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1. Introduction

1.1. Thunderbolt and lightning

In the dark atmosphere of a thunderstorm, the bright flash of lightning is
a spectacular natural phenomenon that must have fascinated humans since
the dawn of mankind. The awe associated with this force of nature is deeply
rooted in human consciousness. In Greek mythology, Zeus, the king of the
gods, was repeatedly described by the poet Hesiod as wielding a "thunderbolt
and lightning" [1]. These words also appear in modern art, such as in Queen’s
world-famous song Bohemian Rhapsody. Moreover, lightning is probably the
most prominent example of electricity in nature. The connection between the
two, i. e. that lightning is an electrical phenomenon, was not a priori obvious, but
became clear with the flying kite experiment attributed to Benjamin Franklin [2].
Today, it is widely known that lightning is a flow of electric current, typically
between a cloud and the earth, caused by an electrostatic potential difference.
Research has also shown that the shape of lightning forms a fractal, self-similar
pattern [3–5]. Lightning is just one example of an electrical phenomenon that has
shaped culture, art, natural sciences and mathematics. The desire to understand
such phenomena must have been a human desire long before the corresponding
concepts and terminology were developed. Nowadays, we know that electricity
and magnetism are interconnected and deeply rooted in each other, as reflected
by the famous equations of James Clerk Maxwell [6].

This dissertation explores the topic of electricity and magnetic fields at a
small scale, focusing on quantum physical effects. It describes electrons that
can only move on the surface of the bulk of a new class of materials, but not
inside it. It discusses the behaviour of electric currents and voltages in a strong
magnetic field, which results in the conductivity always being a multiple of the
exact ratio between the square of the elementary charge and Planck’s constant.
It also describes electric charges stored in a capacitor with such a low density of
states, that alongside the known electrical capacitance an additional quantum
capacitance appears. It addresses the phenomenon of currents that can flow
with zero resistance due to their macroscopic quantum state, and explains the
process of trapping magnetic flux quanta in an environment with numerous small
holes. And finally, it shows that the electrical resistance in this environment
can, similar to lightning, exhibit a complicated pattern with fractal features.
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1.2. Historical overview

Our understanding of the laws of nature and their description through physics has
grown dramatically since Maxwell’s time. This section lists the most significant
discoveries related to this thesis. It is divided into three parts, addressing
historical developments in the fields of superconductivity, topological insulators
and Majorana bound states.

In 1911, Heike Kamerlingh Onnes discovered superconductivity while
measuring the resistance of mercury at liquid helium temperatures [7]. In 1950,
Vitaly Ginzburg and Lev Landau published their theory explaining the phe-
nomenon of superconductivity [8]. Seven years later, Alexei Abrikosov described
the periodic lattice in which vortices are arranged in type-II superconductors [9,
10]. It was later shown that these Abrikosov vortices can host low-energy excita-
tions called Caroli-de Gennes-Matricon states [11]. In 1984, Bernard Pannetier
demonstrated that a fractal fine structure of the upper critical field line can be
observed in a superconducting network made of small holes [12]. This fractal
fine structure is related to the lower edge of the Hofstadter butterfly energy
spectrum [13].

Quantum physics flourished throughout the first half of the 20th century,
and in the 1940s solid-state physics emerged as an independent discipline [14,
15]. This gave rise to an incredible number of technical developments that have
shaped our lives today. One of the most important of these developments has
been microelectronics. It was in one such microelectronic structure, a metal-
oxide-semiconductor field-effect transistor, that Klaus von Klitzing discovered
the quantum Hall effect in 1980, where the Hall resistance exhibits quantized
values [16, 17]. In 2005, Charles Kane and Eugene Mele described a new class of
materials called topological insulators in two dimensions (2D) [18]. Two years
later, together with Liang Fu, they extended their theory to three dimensions
(3D) [19]. Unlike trivial insulators, these insulators have topologically protected
conducting states between the conduction and valence bands. These states are
located at the edges of a 2D plane or on the surfaces of a 3D bulk [20]. Andrei
Bernevig proposed a CdTe/HgTe/CdTe quantum well system to construct such
a topological insulator [21], which was later realised experimentally [22].

In 1937, the Italian physicist Ettore Majorana postulated the existence of a
new particle in elementary particle physics [23]. This Majorana fermion is unique
in that it is its own antiparticle. The following year Majorana disappeared
in circumstances that remain unexplained to this day [24]. In 2008, 70 years
later, it was again Fu and Kane who proposed that the combination of s-wave
superconductors [25] and topological insulators could lead to the formation of
quasiparticle excitations at their interface, which have properties similar to
Majorana fermions [26]. These quasiparticle excitations are called Majorana
bound states (MBS). When Cooper pairs tunnel into the 3D topological
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insulator due to the superconducting proximity effect, and Abrikosov vortices
with a flux equal to a superconducting flux quantum are present, MBS are
formed at zero-energy in the vortex core [20, 27, 28]. Unlike the fermionic
particles proposed by Ettore Majorana, MBS are not fermionic or bosonic but
follow non-Abelian exchange statistics [29]. They are also known as anyons
because they can have ’any’ phase when two particles are interchanged [30,
31]. The properties of MBS make them suitable candidates for fault-tolerant
quantum computation, which is the main driver for the search for them [32].

This thesis is related to or builds upon all the physical discoveries mentioned
above. However, it is important to note that this is not a complete list, as there
are undoubtedly many more historically significant names and discovered effects
that could be included in this introduction.

1.3. Initial motivation

The unifying element of the experiments described in this thesis is the initial
motivation: the search for signs of Majorana bound states in a heterostructure
consisting of a superconductor and a strong 3D topological insulator based on
HgTe. Niobium (Nb) was chosen as the superconductor for this purpose. The
Nb layer is perforated with an array of periodically arranged holes, the so-
called antidot lattice. This is displayed in figure 1.1. Assuming a square

MBS

Fig. 1.1.: Simplified illustration of the emergence of Majorana bound states. A
film of superconducting Nb (red), perforated with antidots, is deposited on the 3D
topological insulator made of HgTe (purple). The yellow material is CdTe, which
was removed around the antidots so that the HgTe surface states (magenta, only
shown for top surface) can be proximitized by the superconducting Nb. Magnetic
field lines are shown in green, depicting a single vortex with one flux quantum Φ0.
The zero-energy MBS (orange) are expected at the proximitized surface states of the
HgTe. Topgate and insulator are not shown for clarity in this figure.
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lattice constant a□, an external magnetic field of B = Φ0/a2
□ can generate

exactly one flux quantum Φ0 per antidot. The vortices tend to be located
inside the antidots, as the antidots act as pinning centres [33]. Additionally,
at millikelvin temperatures the HgTe is proximitized by the superconducting
Nb [34, 35]. When all of these factors are combined, each antidot is expected
to host zero-energy MBS [28]. The antidot cavity also serves the purpose of
eliminating the Caroli-de Gennes-Matricon states [11, 36, 37], which would
otherwise be challenging to differentiate from the MBS [38]. To detect the MBS,
an electrical insulator and a metallic top gate are applied on top of the HgTe-Nb
heterostructure, creating a capacitor. When the capacitance of such a system
is measured, the so-called quantum capacitance appears in addition to the
capacitance associated with the dielectric medium. This quantum capacitance is
directly proportional to the thermodynamic density of states of the system [39].
The presence of Majorana bound states (MBS) in the antidots is expected to
lead to an increased density of states, which should be reflected by a larger
capacitance signal.

No evidence of MBS was found during the research phase of this thesis.
However, a number of interesting physical effects were observed, which can
be grouped together into two types of experiments. This thesis focuses on
describing these effects.

1.4. Abstract

The first experiment discussed in this thesis investigates strained 3D HgTe, a
strong topological insulator with conducting surface states [19]. Figure 1.2 (a)
shows a pronounced quantum Hall effect observed at millikelvin temperatures
in a magnetic field perpendicular to the sample geometry. This effect occurs
despite the fact that the current is carried by electrons from the top surface,
the bottom surface, and the bulk conduction band. Transport measurements
were performed in a 4-terminal Hall geometry. Here, all charge carrier classes
contribute to the current flow. 2D colour plots of the conductivity reveal
different coexisting Landau fans, each of which can be assigned to a distinct
electron species. Additionally, the magnetocapacitance was measured. The low
density of states of a two-dimensional electron system (2DES) allows for the
observation of the quantum capacitance, which is directly proportional to the
thermodynamic density of states [40, 41]. This also permits drawing conclusions
about the Landau levels. Since the capacitance measurements primarily probe
the uppermost layer of charges, below 6 T only one Landau fan belonging to
the 2DES of the top surface can be observed [39]. At high magnetic fields, the
picture changes. Both the transport and capacitance measurements consistently
show only one Landau fan, reflecting the total electron density of the system.
The conclusion is that as the magnetic field increases, the different Landau levels
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Fig. 1.2.: (a) Quantum Hall effect (black), Shubnikov-de Haas oscillations (turquoise)
and capacitance (magenta). (b) Integer flux periodic resistance oscillations with
fractional features.

merge into a single Landau fan. Consequently, at sufficiently high magnetic
fields only one carrier species remains.

For the second experiment, a superconducting niobium film was deposited
onto the HgTe. The film is perforated with an array of periodically arranged holes,
so-called antidots. When an external magnetic field is applied perpendicular to
the sample geometry, vortices with quantized magnetic flux are formed in the
Nb [9]. The vortices tend to be trapped inside the antidots due to the attractive
pinning potential of the antidots [33]. If the periodicity of the antidot lattice
is commensurable with the strength of the magnetic field, the vortices form a
stable lattice. The trivial case is when there is exactly one flux quantum per
antidot, and the vortices assume the geometry of the perforated lattice [42].
The pinning properties of the antidots have been observed through transport
measurements, which showed periodic oscillations of the resistance as a function
of magnetic flux, as shown in figure 1.2 (b). Moreover, measurements of the
differential resistance show that the integer pinning configurations remain stable
even at high currents. Additionally, more detailed resistance measurements also
reveal a pronounced fractional fine structure, which is associated with the lower
edge of the fractal energy spectrum of the Hofstadter butterfly [12, 13]. This
suggests complex yet stable lattice configurations of the vortices.

1.5. Thesis outline

The physics involved in the experiments on HgTe and those on Nb-HgTe
heterostructures are very different. This thesis is structured to avoid a large
separation between the theoretical and the corresponding experimental chapters.
The thesis is therefore organised as follows:

• Chapter 2 introduces topological insulators with a focus on 3D HgTe.
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The chapter provides a concise overview of the key aspects of theoretical
physics that are necessary for understanding the following chapters.

• Chapter 3 proceeds with an explanation of transport in 2D electron
systems, including the Drude model, the integer quantum Hall effect, and
the concept of quantum capacitance. All of these topics are essential for
the understanding of the results presented in chapter 6.

• Chapter 4 covers the fabrication of the samples, outlining each step, with
a particular emphasis on antidot lattices.

• Chapter 5 explains the cryogenic measurement techniques. As a variety
of setups were used to measure the samples, these are described individ-
ually. The chapter primarily focuses on the difficulties of capacitance
measurements and their solutions.

• Chapter 6 presents the magnetoresistance and capacitance measurements
on the HgTe samples. It begins by detailing the complex characterisation
of the wafer and the associated electrostatic model. The Landau levels
observed in the capacitance and conductivity colour maps are then assigned
to the individual two-dimensional electron and hole systems. It concludes
with a section showing that at very high magnetic fields, the individual
systems merge into a single system.

• Chapter 7 is a theoretical chapter discussing superconductivity with a
focus on the Ginzburg-Landau theory, which is briefly introduced. Subse-
quently, the behaviour of vortices in the superconductor is explained. In
particular, an understanding of the interactions between the vortices and
the antidots is established. This lays the foundation for understanding
the results presented in chapter 8.

• Chapter 8 shows experimental results of the observed pinning behaviour
of the vortices in heterostructures made of Nb antidots and HgTe. The
chapter starts with a characterisation of Nb. Then the integer pinning
characteristics of the vortices are analysed. This is done by studying the
number of vortices that can be pinned per antidot and how the pinning is
affected by the current. Finally, the fractional pinning features that occur
are presented and an attempt is made to determine their fractional values.

• Chapter 9 summarizes the results and discusses possible opportunities
and challenges.

• Appendix A contains a list of the individual sample fabrication steps
belonging to the fourth chapter.

• Appendix B supplies additional data sets of the experimental results.



2. Topological insulators

Topology is a mathematical discipline concerned with the properties of geometric
objects that remain unchanged when the objects undergo continuous deformation.
For instance, a cup with a handle can be compared to a simit, a round loaf
of bread with a hole in the middle (shaped like a torus). Both objects have a
single hole. The key aspect is that the shape of the cup can be continuously
altered until it becomes the shape of the simit, without closing or opening a
hole. Therefore they are in the same topological class. For a counterexample, a
sphere with no holes or a pretzel with three holes can be considered. It would
be necessary to open or close the holes in order to continuously deform one
into the other. Both of these objects therefore belong to distinct topological
classes.

In solid-state physics, topology is also utilized. There, the closing and
reopening of energetic gaps within the band structure is necessary to transform
materials of different topology from one to another. The topological properties
of insulators can be compared by analysing their potential for transformation
into one another and determining whether it is necessary to open or close a band
gap during the process. This opening or closing of the band gap is equivalent to
the opening or closing of the hole. One can distinguish between trivial insulators,
such as vacuum or SiO2, and topological insulators, such as HgTe, as they are
characterised by topological invariants [43].

Topological insulators (TI) are materials which are electrically insulating
within their bulk, whilst being conductive on their surface. Figure 2.1 shows,
that the surface states also exist within the band gap and are therefore called
gapless. The 3D TIs based on HgTe which were investigated in this thesis have a
three-dimensional, insulating bulk and two-dimensional, conductive topological
surface states.

The detailed theoretical explanation of topological physics extends beyond
the scope of this thesis. However, in order to understand the experimental
results of this study, a rather concise theoretical framework is presented here.
First, the concept of the Berry phase is introduced briefly. This is required for
the derivation of the topological invariant known as the Chern number C. The
latter has a significant role in the categorization of the quantum Hall effect, as it
is equivalent to the filling factor ν. This is followed by a brief discussion of the
periodic table of topological invariants and the Z2 invariant, which is used to
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Fig. 2.1.: Simplified HgTe band structure. As an example for the electronic band
structure of a topological insulator, the simplified energy dispersion of 3D HgTe is
presented. The band gap Eg is spanned by the bottom of the conduction band EC

shown in blue, and the top of the valence band EV shown in red. In contrast to trivial
insulators, there are additional gapless topological surface states (TSS) which are
shown in magenta.

classify TIs in 3D. Afterwards, the particular properties of the surface states are
explained. Finally, the topic is narrowed down to HgTe: to understand how the
chemical compound HgTe becomes a 3D TI, it is essential to elaborate on three
fundamental aspects. The first is the inverted band structure, the second is the
occurrence of surface states, and the third is the emergence of the band gap.
The book by Gross and Marx [43] provides a clear overview of the topic. An
in-depth analysis can be found in the textbooks of Shen [20] or Bernevig [44].

2.1. Berry phase and Chern invariant

The Berry phase is named after Michael Victor Berry, who published his work
on the concept in 1984 [45]. The role of the Berry phase in Bloch-periodic
systems in solid state physics was further developed by Joshua Zak [46].

In a crystal, an electron is described by eigenfunctions which are called
Bloch functions Ψn,k(r). Here, k is the crystal momentum vector, r is the
position and n refers to the nth energy band. The energy eigenstates of the
Hamiltonian H(k) are then given by

un,k(r) = e−ik·rΨn,k(r), (2.1)

whereas e is Euler’s number and i =
√

−1 is the imaginary unit. The Berry
connection of the nth band is then defined as [47]

An(k) = i⟨un,k|∇k|un,k⟩. (2.2)

This Berry connection is used to derive the Berry phase γn, which is

γn = i
∫

BZ
An(k)dk = i

∫
BZ

⟨un,k|∇k|un,k⟩dk. (2.3)
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The Berry phase is dependent on the path of the line integral selected in the
Brillouin zone (BZ). This is why it is also called the geometric phase [43]. It
has been experimentally found in the topological surface states of HgTe [39].
In order to proceed with the topic of topological invariants, it is first necessary
to introduce another variable known as the Berry curvature Ωn(k), which
corresponds to the curl of the Berry connection An(k):

Ωn(k) = ∇k × An(k) = i∇k × ⟨un,k|∇k|un,k⟩. (2.4)

The Berry phase plays a key role in defining the Chern number C, the first
topological invariant to be treated here. The Chern number Cn of the nth
band is the integral of the Berry-curvature over the Brillouin zone [43]:

Cn = 1
2π

∫
BZ

Ωn(k) · n̂ d2k, (2.5)

with n̂ being the unit normal vector. The integral over the BZ always results
in an integer multiple of 2π, so the Chern number Cn is an integer number.
The total Chern number of the system then results from the sum of the Chern
numbers of the individual bands and is therefore given by

C =
N∑

n=1
Cn. (2.6)

Different topological phases can be distinguished by their Chern number C.
Interestingly, in the quantum Hall effect, C appears in the transversal conduc-
tivity:

σxy = C · e2

h
. (2.7)

The Chern number corresponds to the integer filling factor ν discussed in
section 3.1.3, which indicates how many Landau levels are occupied [43]. The
ratio e2/h is the inverse of the von-Klitzing constant, which will be discussed in
section 3.1.4.

2.2. Altland-Zirnbauer table

Altland and Zirnbauer introduced a system in 1997 to classify TIs and super-
conductors according to a periodic table of topological invariants [48]. To do so,
initially it is necessary to determine which of the three symmetries – time rever-
sal, particle hole, and chiral – apply to the system. As a result of the different
combinations, 10 distinct symmetry classes can be identified. To each of these
symmetry classes, for a given dimension, a specific topological invariant can be
assigned. A system that has time reversal symmetry but broken particle-hole
and broken chiral symmetry belongs to the AII symmetry class. The topological
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invariant corresponding to this class in 3D is the Z2 invariant. This invariant
can be either 0, which represents topologically trivial, or 1, which represents
topologically non-trivial [49–51]. 3D TIs belong into this AII class and are
characterized by four Z2 invariants, namely ν0, ν1, ν2 and ν3 (not to be confused
with the filling factor ν). If the first invariant ν0 = 1, than this describes a
special phase, a so-called strong TI. An example for such a strong TI is the
strained 3D HgTe, the material which is investigated in this thesis [52].

2.3. Bulk-boundary correspondence

TIs, like trivial insulators, are insulating in the bulk. In contrast to these,
however, TIs have the previously mentioned gapless conductive states on the
surface. These states are a result of the non-trivial topology of the band structure.
If a trivial insulator is brought into contact with a TI, the topological invariant
must change at the interface. Due to the different topological classifications,
this cannot happen without closing the band gap at the interface. Therefore,
metallic conductive states arise on the surface of the TI. If the bulk Hamiltonian
H is known, the existence of TSS can be predicted. This is described by the
so-called bulk-boundary correspondence [43, 49, 53, 54]. The surface states
are topologically protected by time-reversal symmetry and exhibit a number of
captivating, distinct properties. Firstly, the TSS have a linear energy dispersion,
forming a Dirac cone (see figure 2.2 (a)). In contrast to the fourfold degenerate
graphene, there is only a single Dirac cone on each of the 6 surfaces of the TI.
Additionally, electrons with spin up have opposite momentum compared to those
with spin down. In other words, electrons with opposite spins move in opposite
directions, as shown in figure 2.2 (b). This phenomenon is known as spin-
momentum locking. Due to this relationship, back scattering from k to −k is
prohibited, as the spin would need to be flipped simultaneously [50, 53, 55].

The previous section explained that the AII class of HgTe has time reversal

(a) (b)

Fig. 2.2.: (a) Dirac-like energy dispersion in k-space of a single surface of the 3D TI.
The spins are indicated by black arrows. (b) Real space picture of the conductive 2D
surface states (magenta). The states are wrapped all around the insulating 3D bulk
material (purple box). Because of spin-momentum locking, the movement of electrons
with spin up is in opposite direction to that of electrons with spin down (adapted
from reference [55]).
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symmetry. However, this symmetry is broken by an external magnetic field. In
this thesis, fields of up to 17 T were used, which raises the question of whether
this affects the TSS. The answer is that their existence is stabilised by the
inverted band ordering, but they are no longer necessarily protected from back
scattering [49, 56].

2.4. Band structure inversion of HgTe

Unstrained bulk HgTe is a semimetal composed of the elements mercury and
tellurium. While both HgTe and CdTe possess a zincblende crystal structure,
only HgTe has an inverted band structure. This band structure inversion of
HgTe was already experimentally observed in 1976 by Groves et al. [57] using
interband magnetoreflection measurements. The exact energies were calculated
by Berchenko et al. [58] only a couple of months later [52, 58, 59].

Both CdTe and HgTe have a similar energy gap Ein which separates the
s-type Γ6 and p-type Γ8 bands. The Γ6 band originates from the cadmium or
mercury atoms, while the Γ8 band originates from the tellurium atoms. Both
systems, CdTe and HgTe, can be described by the Hamiltonian H0. In both
cases, the Γ6 band resides above the Γ8 band. However, to describe the physical
situation accurately, it is necessary to include that the energy bands are altered
due to relativistic corrections of the Hamiltonian, as shown in figure 2.3. This
occurs because CdTe and HgTe consist of heavy elements with large atomic

(a) (b)

Fig. 2.3.: Relativistic corrections of the CdTe and HgTe band structures. (a) The left
part shows the effect of the three terms of Hrel on the Γ6 (yellow) and Γ8 (blue) bands
in CdTe. The initial energy Ein and the relativistic corrections ED, Emv, and ESOC

are indicated. The right part displays a simplified representation of the final energy
dispersion. (b) Relativistic corrections of the band structure in HgTe. The final
configuration indicates that the Γ6 band is below the Γ8 band (adapted from [58]).
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numbers, specifically ZCd = 48, ZTe = 52, and ZHg = 80. [49, 58, 60]. The total
relativistic correction is

Hrel = HD + Hmv + HSOC . (2.8)

The first summand is the so-called Darwin correction HD. This is the additional
energy due to the interaction of the electrons with the atomic nucleus. The
Darwin correction is zero for p-type electrons and finite for s-type electrons.
The second summand comes into play because the mass of a particle increases
at high velocities. It is therefore called the mass-velocity term Hmv. The third
summand gives a necessary correction due to the spin-orbit coupling. HSOC

partially lifts the threefold degeneracy of the p-type Γ8 band. The result, which
can be seen in figure 2.3, is a twofold degenerate heavy and light hole Γ8 band
and a split-off Γ7 band.

The first two summands are significantly larger for HgTe than for CdTe.
Therefore, after performing the calculation correctly, the result is that for HgTe
the Γ6 band is below the Γ8 band and the band structure is inverted, whereas
for CdTe the non-relativistic sequence remains [58, 61].

2.5. Topological surface states

As previously explained, a TI enclosed by a trivial insulator results in the
formation of TSS at the interfaces. In principle, even vacuum would suffice to
give rise to TSS, but in this work, a heterostructure is created by growing HgTe
on top of CdTe. The dominant reason for CdTe as the trivial insulator of choice
is described in section 2.6.

As explained earlier, in CdTe, the Γ6 band is located above the Γ8 band. In
HgTe, however, the Γ8 band is situated above the Γ6 band. Due to symmetry

Fig. 2.4.: Emergence of TSS at the CdTe-HgTe interface. Connecting the Γ8 bands
to each other and the Γ6 bands to each other leads to TSS at the interface of CdTe
and HgTe.
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reasons it is not possible to continuously transform s-type bands into p-type
bands [49]. However, the s-type Γ6 bands may be connected to each other, as
well as the p-type Γ8 bands. This inevitably leads to the two bands crossing at
the interface of the materials and ensures that the TSS with linear energy
dispersion emerge (see figure 2.4), forming a two-dimensional electron system
(2DES) [55].

However, it should be mentioned that the energy dispersion of the TSS in
HgTe is not perfectly linear. Due to a hybridization of the TSS with the valence
band, the dispersion relation deviates slightly from a linear course and gets an
additional, parabolic contribution [59, 62–64].

2.6. Strained HgTe

Growing the HgTe on a CdTe substrate also has an additional, intended effect,
as it opens the bandgap in the semimetallic material. The exact lattice constants
are aHgTe = 0.646 nm and aCdTe = 0.648 nm. The small lattice mismatch of
the two zincblende structures is only 0.3 %. Below a critical film thickness of
200 nm, the HgTe takes on the lattice constant of the CdTe. At larger film
thicknesses, the HgTe lattice constant relaxes. In this work, only wafers with
HgTe thicknesses of 80 nm were investigated, which have been shown to be
completely strained by X-ray diffraction measurements [63, 67]. This uniaxial
strain in the HgTe opens a gap in the Γ8 bands of the otherwise semimetallic
HgTe, as shown in figure 2.5. More precisely, the gap opens up between the

(a) (b) (c)

Fig. 2.5.: Band structure of HgTe at different strain values calculated with ab
initio methods by Wu et al. [65]. (a) Bulk band structure of HgTe without strain.
(b) Bulk band structure of HgTe at 0.3 % strain which opened the band gap between
the Γ8 bands. (c) Close up of the bulk band gap of HgTe at 0.3 % strain and the
gapless topological surface states drawn in pink. The Dirac node is buried in the
valence band (adapted from [65, 66]).
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heavy hole and light hole band of the formerly twofold degenerate Γ8 band. The
bulk HgTe is then insulating and only the non-spin degenerate surface states
remain in the band gap. The HgTe is now a TI [59, 63–65]. The gap size at the
Γ-point is typically reported to be 15 to 20 meV [67–69].

The experiments in this thesis focus on the electrons of the top and bottom
surfaces of the 3D TI, which form two separate 2DESs. When the Fermi energy
is in the conduction band, the bulk electrons also contribute. Empirical evidence
shows that these also behave like a 2DES. When the Fermi energy is in the
valence band, a 2D hole system is observed. This will be demonstrated in
chapter 6.

When describing the band structure of strained HgTe, it is important to
note that the Dirac point, i. e. the point where the two conical surfaces of the
Dirac cone meet, is buried deep in the valence band. At present, it cannot be
accessed by transport experiments as the Fermi level cannot be tuned to this
region [59, 65].



3. Transport in 2D electron
systems

The first section of this chapter describes electron transport in a Hall bar
geometry. The Drude model is used to explain the physics at low magnetic
fields. At higher magnetic fields, Landau quantization may occur, leading to the
quantum Hall effect and Shubnikov-de Haas oscillations. The second section of
the chapter covers electric capacitances. Capacitances are usually associated
with the dielectric medium between two conducting bodies. However, in systems
with a low density of states, such as 2D electron systems, there is an additional
contribution from the so-called quantum capacitance. Both magnetotransport
and quantum capacitance can provide valuable insights into the physics of the
observed sample.

3.1. Magnetotransport

This section’s description of the behaviour of electrons in a two-dimensional
system subjected to a perpendicular magnetic field equally applies to holes.

3.1.1. Hall bar geometry

In the following, a two-dimensional conducting layer with the Hall bar geometry
shown in figure 3.1 is assumed. In the x-direction an electric field Ex is applied
with a current density jx = I

W
. When a magnetic field B is applied perpendicular

to the sample geometry, a Lorentz force acts on the moving charge carriers,
resulting in a charge separation. In response, an electric field builds up in the y-
direction, and counteracts the Lorentz force until both forces are in equilibrium.
The resulting potential difference is the Hall voltage named after Edwin H.
Hall [70, 71].

The electric field E and current density j are connected by a 2×2 resistivity
tensor ρ: (

Ex

Ey

)
=
(

ρxx ρxy

ρyx ρyy

)(
jx

jy

)
. (3.1)

For symmetry reasons this equation can be simplified with ρxx = ρyy and
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y
x

L W II

B

Fig. 3.1.: Hall bar geometry with width W and length L. The current runs in
x-direction, the magnetic field points out of the plane. The longitudinal voltage Ux

and the transversal voltage Uy can be measured by four-terminal sensing.

