm{KN} \\ { }_{3} \mathrm{O}_{6} \mathrm{P} \end{gathered}$ | $\mathrm{C}_{113} \mathrm{H}_{105} \mathrm{ClCoGeN}_{3} \mathrm{P}_{3}$ | $\mathrm{C}_{121} \mathrm{H}_{126} \mathrm{CoGeN}_{2} \mathrm{P}_{4}$ |
| Formula weight | 2181.22 | 1764.87 | 1863.63 |
| Temperature/K | 123(1) | 123(1) | 123(1) |
| Crystal system | monoclinic | monoclinic | tetragonal |
| Space group | $P 2_{1} / c$ | $P 2{ }_{1} / c$ | I-4 |
| a/Å | 16.52889(4) | 17.6442(3) | 37.02870(10) |
| b/Å | 19.96040(5) | 18.8082(3) | 37.02870 (10) |
| c/Å | $34.29681(10)$ | 33.8758(4) | 15.04040(10) |
| $\alpha /{ }^{\circ}$ | 90 | 90 | 90 |
| $\beta /{ }^{\circ}$ | 94.6780(3) | 96.5420(10) | 90 |
| $\gamma /{ }^{\circ}$ | 90 | 90 | 90 |
| Volume/ A 3 | 11277.62(5) | 11168.7(3) | 20622.26(18) |
| Z | 4 | 4 | 8 |
| $\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$ | 1.285 | 1.050 | 1.201 |
| μ / mm^{-1} | 3.318 | 2.443 | 2.576 |
| $\mathrm{F}(000)$ | 4585.0 | 3700.0 | 7880.0 |
| Crystal size/mm ${ }^{3}$ | $0.262 \times 0.201 \times 0.125$ | $0.035 \times 0.090 \times 0.142$ | $0.523 \times 0.051 \times 0.048$ |
| Diffractometer | XtaLAB Synergy R, DW system, HyPix-Arc 150 | XtaLAB Synergy R, DW system, HyPix-Arc 150 | XtaLAB Synergy R, DW system, HyPix-Arc 150 |
| Radiation | $\begin{gathered} \mathrm{CuK} \alpha \\ (\lambda=1.54184) \end{gathered}$ | $\mathrm{CuK} \alpha$ $(\lambda=1.54184)$ | $\begin{gathered} \mathrm{CuK} \alpha \\ (\lambda=1.54184) \end{gathered}$ |
| 2Θ range for data collection $/{ }^{\circ}$ | 5.126 to 148.94 | 5.042 to 134.152 | 4.772 to 150.188 |
| Index ranges | $\begin{aligned} &-19 \leq \mathrm{h} \leq 20, \\ &-24 \leq \mathrm{k} \leq 24, \\ &-42 \leq 1 \leq 42 \end{aligned}$ | $\begin{aligned} -21 & \leq \mathrm{h} \leq 21, \\ -22 & \leq \mathrm{k} \leq 22, \\ -34 & \leq 1 \leq 40 \end{aligned}$ | $\begin{aligned} -46 & \leq h \leq 45, \\ -45 & \leq k \leq 45, \\ -18 & \leq 1 \leq 17 \end{aligned}$ |
| Reflections collected | 251730 | 253730 | 74548 |
| | 22884 | 19940 | 20178 |
| Independent reflections | $\begin{gathered} {\left[\mathrm{R}_{\mathrm{int}}=0.0225\right.} \\ \left.\mathrm{R}_{\text {sigma }}=0.0110\right] \end{gathered}$ | $\begin{gathered} {\left[\mathrm{R}_{\mathrm{int}}=0.1515,\right.} \\ \left.\mathrm{R}_{\text {sigma }}=0.0564\right] \end{gathered}$ | $\begin{gathered} {\left[\mathrm{R}_{\mathrm{int}}=0.0297\right.} \\ \left.\mathrm{R}_{\text {sigma }}=0.0291\right] \end{gathered}$ |
| Data/restraints/ parameters | 22884/717/1521 | 19940/405/1194 | 20178/12/1093 |
| Goodness-of-fit on F^{2} | 1.011 | 1.100 | 1.065 |
| Final R indexes [I>=2 σ
 (I)] | $\begin{gathered} \mathrm{R}_{1}=0.0375 \\ \mathrm{wR}_{2}=0.1086 \end{gathered}$ | $\begin{gathered} \mathrm{R}_{1}=0.0855 \\ \mathrm{wR}_{2}=0.2588 \end{gathered}$ | $\begin{gathered} \mathrm{R}_{1}=0.0458 \\ \mathrm{wR}_{2}=0.1175 \end{gathered}$ |
| Final R indexes [all data] | $\begin{gathered} \mathrm{R}_{1}=0.0399 \\ \mathrm{wR}_{2}=0.1104 \end{gathered}$ | $\begin{gathered} \mathrm{R}_{1}=0.1003, \\ \mathrm{wR}_{2}=0.2761 \end{gathered}$ | $\begin{gathered} \mathrm{R}_{1}=0.0512, \\ \mathrm{wR}_{2}=0.1205 \end{gathered}$ |
| Largest diff. peak/hole / e \AA^{-3} | 1.01/-0.86 | 1.29/-0.74 | 0.54/-0.33 |
| Flack parameter | 1 | 1 | -0.0263(15) |

Figure S12. Solid-state structure of $\left[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}(\mathrm{CN})\left(\eta^{3}-\mathrm{P}_{3} \mathrm{GeAr}{ }^{\prime} \mathrm{Cl}\right)\right]$; thermal ellipsoids are shown at the 50% probability level; hydrogen atoms, non coordinating solvent molecules and disorder in der $\mathrm{Ar} *$ BIAN ligand are omitted for clarity. Selected bond lengths [A] and angles [${ }^{\circ}$]: $\mathrm{P} 1-\mathrm{P} 22.1771(2), \mathrm{P} 2-\mathrm{P} 3$ 2.1921(2), Ge1-P1 2.2987(1), Ge1-P3 2.3124(1), Ge1-Cl1 2.2791(2), Co1-P1 2.3461(1), Co1-P2 $2.2641(1), \mathrm{Co} 1-\mathrm{P} 32.3201(1)$, $\mathrm{Co} 1-\mathrm{C} 31.908(5), \mathrm{C} 3-\mathrm{N} 31.160(6)$, Co1-N1 1.995(3), Co1-N2 1.991(3), C1-N1 1.323(4), C2-N2 1.310(5), C1-C2 1.449(5), P1-P2-P3 89.85(6), P2-P3-Ge1 81.34(5), P3-Ge1-P1 84.00(4), P1-Ge1-Cl1 108.41(5), Co1-C3-N3 176.6(4), N1-Co1-N2 81.39(1), N1-C1-C2 115.8(3), Co1-N2-C2 113.0(3).

References

[1] G. Maier, Angew. Chem. Int. Ed. Engl. 1988, 27, 309-332.
[2] M. Peruzzini, L. Gonsalvi, A. Romerosa, Chem. Soc. Rev. 2005, 34, 1038-1047.
[3] B. M. Cossairt, N. A. Piro, C. C. Cummins, Chem. Rev. 2010, 110, 4164-4177.
[4] M. Scheer, G. Balázs, A. Seitz, Chem. Rev. 2010, 110, 4236-4256.
[5] M. Caporali, L. Gonsalvi, A. Rossin, M. Peruzzini, Chem. Rev. 2010, 110, 41784235.
[6] F. Scalambra, M. Peruzzini, A. Romerosa, in Adv. Organomet. Chem. (Ed.: P.J. Pérez), Academic Press, 2019, pp. 173-222.
[7] C. M. Hoidn, D. J. Scott, R. Wolf, Chem. - Eur. J. 2021, 1886-1902.
[8] L. Giusti, V. R. Landaeta, M. Vanni, J. A. Kelly, R. Wolf, M. Caporali, Coord. Chem. Rev. 2021, 441, 213927.
[9] B. M. Cossairt, M.-C. Diawara, C. C. Cummins, Science 2009, 323, 602-602.
[10] B. M. Cossairt, C. C. Cummins, J. Am. Chem. Soc. 2009, 131, 15501-15511.
[11] G. Hierlmeier, P. Coburger, M. Bodensteiner, R. Wolf, Angew. Chem. Int. Ed. 2019, 58, 16918-16922.
[12] M.-L. Y. Riu, R. L. Jones, W. J. Transue, P. Müller, C. C. Cummins, Sci. Adv. 2020, 6, eaaz3168.
[13] M.-L. Y. Riu, M. Ye, C. C. Cummins, J. Am. Chem. Soc. 2021, 143, 16354-16357.
[14] J. S. Figueroa, C. C. Cummins, Angew. Chem. Int. Ed. 2004, 43, 984-988.
[15] J. S. Figueroa, C. C. Cummins, Angew. Chem. Int. Ed. 2005, 44, 4592-4596.
[16] N. A. Piro, C. C. Cummins, J. Am. Chem. Soc. 2008, 130, 9524-9535.
$[17] \quad$ B. M. Cossairt, C. C. Cummins, Angew. Chem. Int. Ed. 2010, 49, 1595-1598.
[18] M. A. Alvarez, M. E. García, D. García-Vivó, A. Ramos, M. A. Ruiz, Inorg. Chem. 2011, 50, 2064-2066.
[19] M. A. Alvarez, M. E. García, D. García-Vivó, A. Ramos, M. A. Ruiz, Inorg. Chem. 2012, 51, 11061-11075.
[20] R. Yadav, T. Simler, S. Reichl, B. Goswami, C. Schoo, R. Köppe, M. Scheer, P. W. Roesky, J. Am. Chem. Soc. 2020, 142, 1190-1195.
[21] R. Yadav, B. Goswami, T. Simler, C. Schoo, S. Reichl, M. Scheer, P. W. Roesky, Chem. Сoттии. 2020, 56, 10207-10210.
[22] C. Riesinger, G. Balázs, M. Seidl, M. Scheer, Chem. Sci. 2021, 12, 13037-13044.
[23] M. Piesch, S. Reichl, M. Seidl, G. Balázs, M. Scheer, Angew. Chem. Int. Ed. 2021, 60, 15101-15108.
[24] X. Sun, A. Hinz, S. Schulz, L. Zimmermann, M. Scheer, P. W. Roesky, Chem. Sci. 2023, 14, 4769-4776.
[25] K. Trabitsch, Reactivity Studies of an Anionic Cyclotriphosphido Cobalt Complex, Masterarbeit, Universität Regensburg, 2020.
[26] K. Trabitsch, Unpublished Results, Universität Regensburg, 2024.
[27] P. Pyykkö, M. Atsumi, Chem. - Eur. J. 2009, 15, 186-197.
[28] P. Pyykkö, M. Atsumi, Chem. - Eur. J. 2009, 15, 12770-12779.
[29] G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts, Wiley, Chichester, 2004.
[30] P. Rigo, A. Turco, Coord. Chem. Rev. 1974, 13, 133-172.
[31] A Search of the Cambridge Crystal Structure Database (CCSD), Version 5.44, 04/2023, Revealed 120 Cobalt Complexes Bearing Only One Terminal Cyanide Ligand with a Mean Co-C Distance of $1.899 \AA$ (Median $1.888 \AA$) and a Mean $C \equiv N$ Distance of $1.137 \AA$ (Median 1.144 A), 2023.
[32] M. M. Khusniyarov, K. Harms, O. Burghaus, J. Sundermeyer, Eur. J. Inorg. Chem. 2006, 2006, 2985-2996.
[33] T. Li, N. Arleth, M. T. Gamer, R. Köppe, T. Augenstein, F. Dielmann, M. Scheer, S. N. Konchenko, P. W. Roesky, Inorg. Chem. 2013, 52, 14231-14236.
[34] Y. Xiong, S. Yao, E. Bill, M. Driess, Inorg. Chem. 2009, 48, 7522-7524.
[35] C. G. P. Ziegler, T. M. Maier, S. Pelties, C. Taube, F. Hennersdorf, A. W. Ehlers, J. J. Weigand, R. Wolf, Chem. Sci. 2019, 10, 1302-1308.
[36] W. W. Seidel, O. T. Summerscales, B. O. Patrick, M. D. Fryzuk, Angew. Chem. Int. Ed. 2009, 48, 115-117.
[37] V. A. Miluykov, O. G. Sinyashin, P. Lönnecke, E. Hey-Hawkins, Mendeleev Commun. 2003, 13, 212-213.
[38] M. D. Walter, J. Grunenberg, P. S. White, Chem. Sci. 2011, 2, 2120-2130.
[39] O. J. Scherer, M. Swarowsky, H. Swarowsky, G. Wolmershäuser, Angew. Chem. Int. Ed. Engl. 1988, 27, 694-695.
[40] O. J. Scherer, T. Hilt, G. Wolmershäuser, Organometallics 1998, 17, 4110-4112.
[41] S. Hauer, T. M. H. Downie, G. Balázs, K. Schwedtmann, J. J. Weigand, R. Wolf, Angew. Chem. Int. Ed. 2023, e202317170.
[42] L. Pu, A. D. Phillips, A. F. Richards, M. Stender, R. S. Simons, M. M. Olmstead, P. P. Power, J. Am. Chem. Soc. 2003, 125, 11626-11636.
[43] S. Hino, M. Olmstead, A. D. Phillips, R. J. Wright, P. P. Power, Inorg. Chem. 2004, 43, 7346-7352.
[44] P. H. M. Budzelaar, in IvorySoft: gNMR for Windows, NMR Simulation Program, 2006.
[45] E. G. Finer, R. K. Harris, Mol. Phys. 1967, 13, 65-75.
[46] S. Aime, R. K. Harris, E. M. McVicker, M. Fild, J. Chem. Soc. Dalton Trans. 1976, 2144-2153.
[47] J. P. Albrand, H. Faucher, D. Gagnaire, J. B. Robert, Chem. Phys. Lett. 1976, 38, 521-523.
[48] H. C. E. McFarlane, W. McFarlane, J. A. Nash, J. Chem. Soc. Dalton Trans. 1980, 240-244.
[49] M. A. M. Forgeron, M. Gee, R. E. Wasylishen, J. Phys. Chem. A 2004, 108, 48954908.
[50] J. E. Del Bene, J. Elguero, I. Alkorta, J. Phys. Chem. A 2004, 108, 3662-3667.
[51] G. M. Sheldrick, SADABS, Bruker AXS, Madison, USA, 2007.
[52] CrysAlisPro, Scale3 Abspack, Rigaku Oxford Diffraction, 2019.
[53] R. C. Clark, J. S. Reid, Acta Crystallogr. Sect. A 1995, 51, 887-897.
[54] G. M. Sheldrick, Acta Crystallogr. Sect. Found. Adv. 2015, 71, 3-8.
[55] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. a. K. Howard, H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339-341.
[56] G. M. Sheldrick, Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3-8.
[57] G. M. Sheldrick, Acta Crystallogr. A 2008, 64, 112-122.

6 1,2,4-Diazamonophospholes and 1,2,3,4-Diazadiphospholes Derived from Diazoalkenes: Synthesis and Coordination Chemistry ${ }^{[a, b]}$

Abstract

Reactions of a novel 1,2,3-triazole-based diazoalkene with tertbutylphosphaalkyne and white phosphorus afford a rare $3 \mathrm{H}-1,2,4$-diazamonophosphole 2 and a 1,2,3,4-diazadiphosphole 3, respectively. Both phospholes are versatile ligands toward main group compounds $\left(\mathrm{BPh}_{3}, \mathrm{AlEt}_{3}\right)$ and transition metal ($\mathrm{Co}, \mathrm{Ni}, \mathrm{Ru}, \mathrm{Rh} \mathrm{W}$, $\mathrm{Au})$ complexes. These compounds are characterized by multinuclear NMR studies, single crystal X-ray diffraction and further analytical methods. Their molecular structures show that $\mathbf{2}$ and $\mathbf{3}$ can adopt various coordination modes, such as coordination via N and P atoms as well as π-coordination. Additionally, $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$ bond activation was observed with cobalt(0) and nickel(0) N -heterocyclic carbene complexes, demonstrating that the ligand framework itself is accessible for further reactivity with highly electron-rich first-row transition-metal centers.

${ }^{[a]}$ Reproduced from S. Hauer, J. Reitz, T. Koike, M. M. Hansmann, R. Wolf, Angew. Chem. Int. Ed. 2024, e202410107.
${ }^{[b]}$ S. Hauer performed the synthetic investigations and the characterization of the reported compounds. J. Reitz synthesized the diazoalkene 1. T. Kaiki carried out the DFT calculations. S. Hauer wrote the chapter, which was reviewed and edited by R. Wolf and M. M. Hansmann. R. Wolf and M. M. Hansmann supervised the project.

6.1 Introduction

(Hetero-)phospholes have found a broad variety of applications ranging from ligands in metal complexes, as polymers in materials science, and are of fundamental importance in theoretical and experimental research. ${ }^{[1-10]} 1 H-1,2,4$-diazamonophospholes constitute a well-investigated and thus important subclass, of which selected examples \mathbf{A} and \mathbf{B} are shown in Figure 1a. ${ }^{[11-15]}$ They can be seen as hybrids of phospholes and pyrazoles, exhibiting characteristic properties of both: hard nitrogen and soft phosphorus donor atoms, which makes them promising ligands with varying coordination modes. ${ }^{[16,17]}$ Almost four decades ago, the groups of Märkl, Regitz and Schmidpeter almost simultaneously reported different methods for the synthesis of $1 H$-1,2,4-diazaphospholes, including cyclocondensation, [3+2]-cycloaddition, and O/P-exchange reactions. ${ }^{[18-27]}$ More recently, Zheng and co-workers reported an improved condensation protocol, and the group of Grützmacher reported the reaction of a $\mathrm{NaPH}_{2} /(\mathrm{NaO} t \mathrm{Bu})_{\mathrm{x}}$ mixture toward chlorinated diazabutadiene to give functionalized neutral and anionic $1 H-1,2,4-$ and 1,3,4azadiphospholes. ${ }^{[28,29]}$
a) Diazamonophospholes

A

B
b) Diazadiphospholes

F
G

c) this work:

3

Figure 1. Selected examples for $1 H-1,2,4$-diazamonophospholes (\mathbf{A}, \mathbf{B}) and all reported examples of $1,2,3,5-(\mathbf{C}, \mathbf{D}), 1,2,3,4$-diazadiphospholes and -phospholides $(\mathbf{E}, \mathbf{F}, \mathbf{G}) ; \mathrm{R}^{1}=\mathrm{H}, \mathrm{Me}, \mathrm{CO}_{2} \mathrm{Me} ; \mathrm{R}^{2}=i \mathrm{Pr}, t \mathrm{Bu}$, $\mathrm{CH}_{2} t \mathrm{Bu} ; \mathrm{R}^{3}=\mathrm{Me}, i \mathrm{Pr}, t \mathrm{Bu}, \mathrm{Ph} ; \mathrm{R}^{4}=\mathrm{Me}, \mathrm{Ph}$.

Very recently the synthesis of related 1,3-azaphospholes through a [3+2]-cycloaddition between 1,3-dipolar triflatophosphanes and alkynes has been reported by Weigand and co-workers. ${ }^{[30]}$

Considering only the relative positions of the three heteroatoms in diazamonophospholes, six regioisomers are feasible and all of them have been synthesized. ${ }^{[14]}$ However, the $3 H$-1,2,4-diazamonophospholes, which feature no substituent at the nitrogen atom, remain elusive. It has been suggested that this isomer is formed initially during cycloadditions of phosphaalkynes and diazoalkanes. However, a rapid [1,5]-shift results in aromatization and the formation of $1 H-1,2,4$ diazaphospholes. ${ }^{[21,24,31]}$

Crucially, related diazadiphospholes have only been explored to a limited extent. ${ }^{[32]}$ Examples of only two out of six possible regioisomers have been reported, namely the 1,2,3,5- and 1,2,3,4-diazadiphospholes (C-G, Figure 1b). ${ }^{[32-35]}$ Selected examples of their corresponding $1,2,3,4$-phospholides were included in a computational study. ${ }^{[36]}$ The synthesis of \mathbf{C} was reported by Schmidpeter, via the dehydrohalogenation of $\mathrm{CH}_{2}\left(\mathrm{PCl}_{2}\right)_{2}$ with substituted hydrazines. ${ }^{[33]}$ More recently, Cummins and co-workers utilized the diazene $\mathrm{MesN}_{2} \mathrm{PA}\left(\mathrm{Mes}=2,4,6-\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{2} ; \mathrm{A}=\right.$ anthracene) as a phosphorus transfer reagent in reactions with OCP^{-}and $\operatorname{AdCP}(\mathrm{Ad}=1$-adamantyl) for the preparation of \mathbf{D} and $\mathbf{E} \cdot{ }^{[35]}$ Furthermore, in a report that is highly relevant to the present work, Mathey and co-workers demonstrated that the diazomethyl anion reacts with white phosphorus $\left(\mathrm{P}_{4}\right)$ to afford diazadiphospholide $\mathrm{Li}[\mathbf{F}] .{ }^{[34]}$ However, this species was not structurally characterized, and its subsequent chemistry has remained rather limited. Protonation of this lithium salt with HOTf resulted in the protonated phosphole G. Subsequent deprotonation with NaH gave the sodium salt of $\mathrm{Na}[\mathbf{F}]$. These pioneering works have demonstrated the accessibility of certain diazadiphospholes and phospholides. However, the reported synthetic procedures often suffer from poor yield, or the compounds exhibit thermal instability, limiting investigations into their reactivity. ${ }^{[32-35]}$

Recently, Hansmann and co-workers reported the synthesis and characterization of room-temperature stable, though highly reactive diazoalkenes. ${ }^{[37-39]}$ Reactions with main group compounds $\mathrm{CS}_{2}, \mathrm{CO}$ and isocyanide show their potential for the synthesis of unique organic compounds. This chapter reports the preparation of $3 \mathrm{H}-1,2,4$-diazamono- and 1,2,3,4-diazadiphospholes by cycloadditions of $t \mathrm{BuCP}$ and P_{4} with a new nucleophilic diazoalkene, which represents one of the strongest carbon nucleophiles known to date. ${ }^{[40]}$ Their electronic structures have been elucidated by quantum chemical calculations and
their coordination behavior toward a variety of main group and transition metal salts and complexes has been investigated.

6.2 Results and Discussion

This study utilizes the highly nucleophilic diazoalkene 1 prepared by Justus Reitz in the group of Prof. M. M. Hansmann at TU Dortmund. ${ }^{[37,38,41]}$ Inspired by the known propensity of phosphaalkynes to undergo [2+3] cycloaddition reactions, $\mathbf{1}$ was treated with one equivalent of $t \mathrm{BuCP}$ in THF (Scheme 1a). ${ }^{[11-15]}$ The reaction was monitored by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and NMR spectroscopy, confirming the quantitative conversion into a single new phosphorus species 2.

Scheme 1. [3+2] Cycloaddition reactions of the nucleophilic diazoalkene $\mathbf{1}$ with $\mathrm{PC} t \mathrm{Bu}$ and P_{4} affording $3 H-1,2,4$-diazamonophosphole 2 and 1,2,3,4-diazadiphosphole 3; reagents/by-products and conditions: a) +1.0 eq. $\mathrm{PC} t \mathrm{Bu} ;$ THF, r.t., $6 \mathrm{~h} ; \mathrm{b})+0.5$ eq. P , THF, r.t., 5 h; yields: 2: $70 \%, \mathbf{3}: 54 \%$.

Compound 2 crystallized as light yellow needles in an isolated yield of 70\%, providing an accessible precursor for subsequent investigations of reactivity. Analysis of these crystals by X-ray diffraction (XRD) revealed the formation of 3 H -1,2,4-diazamonophosphole $\mathbf{2}$, featuring a nearly planar $\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{P}$ (diazamonophosphole) unit connected via a $\mathrm{C}-\mathrm{C}$ bond to a $\mathrm{C}_{2} \mathrm{~N}_{3}$ (triazaphosphole) backbone (Figure 2 left). Both units are nearly coplanar, with a torsion angle of 17°. The $\mathrm{P}-\mathrm{C}$ bond lengths in $\mathbf{2}$ are very similar (P1-C3 1.759(6) \AA and P1-C4 (1.754(2) Å) and lie between typical P-C single and $\mathrm{P}=\mathrm{C}$ double bond lengths ($\sum r_{\mathrm{PC}} 1.86 \AA$ vs. $1.69 \AA$), indicating significant π-delocalization. ${ }^{[42,43]}$ Similar structural features have been reported for the related class of $1 H-1,2,4$-diazaphospholes. ${ }^{[13,31]}$ In comparison to the precursor diazoalkene $\mathbf{1}$, the C2-C3 bond bridging the two heterocycles is elongated (1: 1.407(1) A vs. 2: 1.455(9) \AA). This indicates a higher single bond character in $\mathbf{2}$, which is also reflected in the calculated Wiberg Bond Index (WBI) of 1.12 for 2.

The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2}$ features a sharp singlet at $\delta=79.6 \mathrm{ppm}$, which falls within the more upfield range of typical values reported for related 1 H -derivatives of 1,2,4-diazaphospholes $(\delta=65-178 \mathrm{ppm}) .{ }^{[44]}$ In the ${ }^{1} \mathrm{H}$ NMR spectrum of 2 the expected signals were observed. This class of heterocycle was postulated decades ago as intermediates in cycloaddition reactions between phosphaalkynes and diazomethanes, but eluded isolation. ${ }^{[21,24,31]}$ The reaction mechanism most likely represents a [3+2] cycloaddition reaction, selectively forming only one of the two possible regioisomers. ${ }^{[45,46]}$

Figure 2. Solid-state molecular structures of $\mathbf{2}$ (left) and $\mathbf{3}$ (right). Hydrogen atoms and disorder are omitted for clarity and thermal ellipsoids are drawn at the 50% probability level. Selected bond lengths $[\AA]$ and angles [${ }^{\circ}$]: 2: P1-C4 1.7542(1), P1-C3 1.7596(1), C4-N5 1.3393(1), N4-N5 1.3495(1), N4-C3 1.3478(1), C2-C3 1.4559(2), C1-C2 1.3879(2), N1-N2 1.3207(1), N2-N3 1.3301(1), C3 P1 C4 84.97(5), P1 C4 N5 115.01(8); 3: P1-P2 2.0877(1), P2-N5 1.669(4), P1-C3 1.752(4), N4-N5 1.336(4), N4-C3 1.347(5), C2-C3 1.466(5), C1-C2 1.383(5), C1-N1 1.339(5), N1-N2 1.340(4), N2-N3 1.329(4), C3 P1 P2 88.58(1), P1 P2 N5 97.64(1), P2 N5 N4 117.2(3).

Having established the ability of the diazoalkene to act as precursor for new heterocycles, $\mathbf{1}$ was reacted with 0.5 equiv. of white phosphorus, yielding the 1,2,3,4diazadiphosphole 3 (Scheme 1b). Compound 3 was isolated as an orange solid in 54\% yield, and represents a rare example of a $5 \mathrm{H}-1,2,3,4$-diazadiphosphole. ${ }^{[34,35]}$

Crystals of $\mathbf{3}$ suitable for single crystal X-ray diffraction (SCXRD) were grown from a MeCN/ n-hexane mixture. The solid-state structure of $\mathbf{3}$ is shown in Figure 2 and reveals a $\mathrm{CN}_{2} \mathrm{P}_{2}$ diazadiphosphole linked to the triazolium moiety through a $\mathrm{C}-\mathrm{C}$ bond. In contrast to coplanar $\mathbf{2}$, the $\mathrm{CN}_{2} \mathrm{P}_{2}$ group in $\mathbf{3}$ is tilted at an angle of 43° with respect to the triazolium heterocycle. The P1-P2 bond length of $2.087(7) \AA$ is between those reported for anionic $\mathbf{F}(2.102(8) \AA)$ and protonated $\mathbf{G}(2.070(6) \AA)$ diazadiphospholes. ${ }^{[34,35]}$ This indicates a fairly localized $\mathrm{P}=\mathrm{P}$ double bond, which is consistent with DFT calculations and the calculated WBI of 1.46.

