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Abstract
Functorial semi-norms on singular homology measure the “size” of homology classes. A
geometrically meaningful example is the �1-semi-norm. However, the �1-semi-norm is not
universal in the sense that it does not vanish on as few classes as possible. We show that
universal finite functorial semi-norms do exist on singular homology on the category of
topological spaces that are homotopy equivalent to finite CW-complexes. Our arguments
also apply to more general settings of functorial semi-norms.

Keywords Functorial semi-norms · Universality · Singular homology · Simplicial volume

1 Introduction

A functorial semi-norm on a functor F : C → VectK to vector spaces over a normed field K
is a lift of F to a functorC → snVectK to the category of semi-normed vector spaces over K
(Definition 2.3). A functorial semi-norm on F is called universal if it vanishes on as few
classes as possible among all functorial semi-norms on F (Definition 2.6).

A geometrically meaningful example of a functorial semi-norm is the �1-semi-norm on
singular homology [8], which measures the “size” of homology classes in terms of singular
simplices and has applications to rigidity of manifolds [2, 3, 8, 10]. It is known that the
�1-semi-norm is not universal in high degrees [5] (see also Example 2.9) and it is thus
natural to ask whether universal finite functorial semi-norms exist on singular homology [5,
Question 4.2]. In the present article, we answer this question affirmatively on the category
of spaces homotopy equivalent to finite CW-complexes (Corollary 1.2).

More generally, using a suitable diagonalisation technique, we prove the following general
existence result (Sect. 5):
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Theorem 1.1 Let C be a category that admits a skeleton with at most countably many objects.
Let K be a normed field and let F : C → VectK be a functor.

1. If K is countable and if F maps to VectωK , then F admits a universal finite functorial
semi-norm.

2. If F maps to VectfinK , then F admits a universal finite functorial semi-norm.

Here, VectfinK and VectωK denote the categories of K -vector spaces of finite or countable
dimension, respectively. If the countability assumption on the skeleton is dropped, then in
general there does not need to exist a universal finite functorial semi-norm (Sect. 6).

Instantiating Theorem 1.1(2) to singular homology, we obtain (Sect. 5.2):

Corollary 1.2 Let d ∈ N and let K be a normed field (e.g., R). Then the singular homol-
ogy functor Hd( · ; K ) admits a universal finite functorial semi-norm on the category of all
topological spaces that are homotopy equivalent to finite CW-complexes.

In degrees d ∈ {0, 1}, it is easy to determine explicit universal finite functorial semi-norms
on Hd( · ; R) (Example 2.10). However, the following problems remain open:

Question 1.3 What is the geometric meaning of universal finite functorial semi-norms on
singular homology? Are there “nice” examples, at least in degrees 2 and 3?

We reformulate Question 1.3 in more concrete terms in Remark 5.6.

Question 1.4 Let d ∈ N≥2. Does Corollary 1.2 also hold for singular homology on the
category of all topological spaces?

Remark 1.5 (Acomment on sets)As underlying set theory,we useNBG-style sets and classes;
this leads to smallness assumptions in some places. Of course, similarly, one could also work
in other types of foundations.

Organisation of this article

We start by recalling the notion of (universal) finite functorial semi-norms as well as basic
examples and constructions in Sect. 2. In Sect. 3, we show that universality is compatible
with equivalences of categories. The key construction for universality is presented in Sect. 4,
which allows us to prove the existence results in Theorem 1.1 and Corollary 1.2 in Sect. 5.
Moreover, Sect. 6 contains an example of a functor that does not admit a universal finite
functorial semi-norm.

2 Finite Functorial Semi-norms

We recall basic notions and examples for finite functorial semi-norms, with a focus on the
case of singular homology.

We use the following terminology: Let K be a normed field (e.g.,Q orRwith the standard
norm). A semi-norm on a K -vector space V is a function | · | : V → R≥0 ∪{∞} that satisfies
• |0| = 0, the
• triangle-inequality, i.e., for all x, y ∈ V we have |x + y| ≤ |x | + |y|, and
• homogeneity, i.e., for all a ∈ K \ {0} and all x ∈ V we have |a · x | = |a| · |x |
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(with the usual conventions regarding ∞). A semi-norm is finite if ∞ is not attained. We
denote the category of K -vector spaces by VectK and the category of semi-normed K -vector
spaces with norm non-increasing K -homomorphisms by snVectK .

Setup 2.1 Let C be a category, let K be a normed field, and let F : C → VectK be a functor.

