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L I S T O F P U B L I C AT I O N S

This thesis intends to offer an intuitive approach to the physics of disordered
systems. The individual case studies presented in this dissertation are based
on a number of projects which have been published in scientific peer-reviewed
journals and are now brought together in a comprehensive contextual framework.
For a precise formulation of the research questions posed in this thesis, the reader
is referred to chapter 1.3, while a summary and contextualization of the results is
presented in chapter 9.
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1
I N T R O D U C T I O N : H O W C A N W E D E S C R I B E A N D
U N D E R S TA N D C O M P L E X S Y S T E M S ?

Our physical world consists of many degrees of freedom: starting from the
number of electrons in a small piece of metal, to all the molecules constituting
the atmosphere, interacting due to the interplay of winds, the sun and life
(mediated by Coulomb forces), to the number of stars and galaxies in our universe.
Consequently, the dynamics of those systems are intractably complex. If a
physicist attempted to describe and understand these phenomena by analyzing
the interplay of every single degree of freedom with one another – be it the flow
of interacting electrons in a computer chip, the emergence of extreme weather,
or the dynamics of a supernova – it would most likely be a lost cause from the
start1.

In this context, condensed matter physics is about understanding the interplay
of many electrons with each other in the presence of the ionic background
of atomic cores constituting a crystalline lattice, for instance in metals, semi-
conductors or insulators. Condensed matter physics is not about finding the
underlying fundamental equations which universally govern the dynamics of
our world. On the contrary, these equations underlying any theoretical problem
we wish to address have been known for almost 100 years: They are given by
the Schrödinger equation of quantum mechanics equipped with some additional
corrections originating from special relativity. In the vast majority of problems,
the main challenge in condensed matter theory is not to improve the precision of
physical constants or to find corrections to underlying fundamental equations
(e.g. the standard model). Instead its goal is to establish physical descriptors
which reduce the infinite variety of degrees of freedom to few manageable key
properties. The challenge consequently boils down to the following question:
How can we develop models to separate between these necessary and interesting
degrees of freedom and irrelevant details?

It needs to be stressed that what motivates us to develop models that capture
the most important microscopic properties of physical system within few effective
degrees of freedom is not primarily the desire to simplify the equation so that
the mathematical problem – computationally or analytically – becomes tractable.
Instead the main motivation is to be able to understand physical systems on

1 Of course there are exceptions where physical phenomena can be – to some degree – understood
exactly even if many degrees of freedoms are present, for instance perfect crystals.
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the level of (few) observables. Assume for instance we were able to solve the
many-electron problem in a metal with ∼ O(1023) electrons; the multitude of
(irrelevant) details would obscure any insight we wished to gain about the most
important and interesting effective degrees of freedom in the first place. Con-
sidering this, generating new physical understanding just from the solution to
the respective differential equations would remain impossible. Nevertheless, it is
exactly that multitude of degrees of freedom which make emergent phenomena
possible, such as those so interesting in condensed matter physics, e.g. collective
excitations, for instance charge-density waves.

Since the invention of quantum mechanics (and even before), concepts to
separate important from unimportant degrees of freedom have been developed,
which may be organized in three categories, discussed in the following paragraph
and in sections 1.1 and 1.2:

separation of scales . Maybe historically the first and most extensively
used approach is the separation of scales, e.g. in the energy, length or time
domain: applied to a specific physical system, one searches e.g. for different
energy contributions relevant in the problem and separates low-energy from
high-energy sectors. Often, it is possible to obtain a so-called low-energy effective
theory along these lines. In many applications, this method is closely related to
perturbation theory of quantum mechanics. A very common (and possible one of
the historically first) application of this approach in (quantum) condensed matter
theory is the Born-Oppenheimer approximation (Bruus and Flensberg, 2004)2.

This simplification assumes that the Schrödinger equation of electrons and
nuclei in a molecule or solid can be separated into the motion of fast electrons with
fixed nuclei positions on the one hand and the slow movement of the nuclei on
the other hand. The energy scales allowing for this separation into the electronic
sector and the ionic sector are given by the vastly different masses of electrons
and nuclei. The interplay between both subsystems can be reintroduced by
perturbation theory (or similarly by a Schrieffer-Wolff transformation) giving rise
to phenomena governed by electron-phonon coupling, for instance the Bardeen-
Cooper-Schrieffer (BCS) theory of superconductivity (Bardeen et al., 1957; Bruus
and Flensberg, 2004).

There are of course many more famous examples of physical phenomena
captured by this separation of energy scales, which eventually lead to an effective
low-energy theory. Examples are the hydrogenic structure of excitons in semicon-
ductors (Giuliani and Vignale, 2008) and the ferromagnetic or antiferromagnetic
properties of strongly correlated electrons in Hubbard-like systems (Sachdev,

2 Also in classical theories of condensed matter the method of separating scales has been used to
find low-energy theories, for instance when describing transport as a diffusion process.
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2011). Low-energy theories of the form described above lie at the core of almost
any phenomenon successfully understood in condensed matter theory3.

Theoretical physics attempts to generalize this approach further: Instead of
developing an effective theory that describes physical phenomena in a system
governed by a single Hamiltonian, the goal is to make statements about an entire
class of systems. In particular, instead of developing a specific model for a specific
physical material subject to a specific physical experiment, we want to understand
generic properties of materials and classes of models which may be subject to
impurities and imperfections which we are unable to grasp microscopically.

A prime example for this generalization to material classes is the quantum Hall
effect. The transverse conductivity of an electronic sample σHall subject to a large
magnetic field at low temperatures is precisely quantized to a multiple of the
fundamental ratio between Planck’s constant h and the electronic charge e, i.e.

σHall =
e2

h
·n, (1)

where n is an integer or a fractional (Klitzing et al., 1980; Laughlin, 1983). This
result is striking because it holds to an extreme precision for a vast variety of
materials, a wide range of electronic densities, magnetic field strengths, impurity
concentrations and other system specific microscopic details. In other words, the
quantization of the Hall conductivity is universal.

The striking universality present in many physical systems, most prominently
in the quantum Hall effect, calls for a similarly universal methodological approach
to describing them. Apparently, when treating each specific physical system
separately, the underlying universality is overlooked.

In physics, universality can be found across different system parameters and
even across a variety of different platforms. While the quantum Hall effect will
play a major role in this thesis, also the long-time dynamics of generic interacting
systems tend towards universal behavior in a very different sense compared to the
quantum Hall effect: for instance the molecular constituents of the world’s oceans
and atmosphere and the electrons moving in strongly interacting quantum matter
are subject to completely different microscopics. Nevertheless, eventually, both
can – in some limits – be successfully described by a variant of hydrodynamics,
with very few state variables, for instance temperature and density and some
macroscopic material parameters, such as viscosities (Vallis, 2006; Rotunno, 2013;
Succi, 2018; Polini and Geim, 2020). Why is this possible despite the strikingly
different microscopics?

Two fundamental concepts, which go way beyond condensed matter theory and
can be applied to many different scientific fields, play a major role in answering
this question. Both are of paramount importance for this thesis: the mathematical
concept of topology and symmetries as well as the toolbox of statistical mechanics.

3 Even the Schrödinger equation and quantum mechanics itself is an effective low-energy theory
which can be derived from the Dirac equation.
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1.1 statistical mechanics , thermalization and its breakdown

The basic assumption of statistical mechanics is that systems of many particles
– regardless if classical or quantum, or the exact microscopics they underlie –
equilibrate while they involve in time. The resulting state is determined purely
by macroscopic, averaged quantities, for instance energy and particle density
or temperature. In other words, the physical system – while evolving in time
– forgets all the details about its initial state from which it started to evolve.
The final, in that sense universal, state is called thermal equilibrium (Landau and
Lifshitz, 1976; Nandkishore and Huse, 2015).

This approach has been incredibly successful at describing, understanding and
modeling complex systems. Even many physical systems which do not fulfill
the prerequisites of thermodynamics, for instance driven systems like the earth’s
oceans, can locally be approximated by a thermal state with local thermodynamic
quantities, like temperature, density and current fields. This gives rise to a
coarse-grained theory of complex systems which still hosts non-trivial dynamics
(described by a hydrodynamic theory in this case). It is an effective theory in the
sense that the microscopic degrees of freedom – e.g. the momentum of individual
water molecules – have been integrated out and no longer play a role in the
dynamics. Instead, they collectively contribute to emerging properties of matter,
e.g. the viscous flow of water.

In particular the second part of this thesis is devoted to discussing systems of
many strongly interacting quantum particles evolving towards thermal equilib-
rium. Searching for generic classes of systems that escape thermalization and
retain memory of their initial dynamics forever is of fundamental interest.

1.2 topology and the bulk-boundary correspondence

The second important concept in this thesis, which allows to find universality
across very different platforms, is topology.

The mathematical concept of topology as we understand it in theoretical physics
allows us to organize a family of systems into equivalence classes which cannot
be continuously deformed into each other. This is often illustrated by the famous
example of a cup with a handle and a doughnut being topologically equivalent in
terms of how many "holes" (mathematically defined as genus) they have. On first
glance, finding properties which can be distinguished by classifying them into
separate equivalence classes should not be difficult. Similar to the cup and the
doughnut one could for instance classify physical samples of metals according to
their number of "holes". When trying to gain information about the electronic
transport of such samples, this of course is not useful. The number of holes in
the geometry of the sample will usually not tell us anything about how much
current will flow when applying a voltage. Consequently, it is indeed very easy
to find some way to categorize physical systems into groups of certain discrete
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Figure 1: Sketch of a topological phase transition driven by energy bands crossing zero
energy. The parameter α deforms a Hamiltonian H(α) with energy bands En(α). When
one of the energy bands crosses zero energy at the critical point αc a topological phase
transition occurs. The winding number (here the difference between bands above and
below zero energy) jumps and an accompanying correlation or localization length scale
diverges, just as in regular second order phase transitions. The divergence is governed by
a power law with a critical exponent ν. In the presence of disorder the topological and
the trivial phases are typically Anderson insulators (in one or two dimensions), while
the critical point hosts a delocalized state. The associated length scale is the localization
length and the exponent ν the localization length exponent in the asymptotic limit.

properties; but this is only interesting if we are able to connect these categories to
the observables we are interested in and have access to.

The following paragraph is devoted to motivate and explain the basic idea of
topology in condensed matter and how it relates to the overall goal of describ-
ing very different physical systems efficiently using few topological degrees of
freedom, so-called topological invariants. It is partly inspired by the course on
topology in condensed matter by Akhmerov et al., 2021, which offers an intuitive
but thorough introduction into the broad theme of topology in condensed matter
theory.

Consider a very simple physical system where we are mainly interested in
electronic transport: a quantum dot, i.e. zero-dimensional quantum system
governed by some (unspecified) Hamiltonian connected to a lead or bath whose
sole purpose it is initially to fix the chemical potential (henceforth defining the
zero energy base line). The quantum dot has several energy levels, some of
which lie below and some above zero energy. To classify the system topologically,
we now count the energy levels above and below zero energy and calculate
their difference n. This number n is clearly a topological invariant, since n can
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only change by levels crossing zero energy when deforming the Hamiltonian
parameters. When a zero-crossing happens, the topological invariant changes by
unity, and a so-called topological phase transition has occurred. The situation is
depicted in Fig. 1.

However, whether this is a useful topological classification scheme remains
questionable. With the current experimental setup this has to be negated as
there is no obvious way to connect e.g. the conductance of the quantum dot to
this number. The conductance at the Fermi level is zero unless the system is
fine-tuned to be just at the critical point of the transition.

We can take this idea a little further. Let us consider an extended system
instead of a quantum dot, take for simplicity a one-dimensional quantum wire,
and instead of energy levels we consider energy bands. The topological invariant
is now understood as the difference of the number of bands above and below
zero energy.

To obtain topologically protected transport properties only one additional
ingredient is required: a topologically trivial reference system, to which we can
deform our original system and with respect to which we measure the topological
invariant. The atomic limit of a crystal, for instance, can become the trivial
reference system, where all wave functions are localized to a single atom. If
the original system is now deformed continuously to the reference system, it is
dubbed topologically trivial if no phase transition, i.e. zero crossing, occurs; and
non-trivial if it crossed a finite number of phase transitions.

Usually, in real experiments samples have boundaries in real space. While the
sample may be topological, outside of the boundary the vacuum or substrate has
to be topologically trivial by definition. It is possible to reinterpret the continuous
deformation parameter we encountered in the very beginning of this discussion
as the real space coordinate in which the sample is cut, as illustrated in Fig. 2.
Then a topological phase transition must occur at the spatial boundary of the
sample, if and only if the original sample has a non-trivial topological invariant
of its bulk. This means that the boundary of a topological bulk always resides
directly at the critical point of the topological phase transition (at the Fermi
energy), rendering it a conducting boundary state. Because both the topological
phase of the sample as well as the trivial phase of the substrate are stable against
local perturbations and the microscopic details do not play a role (as long as no
further phase transitions are crossed), this is a generic feature.

Illustrated in Fig. 2, the described principle, connecting an insulating, topo-
logically non-trivial bulk with a protected conducting boundary, is called bulk-
boundary correspondence, and lies at the heart of the popularity of topological
insulators and superconductors in condensed matter physics (Hasan and Kane,
2010; Qi and Zhang, 2011; Bernevig and Hughes, 2013; Ando and Fu, 2015). Some
famous examples are the zero-dimensional Majorana fermions at both ends of a
finite-size Kitaev chain, the edge states in the quantum Hall effect or the surface
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Figure 2: Illustration of the bulk-boundary correspondence in topological matter. A
topological sample is connected to a trivial substrate. The interface/boundary is modeled
by the function α(x), interpolating between sample and substrate Hamiltonians as a
function of the real space coordinate x. At the boundary, a topological phase transition
occurs, i.e. an energy level crosses the Fermi level. This zero energy state (orange) is
protected, since both substrate topology (trivial) and sample topology (non-trivial) are
stable against small (local) perturbations, rendering the boundary conducting, while both
bulk and substrate are insulators.

states of three-dimensional topological insulators4 (Su et al., 1979; Haldane, 1988;
Kane and Mele, 2005; Teo and Kane, 2010; Ryu et al., 2010; Akhmerov et al., 2021).

1.3 outline : single-particle and many-body systems with disor-
der

Topology and the bulk-boundary correspondence as well as the toolbox of statis-
tical mechanics and the investigation of the conditions of thermalization provide
concepts for understanding generic quantum systems. These concepts allow
us to treat single systems with many degrees of freedom as an effective the-
ory with few relevant parameters5. Thereby, they additionally enable a more
general description across a wide range of physical platforms and microscopic
realizations.

4 There are many additional ways of topology entering theoretical physics, beyond the bulk-
boundary correspondence. For instance so-called skyrmions are collective excitations of spins
in magnetic materials which are topologically protected due to their special defect structure.
These instances of topology in materials do not play a role in the remainder of this thesis and are
therefore not covered in this introduction.

5 The meaning of "relevant" vs. "irrelevant" in this discussion does not necessary imply a context of
renormalization group (RG) flow, e.g. at phase transitions.
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Such concepts are particularly important if we want to include imperfections
and defects in materials in our theory: Related phenomena in individual samples
with an individual defect structure are often difficult to understand in theory,
moreover, usually we cannot access the microscopic nature of single disorder
realizations in experiments. Therefore, in practice, useful theories describe
disordered samples usually on the level of statistical ensembles of their disorder
realizations.

Imperfections are often viewed as unwanted in technological applications,
seeing as they may obscure desired physical properties, for instance in the pro-
duction of semi-conductor chips for electronic devices. Nevertheless, disorder can
also lead to qualitatively new physical phenomena. Most famously, Anderson,
1958 has shown that under some conditions disorder can render electronic wave
functions completely localized to small spatial regions, in contrast to Bloch waves
extending over the entire sample. The reason is that electrons are scattered co-
herently and their quantum mechanical paths interfere constructively. Therefore,
the electronic probability density may become suppressed in almost the entire
physical sample. Consequently – because localized wave functions cannot carry
current – disorder may induce metals to become (Anderson) insulators.

This so-called Anderson localization is very generic. Its appearance only
depends on a very small number of characteristics of a model system, such as
the presence or absence of electron-electron interactions, the spatial dimension
of a sample and some key symmetries of the underlying Hamiltonian (Lee
and Ramakrishnan, 1985; Evers and Mirlin, 2008; Altland and Simons, 2010).
Therefore, it will play a fundamental role in all aspects of this thesis.

outline of the thesis . The aspects of disordered physics covered in this
thesis are diverse – they will span from the integer quantum Hall effect to
three-dimensional topological insulators to thermalization and its breakdown in
genuine many-body interacting physics. Nevertheless, the phenomenon of wave
function localization due to disorder will play a role in each of these topics.

The integer quantum Hall effect is the protagonist of the first part of the thesis.
Within those chapters disordered single-particle systems are investigated where
Anderson localization is generically present. The quantum Hall effect is the
archetype of a system where wave functions are protected against localization
and remain conducting by mechanisms of the bulk-boundary principle.