The reaction most likely necessitates an initial nucleophilic attack of the diazoalkane carbon atom on P_{4}, yielding a $1-\mathrm{P}_{4}$ adduct. This adduct is subject to a second nucleophilic attack and thus two molecules of $\mathbf{1}$ are thus involved at the point of the breakdown of the tetrahedron. The reaction can be described as a formal [3+2] cycloaddition reaction, where P_{4} reacts as a convenient source of $[\mathrm{P} \equiv \mathrm{P}]$.

The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of isolated $\mathbf{3}$ features two doublets at $\delta=364.2 \mathrm{ppm}(\mathrm{P} 2)$ and $\delta=217.5 \mathrm{ppm}(\mathrm{P} 1)$ with a large coupling constant of ${ }^{1} J_{\mathrm{PP}}=444 \mathrm{~Hz}$), characteristic of 1,2,3,4-diazadiphospholes. ${ }^{[32-35]}$ These resonances are in good agreement with those reported for anionic \mathbf{F} ($\delta=353$ and 231 ppm), suggesting a high contribution for a resonance structure of 2, with a negative charge residing within the phosphole ring. ${ }^{[34]}$ In comparison, the signal observed for the carbon-bound phosphorus atom P 1 at $\delta=$ 217.5 ppm is significantly shifted downfield compared to related anionic $\mathrm{Na}[\mathbf{E}]$ ($\delta=97 \mathrm{ppm}$), where the negative charge is mainly localized on the exocyclic oxygen atom. ${ }^{[34,35]}$

To get a deeper insight into the electronic structures, $\mathbf{2}$ and $\mathbf{3}$ were both studied computationally (Figure 3), revealing a high contribution of the diazamonophosphole and diazadiphosphole units to the HOMO in both cases, explaining the observed coordination behavior (vide infra). Moreover, the HOMO and HOMO-1 feature a similar energy in both cases, suggesting comparable reactivity. However, the HOMO-LUMO gap is slightly higher for the diphosphole 3 (5.78 vs. 5.63 eV), indicating increased stability.

(b)

Figure 3. (a) Kohn-Sham HOMO-1 to LUMO+1 of 2 and 3 calculated at the M06-2X/def2-TZVP [P, N,C] \& def2-SVP [H]//B3PW91-D3(BJ)/def2-TZVP level of theory (isosurface value: 0.05); (b) NPA charge, Mayer bond order (MBO) and Wiberg bond indice (WBI) of 2 (top) and (3) (bottom).

While the LUMO is centered on the 1,2,3-triazole framework in both cases, the LUMO+1 in diphosphole $\mathbf{3}$ is centered on the $\mathrm{CN}_{2} \mathrm{P}_{2}$ ring, in contrast to monophosphole 2. It is noteworthy that a theoretical study on various azaphospholes, including the parent 1 H -1,2,4-diazaphosphole and $1 H$-1,2,3,4-diazadiphosphole alongside the corresponding anions, has been reported in the literature, revealing similar optimized geometries. ${ }^{[36]}$

To gain insight into the donor capabilities of $\mathbf{2}$ and $\mathbf{3}$, their reactions with first-row transition metals and main group Lewis acids were studied. Complexes of $1 \mathrm{H}-1,2,4-$ diazadiphospholes with metal carbonyls of Cr , Mo and W have been reported. ${ }^{[47,48]}$ In these compounds, the diazadiphosphole ligands exhibit a variety of different binding modes. Thus, $\mathbf{2}$ was initially treated with varying equivalents of $\left[\mathrm{W}(\mathrm{CO})_{5}(\mathrm{thf})\right]$, ranging from a $1: 1$ up to a $1: 3$ stoichiometry (Scheme 2).

Scheme 2. Reaction of monophosphole 2 toward $\left[\mathrm{W}(\mathrm{CO})_{5}(\mathrm{thf})\right]$ affording complexes 4-6; reagents and conditions: +1.0 up to 3.0 eq. $\left[\mathrm{W}(\mathrm{CO})_{5}(\right.$ thf $\left.)\right]$; THF, r.t., 1 d; yields: 4 and 5: not isolated, 6: 80%.

After crystallization, a total of three complexes were identified by SCXRD, namely $\left[\mathrm{W}(\mathrm{CO})_{3}\left\{\mathrm{~W}(\mathrm{CO})_{5}(\mathbf{2})\right\}_{3}\right](\mathbf{4}),\left[\mathrm{W}(\mathrm{CO})_{5}(\mathbf{2})\right](\mathbf{5})$ and $\left[\left\{\mathrm{W}(\mathrm{CO})_{5}\right\}_{2}(\mathbf{2})\right]$ (6) (Figure S61-63, see Supporting Information (SI)). In these complexes, 2 coordinates either via the nitrogen only in $\mathbf{5}$ or via both the N and P atoms, thereby acting as a bridging ligand in the multinuclear complexes $\mathbf{4}$ and 6 . Compounds 4-6 are always formed as a mixture in reactions with 1.0 to 1.3 equivalents of $\left[\mathrm{W}(\mathrm{CO})_{5}(\mathrm{thf})\right]$ and crystallize as such from saturated solutions of THF. However, from a targeted synthesis, using an excess of $\left[\mathrm{W}(\mathrm{CO})_{5}(\mathrm{thf})\right]$ to saturate the coordination sphere of 2, complex $\mathbf{6}$ was isolated in a good yield of 80%.

In the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum, $\mathbf{6}$ gives rise to a sharp singlet at $\delta=52.3 \mathrm{ppm}$ with characteristic tungsten satellites and a coupling constant of ${ }^{1} J_{\mathrm{PW}}=234 \mathrm{~Hz}$. In the IR spectrum, $\mathbf{6}$ exhibits a total of six intense bands in the region of $\tilde{v}_{\mathrm{CO}}=1855$ to $2068 \mathrm{~cm}^{-1}$, corresponding to the two $\mathrm{W}(\mathrm{CO})_{5}$ fragments. ${ }^{[49]}$ As highlighted by the tungsten complexes 4-6, the ligand $\mathbf{2}$ is capable of adopting different coordination modes, making it a promising candidate for use in coordination chemistry.

In this study, the aim was to study the donor strengths and various accessible coordination modes for diazamonophosphole 2 toward various Lewis acids. Pleasingly,
in agreement with the calculated charges and frontier molecular orbitals (Figure 3), the inner and "harder" nitrogen atom coordinates to the Lewis acids $[\mathrm{Rh}(\operatorname{cod}) \mathrm{Cl}]_{2}(\operatorname{cod}=1,5-$ cyclooctadiene) and AlEt_{3} (Scheme 3a). The resulting products, $[\mathrm{Rh}(2)(\operatorname{cod}) \mathrm{Cl}](7)$ and [$\left.\operatorname{AlEt}_{3}(\mathbf{2})\right]$ (8), were isolated in good yields of 81% and 55%, respectively.

SCXRD analysis of both compounds revealed that the $\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{P}$ unit is no longer coplanar with the 1,2,3-triazolium ring, exhibiting twist angles of 56° and 74° in 7 and $\mathbf{8}$, respectively (Figure 4, top). This observed twist can be attributed to the steric demand of the metal centres and, interestingly, is in opposite directions in both complexes.

Scheme 3. Reactivity of $\mathbf{2}$ toward different Lewis acids. Depending on the metal source, different coordination modes can be achieved; reagents/by-products and conditions: a) +0.5 eq. $[\mathrm{Rh}(\mathrm{cod}) \mathrm{Cl}]_{2}$; toluene, r.t., 6 h ; b) +1.0 eq. $\mathrm{AlEt}_{3} ; \mathrm{THF},-35^{\circ} \mathrm{C}$ to r.t., 2 h ; c) +1.0 eq . [$\mathrm{AuCl}($ (tht $\left.)\right] /-$ tht; toluene, r.t., 7 h ; d) +1.0 eq. $\left[\mathrm{Cp} * \mathrm{Ru}(\mathrm{MeCN})_{3}\right] /-3 \mathrm{MeCN} ; \mathrm{THF}, 6{ }^{\circ} \mathrm{C}$, 1 d; yields: 7: $81 \%, \mathbf{8}: 55 \%, 9: 96 \%, 10: 60 \%$; cod $=$ 1,5 -cyclooctadiene, tht $=$ tetrahydrothiophene, $\mathrm{Cp}^{*}=\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}$.

Furthermore, the signals corresponding to the $i \operatorname{Pr}$ groups and the cod ligand in the ${ }^{1} \mathrm{H}$ NMR spectrum of complex 7 are significantly broadened (Figure S10, SI). This may be attributed to the partial double bond character along the C2-C3 axis (1.474(4) Å), in combination with a square planar rhodium center, resulting in hindered rotation of the two units. By gradually decreasing the temperature in a variable temperature (VT) ${ }^{1} \mathrm{H}$ NMR monitoring experiment, these broadened signals sharpen into well-resolved multiplets (Figure S11, SI). The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{7}$ and $\mathbf{8}$ reveal sharp singlets at $\delta=86.7 \mathrm{ppm}$ and $\delta=90.3 \mathrm{ppm}$, respectively. These signals are slightly shifted downfield compared to the uncoordinated monophosphole 2, which resonates at $\delta=79.6 \mathrm{ppm}$.

1 H -diazaphospholes prefer coordination via the nitrogen atom(s), or complexes with higher hapticity. ${ }^{[48]}$ Only two examples for 1 H -diazaphospholes are known involving a
dative phosphorus-metal bond in complexes of palladium or tungsten. ${ }^{[48,50]}$ To achieve targeted coordination solely via phosphorus, the 3 H -diazaphosphole $\mathbf{2}$ was treated with softer Lewis acids. Satisfyingly, addition of [$\mathrm{AuCl}($ tht $)]$ to a solution of $\mathbf{2}$ in toluene yields complex $[\mathrm{AuCl}(\mathbf{2})](\mathbf{9})$ in an almost quantitative isolated yield of 96% (Scheme 3c).

9

Figure 4. Solid-state molecular structures of 7-10. Hydrogen atoms, $\mathrm{PF}_{6}^{-}(\mathbf{1 0})$ and disorder are omitted for clarity and thermal ellipsoids are drawn at the 50% probability level. Selected bond lengths [\AA] and angles [${ }^{\circ}$]: 7: Rh1-Cl1 2.3827(7), Rh1-N1 $2.116(2), \mathrm{Rh} 1-\mathrm{C}_{56}{ }^{\text {centr. } 2.014(2), ~ \mathrm{P} 1-\mathrm{C} 41.755(3), \mathrm{N} 1-\mathrm{N} 21.359(3) \text {, }}$ C2-C3 1.474(4), C1-C2 1.387(4), N3-N4 1.327(3), C11-Rh-N1 91.30(6); 8: Al1-N4 1.9926(1), Al1-C5 1.9972(2), P1-C4 1.7608(2), N4-N5 1.3599(2), C2-C3 1.468(2), N1-N2 1.3217(2), All-N4-C3 136.12(1); 9: Au1-P1 2.2232(1), Au1-Cl1 2.2841(9), P1-C3 1.735(3), P1-C4 1.739(4), N4-N5 1.370(5), C2-C3 1.449(5), C1-C2 1.368(6), N1-N2 1.316(4), N2-N3 1.307(5), P1-Au1-Cl1 173.18(5); 10: $\mathrm{Ru} 1-\mathrm{Cp}^{* \text { centr. }} 1.8189(1), \mathrm{Ru} 1-\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{P}^{\text {centr. }} 1.8219(8), \mathrm{P} 1-\mathrm{C} 11.779(2), \mathrm{N} 1-\mathrm{N} 21.383(2), \mathrm{C} 2-\mathrm{C} 31.464(3)$, N3-N4 1.321(3), N4-N5 1.315(3), C1-P1-C2 85.11(1)

Structural analysis of $\mathbf{9}$ by XRD revealed the coordination of $\mathbf{2}$ to AuCl via the P atom (Figure 4). In the solid-state, two complexes are connected via aurophilic interactions, featuring an $\mathrm{Au}-\mathrm{Au}$ distance of $3.0705(4) \AA$, which is in the typical range for such interactions ($3.05 \AA$). ${ }^{[51]}$ The asymmetric unit contains one molecule of 9 , while the second half is related by a glide plane.

Coordination of the phosphole ligand 2 via one P atom is corroborated by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy, as evidenced by broadening of the singlet at $\delta=58.5 \mathrm{ppm}$ $\left(\Delta v_{1 / 2}=136 \mathrm{~Hz}\right)$. This signal is shifted upfield with respect to uncoordinated $\mathbf{2}$ and the
related complex $\left[\mathrm{W}(\mathrm{CO})_{5}(\mathrm{bdap})\right]$ (bdap $=\operatorname{bis}(1 \mathrm{H}-1,2,4$-diazaphosphol-1-yl)methane), which exhibit resonances at $\delta=79.6 \mathrm{ppm}$ and $\delta=80.7 \mathrm{ppm}$, respectively. ${ }^{[48]}$

Since 2 contains a delocalized π system that might be accessible for coordination, 2 was next treated with complexes bearing multiple open coordination sites. To this end, $\left[\mathrm{Cp} * \mathrm{Ru}(\mathrm{MeCN})_{3}\right] \mathrm{PF}_{6}\left(\mathrm{Cp}^{*}=\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)$ was added to a solution containing 2 in $\mathrm{C}_{6} \mathrm{D}_{6}$, yielding the ruthenocene derivative $[\mathrm{Cp} * \mathrm{Ru}(\mathbf{2})] \mathrm{PF}_{6}(\mathbf{1 0})$ (Scheme 3 d). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopic monitoring of the reaction progress revealed the appearance of a singlet at $\delta=87.7 \mathrm{ppm}$ at room temperature (Figure S45, SI). Based on the very similar ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR chemical shifts observed for complexes 7 and $\mathbf{8}(\delta=86.7 \mathrm{ppm}$ and $\delta=90.3 \mathrm{ppm}$, respectively), this resonance can be attributed to an intermediate in which $\mathbf{2}$ coordinates via one, or two N atoms to Ru . By heating the reaction solution to $65^{\circ} \mathrm{C}$ for one day, the signal at 87.7 ppm disappears while a new signal at $\delta=-48.9 \mathrm{ppm}$ emerges. The upfieldshifted signal was assigned to the sandwich complex 10, which was isolated in 60% yield. To the best of our knowledge, only two related neutral diazamonophosphole complexes $\left[\mathrm{Cp} * \mathrm{M}\left(\eta^{5}-3,5-\mathrm{R}_{2} \mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{P}\right)\right]$ have been reported for $\mathrm{M}=\mathrm{Fe}$ and Ru , starting from their corresponding 1 H -diazaphospholide anions $(\mathrm{R}=t \mathrm{Bu}$ or Ph$) .{ }^{[52-54]}$

Structural analysis of $\mathbf{1 0}$ by SCXRD confirmed its sandwich structure with two coplanar π-ligands featuring a dihedral angle of 1° in an eclipsed conformation and a $\mathrm{PF}_{6}{ }^{-}$ anion (Figure 4). The bond lengths within the $\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{P}$ moiety are elongated compared to uncoordinated 2.

In summary, a wide range of coordination compounds have been synthesized by reacting the new 3 H -monophosphole $\mathbf{2}$ with various Lewis acids. Depending on the metal center, $\mathbf{2}$ adopts different coordination modes ranging from η^{1} via the N or P atoms to η^{5} via the π-system of the phosphole unit.

Strikingly, an entirely different outcome was observed when 2 was treated with lowvalent transition metal complexes. Upon heating a solution of 2 and $\left[\mathrm{Ni}(\operatorname{cod})_{2}\right]$ to $60^{\circ} \mathrm{C}$ for 5 h , the formation of $\mathrm{C}-\mathrm{C}$ bond activation product $\mathbf{1 1}$ was observed (Scheme 4a). Monitoring of the reaction by ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy revealed that the reaction reaches a maximum conversion of $\sim 70 \%$, although unreacted $\left[\mathrm{Ni}(\operatorname{cod})_{2}\right]$ and 2 remain present in the reaction solution (Figure S46, SI). Despite the incomplete reaction and the light sensitivity of complex 11, it was isolated in a 9% yield by crystallization from n-hexane.

Scheme 4. Reactivity of 2 towards low-valent complexes of Ni and Co , affording complexes 11-13; reagents/by-products and conditions: a) +1.3 eq. $\mathrm{Ni}(\operatorname{cod})_{2} /-2$ cod; toluene, $\left.60^{\circ} \mathrm{C}, 5 \mathrm{~h} ; \mathrm{b}\right)+1.4 \mathrm{eq}$. $\left[(\operatorname{IPr}) \mathrm{Ni}(\mathrm{vtms})_{2}\right] /-\mathrm{vtms}$; toluene, $65^{\circ} \mathrm{C}, 11 \mathrm{~d}$; c) 13a: +1.1 eq. [(IPr) $\left.\mathrm{Co}(\mathrm{vtms})_{2}\right] /-\mathrm{vtms} ;$ toluene, $60^{\circ} \mathrm{C}$, 16 h ; 13b: +1.1 eq. $\left[(\mathrm{IMes}) \mathrm{Co}(\mathrm{vtms})_{2}\right] /-\mathrm{vtms} ; \mathrm{C}_{6} \mathrm{H}_{6}, 60^{\circ} \mathrm{C}, 1 \mathrm{~d}$; yields: 11: 9\%, 12: 56\%, 13a: 52\%, 13b: 50%; vtms = vinyltrimethylsilane, $\operatorname{IPr}=1,3$-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene, $\operatorname{IMes}=1,3-$ bis(2,4,6-trimethylphenyl)imidazolin-2-ylidene.

SCXRD analysis of $\mathbf{1 1}$ confirmed, that at least two molecules of $\mathbf{2}$ are involved in the reaction. One molecule of $\mathbf{2}$ engages η^{1} - N coordination via the inner nitrogen which is consistent with the higher calculated negative natural charge of -0.3 (vide supra, c.f. compounds $\mathbf{7}$ and $\mathbf{8}$), whereas the second unit undergoes oxidative addition and $\mathrm{C}-\mathrm{C}$ bond activation mediated by the nickel(0) center (see Figure 5). The resulting complex features a formal nickel(II) center with four ligands in a square planar geometry, an $\eta^{1}-\mathrm{N} 2$ ligand, a phenyl ligand, and the residual $\eta^{2}-\mathrm{N}, \mathrm{C}$ fragment of $\mathbf{2}$ undergoing the $\mathrm{C}-\mathrm{Ph}$ activation at the 1,2,3-triazolium ring. This $\eta^{2}-\mathrm{N}, \mathrm{C}$ coordination forces the two ring systems into an orientation that is opposite to all other compounds within this chapter, presumably because of the preferential coordination via the N atom over the P atom, due to natural charges and the HSAB theory. The C4-Ni1 (1.905(2) \AA) and C5-Ni1 (1.892(2) Á) bond lengths are well within the typical range for $\mathrm{Ni}-\mathrm{C}$ single bonds in nickel aryl complexes. ${ }^{[55,56]}$ Moreover, the bond lengths within the monophosphole ligands are similar to those in 2.

Figure 5. Solid-state molecular structure of 11. Hydrogen atoms and non-coordinating solvent molecules are omitted for clarity and thermal ellipsoids are drawn at the 50% probability level. Selected bond lengths $[\AA]$ and angles $\left[^{\circ}\right]: \mathrm{Ni} 1-\mathrm{N} 21.9894(2)$, Ni1-C4 1.905(2), Ni1-C5 1.892(2), Ni1-N6 $1.918(2), \mathrm{N} 1-\mathrm{N} 2$ 1.355(3), N6-N7 1.356(3), C2-C3 1.438(3), N2-Ni1-C5 173.02(9), N6-Ni1-C4 169.27(9), N6-Ni1-N2 91.42(8), N2-Ni1-C4 82.65(9).

The above-mentioned $\mathrm{C}-\mathrm{C}$ bond activation is also reflected in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 11, which exhibits two singlets, one at $\delta=87.5 \mathrm{ppm}$ and a more upfield shifted signal at $\delta=54.7 \mathrm{ppm}$ (c.f. $\mathbf{2}$ resonates at $\delta=79.6 \mathrm{ppm}$). The more downfield shifted signal was assigned to the monophosphole, which coordinates only via nitrogen, due to the similar chemical shifts of $\eta^{1}-\mathrm{N}$ complexes $\mathbf{7}$ and $\mathbf{8}$ of $\delta=86.7 \mathrm{ppm}$ and $\delta=$ 90.3 ppm , respectively. The upfield shifted signal was assigned to the more shielded phosphorus atom P1 of the monophosphole, which underwent oxidative addition.

In order to further investigate the reactivity of the ligand framework, reactions of $\mathbf{2}$ with highly electron-rich first-row transition-metal centers, such as nickel(0) and cobalt(0) N-heterocyclic carbene complexes, were examined. Upon treatment of 2 with $\left[(\operatorname{IPr}) \mathrm{Ni}(\mathrm{vtms})_{2}\right] \quad(\operatorname{IPr} \quad=\quad 1,3$-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene, $\left.\mathrm{vtms}=\mathrm{H}_{2} \mathrm{CCH}\left(\mathrm{SiMe}_{3}\right)\right)$, the $\mathrm{C}-\mathrm{N}$ bond activation product $\mathbf{1 2}$ was cleanly formed (Scheme 4 b). ${ }^{[57,58]}$ The reaction mechanism for the formation of $\mathbf{1 2}$ is proposed to involve an initial substitution of a labile olefin ligand by one equivalent of $\mathbf{2}$, forming a nickel(II) species structurally related to 7 and 8 (vide supra, see also the SI, Scheme S1). β - H elimination from this N -coordinated intermediate then results in a nickel(II) hydride complex, with concomitant release of propene. Evidence for this is provided by the visible evolution of gas during the reaction. The olefin vinyltrimethylsilane (vtms), still present in the reaction mixture, then undergoes migratory insertion into the hydride, resulting in the final product, 12. ${ }^{[59,60]}$

In comparison, upon treatment of $\mathbf{2}$ with the related bis(alkene) complexes $\left[(\mathrm{NHC}) \mathrm{Co}(\mathrm{vtms})_{2}\right]$, the formation of product $\mathbf{1 3}$ was observed $(\mathrm{NHC}=\operatorname{IPr}(\mathbf{1 3 a})$, IMes (13b), Scheme 4c), featuring the olefin vtms instead of the alkyl ligand in 12. The proposed reaction sequence for the formation of $\mathbf{1 3}$ is similar to that of $\mathbf{1 2}$ (Scheme S1, SI). However, for the cobalt (0) complexes, elimination of a $\mathrm{H} \cdot$ radical and coordination of vtms is favored over insertion of the hydrogen.

Although related $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$ bond activation reactions have been reported for NHCs and the imidazole (= 1,3-diazole) framework, these reactions mostly involve ring opening and insertion, as well as coordination via exocyclic moieties. ${ }^{[61-70]}$ Thus, the selective $\mathrm{C}-\mathrm{N}$ and $\mathrm{C}-\mathrm{C}$ bond activation reactions, as shown in Scheme 4, are unprecedented for the 1,2,3-triazolium scaffold.

Compounds 12 and 13a were isolated by crystallization from saturated $\mathrm{Et}_{2} \mathrm{O}$ solutions in 56% and 52% yields, respectively. The solid-state structures of both compounds are depicted in Figure 6. Complex 12 features a nearly square planar nickel center, exhibiting a typical single $\mathrm{Ni}-\mathrm{C} 6$ bond of $1.940(2) \AA{ }^{\circ} .^{[55,71]}$ In contrast, complex 13a exhibits a tetrahedral geometry around the Co core. In 13a, the $\mathrm{Co}-\mathrm{C} 7$ carbene distance of $2.035(3) \AA$ is elongated compared to the corresponding distance in [(IPr) $\mathrm{Co}(\mathrm{vtms})_{2}$] (1.9519(2) Å), suggesting a weaker interaction between the NHC and the metal center. ${ }^{[72]}$ Moreover, the C6-C7 distance in alkyl complex $\mathbf{1 2}$ (1.532(3) \AA), is significantly longer than the C5=C6 bond length in the olefin complex 13a (1.351(7) \AA), reflecting the single, respectively double bond nature of the corresponding $\mathrm{C}-\mathrm{C}$ bonds, thus corroborating the insertion and eliminiation reactions, respectively. In comparison, the calculated $\mathrm{C}=\mathrm{C}$ bond length in the free vinylsilane is $1.322 \AA .{ }^{\circ}{ }^{[73]}$ Additional single-crystal XRD data sets were acquired for the isostructural complex 13b, both with and without $\mathrm{Et}_{2} \mathrm{O}$ incorporated into the crystal lattice (see Figure S65-66).

The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1 2}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ exhibits a sharp singlet at $\delta=60.7 \mathrm{ppm}$, which is very similar to the observed value of $\delta=54.7 \mathrm{ppm}$ for $\mathbf{2}$. Additionally, the ${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum reveals a singlet at $\delta=-4.1 \mathrm{ppm}$ for the coordinating alkyl group, consistent with the typical range for $-\mathrm{SiMe}_{3}$ groups. ${ }^{[74]}$ In agreement with the paramagnetic nature of $\mathbf{1 3 a}$, the ${ }^{1} \mathrm{H}$ NMR spectrum in $\mathrm{C}_{6} \mathrm{D}_{6}$ exhibits broad paramagnetically shifted signals spanning a wide frequency range from $\delta=96$ to -26 ppm . The solution magnetic moment ($3.49 \mu \mathrm{~B}$) aligns well with the spin-only value $(3.87 \mu \mathrm{~B})$ for high-spin d^{7} ions ($\mathrm{S}=3 / 2$), suggesting the presence of three unpaired electrons.

Figure 6. Solid-state molecular structure of $\mathbf{1 2}$ (left) and 13a (right). Hydrogen atoms, except $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{SiMe}_{3}$ and $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{SiMe}_{3}$ moiety (positions refined), and disorder are omitted for clarity. Thermal ellipsoids are drawn at the 50% probability level. Selected bond lengths [\AA] and angles [${ }^{\circ}$]: 12: Ni1-N1 1.9313(2), Ni1-N4 1.9825(2), Ni1-C5 1.8593(2), Ni1-C6 1.940(2), N6-C5 1.369(3), C6-C7 1.532(3), Si1-C7 $1.877(2), \mathrm{N} 1-\mathrm{N} 2$ 1.322(2), C2-C3 1.452(3), N4-N5 1.355(2), C5-Ni1-N1 172.36(8), N4-Ni1-C6 168.35(8), N6-C5-N7 103.62(2), Si1-C7-C6 112.85(1); 13a: Co1-N3 2.078(3), Co1-N4 2.006(3), Co1-C7 $2.035(3), \mathrm{Co} 1-\mathrm{C}_{56}{ }^{\text {centr. }} 1.937(3), \mathrm{P} 1-\mathrm{C} 31.742(4), \mathrm{C} 2-\mathrm{C} 31.454(5)$, N2-N3 1.313(4), N6-C7 1.359(4), C5-C6 1.351(7), Si1-C5 1.850(5), C7-Co1-N4 118.31(1), N3-Co1-C5 110.01(2), N3-Co1-C6 96.59(2), C6-C5-Sil 126.0(4), N6-C7-N7 102.8(3).

In summary, the new class of 3 H -diazamonophosphole also exhibit unexpected bond activation reactivity within the 1,2,3-triazolium framework.