2.1 Functorial Semi-norms

Definition 2.2 (F-element) In the situation of Setup 2.1, an F-element is a pair (X , α)where
X ∈ Ob(C) and α ∈ F(X). We often suppress X in the notation and simply say that α is an
F-element.

Definition 2.3 [(Finite) functorial semi-norm] We consider the situation of Setup 2.1. A
functorial semi-norm on F is a lift of F to a functor σ : C → snVectK . Explicitly, the
latter consists of a semi-norm | · |σ on F(X) for all objects X of C , such that for all mor-
phisms f : X → Y of C and all α ∈ F(X) we have

∣
∣F( f )(α)

∣
∣
σ

≤ |α|σ .

A functorial semi-norm on F is finite if | · |σ is finite on F(X) for all X .

Example 2.4 (Trivial functorial semi-norm) Every functor in Setup 2.1 admits the trivial
functorial semi-norm, i.e., the semi-norm that vanishes on every input.

Definition 2.5 (Carries) In the situation of Setup 2.1, let σ and τ be functorial semi-norms
on F . Then σ carries τ if for all F-elements α, we have

|α|σ = 0 �⇒ |α|τ = 0.

Definition 2.6 (Universal finite functorial semi-norm) In the situation of Setup 2.1, a uni-
versal finite functorial semi-norm on F is a finite functorial semi-norm on F that carries all
other finite functorial semi-norms on F .

Remark 2.7 Definition 2.6 is not interesting for the non-finite case, because the functorial
semi-norm that is ∞ everywhere, except at 0, is always universal.

Example 2.8 (�1-Semi-norm) Let d ∈ N. For a topological space X , we set

∣
∣
∣

N
∑

j=1

a j · σ j

∣
∣
∣
1

:=
N

∑

j=1

|a j |

for all reduced singular chains
∑N

j=1 a j ·σ j inCd(X; R). The norm |·|1 onCd(X; R) induces
a finite semi-norm ‖ · ‖1 on singular homology Hd(X; R) via

‖α‖1 := inf
{|c|1

∣
∣ c ∈ Cd(X; R) is a cycle representing α

}

,

which is easily seen to be functorial in the sense of Definition 2.3. Hence, we obtain the
�1-semi-norm ‖ · ‖1 on Hd( ·; R).

An invariant defined in terms of the �1-semi-norm is the simplicial volume, introduced
by Gromov [8]: For an oriented closed connected d-dimensional manifold M , the simpli-
cial volume ‖M‖ of M is the �1-semi-norm ‖M‖ := ‖[M]R‖1 of the (real) fundamental
class [M]R ∈ Hd(M; R) of M .

The �1-semi-norm on path-connected spaces also admits other geometric descriptions: It
is equivalent (in the sense of semi-norms) to the volume entropy semi-norm [1] and to the
semi-norm generated by URC-manifolds (Example 2.15).
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Example 2.9 (Non-universality of the �1-semi-norm) For each d ∈ {3} ∪ N≥5 there exists a
finite functorial semi-norm on Hd( ·; R) that is not carried by the �1-semi-norm [5, Theo-
rem 1.2]. The case d = 4 is still wide open at this point. On the other hand, all finite functorial
semi-norms that are multiplicative under finite coverings are carried by the �1-semi-norm [4,
Proposition 7.11].

Example 2.10 (Singular homology in degrees 0 and 1) A direct computation shows that for
every topological space X and every α ∈ H0(X; R) with α �= 0, we have ‖α‖1 �= 0. In
particular, ‖ · ‖1 is a universal finite functorial semi-norm on H0( · ; R).

In contrast, every finite functorial semi-norm | · | on H1( · ; R) vanishes: We first consider
the circle. Because S1 admits a self-map f : S1 → S1 of degree 2, functoriality gives the
estimate 2 · ∣

∣[S1]R
∣
∣ = ∣

∣H1( f ; R)[S1]R
∣
∣ ≤ ∣

∣[S1]R
∣
∣ and thus

∣
∣[S1]R

∣
∣ = 0.

For the general case, we observe that the Hurewicz theorem and the universal coefficient
theoremshow that for every topological space X and everyα ∈ H1(X; R), there exists N ∈ N,
continuous maps f1, . . . , fN ∈ map(S1, X), and b1, . . . , bN ∈ R with

α =
N

∑

j=1

b j · H1( f j ; R)([S1]R).

Therefore, functoriality and the triangle inequality lead to |α| ≤ ∑N
j=1 |b j | · ∣

∣[S1]R
∣
∣ = 0,

as claimed. In particular, the �1-semi-norm is also universal on H1( · ; R). The principle of
representing homology classes by special classes will be discussed in more detail in Sect. 2.2.