Following the introduction and outline, in chapter 2 the reader is provided
with some background regarding Anderson localization on the one hand and the
topological description of disordered Hamiltonians on the other hand. A first
study of the interplay between the two concepts is introduced in chapter 3, where
the phase diagram of a model of the anomalous quantum Hall effect is investi-
gated and some concepts, like the relationship between bulk and edge spectra in
topological materials are discussed, providing the basis for the following chapters.
The results presented here have been published in Moreno-Gonzalez et al., 2023.

8



The transition between different quantum Hall plateaus of quantized conductiv-
ity is of paramount interest in assessing if the underlying theory is truly universal.
In chapter 4 two models of the anomalous quantum Hall effect are studied using
large-scale high-precision numerical simulations. Thereby, the critical exponents
of the localization length diverging at the plateau transitions are determined
and compared to literature results. In contrast to recent beliefs, the observed
critical exponents are found to be in full agreement with different models of the
integer quantum Hall effect. The study presented is therefore consistent with
universality in the quantum Hall symmetry class A. The results of section 4.4
have been published in Bera et al., 2024.

Chapter 5 connects the integer quantum Hall plateau transition with different
symmetry classes, here in particular a chirally symmetric topological insulator in
three dimensions (class AIII). Interestingly, quantum Hall criticality is found – to
some degree generically – on the surfaces of these systems. Here we determine
the conditions for this observation and the breakdown of extended surface states,
which is again deeply connected to a fundamental principle of the quantum Hall
effect: the question if the bulk states of a topological insulator can or cannot be
fully localized. Many aspects of this chapter are published in Altland et al., 2024.
The results have profound consequences on the applicability of minimal Dirac
models for surface states of topological insulators and their breakdown even for
such fundamental properties of wave functions as localization vs. delocalization.

The focus of part II lies on introducing interactions to disordered Hamiltonians.
In many-body physics, the absence or presence of localization is an open question:
Complex correlations in Hamiltonian matrix elements as well as the exponen-
tially large Hilbert or Fock space complicate theoretical investigations. The fate
of the localized phase in many-body systems remains unknown. Anderson’s
argument for localization in single-particle models requires coherent scattering
of electronic paths with impurities. However electron-electron interactions in-
duce decoherence. Many-body quantum systems hence generically thermalize
while non-thermalizing or integrable systems remain rare or only available when
fine-tuning Hamiltonian parameters. The mechanism of thermalization and one
possible approach to finding generic many-body localized systems with the help
of disorder is discussed in chapter 6.

Available toy models where many-body localization can be approached rig-
orously often do not have a microscopic justification. Chapter 7 attempts to
bring a special class of these model Hamiltonians closer to microscopic realism.
The model is based on the famous Sachdev-Ye-Kitaev Hamiltonian and hosts
many-body integrable and thermal phases, which are accessible to analytical and
numerical approaches. While we still keep the infinite range of interaction and
hopping terms present in the model, the interaction structure is reduced to a
density-density form reminiscent of real space Coulomb repulsion. This model is
shown to have a rich phase diagram hosting some of the regimes also present in
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the much better understood extended Sachdev-Ye-Kitaev model. The results of
this chapter are published in Dieplinger et al., 2021.

In chapter 8 the dynamical properties of a model hosting an ergodic-integrable
transition are investigated. Dynamical observables are potentially accessible
in experiments, such as the density-density correlation functions. Here, the
underlying question is how the dynamics of key properties change when the
localized regime is approached from the ergodic side. Is there a power-law with
a decreasing exponent, which slows down the time evolution when approaching
localization? Or is there a sudden change in the behavior from a pre-thermal
time window to actual thermalization associated with a cross-over time scale,
which could be interesting for intermediate time quantum memory even in a
thermalizing system? It turns out that in the class of systems investigated the
latter is the case. Those results have been published in Dieplinger and Bera, 2023.

Finally, chapter 9 offers a conclusion and a final discussion of the topics covered,
and provides an outlook on potential future developments.
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Part I

T O P O L O G Y, Q UA N T U M H A L L E F F E C T A N D
L O C A L I Z AT I O N





2
D I S O R D E R E D S Y S T E M S : A N D E R S O N L O C A L I Z AT I O N A N D
T O P O L O G Y

2.1 impurities in translationally invariant crystalline lattices

Most condensed matter problems can be described by many electrons moving
and interacting in the potential of their ionic cores (Bruus and Flensberg, 2004;
Giuliani and Vignale, 2008),

H = He
kin +He-e

int +Hion
kin +Hion-ion

int +Hion-e
int . (2)

The summands describe the kinetic energy of electrons, the interaction between
electrons, the kinetic energy of the ionic cores, the interaction between the ions,
and the interaction between ions and electrons. The microscopic constituents are
unquestioned – the underlying interaction is always the Coulomb interaction and
the parameters (for instance the electronic mass and charge) are known precisely
for the purposes of condensed matter theory. However, this Hamiltonian is usu-
ally impossible to deal with in practice. The number of degrees of freedom is just
too large for any computer or human to deal with, and the information relevant
for experiments – e.g. local observables – becomes hidden in the exponentially
large Hilbert space.

Therefore, theorists rely upon a number of tools, such as the Born-Oppenheimer
approximation, essentially decoupling the electronic problem from the ionic
movements, or even as drastic simplifications as neglecting electron-electron
interactions all together. These concepts and many more are often implicitly
applied and also used in this thesis.

One of the most prominent approximations specific to condensed matter is
that of a translationally invariant ionic crystal. When materials condense to a
solid they usually minimize the ground state energy of the ionic positions in real
space by forming a crystalline lattice. When considering a single electron in the
potential of such a crystal the problem defined in Eq. (2) reduces to

H = He
kin +Hion-e

int = −
 h2

2m
∇2

r + V(r) with V(r) = V(r + R), (3)

where R is an arbitrary lattice vector. Famously, the Bloch theorem states that the
wave functions ψ(r) of this Hamiltonian are lattice periodic in r up to a phase,

ψ(r) = eikru(r), (4)
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where u(r) is a lattice periodic function and k the crystal momentum (Bloch,
1929).

Consequently, the wave functions in a perfect crystal resemble those of a free
electron gas: They are extended Bloch waves with a crystal (quasi-) momentum
k. The exact symmetries of the lattice, its basis, and particle and energy density
then classify their electronic properties into metals, semi-conductors and band
insulators (Bruus and Flensberg, 2004). Their conductance properties are therefore
prominently determined by the relative position of the energy bands of this
periodic single-electron problem with respect to the chemical potential, fixed by
leads or thermal baths connected to the sample.

While incredibly many phenomena in condensed matter physics can be ex-
plained within this picture or variations of it, qualitatively new things happen
when electrons scatter with many impurities while traversing the crystal: The
basic assumption being responsible for the very emergence of the band structure
picture and consequently the classification of materials according to their energy
bands breaks down – translational invariance in real space. The quasi-free motion
of electrons in the crystal becomes perturbed. In nature this is of course true in
general; no naturally occurring crystalline sample will be of perfect purity.

Theoretically, this fact can often be incorporated in the established theory of
translationally invariant crystals. Phenomenologically, when studying the conduc-
tivity of a metal, one can for instance introduce a friction term of electrons with
some "scattering time" after which the electron collides with impurities, giving
rise to a successful description of electrons in samples with few scattering centers
within Drude theory (Giuliani and Vignale, 2008). In other instances, single (mag-
netic) impurities can generate fascinating new physics, which can be described
microscopically within "clean" condensed matter theory. A famous example is
the Kondo effect, describing fluctuating spins on a magnetic impurity, giving
rise to a stable zero energy peak of the conductance of the impurity (Kondo, 1964).

In this thesis the focus will lie on a different regime: the limit of large impurity
concentrations. Here translational invariance is broken throughout the sample,
and the clean limit may not suffice even on a qualitative level to capture the
electronic properties of such systems. Multiple successive scattering events of
electrons render their wave function qualitatively different from the Bloch waves
introduced in Eq. (4).

Strikingly, a large impurity concentration can fully localize the wave function
of a single electron moving in a metallic1 sample (neglecting electron-electron
interaction) to a very small spatial region. This wave function, since it is expo-
nentially suppressed in most of the sample does not resemble the Bloch wave
character of a free electron, cannot carry electronic current, rendering the sam-
ple insulating. The mechanism underlying this localization phenomenon is the
following: A single electron is scattered from many impurities. Classically, the
electron would diffuse and eventually extend over the entire real space, analo-

1 when neglecting disorder, in the sense of a band metal
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gously to a random walk. Quantum mechanically, however, additional paths of
the electron wave function emerge, which constructively interfere at the point of
origin of the electron. When these modes dominate the wave function amplitude
over the diffusing modes, the electron gets "stuck" and localizes; diffusion is
suppressed. This process of constructive interference in the return probability
of coherently scattering electrons was predicted by P. W. Anderson in 1958 and
has been called Anderson localization (Anderson, 1958; Abrahams et al., 1979;
Altland and Simons, 2010).

2.2 ensembles of disordered hamiltonians

Introducing disorder to a physical sample comes with a conceptual problem:
Theorists do not know (and do not need to know) the microscopic realization
of the impurities. However, we still need to be able to make a statement about
individual samples (which have individual microscopic realizations of disorder).
Experiments teach us that different disordered physical samples can be treated
on equal grounds; two pieces of some metal have roughly the same electronic
properties even though they certainly have impurities of different strengths and
at different microscopic positions. The important fact is that they have the same
macroscopic properties, such as homogeneity, temperature, (average) electronic
density and (average) impurity concentration.

Consequently, also in theory it often makes sense to not deal with individual
Hamiltonians with specific realizations of disorder but with ensembles of disor-
dered Hamiltonians, which all have different microscopics but whose disorder
realizations are drawn from the same probability distribution.

To still be able to make meaningful statements about experimental samples,
which actually feature a specific microscopic realization of the disorder ensemble
the concept of self-averaging plays a role: A large macroscopic sample can be parti-
tioned in N small – still macroscopic – parts, with the same physical properties as
the full sample, such as the distribution function from which the impurities are
sampled. Evoking the law of large numbers then the measured observable of the
full sample is given by the average over all parts and the fluctuations vanish with
∼ 1/

√
N. Therefore, most experimental samples can be treated on equal grounds

as an ensemble of disordered Hamiltonians in theory (Landau and Lifshitz, 1976).

In the following chapters the generalization of statements regarding transport
and localization will not only go beyond individual Hamiltonians but even further.
Eventually, the goal is to make universal statements about the transport properties
and the localization properties of model systems which are characterized by very
few, very general properties of their Hilbert space, namely its spatial dimension
and some of its key symmetries.
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2.3 localization vs . delocalization : anderson transitions

Two forms of localization/delocalization problems can be studied: First, one may
examine the localization properties of the bulk of a d-dimensional lattice. This
can be most easily illustrated with the Anderson model

H = −t
∑
⟨i,j⟩

c
†
icj +

∑
i

ϵic
†
ici, (5)

with t being the hopping energy, c†i(ci) fermionic creation (annihilation) operators,
⟨·, ·⟩ the sum over nearest neighbor on a d-dimensional hyper-cubic lattice, ϵi a
random number drawn from a box distribution ϵi ∈ [−W/2,W/2], and W the
disorder strength parameter. The phase diagram in terms of (de)localization is
fairly simple. While at dimensions d ⩽ 2 all states of its spectrum (Anderson)
localize, rendering the Hamiltonian generically insulating, at dimensions d ⩾ 3
up to a critical disorder strength Wc delocalized extended states can be found
in a finite central region of the energy spectrum (Thouless, 1974; Wegner, 1976;
Abrahams et al., 1979). The localization-delocalization (LD) transition at Wc is a
metal-insulator transition, with diverging length scales at criticality; similar to
regular second order phase transitions.2 The localization length ξ, characterizing
the wave functions on the localized side of the transition, diverges at the critical
point with a power law governed by the critical exponent ν.3 The localization
length exponent ν is a characteristic fingerprint of the type of LD transition (Evers
and Mirlin, 2008).

The second category of (de)localization appears at the boundaries of topological
systems, realizing the bulk-boundary correspondence. Assuming that a bulk
topological insulator4 in d dimensions has an energy/mobility gap5 around zero
energy, at the edges it has extended conducting states in d− 1 dimensions. Those
edge states are a direct consequence of the topological system undergoing a
phase transition into a trivial phase. This phase transition can also be investigated

2 Henceforth, LD transitions will be treated with the same terminology as second order phase
transitions. It is however a subtle subject, since it is not fully obvious which observable can
represent a local order parameter. While conductivity seems to be a good choice for an order
parameter, it is not local, since it essentially relies on a two-point correlation function. Formalizing
the problem it is widely believed that the objects (Q-matrices) entering σ-models – describing
many aspects of disordered Hamiltonians – may serve as an appropriate local order parameter.
The details of this description are not important for the thesis; the reader is referred to reviews on
Anderson transitions, e.g. by Evers and Mirlin, 2008. For all relevant purposes, e.g. the divergence
of a correlation or localization length scale at the critical point, a description based on the theory
of second order phase transitions is sufficient.

3 Additional critical exponents appear, which govern the finite-size corrections before the system is
in the asymptotic limit of infinite size.

4 In this thesis the term topological insulator refers to all dimensions, not only three-dimensional
materials; it includes for instance also the anomalous quantum Hall effect.

5 corresponding to the band gap in a clean translationally invariant system, which may be decreased
by disorder
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in infinite bulk crystals by varying the system parameters analogously to the
conventional LD transitions, for instance the disorder strength W. The extended
states at the boundary of a finite system reappear at the critical point of the phase
transition, now having support on the entire Hilbert space of the d-dimensional
bulk crystal. In contrast to conventional LD Anderson transitions discussed in
the previous paragraph, these transitions are so to speak localization-localization
or insulator-insulator transitions, since on both sides of the critical point only
insulating localized states are found around the Fermi energy. Often, for instance
in the quantum Hall effect, isolated energies with a critical extended state can be
identified at high or low energies far away from the Fermi level in the topological
phase (Laughlin, 1981).

These localization-localization transitions can be characterized very similarly
to the conventional Anderson LD transitions: They are reminiscent of second
order phase transitions, at which the localization length exponent diverges as a
power law with a critical exponent ν. They are different from conventional LD
transitions in so far that their phases are not characterized by a local quantity, for
instance the local density of states. Instead the topological phase is given by a
single global quantity namely the topological invariant n (Evers and Mirlin, 2008;
Ryu et al., 2010).

2.4 ten-fold way of classifying disordered hamiltonians

Topological as well as conventional Anderson transitions can be characterized
by their behavior at the critical point in some analogy to thermodynamic second
order phase transitions. Key fingerprints are for instance the localization length
exponent ν, the scaling of the wave function at the critical point or the conductivity
at the critical point (Evers and Mirlin, 2008). Before characterizing Anderson
transitions in various settings, it is important to know for which kind of systems
those transitions can even exist.

Therefore, theorists have tried to find categories how to classify disordered
Hamiltonians or topological insulators. In contrast to theories dealing with
specific samples or experimental setups, those categories have to be somewhat
generic; they should not depend too much on the details of the microscopics.
The exact form of the probability distribution of the disorder potential should for
instance not influence the possibility of topologically protected boundary states
or the exponent governing the localization length at the LD transitions6.

One key parameter which is of great importance for the existence and the
nature of Anderson transitions is the spatial dimension d. We already saw for
instance that a LD transition in models similar to Eq. (5) is not possible for
d = 1, 2 (Abrahams et al., 1979).

6 Here we always assume that the disorder potential is uncorrelated or only short-range correlated.
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Cartan label T P C d = 1 d = 2 d = 3

A (unitary) 0 0 0 0 Z 0

AI (orthogonal) +1 0 0 0 0 0

AII (symplectic) −1 0 0 0 Z2 Z2

AIII (ch. unitary) 0 0 1 Z 0 Z

BDI (ch. orthogonal) +1 +1 1 Z 0 0

CII (ch. symplectic) −1 −1 1 2Z 0 Z2

D (BdG) 0 +1 0 Z2 Z 0

C (BdG) 0 −1 0 0 2Z 0

DIII (BdG) −1 +1 1 Z2 Z2 Z

CI (BdG) +1 −1 1 0 0 2Z

Table 1: Classification of toplogical materials according to the spatial dimension d and
fundamental symmetries T,P,C in Wigner-Dyson (top rows), chiral (center rows) and
Bogoliubov-de Gennes (bottom rows) classes. The column ’Cartan label’ lists the name of
the symmetry class according to the symmetry space of the corresponding Hamiltonian
given by Élie Cartan in 1926. The symbols Z, Z2 indicate the type of invariant provided
a topological insulator is possible and here 0 denotes cases where no topological phase
can exist. The integer quantum Hall effect is realized in class A. Adapted from Ryu et al.,
2010.

The other fundamental concept categorizing ensembles of Hamiltonians are
symmetries, because they may also survive perturbations of the microscopic
details of Hamiltonians (Ryu et al., 2010).