To investigate the potential donor capabilities of the rare 5 H -1,2,3,4-diazadiphosphole, compound $\mathbf{3}$ was treated with various Lewis acids. Initial attempts with e.g. $[\mathrm{Rh}(\mathrm{cod}) \mathrm{Cl}]_{2}$, $[\mathrm{AuCl}(\mathrm{tht})],\left[\mathrm{Cp} * \mathrm{Ru}(\mathrm{MeCN})_{3}\right] \mathrm{PF}_{6}$ resulted primarily in the formation of suspensions which exhibited no observable signals in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra.

3

14

15

Scheme 5. Coordination of diphosphole 3 affording compounds 14 and $\mathbf{1 5}$; reagents and conditions: a) +1.0 eq. BPh_{3}; THF, $-35^{\circ} \mathrm{C}$ to r.t., $\left.1 \mathrm{~h} ; \mathrm{b}\right)+1.0$ eq. AlEt ${ }_{3}$; toluene, $-35^{\circ} \mathrm{C}$ to r.t., 2 h ; yields: $\mathbf{1 4}: 69 \%, \mathbf{1 5}$: 85\%.

Pleasingly, a selective reaction when BPh_{3} or AlEt_{3} was added to a solution containing 3 (Scheme 5). Analysis of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of the reaction mixtures revealed the complete consumption of $\mathbf{3}$, with the concomitant formation of new species, $\mathbf{1 4}$ and $\mathbf{1 5}$, which each exhibit two distinct resonances in a $1: 1$ ratio. Complex $\mathbf{1 4}$ features two characteristic doublets at $\delta=216.4 \mathrm{ppm}$ and $\delta=380.9 \mathrm{ppm}$, with ${ }^{1} J_{\mathrm{PP}}$ coupling of 453 Hz , while the two doublets for 15 exhibit chemical shifts of $\delta=217.5 \mathrm{ppm}$ and $\delta=364.2 \mathrm{ppm}\left({ }^{1} \mathrm{~J}_{\mathrm{PP}}=\right.$ of 444 Hz$)$. In the ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1 4}$, the resonance corresponding to the boron coordinating to the nitrogen is detected at $\delta=2.8 \mathrm{ppm}$.

Both compounds $\mathbf{1 4}$ and $\mathbf{1 5}$ crystallize from a THF/toluene mixture in good isolated yields of 69% and 85%, respectively. XRD analysis revealed the presence of a $\mathrm{CN}_{2} \mathrm{P}_{2}$ unit, with BPh_{3}, or AlEt_{3} bonded to the outer nitrogen in compounds 14 and $\mathbf{1 5}$, respectively. Both compounds are isostructural and their crystal structures are depicted in Figure 7. The coordination of the diphosphole $\mathbf{3}$ via the outer nitrogen atom, N4, is in line with the DFT calculations, which show a higher negative natural charge of -0.56 localized on N 4 compared to -0.28 on the inner nitrogen, N 5 . This finding contrasts with the observed coordination behavior of $\mathbf{2}$, where coordination via the inner nitrogen was typically observed (vide supra). This discrepancy is most likely due to the diminished steric shielding of the outer nitrogen atom in $\mathbf{3}$ compared to 2 (P vs. $\mathrm{C} t \mathrm{Bu}$). In 14, the diphosphole and 1,2,3-triazolium planes are twisted by 43° with respect to each other. The twist angle is identical to that observed in the starting material $3\left(43^{\circ}\right)$. The heterocyclic moieties exhibit greater co-planarity in $\mathbf{1 5}$, with a dihedral angle of 28°.

Figure 7. Solid-state molecular structures of $\mathbf{1 4}$ (left) and $\mathbf{1 5}$ (right). Hydrogen atoms omitted for clarity and thermal ellipsoids are drawn at the 50% probability level. Selected bond lengths $[\AA]$ and angles [${ }^{\circ}$]: 14: B1-N5 1.6191(2), B1-C4 1.6360(2), P1-P2 2.0809(5), P2-N5 1.6885(1), N4-N5 1.3406(1), B1-N5-N4 115.70(9), C3-P1-P2 89.64(4), P1-P2-N5 95.78(4); 15: Al1-N5 1.9990(1), Al1-C4 1.9923(2), C5-C4 1.538(2), P1-P2 2.0739(6), P2-N5 1.6864(1), N4-N5 1.3395(2), Al1-N5-N4 120.17(9), C3-P1-P2 89.56(5), P1-P2-N5 96.44(5).

Furthermore, the B1-N5 bond length of $1.619(1) \AA$ in $\mathbf{1 4}$ is notably shorter than the sum of the van der Waals radii ($\sum r_{\mathrm{BN}} 3.47 \AA$) but is in the typical range for four-coordinate boron centers engaging Lewis adduct formation involving a nitrogen donor atom $(1.656 \AA) .{ }^{[75]}$ In contrast, the Al1-N5 bond length (1.999(1) \AA) in $\mathbf{1 5}$ closely resembles that calculated for a $\mathrm{Al}-\mathrm{N}$ single bond ($\sum r_{\text {AIN }} 1.97 \AA$). ${ }^{[42,43]}$

6.3 Conclusion

In this study, a facile one-step synthesis of elusive $3 H-1,2,4$-diazamonophospholes, and 1,2,3,4-diazadiphospholes starting from recently reported diazoalkenes is reported. The ligand frameworks 2 and $\mathbf{3}$ are accessible in high yield via [3+2] cycloaddition reactions with $\mathrm{PC} t \mathrm{Bu}$ and P_{4}, respectively. Thus, the electronic and structural features were elucidated by quantum chemical calculations and XRD. The donor capabilities of $\mathbf{2}$ and $\mathbf{3}$ were studied through the synthesis of a series of coordination complexes, featuring main group $(\mathrm{B}, \mathrm{Al})$ and transition metal $(\mathrm{Co}, \mathrm{Ni}, \mathrm{Ru}, \mathrm{Rh} \mathrm{W}, \mathrm{Au})$ centers. Herein, different Lewis acids gave rise to various coordination modes, as featured in complexes 4-10, $\mathbf{1 4}$ and 15, including mononuclear $\eta^{1}-\mathrm{N}$ - and η^{1}-P-complexes, as well as compounds featuring a higher hapticity by η^{5}-coordination via the aromatic π-system. Remarkably, in the presence of highly electron-rich first-row transition-metal centers such as nickel and cobalt, the 1,2,3-triazole ring of $\mathbf{2}$ undergoes $\mathrm{C}-\mathrm{C}$ or $\mathrm{C}-\mathrm{N}$ bond activation to give complexes 11-13. In summary, these results demonstrate the potential of diazoalkenes for the synthesis of novel types of heterocycles, which serve as versatile ligands in coordination chemistry. Considering the increasing accessibility of diazoalkenes, bearing e.g. pyridine or related NHC frameworks, it is anticipated that the simple synthetic
approach should allow facile tuning of their electronic and steric properties, and should grant access to further classes of heterocycles. Future investigations should focus on further exploring these avenues along with coordination chemistry of the resulting species.

6.4 Experimental Details

General Synthetic Methods

All reactions and product manipulations were carried out in flame-dried glassware under an inert atmosphere of argon using standard Schlenk-line or glovebox techniques (maintained at $<0.1 \mathrm{ppm} \mathrm{H}_{2} \mathrm{O}$ and $<0.1 \mathrm{ppm} \mathrm{O} \mathrm{O}_{2}$). J. Reitz prepared the precursor $i \operatorname{Pr}$-Diazoalkene $\mathbf{1}$ from recently reported N -heterocyclic olefin $\mathrm{R}=\mathrm{CH}_{2}$. ${ }^{[41,40]}$ The starting materials $\quad \mathrm{PCt} \mathrm{Bu},{ }^{[76]} \quad \mathrm{AuCl}($ tht $),{ }^{[77]} \quad\left[(\mathrm{IPr}) \mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{CCH}\left(\mathrm{SiMe}_{3}\right)\right)_{2}\right],{ }^{[57,58]}$ $\left[(\mathrm{IMes}) \mathrm{Co}\left(\mathrm{H}_{2} \mathrm{CCH}\left(\mathrm{SiMe}_{3}\right)_{2}\right]\right.$ and $\left[(\mathrm{IPr}) \mathrm{Co}\left(\mathrm{H}_{2} \mathrm{CCH}\left(\mathrm{SiMe}_{3}\right)_{2}\right]^{[72]}\right.$ were prepared according to previously reported procedures. All other chemicals were purchased from commercial suppliers and used without further purification.
Solvents were dried and degassed with a MBraun SPS800 solvent purification system. All dry solvents except n-hexane and n-pentane were stored under argon over activated $3 \AA$ molecular sieves in gas-tight ampules. n-Hexane and n-pentane were instead stored over a potassium mirror.

General Analytical Techniques

NMR spectra were recorded on Bruker Avance 400 spectrometers at 300 K and were internally referenced to residual solvent resonances (${ }^{1} \mathrm{H}$ NMR: $\mathrm{C}_{6} \mathrm{D}_{6}$: 7.15 ppm , THF- d_{8} : $1.72 \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{C}_{6} \mathrm{D}_{6}: 128.06 \mathrm{ppm}$, THF- $\left.d_{8}: 25.31 \mathrm{ppm}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectra were referenced externally to $85 \% \mathrm{H}_{3} \mathrm{PO}_{4 \text { (aq.). }}$. Chemical shifts, δ, are given in ppm referring to external standards of tetramethylsilane $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\right) .{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR signals were assigned based on 2D NMR spectra (COSY, HSQC, HMBC, NOESY and ROESY). The solution magnetic moment was determined using the Evans Method. ${ }^{[78-80]}$

UV/Vis spectra were recorded on an Ocean Optics Flame Spectrometer with a DH-2000BAL light source. Mass spectra of compounds 2 and 11 were recorded on a Jeol AccuTOF GCX device by the by the analytical department of the University of Regensburg and compound $\mathbf{1 0}$ on a Finnigan MAT 95 device. Elemental analysis were performed by the Central Analytics Department of the University of Regensburg using a Vario micro cube. IR spectra were recorded with a Bruker ALPHA spectrometer equipped with a germanium ATR unit.

6.4.1 Synthesis of Compounds

Synthesis of 2:

While stirring, to a light yellow solution of $\mathbf{1}(150 \mathrm{mg}$, $0.56 \mathrm{mmol}, 1.0$ equiv.) in THF (3 mL) was added dropwise a stock solution of $\mathrm{PC} t \mathrm{Bu} \quad(134.5 \mu \mathrm{~L}, \quad \mathrm{c}=4.1 \mathrm{M}$ in hexamethyldisiolaxane (HMDSO), $0.56 \mathrm{mmol}, 1.0 \mathrm{eq}$. .). After 6 h , the reaction mixture was filtered and layered with n-hexane (7 mL). After one week, pale yellow crystals of $\mathbf{2}$, of sufficient quality for analysis by XRD, were obtained, which were decanted, washed with n-hexane $(2 \times 5 \mathrm{~mL})$ and dried in vacuo. The solid contains 0.1 molecules of THF per molecule of compound after drying as indicated by ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra and elemental analysis. Yield: 144 mg (70\%).
${ }^{1} \mathbf{H}$ NMR ($\left.400.13 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{THF}-d_{8}\right): \delta / \mathrm{ppm}=1.30\left(\mathrm{~d},{ }^{4} J_{\mathrm{PH}}=0.8 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{C}^{10} \mathrm{H}\right.$ of $t \mathrm{Bu}), 1.59\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=6.6 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{C}^{1} H\right.$ of $\left.i \mathrm{Pr}\right), 1.65\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=6.6 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{C}^{3} H\right.$ of $\left.i \mathrm{Pr}\right)$, 4.76 (sept, ${ }^{3} J_{\mathrm{HH}}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}^{2} H$ of $i \mathrm{Pr}$), 6.42 (sept, ${ }^{3} J_{\mathrm{HH}}=6.6 \mathrm{~Hz}, \mathrm{C}^{4} H$ of $i \operatorname{Pr}$), 7.43-7.53 (m, 5H, C ${ }^{12 / 13 / 14} H$ of Ph).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($100.66 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{THF}-d_{8}$): $\delta / \mathrm{ppm}=22.2\left(\mathrm{~s}, C^{1} \mathrm{H}\right.$ of $\left.i \operatorname{Pr}\right), 22.4\left(\mathrm{~s}, C^{3} \mathrm{H}\right.$ of $i \operatorname{Pr}), 33.2\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{PC}}=7.2 \mathrm{~Hz}, C^{10} H\right.$ of $\left.t \mathrm{Bu}\right), 36.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=20.1 \mathrm{~Hz}, C^{9}\right.$ of $\left.t \mathrm{Bu}\right), 55.5(\mathrm{~s}$, $C^{2} \mathrm{H}$ of $\left.i \operatorname{Pr}\right), 56.5\left(\mathrm{~s}, C^{4} \mathrm{H}\right.$ of $\left.i \mathrm{Pr}\right), 125.8\left(\mathrm{~d},{ }^{4} J_{\mathrm{PC}}=2.0 \mathrm{~Hz}, C^{11}\right.$ of Ph$), 129.6\left(\mathrm{~s}, C^{13} \mathrm{H}\right.$ of $\mathrm{Ph}), 131.3$ ($\mathrm{s}, C^{14} \mathrm{H}$ of Ph), $132.0\left(\mathrm{~d}, J_{\mathrm{PC}}=3.3 \mathrm{~Hz}, C^{12} \mathrm{H}\right.$ of Ph), 136.6 (s, C^{5}), 143.0 (d, $\left.{ }^{2} J_{\mathrm{PC}}=29.7 \mathrm{~Hz}, C^{6}\right), 154.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=46.0 \mathrm{~Hz}, C^{7}\right) 193.0\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=52.6 \mathrm{~Hz}, C^{8}\right)$.
${ }^{31} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(162.04 \mathrm{MHz} 300 \mathrm{~K}, \mathrm{THF}-d_{8}\right): \delta / \mathrm{ppm}=79.6(\mathrm{~s})$.
UV/Vis (THF, $\lambda_{\text {max }} / \mathrm{nm}, \varepsilon_{\text {max }} / \mathrm{L} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~cm}^{-1}$): 310 (14000).
LIFDI-MS (QTOF, toluene): m/z(\%) calcd. for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{5} \mathrm{P}: 369.21$; found: 369.19.
Elemental Analysis calcd. for $\left(\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{5} \mathrm{P}\right) \cdot(\mathrm{THF})_{0.1}\left(\mathrm{Mw}=369.45 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\right)$:
C 65.05, H 7.71, N 18.59; found C 65.44, H 7.98, N 18.91 .

Synthesis of 3:

THF (9 mL) was added to a mixture of solids $\mathbf{1}(116 \mathrm{mg}$, $0.43 \mathrm{mmol}, 1.0$ equiv.) and $\mathrm{P}_{4}(27 \mathrm{mg}, 0.22 \mathrm{mmol}, 0.5$ equiv.) The resulting orange suspension was stirred for 5 h and filtered. Pale orange crystals of $\mathbf{3}$ were grown by addition of n-hexane $(5 \mathrm{~mL})$ to the filtrate and storing the solution at $-35^{\circ} \mathrm{C}$ for two days. The supernatant was decanted. The crystals were washed
with n-hexane ($2 \times 1 \mathrm{~mL}$) and dried in vacuo. Slow diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into a saturated acetonitrile solution of $\mathbf{3}$ yielded crystals suitable for single-crystal X-ray diffraction.

Yield: 77 mg (54\%).
${ }^{1} \mathbf{H}$ NMR $\left(400.13 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{THF}-d_{8}\right): \delta / \mathrm{ppm}=1.49\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.7 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{C}^{3} \mathrm{H}\right.$ of $i \operatorname{Pr}), 1.68\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=6.6 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{C}^{1} H\right.$ of $\left.i \operatorname{Pr}\right), 4.89\left(\mathrm{sept},{ }^{3} J_{\mathrm{HH}}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}^{2} H\right.$ of $\left.i \operatorname{Pr}\right)$, 5.70 (sept, ${ }^{3} J_{\mathrm{HH}}=6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}^{4} H$ of $i \operatorname{Pr}$), 7.43-7.57 (m, $5 \mathrm{H}, \mathrm{C}^{9 / 10 / 11} \mathrm{H}$ of Ph).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($100.61 \mathrm{MHz}, 300 \mathrm{~K}$, THF- d_{8}): $\delta / \mathrm{ppm}=22.2\left(\mathrm{~s}, C^{3} \mathrm{H}\right.$ of $\left.i \operatorname{Pr}\right), 22.3\left(\mathrm{~s}, C^{1} \mathrm{H}\right.$ of $i \operatorname{Pr}$), $55.9\left(\mathrm{~s}, C^{2} \mathrm{H}\right.$ of $\left.i \operatorname{Pr}\right), 56.3\left(\mathrm{~s}, C^{4} \mathrm{H}\right.$ of $\left.i \operatorname{Pr}\right), 125.5\left(\mathrm{~s}, C^{8}\right.$ of Ph$), 129.6\left(\mathrm{~s}, C^{10} \mathrm{H}\right.$ of $\mathrm{Ph}), 131.3\left(\mathrm{~s}, C^{11} \mathrm{H}\right.$ of Ph$), 132.0\left(\mathrm{~d}, J_{\mathrm{PC}}=2.5 \mathrm{~Hz}, C^{9} \mathrm{H}\right.$ of Ph$), 138.7\left(\mathrm{~s}, C^{5}\right), 143.2(\mathrm{~s}$, $\left.{ }^{2} J_{\mathrm{PC}}=29.8 \mathrm{~Hz}, C^{6}\right), 160.7\left(\mathrm{dd},{ }^{1} J_{\mathrm{PC}}=75.8 \mathrm{~Hz},{ }^{2} J_{\mathrm{PC}}=14.7 \mathrm{~Hz}, C^{7}\right)$.
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(161.98 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{THF}-d_{8}\right): \delta / \mathrm{ppm}=217.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{PP}}=444.0 \mathrm{~Hz}, 1 \mathrm{P}\right.$, $\left.\mathrm{P}_{\mathrm{B}}\right), 364.2\left(\mathrm{~d},{ }^{1} \mathrm{JPP}=444.0 \mathrm{~Hz}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{A}}\right)$.
UV/Vis (THF, $\lambda_{\max } / \mathrm{nm}, \varepsilon_{\max } / \mathrm{L} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~cm}^{-1}$): 340sh (7000), 490 (4000), 630 (6000).
Elemental Analysis calcd. for $\left(\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{P}_{2}\right)\left(\mathrm{Mw}=331.30 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\right)$:
C 54.38, H 5.78, N 21.14; found C 55.16, H 5.41, N 20.45 .
$\left[\left\{\mathrm{W}(\mathrm{CO})_{5}\right\}_{2}(2)\right](6):$

A stirring, colorless solution of $\left[\mathrm{W}(\mathrm{CO})_{6}\right](171 \mathrm{mg}, 0.1487$ mmol, 3.0 equiv.) in THF (2 mL) was irradiated with UVlight ($365 \mathrm{~nm}, 10 \mathrm{~W}$) for 45 min . The solution turned deep yellow, was added to solid 2 ($60 \mathrm{mg}, 0.162 \mathrm{mmol}$, 1.0 equiv.) and stirred for 1 d . The yellow solution was cooled to $-80^{\circ} \mathrm{C}$ and the inert gas was exchanged for 1 atm . CO, by evacuating the schlenk flask until gas evolution from the solution ceased and repressurizing it with CO. The flask was closed and warmed up to room temperature (Caution: the pressure in the flask increases by approximately 2-3 bar upon warming to room temperature; use pressure-resistant glassware). The reaction was stirred for 4 d and filtered. All volatiles were removed in vacuo and excess [W(CO) ${ }_{6}$] was sublimed off under reduced pressure ($32{ }^{\circ} \mathrm{C}, 1 \times 10^{-3} \mathrm{mbar}, 6 \mathrm{~h}$). The product was obtained as a light yellow solid. Slow diffusion of n-hexane into a saturated THF solution of $\mathbf{6}$ yielded crystals suitable for single-crystal X-ray diffraction.
Yield: 132 mg (80\%).
${ }^{1} \mathrm{H}$ NMR $\left(400.13 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{THF}-d_{8}\right): \delta / \mathrm{ppm}=1.73\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}^{12} \mathrm{H}\right.$ of $\left.t \mathrm{Bu}\right), 1.89(\mathrm{~d}$, ${ }^{3} J_{\mathrm{HH}}=2.7 \mathrm{~Hz}, \mathrm{C}^{1 / 3} \mathrm{H}$ of $\left.i \operatorname{Pr}\right), 1.90\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=2.7 \mathrm{~Hz}, \mathrm{C}^{1 / 3} \mathrm{H}\right.$ of $\left.i \operatorname{Pr}\right), 1.92\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=6.5 \mathrm{~Hz}\right.$,
$6 \mathrm{H}, \mathrm{C}^{4 / 6} \mathrm{H}$ of $\left.i \operatorname{Pr}\right), 2.15\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=6.5 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{C}^{4 / 6} \mathrm{H}\right.$ of $\left.i \operatorname{Pr}\right), 5.12\left(\mathrm{sept}^{3} J_{\mathrm{HH}}=6.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{C}^{5} \mathrm{H}$ of $\left.i \mathrm{Pr}\right), 5.42\left(\mathrm{sept},{ }^{3} J_{\mathrm{HH}}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}^{2} \mathrm{H}\right.$ of $\left.i \mathrm{Pr}\right), 7.78-7.93\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}^{12 / 13 / 14} \mathrm{H}\right.$ of $\mathrm{Ph})$.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR $\left(100.61 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{THF}-d_{8}\right): \delta / \mathrm{ppm}=21.9\left(\mathrm{~s}, C^{1 / 3} \mathrm{H}\right.$ of $\left.i \operatorname{Pr}\right), 22.6(\mathrm{~s}$, $C^{4 / 6} \mathrm{H}$ of iPr), $22.6\left(\mathrm{~s}, C^{4 / 6} \mathrm{H}\right.$ of iPr$), 24.0\left(\mathrm{~s}, C^{1 / 3} \mathrm{H}\right.$ of $\left.i \operatorname{Pr}\right), 32.7\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=4.9 \mathrm{~Hz}, C^{12} \mathrm{H}\right.$ of $t \mathrm{Bu}), 37.7\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=18.9 \mathrm{~Hz}, C^{11}\right.$ of $\left.t \mathrm{Bu}\right), 57.5\left(\mathrm{~s}, C^{2} \mathrm{H}\right.$ of $\left.i \operatorname{Pr}\right), 57.5\left(\mathrm{~s}, C^{5} \mathrm{H}\right.$ of $\left.i \operatorname{Pr}\right), 123.0$ (s, C^{13} of Ph), 130.7 ($\mathrm{s}, C^{14 / 15} \mathrm{H}$ of Ph), 130.7 ($\mathrm{s}, C^{14 / 15} \mathrm{H}$ of Ph), 132.9 (,$C^{16} \mathrm{H}$ of Ph), $138.2\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=27.3 \mathrm{~Hz}, C^{8}\right), 142.7\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=4.0 \mathrm{~Hz}, C^{7}\right), 157.2\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=34.2 \mathrm{~Hz}, C^{9}\right)$, $185.4\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=6.6 \mathrm{~Hz}, C^{10}\right), 196.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=7.7 \mathrm{~Hz},{ }^{1} J_{\mathrm{WC}}=117.7 \mathrm{~Hz}, C^{17} \mathrm{O}\right), 199.8(\mathrm{~s}$, $\left.{ }^{1} J_{\mathrm{WC}}=130.8 \mathrm{~Hz}, C_{\text {cis }}{ }^{18} \mathrm{O}\right), 202.7\left(\mathrm{~s},{ }^{1} J_{\mathrm{WC}}=145.6 \mathrm{~Hz}, C_{\text {trans }}{ }^{18} \mathrm{O}\right)$.
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(161.98 \mathrm{MHz} 300 \mathrm{~K}, \mathrm{THF}-d_{8}\right): ~ \delta / \mathrm{ppm}=52.3\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{PW}}=233.9 \mathrm{~Hz}\right)$.
UV/Vis (THF, $\lambda_{\max } / \mathrm{nm}, \varepsilon_{\max } / \mathrm{L} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~cm}^{-1}$): 240 (90000), 290sh (21000), 300sh (18000), 350 (15000).

IR (solid state): $\mathrm{v} / \mathrm{cm}^{-1}=2068 \mathrm{w}(\mathrm{C}=\mathrm{O}), 1944 \mathrm{w}(\mathrm{C}=\mathrm{O})$, 1931s $(\mathrm{C}=\mathrm{O}), 1915 \mathrm{~s}(\mathrm{C}=\mathrm{O})$, 1890s (C=O), 1855s (C=O).
Elemental analysis calcd. for $\left(\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~N}_{5} \mathrm{PO}_{10} \mathrm{~W}_{2}\right)\left(\mathrm{Mw}=1017.23 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\right)$:
C 35.42, H 2.77, N 6.88; found C 35.75, H 2.96, N 6.89 .
$[\mathbf{R h}(2)(\operatorname{cod}) \mathrm{Cl}](7):$

To a mixture of solids $2(35 \mathrm{mg}, 0.095 \mathrm{mmol}, 1.0$ equiv.) and $[\mathrm{Rh}(\mathrm{cod}) \mathrm{Cl}]_{2}(23 \mathrm{mg}, 0.074 \mathrm{mmol}, 0.5$ equiv.) toluene (2 mL) was added. The resulting suspension was stirred for 6 h and subsequently filtered. Yellow crystals of $\mathbf{7}$, of sufficient quality for XRD analysis, were grown by slow vapor diffusion of n-hexane into this filtrate over five days. The crystals were decanted off, washed with n-hexane $(2 \times 0.5 \mathrm{~mL})$ and dried in vacuo. The solid contains 0.1 molecules of toluene per molecule of compound after drying as indicated by ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra and elemental analysis.