ρxy = −ρyx [64, 72]. As soon as the system is in the steady-state condition, no
current flows in y-direction and jy = 0. Then, equation 3.1 reduces to [71]

Ex = ρxxjx and Ey = −ρxyjx. (3.2)

Experimentally, the longitudinal resistivity ρxx and the transversal resistivity
ρxy can be directly obtained in a Hall bar geometry by [72]

ρxx = ρyy = Rxx
W

L
= Ux

I

W

L
(3.3)

and by
ρxy = −ρyx = Rxy = Uy

I
. (3.4)

By matrix inversion1, the conductivity tensor σ can be obtained from the

resistivity tensor ρ =
(

ρxx ρxy

−ρxy ρxx

)
by

σ = 1
ρ2

xx + ρ2
xy

(
ρxx −ρxy

ρxy ρxx

)
. (3.5)

Vice versa, one can obtain the resistivity tensor from the conductivity with

ρ = 1
σ2

xx + σ2
xy

(
σxx −σxy

σxy σxx

)
. (3.6)

3.1.2. Diffusive Drude transport

At low magnetic fields, a 2D electron system (2DES) behaves diffusively and
can be described with the Drude model, which was published in 1900 and is
named after Paul Drude [74]. Once again, the descriptions also apply to a 2D

1The inverse A−1 of a 2 × 2 matrix A =
(
a b
c d

)
is given by A−1 = 1

det A ·
(
d −b

−c a

)
[73].



3.1. Magnetotransport 21

hole system (2DHS).
A simple Newtonian equation of motion can be set up, first without magnetic

field, where v is the electron velocity and m∗ the effective mass. The force
acting on an electron with charge e due to the electric field E is considered. In
addition, a friction term is included to provide a phenomenological description
of collisions with defects using a mean scattering time τ and a drift velocity
vd [66]:

m∗ dv
dt

= −eE − m∗

τ
vd. (3.7)

Under the steady state condition dv/dt = 0, we directly obtain a solution for the
drift velocity:

vd = − eτ

m∗ E. (3.8)

The drift velocity is related to the electric field via a proportionality constant
µ = eτ/m∗, which describes the electron mobility. To obtain the current density
the charge carrier density ns is multiplied with the drift velocity [66]:

j = −nsevd = nseµE. (3.9)

In the second step equation 3.8 was used. Now, we additionally consider a
magnetic field perpendicular to the sample geometry in the equation of motion
and obtain [66, 71]

m∗ dv
dt

= −e(E + vd × B) − m∗

τ
vd. (3.10)

Once again the steady state condition is considered and the equations 3.2 are
used. Then, one obtains two expressions which connect the experimentally
measurable resistivities with the material properties ns and µ. Firstly, if ρxy is
measured as a function of the magnetic field, the charge carrier density can
be determined from the slope of the curve by

ρxy = −Ey

jx

= − Bz

ens

. (3.11)

Secondly, once the charge carrier density is known, the electron mobility µ can
be derived from the zero-field resistivity ρxx by

ρxx = Ex

jx

= m∗

nse2τ
= 1

ensµ
. (3.12)

If there is more than one charge-carrier type the situation becomes more dif-
ficult: Then a two-carrier Drude model can be employed to describe ρxx and
ρxy at small magnetic fields. In chapter 6, this approach is employed and
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described [64, 66, 71, 72].

3.1.3. Landau quantization

The classical Drude description of the behaviour of electrons is valid for small
fields. In the case of large perpendicular magnetic fields, high electron mobility
(µB = ωcτ > 1), and low temperatures (kBT < ℏωc) the underlying physics
changes decisively, and a quantum mechanical description is needed. The
cyclotron frequency ωc refers to the circular motion assumed by the electrons
in response to the Lorentz force. The product ωcτ is equal to the number of
cyclotron revolutions an electron completes until the next scattering process.
Consequently, for ωcτ > 1 the electron follows multiple, overlapping circular
orbits and interferes with itself [71]. This leads to an additional quantization of
the system, termed Landau quantization. The density of states is now split into
Landau levels, named after Lew D. Landau [75]. An extensive experimental
description of the physical background can be found in reference [72]. A rather
theoretical approach is discussed in reference [61].

First, we set up the Schrödinger equation of an electron in a magnetic
field [72]: [

(p + eA)2

2m∗ + V (z)
]

Ψ = EΨ. (3.13)

The Hamiltonian H considers the external magnetic field B via the vector
potential A with B = ∇ × A, p stands for the momentum operator, and V (z)
for the confinement potential. As a solution one gets then the following energy
eigenvalues [72]:

En = ℏωc

(
n + 1

2

)
with n ∈ N0. (3.14)

These are similar to the energy eigenvalues of a harmonic oscillator. It is
now evident that the Landau levels have a discrete energetic spacing of ℏωc.
Moreover, the lowest Landau level lies at 1

2ℏωc. The fan-like pattern of LL in
an energy E vs magnetic field B plot (or gate voltage Vg vs B), shown in figure
3.2, is also called a Landau fan.

At large magnetic fields, an additional Zeeman term lifts the degeneracy
of an initially spin degenerate system. The energy eigenvalues are then given
by [72]

E±
n = ℏωc

(
n + 1

2

)
+ sg∗µBBz with n ∈ N0, (3.15)

where s = ±1/2 is the spin quantum number, g∗ is the Landé g-factor, and µB is
the Bohr magneton. Landau levels are highly degenerate. The degeneracy nLL

is directly proportional to the magnetic field and given by

nLL = gs
eB

2πℏ
, (3.16)
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Fig. 3.2.: Oscillations of the Fermi energy EF (blue) as a function of the magnetic
field B. The Landau levels are drawn as black, dashed lines originating at 0 T. Spin
degeneracy is neglected here. E0

F indicates the zero field Fermi energy. With increasing
magnetic field, both the energy spacing between two Landau levels (ℏωc) and the
Landau level degeneracy nLL increase. Thus, more states per Landau level can be
occupied by electrons. If one assumes a constant charge carrier density then at certain
magnetic field values the highest occupied LL is depopulated and the Fermi energy
falls to the next Landau level below. This leads to oscillations of the Fermi energy
which are 1/B periodic (adapted from [76]).

with gs standing for the spin degeneracy factor. The number of occupied, spin
resolved (gs = 1) Landau levels is called the filling factor ν. It can be calculated
by the ratio of occupied states ns to the Landau level degeneracy nLL with

ν = ns

nLL
= ns

(
eB

2πℏ

)−1
. (3.17)

Furthermore, the magnetic flux quantum Φm
0 = h/e can be introduced here.

Eventually, one obtains [72]

ν = ns

(
B

Φm
0

)−1

= nsA

(
Φ

Φm
0

)−1

. (3.18)

In the second step, the magnetic field B is replaced by the magnetic flux Φ per
area A with B = Φ/A. The total number of electrons is given by nsA and the
total number of magnetic flux quanta is equal to Φ/Φm

0 . Consequently, the filling
factor ν also represents the number of electrons per magnetic flux quantum in
the same area.

Until now, Landau levels were assumed to be δ-function shaped peaks. In re-
ality, however, Landau levels are broadened due to disorder and inhomogeneities.
This leads to the so-called localized and extended states (see grey areas in
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Fig. 3.3.: The density of states (DOS) versus energy E for spin-split Landau levels
(solid line). Without the energy broadening discussed below, the Landau levels would
consist of δ-function shaped peaks. These are drawn as vertical dashed lines, which
also simultaneously index the centres of the broadened Landau levels. The spacing
of the Landau levels is ℏωc, the spacing resulting from the spin splitting is g∗µBBz.
For the first spin-split Landau level, the regions with extended states are additionally
highlighted in grey (adapted from [71]).

figure 3.3). The extended states sit close to the centre of the Landau levels [66,
77]. A way to distinguish between Landau and Zeeman gap is the following:
Landau level splitting happens only in a magnetic field perpendicular to the
sample geometry. Zeeman splitting also occurs in parallel fields.

3.1.4. Phenomenological picture of QHE and SdH

The occurrence of Landau levels in the system leads to two related effects which
shall be discussed here. The first is the quantum Hall effect (QHE). It was first
published in 1980 by Klaus von Klitzing et al. [16]. In 1985, he received the
Nobel Prize for its discovery [17]. The transverse resistance ρxy as a function of
the magnetic field shows plateaus with well defined resistance values

ρxy = RK

ν
or σxy = ν

RK
, (3.19)

where RK = h/e2 is the von-Klitzing constant and ν represents an integer
number that corresponds to the filling factor2. Intriguingly, the plateau values
are independent of the sample geometry or sample size and do not depend on
material properties.

In 2018, seven natural constants were defined to a fixed value. This was
done with the aim of providing a basis for a generally applicable redefinition of
the SI units. Among other things, the values for e and h were defined and thus

2ν also corresponds to the Chern invariant C, as mentioned in section 2.1.
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RK is also assigned a fixed, exact value of 25 812.807 45 [...] W [78].
Furthermore, it can be observed that the longitudinal resistivity oscillates

as a function of the inverse magnetic field. The ρxx curve shows flat minima
whenever a plateau is seen in ρxy, and peaks whenever ρxy changes its value.
This is called Shubnikov-de Haas (SdH) effect and was observed by the two
physicists Lev Shubnikov and Wander J. de Haas (see reference [79]).

Figure 3.4 shows an example of a QHE and a SdH measurement. One can
clearly see the SdH peaks and the QHE plateaus. It should be mentioned, that
the graph shows measurements on a more complicated system. However, at high
magnetic fields this system behaves as described in this section and is therefore
sufficient to illustrate the described physics.

The SdH oscillations are related to the carrier density ns. Using equation
3.17 and replacing 2πℏ by h it follows for spin-resolved systems, that

ns = e

h

ν
1
B

. (3.20)

The charge carrier density is obtained experimentally from the distance between
two successive SdH minima [72]:

∇
( 1

B

)
= 1

Bi+1
− 1

Bi

= |e|
hns

. (3.21)

In chapter 6 this equation is applied intensively. There, the described 1/B

periodicity is also used to determine the carrier density from SdH oscillations
originating from holes and from measurements of the sample capacitance.
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Fig. 3.4.: QHE and SdH oscillations. The QHE (black) is typically observed in the
transverse resistance ρxy as a function of the magnetic field B, which exhibits plateaus
at RK/ν. The plateaus corresponding to the filling factors ν = 1 − 3 are labelled
and indicated by grey lines. The Shubnikov-de Haas effect (blue) is observed in the
longitudinal resistance, ρxx. It drops to zero when plateaus are visible in ρxy and
exhibits peaks when ρxy makes a step.
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Besides the integer QHE, there is also the fractional quantum Hall effect
(FQHE) [80]. The FQHE exhibits plateaus corresponding to fractional ν. How-
ever, this topic will not be discussed in this thesis.

3.1.5. Microscopic picture of QHE and SdH

The following section is based on an article by Jürgen Weis [77] and the doctoral
theses of Andreas Gauss [81] and Maximilian Kühn [82]. It provides only a brief
overview of the microscopic picture of the quantum Hall effect. The detailed
picture can be found in the references.

Initially, the edge channel model was used to explain the appearance of
the quantum Hall plateaus and the SdH oscillations. The electrons follow a
cyclotron orbit due to the magnetic field. At the edge of the sample, electrons
are reflected and cannot complete their circular motion. Therefore, they move
along the edge. This picture is called skipping orbits. As a consequence, the
current flow takes place entirely at the edges of the sample in 1D channels [83,
84].

In contrast to this, it has been demonstrated that the current flow is not
restricted to the edges of the sample, but also flows within the bulk3 of the
sample. There are distinct current distributions, each corresponding to a Hall
potential profile, i. e. the profile of the voltage drop over a cross-section of the
Hall bar. This was shown experimentally with scanning force microscopy on
GaAs [85, 86] and theoretically underpinned using self-consistent calculations
of the electrostatic potential from the electron density [87, 88]. These results
strongly contradict the edge-channel picture. Instead, the behaviour is described
with a landscape consisting of electrically compressible and incompressible
regions. This is displayed in figure 3.5 (a) and (b). The compressibility κ is
defined as [89]

κ−1 = n2
s

δµ

δns

, (3.22)

where ns is the charge carrier density and µ is the chemical potential, i. e. the
Fermi energy at T = 0 K.

Within incompressible regions, the Fermi energy EF lies between two
Landau levels, i. e. in a Landau gap. The LL below are completely occupied, the
LL above are unoccupied, resulting in an integer filling factor. As there are no
available states at the Fermi energy, the electrons cannot rearrange themselves.
Consequently, an electrostatic potential gradient cannot be screened and the
resulting behaviour is similar to that of an insulator. The local conductivity
σxx is equal to zero [81]. In compressible regions, the Fermi energy EF lies
in a LL, resulting in a non-integer filling factor. The electrons can now screen

3The term bulk refers to the interior area of a 2D electron system here. Not to be confused
with the bulk of the 3D HgTe.
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Fig. 3.5.: Compressible and incompressible regions in the QHE. The figures (a) and
(b) show electrically compressible and incompressible regions in a semi-infinite 2DES,
assuming a one-sided confinement by an in-plane metallic gate located at negative
y-values. It is energetically favourable to have alternating strips of compressible
(yellow) and incompressible (cyan) regions. (a) In the compressible strips, EF lies
in a partially filled LL, enabling an increase in the charge carrier density ns. Once
the LL is filled, no free states are available, and an incompressible strip is observed
where ns remains constant. A significant quantity of chemical energy µ would be
required to occupy the second LL. (b) Instead, it is energetically more favourable
to bend the LLs downwards below the electrochemical potential µelch. Only once
the next LL intersects with µelch this LL will be filled, causing ns to increase again.
(c) Within one quantum Hall step’s magnetic field interval, three fundamentally
different current distributions emerge. These are indicated with Roman numerals
and elaborated in the main text (Figure (a) and (b) adapted from reference [82],
calculations by Chklovskii et al. [87].).

variations of the electrostatic potential, which is therefore constant in these
regions. A finite local conductivity σxx is obtained.

Assuming a Hall bar and an electrochemical potential difference between its
current contacts, the compressible strips carry the electrochemical potential µelch

4

of the source and drain along opposite edges of the sample, resulting in a Hall
voltage. If there is a plateau in the transversal resistance, a dissipationless
current flows along the Hall bar in the incompressible regions, i. e. along
the x-direction in figure 3.1. If ρxx is measured using the longitudinal 4-point
contacts, the result is zero as there is no dissipation5. If there is a Hall plateau
step in the transversal resistance, i. e. if ρxy increases linearly, then dissipation
takes place in the Hall channel and peaks can be seen in ρxx. The dissipationless
flow of the Hall current is a property of the Hamiltonian’s eigenfunctions [77].
This can also be understood as the current is being carried by the incompressible
regions. In these regions, there are no free states at the Fermi energy, so no
scattering can take place. On the other hand, in compressible regions, scattering
processes occur, leading to dissipation [90].

4µelch considers the chemical potential and the local electrostatic single-electron energy and
is assumed to be constant over the whole 2DES (µelch = µ(r) − eΦ(r) = const.) [85].

5There is still dissipation at both current contacts at the end of the Hall bar [77].
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When examining the cross section of the LL in a 2DES with an electric field
in the y-direction Ey

6, the LL are bended due to the Hall voltage. This results
in a drift in the x-direction and generates the Hall current density jx [77, 85]:

jx = ν
e

h2 Ey. (3.23)

It can now be seen that all occupied LL contribute to the Hall conductivity
ν · e/h2. The current integrated over the width of the Hall bar is [77, 91]

Ix = ν
e2

h
Uy. (3.24)

The quantized Hall resistance occurs when the Hall voltage Uy drops solely
over incompressible regions with the same filling factor within the sample cross-
section [77]. With the equation ρxy = Uy/Ix, the known values of the quantum
Hall plateaus are obtained (see equation 3.19).

It is important to note that in very pure samples, the Hall plateaus become
narrower. Robust quantum Hall plateaus arise due to disorder or inhomo-
geneities, such as static potential fluctuations or electron depletion at the edge
of the sample [77]. Additionally, it should be mentioned that in the QHE regime,
the resistivities ρxx and ρxy, as well as the conductivities σxx and σxy, are local
quantities due to the inhomogeneity of the sample. However, in this thesis, the
values are calculated using the equations from section 3.1.1 and are considered
as averages over the sample geometry.

For a Hall bar based on GaAs, there are three magnetic field ranges that
can be distinguished based on the current distribution. These are numbered
using Roman numerals and their positions within the Hall plateau are depicted
in figure 3.5 (c). The order progresses from small to large magnetic fields, and
from (III) to (I), respectively.
(III) The edge-dominated quantum Hall regime - at the plateau, com-

ing from low magnetic fields. The 2DES exhibits mostly compressible
behaviour except close to the edges where it becomes incompressible. The
Hall voltage drops and the dissipationless current flows at these edges,
causing ρxx to drop to 0 and ρxy to assume a constant value.

Within a plateau, the incompressible strips widen and move towards the centre
of the Hall bar as the magnetic field increases.
(II) The bulk-dominated quantum Hall regime - at the plateau, towards

higher magnetic fields. The incompressible strips merge in the centre of
the Hall bar, resulting in an incompressible bulk. Hence, the Hall voltage
drops in the bulk and the current flows in there. In contrast to the edge
channel picture, there is no current at the compressible edges.

6This assumes the orientation of figure 3.1.
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(I) The classical Hall regime - at the centre of the LL, off-plateau region.
There is a linear drop in Hall voltage over the entire sample width. The
current is now dissipative and flows over the entire sample width. The
2DES is fully compressible, while ρxx is finite and ρxy increases linearly.

This described development of the Hall potential drop and the current distri-
bution is repeated for each plateau. The magnetic field affects the compress-
ible/incompressible landscape within each plateau, but this is not reflected in
the integral current Ix and relation 3.24 remains stable. In the fully compressible
classical Hall regime, there is no quantization in ρxy.

3.2. Capacitance

The experimental part of this thesis investigates the capacitance of a topgate-
insulator-mesa structure. This capacitance is made up of two components: The
first is the geometric capacitance, which is associated with the dielectric medium.
The second is the quantum capacitance, which is of greater interest as it directly
reflects the thermodynamic density of states.

3.2.1. Geometric capacitance

For a metal-insulator-metal plate capacitor the geometric capacitance Cgeo is
determined by

Cgeo = ϵrϵ0
A

d
, (3.25)

where ϵr is the relative permittivity, ϵ0 is the vacuum permittivity, A is the
overlap area of the plates and d is their separation. The calculation of the area A

involves determining the overlap of the plates, as illustrated in figure 3.6 (a).

mesa topgate

(b)(a)

1 2

Fig. 3.6.: Overlapping area A and series capacitance of Cgeo and Cq. (a) The area
of overlap between two parallel plates 1 and 2 of a capacitor, which are placed
closely together (d << A), is denoted by A. In the Boolean algebra terminology A
is determined by the conjunction of plate areas 1 ∧ 2. The geometric capacitance
determined by equation 3.25 only takes this area into account. The capacitor plates
in the experimental part of this thesis are composed of mesa and topgate. (b) The
series connection of geometric capacitance and quantum capacitance results in the
sample capacitance Cs.
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The total geometric capacitance of multiple insulating layers N stacked
between two metal plates can be calculated by the series connection of the
individual capacitances Cgeo, i using

1
Cgeo, tot

=
N∑

i=0

1
Cgeo, i

. (3.26)

Moreover, Cgeo is related to the voltage drop ∆Vgeo by

∆Vgeo = ∆Q

Cgeo

, (3.27)

which shows that an additional charge ∆Q = e∆N is drawn into the system
by ∆Vgeo. Here, e is the elementary charge and ∆N represents the number of
carriers.

3.2.2. Quantum capacitance

In 1987, Serge Luryi described the role of a 2DES (two-dimensional electron
system) in a metal-insulator-2DES structure. Luryi stated that the 2DES func-
tions as an additional capacitor in series to the geometric capacitance [92]. This
was preceded by Kaplit and Zemel in 1968, who used capacitance measurements
to observe Landau levels in a 2DES [93]. Altering the electron density

∆n = ∆N

A
= ∆Q

Ae
(3.28)

in a system with a low density of states D(E) also affects the chemical potential
µ, as the states are filled with electrons:

∆µ = ∆n

D(E) = ∆Q

Ae · D(E) . (3.29)

A variation in the chemical potential ∆µ involves a voltage change [94]:

∆Vq = ∆µ

e
= ∆Q

Ae2 · D(E) . (3.30)

The denominator Ae2 · D(E) is then referred to as the quantum capacitance Cq.
It is crucial to understand that the quantum capacitance is only finite for systems
with a low thermodynamic density of states. For systems with a high density
of states, such as metals, the addition of charge carriers will not significantly
alter the chemical potential. This results in a negligible ∆Vq, and therefore an
infinite CQ. However, in order to affect the capacitance of the sample Cs, the
quantum capacitance must be sufficiently small. This can be seen from the
following derivation. The total voltage change, ∆V , is the sum of ∆Vgeo and
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∆Vq:

∆V = ∆Vgeo + ∆Vq. (3.31)

Equations 3.27 and 3.30 provide the necessary expressions for these voltage
quantities. Along with the expression for the sample capacitance Cs = ∆Q/∆V ,
one obtains

∆Q

Cs

= ∆Q

Cgeo

+ ∆Q

Ae2 · D(E) . (3.32)

This directly shows that Cs is the series capacitance of Cgeo and Cq:

1
Cs

= 1
Cgeo

+ 1
Cq

. (3.33)

The corresponding circuit diagram is shown in figure 3.6 (b). Moreover, it is
evident that for a system with an infinite density of states, i. e. an infinite Cq,
the sample capacitance Cs is reduced to Cgeo. For this reason, for thick metal
layers, capacitance measurements will solely show the geometric capacitance.
Furthermore, in actual measurement setups, so-called parasitic capacitances are
unavoidable. These will be addressed in section 5.2.1.

When measuring the capacitance of a topgate-insulator-mesa structure in
a sample based on HgTe, the primary observation is the density of states of
the top surface of the 3D TI [39]. Consequently, Landau quantization of
the top surface can be observed in the capacitance by applying a magnetic
field perpendicular to the sample geometry. The experimental part of this
thesis comprehensively presents and thoroughly discusses data related to this
phenomenon.

As a final remark of this section, it should be noted that capacitance directly
measures the thermodynamic density of states at the Fermi energy, which
includes the localized states. In transport experiments, only the extended states
contribute to the longitudinal conductivity σxx. Furthermore, σxx is proportional
to the second order of the modulated density of states [95]. This explains why
σxx exhibits sharp peaks, while the capacitance displays wide oscillations.





4. Sample fabrication methods

This section describes the wafer material used and the fabrication process that
enables transport and capacitance measurements. First, a small fragment, now
called sample, is broken out of the wafer. A Hall bar geometry is then etched
into the sample to enable carrying out four-point measurements. Following
this, two layers of electrical insulators are applied to cover the entire sample
area. Finally, a metallic electrode is deposited which overlays the Hall bar. This
topgate allows tuning of the Fermi energy within the band structure and is
utilized for capacitance measurements.

For all processes, it is essential to ensure that a temperature of 100 ◦C is not
exceeded. At higher temperatures there is always the danger of diffusion effects of
the mercury, which would make the sample unusable for the experiments [96].

Comprehensive explanations of sample fabrication are contained in previously
published works by Johannes Ziegler and Hubert Maier [64, 66]. Consequently,
only the most relevant aspects will be covered here. Appendix A features a list
showing all individual steps of sample fabrication. This includes the specific
chemicals used and other items relevant to the processes.

4.1. Wafer material

All HgTe wafers, which were used in this work, were grown in the Rzhanov Insti-
tute of Semiconductor Physics, Novosibirsk. For the experiments in chapter 6,
the n-doped wafer with the number 190301 was used. Figure 4.1 (a) displays the
material system which comprises of individual layers with specific thicknesses7.
First, a 30 nm thick ZnTe layer is deposited on top of (013)-oriented 400 µm
of GaAs using molecular beam epitaxy. This is succeeded by a 5 − 6 µm thick
CdTe layer. As described in section 2.6, the CdTe induces strain into the subse-
quent 80 nm thick HgTe layer, which opens the gap within the band structure.
Additionally, two 20 nm thick CdxHg1−xTe buffer layers enclose the HgTe. This
enhances the electron mobility µ of the system by an order of magnitude and
reduces the bulk impurity concentration [68, 97]. Moreover, the CdxHg1−xTe
buffer layers are heavily n-doped with indium atoms. The doping extends to
a thickness of 10 nm within each buffer layer. The bulk density of the indium

7The information on the thicknesses of the individual layers of the wafers was obtained from
a private conversation with N. N. Mikhailov.
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40 nm CdTe
5 nm CdTe

(a)    190301 (b)    150213

Fig. 4.1.: Cross section, not to scale, of the wafers with numbers 190301 and 150213.
(a) The HgTe is sandwiched by symmetrically doped CdxHg1−xTe buffer layers. The
doping is indicated in red. Below is an explanation and description of the individual
layers. (b) The wafer has a similar structure, but has a very thin CdTe cap layer and
is not doped.

atoms is 1 × 1017 cm−3. This increases the electron density within the HgTe
and alters the electrostatics of the system. The wafer structure is closed with a
40 nm CdTe cap layer.

For the experiments in chapter 8, the wafer with number 150213 was used.
It has a similar structure and is depicted in figure 4.1 (b). However, there are
some notable differences: firstly, there is no modulation doping. Secondly, the
CdxHg1−xTe buffer layer above the HgTe is absent, and the CdTe cap layer
thickness is significantly thinner at only 5 nm. This wafer was the preferred
choice for fabricating samples with Nb antidots as the cap layer had to be
removed to create direct contact between Nb and HgTe. A thinner cap layer is
more easily removed using the available etching processes. Furthermore, it also
enables the lift-off process described in section 4.3.

4.2. Hall bar etching

First, the wafer is broken into samples of a suitable size of about 4 x 4 mm. The
conducting HgTe is partially etched, leaving only the shape of a Hall bar and
its associated electrical contacts. This is depicted in figure 4.2.

After cleaning the sample, a resist sensitive to ultraviolet (UV) light is
dripped onto it. By so-called spin coating, i. e. fast mechanical rotation of the
sample, the resist is evenly distributed and gets a largely homogeneous layer
thickness. Subsequent heating of the sample at 80 ◦C, the baking, hardens it.
The hardened resist is then exposed to UV light by means of optical lithography.
Between the UV lamp and the sample is a transparent, photolithographic quartz
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(a) (b)

Fig. 4.2.: (a) Typical sample design from a bird’s eye view. The mesa measures
approximately 3.5 mm x 2.5 mm. Ten contact pads are visible at the edges, each
with an approximate size of 700 µm x 700 µm. During the measurement, current
runs through two of the contacts, and a four-point voltage can be measured at the
remaining eight contacts. All contacts lead to the sample centre, where two Hall
bar structures are available for experiments. (b) Enlargement of the image section
indicated with a red rectangle on the left displays a typical Hall bar. As illustrated
in figure 3.1, the current typically goes through the left and right contacts, and the
upper and lower ones function as voltage taps.

glass mask. A layer of chromium on the mask obstructs UV light in certain
regions. It serves as a template pattern for the photosensitive resist. Thus,
only certain structures of the resist are exposed to UV light, which causes the
long-chain polymers of the resist to be broken down into shorter structures.
Subsequent chemical development of the resist causes the exposed short-chain
structures to dissolve and only the unexposed resist remains [98]. The absolute
limit of the resolution of this system is determined by the wavelength of the UV
light. However, based on experience, structures a few micrometers in size can be
fabricated. The desired shape, specified by the template of the chromium-plated
mask, is that of a Hall bar with large contact fields.

The remaining resist then serves as protection for the subsequent etching
process. Wet chemical etching with bromine has proven to be more advan-
tageous than dry etching with argon ions. The latter significantly reduces the
mobility of the electrons in the HgTe [64, 99]. In the more careful wet chemical
etching, the sample is immersed in a solution of bromine, ethylene glycol and
water at 0 ◦C. A steady temperature is a prerequisite for a constant etching
rate [100]. After an experimentally determined time of 4 min, approximately
200 nm of the wafer are removed by etching. This is sufficient to remove the cap
layer and the HgTe and allows electrical current to flow only in the designated
areas defined by the mask. After the resist layer has been chemically removed,
the etching depth can be confirmed by measuring the surface profile and thus
unwanted current paths can be excluded.