Unitary symmetries lead to conservation laws, for instance the translational
invariance of space is responsible for the conservation of momentum. In quantum
mechanics such conservation laws structure the Hilbert space, whose basis can
be transformed in such a way that the Hamiltonian of the system is brought to
a block diagonal form. The blocks then correspond to the symmetry sectors,
characterized by quantum numbers, such as momentum eigenvalues. This type of
symmetry can of course also be used in ensembles of disordered Hamiltonians, as
long as the disorder respects the underlying symmetry. For instance this is often
the case with particle number conservation in many-body systems. Consequently,
the properties of these ensembles can be determined separately for each symmetry
block or quantum number. Unitary symmetries in that sense allow for a reduction
of the complexity of the problem but do not have any further qualitative influence
on the properties of the system, in particular on the existence and details of
topology and localization.

However, there is an additional class of non-unitary symmetries; they do not
enable us to block-diagonalize the Hamiltonian, and therefore must have a more
subtle influence on its (topological) properties.
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These are the three fundamental discrete symmetries, namely time-reversal T,
particle-hole P, and chiral C symmetry (Altland and Zirnbauer, 1997; Ryu et al.,
2010). They cannot be expressed as a unitary symmetry and thus do not generate
a conservation law; they can rather be understood as "reality conditions" imposed
on the Hamiltonian H. Time-reversal symmetry can be expressed by invariance
of H under the operation

T : UT
†H∗UT = H, (6)

where UT is a unitary matrix, rendering the time-reversal operation T anti-unitary.
The charge-conjugation or particle-hole symmetry can be understood along the
same lines, as H satisfying

P : UP
†H∗UP = −H. (7)

Finally, the Hamiltonian can also be classified by its behavior under the transfor-
mation

C = T ·P, (8)

which is called chiral symmetry operation.
Now, invariance of H under T,P can either be absent (in this we usually write

T ,P = 0), or present where T,P either square to plus or minus the identity
operator. In these cases we write T ,P = −1,+1.

This consideration renders 9 possibilities for the symmetry properties of H. In 8

of them the behavior under C is uniquely fixed, while in one case, T ,P = 0, chiral
symmetry can either be present or absent, i.e. S = 1, 0. In total this gives rise
to ten possible symmetry classes, summarized in Table 1 (Altland and Zirnbauer,
1997; Ryu et al., 2010).

2.5 example : integer quantum hall effect in class a

The most famous of the above possibilities is class A, realizing none of the
three fundamental symmetries. It is the symmetry class which hosts the integer
quantum Hall effect (IQHE).

The IQHE arises in a very simple setting: a two-dimensional free electron gas
moving in a strong magnetic field. The underlying microscopic Hamiltonian
hence is often described as

H =
(p + eA)2

2m
, (9)

where p is the two-dimensional free momentum operator, m the electronic mass,
e the electronic charge and A the vector potential giving rise to a constant
out-of-plane magnetic field B = curl (A), introduced by minimal coupling.
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Figure 3: Quantum Hall plateaus and plateau transitions. At the top the density of states
resembling disordered Landau bands is shown as a function of energy. In the center of
the Landau bands at isolated energies wave functions are protected against Anderson
localization. At those energies the longitudinal conductivity of a sample is finite, while
in the localized regime in between it is zero. Due to the formation of edge states in the
localized phases plateaus of quantized transverse conductivity develop, Altland and
Simons, 2010.

Without loss of generality the electrons can move in the x − y-plane of a
three-dimensional coordinate space, such that the magnetic field is pointed in
z-direction, i.e. B = (0, 0,B). Fixing the gauge of A to the Landau gauge, one
chooses A = (0,Bx, 0).

Hence, the Hamiltonian reduces to

H = −
1

2m

[
∂

∂x

2

+

(
∂

∂y
+ eBx

)2]
, (10)

in real space, allowing for a separation ansatz of the Schrödinger equation
Hψj(x,y) = Ejψj(x,y) using a wave function of the form ψj(x,y) = e−ikyyaj(x).

The remaining x-dependent equation for aj accordingly reads[
−
1

2m

∂

∂x

2

+
mω2c
2

(x− x0)
2

]
aj(x) = Ejaj(x). (11)

This resembles the harmonic oscillator and renders eigenvalues

Ej = ωc(j+ 1/2), (12)

where ωc = eB/m is the classical cyclotron frequency and x0 = −ky/eB the orbit
center (Giuliani and Vignale, 2008).

These are the highly degenerate (one state per flux quantum) Landau levels Ej
where the number of flux quanta is Nϕ = BA/(h/e). The system is filled with
Ne = nA electrons on a sample of area A, and an electrical field Ex in x-direction.
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The current is given by I ∼ envDw, where due to the magnetic field the drift
velocity is vD = Ex/B. The Hall voltage is given by VH ∼ BvDw, resulting in the
conductivity,

σHall =
I

VH
=
Ne

Nϕ
× e2

h
, (13)

where Ne/Nϕ is the filling factor of the Landau levels. This calculation gives rise
to the (linear) envelope function σHall ∝ n, with n being the electron density, of
the quantum Hall plateaus, but does not explain their quantization.

Disorder in the form of impurities and imperfections of a crystal are always
present in an experimental sample. Modeling this by an additional disordered po-
tential in Eq. (9) generates in-gap states in between the Landau levels. Moreover,
the degeneracies of Landau levels are lifted and they broaden even in the low-
temperature limit. According to the above argument the transverse conductivity
increases linearly in the electronic density and is a smooth function of energy.
Additionally, the transverse conductance should be finite even in between the
Landau levels at all energies, due to the non-zero density of states.

Both however is not the case, the Hall conductivity does not change at all
for large variations of electronic density, magnetic field or energy. Instead,
it suddenly jumps at special parameter configurations; the Hall conductivity
becomes quantized to integer multiples of e2/h. The resolution of this tension
with the theory presented above lies in the combination of topology and Anderson
localization.

As we saw in the previous section in symmetry class A in two dimensions
generically all wave functions localize. Hence they do not contribute to the trans-
verse and longitudinal conductivity; an Anderson insulator emerges. However,
in the center of the broadened Landau bands, wave functions become protected
against Anderson localization7. Only these contribute to the conductivity in
longitudinal direction and are counted to obtain the transverse conductivity; so
σxy = −e2/h×n, where n now is the (integer) number of Landau level centers
below Fermi energy8 (Laughlin, 1981; Halperin, 1982; Altland and Simons, 2010).

This gives rise to the so-called quantum Hall plateaus, characterized by the
filling of the protected mid-band Landau level states, n, and the quantum Hall
plateau transitions which occur exactly when the Fermi level crosses one of the
protected states, cf. Fig. 3.

The integer quantum Hall effect is thus the first and most famous example
of topological protection in condensed matter. The plateaus correspond to the

7 This can be rationalized by the intuitive picture of semiclassical percolation of electron orbits in a
smooth disorder potential, cf. Huckestein, 1995.. Electrons move around equipotential lines of the
disorder potential, which are closed curves – hence localized – for large and small energies, in the
tails of the Landau bands. At a special energy, however, namely in the center of the Landau bands
the equipotential lines do not close and percolate through the sample, giving rise to extended
states, protected from Anderson localization.

8 As the bulk of the system in between two plateau transitions is fully insulating, i.e. exhibits a
mobility gap, the transport of the quantized current occurs only at the edges of the sample.
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insulating topological phases and the mid-band protected states to the critical
states between two topological invariants, giving rise to the quantum Hall edge
states at the boundaries of the sample.

We have now seen an example of a microscopic model, namely that of free
electrons in a strong magnetic field with generic (weak) disorder, which realizes
a topological phase in class A; i.e. without time-reversal, particle-hole or chiral
symmetry. However, conceptually there can be different microscopic Hamilto-
nians with the same symmetry properties exhibiting the same type of plateaus
and plateau transitions, and with them the edge states. A magnetic field or even
Landau levels are not needed. The resulting, more general, so-called anomalous
quantum Hall effect will play a major role in this thesis (Haldane, 1988; Chang
et al., 2023); a generally valid topological argument – first made by Laughlin, 1981

– is presented in section 3.1.
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3
L O C A L I Z AT I O N - D E L O C A L I Z AT I O N P H A S E D I A G R A M O F
T H E C H E R N I N S U L AT O R

Parts of this chapter are based on the publication Moreno-Gonzalez et al., 2023.

A field-free realization of the integer quantum Hall effect has been proposed
by Haldane, 1988. Together with the Su-Schrieffer-Heeger chain (Su et al., 1979)
this is the first theoretical model of a topological insulator, as we understand it
today: a translationally invariant bulk insulator with a non-trivial topological
invariant n, which is protected even against disorder, leading to edge states at
the real space boundary of finite samples. When disorder is included the band
gap becomes a mobility gap and we obtain a topological Anderson insulator1

with extended, conducting edge states.
Even away from criticality, i.e. in the topological phase where the bulk is

insulating, there has to be at least one extended state protected against Anderson
localization somewhere in the spectrum (Laughlin, 1981; Halperin, 1982; Moreno-
Gonzalez et al., 2023). This state corresponds to the center of the Landau bands
in the case of the disordered integer quantum Hall effect. Even though these
extended states in the spectrum of the topological phase are guaranteed to
exist, it is not clear where in the spectrum, and what properties they have in
a general anomalous quantum Hall insulator. This chapter is devoted to their
study in a simple two band model of a class A topological insulator, namely the
disordered Chern insulator. We will answer the question how much disorder
is required to change the energetic position of the delocalized state deep in the
bands depending on the parameters of a Hamiltonian model for the anomalous
quantum Hall effect, at which disorder concentration the delocalized state breaks
down fully and the topological phase is destroyed all together. In particular
the phase diagram in terms of the Hamiltonian parameters, the energy and the
disorder strength will be determined precisely. Later, this will allow us to study
properties of the critical transition point in the anomalous quantum Hall effect
in different regions of parameter space and establish if its properties depend on
parametric details, for instance the energy of the delocalized state, or if they are
universal and exhibit the same fingerprints compared to different topological
phase transitions in symmetry class A.

1 in contrast to a topological band insulator in the clean case
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qi-wu-zhang (qwz) - model of the chern insulator . A very simple
translationally invariant model of the anomalous quantum Hall effect, or Chern
insulator, has been proposed by Qi et al., 2006,

HQWZ(k) = sinkxσx + sinkyσy + (R− coskx − cosky)σz, (14)

where σx,y,z are the usual Pauli matrices, and k = (kx,ky) the crystal momentum
in two dimensions of the infinite translationally invariant square lattice.

The energy dispersion of this model is given by its two bands in the kx − ky-
plane,

E(kx,ky) = ±
√
2[1+ coskx cosky + R(coskx + cosky)] + R2. (15)

Consequently, the clean QWZ model (14) is a band insulator for R ̸= −2, 0, 2,
while for R = −2, 0, 2 it exhibits band closings corresponding to topological phase
transitions along the lines described in section 1.2.

Calculating the topological invariant, i.e. the Chern number n2, of the thus
separated insulating regimes we obtain topologically trivial (n = 0) phases for
| R |> 2, while a n = 1 (n = −1) phase for 0 < R < 2 (−2 < R < 0). The Chern
number assumes the role of the filled Landau levels in the integer quantum Hall
effect in Sec. 2.5.

To introduce disorder to the Chern insulator, Eq. (14) is Fourier transformed to
real space, yielding

HQWZ =
∑
x,y

[
ψ†
x,y(Rσz + ϵx,y1)ψx,y

+
1

2

(
ψ

†
x+1,y (σz + iσx)ψx,y

+ψ†
x,y+1 (σz + iσy)ψx,y + h.c.

)]
, (16)

where a disorder potential ϵx,y has been added. Here ψx,y represent the
spinors in the degrees of freedom coupled by the Pauli matrices, and x,y label
the components of the two-dimensional lattice vectors r = (x,y) on a square
lattice. The boundaries are chosen to be periodic. Disorder is uncorrelated
and Gaussian distributed, ⟨ϵx,yϵx ′,y ′⟩ens =W

2δxx ′δyy ′ , where ⟨ · ⟩ens denotes the
ensemble average, δ the Kronecker symbol and W defines the disorder strength
(Moreno-Gonzalez et al., 2023).

3.1 anderson (de)localization in symmetry class a

Before studying the critical states present in the spectrum of the anomalous
quantum Hall effect, it is instructive to reconsider the topological argument

2 This can for instance be done by integrating the Berry curvature of the band structure in the
translationally invariant system. See for instance Thouless et al., 1982; Simon, 1983; Berry, 1984;
Bernevig and Hughes, 2013.
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Figure 4: Setup for Laughlin’s gauge argument: A time dependent magnetic flux Φ
threads an annular geometry with inner and outer edges. An electric field is generated
perpendicular to the magnetic field, circling around the hole. A current is supposed to
be induced between inner and outer edge, Altland and Simons, 2010.

underlying the existence of extended states in the spectrum of a quantum Hall
system even in its insulating phase.

Laughlin, 1981 proposed a thought experiment based on so-called topological
pumps, rationalizing the quantization of the Hall conductivity and the emergence
of bulk-delocalized states deep in the spectrum.

Consider a quantum Hall insulator in an annular geometry, i.e. a disk with a
hole, such that an outer and an inner boundary emerge. Now we apply a time-
dependent magnetic flux threading the hole in the center of the annulus, which
in turn leads to a tangential electric field around the disk geometry. Together
with the magnetic field, this induces a force on the electrons in radial direction.
By that a current and a voltage between the inner and outer edges should be
generated (Laughlin, 1981; Giuliani and Vignale, 2008). The geometry is sketched
in Fig. 4. However, the bulk cannot simply dissipate the energy because it is
insulating by assumption.

Additionally, we assume that the change of the magnetic flux is slow, i.e. the
system evolves adiabatically and stays in an eigenstate of the instantaneous
Hamiltonian. Now the wave functions and the spectrum of the Hamiltonian
are periodic with respect to the application of a full flux quantum ∆Φ = h/e.
Adiabaticity therefore implies that the system ends up in an eigenstate of the
original Hamiltonian after one flux quantum has been applied during one period
∆T , however, it need not be the ground state. In fact, the only eigenstates available
at Fermi level are the edge states, since only there the bands can close. Therefore,
exactly one charge must have moved from one edge state to the other,

∆Q = I∆T = σHall∆T
∂Φ

∂t
= σHall∆Φ = σHall

h

e
. (17)

Immediately, it follows that the Hall conductivity must be σHall = e
2/h per charge

transfer.
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Two conceptual facts follow from this simple consideration:
(i) The Hall conductivity is quantized and its quantization can be explained by

purely topological arguments. It therefore holds also for different realizations of
the anomalous quantum Hall effect (Laughlin, 1981).

(ii) The bulk spectrum of a quantum Hall insulator must contain delocalized
states. This follows from the fact that charge must be transferred from one edge
to the other, i.e. the edge states at zero energy must be spectrally connected. The
existence of at least one conducting bulk state deep in the spectrum connected
continuously to the conducting edge state bands must be guaranteed (Halperin,
1982; Altland and Simons, 2010).

The principle presented here – namely the transport of a charge quantum from
one to an opposite boundary of a sample via protected bulk states connected
spectrally to the edges – is called spectral flow. It will play another important role
later in this thesis, cf. chapter 5.

The spectral flow principle in class A however does not make any statements
about the form, the number or the energy of such delocalized bulk states.

3.2 results : (de)localization in the chern insulator & phase

diagram

In this section the goal is to characterize the extended bulk states in the topological
insulator phase of the Chern insulator (14) numerically and analytically. A focus
will be placed on the numerical analysis using multifractal correlations of critical
states. The analytical description, developed by M. Moreno-Gonzalez and A.
Altland in Moreno-Gonzalez et al., 2023, is shortly summarized and benchmarked
against the exact numerics.

For the anomalous quantum Hall effect, as realized in the model Hamiltonian
(14), the set of critical states as a function of the three-dimensional parameter
space, spanned by R, the disorder strengthW, and the energy E can be represented
as a critical connected surface, cf. a schematic sketch in Fig. 5.

In the following paragraph the basic idea of multifractal wave functions is
introduced. The multifractal dimension will be benchmarked against established
values from literature, and used as a fingerprint to identify the set of critical
points in the parameter space of the disordered Chern insulator3.

multifractal wave functions . Fractal objects are characterized by ex-
hibiting the same or similar shapes on all length scales. They are in that sense
self-similar and do not have a finite distinguished length scale, e.g. a correlation
or localization length. Examples can be found all over nature; the phenomenon
has been described systematically by Mandelbrot, 1982. Fractals can be associated
with a fractal dimension.

3 In later sections, in particular in chapters 4, 5, the details of the multifractal dimensions of the
quantum Hall transition will play a more important role and are analyzed in greater detail.
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Figure 5: Sketch of the set of critical points in the parameter space (E,W,R) of the QWZ
model, Eq. (16). The blue surface represents the critical states, while the topological
phases are marked by the intersection between the surface and the plane at zero energy.

When undergoing Anderson transitions (multi)fractality of wave function
is induced by strong amplitude fluctuations at the critical point, which occur
on all length scales, when the localization length of the disordered sample is
diverging. The analysis of the multifractal dimensions of wave functions hence
is a quantitative method to characterize the critical fluctuations of localization
transitions4 (Castellanits and Peliti, 1986; Janssen, 1994; Huckestein, 1995).

In practice, we study the qth moments of the probability distribution of an
electronic (real space) wave function ψEr at energy E,

Pq =
∑

r
| ψEr |2q . (18)

The sum runs over all real space basis states of the corresponding Hilbert space
of the Hamiltonian.