Yield: 47 mg (81%).
${ }^{1} \mathbf{H}$ NMR ($400.13 \mathrm{MHz}, 193 \mathrm{~K}, \mathrm{THF}-d_{8}$): $\delta / \mathrm{ppm}=1.24\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}^{16} \mathrm{H}\right.$ of $t \mathrm{Bu}$), $1.41(\mathrm{~d}$, ${ }^{3} J_{\mathrm{HH}}=6.5 \mathrm{~Hz}, \mathrm{C}^{4 / 6} \mathrm{H}$ of $\left.i \mathrm{Pr}\right), 1.45-1.65\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{d}\left({ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.2 \mathrm{~Hz}\right)\right.$ of $\mathrm{C}^{1 / 3} \mathrm{H}$ of $i \mathrm{Pr}$ overlapping with CH_{2} of cod), $1.78\left(\mathrm{~d},{ }^{3} \mathrm{JHH}_{\mathrm{HH}}=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C}^{4 / 6} \mathrm{H}\right.$ of $\left.i \operatorname{Pr}\right), 1.89-2.02(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{CH}_{2}$ of cod), 2.06-2.24 (m, 5H, d ($\left.{ }^{3} J_{\mathrm{HH}}=6.2 \mathrm{~Hz}\right)$ of $\mathrm{C}^{1 / 3} \mathrm{H}$ of $i \mathrm{Pr}$ overlapping with CH_{2} of cod), 2.50-2.69 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$ of cod), 3.89-3.92 (m, 1H, CH of cod), 4.04-4.09 (m,
$1 \mathrm{H}, \mathrm{CH}$ of cod), 4.18-4.22 (m, $1 \mathrm{H}, \mathrm{CH}$ of cod), 4.93 (sept, ${ }^{3} J_{\mathrm{HH}}=6.5 \mathrm{~Hz}, \mathrm{C}^{5} H$ of $i \mathrm{Pr}$), 5.00-5.05 (m, 1H, CH of cod), $6.49\left(\mathrm{sept},{ }^{3} J_{\mathrm{HH}}=6.6 \mathrm{~Hz}, \mathrm{C}^{2} H\right.$ of $\left.i \operatorname{Pr}\right) 7.45-7.49(\mathrm{~m}, 3 \mathrm{H}$, $\mathrm{C}^{10 / 11} \mathrm{H}$ of Ph), 7.67-7.69 (m, 2H, $\mathrm{C}^{9} \mathrm{H}$ of Ph).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($100.61 \mathrm{MHz}, 193 \mathrm{~K}$, THF- d_{8}): $\delta / \mathrm{ppm}=21.3\left(\mathrm{~s}, C^{1 / 3} \mathrm{H}\right.$ of $\left.i \operatorname{Pr}\right), 21.6(\mathrm{~s}$, $C^{4 / 6} \mathrm{H}$ of $i \mathrm{Pr}$), 23.3 (s, $C^{1 / 3} \mathrm{H}$ of $i \mathrm{Pr}$ overlapping with $C^{4 / 6} \mathrm{H}$ of $i \mathrm{Pr}$), $29.8\left(\mathrm{~s}, C \mathrm{H}_{2}\right.$ of cod), $30.0\left(\mathrm{~s}, \mathrm{CH}_{2}\right.$ of cod), $32.7\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=6.2 \mathrm{~Hz}, C^{16} \mathrm{H}\right.$ of $\left.t \mathrm{Bu}\right), 32.8\left(\mathrm{~s}, \mathrm{CH}_{2}\right.$ of cod), $33.6(\mathrm{~s}$, $C \mathrm{H}_{2}$ of cod), $36.5\left({ }^{2} J_{\mathrm{PC}}=18.4 \mathrm{~Hz}, C^{15}\right.$ of $\left.t \mathrm{Bu}\right), 55.5\left(\mathrm{~s}, C^{5} \mathrm{H}\right.$ of $\left.i \mathrm{Pr}\right), 56.1\left(\mathrm{~s}, C^{2} \mathrm{H}\right.$ of $\left.i \mathrm{Pr}\right)$, 78.4 (s, ${ }^{1} J_{\mathrm{RhC}}=10.9 \mathrm{~Hz}, C \mathrm{H}$ of cod), 80.0-80.3 (m, $C \mathrm{H}$ of cod overlapping with $C \mathrm{H}$ of cod), $81.8\left(\mathrm{~d}^{1} J_{\mathrm{RhC}}=9.4 \mathrm{~Hz}, C \mathrm{H}\right.$ of cod), $125.2\left(\mathrm{~s}, C^{8}\right.$ of Ph$), 129.5\left(\mathrm{~s}, C^{10} \mathrm{H}\right.$ of Ph$), 131.3$ (s, $C^{11} \mathrm{H}$ of Ph), $131.8\left(\mathrm{~s}, C^{9} \mathrm{H}\right.$ of Ph$), 139.9\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=1.2 \mathrm{~Hz}, C^{7}\right), 140.3$ (d, $\left.{ }^{2} J_{\mathrm{PC}}=27.9 \mathrm{~Hz}, C^{12}\right), 157.3\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=40.2 \mathrm{~Hz}, C^{13}\right), 191.2\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=55.2 \mathrm{~Hz}, C^{14}\right)$.
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(161.98 \mathrm{MHz}, 193 \mathrm{~K}, \mathrm{THF}-d_{8}\right): \delta / \mathrm{ppm}=86.7(\mathrm{~s})$.
UV/Vis (THF, $\lambda_{\max } / \mathrm{nm}, \varepsilon_{\max } / \mathrm{L} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~cm}^{-1}$) 270sh (16000), 380 (2000).
Elemental analysis calcd. for $\left(\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{~N}_{5} \mathrm{ClPRh}\right) \bullet(\text { toluene })_{0.1}\left(\mathrm{Mw}=615.99 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\right)$:
C 55.14, H 6.58, N 11.20; found C 55.06, H 6.49, N 11.05 .
[AIEt3(2)] (8):

A solution of $2(50 \mathrm{mg}, 0.14 \mathrm{mmol}, 1.0$ equiv.) in THF (4 mL) was cooled to $-35^{\circ} \mathrm{C}$. While stirring, a stock solution of triethylaluminium ($72.9 \mu \mathrm{~L}, \mathrm{c}=25 \%$ by weight in toluene, $0.14 \mathrm{mmol}, 1.0$ eq.) was added dropwise. The resulting light yellow reaction mixture was stirred for 2 h and thawed. Volatiles were removed in vacuo and the resulting pale yellow residue was extracted with toluene (1 mL), and subsequently with THF (1 mL). The extracts were filtered and combined. Pale yellow crystals of $\mathbf{8}$, of sufficient quality for XRD analysis, were grown by slow vapor diffusion of n-hexane into this extract over five days at r.t. and another day at $-35^{\circ} \mathrm{C}$. The crystals were isolated by filtration, washed with n-hexane ($3 \times 1 \mathrm{~mL}$), and dried in vacuo.
Yield: 30 mg (46%); including a second crop: $36 \mathrm{mg}(55 \%)$.
${ }^{1} H$ NMR $\left(400.13 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{THF}-d_{8}\right): \delta / \mathrm{ppm}=-0.46\left(\mathrm{q},{ }^{3} J_{\mathrm{HH}}=8.1 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{C}^{15} \mathrm{H}\right.$ of AlEt_{3}), $0.89\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.1 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{C}^{16} \mathrm{H}\right.$ of $\left.\mathrm{AlEt}_{3}\right), 1.37\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}^{10} H\right.$ of $\left.t \mathrm{Bu}\right), 1.63(\mathrm{~d}$, ${ }^{3} J_{\mathrm{HH}}=6.6 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{C}^{1} H$ of $i \operatorname{Pr}$), $1.69\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=6.6 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{C}^{3} H\right.$ of $i \operatorname{Pr}$), 4.83 (br sept, 1 H , $\mathrm{C}^{2} H$ of $i \mathrm{Pr}$), 5.11 (br sept, $1 \mathrm{H}, \mathrm{C}^{4} H$ of $i \operatorname{Pr}$), 7.44-7.59 (m, 5H, $\mathrm{C}^{12 / 13 / 14} \mathrm{H}$ of Ph).
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(100.61 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{THF}-d_{8}\right): \delta / \mathrm{ppm}=1.7\left(\mathrm{br} \mathrm{s}, C^{15} \mathrm{H}\right.$ of AlEt 3), $10.9(\mathrm{~s}$, $C^{16} \mathrm{H}$ of AlEt_{3}), $22.4\left(\mathrm{~s}, C^{1} \mathrm{H}\right.$ of $\left.i \mathrm{Pr}\right), 22.6\left(\mathrm{~s}, C^{3} \mathrm{H}\right.$ of $\left.i \mathrm{Pr}\right), 32.8\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=6.4 \mathrm{~Hz}, C^{10} \mathrm{H}\right.$ of $t \mathrm{Bu}), 36.7\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=18.1 \mathrm{~Hz}, C^{9}\right.$ of $\left.t \mathrm{Bu}\right), 56.5\left(\mathrm{~s}, C^{2} \mathrm{H}\right.$ of $\left.i \operatorname{Pr}\right), 56.7\left(\mathrm{~s}, C^{4} \mathrm{H}\right.$ of $\left.i \operatorname{Pr}\right), 123.9$ (s, C^{11} of Ph), $129.9\left(\mathrm{~s}, C^{13} \mathrm{H}\right.$ of Ph$), 131.1\left(\mathrm{~s}, C^{12} \mathrm{H}\right.$ of Ph$), 132.0\left(\mathrm{~s}, C^{14} \mathrm{H}\right.$ of Ph$), 139.6$ $\left(\mathrm{d},{ }^{2} J_{\mathrm{PC}}=24.9 \mathrm{~Hz}, C^{6}\right), 140.9 \quad\left(\mathrm{~s}, C^{5}\right), 155.1 \quad\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=41.2 \mathrm{~Hz}, C^{7}\right), 193.5 \quad(\mathrm{~d}$, $\left.{ }^{1} J_{\mathrm{PC}}=58.9 \mathrm{~Hz}, C^{8}\right)$.
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{THF}-d_{8}\right): \delta / \mathrm{ppm}=90.3(\mathrm{~s})$.
${ }^{27} \mathbf{A l}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(104.26 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{THF}-d_{8}\right): \delta / \mathrm{ppm}=170.2\left(\mathrm{~s}, A l \mathrm{Et}_{3}\right)$.
UV/Vis (THF, $\lambda_{\max } / \mathrm{nm}, \varepsilon_{\max } / \mathrm{L} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~cm}^{-1}$): 290sh (2000).
Elemental analysis calcd. for $\left(\mathrm{C}_{26} \mathrm{H}_{43} \mathrm{AlN}_{5} \mathrm{P}\right)\left(\mathrm{Mw}=483.62 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\right)$:
C 64.57, H 8.96, N 14.48; found C 64.56, H 9.12, N 14.20 .

[$\mathrm{AuCl}(2)](9):$

To a mixture of solids 2 ($32 \mathrm{mg}, 0.087 \mathrm{mmol}, 1.0$ equiv.) and $\mathrm{AuCl}(\mathrm{tht})(27.8 \mathrm{mg}, 0.087 \mathrm{mmol}, 1.0$ equiv.) toluene (2 mL) was added. The resulting pale yellow suspension was stirred for 7 h . The solvent was removed in vacuo, and the off-white solid was extracted with THF (2 mL) and filtered. Pale yellow crystals of $\mathbf{9}$, of sufficient quality for XRD analysis, were grown by slow vapor diffusion of n-hexane into this extract over four days. The crystals were washed with n-hexane ($2 \times 0.5 \mathrm{~mL}$) and dried in vacuo. The solid contains 0.5 molecules of THF per molecule of compound after drying as indicated by ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra and elemental analysis.
Yield: 50 mg (96%).
${ }^{1} \mathbf{H}$ NMR $\left(400.13 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{THF}-d_{8}\right): \delta / \mathrm{ppm}=1.33\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}^{10} \mathrm{H}\right.$ of $\left.t \mathrm{Bu}\right), 1.62(\mathrm{~d}$, ${ }^{3} J_{\mathrm{HH}}=6.6 \mathrm{~Hz}, \mathrm{C}^{1} H$ of $\left.i \operatorname{Pr}\right), 1.72\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=6.6 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{C}^{3} \mathrm{H}\right.$ of $i \operatorname{Pr}$ overlapping with THF- d_{8} signal), 4.84 (sept, ${ }^{3} J_{\mathrm{HH}}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}^{2} H$ of $i \mathrm{Pr}$), 5.94 (br sept, ${ }^{3} J_{\mathrm{HH}}=6.6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{C}^{4} H$ of $\left.i \mathrm{Pr}\right), 7.53-7.62\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}^{12 / 13 / 14} \mathrm{H}\right.$ of Ph$)$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(100.61 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{THF}-d_{8}\right): \delta / \mathrm{ppm}=22.2\left(\mathrm{~s}, C^{1} \mathrm{H}\right.$ of $\left.i \operatorname{Pr}\right), 22.5\left(\mathrm{~s}, C^{3} \mathrm{H}\right.$ of iPr), $32.7\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{PC}}=6.6 \mathrm{~Hz}, C^{10} \mathrm{H}\right.$ of $\left.t \mathrm{Bu}\right), 36.5\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{PC}}=20.3 \mathrm{~Hz}, C^{9}\right.$ of $\left.t \mathrm{Bu}\right), 56.3(\mathrm{~s}$, $C^{2} \mathrm{H}$ of $\left.i \operatorname{Pr}\right), 57.5\left(\mathrm{~s}, C^{4} \mathrm{H}\right.$ of $\left.i \operatorname{Pr}\right), 124.1\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{PC}}=0.8 \mathrm{~Hz}, C^{11}\right.$ of Ph$), 130.7\left(\mathrm{~s}, C^{13} \mathrm{H}\right.$ of $\mathrm{Ph}), 131.9\left(\mathrm{~d}, J_{\mathrm{PC}}=1.5 \mathrm{~Hz}, C^{12} \mathrm{H}\right.$ of Ph$) .132 .2\left(\mathrm{~s}, C^{14} \mathrm{H}\right.$ of Ph$), 138.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=31.9 \mathrm{~Hz}\right.$, $\left.C^{6}\right), 139.2\left(\mathrm{~s}, C^{5}\right), 153.2\left(\mathrm{br} \mathrm{d},{ }^{1} J_{\mathrm{PC}}=25.0 \mathrm{~Hz}, C^{7}\right), 187.6\left(\mathrm{br} \mathrm{s}, C^{8}\right)$.
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(161.98 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{THF}-d_{8}\right): \delta / \mathrm{ppm}=58.5\left(\mathrm{br} \mathrm{s}, \Delta v_{1 / 2}=136 \mathrm{~Hz}\right)$.

UV/Vis (THF, $\lambda_{\text {max }} / \mathrm{nm}, \varepsilon_{\text {max }} / \mathrm{L} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~cm}^{-1}$): 260sh (10000), 290sh (9000).
Elemental analysis calcd. for $\left(\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{5} \mathrm{PAuCl}\right) \cdot(\mathrm{THF})_{0.5}\left(\mathrm{Mw}=601.87 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\right)$:
C 41.42, H 5.06, N 10.98; found C 41.73, H 5.22, N 10.96 .
$[\mathrm{Cp} * \mathrm{Ru}(2)] \mathrm{PF}_{6}$ (10):

To a mixture of solids $2(31 \mathrm{mg}, 0.061 \mathrm{mmol}, 1.0$ equiv.) and $\left[\mathrm{Cp} * \mathrm{Ru}(\mathrm{MeCN})_{3}\right] \mathrm{PF}_{6} \quad(23 \mathrm{mg}, \quad 0.061 \mathrm{mmol}, \quad 1.0$ equiv.) THF (2 mL) was added and the resulting yellow suspension was heated to $65^{\circ} \mathrm{C}$ for one day and filtered. Yellow crystals of $\mathbf{1 0}$, of sufficient quality for XRD analysis, were grown by slow vapor diffusion of n-hexane into this filtrate over one week. The crystals were decanted off, washed with n-hexane $(2 \times 0.5 \mathrm{~mL})$ and dried in vacuo.
Yield: 27.4 mg (60%).
${ }^{1} \mathbf{H}$ NMR ($400.13 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{THF}-d_{8}$): $\delta / \mathrm{ppm}=1.16$ (s, $9 \mathrm{H}, \mathrm{C}^{18} H$ of $t \mathrm{Bu}$), 1.49 (d, ${ }^{3} J_{\mathrm{HH}}=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C}^{6 / 8} \mathrm{H}$ of $\left.i \operatorname{Pr}\right), 1.65\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C}^{6 / 8} \mathrm{H}\right.$ of $\left.i \operatorname{Pr}\right), 1.76(\mathrm{~d}$, ${ }^{3} J_{\mathrm{HH}}=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C}^{3 / 5} \mathrm{H}$ of $\left.i \mathrm{Pr}\right), 1.78\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{C}^{1} H\right.$ of $\left.\mathrm{C} p^{*}\right), 1.92\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=6.6 \mathrm{~Hz}, 3 \mathrm{H}\right.$, $\mathrm{C}^{3 / 5} \mathrm{H}$ of $\left.i \mathrm{Pr}\right), 4.76\left(\mathrm{sept},{ }^{3} J_{\mathrm{HH}}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}^{7} \mathrm{H}\right.$ of $\left.i \mathrm{Pr}\right), 6.20\left(\mathrm{sept}^{3} J_{\mathrm{HH}}=6.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{C}^{4} \mathrm{H}$ of Pr), 7.69-7.73 (br m, $5 \mathrm{H}, \mathrm{C}^{11 / 12 / 13} \mathrm{H}$ of Ph).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(161.98 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{THF}-d_{8}\right): \delta / \mathrm{ppm}=11.2\left(\mathrm{~s}, C^{1} \mathrm{H}\right.$ of $\left.\mathrm{Cp}^{*}\right), 21.6(\mathrm{~s}$, $C^{3 / 5} \mathrm{H}$ of $i \operatorname{Pr}$), $21.8\left(\mathrm{~s}, C^{6 / 8} \mathrm{H}\right.$ of $i \operatorname{Pr}$), $22.1\left(\mathrm{~s}, C^{6 / 8} \mathrm{H}\right.$ of $\left.i \operatorname{Pr}\right), 23.6\left(\mathrm{~s}, C^{3 / 5} \mathrm{H}\right.$ of $\left.i \operatorname{Pr}\right), 31.5(\mathrm{~d}$, ${ }^{3} J_{\mathrm{PC}}=5.9 \mathrm{~Hz}, C^{18} \mathrm{H}$ of $t \mathrm{Bu}$), $35.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=14.0 \mathrm{~Hz}, C^{17}\right.$ of $\left.t \mathrm{Bu}\right), 57.4\left(\mathrm{~s}, C^{7} \mathrm{H}\right.$ of $\left.i \operatorname{Pr}\right), 60.1$ ($\mathrm{s}, C^{4} \mathrm{H}$ of $i \operatorname{Pr}$), $92.7\left(\mathrm{~s}, C^{2}\right.$ of $\left.\mathrm{Cp}^{*}\right), 111.1\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=79.1 \mathrm{~Hz}, C^{15}\right), 123.7\left(\mathrm{~d},{ }^{4} J_{\mathrm{PC}}=4.2 \mathrm{~Hz}\right.$, C^{10} of Ph), 130.7 ($\mathrm{s}, C^{11 / 12} \mathrm{H}$ of Ph), 131.8 (br s, $C^{11 / 12} \mathrm{H}$ of Ph), $132.9\left(\mathrm{~s}, C^{13} \mathrm{H}\right.$ of Ph$)$, $137.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=19.4 \mathrm{~Hz}, C^{14}\right), 139.7\left(\mathrm{~s}, C^{9}\right), 151.8\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=79.1 \mathrm{~Hz}, C^{16}\right)$.
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(161.98 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{THF}-d_{8}\right): \delta / \mathrm{ppm}=-143.5\left(\mathrm{sept},{ }^{1} J_{\mathrm{PF}}=710.6 \mathrm{~Hz}\right.$, $1 \mathrm{P}, P \mathrm{~F}_{6}{ }^{-}$), -48.6 (s, 1P, $\mathrm{N}_{2} \mathrm{C}_{2} P$).
${ }^{19} \mathbf{F}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(376.50 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{THF}-d_{8}\right): \delta / \mathrm{ppm}=-72.5\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{PF}}=711.6 \mathrm{~Hz}, \mathrm{P} F_{6}{ }^{-}\right)$.
UV/Vis (THF, $\lambda_{\text {max }} / \mathrm{nm}, \varepsilon_{\text {max }} / \mathrm{L} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~cm}^{-1}$): 290 (9000), 330sh (5000).
TOF-MS (ESI, MeCN): m/z(\%) calcd. for $\mathrm{C}_{30} \mathrm{H}_{43} \mathrm{~N}_{5} \mathrm{PRu}^{+}\left[\mathrm{M}^{+}\right]$:
606.2308; found: 606.1675.

Elemental analysis calcd. for $\left(\mathrm{C}_{30} \mathrm{H}_{43} \mathrm{~N}_{5} \mathrm{~F}_{6} \mathrm{P}_{2} \mathrm{Ru}\right)\left(\mathrm{Mw}=750.71 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\right)$:
C 48.00, H 5.77, N 9.33; found C 48.92, H 5.87, N 9.14 .

[$\left.\mathrm{Ni}\left(\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{~N} 5 \mathrm{P}\right)(\mathbf{P h})(\mathbf{2})\right](\mathbf{1 1) :}$

To a mixture of solids $2(52 \mathrm{mg}, 0.141 \mathrm{mmol}, 1.0$ equiv.) and $\left[\mathrm{Ni}(\operatorname{cod})_{2}\right](50 \mathrm{mg}, 0.183 \mathrm{mmol}, 1.3$ equiv.) toluene (2 mL) was added. The resulting dark brown suspension was heated to $60^{\circ} \mathrm{C}$ for 5 h and filtered over a pad of celite $(1 \times 0.5 \mathrm{~cm})$. Volatiles were removed in vacuo and the resulting dark brown residue was extracted with n-hexane $(8 \times 1.0 \mathrm{~mL})$. The combined extracts were exposed to daylight for one week to decompose excess $\left[\mathrm{Ni}(\operatorname{cod})_{2}\right]$ and filtered. Concentration to one third of the original volume and standing for one week at room temperature afforded pale yellow crystals of $\mathbf{1 1}$, of sufficient quality for XRD analysis. The supernatant was decanted, and the crystals were dried in vacuo. Elemental analysis, 2D-spectra, and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR were not recorded due to the high sensitivity and low amount of the isolated solid.

Yield: 5 mg (9\%).
${ }^{1} \mathbf{H}$ NMR ($400.30 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta / \mathrm{ppm}=0.82-0.96(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}$ of $i \mathrm{Pr}), 1.05-1.14$ (m, 12H, CH of $i \mathrm{Pr}$), 1.71 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{CH}$ of $t \mathrm{Bu}$), 1.81 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{CH}$ of $t \mathrm{Bu}$), 3.08 (br sept, 1 H , CH of $i \operatorname{Pr}$), 3.08 (br sept, $1 \mathrm{H}, \mathrm{CH}$ of $i \mathrm{Pr}$), 3.83 (br sept, $1 \mathrm{H}, \mathrm{CH}$ of $i \operatorname{Pr}$), 4.02 (sept, ${ }^{3} J_{\mathrm{HH}}=6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$ of $i \mathrm{Pr}$), 4.97 (sept, ${ }^{3} J_{\mathrm{HH}}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$ of $i \mathrm{Pr}$), 5.98-5.99 (br m, $2 \mathrm{H}, \mathrm{CH}$ of Ph), 6.51-7.08 (m, 7H, CH of Ph), 8.21-8.23 (m, 1H, CH of Ph).
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta / \mathrm{ppm}=54.7\left(\mathrm{~s}, 1 \mathrm{P}, \mathrm{C}_{14} \mathrm{H}_{23} \mathrm{~N}_{5} P\right), 87.5(\mathrm{~s}$, 1P, 2).
UV/Vis (THF, $\lambda_{\text {max }} / \mathrm{nm}, \varepsilon_{\text {max }} / \mathrm{L} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~cm}^{-1}$): 250 (37000), 310 (10000), 330sh (10000).
LIFDI-MS (LC-QTOF, toluene): $\mathrm{m} / \mathrm{z}(\%)$ calcd. for $\mathrm{C}_{40} \mathrm{H}_{56} \mathrm{~N}_{10} \mathrm{NiP}_{2}$:
796.35; found: 796.30.

$\left[(\mathrm{IPr}) \mathrm{Ni}\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{SiMe}_{3}\right)\left(\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{P}\right)\right](12):$

storing this extract for one day at $-35^{\circ} \mathrm{C}$. The supernatant was decanted, and the crystals were dried in vacuo.

Yield: 24 mg (56\%).
${ }^{1} \mathrm{H}$ NMR ($400.13 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta / \mathrm{ppm}=0.09-0.13\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}^{14} \mathrm{H}\right), 0.17(\mathrm{~s}, 9 \mathrm{H}$, $\mathrm{C}^{15} \mathrm{H}$ of SiMe_{3}), $0.83\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}^{11} \mathrm{H}\right.$ of $\left.i \operatorname{Pr}\right), 0.98-1.08(\mathrm{~m}, 14 \mathrm{H}, \mathrm{d}$ $\left({ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}\right)$ of $\mathrm{C}^{24} \mathrm{H}$ from $i \mathrm{Pr}$ overlapping with m of $\mathrm{C}^{13} \mathrm{H}$ overlapping with d $\left({ }^{3} J_{\mathrm{HH}}=6.6 \mathrm{~Hz}\right)$ of $\mathrm{C}^{16} H$ from $\left.i \operatorname{Pr}\right), 1.28\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{C}^{18} H\right.$ of $\left.i \operatorname{Pr}\right), 1.44(\mathrm{~d}$, ${ }^{3} J_{\mathrm{HH}}=6.7 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{C}^{26} \mathrm{H}$ of $i \operatorname{Pr}$), $1.72\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}^{1} H\right.$ of $\left.t \mathrm{Bu}\right), 2.61\left(\mathrm{sept},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\mathrm{C}^{25} H$ of $i \operatorname{Pr}$), 3.79 (sept, ${ }^{3} J_{\mathrm{HH}}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}^{12} \mathrm{H}$ of $i \operatorname{Pr}$), 4.29 (sept, ${ }^{3} J_{\mathrm{HH}}=6.7 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{C}^{13} \mathrm{H}$ of $\left.i \operatorname{Pr}\right), 6.69\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}^{28} \mathrm{H}\right.$ of IPr$), 7.02-7.13\left(\mathrm{~m}, 11 \mathrm{H}, \mathrm{C}^{8 / 9 / 10} \mathrm{H}\right.$ of Ph overlapping with $\mathrm{C}^{20 / 21 / 22} \mathrm{H}$ of IPr).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(100.61 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta / \mathrm{ppm}=-0.3\left(\mathrm{~s}, C^{15} \mathrm{H}\right.$ of $\left.\mathrm{SiMe}_{3}\right), 0.8(\mathrm{~s}$, $\left.C^{13} \mathrm{H}\right), 17.1\left(\mathrm{~s}, C^{14} \mathrm{H}\right), 22.3\left(\mathrm{~s}, C^{11} \mathrm{H}\right.$ of $\left.i \operatorname{Pr}\right), 23.3\left(\mathrm{~s}, C^{26} \mathrm{H}\right.$ of $\left.i \operatorname{Pr}\right), 23.4\left(\mathrm{~s}, C^{16} \mathrm{H}\right.$ of $\left.i \operatorname{Pr}\right)$, $26.5\left(\mathrm{~s}, C^{18} \mathrm{H}\right.$ of $\left.i \operatorname{Pr}\right), 26.8\left(\mathrm{~s}, C^{24} \mathrm{H}\right.$ of iPr$), 28.3\left(\mathrm{~s}, C^{17} \mathrm{H}\right.$ of $\left.i \operatorname{Pr}\right), 28.7\left(\mathrm{~s}, \mathrm{C}^{25} \mathrm{H}\right.$ of $\left.i \operatorname{Pr}\right)$, $33.6\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=6.4 \mathrm{~Hz}, C^{1} \mathrm{H}\right.$ of $\left.t \mathrm{Bu}\right), 36.4\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=20.2 \mathrm{~Hz}, C^{2}\right.$ of $\left.t \mathrm{Bu}\right), 51.3\left(\mathrm{~s}, C^{12} \mathrm{H}\right.$ of $i \operatorname{Pr}), 123.6\left(\mathrm{~s}, C^{22} \mathrm{H}\right), 124.5\left(\mathrm{~s}, C^{28}\right), 125.5\left(\mathrm{~s}, C^{20} \mathrm{H}\right), 126.9\left(\mathrm{~s}, C^{7}\right.$ of Ph$), 128.9\left(\mathrm{~s}, C^{8 / 9} \mathrm{H}\right.$ of Ph$), 129.6\left(\mathrm{~s}, C^{10} \mathrm{H}\right.$ of Ph$), 129.8\left(\mathrm{~s}, C^{21} \mathrm{H}\right), 130.2\left(\mathrm{~s}, C^{8 / 9} \mathrm{H}\right.$ of Ph$), 130.2\left(\mathrm{~s}, C^{8 / 9} \mathrm{H}\right.$ of $\mathrm{Ph}), 130.6\left(\mathrm{~s}, C^{6}\right), 136.9\left(\mathrm{~s}, C^{27}\right), 146.6\left(\mathrm{~s}, C^{23}\right), 147.7\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=24.4 \mathrm{~Hz}, C^{5}\right), 148.0(\mathrm{~s}$, $\left.C^{19}\right), 164.4\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=42.9 \mathrm{~Hz}, C^{4}\right), 189.6\left(\mathrm{~s}, C^{29}\right), 191.7\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=56.3 \mathrm{~Hz}, C^{3}\right)$. ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(161.98 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta / \mathrm{ppm}=60.7(\mathrm{~s})$.
${ }^{29} \mathbf{S i}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(79.49 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right): ~ \delta / \mathrm{ppm}=-4.1\left(\mathrm{SiMe}_{3}\right)$.
UV/Vis (THF, $\lambda_{\text {max }} / \mathrm{nm}, \varepsilon_{\text {max }} / \mathrm{L} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~cm}^{-1}$): 310 (7000).
Elemental analysis calcd. for $\left(\mathrm{C}_{49} \mathrm{H}_{7}{ }_{70} \mathrm{~N}_{7} \mathrm{NiPSi}\right)\left(\mathrm{Mw}=874.91 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\right)$:
C 67.27, H 8.06, N 11.21; found C 67.76, H 8.34, N 11.29.