36 4. Sample fabrication methods

4.3. Antidot fabrication

This section describes the procedure used to fabricate superconducting niobium
(Nb) antidots on the HgTe Hall bar, which are investigated experimentally in
chapter 8. As the fabrication of the antidots posed a major challenge, the
individual steps and difficulties are described in detail. Benedikt Kopyciok,
Marcel Hild and Lukas Rupp investigated various ways of building antidots as
part of their theses, making a noteworthy contribution to the success of the
project. For the experiments described in chapter 6, this fabrication step was
omitted, and the topgate was deposited directly.

Recipes were optimized based on three different resists: chemical semi-
amplified resist (CSAR), polymethyl methacrylate (PMMA), and Allresist-
negative 7520 (AR-N 7520). In all three cases, the resist was exposed using
electron beam lithography (EBL). The major advantage of using EBL over
optical lithography is its significantly higher resolution limit. However, this is
not given by the de Broglie wavelength of the electrons, which is approximately
7 pm at an acceleration voltage of 30 kV [101]. Rather, the forward scattering of
the electrons in the resist and backscattering from the substrate beneath the
resist play significant roles [102]. As a result, the actual resolution is well below
the de Broglie wavelength. In this doctoral thesis, antidots with a diameter of
40 nm have been realized.

In figure 4.3 the individual steps of the antidot fabrication are sketched. As
a first step, (a) an electron-sensitive resist is applied to the sample. Spin
coating ensures that the resist becomes uniformly thick. The resist is then
baked to evaporate the solvents. (b) Next, the resist is exposed by EBL and
immersed in a (c) developing chemical. This removes part of the resist and
only circular resist columns remain. After the resist development step, the CdTe
cap layer is removed, followed by the metallisation. Both of these processes take
place in situ8 in an UHV chamber, i. e. without exposure to air in between the
processes. (d) The CdTe layer is removed with Ar+-etching. However, this
does not only remove the CdTe layer but is also prone to harm the resist. To
avoid this problem, it is necessary to minimise the exposure to etching as much
as possible. This was accomplished by using a wafer with a thin CdTe cap layer.
This thin cap layer was the decisive factor why wafer number 150213 with only
5 nm of CdTe was used for the samples with antidots. (e) 3 nm of Titanium
(Ti) are evaporated using an electron gun and then deposited onto the sample.
This serves as a seed layer for the following Nb deposition and enhances the
HgTe-Nb interface quality [104]. The Nb is deposited via Ar+-sputtering,
which involves accelerating argon ions towards a Nb target. During the collision,
these ions detach parts of the target, which are subsequently deposited on
the sample. Initially, attempts were made to work with a layer thickness of

8Latin, meaning "on site" [103]
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(a) (b) (c)

(d) (e) (f)

Fig. 4.3.: Schematic illustration of the sequential fabrication steps for Nb antidots
on an HgTe wafer. The figures are not to scale. (a) Resist application: The het-
erostructure consisting of HgTe (purple) and CdTe (yellow) is coated with an electron
sensitive resist (light green). (b) Example of electron beam lithography on a positive
resist: The regions where Nb is intended to remain in the final sample are exposed
with EBL (slightly darker green). (c) Resist development: The exposed areas of the
resist are removed through chemical development. Only the periodically arranged
resist columns remain. Any possible undercut of the resist is not displayed here.
(d) Ar+-etching: The CdTe layer is removed in areas not covered by resist using argon
ions. This is followed by (e) metallization in ultra-high vacuum (UHV), where 3 nm
Ti, 30 nm Nb and 3 nm Pt (shown in red) are deposited on the HgTe and on the
resist columns. (f) In the lift-off step, the resist columns and the overlying metals are
removed using a remover chemical and the mechanical force of an ultrasonic bath.
The final result is a layer with holes arranged in a periodic pattern, the antidots
(Figure has been created with the support of Benedikt Kopyciok.).

100 nm, but this significantly decreased the probability of a successful lift-off.
Thinner layers of approximately 30 nm were found to be successful. Finally,
3 nm of platinum (Pt) were deposited with an electron gun to minimise potential
oxidation effects on the surface of the Nb [105, 106]. During metallization, the
Ti-Nb-Pt layer adheres to both the wafer and to the resist. In the (f) lift-off
process, a chemical removes the remaining resist columns with the Ti-Nb-Pt
layer on top. The chemical can be sprayed onto the sample under pressure
using a syringe, and the sample can be placed in the chemical in an ultrasonic
bath. These extra mechanical components have been found to be necessary for
a successful lift-off.

The final step is a meticulous documentation and inspection of the results.
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Scanning electron microscopy (SEM) is used to observe the finished antidots
and capture images, as shown in figure 4.4. This is necessary to confirm
the success of the lift-off and to document the diameter and shape of the
antidots. These variables depend on various process parameters, including the
exposure dose. They can vary considerably, as even minor influences result in
significant variations. Only the periodicity of the antidots is reliably given by
the lithographic data file.

Regarding the used resist a distinction can be made between positive resists

(a)

(c)

(b)

(d)

Fig. 4.4.: Scanning electron microscope (SEM) images of Nb antidots on HgTe
samples after the lift-off step. To provide optimal visualisation of the structures,
the images have been taken at an inclined angle. (a) Sample created with CSAR,
featuring 200 nm periodic antidots with a diameter of approximately 120 nm. (b)
Antidots made with PMMA, exhibiting a rather quadratic shape with a periodicity of
600 nm and a maximum diameter of 450 nm. (c) 800 nm periodic antidots built with
negative resist with a diameter of 90 nm. (d) Example image of a lift-off revealing two
failures. The brighter, hill-shaped structures in the centre of the image (red rectangle)
are resist columns that are completely covered by a metallic layer. They were not
removed during the lift-off. On the left-hand side of the image (magenta rectangle),
the entire metallic layer has been ripped off, revealing the etching trenches caused
by argon ion bombardment. On the right (green rectangle), the antidot lift-off was
successful.
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(a) (b) (c)

Fig. 4.5.: Different lithographic exposure methods. (a) If a negative resist is used,
periodically spaced dots can be exposed. Due to electron scattering processes, this
results in resist columns of finite diameter after development. The thickness can
be influenced by the point dose (unit fC). (b) However, when using positive resists,
the resist must be exposed around the resulting resist column. A cross-shaped line
grid has proven to be very successful. The intersections of the grid receive twice
the exposure dose, resulting in a larger width of the exposed resist at these points
due to the electron scattering proximity effect [110]. By optimizing the line dose
(unit pC cm−1), round resist columns and consequently round antidots are obtained.
(c) This method also applies to positive resists: exposing the entire area (unit µC cm−2)
surrounding the antidots turned out not to be advantageous compared to the line
dose method. The proximity effect due to the electron scattering, which occurs during
exposure, was too large to reliably produce finely resolved structures [110].

(CSAR, PMMA) and negative resists (AR-N 7520). For positive resists, the
areas that are not exposed by the EBL remain after development. The resist
is exposed in a grid lattice shape. Figure 4.5 (b) and (c) shows corresponding
lithographic patterns. Afterwards, a chemical specifically designed for this
purpose dissolves only the exposed resist. Only periodically arranged resist
columns remain. Conversely, for negative resists, dot-shaped areas are exposed,
as shown in figure 4.5 (a). Again, a specific chemical is used, but this time it
removes the unexposed resist. The result is similar as only resist columns with
positions defined by the lithographic file remain.

Further differences exist between the three resists used. These will be briefly
discussed here: CSAR has a natural undercut, i. e. the resist columns are slightly
thinner at the bottom than at the top [107]. This facilitates the lift-off process.
In contrast, PMMA does not have a natural undercut. Therefore a double resist
system was used. Initially, PMMA 50K resist is applied, followed by PMMA
200K. The lower layer exhibits more sensitivity to the electron beam than the
upper layer, resulting in a pronounced undercut [108]. Even though the negative
resist AR-N 7520 does not show any undercut, an attempt was made to use
it as the objective was to generate the smallest possible antidots with large
periods [109].

Antidots with very small periodicities down to 150 nm were achieved with
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CSAR. PMMA successfully produced highly uniform antidots with larger peri-
odicities (400 - 800 nm) and larger diameters (300 - 600 nm). By using negative
resist, tiny antidots - with diameters as small as 40 nm and periodicities of up to
800 nm - could be produced. However, the lift-off failed for the majority of the
samples due the negative resist’s missing undercut. Despite these challenges, a
number of samples were successfully fabricated. A detailed list of the individual
work steps and process parameters can be found in appendix A.

4.4. Topgate deposition

Similar to a field-effect transistor, the Fermi energy in the band structure of
HgTe can be tuned with a metallic topgate. In this way, the behaviour of the
charge carriers in the valence band, in the band gap and in the conduction
band can be investigated. Furthermore, the topgate structure is essential for
capacitance measurements.

Figure 4.6 shows such a topgate stack. To build it, two types of insulators
are used. First, 30 nm SiO2 are deposited globally, i. e. over the entire sample
area. This is done with a plasma enhanced chemical vapour deposition (PECVD)

70 nm Au

40 nm CdTe

5 nm Ti

Fig. 4.6.: Cross section, not to scale, of a sample based on the wafer number 190301
with a topgate deposited on it. This figure depicts the individual layers used in the
experiments presented in the chapter 6, so there is no layer with antidots. In addition
to the insulating CdTe and CdxHg1−xTe two different materials, namely SiO2 and
Al2O3, function as dielectrics. The SiO2 layer is 30 nm thick and serves as a seed
layer for the growth of 80 nm of Al2O3. Moreover, a metallic electrode consisting of
5 nm Ti and 100 nm Au is deposited.
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process at a temperature of 80 ◦C. The SiO2 layer has a relative permittivity
of ϵSiO2 = 3.5 [39], serving as a seed layer for the subsequent growth of the
Al2O3, which has a significantly higher permittivity of ϵAl2O3 = 9 [111]. The
Al2O3 is globally grown to a layer thickness of 80 nm at a temperature of 80 ◦C
using a process called atomic layer deposition (ALD). In this process, gaseous
trimethylaluminium and water vapour are alternately released onto the sample
surface, which then grow in layers and finally yield the electrically insulating
compound Al2O3.

For the metallic topgate electrode, a lithographic process similar to that
used for the mesa is employed. First, a resist is applied, optically exposed
and then developed to act as a template for the shape. Using a vacuum
based physical vapour deposition (PVD) process, a 5 nm thick titanium layer
is deposited, followed by a 70 nm thick layer of gold. The titanium serves as a
adhesion layer between the insulator and the gold.

It should be noted that the resist mask serves a slightly different function

(a) (b)

(c)

Fig. 4.7.: (a) Typical sample design from a bird’s eye view with topgate. Only the
HgTe mesa (purple) and the metallic topgate electrode (gold, slightly transparent)
are shown, without showing the insulators in between. There are four topgate contact
pads in the corners of the design, three of which are redundant. Thin lead channels
connect these pads to the sample centre. (b) Enlargement of the image section
indicated with a red rectangle on the left. The topgate overlaps with the Hall
bar. By applying a voltage, it is possible to adjust the Fermi energy in the system.
(c) Schematic, highly simplified 3D view of the Hall bar. The topgate electrode (gold)
is separated from the conducting HgTe (purple) by thin insulator layers (yellow and
grey).
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in this process. In etching, the resist covers the shape of the resulting mesa
to protect it from the etching chemicals. Conversely, for the topgate electrode,
the resist mask takes on a negative shape. Its purpose is to completely cover
areas where the presence of Ti-Au is unwanted. A lift-off process is then used
to remove the resist and the metals above it, using acetone as a solvent. All
that remains is the Ti-Au adhering directly to the insulators. The design is
based on the principle that the metal should cover the entire Hall bar to ensure
a uniformly tuned Fermi energy within the four-point voltage taps. However,
the metallic leads and contact pads should not overlap with the HgTe leads or
contact pads, else it increases the risk of electrical short-circuits. An example of
this type of design is shown in figure 4.7.

4.5. Electrical contacting

The completed sample is then glued into a standardised 20-pin chip carrier with
PMMA resist. This enables all sample holder sockets of our group’s various
cryostats to be used. To create electrical connections between the sample’s
contact pads and the chip carrier, a gold wire is bonded with a wire bonder.
The wire can be properly bonded to the contacts on the chip carrier and the
golden contact pads of the topgate. However, to establish a reliable connection
with the contact pads of the HgTe mesa, a soldering procedure with indium
is imperative. The metal secures the wire in place and facilitates an electric
connection through the insulators to the HgTe.



5. Low-temperature measurement
setups

This chapter explains how the samples were measured electrically at low tem-
peratures. It begins with a brief description of the cryostats used. A detailed
explanation of the capacitance measurements is then given. The relevant ter-
minology is explained and the necessary electronic hardware, the different
measurement setups used and the difficulties encountered are discussed. Finally,
the setups for four-point resistance measurements are described.

5.1. Cryostats

Two fundamentally different cryostat types were used in this work: the 4He
bath cryostat with variable temperature insert (VTI) and the 3He/4He dilution
refrigerator. This section provides a brief overview of the cryostats, with a focus
on their potential applications and limitations. For a more detailed understand-
ing of the physical and technical aspects, refer to Enss and Hunklinger [112] or
Pobell [113].

5.1.1. 4He bath cryostat with VTI

The measurements of the flux quantisation in niobium antidots presented in
this thesis require constant temperatures near its superconducting transition
temperature. A 4He bath cryostat with VTI is well suited for this purpose. This
VTI vessel is enclosed by a helium bath dewar at 1 bar pressure, with helium at
its boiling point of 4.2 K. A continuous flow of helium is let into the VTI via
a needle valve. Simultaneously, the VTI is pumped to obtain pressures below
1 mbar. Due to evaporation temperatures of 1.4 K can be achieved. Additionally,
the VTI, which is thermally insulated from the helium bath, can be heated by
a heating coil. A PID (Proportional–Integral–Derivative) heater control system
can adjust the temperature to any required value between 1.4 K and 200 K. The
4.2 K helium bath also contains a superconducting coil for the generation of
magnetic fields. The maximum fields that can be achieved are 10 T or 16 T,
depending on the system.
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5.1.2. 3He/4He dilution refrigerator

To achieve high-precision measurements of the QHE or SdH oscillations in HgTe,
mK temperatures are advantageous, since the Landau levels are only resolved
if kBT < ℏωc. For this purpose a dilution refrigerator with a mixture of 3He
and 4He atoms is more suitable. This mixture is also called the diluted phase,
as the 3He is dissolved in the 4He atoms. At a 3He concentration of 6.5 % the
phase is saturated. If there is an excess of 3He in the system, phase separation
occurs. The light 3He phase floats on top, and the heavy 3He/4He mixture is
located at the bottom. The cooling process operates in the following way: 3He
is continuously removed from the 3He/4He-mixture with a still. 3He atoms then
cross the phase boundary from the concentrated 3He phase into the mixture.
The 3He atoms in the 3He phase have a lower entropy than the 3He atoms in the
mixture. During the phase transition, heat is removed from the environment,
resulting in the cooling effect. In some systems, temperatures below 2 mK can
be achieved [114].

The experimental setup available for the experiments of this thesis is com-
posed of multiple layers. The outermost layer is a vacuum chamber, which
encloses a liquid nitrogen shield. Inside the nitrogen shield is a 4He reservoir
which houses another vacuum chamber. Only in the central part one can find the
mixing chamber where the 3He/4He-mixture is located. It is possible to reach
temperatures in the low, double-digit millikelvin range [64]. If the capacitance
sample holder is utilised, a temperature of 50 mK is reached owing to heat
coupling. The available dilution refrigerator also has the advantage that the
highest magnetic field that can be reached is 19 T (without the lambda stage
17 T), exceeding the maximum fields of the 4He bath cryostats.

The physics of a dilution refrigerator has only been touched upon briefly
in this section; a more detailed description can be found in in the book by
Christian Enss and Siegfried Hunklinger [112].

5.2. Capacitance measurements

The main experimental focus of this work was on magnetocapacitance measure-
ments which allow for the investigation of the uppermost layer of charges [39].
Regardless of the exact measurement technique, parasitic capacitances are
inevitable. Coaxial cables are therefore indispensable for capacitance measure-
ments. The inner conductors transport the measurement signal, while the outer
conductors are grounded. To be able to conduct capacitance measurements
at very high magnetic fields up to 19 T and temperatures down to 50 mK, a
sample holder rod with coaxial cables for the 3He/4He dilution refrigerator was
designed and built as part of this work. Two different techniques were used
to carry out the capacitance measurements, both initially following the same
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principle: Between the metallic topgate electrode and the mesa a DC voltage
Vg is applied, so that the Fermi energy can be tuned within the electronic band
structure. An alternating voltage VAC of fixed frequency is then superimposed.
The signal readout is where the difference of the two measurement techniques
occurs: When measuring with lock-ins, the capacitance is obtained by measuring
the out-of-phase current. Alternatively, the commercially available AH 2700A
bridge uses a balancing process similar to the Wheatstone bridge to determine
the capacitance [115]. The so-called resistive effects can be minimised with
proper measurement technique parameters. All these aspects are discussed in
detail below.

5.2.1. Parasitic capacitances

In the samples fabricated for this work, the topgate-insulator-mesa structure
was fabricated primarily for two reasons: firstly, to tune the Fermi energy of
the system, and secondly, to gain information about the DOS by measuring
the quantum capacitance. It is an intentionally integrated capacitor in the
sample circuit. Apart from this, however, there are other capacitances that can
play a role. In Glisson’s Introduction to Circuit Analysis and Design [116] it
is stated that "[...] whether we like it or not, capacitance is present wherever
current-carrying conductors are separated by an insulating medium". These
unwanted capacitances are referred to as either stray capacitances or parasitic
capacitances. A distinction is made as follows: stray capacitances are widely
distributed in the electronic circuit. This could, for example in a cryostat, be
a capacitance from a conductor inside a sample holder to the sample holder
itself. Parasitic capacitances are considered to be more localized: A non-ideal
resistor can be described by a parallel circuit of this same resistor and a parasitic
capacitor. For simplicity, in this thesis no distinction is made and all undesired
capacitances are called parasitic capacitances [116]. It is very challenging to
eliminate these capacitances and it is complicated to calculate their exact value.
Nonetheless, with a well-designed construction of an electronic circuit they can
be minimized. A crucial step to avoid parasitic capacitance is to utilise coaxial
cables.

5.2.2. Capacitance sample holder

For both types of instruments, the 4He bath cryostat with VTI and the 3He/4He
dilution refrigerator, capacitance measurements can be performed, but a sample
holder with coaxial cables is necessary. A suitable sample holder for the 4He
bath cryostats was available at the beginning of the experimental research phase
of this work, whereas one had to be constructed for the dilution refrigerator.

An existing sample holder rod was equipped with a new cable harness in
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order to carry out capacitance measurements on the dilution refrigerator. It
was ensured that the cables were coaxial throughout. Therefore, each cable at
the top of the sample holder had to be made with a separate shielded vacuum
feedthrough. For this purpose, BNC connectors were welded to prevent air from
leaking into the vacuum chamber within (see figure 5.1 (a)).

The inner and outer conductors of the coaxial cables are made of stainless
steel, the insulating material in between the conductors and the jacket material
around the outer conductor is Teflon. Two things were done to minimise the
additional heat input of the outer conductors into the sample chamber: Firstly,
the maximum number of cables of 20 given by the number of available chip carrier
contacts was waived and only 12 cables were laid. Secondly, a thermalisation,
i. e. , a gold-plated copper block was installed. The outer jacket material of
the cables was removed and the outer conductor was brought into thermal
contact with the copper block, as shown in figure 5.1 (b). To prevent ground
loops, two-component thermally conductive epoxy encapsulant was used to
glue Kapton between the copper block and the outer conductor. Kapton is
known to be electrically insulating, but has high thermal conductivity at low
temperatures [117]. The thermalisation is exclusive to the sample holder for the
dilution refrigerator as it is not required the 4He bath cryostats.

(a) (b) (c)

Fig. 5.1.: Rendered 3D CAD (computer-aided design) models of the key components
of the capacitance sample holder for the dilution refrigerator. These false colour
images highlight specific parts to enhance their visibility. (a) The top of the sample
holder features welded BNC connectors (blue) to ensure continuous coaxial shielding.
(b) To enhance thermal contact, the outer conductors of the 12 coaxial cables (grey)
are in thermal contact with a gold-plated copper block (green/red) and the cables are
laid out in an S-shaped loop around this block. (c) The base socket of the sample
holder utilizes unshielded pogo pins (pink) to connect the chip carrier (brown/yellow,
partially visible) to the coaxial cables. The CAD files were created and rendered by
Michael Weigl.
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Figure 5.1 (c) shows the base socket, which forms the bottom of the sample
holder. It was designed such that the unshielded pins touching the contacts of
the chip carrier were as short as possible. Out of a total cable length of about
4 - 5 m from the electronics to the chip carrier, the only remaining unshielded
cable paths are these pins, which are about 5 mm long.

The properties of the sample holder were tested, achieving a base tempera-
ture of 57 mK that exceeded expectations and fulfilled the requirements. The
experimental section of this work includes several capacitance curves which were
successfully measured with this sample holder.

5.2.3. Capacitance with lock-in amplifiers

One can measure capacitances using lock-in amplifiers by applying an alternating
voltage VAC at a specific measuring frequency f to the capacitor and detecting
the resulting current phase-sensitively. Iy is the current shifted by 90◦ with
respect to the input alternating voltage signal. A quantity called capacitive
reactance XC can then be defined:

XC = VAC

Iy

. (5.1)

This reactance is directly related to the capacitance C and is frequency depen-
dent:

XC = 1
ωC

. (5.2)

By comparing these two equations the capacitance can be determined [116].
Figure 5.2 displays the capacitance measurement setup most frequently used

in this work. The alternating voltage is indicated on the left-hand side of the
electric circuit diagram and flows through a pre-capacitor labelled Cpre to the
sample. The topgate stack, consisting of metallisation, insulator and mesa, is
itself a capacitor called sample capacitance Cs here. The current is measured
phase-sensitively with a lock-in device marked as AC voltmeter. Since Cpre

and Cs are connected in series, the capacitance value of interest, Cs, can be
determined from the measured capacitance C as follows:

1
C

= 1
Cs

+ 1
Cpre

⇒ Cs = CpreC

Cpre − C
. (5.3)

Furthermore, to enable measuring the capacitance of the sample at a specific
Fermi energy EF , a DC source and a pre-resistor Rpre are integrated into the
setup. This pre-resistor prevents the AC current from grounding over the DC
source output, while the pre-capacitor prevents the DC current from grounding
over the AC source output.
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Fig. 5.2.: Electrical circuit diagram of a capacitance measurement using lock-ins. The
DC voltage Vg is superimposed to the alternating voltage VAC and is applied to the
topgate of the sample. The topgate stack, consisting of metallisation, insulator and
mesa, represents the sample capacitance Cs. The DC voltage tunes the Fermi energy
EF in the band structure. The AC current flowing through Cs is conducted out of
the cryostat via the mesa contacts, which are connected in parallel to reduce resistive
effects. An I/V converter amplifies and converts the signal into a voltage which is then
precisely measured by the AC voltmeter. All cable runs and vacuum feedthroughs
are completely coaxial. To prevent radio frequency radiation from the environment
from affecting the measurement, supplementary 5.5 nF π-filters were installed. The
cut-off frequency of these low-pass π-filters is several orders of magnitude higher than
the frequencies used. Therefore, they do not need to be taken into account when
calculating sample capacitance.

Since Rpre and Cpre are connected in parallel, they result in a high-pass
filter where all frequencies below fc are cut off:

fc = 1
2πRpreCpre

. (5.4)

This means that the values of Rpre and Cpre must be chosen such that fc < f .
Since only frequencies above 1.1 Hz were used for capacitance measurements in
this work, values of Rpre = 1 MΩ and Cpre = 1 µF satisfy the above condition.

5.2.4. AH 2700A bridge

The Andeen-Hagerling 2700A (AH 2700A) is a commercially available capaci-
tance bridge that can simultaneously measure capacitance and so called losses.
Losses are defined as the component of the impedance which is shifted by 90◦

with respect to the capacitive component. These losses are expressed in siemens,
the unit of electric conductance.

The AH 2700A employs stable temperature-controlled fused-silica standard
capacitors and pseudo-resistors. The fundamental principle of the bridge is
that the unknown impedance of the DUT (device under test), i. e. in this work
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the impedance of the topgate-insulator-mesa structure, is compared with the
known impedance of both the standard capacitor and the pseudo-resistor.

The electrical circuit diagram is displayed in figure 5.3. An AC sine wave
generator is used to excite a ratio transformer. The transformer is connected to
leg 1 and leg 2. For both legs, a precise voltage can be chosen using a tap changer.
The voltage V1 applied to leg 1 is then transmitted to leg 3 where fused-silica
capacitors with capacitance C0 are located. These capacitors are connected in
parallel with the pseudo-resistor R0 to represent a reference impedance. The
voltage V2 applied to leg 2 is transmitted to leg 4, where the DUT resides. The
DUT consists of capacitance Cx and resistor Rx for non-ideal capacitors. Both
reference impedance and DUT experience a voltage drop. The resultant signals
are superimposed and a detector reads the superimposed signal [115].

The balancing procedure proceeds with the microprocessor controlling the
voltage taps of tap 1 and tap 2 on the transformer and altering C0 and R0 until
the voltage at the detector becomes immeasurably small. In this case, the bridge
is balanced and Cx and Rx can be calculated using the following ratios:

Cx = V1

V2
· C0 (5.5)

and

Rx = V2

V1
· R0. (5.6)

The bridge reports the capacitance Cx and the losses 1/Rx as soon as it is
balanced.

The AH2700A is connected to the capacitance sample holder using coaxial

detector
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Fig. 5.3.: Electrical circuit diagram of the AH 2700A capacitance bridge. The bridge
compares a reference impedance composed of C0 and R0 with the impedance of the
topgate-insulator-mesa structure comprising Cx and Rx. The exact operation of the
bridge is explained in the body text (AH 2700A circuit taken from [115]).
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cables. It is a three-terminal measurement, where the signals pass over the
the high and low inner conductors, while the outer conductors are grounded to
safeguard against parasitic capacitances and noise [115]. Furthermore, similar to
the lock-in technique, a DC voltage can be used to tune the topgate, applied via
the low contact of leg 4. Moreover, as with the lock-in measurement technique,
5.5 nF π-filters were added to the setup.

The mesa contacts are all short-circuited to minimize resistive effects. More-
over, it is important to use the lowest frequency possible to prevent resistive
effects that may arise at higher frequencies. This is a major drawback of the
AH2700A for the experiments in this work, as the frequency interval is limited
from 50 Hz to 20 kHz. To be able to measure at lower frequencies of down
to 1.1 Hz, the lock-in technique described in the preceding section had to be
resorted to. Another drawback is the time-consuming balancing process, which,
depending on the setting, can take over 1 min per data point.

5.2.5. Resistive effects

If capacitance is measured in a topgate-insulator-mesa stack based on HgTe,
so-called resistive effects may occur. This section clarifies these effects and
provides solutions for avoiding them.

The resistive effects occur due to the finite conductivity of HgTe. Whenever
the AC voltage applied to the topgate changes sign, the charges in the mesa must
rearrange themselves. Depending on the frequency, they have only limited time
to reach equilibrium. Figure 4.7 shows the topgate-insulator-mesa structure,
which can be represented by a complex network of resistors and capacitors in
an electrical circuit diagram [118]. However, the circuit can be simplified to
include only the resistance R of the mesa and the capacitance C of the insulator
in series. The corresponding impedance Z is shown in figure 5.4. It can be
expressed as

Z = R + 1
iωC

, (5.7)

with i =
√

−1 representing the imaginary unit and ω = 2πf representing the
angular frequency. Instead of the complex resistance Z, its reciprocal, the

Z

Fig. 5.4.: Electrical circuit diagram. A voltage VAC is applied to the series element
consisting of a capacitor C, and a resistor R, forming an impedance Z.
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admittance Y , can be computed by

Y = 1
Z

= ω2RC2

1 + ω2R2C2 + i
ωC

1 + ω2R2C2 = G + iB. (5.8)

The real part of equation 5.8 is known as the effective conductance G, whereas
the imaginary part B is the susceptance [116]. Using Y = I/VAC , the real
component of the current Ix can be obtained from the effective conductance.
The imaginary component Iy, i. e. the component that is phase-shifted by 90◦

with respect to the voltage, can be obtained from the susceptance [119]:

Ix = ω2VACRC2

1 + ω2R2C2 and Iy = ωVACC

1 + ω2R2C2 . (5.9)

Iy is then used to determine the capacitance, as detailed in section 5.2.3. However,
a purely capacitive signal is obtained only if the condition

ωRC ≪ 1 (5.10)

is satisfied. Then, Iy = ωVACC and Ix = 0, meaning the entire current is out of
phase. This requirement can be fulfilled by reducing the frequency ω.