Example 2.11 (Representable and countably additive functors) In the situation of Setup 2.1,
if K ∈ {Q, R} and if the functor F is representable or countably additive, then the trivial
functorial semi-norm on F is universal [12, Corollaries 4.1 and 4.5].

2.2 Generating Functorial Semi-norms

Functorial semi-norms on singular homology lead to estimates for mapping degrees; con-
versely, properties of mapping degrees can be used to generate functorial semi-norms on
singular homology [4, Sect. 4]. This way of “generating functorial semi-norms via special
spaces” generalises as follows:

Definition 2.12 (Generated semi-norm) In the situation of Setup 2.1, let S be a class of
F-elements and let v : S → R≥0 ∪ {∞}.
• An S-representation of an F-element (X , α) is a representation of the form

α =
N

∑

j=1

b j · F( f j )(α j )

with N ∈ N, coefficients b1, . . . , bN ∈ K , F-elements (X1, α1), . . . , (XN , αN ) ∈ S,
and morphisms f1 : X1 → X , . . . , fN : XN → X in C .

• The semi-norm | · |v on F generated by v is defined by: For all F-elements α, we set

|α|v := inf
{ N
∑

j=1

|b j | · v(α j )

∣
∣
∣

N
∑

j=1

b j · F( f j )(α j ) is an S-representation of α
}

,
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with inf ∅ := ∞.

Proposition 2.13 (Generating functorial semi-norms via functions) In the situation of Defi-
nition 2.12, we have:

1. The semi-norm | · |v generated by v is a functorial semi-norm on F.
2. For all F-elements α in S, we have |α|v ≤ v(α).
3. If v′ : S → R≥0 ∪ {∞} is a function with v′ ≥ v (pointwise), then |α|v′ ≥ |α|v for all

F-elements α. In particular, | · |v′ carries | · |v .
4. If S contains all F-elements given by a skeleton of C and v does not attain ∞, then | · |v

is finite.
5. Let σ be a functorial semi-norm on F and let v ≥ | · |σ on S. Then, for all F-elements α,

we have |α|v ≥ |α|σ .
Proof Using functoriality of F , it is easy to see that | · |v is a functorial semi-norm.

Also (3) follows immediately from the definition.
For an F-element (X , α), the identity morphism X → X shows (2).
Property (4) is a direct consequence of (2) and the fact that a functorial semi-norm is

uniquely determined by its restriction to a skeleton.
We now prove (5) Let

∑N
j=1 b j · F( f j )(α j ) = α be an S-representation of α. Then

|α|σ ≤
N

∑

j=1

|b j | · ∣
∣F( f j )(α j )

∣
∣
σ

≤
N

∑

j=1

|b j | · |α j |σ ≤
N

∑

j=1

|b j | · v(α j )

by the triangle inequality, functoriality of σ , and the assumption on v. Taking the infimum
over all S-representations of α, we obtain |α|v ≥ |α|σ . ��
Remark 2.14 (Finiteness of generated semi-norms) Proposition 2.13(4) only provides a suf-
ficient criterion for | · |v to be finite. For example, let d ∈ N and let us consider the case
F = Hd( ·; R) : Top → VectR. Then, | · |v is finite whenever S contains and v is finite
on enough fundamental classes of manifolds, because rational homology classes can (up to
multiplicity) be realised as the push-forward of fundamental classes by a classical result by
Thom [13] [4, Corollary 3.2]. Notably, it is already enough to take the finite coverings of a
single URC-manifold in dimension d (Example 2.15).

Example 2.15 (Semi-norms generated by URC-manifolds) Let d ∈ N. An oriented closed
connected d-manifoldM is aURC-manifold (universal realisation of cycles) [7, p. 1747] if for
every topological space X and every α ∈ Hd(X; Z), there exists a finite-sheeted covering M
of M , a map f ∈ map(M, X), and b ∈ Z\{0} with

Hd( f ; Z)
([M]Z

) = b · α.

For example, the point is a URC-manifold in dimension 0, the circle is a URC-manifold in
dimension 1, and oriented closed connected surfaces of genus at least 2 are URC-manifolds in
dimension 2. Gaifullin showed that (aspherical) URC-manifolds exist in every dimension [7,
Theorem 1.3].

If M is a URC-manifold in dimension d and S is the class of fundamental classes of all
connected finite-sheeted covering manifolds of M , then every homology class in Hd( · ; R)

admits an S-representation. Thus, each function v : S → R≥0 generates a finite functorial
semi-norm on Hd( · ; R) [4, Example 7.10].