$\left[(\operatorname{IPr}) \mathbf{C o}(\mathbf{v t m s})\left(\mathbf{C}_{17} \mathbf{H}_{21} \mathbf{N}_{5} \mathrm{P}\right)\right](13 a):$

To a mixture of solids 2 ($65 \mathrm{mg}, 0.176 \mathrm{mmol}, 1.0$ equiv.) and $\left[(\operatorname{IPr}) \mathrm{Co}(\mathrm{vtms})_{2}\right](125 \mathrm{mg}, 0.194 \mathrm{mmol}, 1.1$ equiv.) toluene $(1.5 \mathrm{~mL})$ was added. The light green suspension was stirred at $60^{\circ} \mathrm{C}$ for 16 h , resulting in a color change to dark green. Volatiles were removed in vacuo and the residue was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 1 \mathrm{~mL})$. The combined extracts were filtered over a plug of celite $(1 \times 0.5 \mathrm{~cm})$ and concentrated to half of the original volume. Slow evaporation of the resulting light green solution over the course of five days afforded large green crystals, of sufficient quality for analysis by XRD. The supernatant was decanted, and the crystals were dried in vacuo.
Yield: 80 mg (52\%).
${ }^{1} \mathbf{H}$ NMR ($400.13 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta / \mathrm{ppm}=-26.08$ (br), -21.09 (br), $-8.30(\mathrm{br})$, -5.31 (br), -2.05 (br), -1.68 (br), 1.84 (br), 2.28 (br), 2.71 (br), 2.92 (br), 4.03 (br), 4.44 (br), 5.23 (br), 5.49 (br), 5.76 (br), 5.87 (br), 5.92 (br), 6.30 (br), 6.55 (br), 16.88 (br), 21.41 (br), 30.57 (br), 49.28 (br), 96.1 (br).

Evans NMR ($400.13 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\mu_{\mathrm{eff}}=3.49 \mu \mathrm{~B}$.
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta / \mathrm{ppm}=462.3$ (br s), 490.5 (br s); the latter signal is attributed to a second isomer with a different orientation of the SiMe_{3} substituent. ${ }^{29} \mathbf{S i}\left\{{ }^{[} \mathbf{H}\right\} \mathbf{N M R}\left(79.49 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$: No signal was observed in the range -500-250 ppm.
UV/Vis (THF, $\lambda_{\max } / \mathrm{nm}, \varepsilon_{\max } / \mathrm{L} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~cm}^{-1}$): 290 (10000), 300 (9000).
Elemental analysis calcd. for $\left(\mathrm{C}_{49} \mathrm{H}_{69} \mathrm{CoN}_{7} \mathrm{PSi}\right)\left(\mathrm{Mw}=874.13 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\right)$:
C 67.33, H 7.96, N 11.22; found C 67.57, H 8.22, N 11.09 .

[(IMes)Co(vtms)(C17H21N5P)] (13b):

To a mixture of solids 2 ($61 \mathrm{mg}, 0.165 \mathrm{mmol}, 1.0$ equiv.) and [(IMes) $\left.\operatorname{Co}(\mathrm{vtms})_{2}\right](100 \mathrm{mg}, 0.177 \mathrm{mmol}, 1.1$ equiv.) benzene (3 mL) was added. The light green suspension was stirred at $60^{\circ} \mathrm{C}$ for 1 d , resulting in a color change to dark green. Volatiles were removed in vacuo and the resulting yellow residue was washed with n-pentane ($3 \times 1 \mathrm{~mL}$). The residue was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 1 \mathrm{~mL})$ and the combined extracts were filtered over a pad of celite $(1 \times 0.5 \mathrm{~cm})$. Light green crystals of $\mathbf{1 3 b}$ were grown by storing the filtrate for four days at room temperature. The supernatant was decanted, and the crystals were dried in vacuo. The compound contained fine particles of Co , which could not be removed by recrystallization which is also reflected in the $\mathrm{C}, \mathrm{H}, \mathrm{N}$ analysis.
Yield: 65 mg (50%).
${ }^{1} \mathbf{H}$ NMR ($400.13 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta / \mathrm{ppm}=-11.59$ (br), -5.75 (br), -1.41 (br), -0.95 (br), 0.04 (br), 0.43 (br), 1.28 (br), 1.74 (br), 2.53 (br), 5.06 (br), 6.00 (br), 6.62 (br), 8.09 (br), 8.27 (br), 9.08 (br), 11.33 (br), 19.29 (br), 32.75 (br), 107.18 (br).
Evans NMR ($400.13 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\mu_{\text {eff }}=3.5(10) \mu \mathrm{B}$.
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta / \mathrm{ppm}=456.3$ (br s), 515.5 (br. s); the latter signal is attributed to a second isomer with a different orientation of the SiMe_{3} substituent. ${ }^{29} \mathbf{S i}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(79.49 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right): ~ \delta / \mathrm{ppm}=$ No signal was observed in the range -500-250 ppm.
UV/Vis (THF, $\lambda_{\max } / \mathrm{nm}, \varepsilon_{\max } / \mathrm{L} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~cm}^{-1}$): 250 (16000), 270 (10000), 290 (10000), 440 (1000).

Elemental analysis calcd. for $\left(\mathrm{C}_{43} \mathrm{H}_{57} \mathrm{~N}_{7} \mathrm{CoPSi}\right)(\mathrm{Co})\left(\mathrm{Mw}=789.97 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\right)$: C 60.84, H 6.77, N 11.55; found C 61.38, H 6.63, N 11.85 .
[$\left.\mathrm{BPh}_{3}(\mathbf{3})\right](14):$

A solution of $\mathbf{3}(40 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.0$ equiv.) in THF (4 mL) was cooled to $-35^{\circ} \mathrm{C}$. While stirring, solid BPh_{3} ($29 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.0 \mathrm{eq}$.) was added. The resulting light orange reaction mixture was stirred for 1 h and thawed. Volatiles were removed in vacuo and the resulting orange residue was extracted with a toluene/THF mixture ($3: 1 \mathrm{v} / \mathrm{v}, 4 \times 1 \mathrm{~mL}$) and filtered. Pale yellow crystals of $\mathbf{1 4}$ of
sufficient quality for XRD analysis were grown by slow vapor diffusion of n-hexane into this extract over three days at r.t. and another four days at $-35^{\circ} \mathrm{C}$. The crystals were washed with n-hexane ($3 \times 1 \mathrm{~mL}$) and dried in vacuo.
Yield: 48 mg (69\%).
${ }^{1} \mathbf{H}$ NMR $\left(400.13 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{THF}-d_{8}\right): \delta / \mathrm{ppm}=1.22\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.6 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{C}^{3} \mathrm{H}\right.$ of $i \operatorname{Pr}), 1.59\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=6.6 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{C}^{1} H\right.$ of $\left.i \operatorname{Pr}\right), 4.83\left(\mathrm{sept},{ }^{3} J_{\mathrm{HH}}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}^{2} H\right.$ of $\left.i \operatorname{Pr}\right)$, 4.96 (sept, ${ }^{3} J_{\mathrm{HH}}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}^{4} \mathrm{H}$ of $i \operatorname{Pr}$), 6.91-6.94 (m, 3H, $\mathrm{C}^{15} \mathrm{H}$ of BPh_{3}), 6.98-7.01 (m, $6 \mathrm{H}, \mathrm{C}^{14} H$ of BPh_{3}), 7.20-7.21 (m, $6 \mathrm{H}, \mathrm{C}^{13} H$ of BPh_{3}), 7.53-7.54 (m, $\mathrm{C}^{9} H$ of Ph), 7.58-7.66 (m, $\mathrm{C}^{10 / 11} H$ of Ph).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(100.61 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{THF}-d_{8}\right): \delta / \mathrm{ppm}=22.2\left(\mathrm{~s}, C^{3} \mathrm{H}\right.$ of $\left.i \mathrm{Pr}\right), 22.3\left(\mathrm{~s}, C^{1} \mathrm{H}\right.$ of $i \operatorname{Pr}$), $56.4\left(\mathrm{~s}, C^{2} \mathrm{H}\right.$ of $\left.i \operatorname{Pr}\right), 57.8\left(\mathrm{~s}, C^{4} \mathrm{H}\right.$ of $\left.i \operatorname{Pr}\right), 124.2\left(\mathrm{~s}, C^{15} \mathrm{H}\right.$ of $\left.\mathrm{BPh}_{3}\right), 124.4(\mathrm{~d}$, ${ }^{4} J_{\mathrm{PC}}=1.8 \mathrm{~Hz}, C^{8}$ of Ph), $126.4\left(\mathrm{~s}, C^{14} \mathrm{H}\right.$ of $\left.\mathrm{BPh}_{3}\right), 130.4\left(\mathrm{~s}, C^{10} \mathrm{H}\right.$ of Ph$), 131.7(\mathrm{~d}$, ${ }^{5} J_{\mathrm{PC}}=2.3 \mathrm{~Hz}, C^{9} \mathrm{H}$ of Ph$), 132.4\left(\mathrm{~s}, C^{11} \mathrm{H}\right.$ of Ph$), 136.0\left(\mathrm{~s}, C^{13} \mathrm{H}\right.$ of $\left.\mathrm{BPh}_{3}\right)$, 139.7-140.0 $\left(\mathrm{m}, \mathrm{d}\left({ }^{2} J_{\mathrm{PC}}=27.1 \mathrm{~Hz}\right)\right.$ of C^{6} overlapping with s of $\left.C^{5}\right), 158.0\left(\mathrm{br} \mathrm{s}, C^{12}\right.$ of $\left.\mathrm{BPh}_{3}\right), 160.7$ $\left(\mathrm{dd},{ }^{1} J_{\mathrm{PC}}=83.6 \mathrm{~Hz},{ }^{2} J_{\mathrm{PC}}=5.0 \mathrm{HZ}, C^{7}\right)$.
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{THF}-d_{8}\right): \delta / \mathrm{ppm}=216.4\left(\mathrm{~d},{ }^{1} J_{\mathrm{PP}}=452.7 \mathrm{~Hz} .1 \mathrm{P}\right.$, $\left.\mathrm{P}_{\mathrm{B}}\right), 380.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{PP}}=452.7 \mathrm{~Hz}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{A}}\right)$.
${ }^{11} \mathbf{B}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(128.43 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{THF}-d_{8}\right): \delta / \mathrm{ppm}=2.8\left(\mathrm{~s}, B \mathrm{Ph}_{3}\right)$.
UV/Vis (THF, $\lambda_{\text {max }} / \mathrm{nm}, \varepsilon_{\text {max }} / \mathrm{L} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~cm}^{-1}$): 260 (28000), 300sh (11000).
Elemental analysis calcd. for $\left(\mathrm{C}_{33} \mathrm{H}_{34} \mathrm{BN}_{5} \mathrm{P}_{2}\right)\left(\mathrm{Mw}=573.42 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\right)$:
C 69.12, H 5.98, N 12.21; found C 69.32, H 6.35, N 11.74 .

[$\left.\operatorname{AIEt}_{3}(3)\right]$ (15):

A solution of $\mathbf{3}$ ($35 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.0$ equiv.) in THF (4 mL) was cooled to $-35^{\circ} \mathrm{C}$. While stirring, a stock solution of triethylaluminium ($56.9 \mu \mathrm{~L}, \mathrm{c}=25 \%$ by weight in toluene, $0.11 \mathrm{mmol}, 1.0 \mathrm{eq}$.) was added dropwise. The resulting light orange reaction mixture was stirred for 2 h and thawed. Volatiles were removed in vacuo and the resulting orange residue was extracted with a toluene/THF mixture ($4: 1 \mathrm{v} / \mathrm{v}, 2 \times 1.25 \mathrm{~mL}$) and filtered. Pale yellow crystals of 15 were grown by slow vapor diffusion of n-hexane into this extract over four days at r.t. and another two days at $-35^{\circ} \mathrm{C}$. The crystals were of sufficient quality for XRD analysis and were washed with n-hexane $(2 \times 1 \mathrm{~mL})$ and dried in vacuo.

Yield: 40 mg (85%).
${ }^{1} \mathbf{H}$ NMR ($400.30 \mathrm{MHz}, 300 \mathrm{~K}$, THF- d_{8}): $\delta / \mathrm{ppm}=0.00\left(\mathrm{q},{ }^{3} \mathrm{JHH}_{\mathrm{HH}}=8.1 \mathrm{~Hz}, \mathrm{C}^{12} \mathrm{H}\right.$ of AlEt ${ }_{3}$), $1.05\left(\mathrm{t},{ }^{3} \mathrm{JHH}_{\mathrm{HH}}=8.1 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{C}^{13} \mathrm{H}\right.$ of $\left.\mathrm{AlEt}_{3}\right), 1.73-1.77\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{d}\right.$ of $\mathrm{C}^{1} H$ of i Pr overlapping with d of $\mathrm{C}^{3} H$ of $i \operatorname{Pr}$), 4.99 (sept, ${ }^{3} J_{\mathrm{HH}}=6.7 \mathrm{~Hz}, \mathrm{C}^{2} H$ of $i \operatorname{Pr}$), 5.88 (sept, ${ }^{3} J_{\mathrm{HH}}=6.6 \mathrm{~Hz}$, $\mathrm{C}^{4} H$ of $\left.i \mathrm{Pr}\right), 7.58-7.69\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}^{9 / 10 / 11} H\right.$ of Ph$)$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(100.61 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{THF}-d_{8}\right): \delta / \mathrm{ppm}=2.2\left(\mathrm{br} \mathrm{s}, C^{12} \mathrm{H}\right.$ of $\left.\mathrm{AlEt}_{3}\right), 11.0(\mathrm{~s}$, $C^{13} \mathrm{H}_{\text {of }} \mathrm{AlEt}_{3}$), $22.4\left(\mathrm{~s}, C^{1} \mathrm{H}\right.$ of $\left.i \operatorname{Pr}\right), 22.5\left(\mathrm{~s}, C^{3} \mathrm{H}\right.$ of $\left.i \operatorname{Pr}\right), 56.7\left(\mathrm{~s}, C^{2} \mathrm{H}\right.$ of $\left.i \operatorname{Pr}\right), 57.7(\mathrm{~s}$, $C^{4} \mathrm{H}$ of $\left.i \mathrm{Pr}\right), 124.6\left(\mathrm{~s}, C^{8}\right.$ of Ph$), 130.4\left(\mathrm{~s}, C^{10} \mathrm{H}\right.$ of Ph$), 131.8\left(\mathrm{~s}, C^{9} \mathrm{H}\right.$ of Ph$), 132.3$ (s, $C^{11} \mathrm{H}$ of Ph), 140.3-140.6 (m, d of C^{6} overlapping with s of $\left.C^{5}\right), 162.8\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=82.8 \mathrm{~Hz}\right.$, C^{7}).
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{THF}-d_{8}\right): \delta / \mathrm{ppm}=217.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{PP}}=444.0 \mathrm{~Hz} .1 \mathrm{P}\right.$, $\left.\mathrm{P}_{\mathrm{B}}\right), 364.2\left(\mathrm{~d},{ }^{1} J_{\mathrm{PP}}=444.0 \mathrm{~Hz}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{A}}\right)$.
UV/Vis (THF, $\lambda_{\text {max }} / \mathrm{nm}, \varepsilon_{\text {max }} / \mathrm{L} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~cm}^{-1}$): 310sh (4000).
Elemental analysis calcd. for $\left(\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{AlN}_{5} \mathrm{P}_{2}\right)\left(\mathrm{Mw}=445.46 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\right)$:
C 56.62, H 7.69, N 15.72; found C 57.05, H 8.07, N 15.58.

6.4.2 NMR Spectra

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400.13 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{THF}-d_{8}\right)$ of 2; ○ THF, * THF- d_{8}.

Figure S2. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(100.66 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{THF}-d_{8}\right)$ of 2; ○ THF, * THF- d_{8}.

Figure S3. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{THF}-d_{8}\right)$ of $\mathbf{2}$.

Figure S4. ${ }^{1} \mathrm{H}$ NMR spectrum ($400.13 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{THF}-d_{8}$) of 3; * THF- d_{8}.

Figure S5. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(100.61 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{THF}-d_{8}\right)$ of $\mathbf{3}$; * THF- d_{8}.

Figure S6. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($161.98 \mathrm{MHz}, 300 \mathrm{~K}$, THF- d_{8}) of $\mathbf{3}$; o minor unknown impurity.

Figure S7. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400.30 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{THF}-d_{8}\right)$ of $\left[\left\{\mathrm{W}(\mathrm{CO})_{5}\right\}_{2}(\mathbf{2})\right](\mathbf{6})$; * THF- d_{8}.

Figure S8. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(100.61 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{THF}-d_{8}\right)$ of $\left[\left\{\mathrm{W}(\mathrm{CO})_{5}\right\}_{2}(\mathbf{2})\right](\mathbf{6})$; * THF- d_{8}.

Figure S9. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{THF}-d_{8}\right)$ of $\left[\left\{\mathrm{W}(\mathrm{CO})_{5}\right\}_{2}(\mathbf{2})\right](\mathbf{6})$.

Figure S10. ${ }^{1} \mathrm{H}$ NMR spectrum ($400.13 \mathrm{MHz}, 193 \mathrm{~K}, \mathrm{THF}-d_{8}$) of $[\mathrm{Rh}(\mathbf{2})(\operatorname{cod}) \mathrm{Cl}](\mathbf{7}) ; \circ$ toluene, ${ }^{*}$ THF- d_{8}.

Figure S11. ${ }^{1} \mathrm{H}$ NMR monitoring ($400.13 \mathrm{MHz}, \mathrm{THF}-d_{8}$) of $[\mathrm{Rh}(\mathbf{2})(\mathrm{cod}) \mathrm{Cl}](7)$; * THF- d_{8}.

Figure S12. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($100.61 \mathrm{MHz}, 193 \mathrm{~K}$, THF- d_{8}) of $[\mathrm{Rh}(\mathbf{2})(\operatorname{cod}) \mathrm{Cl}]$ (7); o toluene, * THF- d_{8}.

Figure S13. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(161.98 \mathrm{MHz}, 193 \mathrm{~K}, \mathrm{THF}-d_{8}\right)$ of $[\mathrm{Rh}(\mathbf{2})(\operatorname{cod}) \mathrm{Cl}](7)$.

Figure S14. ${ }^{1} \mathrm{H}$ NMR spectrum ($400.13 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{THF}-d_{8}$) of $\left[\operatorname{AlEt}_{3}(\mathbf{2})\right](\mathbf{8}) ; *$ THF- d_{8}.

Figure S15. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($100.61 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{THF}-d_{8}$) of $\left[\mathrm{AlEt}_{3}(\mathbf{2})\right](\mathbf{8})$; * THF- d_{8}.

Figure S16. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{THF}-d_{8}$) of $\left[\mathrm{AlEt}_{3}(\mathbf{2})\right]$ (8).

Figure S17. ${ }^{27} \mathrm{Al}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(104.26 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{THF}-d_{8}\right)$ of $\left[\operatorname{AlEt}_{3}(\mathbf{2})\right](\mathbf{8})$; o signal of probe head.

Figure S18. ${ }^{1} \mathrm{H}$ NMR spectrum ($400.13 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{THF}-d_{8}$) of $[\mathrm{AuCl}(\mathbf{2})](\mathbf{9})$; ○ THF, * THF- d_{8}.

Figure S19. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(100.61 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{THF}-d_{8}\right)$ of $[\mathrm{AuCl}(\mathbf{2})](\mathbf{9})$; ○ THF, * THF- d_{8}.

Figure S20. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($\left.161.98 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{THF}-d_{8}\right)$ of $[\mathrm{AuCl}(\mathbf{2})]$ (9).

Figure S21. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400.13 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{THF}-d_{8}\right)$ of $[\mathrm{Cp} * \mathrm{Ru}(\mathbf{2})] \mathrm{PF}_{6}(\mathbf{1 0}) ;$ * $\mathrm{THF}-d_{8}$.

Figure S22. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(100.61 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{THF}-d_{8}\right)$ of $[\mathrm{Cp} * \operatorname{Ru}(\mathbf{2})] \mathrm{PF}_{6}(\mathbf{1 0})$; * THF- d_{8}.

Figure S23. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(161.98 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{THF}-d_{8}\right)$ of $[\mathrm{Cp} * \mathrm{Ru}(\mathbf{2})] \mathrm{PF}_{6}(\mathbf{1 0})$.

Figure S24. ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(376.50 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{THF}-d_{8}\right)$ of $[\mathrm{Cp} * \mathrm{Ru}(\mathbf{2})] \mathrm{PF}_{6}(\mathbf{1 0})$.

Figure S25. ${ }^{1} \mathrm{H}$ NMR spectrum ($400.30 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $\left[\mathrm{Ni}\left(\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{P}\right)(\mathrm{Ph})(\mathbf{2})\right]$ (11); • minor unknown impurity, o n-hexane, ${ }^{*} \mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S26. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $\left[\mathrm{Ni}\left(\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{P}\right)(\mathrm{Ph})(\mathbf{2})\right]$, (11).

Figure S27. ${ }^{1} \mathrm{H}$ NMR spectrum ($400.13 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $\left[(\operatorname{IPr}) \mathrm{Ni}\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{SiMe}_{3}\right)\left(\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{P}\right)\right]$ (12); - minor unknown impurity, $* \mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S28. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($100.61 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $\left[(\mathrm{IPr}) \mathrm{Ni}\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{SiMe}_{3}\right)\left(\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{P}\right)\right]$ (12); * $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S29. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(161.98 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $\left[(\mathrm{IPr}) \mathrm{Ni}\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{SiMe}_{3}\right)\left(\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{P}\right)\right]$ (12).

Figure S30. ${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($79.49 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $\left[(\mathrm{IPr}) \mathrm{Ni}\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{SiMe}_{3}\right)\left(\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{P}\right)\right]$ (12).

Figure S31. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400.13 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $\left[(\mathrm{IPr}) \mathrm{Co}(\mathrm{vtms})\left(\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{P}\right)\right](\mathbf{1 3 a}) ;{ }^{*} \mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S32. ${ }^{1} \mathrm{H}$ NMR spectrum ($400.13 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $\left[(\mathrm{IPr}) \mathrm{Co}(\mathrm{vtms})\left(\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{P}\right)\right]$ (13a) for the determination of the magnetic moment according to the Evans method; ${ }^{[78-80]} * \mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S33. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $\left[(\mathrm{IPr}) \mathrm{Co}(\mathrm{vtms})\left(\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{P}\right)\right](\mathbf{1 3 a})$.

Figure S34. ${ }^{1} \mathrm{H}$ NMR spectrum ($400.13 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$) of [(IMes) $\mathrm{Co}(\mathrm{vtms})\left(\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{P}\right)$] (13b); * $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S35. ${ }^{1} \mathrm{H}$ NMR spectrum ($400.13 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $\left[(\mathrm{IMes}) \mathrm{Co}(\mathrm{vtms})\left(\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{P}\right)\right]$ (13b) for the determination of the magnetic moment according to the Evans method; ${ }^{[78-80]} * \mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S36. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $\left[(\mathrm{IMes}) \mathrm{Co}(\mathrm{vtms})\left(\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{P}\right)\right](\mathbf{1 3 b})$.

$\stackrel{\otimes}{\infty} \stackrel{\infty}{+}$ $\stackrel{+\infty}{+}$

Figure S37. ${ }^{1} \mathrm{H}$ NMR spectrum ($400.13 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{THF}-d_{8}$) of $\left[\mathrm{BPh}_{3}(\mathbf{3})\right](\mathbf{1 4}) ;$ * THF- d_{8}.

Figure S38. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($100.61 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{THF}-d_{8}$) of $\left[\mathrm{BPh}_{3}(\mathbf{3})\right](\mathbf{1 4})$; * THF- d_{8}.

Figure S39. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{THF}-d_{8}\right)$ of $\left[\mathrm{BPh}_{3}(\mathbf{3})\right]$ (14).

Figure S40. ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($128.43 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{THF}-d_{8}$) of $\left[\mathrm{BPh}_{3}(\mathbf{3})\right]$ (14).

Figure S41. ${ }^{1} \mathrm{H}$ NMR spectrum ($400.30 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{THF}-d_{8}$) of $\left[\operatorname{AlEt}_{3}(\mathbf{3})\right]\left(\mathbf{1 5)}\right.$; * residual ${ }^{1} \mathrm{H}$ NMR signals of THF- d_{8}.

Figure S42. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($100.61 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{THF}-d_{8}$) of $\left[\operatorname{AlEt}_{3}(\mathbf{3})\right](\mathbf{1 5})$; * THF- d_{8}.

Figure S43. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(162.04 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{THF}-d_{8}\right)$ of $\left[\mathrm{AlEt}_{3}(\mathbf{3})\right]$ (15).

Figure S44. ${ }^{27} \mathrm{Al}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(104.26 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{THF}-d_{8}\right)$ of $\left[\mathrm{AlEt}_{3}(\mathbf{3})\right]$ (15); o signal of probe head.

6.4.3 Additional Experiments

Reactions of $\boldsymbol{i P r}$-Diazamonophosphole (2) toward [W(CO)s(thf)]:
$\left[\mathrm{W}(\mathrm{CO})_{3}\left\{\mathrm{~W}(\mathrm{CO})_{5}(2)\right\}_{3}\right](4):$

A colorless solution of $\left[W(C O)_{6}\right](6 \mathrm{mg}, 0.0 .017 \mathrm{mmol}$, 1.0 equiv.) in THF (1.5 mL) was irradiated with UVlight ($365 \mathrm{~nm}, 10 \mathrm{~W}$) for 2 h while stirring. The solution turned deep yellow, was added to a solution of $\mathbf{2}(6 \mathrm{mg}$, $0.017 \mathrm{mmol}, 1.0$ equiv. $)$ in THF (0.5 mL) and stirred for 1 d . The yellow suspension was filtered. Crystals of $\left[\mathrm{W}(\mathrm{CO})_{3}\left\{\mathrm{~W}(\mathrm{CO})_{5}(\mathbf{2})\right\}_{3}\right]$ (4) were grown by slow vapor diffusion of n-hexane into this filtrate. The crystals were of sufficient quality for analysis by XRD and transferred into mineral oil.
$\left[\mathrm{W}(\mathrm{CO})_{s}(2)\right](5):$

A stirring, colorless solution of $\left[\mathrm{W}(\mathrm{CO})_{6}\right](6.4 \mathrm{mg}, 0.0 .018$ mmol, 1.33 equiv.) in THF (2.0 mL) was irradiated with UVlight ($365 \mathrm{~nm}, 10 \mathrm{~W}$) for 30 min . The solution turned deep yellow, was added to solid $2(5 \mathrm{mg}, 0.014 \mathrm{mmol}, 1.0$ equiv.) and stirred for 1 d . The yellow suspension was filtered. Crystals of $\left[\mathrm{W}(\mathrm{CO})_{5}(\mathbf{2})\right](\mathbf{5})$ were grown by slow vapor diffusion of n-hexane into this filtrate. The crystals were of sufficient quality for analysis by XRD and transferred into mineral oil.