In an HgTe sample, the resistance is heavily dependent on the magnetic field
because of the QHE and the SdH oscillations. At high fields and low temperatures
σxx approaches zero when the Fermi energy is between two Landau levels. As
a result, the system is no longer purely capacitive, and the real component
Ix becomes finite rather than vanishing. The resistive effects occur precisely
under these conditions, i. e. at low σxx. Interestingly, due to the tensorial
calculation of the conductivity, this corresponds to a vanishing resistivity in
ρxx and a constant value in ρxy = RK/ν. Thus, the term "resistive effects" is
meaningful only to a limited extent in this context, as the relevant parameter
is conductivity, not resistivity. Nonetheless, the term will be used throughout
this thesis. Overcoming the occurrence of resistive effects presented a significant
experimental challenge.

Describing the ratio of Ix to Iy in Hall bar geometry precisely is difficult.
Goodall et al. [119] investigated the relationship between σxx and capacitance
C in their study featuring a Corbino disk geometry. They expressed the radial
current I using the equation

I = I0
tanh(α)

α
. (5.11)

Here, I0 is the current in the case of a very high conductivity. The value of the
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Fig. 5.5.: Dependence of the real and imaginary parts of the capacitance current
on frequency and conductivity. A low |α| value implies a high conductivity or low
frequency. The current Iy is significantly greater than Ix, indicating a capacitive
signal, with resistive effects playing a negligible role. Conversely, a high |α| value
implies a low conductivity or high frequency, and resistive effects can no longer be
neglected (adapted from [119]).

complex quantity α can be calculated using

α =
(

iωCL2

σxx

)1/2

, (5.12)

where L is the length of the channel. It should be noted that C is the insulator
capacitance and does not include quantum capacitance in this study. These
equations cannot be quantitatively applied in this thesis as they were formulated
for a Corbino geometry. However, in his doctoral thesis, Dieter Weiss [71]
demonstrated that the curves presented in figure 5.5 can provide a qualitative
description of the behaviour of Ix and Iy in a Hall bar geometry.

Low conductivity or high frequencies may prevent accurate capacitance
measurements, causing the capacitance in the LL gaps to exhibit deep frequency
dependent minima. Examples for this can be seen in figure 5.6. Additionally, it
is important to mention that at low temperatures, the σxx minima of the SdH
oscillations approach zero. As the temperature increases, the minima become
less pronounced, and σxx assumes a small but finite value. In conclusion, low
magnetic fields, high temperatures and low frequencies are suitable conditions
for measuring capacitance. As the experimental goals of this doctoral thesis did
not allow for the first condition, the remaining two parameters were adjusted.
Accordingly, capacitance measurements were carried out at temperatures of up
to 5 K and frequencies as low as 1.1 Hz. Additionally, the mesa contacts can
be short-circuited, as shown in the electrical circuit diagrams in this chapter.
The advantage of such a circuit is that it provides a lower parallel resistance
compared to the individual contact and cable resistances.

To experimentally verify a purely capacitive signal, the frequency dependence
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Fig. 5.6.: Resistive effects in the "capacitance" as a function of gate voltage Vg,
measured with the AH2700 A bridge. (a) The depth of the capacitance minima
(measured within a Landau Level gap) increases with increasing frequency due to
resistive effects. To obtain a purely capacitive signal, the frequency needs to be
decreased until the signal saturates. The signal outside the Landau Level gap is
frequency-independent as the conductivity in this region is large. The data was
collected at a temperature of 57 mK and a magnetic field of 10 T. (b) The resistive
effects are primarily observed at higher magnetic fields, as the magnetic field strongly
affects conductivity. At 4 T and 5 T, the oscillations induced by the Landau levels
are primarily capacitive. However, at 6 T and 7 T, frequency-dependent deep minima
abruptly emerge. The data was acquired at 57 mK and 60 Hz.

is examined. Only if the signal is frequency independent the capacitance
can be accurately determined and conclusions can be drawn about the thermo-
dynamic density of states.

5.3. Transport measurements

The other main experimental technique used in this thesis are transport mea-
surements of the longitudinal and transversal resistance. Differential resistance
measurements were also carried out using a DC voltage modulated by an AC
voltage. The measurements were performed in a Hall bar geometry, as de-
scribed in section 3.1.1, using four-terminal sensing at a few Kelvin and at mK
temperatures.

5.3.1. AC lock-in technique

The transport measurements presented in this work were conducted using
standard AC lock-in technique. These measurements were made for both
samples containing antidots and samples without. To simplify the electrical
circuit diagrams in this and the subsequent section, a Hall bar without antidot
structures is consistently depicted.

As can be seen from figure 5.7, an AC voltage source VAC with a 10 MΩ
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Fig. 5.7.: Measurement setup for the experimental determination of 4-point resistances
with lock-in AC technique. The electronic measurement setup can be divided into
three distinct parts: In the first part the DC voltage Vg is generated (golden, dashed
box) which is applied to the topgate. In the second part, the AC current is generated
and measured (red, dashed box), which flows through the Hall bar. In the third part,
the four-point voltages are tapped, amplified and measured (blue, dashed box). The
π-filters provide protection against interfering radio frequency radiation. For further
details on the exact function of the electronic components, please refer to the main
text.

pre-resistor was connected in series to the sample resistance. This creates an
almost constant current source, with a current given by I = VAC/Rpre, as the
pre-resistance is much larger than the sample resistance. This can be used to
ensure that there is a low current flowing through the sample which prevents
heating effects. Once the current passes through the sample, it is transformed
into a voltage by an I/V converter, which also amplifies the signal for the
subsequent measurement.

In some instances, the sample resistance may become notably high. When
a constant current is applied, this results in a substantial 4-point voltage drop
that could exceed the lock-in measurement range. In order to circumvent this
issue an additional, supplementary 100 kΩ resistor can be connected to ground.
This setup decreases the current for large sample resistances, and consequently,
decreases the 4-point voltage drop at the sample. This allows for a continuous
measurement of sample resistance across several orders of magnitude using the
same lock-in measurement range.

The transversal and longitudinal voltages are amplified using preamplifiers
with 1 TΩ input resistances. This makes any discrepancies caused by high
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contact resistances insignificant and ensures that no current flows through the
voltage taps. Lock-ins measure the amplified signals, and from ratio of the
measured voltages and currents, Rxx and Rxy are determined.

The voltage Vg at the topgate can be tuned as required. To prevent sudden
changes in the voltage, a low-pass filter is utilized, which is composed of a 1 MΩ
resistor and a 1 µF capacitor, resulting in a time constant of τ = RC = 1 s.
This protective measure safeguards the sensitive topgate against electrical
breakdown.

5.3.2. Differential resistance

The setup shown in figure 5.8 was used exclusively for some of the measurements
in chapter 8. As a result, it allowed the observation of features referred to as
"pine trees".

The measurement setup is similar to that described in the previous section.
Therefore, only the relevant differences will be discussed below: First, an AC
and a DC voltage are coupled using a transformer. This allows for the larger
DC voltage to be modulated by the smaller AC voltage. A 10 MΩ series resistor
ensures that a current independent of the sample resistance is obtained, which
flows through the sample. After the sample, the current is converted to a voltage
and the signal is simultaneously amplified. The DC and AC components of the
signal can then be separately measured. The alternating current IAC and the
direct current IDC are calculated using the current-voltage transformer’s known
amplification factor.

+
–

voltage amplifier

cryostat

AC voltmeter

AC voltmeter

DC voltmeter
I/V

converter

V

V
V

AC-DC coupler

Fig. 5.8.: Measurement setup to determine the differential resistance. As in the
previous section, the electronic components which are linked to the current circuit
are in the red, dashed box. The components that belong to the four-point voltages
detection are in the blue, dashed box. It is also possible to connect π-filters and an
additional topgate (not shown).
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The AC voltage VAC, 4pt is tapped via the 4-point Hall bar geometry, ampli-
fied and subsequently measured. From the ratio of the four-point AC voltage
and the AC current flowing through the sample the differential resistance
R = VAC, 4pt/IAC is determined at a given direct current IDC .



6. Magnetoresistance and
capacitance in HgTe

This chapter presents an analysis of capacitance and transport measurements on
an HgTe Hall bar made of a modulation-doped wafer. The sample is thoroughly
characterized, and a clear electrostatic picture is derived from the observed
carrier densities. Subsequently, transport measurements at low magnetic fields
and zero-field capacitance measurements are used to define crucial points in the
band structure. At higher magnetic fields, a complex pattern of Landau levels
(LLs) emerges. The LL have been identified and assigned to the individual 2D
electron and hole systems. Finally, capacitance and transport were studied at
very high magnetic fields, revealing the merging of the individual systems into
a single system. All data in this chapter were measured on a single sample,
making them well comparable.

6.1. Wafer characterization

In this section wafer number 190301, which is shown in figure 4.1 (a), is analysed
in detail with capacitance and transport measurements. The results of the
characterization of the modulation-doped wafer provide information about
the position of the valence band (VB) and conduction band (CB) edge. The
individual charge carrier densities of the top surface, bottom surface, and bulk
can be determined, as well as the carrier mobilities. At Vg = 0 V, the Fermi
energy is located in the CB. As shown in figure 6.1, the charge carrier densities
for both the top surface (magenta) and bulk electrons (blue) increase with
increasing gate voltage. The CB edge E∗

C can be determined by linearly
extrapolating the bulk electron density to the intersection with the x-axis. The
hole density (red) increases towards negative gate voltages. For these, a similar
approach can be used to determine the position of the VB edge EV .

The analysed wafer has a number of unique characteristics, which will be
briefly mentioned here. In contrast to the undoped wafers, the bottom of the
CB edge is below the top of the VB edge, resulting in the coexistence of bulk
electrons and bulk holes. The presence of bulk carriers throughout the entire gate
voltage range electrostatically shields the bottom surface, leading to a constant
bottom surface (green) charge carrier density. Unlike the wafers characterized
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in references [39, 64, 66, 68, 69] the charge neutrality point (CNP) is shifted
to −2.3 V instead of being at positive gate voltages or around 0 V. Additionally,
at 0 V, the electron density of 5.8 × 1011 cm−2 is significantly higher than in
undoped samples, where it is typically below 1 × 1011 cm−2 [63, 64, 66, 69].

To determine the features and peculiarities briefly listed here, a more detailed
analysis is necessary. Due to the complexity of the system, it is necessary to
disentangle the different carrier groups and their associated parameters. To
achieve this, different experimental techniques were employed, each with unique
sensitivities to the respective carrier groups. None of the techniques used provide
results of absolute reliability, therefore different approaches are compared. The
methods and results will be explained and discussed in the following sections.
All charge carrier densities determined in this chapter are reported in figure 6.1,
the corresponding mobilities in figure 6.2.
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Fig. 6.1.: Electron and hole densities extracted from transport and capacitance
measurements. Black data points represent the total electron density, while red data
points represent the density of the bulk holes of the valence band. Green and magenta
respectively indicate the charge carrier density of the bottom and top surface. The
blue data points represent the bulk electrons of the conduction band. CNP stands
for the charge neutrality point, E∗

C for the conduction band edge and EV for the
valence band edge. The Dirac point of the top and bottom surfaces lies deep in the
valence band. The experimental methods used to determine the individual densities
are explained in detail throughout this section.



6.1. Wafer characterization 59

6.1.1. Densities and mobilities from Drude

At low magnetic fields, transport is completely diffusive and can be described by
the Drude model. If only one type of charge carrier, in this case electrons,
contributes to transport, then the Hall resistivity ρxy as a function of the
magnetic field shows a linear slope in the range of non-quantizing magnetic
fields. The total carrier density nHall

s of the system can be calculated from this
slope with the help of equation 3.11. The corresponding mobility µHall

e is an
average of the mobilities of all participating electron charge carriers and can be
calculated using equation 3.12.

If one drives the topgate to negative gate voltages the Hall slope becomes
non-linear beyond a certain point. The reason for this is that if EF is below the
VB edge, holes contribute to the charge carrier transport. Again, the behaviour
can be described using Drude, but a two carrier model is necessary. The
conductivities σxx and σxy for electrons (e) and holes (p) then look like this:

σxx,e(p) = qe(p)ne(p)µe(p)

1 + (µe(p)B)2 σxy,e(p) =
qe(p)ne(p)µ

2
e(p)

1 + (µe(p)B)2 B. (6.1)

Here, qe(p) is the charge, ne(p) is the charge carrier density, µe(p) is the mobility
and B is the magnetic field. To obtain these expressions, equation 3.11 and
equation 3.12 were inserted into equation 3.5. The longitudinal and transversal
conductivities are a sum of the respective electron and hole conductivities and
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Fig. 6.2.: Electron and hole mobilities in doped wafer. (a) σmix (black curve) is
defined as the longitudinal conductivity σxx at positive magnetic fields and as the
transversal conductivity σxy at negative magnetic fields. The example shown was
obtained at −2.5 V. The fit (red curve) shows good agreement with the data. (b) The
electron and hole mobilities are averages of all charge carriers of the same polarity at
the corresponding gate voltage.
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given by

σxx = σxx,e + σxx,p and σxy = σxy,e + σxy,p. (6.2)

These equations are used to fit the experimentally determined conductivities,
as displayed in figure 6.2 (a). Convergence of the fit provides the hole carrier
density pDrude

s and the electron carrier density nDrude
s , as well as their respective

mobilities µDrude
p and µDrude

e [104, 120].
The hole mobility is almost an order of magnitude smaller than the electron

mobility in the valence band. µHall
e is the average of top surface, bottom surface

and bulk electron mobilities. As the carrier density of electrons increases,
mobilities of more than 2 × 105 cm2 V−1 s−1 are reached. The extracted charge
carrier densities are reported in figure 6.1, the mobilities in figure 6.2 (b) [59,
64].

6.1.2. Densities from quantum oscillations

At higher magnetic fields, the density of states (DOS) splits into LLs. This
is expressed through quantum oscillations as a function of the magnetic field.
Figure 6.3 provides examples of these oscillations. From their periodicity, one
can determine the respective charge carrier densities.

One of the experimental techniques used in this thesis are capacitance
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Fig. 6.3.: Example of SdH and capacitance oscillations. (a) The graph displays the
Shubnikov-de Haas oscillations observed in the longitudinal resistivity ρxx (blue) as
a function of the magnetic field B, accompanied by QHE plateaus observed in the
transversal resistivity ρxy (black). The capacitance curve (magenta) also exhibits
oscillations, but with a different periodicity. The data were obtained at a gate voltage
of Vg = 0.5 V. (b) The graph shows identical measurements and conditions as the left
figure, but with an applied voltage of Vg = 2 V. The transport data (ρxx and ρxy)
were collected at a low current of 10 nA, at 1.1 Hz and at 57 mK. The capacitance
data were collected with the lock-in amplifier setup at 5 K and at a low frequency of
3.1 Hz to minimize any resistive effects.
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measurements. Capacitance measurements directly probe the thermodynamic
DOS of the uppermost surface [39]. In this section an analysis of the capacitance
oscillations was restricted to magnetic fields below 6 T. At this magnetic field
range capacitance oscillations exclusively reflect the carrier density of the
top surface, i. e. the uppermost surface is equal to the topological surface states
of the 2DES at the top of the HgTe. The corresponding charge carrier density
is denoted by nCap in figure 6.1.

The resistivity ρxx as a function of the magnetic field exhibits SdH oscil-
lations. At high magnetic fields all charge carriers participate to form these
oscillations. If EF is above the VB edge, the high-field SdH oscillations reflect
the total electron charge carrier density nSdH

high . The situation is similar in the
valence band: Here, hole carriers exhibit SdH oscillations. This is described in
more detail in section 6.5.3. The corresponding carrier density in figure 6.1 is
labelled pSdH [68]. It is noticeable that pSdH and pDrude

s do not match perfectly.
A similar discrepancy has been previously observed in HgTe wafers[59, 68]. The
feature can be explained by a partial compensation of electrons and holes in
the VB [121]. If the Vg dependency of pDrude

s is extrapolated, the approximate
position of the VB edge EV can be determined from the intersection with the
x-axis [68, 97].

In previously analysed wafers, the SdH oscillations at low magnetic fields
reflected the charge carrier density of the top surface [68]. Here, the analysis of
the low-field oscillations in ρxx yielded conflicting results. The periodicity of the
oscillations, in which the minima were determined through visual examination,
resulted in a constant carrier density at negative gate voltages. However, for
positive gate voltages, it coincided with the linearly increasing nCap and thus
reflected the oscillations of the top surface, as described in Kozlov et al. [39].
Therefore, it was assumed that oscillations of several frequencies overlap at
low fields, and only the frequency that dominates at the corresponding gate
voltage was observed. To investigate this, Fourier spectrum of the low-field
SdH was analysed [122]. In order to do this, the data of ρxx as a function of
the magnetic field B were processed as follows: First, to ensure that faintly
visible oscillations were amplified, the data were derived twice with respect
to B. The data were then plotted as a function of the inverse magnetic field
from 1.33 − 0.66 T−1 and subsequently interpolated. Only then an FFT was
performed. Figure 6.4 displays the resulting Fourier spectrum, which reveals two
peaks for each gate voltage. From a given frequency fi with peak index i, the
corresponding carrier density nfi

can be determined as follows for spin-resolved
systems [122]:

nfi
= e

h
fi. (6.3)

The charge carrier density nSdH
low−f1

associated with frequency f1 coincides with
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Fig. 6.4.: FFT spectrum and Gaussian fits of low-field SdH. The black crosses
connected by lines show the fast Fourier transform spectrum of the low-field SdH
oscillations from −1 V to 1 V. Each identified peak has been fit by a Gaussian function
(red). The comparison with the capacitance allows the assignment of the peaks marked
with f1 to the top surface. The peaks marked by f2 are at a constant frequency value
and belong to the bottom surface. f1 ∪ f2 symbolizes that both peaks are overlapping.
The inset displays the individual peak values as a function of the gate voltage.

the carrier density obtained by the capacitance measurements. Thus, it can be
concluded that the low-field SdH oscillations corresponding to this frequency
originate from the charge carriers of the top surface. The constant frequency of
peak f2 corresponds to a charge carrier density of nSdH

low−f2
= 2.3 × 1011 cm−2.

In section 6.5.2 it is shown that this reflects the carrier density of the bottom
surface. This also explains why the formula for spin-resolved systems was used
here, since both top and bottom surfaces are not spin-degenerate.

A comparison of the amplitudes reveals that f2 is the dominant peak for
negative gate voltages. This changes at 0 V and the amplitude of f1 becomes
larger. This confirms that only the dominant frequency was observed during
visual examination. At 0.5 V and 1 V only a single peak is observed, which
includes both the bottom and top surface peaks, as they have similar carrier
densities here. As the gate voltage increases, the charge carrier density of the
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top surface also increases, causing the peak to shift to a slightly higher frequency
at 1 V.

The total electron charge carrier density (nHall
s ), as well as that of the top

surface (nCap or nSdH
low−f1) and bottom surface (nSdH

low−f2), are now known. By
subtracting the sum of the densities of the top and bottom surfaces from the
total electron density, the carrier density of the CB nbulk can be estimated:

nbulk = nHall
s −

(
nCap + nSdH

low−f2

)
. (6.4)

In section 6.5.4, the LLs belonging to the bulk are identified.

6.2. Electrostatic model

The carrier density results allow some conclusions to be drawn about the
electrostatic situation of the system. This will be substantiated by the upcoming
data. The electrostatics are shown here with the help of simple band diagrams.
The following paragraphs describe the individual subfigures of figure 6.5:

(a) At −1.5 V Dirac electrons from the bottom surface and bulk holes sitting
at the top of the bulk HgTe contribute to the conductivity. Roughly at this
gate voltage both Dirac electrons from the top surface and bulk electrons
enter the system.

(b) Above −1 V the whole charge transport is carried by electrons. These are
located on the top surface, on the bottom surface and in the bulk. At
−0.5 V the carrier density of the bottom surface is about twice as high as

-1.5 V

(a)
-0.5 V

(b)
0 V

(c)
0.7 V

(d)
2 V

(e)

Fig. 6.5.: Cartoon of the cross-sectional band structure of the doped wafer. Each
image represents the electrostatic situation at a different gate voltage. The Fermi
level is indicated by a dashed horizontal line. Magenta are filled Dirac electron states
(labelled with DF for Dirac fermions) in the top surface, green those in the bottom
surface. The CB is drawn in bright blue. Filled states in the CB are then coloured
with a saturated blue. The valence band is bright red and filled states in the valence
band are coloured with saturated red. Poisson’s equation of electrostatics suggests
that the bulk states are bent toward the surfaces on both sides due to the modulation
doping. The individual figures are explained in more detail below.
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that of the top surface.
(c) At 0 V, it appears that additional bulk electrons are drawn into the system

near the top surface. This is shown in the figure where the Fermi energy
intersects the corner of the CB near the top surface. This additional filling
of bulk electrons is referred to as the 2nd pocket of the CB in this thesis.

(d) At 0.7 V the top and bottom surface carrier density is equal.
(e) At 2 V the carrier density of the top surface is now higher than that of

the bottom surface.
The bottom surface charge carrier density remains almost constant, regardless
of the topgate voltage. This indicates that it is electrostatically shielded from
the topgate by electrons and holes. The presence of bulk carriers over the entire
gate voltage range, as EV lies above EC , supports this.

Since the wafer is symmetrically doped with Indium, additional electrons
contribute to the conductivity. The negatively charged electrons in the HgTe
are attracted electrostatically by the positively charged Indium donors sitting at
the CdHgTe. This suggests that the electrons stay in proximity to the respective
donor layer [72].

The band bending at negative gate voltages causes the bulk electrons to
appear first at the bottom surface. At 0 V, additional bulk electrons from
the 2nd pocket of the CB enter the system near the top surface. This is
experimentally observable as a kink in nbulk in figure 6.1, a small hump in figure
6.6 (a), and increased conductivity in figure 6.17. This electrostatic model will
be underpinned by data presented in the following sections.

6.3. Classical magnetotransport

An additional method of determining the approximate locations of the CNP
and CB edge is from the gate voltage dependency of the resistivities ρxx and
ρxy [68].

In classical Drude theory, the magnetoresistance for a system with two carrier
species with mobility µi and longitudinal conductivity σxx,i can be described
by [68, 97]

d2ρxx(B)
dB2|B=0

= σxx,1σxx,2

(σxx,1 + σxx,2)2 (µ1 ∓ µ2)2. (6.5)

Here, the sign that adds the mobilities is negative for groups of carriers with the
same polarity, such as electron-electron systems, and positive for electron-hole
systems. As the charge neutrality point is approached, the densities of holes and
electrons become similar. Consequently, σxx,1 ≈ σxx,2, and it follows directly
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that the first term σxx,1σxx,2/(σxx,1 + σxx,2)2 is at its maximum. Therefore, the
magnetic field dependence of the resistivity between −3 V and −2 V in figure
6.6 (a) indicates the approximate position of the CNP.

Figure 6.6 (b) shows the Hall resistivity ρxy as a function of Vg. When ρxy

crosses the x-axis, the conductivity of the system switches from n- to p-type as
the Fermi level passes the CNP at this gate voltage. The result of approximately
−2.4 V deviates from the result in figure 6.1. However, it is important to consider
the distinct mobilities of electrons and holes, in addition to the differences in
charge carrier densities. The mobility of the holes in this wafer is one order of
magnitude lower than that of the electrons, resulting in a lower contribution to
the conductivity. As a result, the position of the CNP can only be estimated
approximately using these methods.

The data in figure 6.6 (a) shows one additional feature: A small hump at 0 V,
which is also visible in the data of various papers [59, 68, 69] and theses [64, 66].
It has been concluded that this reflects the bottom of the CB edge. Typically,
the CB bulk electrons are located near the top surface, and have a mobility
which is significantly below that of the Dirac electrons [68]. Here, the bottom of
the CB edge lies at roughly −1.5 V, and due to the electrostatics of the doped
wafer, the electrons are located near the bottom surface. However, at 0 V, the
2nd pocket of the curved CB cross-section is filled with additional bulk electrons,
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Fig. 6.6.: ρxy(B) and normalized ρxx(B) vs Vg. (a) ρxx(B) normalized to ρxx(B = 0)
as a function of gate voltage Vg. The large resistivity between −3 V and −2 V indicates
the approximate position of the CNP. At high magnetic fields the maximum resistivity
reaches 1 MΩ here. The second, much weaker hump at 0 V suggests the presence of
additional bulk electrons entering the system near the top surface. These electrons
originate from the 2nd pocket of the curved CB cross section and the corresponding
energy is designated with E2nd pocket

C . (b) ρxy(B) as a function of gate voltage Vg.
ρxy approximately changes sign at the gate voltage at which the number of holes and
electrons in the system is equal. This occurrence serves as an indication of the CNP.
Due to the high electron mobility, quantum Hall plateaus can be seen to the right of
the CNP. The measurements were carried out at a frequency of 7 Hz at 57 mK.
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which enter the system near the top surface. Therefore, the hump at 0 V has a
similar origin to the one in the given references: It indicates the gate voltage
at which bulk electrons from the CB enter the system near the top surface.
As two groups of carriers with different mobilities are present, the resistance
increases.

6.4. Zero-field capacitance

Figure 6.7 shows the capacitance as a function of the gate voltage at 0 T.
Two quantities come into play here: firstly, the quantum capacitance CQ,
exhibiting direct proportionality to the thermodynamic density of states (DOS),
and secondly, the geometric capacitance Cgeo. Both capacitive elements are
connected in series. CQ is much larger than Cgeo. Due to the series connection
of the capacitive elements the smaller geometric capacitance determines the
absolute capacitance value. Using equation 3.26 for the capacitance in series
and the layer thicknesses of the insulators from figure 4.6, we can estimate the
total geometric capacitance. The relative permittivities used for this are taken
from the supplemental of reference [39]. The exact values and calculation are
recorded in a table in appendix B.1.

The calculation of the geometric capacitance yields a result of Cgeo =
40.3 pF, which is consistent with the experimental result of 43 pF. The slight
difference can be accounted for by various factors: Firstly, the exact layer thick-
nesses of the insulators (SiO2 and Al2O3) depend on the particular deposition
process [111]. The actual values could be different from the assumed values.
Even small deviations in insulator thicknesses can cause significant changes in

-2 -1 0 1 2
42.5

43.0

43.5

EV

 0 T

Vg (V)

C
 (p

F)

E2nd pocket
C

Fig. 6.7.: Zero-field magnetocapacitance as a function of gate voltage. The explana-
tion for the measured capacitance values and the observed shape of the curve results
from the different contributions of Cgeo and CQ. The measurement for these data
were obtained with the AH2700 A bridge at 1.4 K and 60 Hz.
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Cgeo. Secondly, the relative permittivities may differ from the values used. In
particular, the value for CdHgTe should be taken with caution since the CdHgTe
in the wafer used here is doped. Additionally, there is a finite but unknown
contribution from parasitic capacitances, which could explain the difference
between experiment and calculation.

In the following, the variation of the capacitance with Vg will be explained.
Here the quantum capacitance plays a role. The measurement is primarily
sensitive to the charge carriers close to the top surface [39]. Coming from
negative gate voltages at about −1 V the last remaining holes are depleted from
the system and the capacitance decreases. The bulk electrons associated with
the 2nd pocket of the CB enter the system at 0 V near the top surface. These
additional states, combined with the increasing DOS of the Dirac electrons
present on the top surface, lead to a rise in capacitance as a function of
positive gate voltage. Therefore, the capacitance displays a minimum at −0.5 V
and increases towards positive gate voltages. The bulk electrons of the first
pocket of the CB, which enter the system at −1.5 V, sit in close proximity to
the bottom surface. Because capacitance measurements primarily probe the
uppermost surface, they are not visible in the capacitance of this particular
wafer. Furthermore, it is possible that the average centre of the position of the
wave function is drawn towards the top surface as the gate voltage increases.
The decrease in effective insulator thickness d results in an increase in Cgeo and,
consequently, an increase in the total capacitance.