If v is given by the covering degree, then | · |v is equivalent to the �1-semi-norm
on Hd( · ; R) [6, Theorem 6.1].
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3 Universality under Equivalence of Categories

Universal finite functorial semi-norms are compatiblewith equivalences of categories (Corol-
lary 3.3). Indeed, a stronger result holds: In Proposition 3.2, we show that universal functorial
semi-norms can be transferred along “weak retractions” of categories.

Setup 3.1 Let C and D be categories, let K be a normed field and let F : C → VectK and
G : D → VectK be functors. Let A : C → D be a functor such that G ◦ A is naturally
isomorphic to F.

C D

VectK

A

F G

B

Proposition 3.2 In the situation of Setup 3.1, let B : D → C be a right-inverse of A, i.e., we
assume that A ◦ B is naturally isomorphic to the identity on D. Then, if F admits a universal
functorial semi-norm, so does G.

As an immediate consequence, we obtain:

Corollary 3.3 In the situation of Setup 3.1, assume that A : C → D is an equivalence of
categories. Then F admits a universal finite functorial semi-norm if and only if G does.

Before we give the proof of Proposition 3.2, we make a few remarks about the interplay
between functorial semi-norms and natural isomorphisms:

Remark 3.4 (Non-strict functorial semi-norms) In the situation of Setup 3.1 and given a
functorial semi-norm τ on G, one would like to precompose τ with A to get a functorial
semi-norm on F . However, as G ◦ A is not necessarily equal to F , also τ ◦ A will not
necessarily be a strict lift of F , but only up to natural isomorphism. In other words: if
U : snVectK → VectK denotes the forgetful functor, the right triangle in the diagram

C D

VectK

snVectK

A

F

τ◦A

G

τ

U

commutes on the nose while the other two only commute up to natural isomorphism.
One possible way to proceed would be to relax the definition of functorial semi-norm:

Instead ofU ◦ τ = G we only requireU ◦ τ ∼= G, and then the functorial semi-norm consists
of τ together with such a natural isomorphism.

This sounds like the correct setting to pursue the categorical viewon functorial semi-norms
(or formalisation in a proof assistant [11, Chapter 4.1.2]). On the other hand, this setting does
not actually increase the pool of functorial semi-norms: Indeed, if η : G ⇒ U ◦ τ is a natural
isomorphism, the technique from Remark 3.5 will show how to construct a (strict) functorial
semi-norm on G “with the same semi-norms”.
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Remark 3.5 (Pull-back along natural transformation) LetC be a category, let K be a normed
field, let η : F ⇒ F ′ be a natural transformation of functors C → VectK , and let σ be a
functorial semi-norm on F ′. Then, by naturality of η,

C → snVectK ,

{

X �→ (

F(X), (ηX )∗| · |σ
)

on objects

f �→ F( f ) on morphisms

defines a functorial semi-norm η∗σ on F .

Proof of Proposition 3.2 First, we fix some notation: Let σ be a universal finite functorial
semi-norm on F . Let λ : IdD ⇒ A ◦ B and ψ : F ⇒ G ◦ A be natural isomorphisms.
Then ϕ := ψ−1 ◦ G(λ) is a natural isomorphism G ⇒ F ◦ B. We consider the induced
functorial semi-norm σ̃ := ϕ∗(σ ◦ B) on G (Remark 3.5).

We show that σ̃ is universal for G: Let τ be a finite functorial semi-norm on G. The idea
is straightforward: We go to the side of F , compare the result with the universal σ on F , and
then derive universality of σ̃ on G. However, this involves a round-trip from D over C back
to D, and thus we have to take λ into account. More precisely, we proceed as follows:

1. Let (Y , β̃) be a G-element with |β̃|σ̃ = 0. We need to show that we also have |β̃|τ = 0.
2. In order to prepare for the round-trip, we twist τ by λ and obtain the finite functorial

semi-norm τλ := G(λ)∗(τ ◦ A ◦ B) on G.
3. Using A and ψ , we can pull this back to the finite functorial semi-norm τ̃ := ψ∗(τλ ◦ A)

on F , which we can now relate to σ . Let β := ϕY (β̃) ∈ F(B(Y )) be the element
corresponding to β̃. By construction, we have

|β|σ = ∣
∣ϕY (β̃)

∣
∣
σ

= ∣
∣ϕY (β̃)

∣
∣
σ◦B = |β̃|ϕ∗(σ◦B) = |β̃|σ̃ = 0;

in the second step, we reinterpreted ϕY (β̃) as element of F ◦ B(Y ), so that instead of σ

on B(Y ) we can equivalently apply σ ◦ B on Y . From universality of σ , we hence obtain
|β|τ̃ = 0.