Assuming a scale-free distribution at the critical point, these moments in
general scale with the (linear) system size, for instance of a lattice of linear length
L, as

Pq ∼ L−τq , (19)

where the exponent τq represents the spectrum of multifractal dimensions (Mudry
et al., 1996; Evers and Mirlin, 2000; Mirlin and Evers, 2000; Evers et al., 2001;
Rodriguez et al., 2008; Evers and Mirlin, 2008).

Comments on the behavior of τq in the non-critical cases are in order: Assuming
a metallic wave function, such as those observed inside the mobility gap of the

4 Multifractality is a consequence of the peculiar nature of Anderson transitions. The presence of
infinitely many relevant operators – in the renormalization group context – implies an infinite set
of critical exponents ∆q describing the strong amplitude fluctuations at the critical point (Evers
and Mirlin, 2008).
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three-dimensional Anderson model (5), its support extends over all real space
basis states. In this trivially extended limit, it resembles a perturbed Bloch wave,
with τmetal

q = d(q− 1). On the other side of the LD transition in the localized
phase, the wave function support does not scale at all with the system size L.
This results in insensitivity of Pq to L, and hence τlocalized

q = 0,−∞ for positive or
negative q, respectively.

At the critical point τq is a generic, non-linear function of q. Its non-metallic
part ∆q = τq − d(q− 1) is therefore often called anomalous multifractal dimen-
sion.

Previously, it was discussed that the class of samples to be described are
ensembles of Hamiltonians, instead of individual realizations of a given disorder
distribution. Therefore, in the following we will average the wave function
moments over ensembles,

⟨Pq⟩ens = L
−τens

q , (20)

where ⟨ · ⟩ens denotes the ensemble average. Henceforth, we will omit the ensem-
ble notation when discussing wave function moments or critical exponents; it is
implied throughout the remainder of this thesis, unless stated otherwise.

Strictly speaking, exclusively critical states have multifractal character. However,
we can generalize the defintion of the multifractal exponents τq,∆q to off-critical
wave functions, demoting them to effective multifractal exponents, which now are
functions of the system size L (and the system parameters, E,W,R) (Rodriguez
et al., 2010; Rodriguez et al., 2011). Asymptotically, when L→ ∞, these effective
exponents will yield either the metallic or the localized limit, as discussed above.
Their definition goes along the same lines as for τq,∆q,

Pnon−critical
q (E,W,R;L) ∼ L−τq(E,W,R;L). (21)

Numerically, the effective exponents are approximated by the logarithmic
difference

τq ≈ τ̃q ≡ −
lnPq(E,W,R;L) − lnPq(E,W,R;L/2)

lnL− lnL/2
. (22)

In the asymptotic limit of large system sizes L this effective quantity yields the
actual multifractal exponents,

lim
L→∞ τ̃q →


0, if ξ <∞, (E,W,R) ̸= (Ec,Wc,Rc)

d(q− 1), if ξ = ∞, (E,W,R) ̸= (Ec,Wc,Rc)

τq, if (E,W,R) = (Ec,Wc,Rc),

(23)

where ξ denotes the localization length, and Xc a critical point in parameter
space (Moreno-Gonzalez et al., 2023). The benefit of this generalized definition is
twofold:
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(i) It allows us to define τ̃q throughout the entire parameter space of a given
model, and the subset of actual critical points in parameter space can be identified
by Eq. (23).

(ii) The behavior of τ̃q as a function of L,X close to the critical points is a
hallmark of the divergence of the localization length at the phase transition; by
that the determination of the localization length exponent ν is possible. This
method will be explained in more detail and used later on in chapter 4.

identifying quantum hall critical states . The multifractal dimen-
sion of the quantum Hall critical state is believed to be universal in the asymptotic
limit; independent of the microscopic definition of the underlying model. There
is however no rigorous proof of this belief (Evers and Mirlin, 2008).

While there is no established microscopic theory of the quantum Hall critical
point, analytical models have been proposed which predict ∆(p)

q = 1/4q(1− q)

(Zirnbauer, 1999; Zirnbauer, 2019). Numerically, this result holds approximately,
however high-precision studies of the Chalker-Coddington network model of
the lowest Landau level suggest deviations, either in the parabolic shape of the
dimension in q or in the prefactor of the quadratic function (Evers et al., 2001;
Evers et al., 2008; Obuse et al., 2008). Since finite-size corrections to the asymptotic
scaling of the wave function moments in the thermodynamic limit decay very
slowly, and a microscopic theory is not available there is no great consensus about
the exact details of the properties of the quantum Hall critical state; they are still
subject to numerical and analytical research. The next chapter is partly devoted
to the numerical study of this problem in the anomalous quantum Hall insulator.

For the problem at hand, however, the established approximate form of the
anomalous dimension of the critical state, ∆q ≈ 1/4q(1− q) merely serves as a
benchmark to find the subset of critically extended states in the disordered Chern
insulator; the exact form of the multifractal dimension does not play a large role
at this point.

excursion : analytical approach to delocalized bulk states . As
this chapter intends to give insight about the nature of delocalized state deep in
the bulk state of a Chern insulator, the reader is provided with a short summary
of the analytical approach carried out by M. Moreno-Gonzalez and A. Altland in
Moreno-Gonzalez et al., 2023. The following paragraph is not self-contained, as a
detailed introduction to the analytical theory of topological actions goes beyond
the scope of this thesis. This paragraph is intended as a short overview only,
while a more interested reader is referred to the publication Moreno-Gonzalez
et al., 2023.

In past works topological insulators in general and in particular also the QWZ-
model of the anomalous quantum Hall effect have been approached primarily
in the famous Dirac approximation: The band structure of the QWZ model has
a band crossing with an approximately linear dispersion at the critical point,
such that in its vicinity the dispersion can be approximated by a (massive) Dirac
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cone. This approach has been incredibly successful in describing various quasi-
relativistic effects in condensed matter, for instance in graphene (Geim, 2009).

However, for the problem at hand it suffers some shortcomings: Even though
the low-energy physics may be described well, statements about the properties
of the system at large energies or momenta are impossible by construction. As
the goal of this section is to describe high-lying bulk states, this fact makes the
linearized Dirac theory unsuitable. Additionally, a regularization scheme has to
be applied to cure ultra-violet divergences of Dirac cones on a lattice (Pauli and
Villars, 1949; Bollini and Giambiagi, 1972; ’t Hooft and Veltman, 1972).

A key ingredient to a useful analytical theory of high-lying critical states is to
use the full lattice dispersion of (14); it additionally cures ultra-violet divergences
by construction. The computation of the critical energy in the insulating phase
then proceeds by imposing a half-integer quantization of the Berry flux, which
is encoded in the ground state of the clean Chern insulator for weak disorder
(Moreno-Gonzalez et al., 2023). For strong disorder the Green’s function in the
self-consistent Born approximation is constructed, where the impurity scattering
is encoded in the quasi-particle self-energy. The critical states then are identified
by the quantization of the coupling constants of the topological action for which a
representation in terms of the Green’s function can be found (Smrcka and Streda,
1977; Khmelnitskii, 1983; Pruisken, 1984; Levine et al., 1984; Moreno-Gonzalez
et al., 2023).

In both cases the topological angle Θ, serving as a measure for the coupling
constant of the topological part of the action in the Chern insulator, can be
calculated for the parameter space (E,W,R), and the subset of critical points is
identified by the quantization condition

Θ(E,W,R) !
= (2n+ 1)π, (24)

where n is an integer (Khmelnitskii, 1983; Pruisken, 1984; Levine et al., 1984).5

5 In the presence of disorder an effective field theory can be derived, which is characterized by an
action of the from

S[Q] =

∫
d2r

(
gTr(∂iQ∂iQ) +

Θ

16π
ϵijTr(Q∂iQ∂jQ)

)
. (25)

Here Q = Q(r) is a matrix field in two-dimensional real space, whose components are indexed
by i, j. The coupling constants (g,Θ) span the space for the renormalization group flow, with
fixed points at (0, 2πn) on quantum Hall plateaus and (g∗, (2n+ 1)π) for quantum Hall criticality.
The coupling constants can be identified with the longitudinal and transverse conductivity,
g = σxx/8,Θ = 2πσxy. The critical point itself is not described by such a theory, its identity
remains unknown. However, as a diagnostic this form of the action is appropriate. Details about
field theory of the type described, in particular the derivation for the microscopic model examined
in this chapter and the precise form of the coupling constants in terms of the model parameters
for small and large disorder are not explained in this thesis. For a comprehensive background the
reader is referred to Altland and Simons, 2010, while the problem-specific field theory is detailed
in the original publication Moreno-Gonzalez et al., 2023.
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Figure 6: Analytical and numerical prediction for the spectral position Ec of the delocal-
ized state in the topological phase. a The blue data shows the topological angle Θ, as a
function of energy for (W,R) = (1.45, 1.2). Criticality is present when it equals the blue
dashed line at an odd multiple of π, cf. blue arrow. On the right axis the numerical results
for the effective dimension τ̃0.5 for different system sizes from L = 64→ 512 are shown.
The dashed horizontal line indicates the multifractal dimension in the parabolic approxi-
mation τ(p)

0.5 = 0.9375 of the quantum Hall critical state. This condition is approximately
met at the green arrow. b Prediction for the delocalized states taken from multifractal
analysis and field theory at R = 1.7 and R = 1.2 as a function of disorder strength for
small W where quantitative agreement between numerics and analytics is observed; and
for larger W up to the breakdown of the topological phase (inset). c Phase diagram of
the disordered Chern insulator in the R−W-plane at zero energy, caculated analytically
and numerically. The critical states in b,c are numerically identified at a linear system
size L = 256 and finite-size corrections to the critical parameter sets are smaller than the
size of the data points when for L > 128. Figure adapted from Moreno-Gonzalez et al.,
2023, ©2023 Elsevier.

numerical and analytical results . To identify the subset of critical
points in the parameter space of the Chern insulator the quantities τ̃q(E,W,R;L)
and Θ(E,W,R) are calculated.

In Fig. 6 we compare the results for the identification of the delocalized states
obtained from multifractal analysis and the analytical approach sketched above.
In panel a the effective multifractal exponent for q = 0.5 for the parameter
set (W,R) = (1.45, 1.2) is shown in green colors as a function of energy. All
curves have a maximum in the shown energy range whose value is close to the
theoretical prediction of the quantum Hall critical point, assuming an approximate
parabolic form according to Zirnbauer, 2019 (black dashed line). As the system
size is increased (from dark green to light green colors) the maximum gets more
pronounced, while its value stays approximately constant at τ̃0.5 ≈ τ(p)q , indicating
an actual scale free, power-law nature of the wave function, and hence quantum
Hall criticality (green arrow). Additional evidence for quantum Hall criticality at
the maximum of these curves is given by the (almost) scale invariant distribution
functions of the wave function moments, whose analysis is delegated to appendix
A.1.

Away from the critical point, the curves bend down towards τ̃0.5 → 0, indicating
localization as expected for the remainder of the spectrum. Additionally, in
blue the topological angle Θ(E,W,R)/2π as a function of energy at the same
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parameter set (W,R) is shown, as calculated from the field theoretical calculation
as sketched above. The theory predicts a critical state when Θ is an odd multiple
of π, indicated by the blue dotted line and marked by the blue arrow, which
identifies the analytical prediction for the delocalized state in the bulk spectrum.
The numerical and analytical predictions are not perfect but agree reasonably,
given there is no adjustable fitting parameter.

Panel b of Fig. 6 shows the energy of the delocalized state Ec deep in the
topological phase of the Chern insulator calculated both with the analytical and
the numerical approach for different parameters R as a function of disorder
strength W. The spectral position of the delocalized state Ec is calculated by
finding the maxima of the multifractal dimension τ̃0.5, and invoking the conditions
(23) and (24), for the numerics and analytics, respectively. For a small disorder
strength W both calculations agree even quantitatively, while at larger W the
analytical theory breaks down on a quantitative level. This can be attributed to
the proximity to a quantum critical point, where the longitudinal conductance
assumes values of order one, σxx ∼ O(1). Here the field theory is no longer
applicable (Moreno-Gonzalez et al., 2023).6

The numerical prediction for Ec, which is exact up to irrelevant finite-size
corrections, shows a transient increase for intermediate W, which is not captured
by field theory. At large disorder strengths W, numerics and analytics both
suggest a decrease of Ec until it eventually reaches zero energy, thus signaling the
breakdown of the topological phase and a transition to the topologically trivial
phase at very large disorder strength W.

By monitoring the critical energy, and its decrease to zero, it is also possible to
capture the phase diagram of the Chern insulator at large disorder, by tracking
τ̃q(E = 0,W,R;L) and Θ(E = 0,W,R). The resulting numerical and analytical
predictions for the topological phase boundaries are shown in panel c of Fig. 6.

Again, we observe a rough qualitative agreement between the two approaches,
however, some aspects are not captured by the analytical theory; for instance the
extension of the topological phase above the clean value for R > 2 is only visible
in the exact numerics.

conclusion : critical surface of the chern insulator . Generic
states in the disordered Chern insulator are Anderson localized. However, sym-
metry arguments guarantee the existence of at least one energy in the spectrum
where wave functions are extended, as long as topology survives. The present
chapter has now investigated the spectral position and properties of these delo-
calized states.

We found that these energies can appear deep in the bulk, while they approach
zero when the system is close to a topological phase transition. By that it is possi-
ble to identify the entire subset of critical wave functions in the parameter space

6 The prerequisites for the applicability of the theory developed in this context are not explained in
this thesis, the interested reader is referred to the detailed derivation of the field theory for the
present model in Moreno-Gonzalez et al., 2023.
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of the disordered Chern insulator (E,W,R) as a "critical surface" of delocalized
states. It is schematically visualized in Fig. 5.

3.3 outlook : delocalized bulk states in other symmetry classes?

The Chern insulator is a fundamental and maybe the simplest example of topo-
logical insulators. Given that even basic properties of more complex topological
insulators remain poorly understood it can be hoped that the understanding of
the delocalized states of this simple example may help in grasping the surface
criticality of disordered three-dimensional systems (Sbierski et al., 2020; Lapierre
et al., 2022).

In recent years remarkable properties of topological insulators in more complex
classes of the ten-fold way have surfaced: It seems that generic surface states of
three-dimensional topological realizations of for instance class AIII are protected
against localization much more generically than expected (Sbierski et al., 2020).
In this context the concept of spectral flow, which was introduced in section 3.1
and featured prominently in the determination of the critical properties of the
Chern insulator in the present chapter, plays another important role: Its absence
or presence will be decisive for the localization properties of surface bands of
topological insulators (Altland et al., 2024).

Before turning to more complex topological insulators and generalizing to
different symmetry classes in chapter 5, the quantum Hall effect, realized in class
A, will be studied from a different perspective in the next sections.
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4
C R I T I C A L E X P O N E N T S AT T H E Q UA N T U M H A L L
T R A N S I T I O N

4.1 motivation : universality of quantum hall criticality

Although systems belonging to the same symmetry class in the ten-fold way may
differ drastically in their microscopic definitions, it is believed that they share
some fundamental properties. This hypothesis is called universality. It can be
rationalized by the general structure of the field theories describing disordered
systems: The microscopic theory is coarse-grained from the microscopic length
scales to much larger, eventually mesoscopic or macroscopic sizes, at which
the details of the underlying theory are hidden, and only properties such as
dimension and symmetries remain visible. The procedure of obtaining this
simplified coarse-grained theory is called renormalization group flow, which is
believed to be described only by very few renormalized coupling constants such
as the transverse and longitudinal conductivity of the system (Evers and Mirlin,
2008).

In many cases it is reasonable to believe that systems belonging to the same
symmetry classes hence "flow" (in the space spanned by these renormalized
quantities) to very few or in the simplest case even to a single universal fixed point
at the level of the coarse-grained theory. If this is the case such systems should
share fundamental properties, such as the functional behavior of the correlation
or localization length in the vicinity of the critical point; i.e. the critical exponent
of the localization length ν.

To date a microscopic critical theory of the quantum Hall transition is missing
(even though the plateaus and their quantization are fairly well understood).
Even basic properties such as the existence of a single or multiple fixed points
remain mysterious.

Without the availability of an analytical theory a natural access point to the
solution of this problem is the numerical study of the critical exponents of
different realizations of quantum Hall criticality (Evers and Mirlin, 2008).

critical exponents in literature . The most studied realization of a
quantum Hall plateau transition is the network model introduced by Chalker and
Coddington, 1988 (CC). Analyzing its critical scaling, Slevin and Ohtsuki, 2009

reported a localization length exponent of around ν ∼ 2.6, which significantly
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exceeded the estimates based on previous studies, ν ∼ 2.3 − 2.4 (Huckestein,
1995). Subsequently, it turned out that further irrelevant finite-size correction to
the asymptotic scaling needed to be taken into account. However, the estimate
on ν ∼ 2.6 was corroborated (Obuse et al., 2012), and received further support
(Amado et al., 2011; Fulga et al., 2011; Slevin and Ohtsuki, 2012; Nuding et al.,
2015; Dresselhaus et al., 2022). Even though the Chalker-Coddington network
was constructed to keep scaling corrections small these hopes did not materialize
in unambiguous estimates for ν; the numerical uncertainty, mainly mediated
by irrelevant corrections, is still significantly larger than those for the critical
exponents of other types of Anderson transitions, such as the three-dimensional
metal-insulator transition in class AI (Rodriguez et al., 2011).