A comparison can be made between the filling rate of the total system
and the capacitance. ntot is the average of nHall

s and nSdH
high . The total electron

filling rate of the system is then defined as αtot = dntot/dVg which corresponds
to the slope of the black, dashed line fit in figure 6.1. A calculation gives
αtot = 2.474 × 1011 cm−2 V−1. From this value, the capacitance C = eαtotA

can be estimated, with e corresponding to the elementary charge and A to the
overlap area of the topgate and mesa (see appendix B.1). The result of 41.8 pF
is consistent with both the experimentally obtained values and the previously
calculated geometric capacitance [39].

6.5. Identification of Landau fans

This section provides a qualitative comparison of the QHE and SdH oscillations
for both large and small magnetic fields. At high magnetic fields, i. e. above
6 T, only a single Landau fan can be identified, while at lower magnetic fields,
the visible features cannot be explained by a single Landau fan.

Despite the fact that an electric current is carried by different classes
of electrons and holes in HgTe one observes a QHE with well pronounced
plateaus at high magnetic fields. The longitudinal and transversal resistivities
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Fig. 6.8.: QHE and SdH oscillations at high and low fields. (a) The black trace
shows the ρxy data. Above 6 T one can see well defined plateaus corresponding to
ρxx minima (blue lines). The filling factor ν is noted on the left side. The grey
horizontal lines indicate the theoretical values of RK/ν. They agree very well with
the measured plateaus. (b) At lower magnetic fields the situation becomes more
complicated and the clear periodicity of the SdH oscillations is no longer present.
Moreover, the peaks sometimes overlap. Some of the quantum Hall plateaus are
only faintly visible (ν = 7) or completely missing (ν = 10) while others are still
very pronounced. The measurements were obtained at 57 mK, 1.1 Hz and, to prevent
heating effects, a current of 10 nA.

vs magnetic field B at Vg = 0 V are shown in figure 6.8. Figure (b) is based on
the same data as figure (a), but enlarges the range from 0 to 5 T. The distinct
periodicity of the SdH oscillations is no longer observed at lower magnetic fields.
Additionally, some of the plateaus, including the ν = 10 plateau, are absent.
This is due to the corresponding LLs being close to each other. The cyclotron
gap between them is too small, resulting in unresolved QHE plateaus and SdH
minima. The Fermi level jumps over two LLs simultaneously, causing a change
in the filling factor of 2.

Using equation 3.21 for all SdH minima above 2.6 T one obtains a charge
carrier density of 5.8 × 1011 cm−2 at 0 V. This coincides with the result from
the Hall slope and therefore reflects the total charge carrier density. At lower
magnetic fields three different charge carrier types form Landau fans: top surface,
bottom surface and bulk electrons. The different subsystems contribute to the
complicated pattern in ρxx and ρxy visible in figure 6.8 (b).

The topgate voltage Vg can be varied in order to tune the Fermi energy
EF . This adds a dimension to the graphs and the data can be displayed as 2D
colour plots. Using the tensor inversion of equation 3.5 the conductivity σxx

can be obtained from ρxx and ρxy. The colour map shown in figure 6.9 (a) shows
the longitudinal conductivity normalized to the respective gate voltage average
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Fig. 6.9.: Colour maps of normalized σxx and RK/Rxy. (a) 2D colour map of the
longitudinal conductivity normalized to the respective gate voltage average as a
function of Vg and B. The yellow colour shows area of high conductivity and therefore
LLs, blue corresponds to Landau gaps. (b) 2D colour map of RK/Rxy. This allows
the determination of the total filling factors ν of the respective Landau gaps. The
contour lines, i. e. the black lines which separate the differently coloured areas, are at
half-integer filling factors and reflect the centres of the LLs. At low magnetic fields
RK is not quantized anymore. The black line at the bottom left corner of the figure
is an artefact of data processing. The data for both graphs were obtained at 57 mK
and 1.1 Hz.

σxx,norm = σxx

σ̄xx

9. This procedure is done to enhance visibility of the features.
The figure reveals a complicated pattern of overlapping Landau fans.

The filling factor, on the other hand, which can be determined from the
ratio RK/Rxy, is shown in figure 6.9 (b). For large magnetic fields QHE plateaus
with even spacing are well visible. However, similar to the situation in figure
(a), the data looks more complicated for small magnetic fields. By comparing
the colour maps, one can assign the corresponding filling factors to the Landau
gaps.

There is one peculiar feature at about −2.5 V and above 9 T: The filling
factor ν is equal to zero in this region. Experimentally, one observes both a
very large ρxx and ρxy, which yields a transversal conductivity of σxy = 0. In
Ziegler et al. [69] it is speculated that this could be a magnetic field induced
insulator state or a formation of counterpropagating edge states [123–125]. A
more detailed investigation of this phenomenon is not part of this work.

Both colour maps show a single well-defined Landau fan at high magnetic
9The average σ̄xx is calculated by the arithmetic mean: σ̄xx = 1

n

(∑n
i=1 σxx,i

)
[73].
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fields, but a complex situation at low magnetic fields, consisting of several
Landau fans. To understand this behaviour, this complicated structure will first
be disentangled in the next sections.

6.5.1. Top surface

The fact that the capacitance primarily measures the uppermost layer of charges
can be used to determine the LLs belonging to this layer in the conductivity
colour map. In this section, it is concluded that below 6 T the capacitance
reflects the top surface 2DES of the 3D TI and the corresponding LL in the
conductivity are identified.

The capacitance oscillations below 6 T show a clear 1/B periodicity. This
can be observed, for instance, in the capacitance colour map in figure 6.10.
The observed capacitance maxima (yellow) indicate that EF is in a LL, the
capacitance minima (blue) that EF is in a Landau gap. Towards higher magnetic
fields the LLs exhibit increased separation which reflects the 1/B periodicity
of the oscillations. This periodicity implies that these LLs belong to the same
2DES. The corresponding charge carrier density at 0 V is 1.7 × 1011 cm−2 which
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Fig. 6.10.: Colour map of the capacitance. Here, capacitance is shown as the second
partial derivative to enhance the visibility of the features. Yellow coloured areas
correspond to capacitance maxima which in turn correspond to maxima in the DOS.
The numbers in front of the white background are the partial filling factors of the top
surface. The magenta lines indicate the LL centres. The lowest LL (dashed magenta
line) is not resolved, possibly due to its proximity to the VB edge. The data were
collected with the lock-in amplifier setup at 3.1 Hz and at 5 K, to prevent resistive
effects.



6.5. Identification of Landau fans 71

is less than 30 % of the total charge carrier density. All of this suggests that the
primarily probed surface is the top surface, similar to the results in Kozlov et
al. [39].

There are two other features in the colour map: Firstly, the capacitance
minimum described in section 6.4 becomes visible at −0.5 V and 0 T. Secondly,
in the filling factor ν = 1 region, two capacitance minima (blue regions) appear
above 6 T, indicating the onset of hybridisation in the system which is discussed
in section 6.6.

To identify the LLs in the conductivity colour map that belong to the top
surface, it was compared with the capacitance colour map. For this purpose,
the maxima in the capacitance corresponding to the centres of the LLs were
traced with continuous lines (magenta). These lines were then transferred to
the conductivity colour map in figure 6.11 (a). The lines indicate LL centres
which are present in both plots. These are periodic in Vg and 1/B and converge
to a point at −1.5 V.

The point of origin at −1.5 V is the virtual Dirac point. As the Fermi level
enters the valence band at −1 V, the filling rate of the top surface inevitably
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Fig. 6.11.: Identification of top surface LL by capacitance. (a) Colour map of the
second partial derivative of the longitudinal conductivity normalized to the gate
voltage average. Yellow lines correspond to the centres of the LLs, blue and greenish
striped regions are Landau gaps where one measures the quantum Hall plateaus. The
striped areas (such as at 0 V and 8 T) appear due to data processing and are not
present in the original data. The magenta lines indicate the LL centres that can be
observed in both this colour map and the capacitance colour map. The numbers in
front of the white background differ from the capacitance colour map as they represent
the total filling factor here. (b) Enlargement of a section of the graph on the left-hand
side reveals additional well-resolved LLs that were not resolved in the capacitance
colour map. As explained in the subsequent text, all of these are 1/B periodic and
pertain to the top surface. The data for both graphs were obtained at 57 mK and
7 Hz.
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changes. This leads to a kink in the Landau fan, which however cannot be
observed here due to lack of resolution. The actual Dirac point of the top surface
is buried deep in the valence band [69]. To highlight this fact, the point at
−1.5 V is referred to as virtual.

For magnetic fields below 1.5 T, the LLs are not resolved in the capacitance
colour map. For the conductivity colour map, the resolution limit is approxi-
mately 0.6 T. If the strict periodicity in 1/B is used, the expected positions of
the top surface LL can be extrapolated towards lower magnetic fields. This was
done here and confirms that all LL visible in the conductivity at positive gate
voltages and magnetic fields below 1.5 T, as shown in figure 6.11 (b), stem from
the top surface.

When measuring capacitance as a function of magnetic field, oscillations
are observed, as shown in figure 6.3. The minima occur at integer filling factors
of the top surface. Plotting these minima as a function of the inverse magnetic
field should ideally result in a straight line, as seen in figure 6.12 (a). This allows
for extraction of the charge carrier density of the probed 2DES. Additionally,
the phase δ of the quantum oscillations can be determined by [59]

1/Bmin,ν

∆1/B

= ν + δ, (6.6)

where Bmin,ν is the minimum of the oscillation corresponding to filling factor
ν and ∆1/B is the oscillation period on a 1/B scale. For a conventional 2DES
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Fig. 6.12.: Capacitance minima and quantum phase. (a) Capacitance minima as
a function of the inverse magnetic field. Only data below 8 T were used. A linear
fit confirms that for a fixed gate voltage the data points lie on a straight line. The
minima above 8 T were deliberately not considered here. These lie below the linear
fit due to the hybridization of the system discussed in section 6.6. (b) The quantum
phase δ and the corresponding standard error of the capacitance oscillations as a
function of Vg. The data were obtained from the intersection of the linear fit with the
y-axis in the left-hand plot. Due to the topological nature of the top surface electrons
and a small contribution from the bulk electrons the result here is δ > 0.5 [39].
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one expects a phase of δ = 0. However, for Dirac fermions the phase is ideally
δ = 0.5, since electrons acquire a Berry phase in the magnetic field [126].

The observed values here are slightly above 0.5 due to the topological nature
of the top surface electrons and a small contribution from the bulk electrons.
This result is consistent with the findings in Kozlov et al. [39]. Additionally,
this paper shows that the phase drops to 0 when the Fermi energy enters the
valence band. The absence of this feature in the data presented in figure 6.12 (b)
is in line with the fact that the VB edge is at −1 V, which is below the gate
voltage at which the first oscillations in the capacitance become visible.

Overall, these results confirm that below 6 T the capacitance primarily
probes Dirac-like states and consequently the 2DES of the top surface.

6.5.2. Bottom surface

Figure 6.13 displays a 2D colour map of the second derivative of the longitudinal
conductivity. The data were derived with respect to the magnetic field instead
of the gate voltage, revealing horizontal lines that we ascribe to LLs stemming
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Fig. 6.13.: Identification of the bottom surface LLs. The colour map shows the
longitudinal conductivity, differentiated twice with respect to the magnetic field. The
LL (yellow) belonging to the bottom surface were indicated with black lines. Two
horizontal lines at 3.65 T and 4.05 T can also be seen which are visually distinct from
the LLs. These are artefacts that occurred during the measurement and are of no
further concern. The data were obtained at 57 mK and 7 Hz.
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Fig. 6.14.: Colour map of RK/Rxy to determine the filling factors. The black
horizontal lines indicate the LL centres and were copied from figure 6.13. The bottom
surface LLs are accompanied by a change in the filling factor which, together with the
other LLs, results in the visible parallelogram-like pattern. The data were obtained
at 57 mK and 7 Hz.

from the bottom surface10.
Due to the electrostatics of the doped wafer the bottom of the CB is below

the top of the valence band. There are always mobile charge carriers available
from the top surface or bulk. These electrostatically shield the bottom
surface LLs from the influence of the topgate. Therefore, the LLs appear at
constant magnetic fields.

The horizontal features in the conductivity are accompanied by a change
in the filling factor, as shown in figure 6.14. This confirms the existence of
horizontal LLs, which, together with the LL of top surface and bulk electrons,
create a parallelogram-like pattern. The pattern is particularly visible between
3.3 T and 5.2 T.

In the conductivity colour map in figure 6.13, the LLs of the bottom surface
at positive gate voltages are partially concealed by the LLs of the top surface
and the bulk. Figure 6.15 compares the conductivities at constant magnetic
fields. The curve at 5.2 T corresponds to the magnetic field strength at which
EF is in the last visible LL associated with the bottom surface. Therefore, at
this configuration there is a large DOS stemming from the bottom surface and,

10The visibility of the horizontal LLs is not improved by taking a derivative with respect to
the gate voltage, as this makes them parallel to the derivative direction.
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Fig. 6.15.: Waterfall plot of the normalized conductivity as a function of gate voltage
at fixed magnetic fields. The curves have been shifted vertically to increase visibility.
The curves were measured at 57 mK and 7 Hz.

consequently, a high conductivity of the electrons residing on the bottom surface.
To obtain the total conductivity, the conductivities of the respective 2D systems
are summed up. The high conductivity of the bottom surface attenuates the
visibility of the oscillations of the top surface and bulk. In conclusion, at 5.2 T
one moves along the LL resulting in a rather constant conductivity value. At
4.6 T and 5.8 T, on the other hand, one sees curves that are significantly more
modulated by LLs stemming from other 2D electron systems or the 2D hole
system. This suggests that the bottom surface LLs extend over the entire gate
voltage range.

The filling rate of the bottom surface is below an experimentally determinable
value which implies a constant charge carrier density. The carrier density was
calculated by evaluating the 1/B periodicity of the LLs in figure 6.13. The
result of 2.3 × 10−11 cm−2 coincides with the result nSdH

low−f2 , which was obtained
by the Fourier spectroscopy in section 6.1.2.

The bottom surface LL only become clearly visible after a number of data
processing steps, such as differentiating twice with respect to the magnetic
field. As a result, it was not possible to determine the exact positions of the
minima. A determination of the carrier density is still possible, as explained
in the preceding paragraph. However, the precision required to determine the
Berry phase of the bottom surface is not given.

Equation 3.20 can be used to determine the magnetic field values at which
the bottom surface LLs should lie based on the known charge carrier density. It
is expected that one more LL of the bottom surface will appear between 9 T and
10 T, but it is not visible in any of the conductivity colour plots. Furthermore,
there is no change in the filling factor at this magnetic field interval. This is
believed to be a result of the ongoing hybridisation of electron systems at these
high magnetic fields, as the LL is already part of the merging system. More
information can be found in section 6.6.
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6.5.3. Bulk holes

The analysis so far has focused on the LL of the electron systems. Additionally,
the density of states of the valence band’s two-dimensional hole system
(2DHS) forms hole LLs when subjected to a perpendicular magnetic field. These
LLs are spin-degenerate at low magnetic fields [69]. Analysing the LLs at high
magnetic fields is challenging due to the occurrence of spin splitting and the
hybridization of the system. The objective of this section is to estimate the hole
carrier density. Therefore, the focus is on low magnetic fields below 4 T, where
the LL exhibit a clear pattern.

Figure 6.16 (a) displays the second derivative of the longitudinal conductivity
at negative gate voltages, revealing the LL originating at the VB edge at −1 V
and fanning out towards negative gate voltages. Figure 6.16 (b) presents the
corresponding filling factors in this region. The black contour lines at half-integer
filling factors indicate the centres of the LLs. Between −2.5 V and −3.5 V it is
noticeable that the filling factor changes by 2 for each LL, supporting the spin
degeneracy of the bulk holes from the CB in the displayed regime. Additionally,
the LL exhibit periodicity in 1/B. Taking into account the spin degeneracy, the
charge carrier density pSdH can be determined using equation 3.20. This yields
the results shown in figure 6.1.
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Fig. 6.16.: Identification of bulk hole LL. (a) Colour map of the second partial
derivative of the longitudinal conductivity normalized to the gate voltage average.
The LL stemming from the 2DHS are indicated by black lines. These originate from
the VB edge at −1 V. (b) Colour map of RK/Rxy. At −3.5 V the filling factor changes
by 2 for each LL. This is due to the spin degeneracy of the 2DHS at low fields. The
black line in the centre of the figure is an artefact of data processing. The data for
both graphs were obtained at 57 mK and 7 Hz.



6.5. Identification of Landau fans 77

6.5.4. Bulk electrons

Identifying the LLs stemming from the bulk electrons turns out to be a chal-
lenging task due to close proximity of E∗

C and the virtual Dirac point of the top
surface.

Figure 6.17 displays the second derivative of the longitudinal conductivity.
The magenta lines represent the LL which coincide with the capacitance, and
therefore belong to the top surface. The horizontal LL of the bottom surface
are not visible, since the data has been derived with respect to the gate voltage.
The LLs that have not yet been identified are ascribed to the bulk electrons of
the CB. They are marked with black lines.

The position of the CB edge E∗
C can be determined by extrapolating the

LLs of the bulk carrier electrons towards B = 0, similar to how the virtual Dirac
point of the top surface was determined. It is expected that the filling rate
of the bulk electrons will decrease when entering the VB at −1 V. Therefore,
linear extrapolation of the data for the bulk electrons is of limited use, and the
actual position of EC is unknown in this doped wafer. To emphasize this point,
the corresponding abbreviation E∗

C is marked with an asterisk [59, 64].
Furthermore, there is a region of increased conductivity in the centre of the

figure, indicated by a single black line. This is likely the second pocket of the
CB emerging at 0 V. A Landau fan pattern cannot be identified for it.
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Fig. 6.17.: Identification of bulk electron LL. The colour map shows the second
partial derivative of the normalized longitudinal conductivity. The black continuous
lines mark the LL which belong to the bulk and have their origin at the virtual CB
edge E∗

C = −1.6 V. These were identified using a simple exclusion principle, since
they cannot be assigned to either the top surface (magenta) or the bottom surface.
In addition, a region of increased conductivity which originates at 0 V can be seen. It
originates from the 2nd pocket of the CB. The data were obtained at 57 mK and 7 Hz.
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The LL above 3 T are 1/B periodic. Below 3 T they exhibit some imper-
fections. It is assumed that this is due to the inconsistent separation between
the LL of the bulk and the LL of the top surface, resulting in complete or
partial overlap. Therefore, the carrier density analysis has been conducted for
the four visible LL lowest in energy. This corresponds to the LL at the highest
magnetic fields in the figure. A comparison with figure 6.14 reveals that at 5 T,
the filling factor changes by 1 for each bulk electron LL. This suggests that the
LL are spin-resolved, which allows for an estimation of their carrier density. The
obtained values are slightly lower than the data reported in figure 6.1, which was
calculated using the electron density difference nbulk = nHall

s −
(
nCap + nSdH

low−f2

)
.

The small difference of 10 % may be attributed to the second pocket of the
CB.

6.6. Merged system at high fields

This section investigates the behaviour of the conductivity and capacitance at
high magnetic fields, specifically above 6 T.

Figure 6.18 shows the second derivative of the longitudinal conductivity as
a 2D colour map, with data analysed up to a magnetic field of 17 T. At high
magnetic fields, the complicated and overlapping Landau fans are no longer
visible. Instead, only a few LLs with regular spacing can be observed. The
LL centres are marked with dashed lines. These lines can be extrapolated to
B = 0 T using straight, black continuous lines. The point of origin, roughly
at −2.3 V, is the CNP. The single Landau fan reflects the total charge carrier
density. In section 6.5.1, the LLs marked with magenta were assigned to the
top surface, and it was concluded that they reflect its charge carrier density.

Figure 6.19 displays the second derivative of the capacitance for high fields
up to 17 T. The magenta lines indicate the top surface LL. The dashed black
lines represent the three LL centres determined by the conductivity, while the
continuous lines show their extrapolation to B = 0 T. These lines were directly
copied into the capacitance colour map.

Interestingly, above 14 T, the dashed lines indicating conductivity maxima
coincide with the capacitance maxima, suggesting that the capacitance follows
the transport data. At high magnetic fields, the capacitance Landau fan now
reflects the total charge carrier density, not just that of the top surface. The
bottom line is: In the regime of low magnetic fields, approximately between
0 and 6 T, distinct electron carrier subsystems coexist. These subsystems
weakly interact, contributing almost independently to the total conductivity. As
a result, each subsystem generates its own Landau fan, which can be observed
as complex patterns in the conductivity colour map. As the magnetic field
increases, the charge carriers are redistributed, approximately between 6 and
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Fig. 6.18.: Colour map of the second partial derivative of the longitudinal conductivity
normalized to the gate voltage average for high fields. At the bottom right is the
top surface Landau fan, which originates −1.5 V (magenta). The centres of the three
visible LLs at large magnetic fields are indicated by black, dashed lines. These lines
are extrapolated towards 0 T and −2.3 V by black continuous lines. The resulting
Landau fan originates from the CNP and reflects the total charge carrier density. The
numbers on the white background indicate the total filling factor. The data were
obtained at 57 mK and 1.1 Hz.

14 T. Finally, above 14 T, all electron systems are merged and only a single
Landau fan survives, which originates from the CNP. This Landau fan reflects
the total charge carrier density.

The behaviour described above is also evident in the filling factor. At low
magnetic fields, the conductivity filling factor is determined by RK/Rxy, as
shown in figure 6.9 (b). This is the total filling factor, i. e. the number of filled
LLs of all 2D electron and hole systems. In contrast, the filling factor of the
top surface at low fields is determined by the intersection of the linear fit of
the capacitance minima with the y-axis, as shown in figure 6.12 (a). There,
the successive minima are plotted as a function of the inverse magnetic field.
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Fig. 6.19.: Colour map of the second partial derivative of the capacitance for high
fields. The dashed and continuous lines from figure 6.18 have been transferred to this
colour map. The numbers on the white background within the magenta indicate the
partial filling factor of the top surface, while the numbers at large fields indicate the
filling factor of the merged 2D system. To prevent resistive effects that can occur in
the presence of large magnetic fields, the entire measurement was carried out using
the lock-in amplifier setup at low frequencies of 3.1 Hz and at 5 K.

Additionally, the minima are assigned sequential integer filling factors. The
filling factors of the top surface can then be determined as the linear fit of the
data points must intersect the Y-axis between 0 and 1, given that the quantum
phase for the Dirac fermions of the top surface is 0.5 (as shown in figure 6.12 (b)).
In the event that the intersection point falls outside the specified range, all data
points are collectively shifted by an integer value until the required condition
is met. This procedure was utilized to determine the filling factors of the top
surface from the capacitance at low fields. In conclusion, at low magnetic fields,
the LL gaps observed in the capacitance are associated with the partial filling
factor of the top surface, whereas the LL gaps observed in the conductivity
are associated with the total filling factor of all 2D systems. However, at high
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Fig. 6.20.: Assignment of SdH peaks to the 2DES of origin. Shown is ρxx as a
function of the inverse magnetic field 1/B at 0 V. For each peak in the graph the
corresponding origin was denoted. At 0.41 T−1, the colour maps show both the
presence of a bottom surface LL and a top surface LL. This agrees with the statement
in section 6.5, where it was concluded that the filling factor here increases by two, from
9 to 11. For magnetic fields smaller than 2 T (or larger than 0.5 T−1) the resolution of
the colour maps is no longer sufficient for a definite assignment of the peaks to their
respective origin. In addition, the electrons of the 2nd pocket of the CB contribute to
the conductivity. At even smaller magnetic fields the system becomes diffusive. The
data were obtained at 57 mK and 1.1 Hz.

magnetic fields, the filling factors for both the conductivity and capacitance
coincide, reflecting the same number of filled LL of the remaining single 2D
system.

Capacitance measurements below 6 T probe the top surface, while above
14 T, the system is fully merged and capacitance probes the total carrier density
of the merged system. In between, the capacitance does not follow any of the
black, dashed LL centres determined by the conductivity. This reflects the
redistribution of charge carriers in this magnetic field interval. However, the
exact behaviour of the capacitance is unclear at present. Furthermore, the
merging of the electron systems above 6 T explains the missing lowest bottom
surface LL. It was expected to appear between 9 T and 10 T, but the system is
already merging at these fields.

Figure 6.8 displayed the QHE and SdH oscillations from 0−17 T at Vg = 0 V.
The data revealed well-pronounced plateaus and peaks at high fields, but a
complex pattern at low fields. In this and the previous sections, all LLs were
identified, and the merging process of the systems was revealed. This allows
each SdH peak to be assigned its corresponding origin, i. e. the 2D system of
origin. This is shown in the figure 6.20.





7. Superconductivity

A good introduction to superconductivity can be found in the book by Rudolf
Gross and Achim Marx [43]. A more theoretical but very precise description is
provided by Michael Tinkham [127]. Wördenweber et al. [128] writes specifi-
cally about "Superconductors at the Nanoscale", and Victor Moshchalkov and
Joachim Fritzsche about "Nanostructured Superconductors" [33]. All four books
were consulted when writing this chapter. The first section on Ginzburg-Landau
theory primarily uses the book by Gross and Marx, while the other two sec-
tions on vortices and flux pinning are strongly orientated towards the work by
Moshchalkov and Fritzsche.

Superconductivity is a quantum mechanical phenomenon that, interestingly,
can be observed on macroscopic length scales. Below a critical temperature
Tc, the electrical resistance in a superconductor drops to absolutely zero. The
niobium (Nb) used in this work has, provided an appropriate degree of purity,
the highest critical temperature of all elements at normal pressure, which
is Tc = 9.25 K [129]. Superconductors have a second important property:
they completely displace an external magnetic field and are therefore perfect
diamagnets. This effect is called the Meißner-Ochsenfeld effect and distinguishes
superconductors from ideal conductors that only exist in theory [130]. However,
just like the temperature, a magnetic field that is too strong can also break the

T

j

B

superconducting state

normal state

normal state

Fig. 7.1.: 3D phase diagram of the critical surface as a function of temperature T ,
magnetic field B, and current density j. The superconducting state can only exist
within the envelope (light blue, transparent), while outside the envelope, conductivity
is normal, resulting in a finite resistance (completely redrawn, the original comes
from [33]).
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superconductivity. Finally, superconductivity can also be broken by electric
currents. Above a critical current density the superconducting state is lost.
The 3D phase diagram of the critical surface as a function of the mentioned
quantities is sketched in figure 7.1.

This chapter is divided into three sections. The first section discusses the
Ginzburg-Landau theory and the results obtained from it. The second section
describes the structure and behaviour of vortices in the superconductor. The
third section covers the pinning of vortices, i. e. confining them to specific
positions, and the physical effects involved.

7.1. Ginzburg-Landau theory

The physical phenomena observed in this work can be well described by the
Ginzburg-Landau (GL) theory, named after Vitaly Ginzburg and Lev Landau
and published in 1950 [8]. It is sometimes also referred to as the GLAG theory
to acknowledge the contributions of Alexei Abrikosov and Lev Gor’kov.

In this thesis this description of superconductivity is suitable because, on
the one hand, it can be used to describe situations with spatially varying density
of superconducting electrons and supercurrents. Such a situation can be found,
for example, in type-II superconductors, in the investigated Nb antidot lattices,
or at the interface between Nb and HgTe. On the other hand, the macroscopic
GL theory constitutes a limiting case of the microscopic BCS (Bardeen-Cooper-
Schrieffer) theory near the superconducting transition temperature Tc. Since
the effects observed in chapter 8 have largely been measured near the transition
temperature, the GL theory is applicable in this case [43].

The derivation of the GL theory is described in detail and comprehensibly
in the books mentioned in the introduction to this chapter. A summary would
not do justice to this complex topic. However, a detailed description would
again go beyond the scope of this work, so it is not included here. Instead, the
important results are presented directly and the conclusions are drawn.