4. In the last step, we translate this result back to τ . To keep the notation light, we will
not explicitly annotate the objects to which the natural transformations are applied. We
compute

0 = |β|τ̃ = |β|ψ∗(τλ◦A) = ∣
∣ψ(β)

∣
∣
τλ◦A = ∣

∣ψ(β)
∣
∣
τλ

= ∣
∣ψ(β)

∣
∣
G(λ)∗(τ◦A◦B)

= ∣
∣G(λ)(ψ(β))

∣
∣
τ◦A◦B = ∣

∣G(λ)(ψ(β))
∣
∣
τ
.

For every object Z of D, the map G(λZ ) is an isometry with respect to | · |τ because λZ is
an isomorphism in D and τ is a functorial semi-norm on G. Therefore, we can continue
with
∣
∣G(λ)(ψ(β))

∣
∣
τ

= ∣
∣ψ(β)

∣
∣
τ

= ∣
∣ψ(ϕ(β̃))

∣
∣
τ

= ∣
∣ψ ◦ ψ−1 ◦ G(λ)(β̃)

∣
∣
τ

= ∣
∣G(λ)(}̃beta)

∣
∣
τ

= |β̃|τ .
We conclude that |β̃|τ = 0, as claimed.

��

4 Vanishing Loci

In this section, we reformulate the “carries” relation (Definition 2.5) in terms of vanishing
loci (Definition 4.2, Remark 4.3).
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The vanishing loci provide a convenient language to reason about families of functorial
semi-norms and their relations: In Sect. 4.2, we use a diagonalisation construction on the
associated functions to construct a functorial semi-norm that carries countably many given
functorial semi-norms (Proposition 4.4 and Corollary 4.5).

Setup 4.1 Let C be a category, let K be a normed field, let F : C → VectK be a functor, and
let S be a class of F-elements.

4.1 A Reformulation of Carrying

Definition 4.2 (Vanishing locus) We assume Setup 4.1; let X ∈ Ob(C).

• For a functorial semi-norm σ on F , we define the vanishing locus of σ on X by

Nσ (X) := {

α ∈ F(X)
∣
∣ |α|σ = 0

}

.

• If C is small, we write Fsn(F) for the class of all finite functorial semi-norms on F and
set

N (X) :=
⋂

σ∈Fsn(F)

Nσ (X).

• For a function v : S → R≥0, we write Nv(X) for N|·|v (X), where | · |v is the functorial
semi-norm generated by v (Proposition 2.13).

In the situation of the definition, Nσ (X) and N (X) are K -subspaces of F(X) and
N (X) ⊂ Nσ (X). Furthermore, if we regard Fsn(F) as the preorder category with respect to
the “carries” relation, an initial object of this category is precisely a universal finite functorial
semi-norm on F , while the trivial functorial semi-norm is always a terminal one.

Remark 4.3 In the situation of Setup 4.1, let σ , τ be functorial semi-norms on F .

1. Then σ carries τ if and only if

∀X∈Ob(C) Nσ (X) ⊂ Nτ (X).

2. If C is small, σ is universal on F if and only if it is finite and fulfills

∀X∈Ob(C) Nσ (X) ⊂ N (X).

3. By Proposition 2.13(5), the functorial semi-norm generated by S → R≥0, α �→ |α|σ
carries σ , i.e.,

∀X∈Ob(C) Nα �→|α|σ (X) ⊂ Nσ (X).

4.2 Carrying a Sequence of Semi-norms

The main ingredient for the proof of Theorem 1.1 is that we can simultaneously carry count-
ably many finite functorial semi-norms generated on a countable class of elements:

Proposition 4.4 In the situation of Setup 4.1, let S be countable and let (vn)n∈N be a sequence
of functions S → R≥0. Then there exists a function v : S → R≥0 such that | · |v carries
all (| · |vn )n∈N, i.e., with

∀X∈Ob(C)

⋂

n∈N
Nv(X) ⊂ Nvn (X).
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In particular: If C is small, if every F-element admits an S-representation, and if

∀X∈Ob(C)

⋂

n∈N
Nvn (X) ⊂ N (X),

then | · |v is universal for F.

Proof The second part follows from the first part and the characterisation of universality from
Remark 4.3(2).