To investigate universality also different models of the integer quantum Hall
transition have been examined. Studies of a tight binding model with a magnetic
field have corroborated both the estimates for the localization length exponent
ν ∼ 2.6, but also for the exponents of the leading and subleading irrelevant finite-
size correction to scaling (Puschmann et al., 2019; Puschmann and Vojta, 2021) or
predicted a slightly smaller ν (Zhu et al., 2019). Even though it was believed that
these models – featuring several Landau levels – obscure the asymptotic scaling
of the critical states, and the spectral position of the critical point is a priori not
known, the scaling corrections turned out to be comparable to the CC network.

Despite of the unavailability of a rigorous analytical prediction for the critical
exponents of the quantum Hall transition and the numerical uncertainty of their
values proves to be considerably larger than for other transitions, ν ∼ 2.5− 2.6
seemed to emerge to be the consensus. However, this result is in tension with
the experimental value for the quantum Hall plateau transition, ν ∼ 2.38 (Koch
et al., 1991; Li et al., 2009); the discrepancy may be caused by electron-electron
interaction effects present in the experimental samples.

In recent years the controversy regarding the critical properties of the quantum
Hall effect gathered momentum once again. This is partly because of the following
reason:

Zirnbauer, 2019 suggested a field theoretical description of the integer quantum
Hall transition; in particular a conformal field theory with a renormalization
group flow implying ν = ∞. This is of course in tension to the numerical
observation of finite ν; the discrepancy is suggested to be solved by the almost
logarithmically slow irrelevant corrections accompanying the asymptotic scaling,
since the leading irrelevant finite-size correction exponent is predicted to be
y = 0 within this theory. When not taking into account this marginal flow in
the numerical analysis, only effective exponents ν will be observed for a window
of finite system sizes which are not universal and obscure the true asymptotic
limit ν = ∞. Accordingly, the spread of numerical results for ν in different
computational finite-size studies is understood as a consequence of ignoring the
logarithmic corrections due to the marginal renormalization group flow.

Several numerical developments in recent years can be interpreted in the light
of Zirnbauer’s suggestion.
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(i) Dresselhaus et al., 2021 reported evidence for marginal scaling by observing
a localization length exponent far from the previously established result, ν ∼ 3.9,
in a two-channel CC network. However in a different work the same authors
investigate the sheet conductance scaling of a CC network and observe ν ∼ 2.6
with a remarkably small uncertainty, which is in full agreement with previous
studies of the scaling properties of the CC network (Dresselhaus et al., 2022).

(ii) Gruzberg et al., 2017 studied a geometrically disordered CC network and
found ν = 2.38, suggesting non-universality, triggered by a modification of the
quantum Hall critical RG fixed point by geometric disorder. Subsequently, this
results was interpreted as evidence for the existence of a critical line of quantum
Hall criticality (Gruzberg et al., 2017; Klümper et al., 2019).

(iii) Recently, Sbierski et al., 2021 investigated the critical properties of Dirac
fermions, realizing a model of the anomalous quantum Hall effect. The authors
concluded that ν is depending on the energy of the critical state, i.e. its spectral
distance from the Dirac point. The critical exponent varied in the range between
ν ∼ 2.3− 2.6. This is inconsistent with a universal critical fixed point and may
support the notion of a critical line or marginal flow as suggested by Zirnbauer.
The model studied by Sbierski et al., 2021 is a variant of the QWZ model of the
anomalous quantum Hall effect studied in chapter 3; the paper mainly focused
on the linearized model around the Dirac point.

Motivated by the friction of the result by Sbierski et al., 2021 with universality,
the following section is devoted to the study of the critical exponents in the full
lattice model of the disordered Chern insulator, Eq. (16). The critical properties
of the anomalous quantum Hall transition in this model will be investigated by
multifractal analysis and a recursive Green’s function method and compared to
results obtained in a tight binding model with a magnetic field, as studied in
Puschmann et al., 2019; Puschmann and Vojta, 2021, in section 4.3.

Subsequently, in section 4.4 an amorphous variant of the anomalous quantum
Hall effect will be investigated, realizing a geometric type of disorder. The
resulting critical exponents will be compared in the light of universality with
previous studies on the Chalker-Coddington network on the one hand, and on
the other hand with the geometrically disordered model of the quantum Hall
transition studied by Gruzberg et al., 2017.

4.2 scaling theory at localization transitions

To study the asymptotic and irrelevant scaling properties of the localization length
close to the quantum Hall transition, a short introduction is needed on how to
gain access to the thermodynamic limit, which is necessary to observe a proper
transition, in a (usually finite-size) numerical simulation.

First, a dimensionless quantity X has to be defined, which depends decisively
on the localization properties. From the way Anderson localization has been
defined as the absence of diffusion in the correlations of local electronic densities,
a very direct observable to measure or simulate is the conductance of a disordered
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sample placed between some leads (cf. Dresselhaus et al., 2022 for a recent study).
Additionally, the localization length can be measured indirectly via the calculation
of the Lyapunov exponent, quantifying the envelope of a wave function, as done
recently by Puschmann et al., 2019. By the construction of the multifractal analysis,
also the (multifractal) dimension of the wave function at finite sample sizes can
be taken to characterize the localization properties (Rodriguez et al., 2011). Since
a numerical calculation is carried out on a real space lattice, the linear lattice size
L is always finite. Therefore, a method to extrapolate finite-size results to the
asymptotic scaling in the thermodynamic limit is needed.

Based on the scaling theory of localization introduced by Abrahams et al.,
1979, it is assumed that the quantity X is a function of the single parameter L/ξ,
i.e. the ratio of the (linear) system size to the localization or correlation length;
X ≡ X(L/ξ). At the critical point no length scale can exist, and ξ diverges as

ξ ∼| xr |
−ν, (26)

where xr is the parametric distance to the critical point (Puschmann, 2017).
X therefore assumes the critical value Xc = X(0) and the scaling relation reads

X ∼ X(xrL
1/ν). (27)

At finite L however additional corrections affect this scaling. Assuming only
one (RG) relevant exponent ν > 0, while all other exponents yi < 0 are irrelevant,
the above relation holds in the thermodynamic limit. For numerically accessible
system sizes, however, yi may play a significant role. Assuming only a single
irrelevant exponent y ≡ −y1, the scaling relation reads

X = X(xrL
1/ν, xiL

−y), (28)

where xr, xi are relevant and irrelevant scaling variables, and 1/ν,−y are relevant
and irrelevant scaling exponents.

The scaling variables can be represented in finite Taylor series of the system
parameters a, such as energy E or disorder strength W: xr(a) = a+

∑mr
j=2 bja

j/j!
and xi(a) = 1+

∑mi
j=1 cje

j/j!, up to orders mr,i (Slevin and Ohtsuki, 1999; Ohtsuki
et al., 1999). Analogously, the scaling relation can be represented as a Taylor series
in its first and second argument up to orders nr,i (Puschmann, 2017).

As both phases accompanying the quantum Hall plateau transition are equiva-
lent, only powers > 1 of the relevant scaling argument contribute. The leading
relevant behavior close to the critical point of the quantum Hall transition will
therefore be scaling with ∼ L2/ν (Slevin and Ohtsuki, 2009).

In principle, we could determine the exponents ν,y1,y2, etc. by fitting the
data we obtain for instance for the conductance using the above general scaling
relation. This has been done successfully in the past e.g. by Slevin and Ohtsuki,
2009; Dresselhaus et al., 2022. However, in models which do not scale as favorable
as the Chaker-Coddington network where the critical point is known exactly, the
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large number of fitting parameters can cause numerical instabilities. We therefore
complement the above scaling ansatz with a more pedestrian, step-by-step way,
which additionally allows for a visual inspection of the intermediate fitting steps:
We calculate the quantity X as a function of the system parameters a across the
transition and the linear system size L, and expand it in a finite Taylor series
around its extrema at am(L) close to the critical point,

X(a,L) = X(0)(L) +

r∑
i=2

X(i)(L)(a− am(L))
i, (29)

where we usually choose the expansion order to be r = 3, 4, with fitting pa-
rameters X(i),am. For the critical point and the critical value of X, we then
have Xc = limL→∞ X(0)(L) and ac = limL→∞ am(L). The corresponding scaling
asymptotics can then be written by including the irrelevant exponents y1,2, by

am(L) = ac (1+ d1L
−y1 + d2L

−y2)

X(0)(L) = Xc (1+ e1L
−y1 + e2L

−y2)

X(2)(L) = L2/ν (f0 + f1L
−y1 + f2L

−y2), (30)

where di, ei, fi and ac,Xc and the exponents ν,y1,y2 are fitting parameters.
The quality of the fit can be evaluated by a χ2-test.
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4.3 critical exponents in the spectrum of the disordered chern

insulator

This section is based largely upon a collaboration together with M. Puschmann and F.
Evers. The multifractal analysis was carried out by the author of this thesis while M.
Puschmann contributed the computation of the Lyapunov exponents complementing the
finite-size scaling analysis.

Recently, Sbierski et al., 2021 have concluded that in a linearized version of
the Chern insulator (14), i.e. with free Dirac electrons, the properties of the
quantum Hall critical point are non-universal. In particular, at the Dirac point,
which henceforth will be referred to as the zero energy point in the spectrum,
the localization length exponent is considerably smaller than the established CC
result, νE=0 = 2.33(3); at large energies deep in the spectrum, the authors observe
νE=0.7 = 2.53(2), largely consistent with CC values, by e.g. Slevin and Ohtsuki,
2009. These calculations in the linearized Dirac model of the Chern insulator have
been complemented by a transport simulation of the full lattice model, where it
was argued that the irrelevant scaling corrections in the case for E = 0 could be
omitted.

By a careful large scale analysis of the critical properties of the quantum Hall
critical point in the QWZ model of the disordered Chern insulator, we revisit the
results presented by Sbierski et al., 2021 for the linearized Dirac model, by taking
into account the full lattice dispersion and irrelevant scaling corrections.

Numerically, we take a two-fold approach. First, the effective multifractal
dimension τ̃q, Eq. (22), is analyzed in the disordered Chern insulator on square
lattice with periodic boundaries. Second, the Lyapunov exponent is calculated in
a quasi-1d setup, quantifying the envelope and hence the localization length of
typical wave functions (Puschmann and Vojta, 2021), cf. appendix C. Analogously
to the study by Sbierski et al., 2021, we calculate the critical exponent ν for
delocalized states at different energies in the spectrum of the Chern insulator,
i.e. somewhere on the critical surface identified in chapter 3. This allows us
to choose different energies E, as in the Dirac model, and adjust the remaining
system parameters (W,R) such that the critical surface is crossed, and a phase
transition occurs, accompanied by a diverging localization length characterized
by an exponent ν.

4.3.1 Localization length exponent ν and irrelevant finite-size corrections

effective multifractal dimension. Fig. 7 (left panels) shows the anoma-
lous part of the effective multifractal dimension ∆̃q at q = 0.5 as defined in Eq.
(22), rescaled by the parabolic part ∼ q(1− q). The system parameters W,R are
varied across the critical surface of the Chern insulator at two different energies
E = 0.6 (a) and E = 0 (b) for different linear system sizes L. Both panels show ap-
proximately parabolic behavior across the transition, whose minima are close but
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Figure 7: a,b Effective multifractal exponents ∆̃q |q=0.5 as a function of the tuning
parameter for system sizes L = 16− 768, evaluated at the transition at E = 0.6, R = 1.2
(a) and E = 0, W = 1.4 (b). Data points represent the ensemble average and the 1σ
confidence interval. Lines follow the fit using Eq. (29) to order r = 3. c-f Scaling analysis
using Eq. (29) and (30) of the multifractal data at the transitions E = 0 and E = 0.6. c
∆
(0)
0.5(L), extracted from the fit with Eq. (29) to order r = 3, as a function of system size.

Lines are guide to the eye, illustrating the asymptotic scaling according to an assumed
irrelevant behavior with y = 0.3. d Finite-size scaling of ∆(0)

0.5(L), with the L-axis rescaled
by an effective microscopic correlation length lmicro. e Scaling of the curvature ∆(2)

0.5(L) as
function of L, reduced by the power law L2/2.6. f Curvature as a function of L rescaled
by lmicro. All lines are guides to the eyes only and follow an extrapolation with a single
irrelevant scaling exponent y = 0.3.

not exactly at the theoretical prediction by Zirnbauer, 2019, ∆(p)
q /q(1− q) = 0.25.

The discrepancy can be attributed to both additional irrelevant finite-size correc-
tions and possibly actual deviations from Zirnbauer’s theory (Obuse et al., 2008;
Evers et al., 2008), which will be discussed later in more detail. Additionally, it
can be observed that the curvature of the data around the minima becomes larger
with increasing L. This can be explained by the divergence of the localization
length at the critical point and allows for a determination of the critical exponent
ν. The data is modeled by a series expansion around the apex value according to
Eq. (29) to order r = 3 in a window around the extrema (solid lines). The apex
value ∆(0)

0.5(L) and the curvature ∆(2)
0.5(L) are analyzed further; the former allows

for an extrapolation of the asymptotic multifractal dimension, while the latter for
an analysis of the localization length exponent ν.
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Fig. 7 (right panels) shows the system size dependence of these two parameters.
The apex value ∆(0)

0.5(L) converges to the the asymptotic anomalous dimension; its
value can be extrapolated using the model in Eq. (30). The data sets for the two
energies E = 0, 0.6 differ largely only in a factor in the horizontal axis, suggesting
the existence of a microscopic length scale lmicro, discriminating between the two
energies. When adopting lmicro as a unit of distance1, the values of ∆(0)

0.5 collapse
to a single curve. Additionally, the curvature ∆(2)

0.5 – encoding the localization
length exponent ν – can be reduced to a master curve by measuring the system
size L in units of lmicro upon a proper normalization2. The existence of a master
curve capturing the finite-size scaling of critical points at both energies suggests
universality by itself even without the precise knowledge of the exponents ν,y:
The only difference between the two parameter sets is the microscopic length scale,
which by definition is irrelevant for the asymptotic scaling and the localization
properties in the thermodynamic limit.

Additionally, the lower right panels of Fig. 7 suggest that the system sizes
studied are still in the transient regime: irrelevant scaling corrections play a large
role, particularly at E = 0. However, by visual inspection it is highly plausible
that the master curve, i.e. both energies E = 0, 0.6 will exhibit an asymptotic
scaling with an exponent 2.65 ⩾ ν ⩾ 2.55 (grey lines). The visualization of
the microscopic length scale present in the system size scaling of the effective
multifractal exponent highlights the importance of a detailed study of irrelevant
finite-size corrections: Underestimating their size and the curvature present in
the data of the lower right panels easily results in an underestimation of the
exponent ν for the E = 0.0 transition (blue) compared to the E = 0.6 transition
(red).

To make a concise numerical estimate of ν,y one has to analyze the data with
great caution when neglecting higher order irrelevant scaling corrections, which
have caused under- or overestimated critical exponents in various settings of
the notoriously difficult quantum Hall plateau transition in the past. Therefore,
ideally we take into account a second irrelevant scaling correction as outlined in
Eq. (30), and check the stability of the relevant and leading irrelevant exponent
with respect to its inclusion. The statistical quality of the data presented in Fig. 7

is not sufficient to secure a stable fit using a complex data model as in Eq. (30)
taking into account higher order irrelevant scaling corrections.

Therefore, a computationally more favorably scaling technique is employed
to support the multifractal analysis with the caveat of a slightly more indirect
measure of the localization properties of single wave functions: A recursive
Greens function approach (RGFA) allows for a determination of the so-called
Lyapunov exponent Γ , effectively quantifying the envelope of wave functions in a
quasi-1d realization of the disordered Chern insulator, and hence their localization
length. As the main focus of this chapter is on (effective) multifractality close

1 normalized to the lattice spacing for E = 0
2 which is insignificant for the asymptotic scaling, since it only encodes a prefactor of Hamiltonian

parameters W,R
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Figure 8: Lyapunov exponent calculated with RGFA across the transitions shown in Fig.
7. Statistical analysis proceeds analogously to Fig. 7. Systems of width L = 8 → 256

(blue to green) have been taken into account. Additionally, Lyapunov exponents and the
corresponding extrapolation are shown in panels c-f for a tight binding model including
a magnetic field, leading to Landau levels (green data), published by Puschmann and
Vojta, 2021; data shown with permission by M. Puschmann.

to the quantum Hall transition, the algorithm of the RGFA method is not of
primary interest in this context. A rough overview is provided in appendix C.
The numerical implementation has been developed by Puschmann and Vojta,
2021, its adaption to the disordered Chern insulator and the data generation
has been carried out by M. Puschmann. A more detailed introduction to the
characterization of the quantum Hall plateau transition in a tight binding model
with magnetic field using RGFA is explained in Puschmann and Vojta, 2021.