7.1.1. Ginzburg-Landau equations

Although the GL theory is based on a fundamentally phenomenological approach,
it proved to be highly successful. Ginzburg and Landau calculated an expression
for the free energy F of a superconductor using a complex order parameter
Ψ. This order parameter can vary spatially and its absolute square |Ψ(r)|2
is a measure for the density of the superconducting electrons ns(r). For a
normal conductor, Ψ would be zero, whereas for a superconductor it is finite.
Ψ0 describes the order parameter in field-free space, for example infinitely deep
in the superconductor.
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If F is minimised with respect to variations in Ψ, this results in the
1. Ginzburg-Landau equation [128]:

αΨ + β|Ψ|2Ψ + 1
2m∗ (−iℏ∇ + 2eA)2 Ψ = 0. (7.1)

Here, α and β are phenomenological parameters, where α = α(T ) is linearly
dependent on temperature, while β is temperature independent. Moreover, m∗

is the effective mass of a Cooper pair11, 2e corresponds to the charge of a Cooper
pair and A is the magnetic vector potential. Minimising F with respect to
this vector potential A leads to the 2. Ginzburg-Landau equation, which
describes the electric current density j [128]:

j = − 2e

m∗ Re {Ψ∗ (−iℏ∇ + 2eA) Ψ} . (7.2)

The real part of the complex function in the curly brackets is denoted by Re.
The Ginzburg-Landau equations can be used to describe superconductivity with
local variations of the magnetic field B and local variations of ns.

7.1.2. Characteristic length scales

The abstract, phenomenological parameters α and β can be replaced by two
actually observable, characteristic length scales. The first is the Ginzburg-
Landau coherence length, ξGL, which represents the length scale over which
the superconducting order parameter can vary. It is found that [43]

ξGL(T ) =

√√√√ ℏ2

2m∗α(T ) = ξGL (0)√
1 − T

Tc

. (7.3)

As can be seen from the second part of the equation, the coherence length
depends on the temperature T and the transition temperature Tc.

The second characteristic length scale is the Ginzburg-Landau penetration
depth λGL. It is a measure of the length at which an external magnetic field
decays in a superconductor. λGL is also temperature-dependent and the following
applies [43]

λGL(T ) =
√

m∗β

4µ0e2α(T ) = λGL (0)√
1 − T

Tc

, (7.4)

where µ0 is the vacuum magnetic permeability. The magnetic field and or-
der parameter at a superconductor-normal conductor interface are shown in
figure 7.2.
11A Cooper pair consists of two electrons that interact with each other via phonons. It is

used in the BCS theory to explain the occurrence of superconductivity.
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Fig. 7.2.: Behaviour of the magnetic field and the order parameter at a superconductor
(SC, light grey) - normal conductor (NC, dark grey) interface. The magnetic field,
which is perpendicular to the superconducting plane and normalised to the external
field Bext, decays with λGL (red). ψ = Ψ/Ψ0 is the normalised order parameter. Its
absolute square |ψ|2 (blue) changes with ξGL. For the purpose of illustration, this figure
shows ξGL = 2λGL. The so-called proximity effect, i. e. that the superconductivity
can enter the NC to a certain extent, is neglected here (adapted from [43]).

It can be noted that if α(T )
β

= |Ψ0|2 = ns is inserted in equation 7.4, the
London penetration depth λL is obtained, which was already derived in 1935 by
Fritz and Heinz London [131].

7.1.3. Type-I and type-II superconductors

With the two characteristic length scales described in the previous section, the
Ginzburg-Landau parameter κ can be defined:

κ ≡ λGL (T )
ξGL (T ) =

√
β

2µ0

1
µB

, (7.5)

where µB is the Bohr magneton. The purpose of this parameter is that two
different types of superconductors can be distinguished:

κ ≤ 1√
2

type-I superconductor (7.6)

κ ≥ 1√
2

type-II superconductor (7.7)

Type-I superconductors have a thermodynamic critical field Bcth that separates
the superconducting state from the normal conducting state. The field-free
superconducting state is also known as the Meißner state, named after Walther
Meißner.



7.1. Ginzburg-Landau theory 87

(a) (b)

Meißner state
Meißner state
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Fig. 7.3.: (a) Phase diagram of a type-I superconductor. The thermodynamic critical
field separates the Meißner state from the normal state. (b) Phase diagram of a
type-II superconductor: there is an additional mixed state between the upper and
lower critical field.

In type-II superconductors, on the other hand, there is a lower critical
field Bc1 and an upper critical field Bc2. Below Bc1 is the Meißner state and
above Bc2 is the normal conducting state. In these regimes, type-I and type-II
superconductors behave analogously. It becomes interesting when the field lies
between the lower and upper critical field: This regime is also called mixed
state or Shubnikov phase after Lev Shubnikov.

The calculation of the SC/NC interfacial energy reveals a negative value for
type-II superconductors in the mixed state. This implies that the superconductor
can minimise its total energy by creating as many interfaces as possible. It is
therefore energetically favourable for type-II superconductors in this regime to
behave in an interesting way: There are still connected, superconducting areas.
In these, however, separate areas are formed in which the superconductor is
penetrated by magnetic flux. This was recognised by Alexei Abrikosov and
published in 1957 [9, 43, 128]. The phase diagrams of type-I and type-II
superconductor are sketched in figure 7.3.

The magnetic flux that penetrates the superconductor is quantized, resulting
in superconducting flux quanta, i. e. Φ0 = h/2e12. The double elementary
charge in the denominator corresponds to the charge of the Cooper pairs in the
BCS theory, which consist of two electrons. This quantization of the magnetic
flux was experimentally demonstrated by Doll and Näbauer [132] and by Deaver
and Fairbank [133], independently of each other. Both Abrikosov’s work and
the behaviour of the superconducting flux quanta will be discussed in detail in
the next sections of this chapter. However, before that, the critical fields will be
briefly discussed. The two critical fields Bc1 and Bc2 are related to the physical
quantities described so far as follows: The lower critical field Bc1 is given

12in contrast to Φm
0 = h/e, which is referred to as magnetic flux quanta in this work and

plays a role in the Landau levels in the QHE.
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by

Bc1 = Φ0

4πλ2
L

(ln κ + 0.08). (7.8)

It occurs when the first flux quantum enters the superconductor. The upper
critical field Bc2 is given by

Bc2 = ℏ
2eξ2

GL

= Φ0

2πξ2
GL

. (7.9)

The temperature-dependent Ginzburg-Landau coherence length ξGL (T ) can
therefore be determined directly from measurements of the upper critical mag-
netic field with

ξGL (T ) =
√

Φ0

2πBc2 (T ) . (7.10)

7.2. Vortices

This section provides a detailed description of superconducting flux quanta in
type-II superconductors, which are also known as vortices. The term ’vortex’ is
appropriate as it refers to the fact that a single vortex consists not only of the
magnetic flux but also of the associated circular shielding currents.

7.2.1. Structure of a single vortex

As previously stated, the magnetic flux within a vortex is quantized, with its
value corresponding to the superconducting flux quantum Φ0. The local magnetic
field B(r) decreases with increasing distance from the vortex centre over the
length λGL, as shown in figure 7.4 (b). The exact mathematical description
of the radially symmetric function contains modified Bessel functions and is
highly complex. The same applies to the current distribution j(r), shown in
figure 7.4 (a). It is also radially symmetrical. However, it initially increases
with increasing distance from the vortex centre and then decreases again after
reaching a maximum. The superconducting electron density is far away from
the vortex centre |Ψ|2 = |Ψ0|2 = ns and decreases to zero in the vortex core
over a distance that is given by the coherence length ξGL. It is therefore also
said that the normal core of the vortex has a diameter of 2ξGL [33].

A terminological clarification should now be made. Sometimes, instead of
speaking of flux quantization the term fluxoid quantization is used. This
can be explained by assuming a superconducting hollow loop, through which
magnetic flux passes. It is not the magnetic flux from the external magnetic
field that is quantized, but the fluxoid, which is the sum of both components:
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Fig. 7.4.: Structure of a single vortex. (a) The circular ring current density j(r)
(green) is shown. It initially increases with radial distance from the vortex centre and
then decreases. (b) The density of the superconducting electrons |Ψ|2 (blue) drops to
0 in the centre of the vortex core. The magnetic field (red) is at its maximum in the
centre of the vortex core and decreases with λGL (adapted from [33]).

the magnetic flux from the external field B and the magnetic flux generated by
the superconducting ring current through the loop [43, 127]:

∮
γ

m∗

ns(2e)2 j dr︸ ︷︷ ︸
flux from ring current

+
∫

F
B · n̂ dF︸ ︷︷ ︸

flux from external field

= nΦ0. (7.11)

Here, j represents the superconducting current density, γ is a closed curve
surrounding the area F , and n̂ is the unit vector perpendicular to the area F .
Regardless of the origin of the magnetic flux through the superconducting loop,
it always corresponds to a multiple n ∈ N0 of the flux quantum Φ0. This is why
the term flux quantum is still appropriate and therefore used in this work.

7.2.2. Vortex interaction energy

In type-II superconductors, parallel vortices, i. e. vortices with the magnetic
flux pointing in the same direction, repel each other due to electromagnetic
interaction. The distance between vortex 1 and vortex 2 is denoted as r12.
The interaction energy W12(r12) per unit length of the vortex lines is then a
complicated expression that includes the modified zero-order Bessel function [43].
However, W12(r12) can be reduced to two limiting forms.

For large distances r12 ≫ λL it holds that [33]

W12(r12) = Φ2
0

2πµ0λ2
L

√
πλL

2r12
exp

(
−r12

λL

)
. (7.12)

The interaction energy therefore decreases exponentially with the distance of
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the vortices. For small distances ξGL < r12 ≪ λL [33]

W12(r12) = Φ2
0

2πµ0λ2
L

ln
(

λL

r12

)
(7.13)

is obtained. The interaction energy therefore increases with decreasing vortex
distance.

In both cases, the interaction energy W12(r12) is positive for two parallel flux
lines in a type-II superconductor. The superconductor can therefore minimise
its energy by moving the vortices as far away from each other as possible, which
results in vortex-vortex repulsion.

7.2.3. Abrikosov lattice

This repulsive force ensures that the vortices maintain a distance from each
other. However, as the externally applied magnetic field B increases, the vortex
density also increases and the average vortex spacing decreases [33].

If it is assumed that the positions of the vortices form a square lattice
with the lattice constant a□ (see figure 7.5 (a)), then the area of the unit cell is
A□ = a2

□. This area accounts for exactly one flux quantum Φ0. With B = Φ0
A□

,
the lattice constant a□ follows directly as a function of the magnetic field:

a□ =
√

Φ0

B
. (7.14)

If we now consider a triangular lattice as in figure 7.5 (b), the area of the
primitive grid cell, more precisely the Wigner-Seitz cell, can also be determined
here with A∆ = 1.5a2

∆ tan(30◦). Here too, with an applied magnetic field B, a
flux quantum occupies exactly this area, i. e. B = Φ0

A∆
. This directly determines

the lattice constant a∆ of the triangular lattice as a function of the magnetic
field:

a∆ ≈ 1.075
√

Φ0

B
. (7.15)

A comparison now immediately shows that the distance between the flux lines
for the same applied magnetic field is greater for the triangular lattice than for
the quadratic lattice, namely

a∆ ≈ 1.075 · a□. (7.16)

As the flux lines repel each other, as mentioned at the beginning, this greater
distance is energetically more favourable. The energetic advantage of the trian-
gular lattice over the quadratic lattice is approximately 1.7 % and is therefore
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Fig. 7.5.: Quadratic and triangular flux lattice. (a) Quadratic flux line lattice with
lattice constant a□. The Wigner-Seitz cell is shown in light green. (b) Triangular
flux line lattice with lattice constant a∆ and hexagonal Wigner-Seitz cell. This
configuration is energetically more favourable compared to the square lattice, as there
is a greater distance between the individual vortices for the same magnetic field B.

quite small [43].
The fact that vortex-vortex repulsion leads to this hexagonal lattice was

recognised by Alexei Abrikosov. It is therefore also called the Abrikosov lattice
after him. His solution approach is based on the relationship between induction
and field strength and utilises the Ginzburg-Landau theory. It is mathematically
far more complicated than the simple geometric approach shown here [9, 10].

Thus, in a type-II superconductor, a periodic arrangement of vortices is
obtained between the lower and upper critical field. Most of the samples in
this work have antidots with a square lattice. In the further course of this
thesis it will be shown that the small energetic advantage of the hexagonal
arrangement is not decisive here and that the vortices are forced into the square
arrangement.

7.2.4. Current transport in the mixed state

The physical effect described in this section is essential for understanding the
measurement data in chapter 8. If a current j smaller than the critical current
density flows through a type-II superconductor, this initially occurs without
losses. However, if the superconductor is in the mixed state due to an external
homogeneous magnetic field B, a force acts on the vortices13. This force is the
Lorentz force fL, which is given per unit length of the flux line for a single
superconducting flux quantum Φ0 by [33]

fL = j × Φ0. (7.17)

13The vortex density is determined by B/Φ0.



92 7. Superconductivity

Fig. 7.6.: Vortex motion in mixed state. Shown is a lattice consisting of flux quanta
Φ0 in a type-II superconductor loop under the influence of the current j. The Lorentz
force fL points perpendicular to the current and perpendicular to the direction of the
flux lines (shown schematically for one flux quantum with blue vectors). As a result,
the flux quanta move in the direction of vL. However, the total flux in the conductor
loop remains constant, as the flux quanta exiting at the bottom are compensated for
by flux quanta entering at the top. Due to the Faraday’s law of induction, an electric
field E builds up, which is perpendicular to the magnetic field B pointing out of the
plane and perpendicular to vL (drawn in green to the right of the conductor loop for
the sake of clarity). This can be observed experimentally as a voltage drop.

The vortices therefore start to move perpendicular to the current and perpen-
dicular to the magnetic flux Φ in the sample geometry shown in figure 7.6 and
dissipate energy in the process. The physics behind this dissipation will be
explained in section 7.3 under the term ’flux flow’ [134].

The Lorentz force naturally also acts on the circular currents. However,
as these move in a circle around the flux quanta, the force effect is radial and
cancels out.

As soon as they reach the end of the superconductor, the vortices leave it.
According to the law of induction, a change in the magnetic flux over time leads
to a voltage14 E [43]:

E = − d
dt

∫
A

B dA (7.18)

= 1
e

∮
∂A

[
eE + evL × B

]
dl. (7.19)

Here, dl is a path element of the conductor loop, A is the area of the conductor
loop, dA is an oriented element of its surface, and ∂A is its edge. Additionally,
Stokes’ theorem was applied. However, vortices re-enter the superconductor at
the opposite side of the sample geometry. The total flux in the system therefore
remains constant over time. The integral in equation 7.19 must therefore become
zero, which is why an electric field builds up:

E = −vL × B = B × vL. (7.20)

14The induced voltage here is an electromotive force. For this, the notation with the symbol
E is usually used.
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This electric field is perpendicular to the magnetic field (i. e. also perpendicular
to the magnetic flux) and perpendicular to the direction of movement of the
vortices, meaning that it is parallel to the transport current j. This results in a
voltage drop that can be observed by measuring the electrical resistance [43,
127].

7.3. Vortex pinning

In order to achieve higher values for the critical current, the vortices can be
prevented from moving. This process, which corresponds to an enlargement of
the envelope in figure 7.1, can be achieved by so-called pinning. The Lorentz
force fL is then counteracted by a pinning force fP . It cannot be described
with a general equation, as the pinning force depends on a number of parameters,
such as the geometry of the pinning centre.

In principle, the vortices can pin to defects of all kinds. The sputtered Nb
used in this work inevitably results in irregularities on the surface. Although
these spatial variations only function weakly as pinning centres, they exist in
large numbers. Another form of pinning centres are nano-engineered columnar
defects, i. e. antidots. These are used specifically in this work to hold the vortices
in place. They are very strong pinning centres, but only exist in small numbers
compared to other material defects. Both irregularities in the Nb and antidots
can be recognised on the SEM images in figure 4.4 [33].

Different regimes can be distinguished depending on the strength of the
pinning when a current flows through the sample. If the flux pinning is very
strong, the flux quanta are perfectly pinned, and there is no vortex propagation
through the superconductor. As Tinkham [127] states, the superconductor
behaves "very much like a perfect conductor".

Thermally activated flux quanta may jump from pinning centre to pinning
centre as a result of a flux-density gradient. This is called flux creep. The flux-
density gradient decays over time, and the flux creep decreases logarithmically.
Experimental observation of flux creep is very demanding and any potentially
occurring flux creep can be neglected in the experiments of this thesis[135].

In the absence of pinning or if the pinning is weak, the vortices move rather
uniformly, the superconductor is in the flux flow regime. The superconductor
has a finite resistivity resulting from the viscous drag of the vortices. The
Bardeen-Stephen model [136] describes this phenomenon and assumes that the
vortices have a normal conducting core with a radius of ∼ ξGL, in which the
complex order parameter Ψ disappears completely. The vortices are therefore
normal conducting in the core, and dissipation occurs due to resistive processes,
similar to the physics in a normal conductor [43, 127].



94 7. Superconductivity

7.3.1. Saturation number and integer matching fields

There are numerous experimental and theoretical publications on the pinning of
flux quanta in antidots. This includes both older research articles [137–144] and
recent studies from the past few years [134, 145–151]15.

Depending on the size of the antidot, not only one but multiple flux quanta
can be pinned. The saturation number nsat represents the maximum number
of flux quanta per antidot. In 1972 Mkrtchyan and Schmidt [152] estimated its
value for a single cylindrical antidot of radius ra:

nsat ≃ ra

2ξGL(T ) . (7.21)

In this work, however, not individual antidots are analysed, but a large number
of them. These can be arranged in a grid and periodic pinning arrays are
obtained. In 2000, Doria et al. [153] calculated the saturation number for such
a regular arrangement of pinning centres and came to the conclusion that due
to vortex-vortex interactions [154]:

nsat ≈
( ra

ξGL(T )
)2

. (7.22)

Determining the best size of an antidot to pin the flux is difficult, but Moshchalkov
et al. [155] comes to the general conclusion that pinning centres with a size
greater than ξGL(T ) are more efficient than those with a size approximately
equal to ξGL(T ).

In these periodic pinning arrays, there are various ways in which the vortices
can be arranged. The simplest arrangement is known as the first matching
field B1. It occurs when the flux within the area A of the primitive unit cell
corresponds to exactly one flux quantum, i. e.

B1 = Φ0

A
. (7.23)

In this case, the number of flux quanta in the superconductor is equal to the
number of antidots. If there is one or more flux quanta per primitive unit cell,
than the corresponding magnetic field is referred to as an integer matching
field:

Bn = n · B1, (7.24)

with n ∈ N.

15This selection of literature has played a role in the author’s research, but it is not a complete
list.
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7.3.2. Flux periodic oscillations

As the pinned vortices no longer move through the superconductor when a
current is applied, this reduces the flux motion and therefore also the dissipation.
The antidots can thus reduce the resistivity of the sample. In experiments, this
can be observed just below the transition temperature Tc, as this is when the
flux quanta can be depinned more easily. If all (or most) of the vortices are
trapped in the antidots, the resistance is zero (or low). However, if the vortices
move, the superconductor enters the flux flow regime, resulting in an increase
in resistance. As a result, flux periodic oscillations of the resistance as a
function of the magnetic field can be observed [33].

The resistance oscillations are related to the Little-Parks effect, which
was published by William Little and Ronald Parks in 1962 [156, 157]. However,
the Little-Parks oscillations were measured in a single loop, specifically a su-
perconducting hollow cylinder. They obtained flux periodic oscillations in the
Tc(B) phase boundary with a sharp maximum and a parabolic minimum (red
curve in figure 7.7). In a superconducting network consisting of many loops,
i. e. many antidots, the opposite will be observed. The maxima will be flat, and
the minima will be cusp-shaped (blue curve in figure 7.7). The evolution of the
Tc(B) boundary gradually transforms from one to the other as the number of
loops increases [33, 158].

Two lattice structures were analysed in this work: The main focus was on
square lattices. Here, the flux quanta can no longer assume an Abrikosov lattice
but are forced onto the square lattice structure. However, triangular lattices,
which correspond to the Abrikosov lattice structure, were also investigated. The

networksingle loop

0 21

Fig. 7.7.: Schematic representation of the difference in the phase boundary ∆Tc

as a function of Φ/Φ0 when the number of superconducting loops is changed from
one to a large number. The curve for a single loop (red) is reminiscent of Little and
Parks’ observations, the other curve (blue) is for a superconducting network. The
shape of the oscillations is similar to the resistance oscillations in chapter 8 (adapted
from [33]).
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number of antidots ranged from 10 000 to several 100 000, depending on the
lattice period. Occasionally, samples with 2 000 000 antidots were also studied.

7.3.3. Hofstadter butterfly and fractional matching fields

The matching fields can be not only integer but also fractional in nature.
Whenever there is commensurability between the periodicity of the flux quantum
lattice and the periodicity of the antidot pinning array, these matching fields
can occur. The fractional matching fields are defined as [33]

Bp/q = p

q
· B1, (7.25)

with p, q ∈ N. At the fractional matching fields, the flux quanta can be in
particularly stable lattice configurations, which reduces the flux motion and
results in dips in the resistance at the corresponding fractions.

Fascinatingly, the fractional matching fields are related to the Hofstadter
butterfly graph, which was described by Douglas Hofstadter in 1976 and named
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Fig. 7.8.: Simulation of a Hofstadter butterfly. Shown is the energy spectrum (blue)
for Bloch electrons in a square 2D lattice potential with a homogeneous magnetic field.
The large gaps in the graph resemble a butterfly, hence the name. The lower edge of
the spectrum (indicated in red) corresponds to the Tc(B) phase boundary of a square
superconducting network with fractional matching fields. The energy spectrum was
originally calculated by Hofstadter [13] (adapted from [159]).
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after him [13]. Figure 7.8 shows such a graph, which illustrates the fractal
energy spectrum of a 2D electron system with a periodic potential in a perpen-
dicular magnetic field [160]. The fractional matching fields are connected to
the Hofstadter butterfly since the Tc(B) phase boundary is equal to the lowest
edge of the spectrum. This was shown by shown by Pannetier et al. [12],
who investigated a superconducting network made of aluminium. He obtained a
fractal fine structure of Tc(B) with dips at Φ/Φ0 = 1

3 , 2
5 , 1

2 , 3
5 , 2

3 and very faintly
at 1

4 and 3
4 .

It is important to note that in this thesis, the resistivity was measured rather
than the critical temperature phase boundary. The main objective of this thesis
was not to observe a Hofstadter butterfly, but rather to evaluate the effectiveness
of flux pinning. Therefore, the fractional features in chapter 8 do not precisely
represent the lower edge spectrum of the Hofstadter butterfly. Nonetheless, the
dips in resistance at fractional values reflect the commensurability of the antidot
lattice period with the vortex lattice.

7.3.4. Vortex arrangement

Another interesting question is whether the flux quanta are located in the
antidots or pinned to material defects in the Nb. The exact position of the flux
quanta can be determined using Lorentz microscopy [161]. In the experiments in
this doctoral thesis, however, it is a priori not clear where exactly the flux quanta
are located. Nevertheless, assumptions can be made based on the matching
fields, the lattice structure, the antidot diameter, the saturation number and
the temperature. Therefore, a few terms should be clarified here.

If there are several flux quanta in an antidot, these are called multiquanta
vortices. This phenomenon is more likely to occur when the diameter of the
antidots is large, i. e. if the number of vortices per primitive unit cell n is smaller
than the saturation number nsat [155, 162].

If the vortices are located in places between the antidots, they are called
interstitial vortices. Examples for this can be seen in figure 7.9. This occurs
for instance when the surrounding antidots are occupied by vortices and n > nsat.
They are said to be caged or quasi-bound due to the repelling nature of the
vortices [138, 163, 164]. However, these interstitials are not as effectively pinned
as the vortices in the antidots and already a weak Lorentz force fL is enough to
depin them.

The exact position of the vortices also depends on the temperature: Since
the Ginzburg-Landau coherence length ξGL diverges with increasing temperature
(see equation 7.3), the saturation number nsat becomes smaller. Close to Tc, the
vortices no longer fit into the antidots and become interstitial vortices [33].
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(a) (b)

(c) (d)

Fig. 7.9.: Schematic of the possible vortex configurations in a square antidot lattice.
The configurations depicted were observed by Harada et al. [161] using Lorentz
micrographs. In configuration (a), every second antidot in the superconductor (red)
is occupied by a vortex (black). This lattice configuration is known as a checkerboard
pattern, its corresponding matching field is B1/2. (b) Matching field B1: Each antidot
hosts exactly one vortex, resulting in a highly stable configuration. (c) Matching field
B3/2: In the case of small antidots, interstitial Abrikosov vortices may occur between
them. Here, there is one interstitial vortex for every two antidots. (d) Matching field
B3: The vortex-vortex repulsion allows for the formation of complicated patterns.
Possible multiquanta vortex configurations are not shown here.



8. Pinning effects in antidots

The motivation for the experiments described in this chapter was to ensure that
the flux quanta were inside the antidots. This would allow for the detection of
Majorana bound states by capacitance measurements.

Several interesting effects related to the pinning properties of the antidots
were observed. This chapter starts with a characterisation of the sputtered Nb,
followed by pinning experiments showing the observation of integer matching
fields. Subsequently, the dependence of the pinning properties on the current
amplitude is analysed. In the last section, measurements showing fractional
matching fields are presented and an attempt is made to assign the Hofstadter
butterfly fractions to the observed features. The samples were fabricated on
wafer number 150213, which is shown in figure 4.1 (b). A brief characterization
of the wafer is provided in appendix B.2.

To investigate the effect of HgTe on the pinning characteristics, Nb antidots
were fabricated on the trivial insulator SiO2 for comparison. The fabrication
procedures were kept as similar as possible to those on HgTe16. The Nb-SiO2

samples were prepared by Benedikt Kopyciok and the data were obtained in
collaboration with him. The thickness of Nb is between 30 nm and 40 nm for all
samples and the magnetic field is always applied perpendicular to the sample
geometry.

8.1. Niobium characterization

By measuring the longitudinal resistivity ρxx as a function of the magnetic field
B at low temperatures, one can directly observe the breakdown of supercon-
ductivity at the upper critical field Bc2. By repeating this measurement at
several fixed temperatures T , it is possible to determine the critical temperature
at zero magnetic field Tc and the temperature dependent Ginzburg-Landau
coherence length ξGL(T ). The latter parameter is particularly useful as it enables
comparison of experimental results with the existing theory in later sections of
this chapter.

As the measurement data from the Nb-HgTe samples revealed a number

16It should be noted that for HgTe the CdTe cap layer was removed by Ar+-etching, which
was not necessary for the SiO2 wafer.
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Fig. 8.1.: SEM image of Nb antidots on SiO2 and ρxx vs B. (a) The antidots have
a periodicity of a□ = 200 nm and a rather squared shape. The average of several
measurements yields a horizontal and vertical diameter of da = 107 nm. (b) The
resistivity ρxx vs magnetic field B is shown for different temperatures T . From the
data, Bc2 can be determined as a function of T . The measurement was obtained using
the AC lock-in technique at a current of 100 nA at 43 Hz.

of atypical characteristics, a comparison was made with data from Nb-SiO2

samples. The two samples compared in this section have very similar Nb
antidot geometries. The similarities and differences have also been observed in
samples with other antidot periodicities and diameters, as well as samples with
unpatterned Nb. Therefore, the effects described in this section are not caused
by the geometry of the antidots, but rather by the quality of the sputtered Nb
and by the underlying insulator.

First, the measurement data of an Nb-SiO2 sample with a□ = 200 nm
periodic antidots is shown. The antidots form a square lattice and also tend
to be square rather than round in shape, as can be seen in figure 8.1 (a).
Figure 8.1 (b) shows the corresponding measurement of ρxx vs B. The resistivity
is zero at low magnetic fields and temperatures. Both of these two parameters
contribute to the breakdown of superconductivity. The resistivity at the normal
conducting state, ρn

xx, is constant at ρn
xx = 33 Ω. Figure 8.2 (a) shows an SEM

image of Nb antidots on HgTe. These are also 200 nm periodic and have a very
similar shape to the antidots on SiO2. Figure 8.2 (b) shows the corresponding
measured data, which differ in several aspects from the data of the Nb-SiO2

sample.
The first notable observation is that the absolute value of the normal

resistivity ρn
xx differs by an order of magnitude between the two samples. All
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Fig. 8.2.: Tilted SEM image of Nb antidots on HgTe and ρxx vs B. (a) The antidots
are very similar to those on SiO2 as they have a periodicity of 200 nm, a square shape
and an average diameter of da = 106 nm. (b) ρxx vs B exhibits several features that
were not observed in the sample on SiO2. These are described in the main text. The
measurement was obtained using the AC lock-in technique at a current of 100 nA at
53 Hz.

samples have shown a large fluctuation in ρn
xx. This is presumably due to the

varying quality of the sputtered Nb. The samples were fabricated over a period
of several years, and the quality of the Nb can vary significantly depending
on the sputtering process parameters and the regular replacement of the Nb
target [165]. Additionally, the exact thickness of the Nb is unknown, and it
has been demonstrated that for thin Nb films, the sheet resistance is highly
dependent on the film thickness [166].