We now prove the first part. As indicated by Proposition 2.13(3), we would like to set
“v := supn vn”, but of course this might not produce a finite valued function. So instead, we
choose

v : S → R≥0, αn �→ max
{

v j (αn)
∣
∣ j ∈ {−1, . . . , n}},

where we fix and implicitly use an enumeration (Xn, αn)n∈N of S and where v−1 := 1.
In order to show that v has the claimed property, we let m ∈ N and show that | · |v

carries | · |vm : We introduce the following constants: Let q−1 := 1, let

qk :=
{

v(αk) · |αk |−1
vm

if |αk |vm > 0,

1 if |αk |vm = 0

for all k ∈ {0, . . . ,m}, and let
Q := min

{

qk
∣
∣ k ∈ {−1, . . . ,m}}.

By construction, we have that Q ∈ (0, 1]. For every F-element α and every S-representa-
tion α = ∑N

j=1 b j · F( f j )(αk j ), we can estimate

N
∑

j=1

|b j | · v(αk j ) ≥
∑

j∈{1,...,N }
k j<m

|b j | · qk j · |αk j |vm +
∑

j∈{1,...,N }
k j≥m

|b j | · vm(αk j )

(definition of qk j and v)

≥ Q ·
∑

j∈{1,...,N }
k j<m

|b j | · |αk j |vm +
∑

j∈{1,...,N }
k j≥m

|b j | · |αk j |vm

(def. of Q and P. 2.13(2))

≥ Q ·
N

∑

j=1

|b j | · |αk j |vm

(because Q ≤ 1)

≥ Q · |α|vm ,

where the last step follows from applying | · |vm to the given S-representation of α. By taking
the infimum over all such S-representations, we obtain |α|v ≥ Q · |α|vm . As Q > 0, we see
that | · |v carries | · |vm as desired. ��
Corollary 4.5 In the situation of Setup 4.1, let C be small, let S be countable, and let T ⊂
Fsn(F) be countable. Then there exists a functorial semi-norm σ on F such that σ carries
all of T , i.e., with

∀X∈Ob(C) Nσ (X) ⊂
⋂

τ∈T
Nτ (X).
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In particular: If every F-element admits an S-representation and if

∀X∈Ob(C)

⋂

τ∈T
Nτ (X) ⊂ N (X),

then σ is universal for F.

Proof Again, the second part follows from the first one and Remark 4.3(2).
We prove the first part of the claim: By Remark 4.3:function, for each τ ∈ T , we find a

function vτ : S → R≥0 with

∀X∈Ob(C) Nvτ (X) ⊂ Nτ (X).

We then choose an enumeration of {vτ | τ ∈ T } and apply Proposition 4.4. ��

5 Existence of Universal Finite Functorial Semi-norms

In this section, we prove Theorem 1.1 and Corollary 1.2 on singular homology. We first
treat the case of countable fields where a direct enumeration argument applies (Sect. 5.1). In
Sect. 5.2, we consider functors with range in finite dimensional vector spaces over general
normed fields.

In both cases, we use the following observation:

Remark 5.1 By definition, the inclusion functor of a skeleton into the ambient category is
an equivalence. Invoking Corollary 3.3, we may equivalently assume that the category itself
has only countably many objects.

5.1 The Countable Case

Proof of Theorem 1.1(1) We may assume that C itself has only countably many objects
(Remark 5.1). Furthermore, by assumption, K and dimK F(X) are countable for all objects X
of C . Together, we obtain that the class S of all F-elements is a countable set. Trivially, all
F-elements admit an S-representation.

Let S′ := {(X , α) ∈ S | α /∈ N (X)} and for each (X , α) ∈ S′ let σα be a finite functorial
semi-norm on F with α /∈ Nσα (X).

By construction, for every object Y of C , we have

F(Y ) \ N (Y ) ⊂
⋃

(X ,α)∈S′
F(Y ) \ Nσα (Y ).

Hence, by DeMorgan’s laws and Corollary 4.5, there exists a universal functorial semi-norm
on F . ��

Remark 5.2 In general, it would not be enough to have a countable set Swith the property that
every F-element admits an S-representation.Without the countability assumption on Ob(C),
it might not be possible to control the vanishing locus on all objects by only countably many
functorial semi-norms, and thus, the second part of Corollary 4.5 does not apply. A concrete
example is given in Sect. 6.
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5.2 The Case of Finite Dimensional Range

We prove the second part of Theorem 1.1 and derive Corollary 1.2. As a preparation, we
show that we can achieve universality on a single object:

Lemma 5.3 Let C be a small category, let K be a normed field, and let F : C → VectK
be a functor. Let X ∈ Ob(C) with dimK F(X) < ∞. Then there exists a finite functorial
semi-norm σ on F with

Nσ (X) = N (X).