4.3.2 Critical exponents in different class A models: consistency with universality

Fig. 8 shows the Lyapunov exponent Γ across the transitions at E = 0, 0.6 (a and
b) which is analyzed according to the series expansion Eq. (29), analogously
to Fig. 7. Qualitatively, the data is very similar to the analysis of the effective
multifractal exponents. Due to the increased statistical quality of the RGFA
calculation compared to the MFA study, subleading irrelevant scaling corrections
are visible, for instance in the curvature of the Lyapunov exponent at the E = 0.6
transition (red data in f). However, the data for both transitions collapses clearly
to a master curve, strengthening the universality hypothesis, in a large regime of
effective system sizes L/lmicro. As the Lypaunov exponent Γ was analyzed using
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the same method by Puschmann and Vojta, 2021 for a tight binding model on a
simple square lattice under the influence of a magnetic field, a direct comparison
of the quantum Hall transition in the Chern insulator to the normal integer
quantum plateau transition becomes possible: The corresponding data, published
in Puschmann and Vojta, 2021, is superimposed in panels c-f (green data).

Strikingly, by defining a microscopic length scale of this fully independent
microscopic realization of a quantum Hall transition, both the apex value Γ (0)

– converging towards the critical Lyapunov exponent (Puschmann et al., 2019;
Puschmann and Vojta, 2021) – as well as the curvature Γ (2) – asymptotically
scaling with ν – can be collapsed on top of the previously found master curve
of the Chern insulator, upon normalization by N. This is a smoking gun for the
critical exponents ν,y being identical not only for different energies within the
model of the disordered Chern insulator, but also with the well studied integer
quantum Hall transition in its conventional Landau level realization on a square
lattice.

So far we have shown visually and by comparison across a different realization
of the quantum Hall transition that universality is consistent with the quantum
Hall transitions of the Chern insulator studied in this thesis. Finally, we quantify
the critical exponents, to provide a comparison with the remaining literature,
for instance the much studied Chalker-Coddington network models. In table 2

several independent data fits based on the model Eq. (30) are summarized using
both RGFA and MFA calculations for E = 0, 0.6 in the disordered Chern insulator.

In the regime studied in this chapter up to the system sizes numerically
accessible a critical exponent ν = 2.6 (as well as irrelevant corrections of y ∼

0.3− 0.4 and y ′ ∼ 1.0− 1.5) consistent with previous high-precision studies on
the Chalker-Coddington network or tight binding models of the integer quantum
Hall effect can be found. The statistical errors are still sizable, in particular for the
irrelevant scaling exponents and when performing a full fit using only the MFA
data, which is of slightly reduced statistical quality, compared to the RGFA data.

It has to be noted, as irrelevant finite-size corrections are obviously present and
sizable in the system size regime studied here, it cannot be fully excluded that
there is a change of the trend away from the established values for the exponents
ν = 2.6 and y ∼ 0.3− 0.4 starting at much larger system sizes.

4.3.3 Excursion: Generalized multifractality at criticality in the disordered Chern
insulator

Multifractal exponents quantify the large amplitude fluctuations of wave functions
at the critical point of an Anderson transition. They therefore govern the scaling
of (auto)correlation functions of a wave function at different spatial positions
(Evers and Mirlin, 2008).

The notion of multifractality in the context of Anderson transitions can be
generalized to correlation functions across different wave functions close in
energy.
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Energy Quantity ν(∆ν) y(∆y) y′(∆y′) Yc(∆Yc) Xc(∆Xc) Lmin χ2

E = 0.6 RGFA, Γ 2.62(7) 0.31(11) 1.39(19) 0.803(14) 2.045(2) 48 0.77
E = 0.6 RGFA, Γ 2.61(2) 0.34(2) 1.29(9) 0.808(3) 2.045(1) 12 0.93
E = 0.6 MFA, τ0.5 2.62(13) 0.39(30) 1.4(1.4) 0.936(1) 2.048(6) 32 0.75
E = 0.6 MFA, τ0.5 2.64(8) 0.35∗ 1.5(8) 0.9365(4) 2.049(2) 32 0.76

E = 0.0 RGFA, Γ 2.66(4) 0.40(7) 1.05(21) 0.818(9) 2.454(1) 20 1.60
E = 0.0 RGFA, Γ 2.59(3) 0.36(6) 1.09(21) 0.815(10) 2.454(1) 16 1.76
E = 0.0 MFA, τ0.5 2.59(17) 0.4(0.4) 1.5(1.5) 0.936(3) 2.454(2) 64 1.30
E = 0.0 MFA, τ0.5 2.61(7) 0.35∗ 1.6(1.2) 0.9359(5) 2.454(2) 64 1.40

Table 2: Estimates for the critical parameters at the quantum Hall transitions at E = 0.0
and E = 0.6, using the ansatz in Eq. (30) with data extracted from Eq. (29) for system sizes
L ⩾ Lmin. Y represents the dimensionless observable studied. To evaluate the quality of
the fit a χ2-test is performed. To stabilize the fit for larger Lmin the subleading irrelevant
correction for the curvature has been set to zero. Errorbars denote the 1σ-confidence
intervals. ∗fitting ansatz has been performed using a fixed value for y, to obtain a stable
fit. y = 0.35 is motivated by previous works on the quantum Hall transition and the fits
using RGFA. Raw data for RGFA analysis is used with permission by M. Puschmann.

The generalized moments can be defined as two-point correlation functions
featuring two different wave functions ψE1 ,ψE2 with E1 ≈ E2 as

Pqq(r) =
∑

r′

∣∣∣∣∣ ΨE1r′ Ψ
E2
r′

Ψ
E1
r′+r Ψ

E2
r′+r

∣∣∣∣∣
2q

, (31)

where r′ = (x′,y′) runs over all lattice sites and | · | here denotes the determinant of
the 2× 2-matrix. This expression can naturally be extended to n-point correlation
functions, and reduces to Pq, Eq. (18), in the case of a single wave function.

The dependence on the linear system size L can be similarly described by
power laws governed by an extended set of critical exponents, Pqq ∼ L−τqq in the
asymptotic limit r =| r |→ 0,L→ ∞ (ensemble averaging is implied). The topic
has gained attention in recent years since the study of generalized multifractality
is believed to enable a better understanding of criticality at Anderson transitions
such as the conditions for local conformal invariance at the critical point (Karcher
et al., 2021; Karcher et al., 2022; Babkin et al., 2023; Karcher et al., 2023).

Due to the periodic boundaries of the disorder configurations drawn from Eq.
(16), it is natural to measure distances using a toroidal metric instead of r directly,

ρ(r) =
L

π

√
sin2 (π/L · x) + sin2 (π/L · y). (32)

Without loss of generality only the x-direction of the correlation function is
investigated; additionally we focus on q = 1. The correlation function in depen-
dence on r is solved via the fast Fourier transform (FFT) algorithm (implemented

45



10−2 10−1

ρ/L

10−6

10−4

P
1
1
(ρ
/L

)
a

L

10−2 10−1

ρ/L

10−7

10−6

10−5 b

2.2 2.4 2.6
R

0.0 0.2
L−0.3

0.255

0.260

0.265

0.270

0.275

0.280

0.285

∆
(0

)
q
/q

(1
−
q)
| q=

0
.5

c

25 26 27 28 29

L

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1 N
∆

(2
)

0.
5
·L
−

2/
2
.6

an
d

1 N
τ

(2
)

1
1
·L
−

2
/
2
.6

d

ν = 2.55

ν = 2.650.55

0.60

0.65

0.70

0.55

0.60

0.65

0.70

τ
(0

)
1
1

Figure 9: a Spatial dependence of the correlation function P11(x,y = 0). System size
dependence for L = 16 → 768 at criticality (E,W,R) = (0, 1.4, 2.44). b P11 for different
R across the quantum Hall plateau transition, L = 256. The green vertical lines define
the window where the effective subleading multifractal exponent τ̃11 is extracted. Com-
plementarily, we track the value of P11 at the magenta vertical line. c τ(0)qq extracted
from the fit with Eq. (29) as a function of system size; approximate slope of the curves
in b calculated by a finite difference between the values at the green vertical lines in
b. Blue data is taken from Fig. 7. d Curvature τ(2)11 normalized and reduced by the
expected scaling L2/2.6 from Fig. 7, together with the MFA data from Fig. 7. Green data
corresponds to the approximated slope of panel b while magenta data corresponds to
the values intersected by the magenta vertical line in panel b. The assumed irrelevant
scaling exponent is y = 0.3.

in SCIPY) and the convolution theorem. An effective exponent – analogous to Eq.
(22) – is extracted by

τ̃11(L) = ln(P11(ρ1,L)/P11(ρ2,L))/ ln(ρ1/ρ2) , (33)

where ρ1,2 are distances between which we approximate the slope of the
correlation function as its finite difference.

The spatial dependence of P11 is shown in Fig. 9 a. At the critical point
(Ec,Wc,Rc) = (0, 1.4, 2.44) – for which results on regular MFA and RGFA have
been presented earlier in this chapter – the correlation functions resemble power
laws over a wide range of ρ with approximately the same exponents for all
L3. The mapping to the toroidal distance guarantees validity of the power law
behavior up to distance of order ∼ L/2. We extract the power law exponents at
intermediate ρ as a finite distance between two values ρ1, ρ2 (vertical green lines).
Complementarily, we track the value of the correlation functions at a fixed value
of ρ (magenta vertical line). In panel b the Hamiltonian parameters are varied
across the transition, demoting the exponents to effective exponents, analogously
to Eq. (22), because the correlation function does not resemble a (simple) power
law in this regime.

3 up to additional irrelevant scaling corrections for finite r, ρ,L
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In panels c, d the effective subleading exponent τ̃11 is analyzed analogously
to the leading MFA in Fig. 7. Assuming irrelevant scaling similar to Fig. 7 the
asymptotic subleading exponent τ11 can be extrapolated. For the generalized
multifractal exponents the parabolic paradigm for τq – as cited above – can be
extended, namely,

τ
(p)
qq′ =

1

4

[
q(1− q) + q′(3− q′)

]
, (34)

and compared to the numerical data. A simple power law extrapolation in panel
c yields τ11 ∼ 0.55(2), which differs significantly from the parabolic prediction,
τ
(p)
11 = 0.5. However, for a thorough finite-size scaling analysis a simulation with

high statistical accuracy and at different moments q would be in order. This
calculation serves only as an outlook on a more focused investigation of possible
deviations of the parabolic prediction for the generalized multifractal dimensions
in future research.

Tracking the curvature – again analogously to Fig. 7 – of the effective exponent
close to the critical point, τ(2)11 , extracted from Eq. (29), we can compare its scaling
with the leading multifractal exponents τ(2)0.5 (blue data, taken from Fig. 7) in panel
d. The green data corresponds to the approximated slope of the curves in panel
b, the magenta data simply tracks the values of P11 at the magenta vertical line in
b. Both data sets lie on top of the data for the leading exponents and the guide to
the eye assuming ν = 2.6,y = 0.3. Hence, in principle also the localization length
exponent can be studied using the generalized multifractal dimensions. However,
the statistical errorbars are significantly larger than for the leading exponents,
even though the same set of ensemble configurations has been used. This hints at
the observation that the subleading MFA has a reduced signal-to-noise ratio and
is hence less effective to analyze the transition.

In the future it would be particularly interesting to perform a more thorough
study of the multifractal dimensions τqq′ to study possible deviations from the
generalized parabolicity, Eq. (34). This first study in the Chern insulator as well
as first recent numerical effort in different models suggest that the deviations
might be larger and therefore more easily accessible in the subleading compared
to the leading multifractal analysis (Babkin et al., 2023). An understanding of
possible deviations from parabolicity could have interesting implications for the
presence or absence of local conformal invariance and other properties of critical
points of Anderson transitions in two spatial dimensions (Karcher et al., 2022).

47



4.4 amorphous realization of the chern insulator

This section is based on the publication Bera et al., 2024. The multifractal analysis was
carried out by the author of the thesis, while S. Bera and N. P. Nayak contributed the
transport calculation.

In the previous section we have not been able to corroborate a critical line
scenario for quantum Hall criticality with an energy dependent localization length
exponent ν in the QWZ model of the disordered Chern insulator. However, as
discussed, additional evidence for deviations from a universal set of critical
exponents of class A transitions has been presented in recent years.

A study of a geometrically disordered CC network model by Gruzberg et al.,
2017 observed a localization length exponent ν ∼ 2.37 suggesting strong devi-
ations from the established result for (regular) CC models and tight binding
models in a magnetic field (ν ∼ 2.6). This was interpreted as evidence either for a
second fixed point in the renormalization group flow mediated by additional (ge-
ometric) disorder potentials or the existence of a critical line in class A transitions
(Gruzberg et al., 2017; Klümper et al., 2019). The appearance of (at least) a second
fixed point is explained by the mapping of the structurally disordered model in
the continuum limit not only to Dirac fermions coupled to disorder potentials,
but to quenched quantum gravity; the latter being absent in regular CC models
(Gruzberg et al., 2017).

In the following section a model of the anomalous quantum Hall effect will
be presented where disorder is realized also geometrically by breaking up the
translational invariance of the underlying lattice randomly. The resulting model
can be called amorphous Chern insulator (Agarwala and Shenoy, 2017).4

localization length exponent. The motivation for studying its critical
exponent is twofold: Firstly, the model allows for an independent study of the
effect of structural disorder in a realization of the anomalous quantum Hall
transition, and can be compared to the geometrically disordered CC models,
which found a non-universal critical exponent ν. Secondly, an investigation of
possible deviations from the conventional lattice model of the Chern insulator
is due. This is in particular interesting since a previous study by Ivaki et al.,
2020, claims to have found evidence for non-universality within this model, by
estimating its critical exponent ν = 1− 1.35. The authors suggest that the shift in
ν is mediated by the vicinity of a percolation transition of the amorphous graph
itself close to the topological phase transition. The model belongs to symmetry
class D, therefore a thorough study investigating the potentially non-universal

4 There have been studies investigating criticality in models where disorder enters in the lat-
tice structure, for instance in random Voronoi/Delaunay graphs by Puschmann et al., 2015;
Puschmann, 2017. Recently, Dresselhaus et al., 2024 suggested an amorphous lattice inspired by
a Voronoi/kagomé construction, which would be also highly interesting in terms of its critical
properties at quantum Hall transitions.
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Figure 10: a Realization of the lattice of the amorphous Chern insulator. N lattice points
(black) are distributed randomly in the L× L plane, defining the density ρ = N/L2.
Hopping is allowed if lattice points have a distance up to a length R as shown in blue
around a sample point. Here L = 32, ρ = 0.5,R = 3. Construction follows Agarwala
and Shenoy, 2017. b Qualitative phase diagram of the amorphous Chern insulator, the
symbols are estimated critical points, calculated for system size L = 48, ρ = 0.7,R = 4,
the dotted line is a guide to the eye depicted the approximated phase boundary between
topological and trivial phases. The corresponding topological invariant is given by the
so-called Bott index (Agarwala and Shenoy, 2017).

behavior in the amorphous realization of class A becomes important. It will be
presented in section 4.4.1 .

multifractal analysis . In the second part of this section a detailed analy-
sis of the multifractal dimensions at the critical point is presented. As introduced
in section 3.2 it allows for quantifying the critical fluctuations of wave function
amplitudes, by a non-linear dependence of the exponent τq on the moment q.
The functional form of τq strongly constrains the possible analytical theories
describing the quantum Hall critical point. Due to Zirnbauer, 1999; Zirnbauer,
2019 suggesting a purely parabolic dependence on q, the investigation of the
multifractal properties has gained momentum in recent years once again. In
particular there have been studies investigating possible higher order corrections
to τq, which would exclude the type of theory suggested (Evers et al., 2008; Obuse
et al., 2008; Babkin et al., 2023). Its thorough analysis proves highly difficult,
because of the very sizeable and slow (in a renormalization group sense, possibly
almost logarithmic) irrelevant finite-size corrections present in class A.

Here we attempt to complement previous studies, exclusively realizing the CC
model of the quantum Hall effect, with a thorough analysis of a critical point in
the amorphous Chern insulator and quantify possible quartic corrections to τq in
section 4.4.2.

model . By definition crystalline order is absent in an amorphous lattice. Here
the construction proceeds as follows: N points, serving as lattice points/atom
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positions, are randomly placed in a two-dimensional box of linear size L, charac-
terized by the density ρ = N/L2. The distribution of the real space coordinates is
uniform and uncorrelated. Hopping between two pairwise sites, each hosting two
orbital degrees of freedom, can occur if their distance is smaller than a length R,
cf. Fig. 10 a. Hence, the hopping is of short range and the (average) connectivity
of the lattice graph is variable and depends on the density ρ and the cut-off
length R.