6.4.4 Reaction Monitoring

In a glovebox, a mixture of solids diazamonophosphole $2(5 \mathrm{mg}, 0.014 \mathrm{mmol}, 1.0$ equiv.) and $\left[\mathrm{Cp} * \mathrm{Ru}(\mathrm{MeCN})_{3}\right] \mathrm{PF}_{6}(7 \mathrm{mg}, 0.014 \mathrm{mmol}, 1.0$ equiv.) were suspended in 0.6 mL of $\mathrm{C}_{6} \mathrm{D}_{6}$ in a J. Young valve NMR tube. The NMR tube was closed and after 1 hour analyzed by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy (Figure S 45 ; vide infra). The spectrum revealed one signal at $\delta=87.7 \mathrm{ppm}$, which was attributed to an intermediate coordinating via a single nitrogen atom.

Figure S45. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}$ spectrum ($162.04 \mathrm{MHz}, \quad 300 \mathrm{~K}, \quad \mathrm{C}_{6} \mathrm{D}_{6}$) of the reaction between $i \operatorname{Pr}$-Diazamonophosphole (2, red) toward $\left[\mathrm{Cp} * \mathrm{Ru}(\mathrm{MeCN})_{3}\right] \mathrm{PF}_{6}$ resulting in the formation of $[\mathrm{Cp} * \mathrm{Ru}(\mathbf{2})] \mathrm{PF}_{6}(\mathbf{1 0}$, blue $)$; green: $\delta / \mathrm{ppm}=87.7$ attributed to an η^{1}-coordinating intermediate.

In a glovebox, to a mixture of solids diazamonophosphole $2(15 \mathrm{mg}, 0.041 \mathrm{mmol}$, 1.0 equiv.) and $\left[\mathrm{Ni}(\operatorname{cod})_{2}\right](15 \mathrm{mg}, 0.053 \mathrm{mmol}, 1.3$ equiv) in a J. Young valve NMR tube 0.6 mL of $\mathrm{C}_{6} \mathrm{D}_{6}$ was added. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ measurements were performed every 15 min from 10 minutes after reaction onset until a total reaction time of 5 hours. NMR measurements were performed at a temperature of $333 \mathrm{~K}\left(60^{\circ} \mathrm{C}\right)$. Figure S 46 (vide infra) shows the yield in \% of $\left[\mathrm{Ni}\left(\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{P}\right)(\mathrm{Ph})(\mathbf{2})\right](\mathbf{1 1})$ as determined by integration of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra.

Figure S46. Yield of $\left[\mathrm{Ni}\left(\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{P}\right)(\mathrm{Ph})(2)\right]$ (11) as determined by integration of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra against reaction time.

6.4.5 Proposed Reaction Sequence

Scheme S1. Proposed reaction sequence for the formation of $\mathbf{1 2}$ and 13, starting from 2 and $\left[(\mathrm{NHC}) \mathrm{M}(\mathrm{vtms})_{2}\right](\mathrm{NHC}=\mathrm{IPr}, \mathrm{IMes} ; \mathrm{M}=\mathrm{Ni}, \mathrm{Co})$.

6.4.6 UV/Vis Spectra

Figure S47. UV/Vis spectrum of 2 recorded in THF.

Figure S48. UV/Vis spectrum of $\mathbf{3}$ recorded in THF.

Figure S49. UV/Vis spectrum of $\left[\left\{\mathrm{W}(\mathrm{CO})_{5}\right\}_{2}(\mathbf{2})\right](\mathbf{6})$ recorded in THF.

Figure S50. UV/Vis spectrum of $[\mathrm{Rh}(\mathbf{2})(\operatorname{cod}) \mathrm{Cl}](7)$ recorded in THF.

Figure S51. UV/Vis spectrum of $\left[\mathrm{AlEt}_{3}(\mathbf{2})\right](\mathbf{8})$ recorded in THF.

Figure S52. UV/Vis spectrum of $[\mathrm{AuCl}(\mathbf{2})](9)$ recorded in THF.

Figure S53. UV/V is spectrum of $[\mathrm{Cp} * \mathrm{Ru}(\mathbf{2})] \mathrm{PF}_{6}(\mathbf{1 0})$ recorded in THF.

Figure S54. UV/Vis spectrum of $\left[\mathrm{Ni}\left(\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{P}\right)(\mathrm{Ph})(2)\right]$ (11) recorded in THF.

Figure S55. UV/Vis spectrum of $\left[(\mathrm{Pr}) \mathrm{Ni}_{\left.\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{SiMe}_{3}\right)\left(\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{P}\right)\right]}(\mathbf{1 2})\right.$ recorded in THF.

Figure S56. UV/Vis spectrum of $\left[(\mathrm{IPr}) \mathrm{Co}(\mathrm{vtms})\left(\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{P}\right)\right]$ (13a) recorded in THF.

Figure S57. UV/Vis spectrum of $\left[(\mathrm{IMes}) \mathrm{Co}(\mathrm{vtms})\left(\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{P}\right)\right](\mathbf{1 3 b})$ recorded in THF.

Figure S58. UV/Vis spectrum of $\left[\mathrm{BPh}_{3}(\mathbf{3})\right](\mathbf{1 4})$ recorded in THF.

Figure S59. UV/Vis spectrum of $\left[\mathrm{AlEt}_{3}(\mathbf{3})\right]$ (15) recorded in THF.

6.4.7 IR Spectra

Figure S60. Solid state IR spectrum of $\left[\left\{\mathrm{W}(\mathrm{CO})_{5}\right\}_{2}(\mathbf{2})\right]$ (6).

6.4.8 Single Crystal X-Ray Diffraction Data

Single-crystal X-ray diffraction data were recorded on Rigaku Oxford Diffraction XtaLAB Synergy R (DW system, Hypix-Arc 150) or SuperNova Atlas (Titan ${ }^{\text {S2 }}$) diffractometers with $\mathrm{Cu}-\mathrm{K}_{\alpha}(\lambda=1.54184 \AA), \mathrm{Cu}-\mathrm{K}_{\beta}(\lambda=1.39222 \AA)$, or $\mathrm{Mo}-\mathrm{K}_{\alpha}(\lambda=$ $0.71073 \AA$) radiation. Crystals were selected under mineral oil, mounted on micromount loops and quench-cooled using an Oxford Cryosystems open flow N_{2} cooling device. Either semi-empirical multi-scan absorption corrections ${ }^{[81,82]}$ or analytical ones ${ }^{[83]}$ were applied to the data. The structures were solved with SHELXT ${ }^{[84]}$ solution program using dual methods and by using Olex2 as the graphical interface. ${ }^{[85]}$ The models were refined with ShelXL ${ }^{[86]}$ using full matrix least squares minimization on $\mathrm{F}^{2} .{ }^{[87]}$ The hydrogen atoms were located in idealized positions and refined isotropically with a riding model.
$\left[\mathrm{W}(\mathrm{CO})_{3}\left\{\mathrm{~W}(\mathrm{CO})_{5}(\mathbf{2})\right\}_{3}\right]$ (4): The crystal of $\mathbf{4}$ contained three THF molecules per asymmetric unit. Two of them were modeled, while the third one was severely disordered and refined by using the solvent mask command: A solvent mask was calculated, and 74 electrons were found in a volume of $272 \AA^{3}$ in one void per unit cell. This is consistent with the presence of 1.0 THF per formula unit which account for 80 electrons per unit cell. As $\mathbf{4}$ was crystallized by slow diffusion of n-hexane into a saturated THF solution of 4 this serves as evidence for the presence of THF in this position.

The following section provides figures of the molecular structures with selected bond lengths and angles, which were not given in section 6.2 itself.

Table S1. Crystallographic data and structure refinement for compounds 2-5.

| Compound | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: |
| CCDC | 2287329 | 2287330 | 2287421 | 2287423 |
| Empirical formula | $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{5} \mathrm{P}_{2}$ | $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{~N}_{10} \mathrm{P}$ | $\mathrm{C}_{86} \mathrm{H}_{100} \mathrm{~N}_{15} \mathrm{O}_{20} \mathrm{P}_{3} \mathrm{~W}_{4}$ | $\mathrm{C}_{50} \mathrm{H}_{56} \mathrm{~N}_{10} \mathrm{O}_{10} \mathrm{P}_{2} \mathrm{~W}_{2}$ |
| rmula weight | 69.44 | 662.5 | 2492.11 | 1386.68 |
| Temperature/K | 100(1) | 123(1) | 123(1) | 123(1) |
| Crystal system | monoclinic | triclinic | triclinic | monoclinic |
| Space group | $P 2{ }_{1} / \mathrm{C}$ | $P-1$ | -1 | 22/n |
| , | 15.7777(1) | 9.4067 (| 14.8654(2) | 18.1762(2) |
| | 13.3846(1) | 9.8993(5) | 17.5148(3) | 15.34710(10) |
| c/A | 9.9613(1) | 18.8156(9) | 19.5580(2) | 21.9378(2) |
| $\alpha /{ }^{\circ}$ | 90 | 80.999(4) | 82.3161(12) | 90 |
| $\beta /{ }^{\circ}$ | 103.827 | 88.396(4) | 7.2231(13) | 110.2080(10) |
| $\gamma /$ | 90 | 86.508(4) | 86.4994(13) | 90 |
| Volume/ $/{ }^{3}$ | 2042.65 | 1727.01(15) | 5032.88(13) | 5742.90(10) |
| Z | 4 | 2 | 2 | 4 |
| $\rho_{\text {calc }} \mathrm{g}$ | 1.201 | 1.274 | 1.644 | 1.604 |
| | 1.285 | 2.313 | 9.271 | 8.335 |
| $\mathrm{F}(000)$ | 792.0 | 696.0 | 2444.0 | 2736.0 |
| Crystal size/mm ${ }^{3}$ | $\begin{gathered} 0.165 \times 0.132 \\ \times 0.093 \end{gathered}$ | $0.324 \times 0.1 \times 0.057$ | $0.13 \times 0.07 \times 0.04$ | $0.260 \times 0.120 \times 0.09$ |
| | XtaLAB Synergy | | | |
| Diffractometer | R, DW system, HyPix-Arc 150 |
| Radiation | $\begin{gathered} \mathrm{Cu} \mathrm{~K} \alpha \\ (\lambda=1.54184) \end{gathered}$ |
| 2Θ range for data collection $/{ }^{\circ}$ | 5.768 to 149.516 | 9.06 to 134.54 | 4.562 to 150.872 | 7.75 to 134.088 |
| Index range | $\begin{aligned} -19 & \leq \mathrm{h} \leq 17 \\ -16 & \leq \mathrm{k} \leq 16 \\ -11 & \leq 1 \leq 12 \end{aligned}$ | $\begin{aligned} -11 & \leq \mathrm{h} \leq 11 \\ -11 \leq \mathrm{k} & \leq 11, \\ -14 & \leq 1 \leq 22 \end{aligned}$ | $\begin{aligned} -15 & \leq \mathrm{h} \leq 18 \\ -21 & \leq \mathrm{k} \leq 21, \\ -24 & \leq 1 \leq 24 \end{aligned}$ | $\begin{gathered} -21 \leq \mathrm{h} \leq 20 \\ -15 \leq \mathrm{k} \leq 18 \\ -25 \leq 1 \leq 26 \end{gathered}$ |
| Reflections collected | 47880 | 16839 | 135478 | 54945 |
| | 4181 | ${ }_{6} 6081$ | 20419 | 10172 |
| Independent reflections | $\begin{gathered} {\left[\mathrm{R}_{\text {int }}=0.0190\right.} \\ \left.\mathrm{R}_{\text {sigma }}=0.0088\right] \end{gathered}$ | $\begin{gathered} {\left[\mathrm{R}_{\text {int }}=0.0967,\right.} \\ \left.\mathrm{R}_{\text {sigma }}=0.0949\right] \end{gathered}$ | $\begin{gathered} {\left[\mathrm{R}_{\text {int }}=0.0528,\right.} \\ \left.\mathrm{R}_{\text {sigma }}=0.0391\right] \end{gathered}$ | $\begin{gathered} {\left[\mathrm{R}_{\text {int }}=0.0719,\right.} \\ \left.\mathrm{R}_{\text {sigma }}=0.0419\right] \end{gathered}$ |
| Data/restraints/ parameters | 4181/0/343 | 6081/0/405 | 20419/18/1174 | 10172/19/692 |
| Goodness-of-fit on F^{2} | 1.0 | 1.0 | 1.111 | 1.051 |
| Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$ | $\begin{gathered} \mathrm{R}_{1}=0.0301 \\ \mathrm{wR}_{2}=0.0795 \end{gathered}$ | $\begin{gathered} \mathrm{R}_{1}=0.0667 \\ \mathrm{wR}_{2}=0.1627 \end{gathered}$ | $\begin{gathered} \mathrm{R}_{1}=0.0366 \\ \mathrm{wR}_{2}=0.0852 \end{gathered}$ | $\begin{gathered} \mathrm{R}_{1}=0.0337, \\ \mathrm{wR}_{2}=0.0851 \end{gathered}$ |
| Final R indexes [all data] | $\begin{gathered} \mathrm{R}_{1}=0.0313 \\ \mathrm{wR}_{2}=0.0803 \end{gathered}$ | $\begin{gathered} \mathrm{R}_{1}=0.0969 \\ \mathrm{wR}_{2}=0.1880 \end{gathered}$ | $\begin{gathered} \mathrm{R}_{1}=0.0463 \\ \mathrm{wR}_{2}=0.0888 \end{gathered}$ | $\begin{gathered} \mathrm{R}_{1}=0.0378 \\ \mathrm{wR}_{2}=0.0887 \end{gathered}$ |
| Largest diff. peak/hole /e \AA^{-3} | 0.28/-0.27 | 0.63/-0.34 | 2.35/-2.05 | 1.22/-1.39 |
| Flack parameter | 1 | 1 | 1 | 1 |

Table S2. Crystallographic data and structure refinement for compounds 6-9.

| Compound | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: |
| CCDC | 2287425 | 2287432 | 2287433 | 2287437 |
| Empirical formula | $\mathrm{C}_{31.18} \mathrm{H}_{31.14} \mathrm{~N}_{5} \mathrm{O}_{10} \mathrm{PW}_{2}$ | $\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{ClN}_{5} \mathrm{PRh}$ | $\mathrm{C}_{26} \mathrm{H}_{43} \mathrm{AlN}_{5} \mathrm{P}$ | $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{AuClN}_{5} \mathrm{O}_{0.5} \mathrm{P}$ |
| Formula weight | 1034.58 | 615.98 | 483.60 | 637.91 |
| Temperature/K | 123(1) | 123(1) | 100(1) | 100(1) |
| Crystal system | triclinic | monoclinic | monoclinic | monoclinic |
| Space group | $P-1$ | $P 2{ }_{1} / n$ | $P 2{ }_{1} / n$ | C2/c |
| a/Å | 11.44130(10) | 10.69310(10) | 11.49210(10) | 19.9717(4) |
| b/Å | 11.7869(2) | 20.9320(2) | 12.79310(10) | 13.7499(2) |
| c/Å | 14.4705(2) | 13.9759(2) | 19.5591(2) | 20.7972(4) |
| $\alpha /{ }^{\circ}$ | 84.4020(10) | 90 | 90 | 90 |
| $\beta /{ }^{\circ}$ | 87.6070(10) | 110.5090(10) | 100.0810(10) | 120.538(3) |
| $\gamma /{ }^{\circ}$ | 71.1270(10) | 90 | 90 | 90 |
| Volume/ A 3 | 1837.63(4) | 2929.92(6) | 2831.18(4) | 4918.9(2) |
| Z | 2 | 4 | 4 | 8 |
| $\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$ | 1.870 | 1.396 | 1.135 | 1.723 |
| μ / mm^{-1} | 12.321 | 6.256 | 1.318 | 6.176 |
| $\mathrm{F}(000)$ | 992.0 | 1280.0 | 1048.0 | 2512.0 |
| Crystal size/mm ${ }^{3}$ | $\begin{gathered} 0.137 \times 0.072 \\ \times 0.045 \end{gathered}$ | $\begin{gathered} 0.158 \times 0.083 \\ \times 0.065 \end{gathered}$ | $\begin{gathered} 0.477 \times 0.106 \\ \times 0.084 \end{gathered}$ | $\begin{gathered} 0.175 \times 0.124 \\ \times 0.09 \end{gathered}$ |
| Diffractometer | XtaLAB Synergy R, DW system, HyPix-Arc 150 | XtaLAB Synergy R, DW system, HyPix-Arc 150 | XtaLAB Synergy R, DW system, HyPix-Arc 150 | XtaLAB Synergy R DW system, HyPix-Arc 150 |
| Radiation | $\begin{gathered} \mathrm{Cu} \mathrm{~K} \alpha \\ (\lambda=1.54184) \end{gathered}$ | $\begin{gathered} \mathrm{Cu} \mathrm{~K} \alpha \\ (\lambda=1.54184) \end{gathered}$ | $\begin{gathered} \mathrm{Cu} \mathrm{~K} \alpha \\ (\lambda=1.54184) \end{gathered}$ | $\begin{gathered} \mathrm{Mo} \mathrm{~K} \alpha \\ (\lambda=0.71073) \end{gathered}$ |
| 2Θ range for data collection/ ${ }^{\circ}$ | 7.966 to 150.446 | 7.966 to 150.446 | 8.298 to 151.506 | 4.548 to 66.282 |
| Index ranges | $\begin{gathered} -14 \leq \mathrm{h} \leq 14, \\ -14 \leq \mathrm{k} \leq 14, \\ -18 \leq 1 \leq 17 \end{gathered}$ | $\begin{aligned} -13 & \leq h \leq 13, \\ -26 & \leq k \leq 26, \\ -16 & \leq 1 \leq 17 \end{aligned}$ | $\begin{gathered} -14 \leq \mathrm{h} \leq 14, \\ -15 \leq \mathrm{k} \leq 11, \\ -23 \leq 1 \leq 24 \end{gathered}$ | $\begin{aligned} -30 & \leq \mathrm{h} \leq 30 \\ -21 & \leq \mathrm{k} \leq 19 \\ -31 & \leq 1 \leq 31 \end{aligned}$ |
| Reflections collected | 92180 | 35698 | 27173 | 70757 |
| | 7443 | 5993 | 5754 | 9385 |
| Indepen | $\begin{gathered} {\left[\mathrm{R}_{\text {int }}=0.0404,\right.} \\ \left.\mathrm{R}_{\text {sigma }}=0.0155\right] \end{gathered}$ | $\begin{gathered} {\left[\mathrm{R}_{\text {int }}=0.0344,\right.} \\ \left.\mathrm{R}_{\text {sigma }}=0.0240\right] \end{gathered}$ | $\begin{gathered} {\left[\mathrm{R}_{\text {int }}=0.0397,\right.} \\ \left.\mathrm{R}_{\text {sigma }}=0.0249\right] \end{gathered}$ | $\begin{gathered} {\left[\mathrm{R}_{\text {int }}=0.0280,\right.} \\ \left.\mathrm{R}_{\text {sigma }}=0.0200\right] \end{gathered}$ |
| Data/restraints/ parameters | 7443/199/572 | 5993/0/450 | 5754/0/308 | 9385/60/336 |
| Goodness-of-fit on F^{2} | 1.091 | 1.060 | 1.087 | 1.022 |
| Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$ | $\begin{gathered} \mathrm{R}_{1}=0.0306 \\ \mathrm{wR}_{2}=0.0725 \end{gathered}$ | $\begin{gathered} \mathrm{R}_{1}=0.0346 \\ \mathrm{wR}_{2}=0.0807 \end{gathered}$ | $\begin{gathered} \mathrm{R}_{1}=0.0412 \\ \mathrm{wR}_{2}=0.1216 \end{gathered}$ | $\begin{gathered} \mathrm{R}_{1}=0.0347, \\ \mathrm{wR}_{2} 0.0788 \end{gathered}$ |
| Final R indexes [all data] | $\begin{gathered} \mathrm{R}_{1}=0.0330 \\ \mathrm{wR}_{2}=0.0737 \end{gathered}$ | $\begin{gathered} \mathrm{R}_{1}=0.0384 \\ \mathrm{wR}_{2}=0.0824 \end{gathered}$ | $\begin{gathered} \mathrm{R}_{1}=0.0456 \\ \mathrm{wR}_{2}=0.1244 \end{gathered}$ | $\begin{gathered} \mathrm{R}_{1}=0.0520 \\ \mathrm{wR}_{2}=0.0864 \end{gathered}$ |
| Largest diff. peak/hole /e \AA^{-3} | 1.35/-1.65 | 0.76/-1.42 | 0.44/-0.28 | 2.41/-1.70 |
| Flack parameter | 1 | 1 | 1 | 1 |

Table S3. Crystallographic data and structure refinement for compounds 10-13a.

| Compound | 10 | 11 | 12 | 13a |
| :---: | :---: | :---: | :---: | :---: |
| CCDC | 2287439 | 2287447 | 2287449 | 2287452 |
| Empirical formula | $\mathrm{C}_{30} \mathrm{H}_{43} \mathrm{~F}_{6} \mathrm{~N}_{5} \mathrm{P}_{2} \mathrm{Ru}$ | $\mathrm{C}_{86} \mathrm{H}_{126} \mathrm{~N}_{20} \mathrm{Ni}_{2} \mathrm{P}_{4}$ | $\mathrm{C}_{49} \mathrm{H}_{70} \mathrm{~N}_{7} \mathrm{NiPSi}$ | $\mathrm{C}_{49} \mathrm{H}_{69} \mathrm{CoN}_{7} \mathrm{PSi}$ |
| Formula weight | 750.70 | 1681.36 | 874.89 | 874.10 |
| Temperature/K | 123(1) | 123(1) | 123(1) | 123(1) |
| Crystal system | monoclinic | triclinic | monoclinic | monoclinic |
| Space group | $P 2{ }_{1} / n$ | P-1 | $22_{1} / n$ | $P 2{ }_{1} / c$ |
| /® | 14.09840(10) | 13.1335(3) | 21.4772(2) | 19.9005(6) |
| b/Å | 15.6040(2) | 18.3677(3) | 10.28980(10) | $12.7455(4)$ |
| c/Å | 15.7704(2) | 21.1776(3) | 24.4621(2) | 20.2812(5) |
| $\alpha /{ }^{\circ}$ | 90 | 75.2186(13) | 90 | 90 |
| $\beta /$ | 103.1590(10) | 74.7461(14) | 113.8830(10) | 104.681(3) |
| $\gamma /{ }^{\circ}$ | 90 | 79.3989(16) | 90 | 90 |
| Volume/ A 3 | 3378.25(| 4728.10(15) | 4943.13(9) | 4976.2(3) |
| Z | 4 | 2 | 4 | 4 |
| $\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$ | 1.476 | 1.181 | 1.176 | 1.167 |
| $\mu /$ | 3.844 | 1.536 | 1.398 | 3.530 |
| $\mathrm{F}(000)$ | 1544.0 | 1796.0 | 1880.0 | 1872.0 |
| Crystal size/mm ${ }^{3}$ | $\begin{gathered} 0.263 \times 0.175 \\ \times 0.117 \end{gathered}$ | $\begin{gathered} 0.4 \times 0.17 \\ \times 0.07 \end{gathered}$ | $\begin{gathered} 0.218 \times 0.037 \\ \times 0.029 \end{gathered}$ | $\begin{gathered} 0.194 \times 0.108 \\ \times 0.072 \end{gathered}$ |
| Diffractometer | SuperNova, Dualflex, TitanS2 | SuperNova, Dualflex, TitanS2 | XtaLAB Synergy R, DW system, HyPix-Arc 150 | XtaLAB Synergy R, DW system, HyPix-Arc 150 |
| Radiation | $\begin{gathered} \mathrm{CuK} \beta \\ (\lambda=1.39222) \end{gathered}$ | $\begin{gathered} \mathrm{Cu} \mathrm{~K} \alpha \\ (\lambda=1.54184) \end{gathered}$ | $\begin{gathered} \mathrm{Cu} \mathrm{~K} \alpha \\ (\lambda=1.54184) \end{gathered}$ | $\begin{gathered} \mathrm{Cu} \mathrm{~K} \alpha \\ (\lambda=1.54184) \end{gathered}$ |
| 2Θ range for data collection $/{ }^{\circ}$ | 7.292 to 152.734 | 7.384 to 133.816 | 4.632 to 151.536 | 8.272 to 147.978 |
| Index rang | $\begin{gathered} -19 \leq \mathrm{h} \leq 14, \\ -18 \leq \mathrm{k} \leq 21, \\ -22 \leq 1 \leq 21 \end{gathered}$ | $\begin{aligned} & -15 \leq \mathrm{h} \leq 15 \\ & -21 \leq \mathrm{k} \leq 21 \\ & -25 \leq 1 \leq 23 \end{aligned}$ | $\begin{aligned} & -26 \leq \mathrm{h} \leq 25 \\ & -9 \leq \mathrm{k} \leq 12 \\ & -30 \leq 1 \leq 30 \end{aligned}$ | $\begin{aligned} -24 & \leq \mathrm{h} \leq 24, \\ -15 & \leq \mathrm{k} \leq 14, \\ -25 & \leq 1 \leq 18 \end{aligned}$ |
| Reflections collected | 27508 | 87246 | 61155 | 34001 |
| Independent reflections | 9425 | 16655 | 10075 | 9845 |
| Independent reflections | $\begin{aligned} {\left[\mathrm{R}_{\mathrm{int}}\right.} & =0.0455 \\ \mathrm{R}_{\mathrm{sigma}} & =0.0328] \end{aligned}$ | $\begin{aligned} {\left[\mathrm{R}_{\mathrm{int}}\right.} & =0.0762 \\ \mathrm{R}_{\mathrm{sigma}} & =0.0422] \end{aligned}$ | $\begin{gathered} {\left[\mathrm{R}_{\mathrm{int}}=0.0284,\right.} \\ \left.\mathrm{R}_{\mathrm{sigma}}=0.0228\right] \end{gathered}$ | $\begin{gathered} {\left[\mathrm{R}_{\mathrm{int}}=0.0731,\right.} \\ \left.\mathrm{R}_{\mathrm{sigma}}=0.0572\right] \end{gathered}$ |
| Data/restraints/ parameters | 9425/19/ 485 | 16655/12/1039 | 10075/0/548 | 9845/41/636 |
| Goodness-of-fit on F^{2} | 1.028 | 1.023 | 1.027 | 1.087 |
| Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$ | $\begin{gathered} \mathrm{R}_{1}=0.0420 \\ \mathrm{wR}_{2}=0.1134 \end{gathered}$ | $\begin{gathered} \mathrm{R}_{1}=0.0472 \\ \mathrm{wR}_{2}=0.1187 \end{gathered}$ | $\begin{gathered} \mathrm{R}_{1}=0.0455 \\ \mathrm{wR}_{2}=0.1145 \end{gathered}$ | $\begin{gathered} \mathrm{R}_{1}=0.0742 \\ \mathrm{wR}_{2}=0.2055 \end{gathered}$ |
| Final R indexes [all data] | $\begin{gathered} \mathrm{R}_{1}=0.0435 \\ \mathrm{wR}_{2}=0.1150 \end{gathered}$ | $\begin{gathered} \mathrm{R}_{1}=0.0588 \\ \mathrm{wR}_{2}=0.1277 \end{gathered}$ | $\begin{gathered} \mathrm{R}_{1}=0.0546, \\ \mathrm{wR}_{2}=0.1198 \end{gathered}$ | $\begin{gathered} \mathrm{R}_{1}=0.0928 \\ \mathrm{wR}_{2}=0.2178 \end{gathered}$ |
| Largest diff. peak/hole /e \AA^{-3} | 1.44/-0.97 | 0.82/-0.44 | 0.43/-0.61 | 1.30/-0.86 |
| Flack parameter | 1 | 1 | 1 | 1 |