Proof Weproceed inductively, using the followingobservation: Ifσ ∈ Fsn(F)with Nσ (X) �=
N (X), then there exists a σ ′ ∈ Fsn(F) with

dimK Nσ ′(X) < dimK Nσ (X).

Indeed, if Nσ (X) �= N (X), there exists an α ∈ Nσ (X) \ N (X). Hence, there is a finite
functorial semi-norm τ on F with |α|τ �= 0. Then also σ ′ := σ + τ ∈ Fsn(F) and α

witnesses that

Nσ ′(X) ⊂ Nσ (X) ∩ Nτ (X) � Nσ (X).

Because of dimK Nσ (X) ≤ dimK F(X) < ∞, we obtain dimK Nσ ′(X) < dimK Nσ (X).
For the actual induction, we start with the trivial functorial semi-norm σ := 0 on F ,

which satisfies Nσ (X) = F(X). We then iteratedly apply the observation above. Because
dimK F(X) is finite, this will terminate and lead to a finite functorial semi-norm σ on F
with Nσ (X) = N (X). ��
Proof of Theorem 1.1(2) By Remark 5.1, we may assume without loss of generality, that
Ob(C) is countable. For each X ∈ Ob(C), let (αi )i∈IX be a finite generating set of the
finite-dimensional K -vector space F(X). Then S := {(X , αi ) | X ∈ Ob(C), i ∈ IX } is
countable and every F-element admits an S-representation.

By Lemma 5.3, for each X ∈ Ob(C), we find a functorial semi-norm σX on F with
NσX (X) = N (X). Therefore, for all Y ∈ Ob(C), we have

⋂

X∈Ob(C)

NσX (Y ) ⊂ N (Y ).

Applying Corollary 4.5 to the countable set {σX | X ∈ Ob(C)} thus shows that there
exists a universal functorial semi-norm on F . ��
Proof of Corollary 1.2 Let T be the category of all topological spaces that are homotopy
equivalent to a finite CW-complex; as morphisms in T , we take all continuous maps.

Every functorial semi-normon Hd( · ; K ) is homotopy invariant in the sense that homotopy
equivalences induce isometric isomorphisms on Hd( · ; K ). Thus, it suffices to show that the
functor F : Th → VectK on the homotopy category Th of T induced by Hd( · ; K ) admits a
universal finite functorial semi-norm.

As there are only countably many homotopy types of finite CW-complexes (Remark 5.4),
the category Th has a skeletonwith countablymany objects.Moreover, dimK Hd(X; K ) < ∞
for all finite CW-complexes X .

Therefore, the second part of Theorem 1.1 applies and we obtain that F admits a universal
finite functorial semi-norm. ��
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Remark 5.4 (Counting CW-complexes) A simple counting argument shows that there are
only countably many homeomorphism types of finite simplicial complexes. As every finite
CW-complex is homotopy equivalent to a finite simplicial complex [9, Theorem 2C.5], it
follows that there are only countably many homotopy types of finite CW-complexes.

In contrast, there are uncountably many homotopy types of countable CW-complexes.
Looking at the fundamental group and presentation complexes shows that there are even
uncountably many homotopy types of countable 2-dimensional CW-complexes whose 1-
skeleton is S1 ∨ S1 (because there are uncountably many isomorphism types of 2-generated
groups).

From a constructive point of view, an interesting category of topological spaces with a
skeleton that has only countably many objects is the category of recursively enumerable
simplicial complexes.

Remark 5.5 (Base change) In general, it does not seem to be clear how universal functorial
semi-norms behave under base change. For example, if σ is a universal finite functorial semi-
norm on a functor F to Vectfin

Q
, then it is not clear whetherR⊗Qσ , defined by the object-wise

tensor product with the standard norm on R, is universal for R ⊗Q F . Indeed, it is a priori
not clear how the vanishing loci transform under such base changes.

Remark 5.6 (Universal finite functorial semi-norms generated by URC-manifolds) Let d ∈
N, let M be a URC-manifold, and let S be the class of fundamental classes of all connected
finite-sheeted covering manifolds of M (Example 2.15). If d ≥ 2, then for each (X , [X ]R)

all covering maps X → M have the same number of sheets (this can be derived using
simplicial volume); we denote this number by k(X). For every k ∈ N, there are only finitely
many homeomorphism types Sk of (X , [X ]R) ∈ S with k(X) = k, as can be seen from the
classification of coverings and the fact that the finitely generated group π1(M) contains only
a finite number of subgroups of index k.