The Hamiltonian realized on this lattice is given by (Agarwala and Shenoy,
2017)

H = −
∑
ij

∑
αβ

Tαβ(ri − rj)c
†
iαcjβ, (35)

where the hopping matrix reads

Tαβ(ri − rj) = d⃗ · σ⃗ C e−|ri−rj|Θ(R− | ri − rj |). (36)

σ⃗ denotes the four-dimensional vector of Pauli matrices, σ0 = 1,σ1,2,3 = σx,y,z; its
prefactors are given by d⃗ with

d0 =
t0
2

, dx = −
1

2
cos θ(i+ cos θ)

dy =
i

2
sin θ(

i

2
sin θ− 1), dz = −1/2, (37)

for ri − rj ̸= 0 (inter-orbital hopping) and (d0,dx,dy,dz) = (0, 1/2, 1/2, 2+M)

for ri − rj = 0. ri is the position vector of the ith lattice point in a Cartesian
coordinate system and θ the angle between ri − rj and the positive x-axis. The
prefactor is C = e for inter-orbital and C = 1 for intra-orbital hopping. Θ denotes
the Heaviside function (Agarwala and Shenoy, 2017; Bera et al., 2024). The
mass parameter M and the density ρ span the phase diagram in terms of the
so-called Bott index (Agarwala and Shenoy, 2017), characterizing topologically
trivial and non-trivial phases, cf. Fig. 10 b. For t0 ̸= 0 the system has none of
the fundamental symmetries, rendering it a member of symmetry class A. In
this section t0 = 1/4,R = 4 are chosen and the scaling behavior is studied as a
function of (M, ρ).

Computationally, for the multifractal analysis presented in the following, the
linear system size L is increased from 16 to 768, and the Hamiltonian is diagonal-
ized by the implicitly restarted Lanczos method with shift invert at zero energy.
The routine is implemented in ARPACK (Lehoucq et al., 1998), and calculates the
five lowest lying eigenstates of the Hamiltonian matrix. Results are averaged over
many disorder configurations, cf. table 5 in appendix B, and checked against
convergence when taking only a subset of the calculated eigenstates.

4.4.1 Localization length exponent in amorphous systems

effective multifractal dimension. Similarly to the analysis of the
quantum Hall transition in the disordered Chern insulator on a square lattice con-
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Figure 11: Effective anomalous dimension ∆̃q from the pseudo-derivative in Eq. (22) at
q = 0.5 for system sizes indicated in the legend. The parameters are E = 0, ρ = 0.7,R = 4.
In the vicinity of the minima the data is fitted by the ansatz in Eq. (29) up to order r = 4
to obtain the effective off-set, the critical point and the curvature. The horizontal line
marks the parabolic prediction by Zirnbauer.

sidered in the previous section, the effective multifractal dimension τ̃q(L;E,M, ρ)
is calculated across the phase boundary of the topological phase, cf. Fig. 11.
Here the parameter subset (E = 0,M, ρ = 0.7) is chosen, and M is varied. Fig.
12 shows the fitted parameters ∆(0),∆(2),Mm according to the expansion in Eq.
(29) as a function of L, allowing for an extrapolation of the localization length
exponent, the critical point and – to limited extent – also of the leading irrel-
evant exponent y and the critical multifractal dimension. Panel a shows that
the curvature extracted from the series expansion (29) of the effective dimension
across the transition is consistent with ν = 2.6, while y ∼ 0.5. The critical point
Mc = −2.143(4) can be extrapolated assuming leading irrelevant corrections with
y = 0.5 (panel b). Panel c shows apex values of the prefactor of the effective
anomalous dimension, which is consistently lower than the parabolic prediction
by Zirnbauer, 2019. This is in contrast to simulations of the CC model and other
realizations of quantum Hall plateau transitions, where extrapolations of the
parabolic prefactor of ∆QH

q consistently larger than ∼ 0.25 are reported (Evers
et al., 2008; Obuse et al., 2008). By itself this is an interesting observation and may
allow for confining the numerical value of the parabolic part of the anomalous di-
mension of the class A universality classes (assuming there is indeed universality)
by a multi-model comparison, which has been a notoriously difficult task in the
past. A more detailed analysis of the critical multifractal dimension is presented
in the next subsection by comparing to the results obtained for the CC network
in the literature.

transport calculation. Before analyzing the multifractal dimension of
the critical point in close detail, additional evidence for the localization length
exponent being consistent with universality across different models is presented,
using a complementary transport approach. The (dimensionless) conductance,
similarly as the Lyapunov exponent of wave function or their multifractal dimen-
sion, is highly sensitive to the localization length in finite samples. Therefore, by
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Figure 12: Finite-size scaling of the effective multifractal dimension at the quantum
Hall transition of the amorphous model at moments q = 0.5, 1.5. a Curvature ∆(2)

q

reduced by L−2/2.6 obtained from the series expansion (29). Curves are guides to the
eye assuming ν = 2.6,y = 0.5. b Scaling of the minimum of the effective dimension.
The dashed line marks the extrapolation to the critical point Mc. c Extrapolated critical
multifractal dimension. The numerical values are all below the prediction of Zirnbauer,
2019, ∆(p)

q ∼ 0.25q(1 − q), however a stable fit of the finite-size corrections remains
difficult. The density of lattice points was chosen to be ρ = 0.7 and R = 4.

a system size scaling of a sample connected to leads through which a current can
flow, and analyzing the asymptotic behavior of the corresponding conductance
through the sample, the localization length exponent can be extracted in the
vicinity of the topological phase transition of the amorphous Chern insulator.

Technically, the conductance is calculated in a two-terminal transport setup of
a tight binding sample connected to two leads modeled by electrons hopping
between nearest neighbors on a simple square lattice. By calculating the scattering
matrix and applying the Landauer formalism (Landauer, 1957) the dimensionless
conductance g is obtained in units of e2/h. Again an ensemble average needs
to be performed which is implied henceforth. The applied transport method is
described in more detail in appendix C. The calculations have been performed by
S. Bera and N. P. Nayak, using the python transport package KWANT (Groth et al.,
2014); the data presented is published in Bera et al., 2024.

Fig. 13 a shows the raw data of the conductance at the quantum Hall transition
at (E = 0,M, ρ = 0.7). The presence of irrelevant scaling corrections is evident
from the fact that no unique crossing point is visible. The exponents ν,y, the
critical point Mc and expansion coefficients are modeled by Eq. (91) as detailed
in appendix C, through a χ2-minimization. By subtracting the irrelevant scaling
contribution according to Eq. (92) the pure relevant conductance scaling is ob-
tained (panel b). Only the single relevant scaling parameter ∼ (M−Mc)/Mc ·L1/ν
remains and a unique crossing point emerges indicating quantum Hall critical-
ity. The corresponding scaling collapse is shown in panel c. Complementarily,
the analogous scaling collapse of the logarithmic measure of the mean conduc-
tance is shown in the inset. The exponents ν = 2.58(2),y = 0.35(3) emerging
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Figure 13: Scaling analysis of the conductance g obtained from Eq. (90), using the scaling
ansatz in Eq. (91). a Conductance data, averaged over many disorder samples, across the
transition at density ρ = 0.7 as a function of M. b corrected conductance gcorr, Eq. (92),
where fitted finite-size corrections are subtracted, see appendix C for details. c Scaling
collapse of the corrected conductance with ν ∼ 2.58(2). (inset) scaling collapse of the
logarithmic conductance. The collapse is obtained with an irrelevant scaling exponent
y ∼ 0.36. Adapted from Bera et al., 2024, ©2024 American Physical Society.

from the conductance analysis agree very well with literature results on the
Chalker-Coddington network and other models of the integer quantum Hall ef-
fect, including the exponents of the transitions in the disordered Chern insulator
on a square lattice presented in the previous section.5

4.4.2 Multifractality of the amorphous topological insulator at criticality

reciprocal symmetry. At the quantum Hall critical point it was shown that
the anomalous dimension ∆q obeys an exact symmetry around q = 0.5 (Mirlin et
al., 2006), ∆q = ∆1−q, which was also checked numerically in Chalker-Coddington
network models (Evers et al., 2008). It implies that the function

rq(L) = L
2(2q−1) · Pq

P1−q
, (38)

is a constant in the asymptotic large system size limit. The henceforth called
reciprocity relation therefore serves as a a benchmark for the vicinity to the

5 In the original publication Bera et al., 2024 the dependence of the critical exponents on the density
of lattice points ρ was checked. Also here consistency with universality has been observed. The
expansion orders of the fitting procedure have also been varied to ensure stability of the scaling
ansatz.
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Figure 14: Reciprocity relation at the quantum Hall transition for q = −0.1, 0.3, 0.8 at
Mc = −2.144, ρ = 0.7,E = 0. Convergence is present from L > 27 onwards. Slight
deviations persist < 0.1%, indicating potential remaining irrelevant corrections and
residual statistical uncertainty. Adapted from Bera et al., 2024,©2024 American Physical
Society.

asymptotic regime: When irrelevant finite-size corrections become small, a con-
stant function of q is approached. However, taking rq as the benchmark for the
asymptotic regime has to be done with caution; recent works suggest that reci-
procity is present even before the asymptotic scaling regime develops (Gruzberg
et al., 2013).

In Fig. 14 rq as a function of the linear system size L is presented for different
moments q. With increasing L a constant function is approached. Still slight
deviations can be observed, indicating residual statistical uncertainty, or potential
irrelevant scaling corrections, present up to larger system sizes. However, the
corrections must be small, as the deviations are < 0.1%. Again it is unclear if the
converged reciprocity relation actually indicates the absence of irrelevant scaling
corrections in all other quantities of interest, for instance the curvature of the
anomalous dimension ∆q; there is evidence, that rq approaches the scaling limit
faster than the full function ∆q.

wave function moments . Prominently, Zirnbauer’s marginal field theory
for the quantum Hall plateau transition connects the prediction of ν,y−1 → ∞
with the necessity of a purely parabolic anomalous dimension ∆q (Zirnbauer,
1999; Bondesan et al., 2017; Zirnbauer, 2019; Dresselhaus et al., 2021). In light
of this development, it is natural to accompany the study of the localization
length exponent with the properties of wave functions at criticality itself, i.e. their
multifractal dimension. Additionally, as the multifractal spectrum of the quantum
Hall plateau transition has been mainly checked in the Chalker-Coddington
network before (Evers et al., 2008; Evers and Mirlin, 2008; Obuse et al., 2008),
a thorough study in the amorphous Chern insulator may allow for a detailed
inter-model comparison, and hence may hint at (non-) universality.

Zirnbauer, 1999; Zirnbauer, 2019 suggested an anomalous dimension

∆
(p)
q =

1

4
q(1− q). (39)
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Figure 15: Distribution functions of the wave function moments Pq for increasing system
sizes L = 16− 768 (blue to green) at the extrapolated critical point Mc = −2.144, on a
linear scale for q = −0.2, 0.5, 1.5 (a,d,g) and a logarithmic scale reduced by the parabolic
prediction τ(p)

q (b,e,h). The right column shows the residual flow of the reduced mean of
the distribution functions, indicating the remaining corrections (irrelevant or relevant) to
the parabolic scaling prediction (c,f,i). Adapted from Bera et al., 2024,©2024 American
Physical Society.

This result has been questioned by several numerical studies (Evers et al., 2008;
Obuse et al., 2008) which found small quartic corrections in Chalker-Coddington
networks.

In Fig. 15, first column, the distribution functions of the moments Pq for
different values q = −0.2, 0.5, 1.2 are shown at the extrapolated critical point
Mc ∼ −2.1446. Their shapes become almost invariant for large enough system
sizes, and almost collapse when the horizontal axis is rescaled with the system
size dependence of the moments, Eq. (19), assuming a parabolic form of the
dimension. If Zirnbauer’s conjecture is correct the collapse should be perfect
when irrelevant corrections do not play a role at large L. However, at closer
quantitative inspection a residual shift of the distribution functions is visible.
This becomes very clear when showing the means of the distribution functions,
reduced by parabolic scaling (right column). All curves should converge to a
constant of q, assuming Eq. (39). This clearly is not the case, the corrections are
significantly larger than the statistical uncertainty.

However, determining the origin of the corrections remains challenging: A
clear curvature is still present, particularly in the data for q = 0.5, 1.5 (panels f,i),
indicating the presence of residual irrelevant finite-size corrections even at the
largest system sizes L. Determining their exponent would require larger system
sizes, in particular since potentially several interfering power-law corrections may

6 The calculation presented in the following has been repeated for values of M slightly away from
∼ −2.144 to exclude a dependence of the result on small systematic errors of the extrapolation of
the critical parameter M.
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Figure 16: Higher order contribution to the anomalous dimension ∆q as a function
of system size L. No fitting function is assumed, the data is obtained as the pseudo-
derivative defined in Eq. (22) at the critical point (ρ = 0.7,M = −2.144). The grey dashed
line marks Zirnbauer’s prediction, Eq. (39), while the orange dashed curve is a fit of
the quartic curvature ∼ 4.1× 10−4. The horizontal lines mark the flow of the minima of
the curves with system size L. Adapted from Bera et al., 2024, ©2024 American Physical
Society.

be in play here. The overall curvature though seems very small, in particular for
smaller q’s (where the data quality is typically the best (Puschmann et al., 2021));
potentially too small to explain the residual shifts in the attempted collapse
using parabolic scaling. This could indicate either a different prefactor of the
anomalous dimension in Eq. (39) or higher order corrections all together. This
scenario opposes the marginal scaling theory, going along the same lines as
the localization length exponent found to be consistent with the exponents in
more conventional models of the integer quantum Hall effect. Deviations from
parabolic scaling potentially along with deviations from the 1/4 prefactor of the
parabolic part in Eq. (39) are also fully consistent with existing studies on the
Chalker-Coddington network models (Evers et al., 2008; Obuse et al., 2008). It
therefore would be very interesting to quantitatively compare the higher order
corrections, in particular the quartic term, to the CC results.

anomalous dimension. Fig. 16 shows the anomalous part of the multi-
fractal dimension reduced by the parabolic part predicted by Zirnbauer. ∆q is
calculated as a pseudo-derivative between subsequent system sizes, Eq. (22);
hence it does not involve fitting functions and is therefore not susceptible to
systematic errors originating from underestimating finite-size corrections. Zirn-
bauer’s parabolic prediction, Eq. (39), is marked by the grey dashed line; its
flatness resembles the absence of higher order corrections to its parabolic form.
Several things stand out: (i) We do not observe convergence of the anomalous
dimension with the system size L. (ii) Nevertheless, the shape of the anomalous
dimension, including its (quartic) curvature remains stable for the shown sys-

56



tem sizes, while (iii) the off-set on the vertical axis is still significantly shifting
upwards.

These observations are fully consistent with previous studies on the multifractal
dimension of the CC network model (Evers et al., 2008; Obuse et al., 2008), which
were able to obtain much higher numerical precisions due to the favorable
structure of the CC network. It may therefore be plausible that the corrections to
parabolicity are actually due to deviations from Zirnbauer’s theory, and not only
due to residual finite-size corrections. A definite statement about the presence or
absence of such corrections is however not possible, as long as a full convergence
of the anomalous dimension is not achieved.

Interestingly, one aspect of the data presented in Fig. 16 compares differently
to previous studies on the CC network; the off-set shift tends to larger values for
increasing system sizes, in contrast to the dimensions observed in CC networks
(Evers et al., 2008; Obuse et al., 2008). As these previous studies experienced
the same difficulties in converging the off-set of the multifractal dimension, the
combination of the two models – assuming universality of ∆q in class A across
those models – may allow for establishing a strict upper and lower bound, which
was not possible so far.

Partially motivated by Puschmann et al., 2021 the quartic curvature in Fig. 16

can be characterized by a χ2-minimization procedure; using the ansatz

∆q = γq q(1− q), (40)

with

γq = b0(L) + b1(L)(q−
1

2
) + b2(L)(q−

1

2
). (41)

While the asymptotic behavior of b0(L) is unclear and may potentially even
converge to Zirnbauer’s prediction, the quartic term b2(L) seems converged
already at the system sizes available, and can be estimated to be b2(L = 768) =

4.1(8)× 10−3. This value is quantitatively consistent with the studies of the CC
network by Evers et al., 2008; Obuse et al., 2008. It is noteworthy that also a slight
violation of the symmetry relation around q = 0.5 is observed, quantified by a
finite b1. It was not possible to faithfully judge whether its origin is statistical
noise or for instance transient finite-size scaling corrections.
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4.5 conclusion : universal scaling in class a?

multifractality. In the last section evidence has been presented supporting
a non-parabolic anomalous dimension ∆q. Since the data presented does not
match previous studies on the CC model in its statistical accuracy, due to its
non-ideal properties for computational simulations, there is a chance that the
true asymptotic limit has not been reached. Given this consideration the main
achievements of the multifractal analysis of the amorphous Chern insulator can
be summarized as follows: We observe a non-vanishing quartic curvature in
the anomalous dimension, which is consistent with the literature on the CC
network. First, this hints towards a rejection of the theory by Zirnbauer, crucially
building on the parabolicity of the dimension. Second, it is an instance of a
universal feature of the quantum Hall critical point across vastly different models,
i.e. the amorphous realization of the anomalous quantum Hall effect presented
in the last section and the well studied model of the lowest Landau level, the
Chalker-Coddington network model. In both models however, the fate of the
quartic contribution in the thermodynamic limit eventually remains inconclusive.
Additionally, the prefactor of the quadratic term in ∆q converges to larger values;
as opposed to the CC network models where the opposite tendency was observed.
By a cross-model comparison this may allow for establishing strict upper and
lower bounds for the prefactor in the thermodynamic limit, which has been a
notoriously difficult task in the past. A non-parabolic multifractal dimension
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Figure 17: Literature overview of localization length exponent ν including the analysis of
the anomalous quantum Hall transitions presented in this thesis.
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τq would imply serious restrictions on the nature of possible candidate theories
describing the critical point of the quantum Hall transition, which is unknown
to date. The consequences of non-parabolicity are an active matter of research
(Zirnbauer, 1999; Bondesan et al., 2017; Zirnbauer, 2019; Karcher et al., 2022).