The second aspect is that ρn
xx is not constant, which may be due to the

additional contribution to conductivity from the HgTe. Equations 3.5 and 3.6
demonstrate that all four conductivity components, i. e. the transversal and
the longitudinal components of both Nb and HgTe, contribute to the signal.
For instance, this includes the transversal conductivity σxy of HgTe which can
appear due to the QHE. Explaining the qualitative shape of the curve of ρxx is
difficult as the contribution of the individual components is not known.

The third feature can be seen in figure 8.2 (b), between 2−3 T and 0−100 Ω,
in the curve which was obtained at 1.89 K. The resistivity increases gradually
with increasing field until it reaches a kink, after which it increases more
rapidly. These shoulder-like features are only present in the samples on the
HgTe topological insulator, and their origin remains unclear. The first feature
described, i. e. the fluctuation of the absolute value of ρn

xx, appeared in both



102 8. Pinning effects in antidots

2 3 4 5 60

1

2

3

4
Β

c2
 (

T
)

T (K)
2 3 4 5 6

10

20

30

ξGL(0 K)

Tc

ξ G
L 

(n
m

)

T (K)

(a) (b)

Fig. 8.3.: Comparison of upper critical field Bc2 and Ginzburg-Landau coherence
length ξGL vs temperature T for Nb-HgTe and Nb-SiO2. (a) Bc2 increases as T
decreases, with Nb-SiO2 (purple) exhibiting a larger Bc2 than Nb-HgTe (orange).
(b) The data for ξGL can be fitted and extrapolated with equation 7.3 to extract Tc

and ξGL(0 K). The extraction of the two parameters is indicated for the Nb-HgTe
sample data. ξGL has shown a similar value for all measured samples, while Tc varied
significantly. This is presumably due to quality and thickness of the sputtered Nb [165,
166].

Nb-SiO2 and Nb-HgTe samples. The second and the third feature occurred
only in Nb-HgTe samples, but for both samples with antidots and samples with
unpatterned Nb.

The temperature-dependent upper critical field Bc2(T ) is reflected by the
magnetic field at which the sample becomes normal conducting. It is conven-
tional to determine Bc2(T ) at half of ρn

xx. Figure 8.3 (a) shows Bc2(T ) for
Nb-HgTe (orange) and Nb-SiO2 (purple). Bc2(T ) increases linearly with de-
creasing temperature for both samples. This is in agreement with equations 7.3
and 7.9 from the Ginzburg-Landau theory. Additionally, the latter equation can
be used to determine the temperature-dependent coherence length ξGL(T ) from
Bc2(T ). The corresponding data are shown in figure 8.3 (b). The data points
can be fitted with the temperature dependence of ξGL(T ), which is known from
equation 7.3. The intersection point from the extrapolation of the fit with the
y-axis at T = 0 K allows for the determination of ξGL(0 K). As ξGL(T ) diverges
at Tc, the value of Tc can be determined from the vertical asymptote on the
diverging curve.

The results reveal another difference between the two samples: Tc is higher
for the Nb-SiO2 sample. The fit showed that Tc = 6.27 K for Nb-SiO2 and
Tc = 4.59 K for Nb-HgTe. However, Tc varied across all samples, regardless of
the underlying insulator, ranging from 3.9 − 7.5 K. This is presumably also
due to the different quality of the sputtered Nb. It has been shown that Tc
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depends on number of parameters, such as residual gases in the evaporator and
evaporation rate [165]. Furthermore, Tc is dependent on film thickness for thin
Nb films [166].

The measured samples consistently showed a coherence length ξGL(0 K)
within the range of 6.3 − 8.9 nm, indicating a high reproducibility. For the
Nb-SiO2 sample shown here ξGL(0 K) = 7.79 nm, and for Nb-HgTe sample shown
ξGL(0 K) = 7.41 nm.

8.2. Integer pinning effects

This section presents the pinning experiments on the Nb antidots, focusing on
the data where oscillations in ρxx were observed as a function of magnetic field
corresponding to integer matching fields. The theory behind this is described
in detail in chapter 7. The results discussed here have all been obtained in
Nb-HgTe heterostructures.

8.2.1. Integer matching fields

Firstly, pinning effects obtained on the Nb-HgTe sample with a□ = 200 nm
periodic antidots characterised in section 8.1 are studied. Figure 8.4 displays
the resistivity ρxx as a function of the magnetic field B. Unlike the previous
measurements, this plot focuses only on the regime just below the transition
temperature Tc at low magnetic fields. Oscillations with a periodicity of approx-
imately 52 mT can be clearly seen. This agrees with the first matching field B1

that can be calculated from the geometric antidot periodicity:

B1 = Φ0

a2
□

≈ 51.68 mT. (8.1)

The measurement displays dips in the resistivity at multiple integer matching
fields Bn = n · B1 with n ∈ N, specifically at ±B2 and, due to the limited
magnetic field interval only partially visible, at ±B3. These observations were
made over a wide temperature range below Tc = 4.59 K. Specifically, the
oscillations were observed from T = 4.45 K to T = 3.43 K. These measurements
reflect a pronounced pinning behaviour of the vortices, which can be observed
down to a reduced temperature of

T

Tc

= 0.75. (8.2)

The available literature suggests that this tends to be the lower limit at which pin-
ning can be observed by resistivity measurements[148, 167–169]. A comparison
with the pinning properties of the Nb-SiO2 samples is made in section 8.3.
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Fig. 8.4.: Integer matching fields at different temperatures. Shown is ρxx vs B in
the range of small magnetic fields below Tc = 4.59 K. The oscillations’ periodicity
corresponds well to B1 = 51.68 mT, which can be calculated from the antidot peri-
odicity. The pinning of the vortices is evident over a wide temperature range. The
measurements were conducted on the 200 nm periodic Nb-HgTe sample from section
8.1 using the AC lock-in technique at 300 nA and 53 Hz.

8.2.2. Flux quanta saturation

Now, data are analysed in which the magnetic field interval is wide enough
to count the number of visible oscillations, allowing a comparison with the
saturation number nsat. Figure 8.5 (a) shows an SEM image of antidots with a
periodicity of 400 nm and a square shape with a diameter of da = 244 nm. The
corresponding ξGL(T ) data are presented in figure 8.5 (b).

This sample also exhibits oscillations in resistivity with respect to the
magnetic field, as shown in figure 8.6. A clear pinning behaviour is evi-
dent up to matching field ±B20, very weakly even up to approximately ±B27.
The experimentally observed periodicity B1 = 13.1 mT agrees very well with
B1 = Φ0/a2

□ ≈ 12.92 mT. Equation 7.22 gives the theoretical maximum
number of flux quanta per antidot, represented by the saturation number
nsat. For the average antidot radius ra ≈ 122 nm and ξGL(4.8 K) = 29.4 nm one
obtains [153, 154]

nsat ≈
(

ra

ξGL(4.8 K)

)2

≈ 17. (8.3)

Therefore, according to theory up to 17 vortices can fit into one antidot. However,
this does not necessarily mean that only 17 oscillations will be observed. As
explained in section 7.3.4, interstitial pinning becomes likely at large matching
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Fig. 8.5.: SEM image of 400 nm periodic antidots and ξGL vs T . (a) The top view
SEM image displays square antidots on HgTe with a periodicity of a□ = 400 nm. The
horizontal and vertical average diameter is da = 244 nm. The edges of the Nb appear
slightly darker in this image. (b) The coherence length vs temperature data points
are fitted with equation 7.3, yielding ξGL(0 K) = 8.57 nm and Tc = 5.24 K.

fields. In addition to the vortices pinned inside the antidots, these interstitial
vortices can be caged between the antidots due to vortex-vortex repulsion. As
long as the pinning configurations remain stable, the resistivity decreases at the
corresponding matching fields. This could cause oscillations above the matching
field given by nsat. The data show that the resistivity minima at the matching
fields become less pronounced with increasing magnetic field. This may indicate
weaker pinning of the interstitial vortices as these are not as effectively pinned
as the vortices in the antidots [169].

Moreover, two possible inaccuracies in the determination of nsat should be
noted. Firstly, ξGL diverges at Tc. Therefore, a small difference in T near Tc can
lead to a potentially large difference in 1/ξ2

GL, which will significantly affect the
calculated value of nsat. Secondly, the formula for nsat was derived for antidots
with a circular shape [153, 154]. However, the antidots analysed here have a
square shape, which increases the antidot area by a total of 27 %17. This allows
the conclusion that with this antidot geometry, more flux quanta can fit into
one antidot.

Most samples with antidots showed integer pinning effects. In particular,
antidots with a small periodicity of 200 − 400 nm but a relatively large di-
ameter of around 100 − 300 nm showed pronounced pinning behaviour. This
mainly concerns the antidots fabricated with CSAR and PMMA resists (see
section 4.3).

17A square with the same diameter as a circle has an area that is 27 % larger than the area of
the circle.
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Fig. 8.6.: ρxx on a logarithmic scale as a function of the reduced magnetic flux
Φ/Φ0. Shown is a measurement of the sample with the 400 nm periodic antidots
on HgTe of figure 8.5, revealing oscillations up to matching field ±B20, very weakly
even up to approximately ±B27. Fractional features at B1/2 were also observed, but
are not discussed in this section. The curve was recorded at 4.8 K, corresponding to
T/Tc = 0.92. The data were obtained using the AC lock-in technique at 100 nA and
53 Hz.

Antidots fabricated with negative resist had larger periods of 800 nm and
smaller diameters of around 40 − 70 nm. No flux pinning effects were observed
in any of the samples fabricated with negative resist. There could be several
reasons for this. Firstly, it is possible that nsat < 1, due to the small antidot
radius. This is the case when the antidot radius ra < ξGL(T ). Pinning should
theoretically still be possible as ξGL(T ) decreases with decreasing temperature,
but only at low temperatures. At these temperatures the pinning effects may
not be observed as the resistance of the sample drops to zero. However, it is
worth noting that this argument may not always be applicable. For example,
in the sample shown in appendix B.3, the antidot radius is ra ≈ 30 nm. The
coherence length at 4 K, i. e. just below Tc = 4.36 K, is ξGL(4 K) = 22 nm. This
suggests that one flux quantum should fit into each antidot, since the calculated
value for nsat = 1.86 is above 1. However, no pinning effects were observed
during the experiment.

Alternatively, it is possible that the vortex-vortex repulsion described in
section 7.2.2 is too weak due to the large distance between the vortices. The
vortex configuration no longer adapts to the configuration of the square antidot
lattice. As a result, the vortices become pinned to the defects of the sputtered
Nb, resulting in interstitial vortices in a disordered and unstable configuration.
Consequently, they can be depinned very easily, and no oscillations can be
observed.
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8.2.3. Depinning by current

The pinning behaviour can also be studied as a function of a DC current
passing through the sample. This is achieved using the differential resistance
measurement setup described in section 5.3.2. The resistivity ρxx calculated
from the AC voltage and AC current can then be plotted as a function of DC
current I and magnetic field B in a 2D colour map. The data displayed in this
way has a visual resemblance to a pine tree. During the course of this work it
was discovered that this type of measurement can reveal pinning behaviour that
is not apparent in the line plots obtained with the AC lock-in technique.

The sample shown in figure 8.7 (a) features 300 nm periodic antidots. The
antidots have an irregular shape with an average diameter of da = 132 nm.
Figure 8.7 (b) displays the corresponding ξGL(T ) data.

The theoretical first matching field is given by B1 = Φ0/a2
□ ≈ 22.96 mT.

The measured data shown in figure 8.8 are consistent with this value. These
data were obtained using the AC lock-in technique. The lowest temperature at
which oscillations can be clearly observed is T = 4.44 K, which corresponds to
T/Tc ≈ 0.95.

Figure 8.9, on the other hand, shows ρxx obtained with the differential
resistance setup as a function of DC current I and the reduced magnetic flux
Φ/Φ0. At low currents and magnetic fields, ρxx is low and the sample is
superconducting (black). However, with increasing DC current and magnetic
field, the sample tends to have finite resistivity (green). The integer matching
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Fig. 8.7.: SEM image of 300 nm periodic antidots and ξGL vs T . (a) The top
view SEM picture reveals irregularly shaped antidots on HgTe with a periodicity
of a = 300 nm and an average diameter of da = 132 nm. (b) The coherence length
vs temperature is shown. The fit converges and yields ξGL(0 K) = 8.90 nm and
Tc = 4.68 K.
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Fig. 8.8.: ρxx vs B below Tc = 4.68 K. The oscillations at 4.55 K and 4.44 K
are clearly visible. The periodicity of the oscillations corresponds to the expected
integer matching fields. At lower temperatures, the sample transitions directly from
the superconducting state to the normal conducting state without any noticeable
oscillations. The data were obtained using the AC lock-in technique at 150 nA and
13 Hz.

fields are an exception to this. At these fields, the sample exhibits a low ρxx

even at DC currents up to I = 30 µA, and black horizontal lines become visible.
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Fig. 8.9.: 2D colour map of ρxx as a function of DC current I and the reduced magnetic
flux Φ/Φ0 at 4.44 K. The colour black indicates low resistivity or superconductivity,
whereas green indicates finite resistivity. The black area resembles a pine tree with
6 branches. One drawback of this measurement method is that the curves become
increasingly noisy towards higher DC currents. This is reflected by the black contour
lines, which are spaced at 5 Ω intervals. The measurement was taken at 13 Hz with
the differential resistance setup.
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The data representation resembles a pine tree, hence the name. The value of
the pre-resistor was not large enough to ensure a constant current, which causes
the roof shape of the visible data points. The rippled edges are an artefact
of data processing. The measurement was taken at 4.44 K, which is the same
temperature at which the light green curve in figure 8.8 was obtained.

Figure 8.10 shows another 2D colour plot. These data were recorded at
4.17 K, i. e. T/Tc = 0.89, corresponding to the dark blue curve in figure 8.8.
The colour plot shows a pine tree with pronounced ’branches’, reflecting stable
pinning. This is in contrast to the line plot where the resistivity increases
from zero to a finite resistivity with no discernible oscillations. The differential
resistance measurements therefore allow for the detection of pinning effects at
low temperatures due to large DC currents.

The depinning currents in the second pine tree plot reach up to 120 µA,
which is approximately four times higher than the depinning currents of the
first pine tree plot. This indicates that vortex pinning is stronger at lower
temperatures. The resistivity obtained depends on the current, magnetic field,
and temperature. This is similar to the schematic 3D phase diagram shown in
figure 7.1, where the superconducting state also depends on these parameters.
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Fig. 8.10.: 2D colour map of ρxx as a function of I and Φ/Φ0 at 4.17 K. ρxx is shown
on a logarithmic scale to increase the visibility of the features. The data resemble a
pine tree with a total of 8 branches. This measurement allows for the observation
of pinning effects, which were not discernible at the same temperature in figure 8.8.
No contour lines are shown in this figure for clarity. The measurement was taken at
13 Hz with the differential resistance setup.
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By using the known radius ra ≈ 66 nm and values for ξGL(T ), nsat can be
calculated. The coherence length for the first pine tree figure is ξGL(4.44 K) =
39.5 nm. The result for the calculated saturation number is nsat ≈ 2.8. The
coherence length for the second pine tree figure is ξGL(4.17 K) = 27 nm, which
yields nsat ≈ 6. In both cases, nsat is lower than the number of countable
branches in the pine tree colour plots. Possible reasons for this are described in
section 8.2.2. These include interstitial pinning, the irregular antidot shape or
the exact value of ξGL(T ), which is strongly dependent on the temperature.

The differential resistance measurements enable the observation of flux
pinning that may not be visible in the line curves obtained with the AC lock-in
technique. They also demonstrate that the flux remains pinned for currents of
up to several µA. This implies that the vortices will not be depinned by the
AC currents that flow through the sample during capacitance measurements,
as these currents are typically of the order of nA or less. It should be noted
that no fractional matching fields were observed in the differential resistance
measurements.

8.3. Fractional pinning effects

During the measurements of the antidot samples, in addition to the resistivity
dips corresponding to the integer matching fields, distinct fine structures were
occasionally observed. These structures were identified as fractional matching
fields Bp/q and are discussed in this section.

8.3.1. Checkerboard pattern

The most pronounced fractional matching fields observed were at

±Bn+1/2 with n ∈ N0. (8.4)

An example of such a measurement is shown in figure 8.11. The features were
observed in the a□ = 400 nm periodic Nb antidots on HgTe which are shown
in figure 8.5 (a). The specific case of ±B1/2 is also called a checkerboard
configuration. Here, every second antidot is occupied by a vortex, as shown
in figure 7.9 (a). The configuration resembles a checkerboard pattern, hence
the name. This vortex configuration is usually very stable [33, 42, 143]. The
Hofstadter butterfly graph shown in figure 7.8 reveals a pronounced dip at the
lower edge of the spectrum at Φ/Φ0 = 1/2, consistent with the obtained data.

The first integer matching field is represented by ±B1, corresponding to
the configuration shown in 7.9 (b). Additionally, there are fractional dips
at 1/2 towards higher integer matching fields, such as ±B3/2. There, the
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Fig. 8.11.: Fractional matching fields at ±Bn+1/2 with n ∈ N0 in a Nb-HgTe sample.
The antidot periodicity a□ = 400 nm corresponds to B1 = Φ0/a2

□ ≈ 12.92 mT. The
data were obtained with the AC lock-in technique at 4.9 K, 43 Hz, and 300 nA.

vortex configuration is unknown, but one possibility is that each antidot is
singly occupied and half of all vortices are interstitials between the antidots,
as shown in figure 7.9 (c). However, it is more probable that multiquanta
vortices are present and every second antidot is doubly occupied [144]. This
is supported by the average antidot radius ra ≈ 122 nm and the coherence
length ξGL(4.9 K) = 33.4 nm, which results in nsat ≈ 13. This also suggests the
presence of multiquanta vortices in the antidots at the matching fields ±B2 and
±B5/2.

8.3.2. Identification of fractions

Detailed fractional matching fields were observed in the measurements on the
Nb-HgTe samples, as shown in figure 8.12. The data were obtained at 3.61 K
and 3.64 K, both corresponding to T/Tc ≈ 0.79. To ensure that the visible
features are not due to noise, both curves were recorded multiple times and
then averaged over the available number of measurements. Both curves show
pronounced dips at the integer matching fields ±B1, as well as several additional
smaller resistivity dips. These smaller dips have been assigned to the fractional
matching fields shown in the figure.

Fractional matching fields with denominators q = 2, 3, and 6 have been
identified. These are displayed at the bottom of the graph. Additionally,
fractional matching fields with denominators q = 4, 7, 8, and 9 have been
identified and are shown at the top of the graph. The matching fields ±B1/8 and
±B7/8 appear as weakly visible shoulders rather than dips, but their magnetic
field value corresponds exactly to the expected value of the fraction.

The following peculiarities can also be observed. The most pronounced
fractional matching field is ±B1/2. There is no discernible difference in the
depth of the resistivity dips of the other matching fields. Intriguingly, a small
peak can be seen exactly in the centre of the larger dip at ±B1/2. The reason
for this feature remains unclear.
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Fig. 8.12.: Analysis of fractional matching fields in Nb-HgTe. The curves show ρxx

vs reduced flux Φ/Φ0 obtained on the 200 nm periodic antidots shown in figure 8.2 (a).
The data are shown from −B1 to B1 for 3.61 K (blue, data averaged over 8 curves)
and 3.64 K (magenta, data averaged over 15 curves). The curves are symmetrical
around B = 0 T. Fractional matching fields Bp/q are assigned to the dips in ρxx. The
absolute deviation of the mathematical value of the indicated fraction p/q to the
experimentally determined magnetic field value B of the resistivity minimum is less
than 1 mT for all fractions. The data were measured with the AC lock-in technique
at 53 Hz at 300 nA.

A comparison with a sample containing Nb antidots based on SiO2 will
now be shown. In the 200 nm periodic antidots shown in figure 8.1 (a), integer
matching fields and fractional matching fields at ±Bn+1/2 with n ∈ N0 could be
observed. Figure 8.13 demonstrates that the number of observable fractional
dips is limited to this and there are no fractions with a denominator other than
2.

The cause of the numerous fractional matching fields observed in the Nb-
HgTe samples, but not in the Nb-SiO2 samples, is unclear and can only be
hypothesized. Section 8.1 showed significant differences in the normal resistivity
ρn

xx and the critical temperature Tc of the two samples. As described there,
this indicates that the quality of the Nb in the Nb-HgTe sample is significantly
poorer than the Nb quality of the Nb-SiO2 sample [165, 166]. The sputtered
Nb in the Nb-HgTe sample may therefore have more material defects or surface
irregularities. These defects can weakly pin interstitial vortices [33]. This could
stabilise the complicated configurations of the fractional matching fields and
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Fig. 8.13.: Analysis of fractional matching fields in Nb-SiO2. The curves show ρxx vs
reduced flux Φ/Φ0 obtained on the 200 nm periodic antidots shown in figure 8.1 (a).
The data are shown from −B1 to B1 for 5.44 K (blue) and 5.54 K (magenta). No
Nb-SiO2 samples exhibited any fractional matching fields other than ±Bn+1/2 with
n ∈ N0. The data were measured with the AC lock-in technique at 100 nA and 43 Hz.

enable their observation.
It would be interesting to see a connection to the underlying insulator. In

contrast to the trivial insulator SiO2, the topological insulator HgTe also has
conductive topological surface states in the band gap. If the HgTe is proximitized
by the superconducting Nb, the vortex lattice may expand into the underlying
topological insulator, similar to the effect observed by Stolyarov et al. [170].
However, a clear explanation linking this idea to the observed features has not
yet been established.

8.3.3. High-field fractional matching effects

The pronounced fractional pinning could be observed in the Nb-HgTe samples
not only within the first integer matching field but also within higher integer
matching fields. Figure 8.14 illustrates this phenomenon with data up to B5.
The specific assignment of fractions to resistivity dips is not provided here. This
is due to the inadequate spacing of the data points as a function of the magnetic
field, which does not allow definitive conclusions to be drawn. Nevertheless,
several features can be observed.

The resistivity curve shows very pronounced fractional dips. The curve was
recorded at 3.46 K, i. e. T/Tc = 0.75. The temperature was close to 3.33 K, which
is the temperature at which the resistivity drops to zero within the observed
magnetic field interval. During the course of this thesis such pronounced dips
have often been observed in this low temperature regime, as opposed to at
higher temperatures near Tc. This is unexpected, given that the lower edge
of the Hofstadter butterfly spectrum corresponds to the Tc phase boundary.
One would therefore expect the strongest fractional features to appear close
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to Tc. Moreover, there are regions with high resistivity, suggesting that the
corresponding pinning configurations are particularly unstable at these fields.
These can be seen, for example, at Φ/Φ0 = 2.63, 3.63, and 4.63.

The cyan curve was recorded at positive magnetic fields. The dark blue
curve was recorded at negative magnetic fields, and then mirrored on the
ordinate axis. The measurements overlap well, demonstrating that the data are
symmetrical around B = 0. However, the fractal fine structures of the individual
integer oscillations are not perfectly symmetrical around their respective centres
±Bn+1/2 with n ∈ N0. This is in contrast to the symmetrical Hofstadter
butterfly [13].

Some differences to the experiment of Pannetier et al. [12] described in sec-
tion 7.3.3 should be noted. Pannetier’s data were obtained from superconducting
aluminium antidots, rather than Nb. These were fabricated on SiO2, which is a
trivial insulator and not a topological insulator. The antidots had a periodicity
of 6 µm with a square shape and a diameter of 4 µm. This is 30 times larger
than the 200 nm periodic antidots with the observed fractional matching fields
analysed in figure 8.12. The measurement technique used was also different. The
resistance was kept at a constant value of 0.1 Ω by regulating the temperature.
Therefore he was able to keep the temperature at T = Tc(B). This allowed for
the critical temperature curve to be obtained at a fixed resistance rather than
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Fig. 8.14.: High-field fractional matching fields up to B5. The data were obtained
on a sample with 200 nm periodic antidots on HgTe (see figure 8.2 (a)). Three curves
are presented: one was recorded from B0 to B5 (cyan), and another from B5 to
B0 (magenta). Both overlap well, demonstrating that the observed features are not
random resistance fluctuations and that the apparently noisy data are in fact highly
reproducible. The third curve (dark blue) was obtained at negative magnetic fields
and mirrored on the y-axis at B = 0. This curve also overlaps with the other two
curves, demonstrating excellent axis symmetry. The data were obtained using the
AC lock-in technique at 53 Hz and 3.46 K.
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the resistance curve at a fixed temperature. The measurements in this thesis
demonstrate significantly more pronounced fractional matching fields compared
to those reported in Pannetier’s paper. It is possible that all of these factors
contribute to this difference.

It can be concluded that the fractional fine structure of the resistivity
indicates complex but stable lattice configurations of the pinned vortices. The
influence of the HgTe on the pinning effects remains unclear. Furthermore, it is
worth noting that some antidot samples had a topgate, but no influence of the
topgate voltage on the pinning properties was observed.





9. Summary and outlook

This thesis presents two different experiments. The first experiment investigates
a 3D TI based on HgTe at high magnetic fields and millikelvin temperatures
using transport and capacitance measurements [19]. For the second experiment,
a Nb film is additionally deposited on this 3D TI. The Nb film is perforated with
a lattice of periodically arranged antidots and becomes superconducting at low
temperatures [129]. This heterostructure consisting of TI and superconductor
was investigated with magnetotransport measurements.

The first experiment involved tuning the Fermi energy in the HgTe by
applying a voltage to a top gate. By obtaining the conductivity in a Hall bar
geometry through transport measurements and plotting it on a 2D colour plot
against gate voltage and magnetic field, a complex pattern of overlapping Landau
fans can be observed [69]. In contrast to transport, capacitance measurements
only probe the uppermost charge carrier layer, specifically the top surface of
the 3D TI [39]. Therefore they display only a single Landau fan corresponding
to the top surface. By comparing the complex pattern from transport with the
single Landau fan from capacitance, the LLs corresponding to the top surface
can be identified. Throughout the entire gate voltage range, bulk electrons
from the CB or bulk holes from the VB are present due to the electrostatics
of the analysed wafer. These bulk carriers also form LLs and are therefore
2D systems. The bulk carriers shield the bottom surface carriers from the
influence of the topgate. Consequently, the LLs of the bottom surface reflect a
constant carrier density, which can be seen from their appearance as horizontal
lines in the transport colour plots. The carrier densities were determined for
all carrier systems. These observations were made below a magnetic field of
6 T, but for magnetic fields above 14 T the situation changes fundamentally.
The transport measurements show only a single remaining Landau fan. The
capacitance also shows LLs at these high magnetic fields, which are in good
agreement with the transport LLs. The electron carrier density above 14 T can
be determined from the 1/B periodicity of the LL. It corresponds well to the
sum of the carrier densities of the top surface electrons, the bottom surface
electrons and the bulk electrons obtained below 6 T. The conclusion is that
below 6 T several 2D carrier systems coexist. As the magnetic field increases,
i. e. between 6 − 14 T, the carriers are redistributed. Finally, above 14 T, only a
single 2D system remains, reflecting the total electron carrier density. The
transport measurements are sensitive to all charge carrier types at each of the
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three magnetic field intervals, while the capacitance exclusively probes the top
surface below 6 T and the remaining 2DES above 14 T.