Table S4. Crystallographic data and structure refinement for compounds 13b-15.

| Compound | 13b | 13b $\cdot \mathrm{Et}_{2} \mathrm{O}$ | 14 | 15 |
| :---: | :---: | :---: | :---: | :---: |
| CCDC | 2287453 | 2287454 | 2287455 | 2287456 |
| Empirical formula | $\mathrm{C}_{43} \mathrm{H}_{57} \mathrm{CoN}_{7} \mathrm{PSi}$ | $\mathrm{C}_{47} \mathrm{H}_{67} \mathrm{CoN}_{7} \mathrm{OPSi}$ | $\mathrm{C}_{33} \mathrm{H}_{34} \mathrm{BN}_{5} \mathrm{P}_{2}$ | $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{AlN}_{5} \mathrm{P}_{2}$ |
| Formula weight | 89.94 | 864.06 | 73.40 | 445.45 |
| Temperature/K | 123(1) | 123(1) | 100(1) | 123(1) |
| Crystal system | orthorhombic | triclinic | monoclinic | triclinic |
| Space group | Pbca | $P-1$ | $P 2{ }_{1} / c$ | $P-1$ |
| a/Å | 8.09450(10) | 10.3589(2) | 9.21300 (10) | 0.8379(2) |
| b/Å | 20.35170(10) | $11.93460(10)$ | 17.41410(10) | 11.5326(2) |
| c/Å | 23.53500 (10) | 20.3206(3) | 19.11760(10) | 11.6533(2) |
| $\alpha /{ }^{\circ}$ | 90 | 77.9630(10) | 90 | 67.476(2) |
| $\beta /{ }^{\circ}$ | 90 | 78.3360(10) | 93.0650(10) | 68.607(2) |
| $\gamma /{ }^{\circ}$ | 90 | 76.9380(10) | 90 | 73.5420(10) |
| Volume/ A 3 | 8666.85(7) | 2361.51(6) | 3062.77(4) | 1235.15(4) |
| Z | 8 | 2 | 4 | 2 |
| $\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$ | 1.211 | 1.215 | 1.244 | 1.198 |
| $\mu /$ | 4.003 | 3.730 | 1.522 | 2.066 |
| $\mathrm{F}(000)$ | 3360.0 | 924.0 | 1208.0 | 476.0 |
| Crystal size/mm ${ }^{3}$ | $\begin{gathered} 0.079 \times 0.145 \\ \times 0.206 \end{gathered}$ | $\begin{gathered} 0.344 \times 0.152 \\ \times 0.041 \end{gathered}$ | $\begin{gathered} 0.208 \times 0.165 \\ \times 0.125 \end{gathered}$ | $\begin{gathered} 0.217 \times 0.173 \\ \times 0.143 \end{gathered}$ |
| Diffractometer | XtaLAB Synergy R, DW system, HyPix-Arc 150 |
| Radiation | $\begin{gathered} \mathrm{Cu} \mathrm{~K} \mathrm{\alpha} \\ (\lambda=1.54184) \end{gathered}$ | $\begin{gathered} \mathrm{Cu} \mathrm{~K} \alpha \\ (\lambda=1.54184) \end{gathered}$ | $\begin{gathered} \mathrm{Cu} \mathrm{~K} \alpha \\ (\lambda=1.54184) \end{gathered}$ | $\begin{gathered} \mathrm{Cu} \mathrm{~K} \alpha \\ (\lambda=1.54184) \end{gathered}$ |
| 2Θ range for data collection/ ${ }^{\circ}$ | 7.512 to 151.534 | 7.718 to 151.156 | 6.87 to 151.428 | 8.418 to 150.854 |
| Index range | $\begin{gathered} -22 \leq \mathrm{h} \leq 22, \\ -24 \leq \mathrm{k} \leq 18, \\ -28 \leq 1 \leq 29 \end{gathered}$ | $\begin{gathered} -11 \leq \mathrm{h} \leq 12 \\ -14 \leq \mathrm{k} \leq 14 \\ -25 \leq 1 \leq 25 \end{gathered}$ | $\begin{aligned} -11 & \leq \mathrm{h} \leq 11, \\ -21 & \leq \mathrm{k} \leq 20, \\ -23 & \leq 1 \leq 22 \end{aligned}$ | $\begin{aligned} &-13 \leq \mathrm{h} \leq 10 \\ &-14 \leq \mathrm{k} \leq 14 \\ &-14 \leq 1 \leq 14 \end{aligned}$ |
| Reflections collected | 111365 | 51842 | 26586 | 24260 |
| Independent reflections | $\begin{gathered} 8901 \\ {\left[\mathrm{R}_{\text {int }}=0.0288,\right.} \\ \left.\mathrm{R}_{\text {sigma }}=0.0161\right] \end{gathered}$ | $\begin{gathered} 9607 \\ {\left[\mathrm{R}_{\text {int }}=0.0284,\right.} \\ \left.\mathrm{R}_{\text {sigma }}=0.0223\right] \end{gathered}$ | $\begin{gathered} 6247 \\ {\left[\mathrm{R}_{\text {int }}=0.0210\right.} \\ \left.\mathrm{R}_{\text {sigma }}=0.0172\right] \end{gathered}$ | $\begin{gathered} 4987 \\ {\left[\mathrm{R}_{\text {int }}=0.0223,\right.} \\ \left.\mathrm{R}_{\text {sigma }}=0.0173\right] \end{gathered}$ |
| Data/restraints/ parameters | 8901/0/649 | 9607/0/724 | 6247/0/374 | 4987/0/269 |
| Goodness-of-fit on F^{2} | 1.033 | 1.081 | 1.048 | 1.039 |
| Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$ | $\begin{gathered} \mathrm{R}_{1}=0.0354, \\ \mathrm{wR}_{2}=0.0947 \end{gathered}$ | $\begin{gathered} \mathrm{R}_{1}=0.0371 \\ \mathrm{wR}_{2}=0.0977 \end{gathered}$ | $\begin{gathered} \mathrm{R}_{1}=0.0318 \\ \mathrm{wR}_{2}=0.0831 \end{gathered}$ | $\begin{gathered} \mathrm{R}_{1}=0.0340 \\ \mathrm{wR}_{2}=0.0899 \end{gathered}$ |
| Final R indexes [all data] | $\begin{gathered} \mathrm{R}_{1}=0.0384, \\ \mathrm{wR}_{2}=0.0967 \end{gathered}$ | $\begin{gathered} \mathrm{R}_{1}=0.0413 \\ \mathrm{wR}_{2}=0.0998 \end{gathered}$ | $\begin{gathered} \mathrm{R}_{1}=0.0339 \\ \mathrm{wR}_{2}=0.0845 \end{gathered}$ | $\begin{gathered} \mathrm{R}_{1}=0.0357 \\ \mathrm{wR}_{2}=0.0910 \end{gathered}$ |
| Largest diff. peak/hole /e \AA^{-3} | 0.83/-0.26 | 0.32/-0.33 | 0.33/-0.29 | 1.21/-0.40 |
| Flack parameter | 1 | 1 | 1 | 1 |

Figure S61. Solid-state molecular structure of $\left[\mathrm{W}(\mathrm{CO})_{3}\left\{\left\{\mathrm{~W}(\mathrm{CO})_{5}(\mathbf{2})\right\}\right\}_{3}\right]$ (4): shown at the 50% probability level with hydrogen atoms and non coordinating solvent molecules omitted for clarity. Selected bond lengths $[\AA]$ and angles [${ }^{\circ}$: W1-N2 $2.310(3)$, W1-N7 2.302(4), W1-N12 2.291(4), W1-C1 1.949(5), W1-C2 1.945(5), W1-C3 1.932(5), C1-O1 1.169(6), C2-O2 1.172(6), C3-O3 1.184, N1-N2 1.353(5), N6-N7 1.357(5), N11-N12 1.366(5), P1-W2 2.5084(1), P2-W3 2.5138(1), P3-W4 2.5221(1), N4-N5 1.321(5), N3-N4 1.321(5), N2-W1-C3 175.28(2), N7-W1-C1 175.61(2), N12-W1-C2 177.09(2), N2-W1-C2 97.38(2), N3-N4-N5 104.2(4).

Figure S62. Solid-state molecular structure of $\left[\mathrm{W}(\mathrm{CO})_{5}(\mathbf{2})\right]$ (5) shown at the 50% probability with hydrogen atoms omitted for clarity. The asymmetric unit cell contained a second crystallographically independent molecule with very similar structural parameters; only one of these molecules is shown. Selected bond lengths $\left[\AA\right.$] and angles [${ }^{\circ}$]: N1-W1 2.252(3), W1-C5 2.012(4), C5-O1 1.152(5), P1-C4 1.757(5), P1-C3 1.743(4), C4-N2 1.322(6), N1-N2 1.361(5), N1-C3 1.345(5), C2-C3 1.455(5), C1-C2 1.385(5), N3-N4 1.325(5), N4-N5 1.318(5), W1-C5-O1 173.6(4), C3-P1-C4 85.37(2), P1-C4-N2 $115.6(3), \mathrm{C} 4-\mathrm{N} 2-\mathrm{N} 1111.8(3), \mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 3112.8(3)$, N1-C3-P1 114.5(3), N3-N4-N5 104.3(3), N4-N5-C2 112.8(3), N5-C2-C1 105.3(3), C2-C1-N3 104.4(3), N1-C3-C2-N5 81.2(4).

Figure S63. Solid-state molecular structure of $\left[\left\{\mathrm{W}(\mathrm{CO})_{5}\right\}_{2}(\mathbf{2})\right](6)$ shown at the 50% probability with hydrogen atoms and disorder omitted for clarity. The C13-O9 unit, coordinating to W2, is partially occupied by a THF molecule (refined occupancy: 0.39). Selected bond lengths $[\AA]$ and angles [${ }^{\circ}$]: P1-W1 2.5091(1), N2-W2 2.268(3), W1-C5 2.050(5), W2-C13 2.096(2), W2-O11 2.208(1), C5-O2 1.149(6), C13-O9 1.15(2), P1-C4 1.748(4), P1-C3 1.734(4), C4-N1 1.319(5), N1-N2 1.354(5), N2-C3 1.344(5), C2-C3 1.468(5), C1-C2 1.380(6), N3-N4 1.319(5), N4-N5 1.320(5), P1-W1-C6 176.63(1), P1-W1-C8 88.94(1), N2-W2-C12 174.53(2), N2-W2-C11 98.59(2), C3-P1-C4 87.96(2), P1-C4-N1 112.8(3), C4-N1-N2 113.5(3), N1-N2-C3 113.6(3), N2-C3-P1 112.1(3), N3-N4-N5 104.5(3), N4-N5-C1 112.7(3), N5-C1-C2 104.8(4), C1-C2-N3 105.3(3).

Figure S64. Solid-state molecular structure of $[\mathrm{Cp} * \mathrm{Ru}(\mathbf{2})] \mathrm{PF}_{6}(\mathbf{1 0})$ shown at the 50% probability level with hydrogen atoms and disorder in one of the $i \operatorname{Pr}$ groups omitted for clarity. Selected bond lengths [\AA] and angles [${ }^{\circ}$]: Ru1- $\mathrm{Cp}^{* \text { *entr. }} 1.8189(1), \mathrm{Ru} 1-\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{P}^{\text {centr. }} 1.8219(8), \mathrm{P} 1-\mathrm{C} 11.779(2), \mathrm{P} 1-\mathrm{C} 21.7865(2), \mathrm{N} 1-\mathrm{N} 2$ 1.383(2), N1-C1 1.372(3), N2-C2 1.389(3), C2-C3 1.464(3), C3-C4 1.381(3), C3-N3 1.366(2), N3-N4 1.321(3), N4-N5 1.315(3), C1-P1-C2 85.11(1), P1-C2-N2 115.39(1), C2-N2-N1 111.32(2), N2-N1-C1 112.40(2), C3-N3-N4 112.29(2), N3-N4-N5 104.82(2), N4-N5-C4 112.74(2), N5-C4-C3 105.30(2), C2-N2-C3-N3 9.5(2).

Figure S65. Solid-state molecular structure of [(IMes)Co(vtms) $\left.\left(\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{P}\right)\right]$ (13b) shown at the 50% probability level with hydrogen atoms except $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{SiMe}_{3}$ (positions refined) moiety omitted for clarity. Selected bond lengths $[\AA]$ and angles [${ }^{\circ}$]: Co1-N3 2.0989(1), Co1-N4 2.0082(2), Co1-C7 2.0371(2), $\mathrm{Co} 1-\mathrm{C}_{56}{ }^{\text {centr. }} 1.9409(1), \mathrm{P} 1-\mathrm{C} 31.7442(2), \mathrm{P} 1-\mathrm{C} 41.7682(2), \mathrm{C} 4-\mathrm{N} 51.330(2), \mathrm{N} 4-\mathrm{N} 51.3590(2), \mathrm{C} 3-\mathrm{N} 4$ 1.350(2), C2-C3 1.459(2), C1-C2 1.381(2), C1-N1 1.367(2), N1-N2 1.3454(2), N2-N3 1.3081(2), N6-C7 1.366(2), N7-C7 1.364(2), C5-C6 1.406(2), Si1-C5 1.8528(2), C7-Co1-N4 112.61(6), N3-Co1-C5 91.68(6), N3-Co1-C6 102.11(7), C6-C5-Si1 124.85(1), N6-C7-N7 102.75(1), C3-P1-C4 85.52(8), P1-C4-N5 115.40(1), C4-N5-N4 111.38(1), N5-N4-C3 113.60(1), N4-C3-P1 114.09(1), C1-N1-N2 111.68(1), N1-N2-N3 106.34(1), N2-N3-C2 110.41(1), N3-C2-C1 107.66(1).

Figure S66. Solid-state molecular structure of $\left[(\mathrm{IMes}) \mathrm{Co}(\mathrm{vtms})\left(\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{P}\right)\right] \cdot \mathrm{Et}_{2} \mathrm{O}(\mathbf{1 3 b})$ shown at the 50% probability level with hydrogen atoms except $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{SiMe}_{3}$ (positions refined) moiety omitted for clarity. Selected bond lengths $[\AA]$ and angles [${ }^{\circ}$]: Co1-N3 2.1222(1), Co1-N4 1.9882(1), Co1-C7 2.0316(2), $\mathrm{Col}-\mathrm{C}_{56}{ }^{\text {centr. }} 1.9286(1), \mathrm{P} 1-\mathrm{C} 31.7413(2), \mathrm{P} 1-\mathrm{C} 41.7650(2), \mathrm{C} 4-\mathrm{N} 51.329(2), \mathrm{N} 4-\mathrm{N} 51.3619(2), \mathrm{C} 3-\mathrm{N} 4$ $1.355(2), \mathrm{C} 2-\mathrm{C} 31.460(2), \mathrm{C} 1-\mathrm{C} 21.386(2), \mathrm{C} 1-\mathrm{N} 11.363(2), \mathrm{N} 1-\mathrm{N} 21.345(2), \mathrm{N} 2-\mathrm{N} 31.3174(2), \mathrm{N} 6-\mathrm{C} 7$ 1.367(2), N7-C7 1.374(2), C5-C6 1.406(3), Si1-C5 1.8524(2), C7-Co1-N4 111.34(6), N3-Co1-C5 91.97(7), N3-Co1-C6 102.23(7), C6-C5-Si1 122.65(1), N6-C7-N7 102.37(1), C3-P1-C4 85.63(8), P1-C4-N5 115.60(1), C4-N5-N4 111.27(1), N5-N4-C3 113.43(1), N4-C3-P1 114.06(1), C1-N1-N2 111.79(1), N1-N2-N3 106.48(1), N2-N3-C2 109.93(1), N3-C2-C1 108.02(1).

References

[1] L. Nyulaszi, T. Veszpremi, J. Reffy, B. Burkhardt, M. Regitz, J. Am. Chem. Soc. 1992, 114, 9080-9084.
[2] L. Weber, Angew. Chem. Int. Ed. 2002, 41, 563-572.
[3] F. Mathey, Angew. Chem. Int. Ed. 2003, 42, 1578-1604.
[4] H. Tsuji, K. Sato, Y. Sato, E. Nakamura, J. Mater. Chem. 2009, 19, 3364-3366.
[5] S. Graule, M. Rudolph, W. Shen, J. A. G. Williams, C. Lescop, J. Autschbach, J. Crassous, R. Réau, Chem. - Eur. J. 2010, 16, 5976-6005.
[6] M. P. Washington, V. B. Gudimetla, F. L. Laughlin, N. Deligonul, S. He, J. L. Payton, M. C. Simpson, J. D. Protasiewicz, J. Am. Chem. Soc. 2010, 132, 4566-4567.
[7] Y. Matano, A. Saito, T. Fukushima, Y. Tokudome, F. Suzuki, D. Sakamaki, H. Kaji, A. Ito, K. Tanaka, H. Imahori, Angew. Chem. Int. Ed. 2011, 50, 8016-8020.
[8] Y. Matano, H. Ohkubo, T. Miyata, Y. Watanabe, Y. Hayashi, T. Umeyama, H. Imahori, Eur. J. Inorg. Chem. 2014, 2014, 1620-1624.
[9] M. P. Duffy, W. Delaunay, P.-A. Bouit, M. Hissler, Chem. Soc. Rev. 2016, 45, 52965310.
[10] M. Stępień, E. Gońka, M. Żyła, N. Sprutta, Chem. Rev. 2017, 117, 3479-3716.
[11] A. Schmidpeter, in Compr. Heterocycl. Chem. II (Eds.: A.R. Katritzky, C.W. Rees, E.F.V. Scriven), Pergamon, Oxford, 1996, pp. 771-818.
[12] A. Schmidpeter, in Phosphorus-Carbon Heterocycl. Chem. (Ed.: F. Mathey), Elsevier Science Ltd, Oxford, 2001, pp. 363-461.
[13] V. V. Zhdankin, in Compr. Heterocycl. Chem. III (Eds.: A.R. Katritzky, C.A. Ramsden, E.F.V. Scriven, R.J.K. Taylor), Elsevier, Oxford, 2008, pp. 583-601.
[14] N. Gupta, in Phosphorus Heterocycles II (Ed.: R.K. Bansal), Springer, Berlin, Heidelberg, 2010, pp. 175-206.
[15] A. B. Gamble, in Compr. Heterocycl. Chem. IV (Eds.: D.S. Black, J. Cossy, C.V. Stevens), Elsevier, Oxford, 2022, pp. 410-432.
[16] J. Elguero, in Compr. Heterocycl. Chem. (Eds.: A.R. Katritzky, C.W. Rees), Pergamon, Oxford, 1984, pp. 167-303.
[17] F. Mathey, Chem. Rev. 1988, 88, 429-453.
[18] G. Märkl, S. Pflaum, Tetrahedron Lett. 1986, 27, 4415-4418.
[19] G. Märkl, S. Pflaum, Tetrahedron Lett. 1987, 28, 1511-1514.
[20] G. Märkl, I. Trötsch, Angew. Chem. 1984, 96, 899-901.
[21] W. Rösch, M. Regitz, Angew. Chem. Int. Ed. Engl. 1984, 23, 900-901.
[22] A. Schmidpeter, A. Willhalm, Angew. Chem. Int. Ed. Engl. 1984, 23, 903-904.
[23] K. Karaghiosoff, C. Cleve, A. Schmidpeter, Phosphorus Sulfur Relat. Elem. 1986, 28, 289-296.
[24] W. Rösch, U. Vogelbacher, T. Allspach, M. Regitz, J. Organomet. Chem. 1986, 306, 39-53.
[25] W. Rösch, H. Richter, M. Regitz, Chem. Ber. 1987, 120, 1809-1813.
[26] E. P. O. Fuchs, M. Hermesdorf, W. Schnurr, W. Rösch, H. Heydt, M. Regitz, P. Binger, J. Organomet. Chem. 1988, 338, 329-340.
[27] J. Grobe, D. L. Van, M. Hegemann, B. Krebs, M. Läge, Chem. Ber. 1992, 125, 411-414.
[28] R. Suter, Z. Benkő, H. Grützmacher, Chem. - Eur. J. 2016, 22, 14979-14987.
[29] L. Wan, I. Alkorta, J. Elguero, J. Sun, W. Zheng, Tetrahedron 2007, 63, 91299133.
[30] J. Fidelius, K. Schwedtmann, S. Schellhammer, J. Haberstroh, S. Schulz, R. Huang, M. C. Klotzsche, A. Bauzá, A. Frontera, S. Reineke, J. J. Weigand, Chem 2023, 0 , DOI 10.1016/j.chempr.2023.10.016.
[31] R. K. Bansal, G. Neelima, in Sci. Synth., Thieme Group, 2004, p. 689.
[32] Product Class 23: Diazadiphospholes, Thieme Verlag, 2004.
[33] A. Schmidpeter, C. Leyh, K. Karaghiosoff, Angew. Chem. Int. Ed. Engl. 1985, 24, 124-125.
[34] C. Charrier, N. Maigrot, L. Ricard, P. L. Floch, F. Mathey, Angew Chem Int Ed Engl 1996, 35, 2133-2134.
[35] M.-L. Y. Riu, W. J. Transue, J. M. Rall, C. C. Cummins, J. Am. Chem. Soc. 2021, 143, 7635-7640.
[36] I. Alkorta, J. Elguero, Struct. Chem. 2016, 27, 1531-1542.
[37] P. W. Antoni, C. Golz, J. J. Holstein, D. A. Pantazis, M. M. Hansmann, Nat. Chem. 2021, 13, 587-593.
[38] P. W. Antoni, J. Reitz, M. M. Hansmann, J. Am. Chem. Soc. 2021, 143, 1287812885.
[39] J. Reitz, P. W. Antoni, J. J. Holstein, M. M. Hansmann, Angew. Chem. Int. Ed. 2023, 62, e202301486.
[40] A. Eitzinger, J. Reitz, P. W. Antoni, H. Mayr, A. R. Ofial, M. M. Hansmann, Angew. Chem. Int. Ed. 2023, n/a, e202309790.
[41] J. Reitz, Details of the Synthesis and Characterization of 1 Are Reported in Justus Reitz's PhD Thesis, PhD Dissertation, Universität Dortmund, 2024.
[42] P. Pyykkö, M. Atsumi, Chem. - Eur. J. 2009, 15, 186-197.
[43] P. Pyykkö, M. Atsumi, Chem. - Eur. J. 2009, 15, 12770-12779.
[44] K. Karaghiosoff, A. Schmidpeter, Phosphorus Sulfur Relat. Elem. 1988, 36, 217259.
[45] L. Nyulászi, P. Várnai, W. Eisfeld, M. Regitz, J. Comput. Chem. 1997, 18, 609616.
[46] L. Nyulászi, J. Organomet. Chem. 2005, 690, 2597-2602.
[47] L. Szarvas, Z. Bajko, S. Fusz, S. Burck, J. Daniels, M. Nieger, D. Gudat, Z. Für Anorg. Allg. Chem. 2002, 628, 2303-2310.
[48] M. Mlateček, L. Dostál, Z. Růžičková, M. Erben, Polyhedron 2016, 119, 325334.
[49] G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts, Wiley, Chichester, 2004.
[50] X. Jia, F. Zhao, Inorganica Chim. Acta 2017, 461, 145-149.
[51] H. Schmidbaur, Chem. Soc. Rev. 1995, 24, 391-400.
[52] W. Zheng, G. Zhang, K. Fan, Organometallics 2006, 25, 1548-1550.
[53] J. Yorke, L. Wan, A. Xia, W. Zheng, Tetrahedron Lett. 2007, 48, 8843-8845.
[54] L. Duan, X. Zhang, W. Zheng, Dalton Trans. 2017, 46, 8354-8358.
[55] P. W. Jolly, in Compr. Organomet. Chem. (Eds.: G. Wilkinson, F.G.A. Stone, E.W. Abel), Pergamon, Oxford, 1982, pp. 37-100.
[56] C.-Y. Lin, P. P. Power, Chem. Soc. Rev. 2017, 46, 5347-5399.
[57] M. R. Elsby, S. A. Johnson, J. Am. Chem. Soc. 2017, 139, 9401-9407.
[58] M. R. Elsby, J. Liu, S. Zhu, L. Hu, G. Huang, S. A. Johnson, Organometallics 2019, 38, 436-450.
[59] C. P. Lenges, P. S. White, M. Brookhart, J. Am. Chem. Soc. 1998, 120, 69656979.
[60] D. Wang, Q. Chen, X. Leng, L. Deng, Inorg. Chem. 2018, 57, 15600-15609.
[61] L. J. L. Häller, M. J. Page, S. Erhardt, S. A. Macgregor, M. F. Mahon, M. A. Naser, A. Vélez, M. K. Whittlesey, J. Am. Chem. Soc. 2010, 132, 18408-18416.
[62] D. Schmidt, J. H. J. Berthel, S. Pietsch, U. Radius, Angew. Chem. Int. Ed. 2012, 51, 8881-8885.
[63] K. J. Iversen, D. J. D. Wilson, J. L. Dutton, Dalton Trans. 2014, 43, 12820-12823. [64] R. H. Crabtree, Chem. Rev. 2015, 115, 127-150.
[65] S. Würtemberger-Pietsch, U. Radius, T. B. Marder, Dalton Trans. 2016, 45, 5880-5895.
[66] A. Hernán-Gómez, A. R. Kennedy, E. Hevia, Angew. Chem. Int. Ed. 2017, 56, 6632-6635.
[67] Y. Wang, H. P. Hickox, Y. Xie, P. Wei, H. F. I. Schaefer, G. H. Robinson, J. Am. Chem. Soc. 2017, 139, 16109-16112.
[68] A. A. Danopoulos, A. Massard, G. Frison, P. Braunstein, Angew. Chem. Int. Ed. 2018, 57, 14550-14554.
[69] P. Wang, J. Cheng, D. Wang, C. Yang, X. Leng, L. Deng, Organometallics 2020, 39, 2871-2877.
[70] A. Merschel, T. Glodde, B. Neumann, H.-G. Stammler, R. S. Ghadwal, Angew. Chem. Int. Ed. 2021, 60, 2969-2973.
[71] M. Bochmann, I. Hawkins, M. B. Hursthouse, R. L. Short, J. Chem. Soc. Dalton Trans. 1990, 1213-1219.
[72] J. Du, L. Wang, M. Xie, L. Deng, Angew. Chem. Int. Ed. 2015, 54, 12640-12644.
[73] J. S. Francisco, J. Am. Chem. Soc. 1989, 111, 7353-7361.
[74] H. Marsmann, in Oxyg.-17 Silicon-29 (Eds.: J.-P. Kintzinger, H. Marsmann), Springer, Berlin, Heidelberg, 1981, pp. 65-235.
[75] C. Lepetit, V. Maraval, Y. Canac, R. Chauvin, Coord. Chem. Rev. 2016, 308, 5975.
[76] G. Becker, G. Gresser, W. Uhl, Z. Naturforschung B 1981, 36, 16-19.
[77] R. Uson, A. Laguna, M. Laguna, D. A. Briggs, H. H. Murray, J. P. Fackler Jr., in Inorg. Synth., John Wiley \& Sons, Ltd, 1989, pp. 85-91.
[78] D. F. Evans, J. Chem. Soc. 1959, 2003-2005.
[79] S. K. Sur, J. Magn. Reson. 1969 1989, 82, 169-173.
[80] H. Lueken, C. Elschenbroich, F. Hensel, H. Hopf, Magnetochemie, Vieweg+Teubner Verlag, Wiesbaden, 1999.
[81] G. M. Sheldrick, SADABS, Bruker AXS, Madison, USA, 2007.
[82] CrysAlisPro, Scale3 Abspack, Rigaku Oxford Diffraction, 2019.
[83] R. C. Clark, J. S. Reid, Acta Crystallogr. Sect. A 1995, 51, 887-897.
[84] G. M. Sheldrick, Acta Crystallogr. Sect. Found. Adv. 2015, 71, 3-8.
[85] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. a. K. Howard, H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339-341.
[86] G. M. Sheldrick, Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3-8.
[87] G. M. Sheldrick, Acta Crystallogr. A 2008, 64, 112-122.