Let v : S → R≥0. We can thus define the modified function

v : S → R≥0,

(X , α) �→ max
(X ′,[X ′]R)∈Sk(X)

∣
∣[X ′]R

∣
∣
v
.

By construction v ≥ v and so | · |v is carried by | · |v (Proposition 2.13(3)).
Hence, Question 1.3 can be reformulated as follows: How fast does v have to grow in the

covering degree to ensure that | · |v is a universal finite functorial semi-norm on Hd( · ; R) on
the category of topological spaces homotopy equivalent to finite CW-complexes? In view of
Example 2.9 and Example 2.15, we know that for d ∈ {3} ∪ N≥5, the growth for universal
examples must be faster than linear.

6 Situations without Universal Finite Functorial Semi-norms

We give an example of a functor to Vectfin
Q

that does not admit a universal finite functorial
semi-norm (Proposition 6.5). In accordance with Theorem 1.1, the domain category will not
admit a skeleton with countably many objects.

Definition 6.1 (The category C) We define a category C by:

• We set M := (R≥1)
N and Ob(C) := N � M .

• The only non-identity morphisms in C are the morphisms fm,v : m → v with m ∈ N

and v ∈ M .
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Definition 6.2 (The functor F) We define a functor F : C → Vectfin
Q

as follows:

• For all objects X ∈ Ob(C), we set F(X) := Q.
• For m ∈ N and v ∈ M , we set

F( fm,v) := dm,v · idQ,

where dm,v := �v(m)�.
We will show that F : C → Vectfin

Q
does not admit a universal finite functorial semi-

norm. To this end we use the following class to generate functorial semi-norms in the sense
of Proposition 2.13:

Definition 6.3 (The class S) For clarity, we denote by 1X the element 1 ∈ Q = F(X) for
every object X ∈ Ob(C). We define

S := {

(m, 1m) | m ∈ N
}

and for a function v : N → R≥0, we write | · |v := | · |(m,1m )�→v(m) for the generated functorial
semi-norm on F .

First we show, that we understand S-representationswell enough to compute the generated
semi-norms on F :

Lemma 6.4 In the situation of Definition 6.3, for all v : N → R≥0 and w : N → R≥1, we
have

1w = 1

d
· F( fm,w)(1m).

Proof The S-representations 1w = 1
dm,w

· F( fm,w)(1m) for m ∈ N show that “≤” holds.

Conversely, every S-representation of 1w is of the form
∑N

j=1 b j · F( fm j ,w)(1m j ) with
certain b j ∈ Q and m j ∈ N. In particular,

1 = |1w|Q =
∣
∣
∣

N
∑

j=1

b j · dm j ,w

∣
∣
∣
Q

≤
N

∑

j=1

|b j |Q · dm j ,w

and so

N
∑

j=1

|b j |Q · v(m j ) ≥
N

∑

j=1

|b j |Q · dm j ,w · inf
m∈N

1

dm,w

· v(m)

≥ 1 · inf
m∈N

1

dm,w

· v(m).

Taking the infimum over all S-representations of 1w finishes the proof. ��
Proposition 6.5 Let F : C → Vectfin

Q
be the functor constructed in Definition 6.2 on the

category from Definition 6.1. Then, there is no universal finite functorial semi-norm on F.

Proof Assume for a contradiction that F admits a universal finite functorial semi-norm | · |.
Let S be the class from Definition 6.3 and let

v : N → R≥0

m �→ |1m |.
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Then, v generates a functorial semi-norm | · |v on F via S (Proposition 2.13, Definition 6.3).
We now consider the function

w : N → R≥1

m �→ m · v(m) + 1

and its generated finite functorial semi-norm | · |w on F .
We show that | · |w is not carried by | · |: Let α := 1w . On the one hand, by Lemma 6.4,

we obtain

|α|w = inf
m∈N

1

dm,w

· w(m) = inf
m∈N

w(m)

�w(m)� ≥ 1

2
.

On the other hand, we have (Proposition 2.13(5) and Lemma 6.4)

|α| ≤ |α|v = inf
m∈N

1

dm,w

· v(m) = inf
m∈N

v(m)

�m · v(m) + 1� ≤ inf
m∈N>0

1

m
= 0.

Hence, α witnesses that | · |w is not carried by | · |. ��
It does not seem clear whether this phenomenon could be replicated for the singular

homology functor on the category of topological spaces.
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