The mechanism of carrier redistribution between 6 − 14 T remains unclear.
Within this magnetic field range, the LLs observed in the capacitance mea-
surements do not correspond to any of the LLs observed in the transport
measurements, which is surprising. Rather, it is expected that the LLs visible
in the capacitance measurements represent a subset of the LLs visible in the
transport measurements. Only the extended states of the LL, i. e. the LL centres,
contribute to the longitudinal conductivity in the transport measurements [66,
77]. On the other hand, the capacitance measurements are directly proportional
to the thermodynamic density of states of the system at the Fermi energy,
which includes the localised states of the LL [41, 94, 95]. This may explain the
discrepancy between capacitance and transport between 6−14 T, as capacitance
may reveal localised states not detected by transport measurements. However, a
comprehensive theory describing this and explaining the exact process of carrier
redistribution has not yet been developed.

In a second experiment, a layer of Nb, which is a type-II superconductor at
low temperatures, was deposited on the 3D TI. The Nb layer is perforated with
an array of antidots, i. e. periodically arranged, cylindrical cavities. When a
magnetic field is applied perpendicular to the Nb layer and the temperature is
below the superconducting transition temperature, vortices form with the flux of
the superconducting flux quantum [132, 133]. In an unperforated superconductor,
these vortices can arrange themselves in a flux quantum lattice [9]. Here,
however, the vortices can become trapped in the antidots, a phenomenon
known as pinning [33]. This pinning property is particularly pronounced at
the so-called matching fields, which occur whenever there is commensurability
between the periodicity of the flux quantum lattice and the periodicity of the
antidot pinning array [171]. These matching fields indicate the number of flux
quanta per unit cell of the antidot lattice. The pinning property is evident
in the transport measurements as oscillations of the longitudinal resistivity
of the Hall bar with respect to the magnetic field. The magnetic field values
of the resistivity minima of the oscillations are in very good agreement with
the theoretically predicted matching fields. Pronounced integer pinning was
observed up to matching fields in the low double-digit range. At higher matching
fields, interstitial vortices may form between the antidots due to vortex-vortex
repulsion [144, 163, 164]. However, the analysis indicates that multi-quanta
vortices, in which several flux quanta are located together in one antidot,
are preferentially formed [162]. Additionally, the current dependence of the
pinning was investigated. The results, displayed in a 2D colour plot, show
a pattern resembling a pine tree, demonstrating that the vortices still pin in
the antidots even at currents in the microampere range. Furthermore, besides
the integer matching fields, pronounced fractional matching fields were



119

observed. These indicate complex but stable lattice configurations of the vortices.
Intriguingly, the observed fractional fine structure of the resistivity oscillations
is related to the lower edge of the Hofstadter butterfly energy spectrum [12, 13].
To investigate the influence of the TI HgTe beneath the Nb, samples with Nb
antidots on the trivial insulator SiO2 were prepared for comparison. However,
the fractional matching fields observed in these samples were limited to a few
simple fractions.

Nevertheless, it remains unclear whether the observation of the pronounced
fractional features in the Nb-HgTe samples are a consequence of the 3D TI. The
comparison samples on SiO2 exhibit fewer fractional matching fields, but they
also possess a higher quality of Nb. This was demonstrated by measurements
of normal resistivity and critical temperature [165, 166]. The lower quality of
the Nb on the HgTe samples may indicate the presence of an increased number
of material defects or surface irregularities. These defects can pin interstitial
vortices, which could stabilise complex lattice configurations of the vortices
and thus enable the observation of fractional matching fields [138, 161]. To
investigate this, one option is to fabricate samples based on HgTe and SiO2

with identical Nb antidot geometries using the same sputtering process.
In addition, it is worth noting that no signs of MBS were observed in

the pinning experiments. It is expected that MBS will occur only when the
superconducting Nb proximitizes the HgTe [28]. Our research group has demon-
strated that the superconducting proximity effect takes place at millikelvin
temperatures for the wafers and sample fabrication techniques employed [34,
35, 104]. However, the vortex pinning measurements were made just below the
superconducting transition temperature, in the range of a few kelvins. Therefore,
it is not expected that the HgTe is proximitized by the superconducting Nb,
and as a result, no MBS are expected to occur.

The question that remains is whether there are any indications of MBS
in the capacitance measurements. The experiments described in this thesis
were initially motivated by this objective. For MBS to occur in this experiment,
a number of prerequisites are necessary. First, a 3D TI with TSS is required [26,
28]. The HgTe based TIs, which are theoretically described in chapter 2 and
experimentally analysed in chapter 6 of this thesis and other publications of
our research group, fulfil these criteria [39, 68, 69]. Furthermore, the sample
fabrication process needs to be developed and optimised to create a supercon-
ducting antidot array on the HgTe, as described in chapter 4. In addition, a
magnetic field perpendicular to the sample geometry must be applied with a
value corresponding to the first integer matching field. The theory behind this
is explained in chapter 7. This implies that there is exactly one vortex with one
flux quantum in each antidot. Moreover, the AC currents used in the capacitance
measurements must not depin the flux quanta. Both requirements can be met
as shown in the experiments in chapter 8. On top of that, the superconducting
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Nb must proximitize the 3D TI. With the fabrication steps and wafers used, this
is achievable and occurs at millikelvin temperatures [34, 35, 104]. According to
theory, MBS can form in the antidots when all these conditions are met [36, 37].
The additional density of states from the MBS lies at zero energy [28]. Chapter 3
explains that the density of states is reflected in the quantum capacitance. The
quantum capacitance can be detected through capacitance measurements using
a top gate, as detailed in chapter 5. Chapter 6 successfully demonstrated the
feasibility of the measurement techniques to obtain the quantum capacitance,
but only on HgTe Hall bars without Nb. Therefore, an additional test was
carried out on a sample where half of the surface area was covered with Nb. The
results reported in appendix B.4 demonstrate that the quantum capacitance
can still be detected when half of the capacitor plate is a metal. However, the
signal is attenuated accordingly. Although all of the above prerequisites have
been met successfully, the capacitance measurements of the samples of HgTe
with Nb antidots do not show any significant signal modulation, as reported in
appendix B.5.

There could be several reasons for this. Firstly, it is possible that the
capacitance signal is too attenuated due to the ratio of Nb area to HgTe area,
resulting in a poor signal-to-noise ratio. However, this is contradicted by the
fact that even in samples where the antidots are large compared to the Nb area,
no MBS were observed.

Furthermore, the amplitude of the excitation voltage used in capacitance
measurements may be too high, leading to an averaging of states over a wide
energy interval in the band structure. This could be problematic for the fol-
lowing reason: The MBS are located at the centre of the gap of the induced
superconductivity [28]. Fischer et al. [34] estimated the induced gap to be
approximately half the size of the superconducting gap, with a lower limit of
one-eighth. To selectively detect only the MBS in the gap of the induced super-
conductivity, a correspondingly small voltage amplitude is required. However,
reducing the voltage amplitude increases the noise in the measured signal. To
address this issue, a cold amplifier, such as an integrated capacitance bridge,
can be used to amplify the signal in the cryostat [172, 173]. As part of this
thesis, an attempt was made to construct such a bridge. The corresponding
electronic circuit is shown in appendix B.6. However, the technical progress
did not go beyond the results presented in the references, and the capacitance
signals obtained when testing the integrated capacitance bridge were no better
than those obtained using lock-ins or the AH 2700 A bridge.

Another issue is that at millikelvin temperatures the flux quanta are strongly
pinned, either in the antidots or as interstitials. To measure capacitance as
a function of magnetic field, it is not sufficient to simply sweep the external
magnetic field. Instead, after obtaining the capacitance data at a fixed magnetic
field, the sample must be heated above the critical temperature, the magnetic
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field changed, the sample cooled and the next capacitance data measured.
This process must be repeated for each desired magnetic field. For example,
comparing capacitance data at millikelvin temperatures with and without flux
quanta in the antidots, i. e. with and without MBS, is only possible using this
method. However, the 3He/4He dilution refrigerator used makes this method
a very challenging task, as the 3He/4He mixture would have to be condensed
and stored separately in tanks each time. Alternatively, the sample could be
heated using a heating element such as a resistor. However, this would also heat
the 3He/4He mixture, which would presumably evaporate before the critical
temperature of Nb could be reached.

In conclusion, this thesis has demonstrated that the 3D TI based on HgTe
provides a platform for various exciting effects. Additionally, the antidot lattice
based on superconducting Nb also offers a wide range of potential experiments.
If capacitance measurements can be achieved that reveal MBS in the het-
erostructure of the two material layers, the next exciting step would be to
braid the non-Abelian MBS, i. e. to interchange two MBS [32]. Akzyanov et
al. [174] proposed an experimental realization of braiding based on vortex MBS.
However, rather than attempting the very complex process of braiding, the
fusion of two MBS would be a much simpler process. This involves bringing
two MBS close together until their zero-energy modes overlap and split. In the
experiment described in the initial motivation for this doctoral thesis, achieving
this objective would be straightforward. The magnetic field could be set to a
value that yields the second integer matching field. This would result in two
vortices per antidot and consequently the fusion of two MBS. According to
Beenakker [31], the fusion of MBS would already be sufficient to demonstrate
non-Abelian statistics. Therefore, this theoretically simple fusion experiment
could have a potentially revolutionary impact on the current state of physics.





A. Sample fabrication

In this appendix, the individual steps of the sample fabrication of an HgTe Hall
bar with Nb antidots and topgate are listed.

Wafer dicing

Process step Description and parameters

Cleaning 60 s acetone
60 s isopropyl alcohol
drying with N2 gun

Resist application S1813 photoresist, spin coating at 1000 min−1,
1000 min−1 s−1, 30 s
baking at 80 ◦C for 5 min

Wafer dicing with a diamond scriber into samples with size
4 x 4 mm, repeating each scribe 4-5x
breaking of the wafer along scribed edges

Quality control with optical light microscope

Mesa structuring

Process step Description and parameters

Cleaning 60 s acetone
60 s isopropyl alcohol
drying with N2 gun

Resist application S1813 photoresist spin coating at 8000 min−1,
4000 min−1 s−1, 30 s
baking at 80 ◦C for 3 min

Optical lithography at 275 W for 80 s

Resist development with MF-26A developer for 30 s
distilled H2O for 30 s development stop
drying with N2 gun
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Chemical wet etching with Br2:C2H6O2:H2O = 0.1 mL:100 mL:25 mL, at
0 ◦C for 4 min, stirred at 300 min−1, shaking of the
sample every 30 s
distilled H2O for 5 s to stop etching
drying with N2 gun

Resist removing 60 s acetone
60 s isopropyl alcohol
drying with N2 gun

Etching depth control with Dektak

Antidot fabrication

This section can be skipped for samples without Nb antidots. The recipes were
optimised for a total of three different resists. First the recipes based on the
positive resists (a) CSAR and (b) PMMA are described in bullet points. Then
the recipe for the negative resist (c) AR-N 7520 is given.

(a) Based on CSAR resist:
Process step Description and parameters

Cleaning 60 s acetone
60 s isopropyl alcohol
drying with N2 gun

Resist application CSAR 9 % EBL resist spin coating, first at
3000 min−1, 3000 min−1 s−1, 5 s, then at 6000 min−1,
2500 min−1 s−1, 60 s
baking at 80 ◦C for 20 min

Electron
beam lithography

at 30 kV, 20 µm aperture, roughly 100 pA beam cur-
rent and 700 pC cm−1 line dose

Resist development with AR-600-546 for 30 s
isopropyl alcohol for 30 s development stop
drying with N2 gun

Metallization in-situ in UHV:
Ar+-etching for 27 s at 100 V
3 nm of Ti with electron gun, 100 mA
30 nm of Nb with Ar+-sputtering, at 250 W
3 nm of Pt with electron gun, at 500 mA

Resist lift-off in AR-600-71 for 90 s
syringe pressure and ultrasonic application in
AR-600-71
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isopropyl alcohol
drying with N2 gun

Quality control and
documentation

with scanning electron microscope

(b) Based on PMMA double resist layers:
Cleaning 60 s acetone

60 s isopropyl alcohol
drying with N2 gun

Double layer resist
application

PMMA 50K 9 % EBL resist spin coating at
6000 min−1, 4000 min−1 s−1, 30 s
baking at 80 ◦C for 20 min
PMMA 200K 9 % EBL resist spin coating at
6000 min−1, 4000 min−1 s−1, 30 s
baking at 80 ◦C for 20 min

Electron
beam lithography

at 30 kV, 30 µm aperture, roughly 150 pA beam cur-
rent and 2500 pC cm−1 line dose

Resist development with MIBK:isopropyl alcohol = 1:3 for 90 s
isopropyl alcohol for 30 s development stop
drying with N2 gun

Chemical wet etching with Br2:C2H6O2:H2O = 1 drop:100 mL:25 mL, at
0 ◦C for 30 s, stirred at 300 min−1

distilled H2O for 5 s to stop etching
drying with N2 gun

Metallization in-situ in UHV:
Ar+-etching for 10 s at 100 V
3 nm of Ti with electron gun, 100 mA
30 nm of Nb with Ar+-sputtering, at 250 W
3 nm of Pt with electron gun, at 500 mA

Resist lift-off in acetone at 60 ◦C for 24 h
syringe pressure and ultrasonic application in aceton
isopropyl alcohol
drying with N2 gun

Quality control and
documentation

with scanning electron microscope
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(c) Based on negative resist:
Process step Description and parameters

Cleaning 60 s acetone
60 s isopropyl alcohol
drying with N2 gun

Resist application under yellow light:
AR-N 7520 11 % EBL negative resist spin coating,
4000 min−1, 1000 min−1 s−1, 60 s
baking at 80 ◦C for 3 min
resist application process is performed twice to pro-
duce a thicker resist film

Electron
beam lithography

sample must not be exposed to daylight during trans-
portation to the scanning electron microscope
at 30 kV, 20 µm aperture, roughly 75 pA beam cur-
rent and 1 - 10 fC point dose

Resist development under yellow light:
with AR-300-47 for 50 s
distilled H2O for 60 s to stop development
drying with N2 gun
resist can now be exposed to daylight

Metallization in-situ in UHV:
Ar+-etching for 27 s at 100 V
3 nm of Ti with electron gun, 100 mA
30 nm of Nb with Ar+-sputtering, at 250 W
3 nm of Pt with electron gun, at 500 mA

Resist lift-off in AR-300-76 at 60 ◦C for at least 24 h
syringe pressure and ultrasonic application in
AR-300-76
isopropyl alcohol
drying with N2 gun

Quality control and
documentation

with scanning electron microscope

Insulator deposition

Process step Description and parameters

SiO2 deposition 30 nm of SiO2 with PECVD; 3 x 15 s SiH4/N2O, gas
flow 710/170 sccm, 80 ◦C, 150 W
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Al2O3 deposition 80 nm of Al2O3 with ALD; with C3H9Al and H2O
precursors, at 80 ◦C, 66 s purge time, 15 ms pulse,
1000 cycles

Metallization

Process step Description and parameters

Cleaning 60 s acetone
60 s isopropyl alcohol
drying with N2 gun

Resist application S1813 photoresist spin coating at 8000 min−1,
4000 min−1 s−1, 30 s
baking at 80 ◦C for 3 min

Optical lithography at 275 W for 80 s

Resist development with MF-26A developer for 30 s
distilled H2O for 30 s to stop development
drying with N2 gun

Metallization 5 nm of Ti with Univex, 1.0 Å/s
70 nm of Au with Univex, 1.4 Å/s

Resist lift-off in acetone at 60 ◦C for 24 h
syringe acetone pressure application
isopropyl alcohol
drying with N2 gun

Chip carrier contacting

Process step Description and parameters

Gluing into standard chip carrier with PMMA resist
baking at 80 ◦C for 20 min

Bonding with gold wire
first bond on chip carrier (connected) and second
bond on contact pad (not connected)

Soldering soldering the disconnected second bond using indium
with soldering iron
settings 6 V and 1 A

Quality control checking the mechanical stability of each bond by
carefully pulling on it with a thin needle



128 A. Sample fabrication

verifying electrical contact in the measuring set-up
if required, again soldering



B. Supplementary data

B.1. Estimation of geometric capacitance

In this appendix, the total geometric capacitance of the modulation-doped wafer
and the insulators deposited on it is estimated for the geometry of the measured
samples.
The overlap of topgate and mesa, which is decisive for the geometric capacitance,
is known to be 105 500 µm2 from lithographic files and microscopic images.
Furthermore, it is assumed that the top surface 2DES sits 6 nm below the
HgTe-CdHgTe interface [39].
The layer thicknesses, obtained from a private conversation with N. N. Mikhailov,
are shown in figure 4.6. The thickness of the Al2O3 was estimated from the
number of deposition cycles. According to Gieraltowska et al. [111] 1000 cycles
result in 80 nm. The relative permittivities are taken from the supplemental
of Kozlov et al. [39]. The parameters of the relevant insulating materials are
summarized here:

Insulator Thickness (nm) Relative permittivity

Al2O3 80 9
SiO2 30 3.5
CdTe 40 10.2
CdHgTe 20 13
HgTe 6 21

With equation 3.26 it follows that the total geometric capacitance

Cgeo =
(

1
Cgeo, Al2O3

+ 1
Cgeo, SiO2

+ 1
Cgeo, CdTe

+ 1
Cgeo, CdHgTe

+ 1
Cgeo, HgTe

)−1

= 40.3 pF.

(B.1)



130 B. Supplementary data

B.2. Characterization of wafer 150213

This section provides a brief characterisation of wafer 150213, which was used
in the pinning experiments in chapter 8. The available data are limited, but are
sufficient to determine the VB edge and the CB edge. The measurements are
presented in figure B.1.

1.0 1.5 2.0 2.5 3.0
0

2

4

6

8

10

ρx
y (

kΩ
)

 1 T
 2 T

0.0 0.5 1.0 1.5 2.0 2.5 3.0
9.3

9.4

9.5

9.6

 0 T

EC

EC

EV

EV

C
 (

pF
)

Vg (V)

Vg (V) Vg (V)
1.0 1.5 2.0 2.5 3.0
0

5

10

15

ρx
x(

B)
/ρ

xx
(B

=
0T

)

(a) (b)

(c)

Fig. B.1.: Normalized ρxx(B), ρxy(B), and C vs Vg. (a) Shown is ρxx(B = 1 T)
normalized to ρxx(B = 0) as a function of gate voltage Vg. The VB edge sits
approximately at 1.4 V. The weak hump at 2.2 V indicates the CB edge EC . The
large resistivity below 1 V indicates that the CNP sits below 1 V. (b) Shown is ρxy(B)
as a function of gate voltage Vg. ρxy changes sign approximately at the CNP. Due to
the incomplete data this cannot be observed, however a linear extrapolation suggests
that the CNP sits at around 0.7 V. The measurements were carried out with the AC
lock-in technique at 1.5 K. (c) The capacitance data at 0 T confirms the positions of
EC and EV . The capacitance was measured with the AH 2700A bridge at 1.5 K and
240 Hz.
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B.3. Coherence length in unpatterned Nb films

This appendix presents a comparison between two distinct Nb-HgTe films on the
same sample. Figure B.2 (a) shows the first film has antidots with a periodicity
of 800 nm produced with the negative resist recipe. The other film consists of
unpatterned Nb. Both films were produced in the same sputtering process and
are therefore well comparable.

(a) (b)

1.5 2.0 2.5 3.0 3.5 4.0

10

15

20

25

ξG
L 

(n
m

)

T (K)

Fig. B.2.: SEM image of 800 nm periodic antidots and ξGL vs T . (a) The top view
SEM image shows round antidots on HgTe with a periodicity of a□ = 800 nm. The
diameter is da = 60 nm. (b) The coherence length vs temperature is shown for the
film with antidots (orange) and another film on the same sample with unpatterned
Nb (red).

The ξGL(T ) data in figure B.2 (b) were fitted with equation 7.3. The fit
converges in both cases and yields ξGL(0 K) = 6.38 nm and Tc = 4.36 K for the
area with antidots (orange). The result for the unpatterned Nb area (red) is
ξGL(0 K) = 6.64 nm and Tc = 3.95 K.

Flux pinning effects at the theoretical integer matching fields Bn = n·3.2 mT
with n ∈ N could not be observed in this sample.

B.4. Capacitance in Nb-HgTe heterostructures

This section investigates the extent to which quantum capacitance can be
observed in capacitance measurements when part or all of the mesa layer is
covered by a metal with a high density of states. The objective was to compare
the capacitance of an HgTe-insulator-topgate structure with that of an Nb-
HgTe-insulator-topgate structure.

For this, a simple sample was fabricated with three Hall bars based on wafer
150213 (see figure 4.1 (b)). The CdTe cap layer of the first Hall bar was removed
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(b)(a) (c)

Fig. B.3.: Cross section, not to scale, of three Hall bars based on wafer number
150213. (a) The CdTe layer has been removed, and 3 nm Ti, 40 nm Nb, and 3 nm
Pt have been deposited. (b) Exactly 51 % of the Hall bar’s area has been treated
similarly to figure (a). There is a small step in the insulators and the topgate due
to the different height of the CdTe and the Nb, which is not shown here. (c) For
the third Hall bar the 5 nm CdTe layer was not removed, and no metal has been
deposited.

using Ar+-etching. Subsequently, 3 nm Ti, 40 nm Nb, and 3 nm Pt were applied.
The second Hall bar underwent the same procedure as the first, but with a
crucial difference: only half of the surface area of the Hall bar had the CdTe
removed and the metals were applied only to this half. The third Hall bar was
left unprocessed. Next, 30 nm of SiO2 and 100 nm of Al2O3 were applied to
the entire sample. Finally, three individual top gates were added. The layer
thicknesses are summarised in the figure B.3.

The capacitance of the three Hall bars was then measured as a function of
the magnetic field, as shown in figure B.4. The Hall bar without metallisation
shows oscillations stemming from Landau levels. The Hall bar with 100 %
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Fig. B.4.: Capacitance of the three Hall bars shown in figure B.3 as a function of
magnetic field B. The legend refers to the uppermost conducting layer below the
insulators. The y-axis has been broken at two points to allow the data to be plotted
on one graph. The measurements were recorded with the AH 2700A bridge at 60 Hz,
1.4 K, and Vg = 5 V, which is close to the edge of the CB for the Hall bar without
metallization.
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metallisation shows no dependence of the capacitance on the magnetic field.
The Hall bar with 51 % Nb and 49 % HgTe also exhibits oscillations, but their
amplitude is attenuated. The conclusion is that it is possible to observe quantum
capacitance in Nb-HgTe heterostructures when the Nb only partially covers the
HgTe, however, the signal is attenuated.

The capacitance signals’ absolute values differ amongst the individual Hall
bars, ranging from approximately ∼ 14.9 pF to over ∼ 18.1 pF. The absolute
value is primarily composed of the geometric capacitance and parasitic capaci-
tances. The geometric capacitance will be analysed first. It can be assumed that
the insulators (SiO2 and Al2O3) have a uniform thickness, as they are grown
globally (i. e. on the entire sample) in one process. However, 5 nm of CdTe,
which is also an insulator, has to be included in the calculation of the geometric
capacitance for the areas lacking metallisation. Nonetheless, a rough estimate
similar to the calculation in appendix B.1 indicates that this is insufficient to
clarify the variation in the absolute value of the signal. Parasitic capacitance
may therefore also play a role here, for instance due to the different lengths of
the gold bonds of the three top gates, which interact capacitively with the mesa
and the bonds of the mesa.

The capacitance of an HgTe sample where part of the mesa layer is covered by
Nb, can be described by the circuit shown in figure B.5. The sample capacitance
is the sum of the capacitance of the two branches, as they are parallel to each
other. Each branch consists of Cgeo and Cq in series. Therefore,

Cs = CHgT e + CNb = (B.2)

=
(

1
Cgeo,HgT e

+ 1
Cq,HgT e

)−1

+
(

1
Cgeo,Nb

+ 1
Cq,Nb

)−1

= (B.3)

= CHgT e + Cgeo,Nb. (B.4)

In the last step, it was accounted for that the density of states of metallic Nb is

Fig. B.5.: Electrical circuit diagram describing the capacitance of figure B.4 (b).
Here, the abbreviation Nb refers to the area of the Hall bar that is covered by Nb,
while HgTe refers to the area of the Hall bar which is not covered by Nb. Parasitic
capacitances are not considered here.
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very large and therefore Cq,Nb → ∞. The result of the equation confirms the pos-
sibility of observing the density of states in HgTe by capacitance measurements,
even when part of the surface is covered with Nb.

The ratio of the respective areas of Nb and HgTe is crucial for determining
the capacitance. This explains the attenuated amplitude of the Landau level
oscillations of the green curve in figure B.4, as they stem from an area that is
49 % of the total area.

B.5. Capacitance in Nb antidots on HgTe

Here, the capacitance measurements on the heterostructures consisting of HgTe
and Nb antidots are briefly discussed. Figure B.6 (a) shows ρxx on a sample
with 200 nm periodic antidots just below Tc. Integer matching fields with a
periodicity of B = 52 mT are observed, indicating that the vortices pin in the
antidots. Figure B.6 (b) shows capacitance measurements on the same sample
at different gate voltages. No modulation of the capacitance as a function of
the magnetic field is observed.

The constant capacitance signal presented was a recurring image. There
was no modulation as a function of the magnetic field, neither at temperatures
slightly below Tc nor at millikelvin temperatures. Only a weak dependence on
the top gate voltage was detected, which is likely a result of the band gap of

(a) (b)
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Fig. B.6.: Resistivity ρxx and capacitance C at small magnetic fields. (a) Integer
matching fields in a sample with 200 nm periodic Nb antidots on HgTe. The data were
obtained at different temperatures below Tc at a gate voltage of 0 V with the AC lock-in
technique at 7 Hz. (b) The corresponding capacitance has been measured as a function
of the magnetic field B for different gate voltages. While ρxx exhibits a clear field-
dependent modulation, the capacitance remains constant. This constant capacitance
in the HgTe samples with Nb antidots was a recurring pattern and occurred both
when the temperature was slightly below Tc and at millikelvin temperatures. The
capacitance was measured with the AH 2600A bridge at 100 Hz.
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the HgTe, similar to the data shown in figure 6.7.

B.6. Integrated capacitance bridge

As part of this work, an integrated capacitance bridge (ICB) was designed. The
bridge was developed to amplify the capacitance signal directly in the cryostat.
This was based on the work of Verbiest et al. [173] and Hazeghi et al. [172].
However, the ICB did not yield better measurement data than the commercially
available AH 2700 A bridge or when measuring capacitances with lock-ins.

Figure B.7 shows the electronic circuit of the ICB. The cryostat is depicted
in blue, while the electronic components of the ICB are framed by a green
dashed square. The VAC, DUT signal passes through the device under test (DUT),
i. e. the sample, while the VAC, REF signal passes through a reference impedance
ZREF. Both AC signals can be phase and amplitude modulated. The two signals
are superimposed just before the high-electron mobility transistor (HEMT).
The superimposed signal is then amplified by the HEMT and sent to the AC
voltmeter for detection. If the superimposed signal is zero, the bridge is balanced
and the capacitance CDUT can be calculated from the known amplitudes and
phases of VAC, DUT and VAC, REF. In addition, the top gate of the sample can
be biased with Vg, DUT in order to tune the Fermi energy in the band structure,
and the gate of the HEMT can be tuned with VDC, REF. The voltage VDC, DS

applied via a load resistor Rload additionally controls the current through the
source-drain channel of the HEMT. The references offer a more comprehensive
explanation of how the ICB operates.

V

cryostat

AC
voltmeter

Integrated capacitance bridge

Fig. B.7.: Electrical circuit diagram of the ICB. The circuit is explained in the main
text.
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B.7. Transversal resistivity in antidot samples

In some samples with antidots, matching fields were also observed in the
transversal resistivity ρxy, including fractional matching fields. Figure B.8 shows
ρxx and ρxy as a function of magnetic field on a sample with 200 nm periodic Nb
antidots on HgTe. The reason for this observation may be the exact geometry
of the Hall bar: The Hall bar between the voltage taps was slightly widened,
which could cause the current not to flow perfectly along the Hall bar, resulting
in a transversal component. This, together with the physics described in section
7.2.4, might explain the features observed in ρxy.
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Fig. B.8.: Integer and fractional matching fields in ρxx and ρxy. The observation of
matching fields in ρxy may be due to the current path through the sample, making
the matching fields of trivial origin. The temperatures in figure (b) apply to both
graphs. The data were recorded using the AC lock-in technique at 53 Hz.
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