7 Summary and Conclusion

Chapter 1. Functionalization of Polyphosphido Ligands Derived from White

Phosphorus
This introductory chapter provides a systematic overview of the diverse chemistry of transition-metal-mediated P_{4} functionalization (Scheme 1), with particular emphasis on recent developments and works relevant to this thesis. The chapter begins with a brief introduction on the relevance of P_{4} transformations and categorizes the current state of this research field into systematic subunits. "One-step activation and functionalization" of P_{4} mediated by transition metals is highlighted, followed by the functionalization of P_{n} ligands within sub-sections based on the number of phosphorus atoms within the ligand: $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}, \mathrm{P}_{4}$, and $\mathrm{P}_{n} \geq 5$.

Scheme 1. Transition-metal-mediated P_{4} functionalization; $[M]=$ transition metal complex.

Chapter 2. Cobalt-Mediated [3+1] Fragmentation of White Phosphorus: Access to Acylcyanophosphanides

Chapter 2 describes the cobaltate complex $[\mathrm{K}(18 \mathrm{c}-6)][(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}(\mathrm{cod})]$ ([K(18c-6)]2-1, 18c-6 = [18]crown-6, Ar* = 2,6-dibenzhydryl-4-isopropylphenyl, BIAN $=1,2$-bis(arylimino)acenaphthene diamine, cod $=1,5$-cyclooctadiene), which is kinetically stabilized by the sterically encumbering Ar*BIAN ligand. It is shown that this complex enables the selective activation of P_{4} by ligand exchange of cod, yielding cyclo- P_{4} complex $[\mathrm{K}(18 \mathrm{c}-6)] \mathbf{2 - 2}$ (Scheme 2). Treatment of anionic $\mathbf{2 - 2}^{-}$with acyl chlorides afforded acylated tetraphosphido complexes 2-3-R in high yields, bearing a range of alkyl and aryl substituents.

Scheme 2. Activation of P_{4} and onward functionalization of $[\mathrm{K}(18 \mathrm{c}-6)] \mathbf{1 - 2}$ with $\mathrm{RC}(\mathrm{O}) \mathrm{Cl}$.
The reaction of $\mathrm{Me}_{3} \mathrm{SiCN}$ or isocyanides with 2-3-R led to partial release of the $\mathrm{P}_{4} \mathrm{C}(\mathrm{O}) \mathrm{R}$ ligand from the coordination sphere of the cobalt center and the formation of the prismane-like complex 2-4-R', as well as endo- and exo-isomers of η^{3}-coordinating tetraphosphido ligands in 2-5-R' (Scheme 3). Treatment of 2-3-R with two equivalents of the cyanide anion facilitated the release of acylcyanophosphanides $[\mathrm{K}(18 \mathrm{c}-6)] \mathbf{2 - 6}-\mathbf{R}$ through a [3+1] fragmentation process and concomitant release of cyclotriphosphido cobalt complex $[\mathrm{K}(18 \mathrm{c}-6)] 2-7$. Insight into the fragmentation reaction was provided through NMR spectroscopic monitoring, which suggested that complexes similar to $\mathbf{2 - 4}-\mathbf{R}^{\prime}$ and $\mathbf{2 - 5}-\mathrm{R}^{\prime}$ are key intermediates en route to anions $\mathbf{2 - 6}-\mathbf{R}^{-}$and $\mathbf{2 - 7}$. Additionally, a second acyl substituent was introduced to $2-6-\mathrm{R}(\mathrm{R}=\mathrm{Cy})$ yielding the first bis(acyl)cyanophosphine $(\mathrm{CyC}(\mathrm{O}))_{2} \mathrm{PCN}(2-8)$, highlighting the useful reactivity of these anions.

Scheme 3. Rearrangement and [3+1] fragmentation reactions of acylated tetraphosphido complexes; $\mathrm{R}^{\prime}=\mathrm{SiMe}_{3}, \mathrm{Cy}, t \mathrm{Bu}, \mathrm{Mes}, \mathrm{Ph} ;[\mathrm{Co}]=[(\mathrm{Ar} * \mathrm{BIAN}) \mathrm{Co}]$.

Overall, the results of this work demonstrate that diimine cobalt complexes are an excellent platform for the functionalization of P_{4} and accessing new (poly-)phosphorus species. Building on this approach, by exploring reactivity between a wider range of polyphosphides and nucleophiles, should open up avenues for the synthesis of unique
phosphorus compounds. Furthermore, reactions of anions $\mathbf{2 - 6} \mathbf{6}^{-}, \mathbf{2 - 6}-\mathbf{R}^{-}$and $\mathbf{2 - 7}^{-}$, as well as neutral 2-3-R with electrophiles give rise to new phosphorus containing compounds, as illustrated by results reported in the following Chapters 3-5.

Chapter 3. Functionalization of Tetraphosphido Ligands by Heterocumulenes

The transition-metal-mediated activation and functionalization of white phosphorus allows the synthesis of distinctive phosphorus-based compounds. However, the selective and effective functionalization of the polyphosphorus ligands in the coordination sphere of transition metals remains underdeveloped. In an extension to the previous chapter, the reactivity of tetraphosphido complexes with a range of electrophilic heterocumulenes was investigated. The first part of Chapter 3 presents the reactivity of anion 2-2- with sulfur diimide $\mathrm{S}\left(\mathrm{NSiMe}_{3}\right)_{2}$ and CS_{2}, which yielded compounds $[\mathrm{K}(18 \mathrm{c}-6)] \mathbf{3 - 1}$ and [K(18c-6)]3-2, respectively (Scheme 4). In these reactions, distinct reactivity electrophilic addition vs. $\mathrm{P}-\mathrm{P}$ bond insertion - was observed, dependent on the substrate. Anion 3-2 ${ }^{-}$features a puckered $\eta^{3}: \eta^{1}-\mathrm{P}_{4} \mathrm{CS}_{2}$ ligand and initial reactivity studies with electrophiles indicated it readily undergoes salt metathesis reactions. In addition, the reaction of $\mathbf{3 - 1}$ with $\mathrm{Me}_{3} \mathrm{SiCl}$ gave rise to the azatetraphosphole complex 3-3. The addition of the $-\mathrm{SiMe}_{3}$ group was found to be a reversible process, as treatment of 3-3 with either cyanide or alkoxide salts regenerated anion $\mathbf{3 - 1}^{-}$. All of the compounds presented within Chapter 3 were characterized using state-of-the-art analytical methods, including single crystal X-ray structural analysis at synchrotron facilities and computational chemistry studies.

Scheme 4. Reactivity of tetraphosphido cobaltate $[\mathrm{K}(18 \mathrm{c}-6)] \mathbf{2 - 2}$ with heterocumulenes.
In the second part of Chapter 3 the reactivity of the neutral complex $\mathbf{2 - 3}-\mathbf{t} \mathbf{B u}$ (see Chapter 2) with related heterocumulenes was investigated. Surprisingly, complex $\mathbf{2 - 3}-t \mathbf{B u}$ exhibited discrepant reactivity with isothiocyanates, undergoing insertion into
the $\mathrm{P}-\mathrm{C}$ bond of the acylated tetraphosphido ligand, yielding the highly derivatized complexes 3-4-R (Scheme 5).

Scheme 5. Insertion of isothiocyanates into the $\mathrm{P}-\mathrm{C}$ bond of 2-3-t $\mathbf{B u}$.
These results are clear examples of the versatility and potential of low-valent polyphosphido complexes to achieve facile and diverse transformations of P_{4}. Considering the increased availability of various cyclo- P_{4} complexes (Chapter 1), this should pave the way to unique phosphorus compounds and lay the essential groundwork for efficient transition-metal-mediated functionalization of P_{4}.

Chapter 4. Synthesis of Polyphosphido Cobalt Complexes through P-P Bond

Condensation

The targeted synthesis of extended polyphosphorus frameworks through $\mathrm{P}-\mathrm{P}$ condensation reactions of suitable cationic and anionic building blocks remains an attractive, yet challenging goal. In extension to the previous Chapters 2 and 3, the reactivity of the tri- and tetraphosphido cobalt complexes $[\mathrm{K}(18 \mathrm{c}-6)] 2-7$ and [K(18c-6)]2-2 with diorganochlorophosphines and cationic phosphorus species was investigated in Chapter 4. The reactivity study commenced with treatment of $\mathrm{K}(18 \mathrm{c}-6)] \mathbf{2 - 2}$ and $[\mathrm{K}(18 \mathrm{c}-6)] \mathbf{2 - 7}$ with $\mathrm{R}_{2} \mathrm{PCl}$ to investigate the accessibility of these cyclo- P_{n} ligands for the synthesis of extended phosphorus frameworks. Thus, the products

4-1-R and 4-2-R were obtained through ring-expansion of the P_{3} ligand by an $\mathrm{R}_{2} \mathrm{P}^{+}$unit (Scheme 6).

Scheme 6. Salt metathesis reactions of cyclo- P_{3} and cyclo- P_{4} cobaltates with diorganochlorophosphines.
Using this approach, the reactivity of anions $\mathbf{2 - 2}^{-}$and $\mathbf{2 - 7}^{-}$with tetracationic cyclo-tetraphosphane $\left[\left(\mathrm{L}_{\mathrm{C}}-\mathrm{P}\right)_{4}\right][\mathrm{OTf}]_{4}\left(\mathbf{4 - 3}, \mathrm{~L}_{\mathrm{C}}=4,5\right.$-dimethyl-1,3-diisopropyl-imidazol-$2-\mathrm{yl})$, an $\left[\mathrm{Lc}_{\mathrm{c}}-\mathrm{P}\right]^{+}$transfer reagent, was also investigated. NMR monitoring of the reaction between $\mathrm{K}(18 \mathrm{c}-6)$]2-2 and $\mathbf{4 - 3}$ revealed the selective formation of cyclotetraphosphido
complex 4-4 and cationic $\mathrm{CoP}_{5} \mathrm{LC}_{\mathrm{C}}{ }^{+}$complex 4-5 as a side product (Scheme 6). Chapter 4 concludes with the synthesis and isolation of the neutral heptaphosphido complex 4-6, obtained from the $1: 2$ reaction of $\mathbf{4 - 3}$ with $\mathrm{K}(18 \mathrm{c}-6)$]2-2. The reaction most likely involves initial 1,1-insertion of a $\left[\mathrm{L}_{\mathrm{C}}-\mathrm{P}\right]_{2}{ }^{2+}$ fragment into the cyclo- P_{4} ring, forming a cationic CoP_{6} intermediate $4 \mathbf{7}^{+}$, as evidenced by ESI-MS analysis.

Scheme 7. Synthesis of the oligophosphido cobalt complexes.
4-7[OTf] $\left(\mathrm{OTF}^{-}=\mathrm{CF}_{3} \mathrm{SO}_{3}^{-}\right.$) disproportionates and gives rise to polyphosphido complexes 4-6 and 4-8, highlighting the synthetic strategy of combining cationic $\mathrm{P}_{n}{ }^{+}$and anionic transition metal polyphosphides TM- ${ }_{n}{ }^{-}$for the synthesis of new oligophosphorus compounds.

Future studies should focus on performing experiments with a range of different anionic and cationic condensation partners to gain access to even larger extended polycyclophosphane scaffolds, as well as gaining further insight into the underlying reaction mechanisms.

Chapter 5. Reactivity of Cyclotetraphosphido and Cyclotriphosphido Cobalt Complexes toward Group 14 Ambiphiles

Heteroatomic tetrahedra (tricyclo[1.1.0.0 $\left.0^{2,4}\right]$ butane) composed of phosphorus and other p-block elements are very scarce, but represent an attractive synthetic goal due to their strained molecular structure and ensuing high reactivity. A transition-metal-mediated approach is promising, involving functionalization of a TM- P_{n} complex with heavier group 14 elements and subsequent release of these functionalized P_{n} ligands. Thus, in

Chapter 5 the reactivity of tri- und tetraphosphido complexes $\mathrm{K}(18 \mathrm{c}-6)] \mathbf{2 - 2}$ and $\mathrm{K}(18 \mathrm{c}-6)$]2-7 with group 14 ambiphiles was investigated, the results of which are summarized in Scheme 8. The 2:1 reaction of anion 2-7 ${ }^{-}$with $[\operatorname{Ar'Ge}(\mu-\mathrm{Cl})]_{2}\left(\mathrm{Ar}^{\prime}=2,6-\right.$ Dipp $_{2} \mathrm{C}_{6} \mathrm{H}_{3}$) led to nucleophilic insertion of the germanium moiety and yielded the first mononuclear example of a germanium functionalized polyphosphido complex in $\mathrm{K}(18 \mathrm{c}-6)] 5-1$. Initial attempts to abstract the chlorine atom from the puckered cyclo- $\mathrm{P}_{3} \mathrm{GeAr} \mathrm{Cl}^{2}$ ligand are also presented. In contrast, upon reaction with cyclo- P_{4} complex 2-2- $\left[\mathrm{Ar}{ }^{\prime} \mathrm{Ge}(\mu-\mathrm{Cl})\right]_{2}$ acts as an electrophile, undergoing salt metathesis to give 5-2 in high yield, highlighting the ampibhilic character of $[\mathrm{Ar} \operatorname{Ge}(\mu-\mathrm{Cl})] 2 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR studies revealed a circumambulatory behavior of the Ar'Ge moiety around the catena- P_{4} ligand, which was inhibited upon cooling of the solution containing 5-2, as evidenced by four distinct signals in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum.

Scheme 8. Reaction of $[\operatorname{Ar} \mathrm{Ge}(\mu-\mathrm{Cl})]_{2}$ with polyphosphido cobaltates.
Overall, the synthesis of compounds 5-1 and 5-2 demonstrates a promising avenue to new complexes featuring mixed group $14 / 15$ ligands by $\mathrm{P}-\mathrm{Ge}$ bond formation. Future investigations will focus on the release of the functionalized polyphosphido moiety to give mixed binary group $14 / 15$ tetrahedranes (e.g. $\mathrm{Ar}^{\prime} \mathrm{GeP}_{3}$) or the development of systems capable of achieving this ligand release.

Chapter 6. 1,2,4-Diazamonophospholes and 1,2,3,4-Diazadiphospholes Derived from Diazoalkenes: Synthesis and Coordination Chemistry

Chapter 6 of this thesis covers the synthesis of elusive $3 H-1,2,4$-diazamonophospholes, and 1,2,3,4-diazadiphospholes derived from the recently reported diazoalkene 6-1 (see Scheme 9), and their coordination chemistry. The new heterocycles 6-2 and 6-3 were synthesized via $[3+2]$ cycloaddition reactions between diazoalkene 6-1 and either tertbutylphosphaalkyne or white phosphorus, respectively. Compounds of the type 6-2 are thought to be intermediates in cycloaddition en route to related $1 H-1,2,4-$
diazamonophospholes but eluded isolation until now. 6-1 and 6-2 were characterized using state-of the art analytical methods including quantum chemical calculations.

Scheme 9. $[3+2]$ Cycloaddition reactions of the nucleophilic diazoalkene $\mathbf{6 - 1}$ with $\mathrm{PC} t \mathrm{Bu}$ and P_{4}.
The coordination behavior of 6-1 and 6-2 was examined toward main group compounds $\left(\mathrm{BPh}_{3}, \mathrm{AlEt}_{3}\right)$ and transition metal $(\mathrm{Co}, \mathrm{Ni}, \mathrm{Ru}, \mathrm{Rh} \mathrm{W}, \mathrm{Au})$ complexes, as (hetero-)phospholes are important ligands. From initial reactivity studies of 6-2 with varying equivalents of $\left[\mathrm{W}(\mathrm{CO})_{5}(\mathrm{thf})\right]$, the three complexes $\mathbf{6 - 4}$, 6-5 and 6-6 were identified (Figure 1, top). From reactions with other metal compounds, further metal complexes of 6-2 were isolated, including mononuclear $\eta^{1}-N-$ and $\eta^{1}-P-c o m p l e x e s ~ 6-7$, 6-8 and 6-9, as well as compounds featuring a higher hapticity by η^{5}-coordination via the aromatic π-system, 6-10 (Figure 1, middle). Furthermore, upon reaction of $\mathbf{6 - 1}$ with electron-rich first-row transition-metal complexes of nickel and cobalt, the 1,2,3-triazole ring of 6-1 underwent $\mathrm{C}-\mathrm{C}$ or $\mathrm{C}-\mathrm{N}$ bond activation to give compounds $\mathbf{6 - 1 1 , ~ 6 - 1 2}$ and 6-13 (Figure 1, bottom).

6-11

6-12

6-13

Figure 1. Various coordination modes of 3H-1,2,4-diazamonophosphole 6-2.

The diazadiphosphole $\mathbf{6 - 2}$ reacted unproductively with the majority of the aforementioned metal complex precursors. Nevertheless, the first complexes of the 1,2,3,4diazadiphosphole class, $\mathbf{6 - 1 4}$ and 6-15, were prepared from reactions with BPh_{3} and AlEt_{3} in high yield, respectively (Scheme 10).

Scheme 10. Coordination of diphosphole 6-2.
In summary, Chapter 6 demonstrates the potential of the new diazoalkene class in accessing new heterocycles through reactions with main group compounds. Taking the increasing accessibility of diazoalkenes into consideration, further tuning of this simple synthetic approach should allow facile access to additional new heterocycles and phosphorus containing compounds with distinct electronic and steric properties.

Conclusion

In summary, this thesis highlights the potential of low-valent cobalt complexes for the functionalization of white phosphorus. Although the coordination chemistry of P_{4} has been studied for decades, targeted and diverse functionalization methods have been added to the underexplored "toolbox" of functionalizing cyclo- P_{4} complexes. Future studies will further investigate the readily accessible cobalt complexes described in this thesis as attractive precursors for the synthesis of novel phosphorus compounds. A particular highlight described herein are the reactions of the anionic cobalt complex ($\mathbf{2 - 2}^{-}$) to afford new monophosphorus compounds by fragmentation of the ligand to liberate P_{1} species from the metal center. The acylated tetraphosphido complexes ($\mathbf{2 - 3} \mathbf{- R}$), as well as the reaction products of the involved [3+1] fragmentation procedure, opened new avenues in phosphorus chemistry. This potential was exemplified by the preparation of highly derivatized tetraphosphido complexes (3-4-R), polyphosphido complexes (4-1 to 4-8), as well as mixed group 14/15 ligands (5-1, 5-2). These results illustrate the versatility of a low-valent transition metal supported by a redox-active ligand for the synthesis of previously inaccessible phosphorus compounds. Thus, it can be confidently predicted that many more exciting aspects and applications of this combination of electron-rich metal and ligand are yet to be discovered. In addition to the aforementioned results, this work has established a foundation for the future synthesis of numerous other compounds derived from P_{4}, including organophosphorus species and transition metal polyphosphido complexes, which are important in both fundamental and applied research.

8 Acknowledgements

Abschließend möchte ich mich bei zahlreichen Leuten für deren Unterstützung bedanken. Zuerst und ganz besonders möchte ich mich bei Prof. Dr. Robert Wolf für die Betreuung in den letzten Jahren bedanken. Danke für die exzellenten Arbeitsbedingungen, die große Freiheit bei meiner Forschung, die Unterstützung bei sämtlichen Belangen und die interessante Aufgabenstellung. Ein großes Dankeschön an unseren Kooperationspartner Prof. Dr. Jan J. Weigand, für das Anfertigen des Zweitgutachtens, die anregenden Diskussionen und den herzlichen Empfang in Dresden. Prof. Dr. Frank-Michael Matysik möchte ich für die Übernahme des Drittprüfers danken. Prof. Dr. Marcel Schorpp danke ich für die Bereitschaft, den Vorsitz zu übernehmen. Vielen Dank an Gabor Balázs, für die anregenden Diskussion, lustigen Kaffeepausen und das Korrekturlesen dieser Arbeit. Weiter möchte ich mich bei den Mitarbeitern der zentralen Analytik und Werkstätten bedanken, insbesondere bei Dr. Michael Bodensteiner, Dr. Stefanie Gärtner, Sabine Stempfhuber, Birgit Hischa und Florian Meurer (Röntgenstrukturanalyse), Georgine Stühler, Fritz Kastner, Veronika Scheidler, Annette Schramm, Tuan Anh Ngyuen und Dr. Ilya Shenderovich (NMR-Abteilung), Barbara Baumann und Helmut Schüller (Elementaranalyse), Markus Lindner (Glasbläserei), Peter Fuchs (Elektronikwerkstatt) und Andreas Graf (Feinmechanik).

Außerdem möchte ich mich bei meinen Kooperationspartnern für die gute Zusammenarbeit und wertvollen Beiträge bedanken. Danke an Prof. Dr. Jan J. Weigand, Dr. Kai Schwedtmann, Clemens Taube, Philipp Royla und Jannis Fidelius (TU Dresden), Prof. Dr. Max M. Hansmann, Dr. Taichi Koike und Justus Reitz (TU Dortmund), sowie Dr. Verena Streitferdt (Universität Regensburg). Für Unterstützung im Labor bedanke ich mich bei Fabian Gliese und Lukas Schober (Bacheloranden), Michael Witzmann und Florian Meurer (Forschungspraktikanten) für ihre Mitwirkung an den Projekten.

Ein großes Dankeschön an alle aktuellen und ehemaligen Arbeitskreismitglieder für die einmalige Stimmung, die schönen Kaffeepausen, lustigen Abende und AK Ausflüge: Christoph Ziegler, Daniel Scott, Julia Leitl, Julia Märsch, John Kelly, Marion Till, Peter Coburger, Thomas Maier, Ulrich Lennert, Alexander Erhard, Benjamin Falge, David Preitschaft, Felix Seeberger, Jannes Rückel, Jose Cammarata, Luis Coelho, Maria Uttendorfer, Martin Gawron, Michael Mende, Riccardo Grande, Sophia Vogler und Yang Liu. Insbesondere den ehemaligen Lab-22 Kollegen, Christian Hoidn, Gabriele Hierlmeier, Marco Fritz; und Karolina Trabitsch für die schöne Zeit an und außerhalb der Uni. Thank you, Thomas Horsley Downie, for proofreading almost every page of this
thesis. Vielen Dank auch an meine Studienkollegen. Ich hoffe der Kontakt bleibt weiterhin so gut. Ein ganz großes Dankeschön auch an meine Freunde aus der Heimat und der Umgebung für die ganz persönliche Unterstützung in vielfältiger und unterschiedlicher Form.

Abschließend möchte ich mich ausdrücklich bei meinen Geschwistern Simon und Samuel, sowie meinen Eltern Gerald und Kunigunde für ihr großes Verständnis und die Unterstützung in vielerlei Hinsicht bedanken. Danke für die Ermutigung in schwierigen Phasen während des Studiums und der Promotion.

9 Curriculum Vitae

Education

| Since 12/2019 | Ph.D. in the group of Prof. Dr. R. Wolf (Institute of Inorganic
 Chemistry), University of Regensburg, theme: "Transformations of |
| :--- | :--- |
| White Phosphorus Mediated by Low Valent Cobalt Complexes" | |

10/2014-09/2017 Bachelor of Science in Chemistry at the University of Regensburg
Bachelor's Thesis in the group of Prof. Dr. R. Wolf (Institute of Inorganic Chemistry), theme: "Synthese von sterisch anspruchsvollen redoxaktiven Iminliganden und deren Umsetzung mit einer niedervalenten Cobaltverbindung "

09/2006-07/2014 Abitur (high school diploma) at the Goethe-Gymnasium in Regensburg; Abitur Subjects: German, English, Mathematics, Chemistry and Religion

Conference Contributions

03/2023

12/2022
09/2022

Oral presentation $-19^{\text {th }}$ European Workshop in Phosphorus Chemistry (EWPC) \& $3^{\text {rd }}$ Spanish Workshop on Phosphorus Chemistry (SWPC), St. Sebastián, Spain

Oral presentation - Christmas Colloquium, Regensburg, Germany
Poster presentation $-21^{\text {st }}$ Conference on Inorganic Chemistry (Wöhler Tagung), Marburg, Germany

| 07/2022 | Poster presentation $-16^{\text {th }}$ International Symposium on Inorganic Ring Systems (IRIS), Graz, Austria |
| :---: | :---: |
| 03/2021 | Poster presentation - Online Workshop on Phosphorus Chemistry (OWPC), Online, Germany |
| 09/2020 | Poster presentation - Vortragstagung für Anorganische Chemie der Fachgruppen Wöhler-Vereinigung und Festkörperchemie \& Materialforschung, Online, Germany |
| 02/2020 | Poster presentation $-17^{\text {th }}$ European Workshop in Phosphorus Chemistry (EWPC), Rennes, France |
| 08/2019 | Oral presentation - Wissenschaftliches Kolloquium von Arbeitsgruppen der Anorganische Chemie, Hirschegg, Austria |
| Awards | |
| 07/2022 | Best poster presentation award at $6^{\text {th }}$ International Symposium on Inorganic Ring Systems (IRIS) |
| 06/2014 | Dr. Hans Riegel-Fachpreis for W-Seminararbeit in Chemistry |

10 List of Publications

1) S. Hauer, T. M. Horsley Downie, G. Balázs, K. Schwedtmann, J. J. Weigand, R. Wolf, "Cobalt-Mediated [3+1] Fragmentation of White Phosphorus: Access to Acylcyanophosphanides", Angew. Chem. Int. Ed. 2024, e202317170; Angew. Chem. 2024, 136, e202317170.
2) S. Hauer, G. Balázs, F. Gliese, F. Meurer, T. M. Horsley Downie, C. Hennig, J. J. Weigand, and R. Wolf, "Functionalization of Tetraphosphido Ligands by Heterocumulenes", Inorg. Chem. 2024, 10.1021/acs.inorgchem.4c00808 (Special Issue: "A Dialogue on Zintl Chemistry")
3) S. Hauer, J. Reitz, T. Koike, M. M. Hansmann, R. Wolf, "Cycloadditions of Diazoalkenes with P_{4} and $t \mathrm{BuCP}$: Access to Diazaphospholes", Angew. Chem. Int. Ed. 2024, e202410107; Angew. Chem. 2024, e202410107.

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; die aus anderen Quellen direkt oder indirekt übernommenen Daten und Konzepte sind unter Angabe des Literaturzitats gekennzeichnet. Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder ähnlicher Form einer anderen Prüfungsbehörde vorgelegt.

Sebastian Hauer

[^0]: ${ }^{[a]}$ The chapter was written by S. Hauer.

[^1]: * Total *-1.00000 $29.9997959 .71539 \quad 0.28482 \quad 90.00000$

[^2]: * Total *-1.00000 $19.9999231 .80237 \quad 0.19770 \quad 52.00000$