Adding to the study of the leading multifractal exponents, we have presented
a first study of parts of the generalized multifractal properties of correlation
functions in the Chern insulator on a square lattice. In the future a detailed study
of such exponents might enable a high-precision estimate of quartic corrections
in the generalized MF spectrum, which could exhibit a more favorable signal-to-
noise ratio than the leading exponents.

localization length exponents . In this chapter the localization length
exponent of different realizations of the anomalous quantum Hall effect has
been quantified. In both models there have been serious doubts that ν,y are
consistent with universality of the quantum Hall transition. The disordered Chern
insulator on a square lattice has been expected to show an energy dependence
in its exponents, suggesting non-universality even within the model (Sbierski
et al., 2021). This observation was not corroborated in the study presented in
this chapter. Similarly, structural or geometric disorder has been hypothesized to
lead to a second renormalization group fixed point, with a possibly distinct set
of critical exponents (Gruzberg et al., 2017). Additionally, in related amorphous
topological insulators, a dependence on the density of lattice points has been
observed, reasoned to be due to the vicinity of a percolation transition (Ivaki et al.,
2020). Both considerations have not manifested in the amorphous realization of
the Chern insulator.

In contrast, even when lacking crystalline structure all together, the localization
length exponent ν is perfectly consistent with previously studied models of
quantum Hall criticality. The current status of the literature on the exponent
ν in different models of the integer quantum Hall effect is summarized in Fig.
17, including the results presented in this chapter on the square lattice and
amorphous realization of the anomalous quantum Hall transition, cf. Slevin and
Ohtsuki, 2009; Obuse et al., 2010; Fulga et al., 2011; Amado et al., 2011; Obuse
et al., 2012; Nuding et al., 2015; Gruzberg et al., 2017; Zirnbauer, 2019; Puschmann
et al., 2019; Zhu et al., 2019; Puschmann and Vojta, 2021; Sbierski et al., 2021;
Dresselhaus et al., 2022; Bera et al., 2024.

To conclude it is due to emphasize another time the importance of a proper
consideration of irrelevant finite-size corrections and the corresponding exponents.
As can be seen from the data presented in this chapter, misinterpretation of the
localization length exponents, as well as the multifractal dimension, are likely.
Therefore, also here it needs to be emphasized that even if the data presented here
is perfectly compatible with the fitting models used, and takes into account several
sources of irrelevant finite-size corrections, we cannot exclude the existence of
further corrections which are not possible to be resolved at the system sizes and
the statistical quality of the data available.
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5
L O C A L I Z AT I O N V S . S P E C T R U M - W I D E C R I T I C A L I T Y AT T H E
S U R FA C E O F T O P O L O G I C A L I N S U L AT O R S

The results presented in this chapter were developed in collaboration with A. Altland, P. W.
Brouwer, M. S. Foster, M. Moreno-Gonzalez, L. Trifunovic, S. Bera and M. Puschmann,
and are partly published in Altland et al., 2024. The analytical theory in the publication
was derived by A. Altland, P. Brouwer, M. Foster, M. Moreno-Gonzalez, L. Trifunovic,
while the numerical simulations and analysis were carried out by the author of this thesis.

5.1 spectrum-wide quantum hall criticality in topological in-
sulators?

Critical states at the quantum Hall plateau transition are a glaring exception of
generic Anderson localization in two dimensions. They are robustly extended
and carry current even in the thermodynamic limit. Usually however, the critical
fixed points in parameter space are unstable with respect to perturbations in a
renormalization group sense. In reality due to the presence of imperfections one is
primarily confronted with the quantum Hall insulating phases. To experimentally
observe quantum Hall critical currents (beyond the edge states) in an actual
sample it is necessary to fine-tune the parameters to the critical point, for instance
the energy, the magnetic field or other system parameters.

Strikingly, a recent study by Sbierski et al., 2020 has presented evidence that
there may be more stable quantum Hall criticality with respect to parameter
changes on the surface of three-dimensional topological insulators in models of
the chiral symmetry class AIII. It has been debated if finite energy states localized
to the surface, namely those away from the high symmetry point protected by
chiral symmetry, may be critical states effectively belonging to class A, namely of
the quantum Hall type. This feature has been reported to be surprisingly stable
with respect to changes in the energy. The phenomenon has therefore been called
spectrum-wide criticality.

This prediction, for which an effective Dirac surface theory and numerical
evidence have been presented (Sbierski et al., 2020; Karcher and Foster, 2021), sug-
gests that the unstable integer quantum Hall critical fixed point is promoted to a
stable phase by the bulk-boundary principle of the three-dimensional topological
bulk material. The chiral symmetry present in the bulk Hamiltonian of class AIII
is hereby broken explicitly away from the high symmetry point around which
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Figure 18: Schematic local density of states (LDOS) of the AIII topological insulator Eq.
(42). The surface layer, where the boundary conditions are opened, is placed in the visual
plane (blue shaded), orthogonal to the x-axis. The clean bulk spectrum is gapped; the gap
is populated by few scattering states in the presence of disorder. The surface layer hosts
an additional surface band (red), which fills the bulk gap. At the high symmetry point
(E = 0) wave functions are AIII critical according to the bulk-boundary correspondence
and protected. The finite energy surface states (red) break the AIII symmetry, their fate is
the subject of this chapter.

the spectrum is symmetric, rendering finite energy surface states effectively in
class A. However, strict topological arguments protecting the boundary states
of an AIII bulk from localization only apply to the zero energy state, not to the
entire finite energy surface spectrum (Essin and Gurarie, 2015). Therefore, the
result presented by Sbierski et al., 2020 is highly non-trivial.

In the present section we revisit the conclusion presented by Sbierski et al.,
2020 and present high-precision numerical data supporting the claim of quantum
Hall critical states at a range of energies inside the bulk gap in a concrete model
of a AIII topological insulator. We show that the results are somewhat robust
with respect to the choice of system parameters. In the following sections the
limits of generic quantum Hall criticality without fine-tuning are shown; the
critical "phase" does not survive certain perturbations within class AIII, which
are able to localize the surface spectrum with the sole exception of the AIII
protected energy at the high symmetry point. The theory classifying finite
energy states of symmetry-broken parts of the spectrum of chiral and particle-
hole symmetric Hamiltonians is discussed together with numerical evidence for
various interesting examples.
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model : three-dimensional aiii topological insulator . The start-
ing point of the present chapter is the symmetry class AIII which is characterized
by the absence of time-reversal and particle-hole, but the presence of chiral
symmetry. Chiral symmetry manifests itself for instance in a mirror symmetric
spectrum around a specific energy, referred to as zero energy. Consequently, in a
topological phase, if present, the topological protection derived from the bulk-
boundary principle only strictly refers to surface states at this high symmetry
point. The rest of the surface states explicitly break chiral symmetry and hence
are demoted to class A states; naively one would expect quantum Hall insulating
states without fine-tuning.

The precise model of a three-dimensional topological insulator in class AIII
studied in the following is the lattice Hamiltonian

HAIII = H0 +

3∑
a=1

Ha,

H0 =M
∑
x,y,z

ψ†
x,y,zτ2σ0ψx,y,z,

Ha =
1

2

∑
x,y,z

[
tax,y,zψ(x,y,z)+ea(τ2σ0 − iτ1σa)ψx,y,z + h.c.

]
, (42)

introduced by Ryu et al., 2010.
Here, σµ, τµ represent the 2× 2 Pauli matrices for µ = a = 1, 2, 3 = x,y, z

and the identity matrix for µ = 0. ψ†
x,y,z,ψx,y,z represent the four dimensional

fermionic spinors in real space basis at lattice site r = (x,y, z). ea are the lattice
basis vectors in direction a = 1, 2, 3 = x,y, z. Disorder enters in the hopping
elements via a Peierls phase ϕax,y,z,

tax,y,z = e
−iϕa

x,y,z . (43)

M is a mass-like parameter controlling the topological phase. HAIII anticommutes
with the antiunitary τ3σ0 following from the basic properties of the Pauli matrices,
realizing the chiral symmetry. In the clean case, tax,y,z = 1, the system is lattice
periodic on a cubic lattice and can be diagonalized by a band structure with
four bands. The topological phases realized in the clean case are the following:
the Chern number ν = 1 for 1 <| M |< 3, ν = −2 for | M |< 1 and ν = 0 for
|M |> 3. At the critical points the Hamiltonian experiences a band closing in the
form of a Dirac cone for small energies, where the Dirac point at zero energy is
protected by the bulk-boundary principle of the topological phase for | ν |> 0.
The boundary conditions are chosen as follows: While in y, z direction the lattice
is periodic, it is open in the remaining x-direction. Here, at the borders of the
sample the topological bulk results in surface states filling the bulk gap according
to the bulk-boundary principle. The local density of states of such a sample is
sketched in Fig. 21.
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Throughout the chapter we choose two approaches to construct the disordered
phases ϕax,y,z. Analytical results for the high symmetry point, E = 0, concerning
AIII criticality, have been obtained using a disordered vector potential, defined
with a small correlation length ξA (Evers and Mirlin, 2008; Sbierski et al., 2020),

⟨Aa(r)Ab(r ′)⟩ens =
W2
A

(2πξ2A)
3/2
δabe

−|r−r ′|/2ξ2A , (44)

where r = (x,y, z). The random phase is hence calculated like a Peierl’s phase,

ϕar =

∫ r+ea

r
dr ′A(r ′). (45)

Alternatively, the phase can be chosen randomly directly with a correlation
length ξϕ1, as

⟨ϕarϕbr ′⟩ens =
W2
ϕ

(2πξ2ϕ)
3/2
δabe

−|r−r ′|/2ξ2ϕ . (46)

The latter definition of disorder is more direct and optimal to verify that qualita-
tive results are not depending on the finite correlation length ξA. The disorder
strength in units of the hopping is quantified by the parameters WA,Wϕ, respec-
tively.

surface multifractality. Similarly to chapter 3 we employ the method
of multifractal analysis to identify (quantum Hall) critical states. In practice we
calculate the anomalous multifractal dimensions ∆q for surface states at different
energies and parameter sets and compare to the approximate parabolic shape of
∆q known from analytical and numerical considerations of more conventional
models of quantum Hall plateau transitions. The goal is hence not to pinpoint
the deviations from said parabolic prediction Eq. (39), as demonstrated in the
previous chapter, but to use it as an approximate benchmark for quantum Hall
criticality. Apart from the different objective in comparison to the previous chapter
where we characterized the transition itself (now we are merely interested in
the question if there is criticality, not in its precise characteristics), the reason for
this is simply the increased complexity of the model system: Instead of a two-
dimensional square lattice with two orbitals per spatial site, we now have a model
of three dimensions with four orbitals, where, however, the studied physics
manifests only in the two surface directions of the three spatial dimensions.
The accessible linear system sizes of the surface of the topological insulator are
hence much smaller than previously and a thorough finite-size scaling analysis
of irrelevant corrections becomes almost impossible, making a high-precision
estimate of critical properties comparable to more conventional numerical models
unfeasible.

1 In practice disorder is artificially enhanced by a factor of ×5 on the surface layers to enhance
surface multifractality, while keeping the bulk gap largely clean of scattering states. Since this is
naturally still a local potential it is a topologically allowed alteration of the disordered sample.
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 a  b  c  d

Figure 19: Multifractality and criticality of surface states at zero and finite energy of
the AIII model with vector potential disorder (ξA ∼ 1.2) with winding number ν = 1

(M = 2). a Density of states close to zero energy, with corresponding power-law fits,
obtained by the Kernel Polynomial Method method (appendix C) with 8192 Chebyshev
moments on the ν = 1 surface. The system size is L = 192 in the periodic directions
y, z and Lx = 32 in the transverse direction. Data shown with permission by S. Bera.
b Multifractal dimension ∆q, according to the numerical derivative as in Eq. (22) for
the largest linear surface system sizes L = 64, 96, 128 (from transparent to opaque colors,
partly overlapping) and slab thickness Lx = 8. The lines correspond to the prediction by
Eq. (48) using the power law fit from a. c,d Average multifractal dimension over energy
windows E > 0, compared to the parabolic prediction for QH criticality, Eq. (39).

As in this chapter only surfaces of a three-dimensional sample are investigated,
and are expected to show two-dimensional multifractality, the definition of the
wave function moments needs to be reconsidered, as the surface localization is
not perfect and hence the wave functions are not fully normalized with respect
to their surface weight. A natural way to generalize the moments is2

Pq → Psurface
q =

∑
r∈surface | ψr |

2q[∑
r∈surface | ψr |2

]q , (47)

reestablishing (surface) normalization by the denominator.

aiii criticality. In previous sections the multifractal fingerprint of quantum
Hall criticality has been discussed extensively. First and foremost here the
Hamiltonian of interest belongs to class AIII; it is therefore necessary to comment
on the critical properties of the AIII critical state at zero energy. Here chiral
symmetry is present; the critical properties have been described by a Wess-
Zumino (WZ) field theory (Evers and Mirlin, 2008; Sbierski et al., 2020) for short
range correlated vector potential disorder (WA). The critical state at zero energy,

2 Even though the surface weight fluctuates, it is both constant and very large ⩾ 90% for the
samples studied, such that the numerical values of the extracted multifractal dimension do not
depend on the choice of the normalization within the statistical errorbars of the ensemble average.
At most it is expected that a different choice of normalization may alter the prefactor of irrelevant
finite-size corrections. As the analysis of this three-dimensional model is computationally highly
demanding a high-precision study of the irrelevant corrections goes beyond the scope of currently
available computational technology.
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localized to the surface, is multifractal in the two in-plane surface dimensions,
with a parabolic multifractal dimension

∆AIII
q = γAIII

WA
q(1− q), (48)

similarly to the quantum Hall critical multifractal dimension. However, here the
prefactor is non-universal and depends on the disorder strengthWA. Additionally,
field theory predicts a singularity of the density of states ρ(E) at zero energy,

ρ(E) ∼ E(2−z)/z, (49)

where the exponent z is supposedly related to the MF spectrum by z = 1+ γAIII
WA

(Evers and Mirlin, 2008; Sbierski et al., 2020) for bulk winding number one. By
comparing the density of states with this prediction a parameter-free model of
the anomalous dimension of the AIII critical point at zero energy is obtained.

In panel a of Fig. 19 the density of states of the mid-gap states of HAIII is
shown, where disorder enters as a disordered vector potential with strength WA

and correlation length ξ ∼ 1.2 (in units of lattice spacing). Close to zero energy
the data approximately follows a power law, with exponents depending on WA.
This allows for a prediction of γAIII

WA
for the critical zero energy state, namely

γAIII
2.66 ∼ 0.96,γAIII

3.99 ∼ 1.36. The corresponding theoretical anomalous dimension
according to Eq. (48) is shown in panel b (solid lines). In panel b the anomalous
dimension as a function of linear surface system size L (transparent to opaque
colors, largely overlapping) is shown for the disorder strengthsWA corresponding
to panel a at zero energy. The dimension is obtained by a fit-free calculation
using a pseudo-derivative as in Eq. (22). For the system sizes shown and the
statistical precision available the data is almost converged, and agrees well with
the prediction from WZ field theory. The critical exponents of the anomalous
dimension and the density of states close to zero energy (AIII criticality) are
hence consistent with each other.

Even though the numerical verification of the critical properties of surface states
in an AIII topological insulator represents an important result, the emphasis of
this chapter lies on the finite energy surface states, which are not AIII critical but
break the defining chiral symmetry explicitly.

quantum hall criticality. In panels c,d the system size dependent
anomalous dimension is shown for two windows of energies inside the bulk gap
but away from the high symmetry point of the spectrum at E = 0. There is no
trend towards localization when observing the dependence of ∆q on L. Instead
both energies and all three shown parameter sets exhibit universal behavior: The
functional form of ∆q follows approximately a parabola with prefactor γ = 1/4,
i.e. has the same fingerprint as the quantum Hall plateau transition in more
conventional QH models, such as those studied earlier in this thesis. Even though,
as discussed, the numerical precision of the study is not sufficient to quantify pos-
sible corrections to Zirnbauer’s prediction of parabolic multifractality similar to
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the study in the previous chapter, this fingerprint is a smoking gun that contrary
to naive expectations finite energy states do not become quantum Hall insulating
but critical; this seems to be true across a wide range of parameter choices of
the present model, supporting the possibility of spectrum-wide quantum Hall
criticality by Sbierski et al., 2020 at least for the present three-dimensional lattice
model, HAIII.

Additional support for the presence of quantum Hall criticality away from
zero energy on the surface of the AIIII insulator is offered by the full distribution
functions of the wave function moments Pq. Fig. 20 shows the distribution
function of Pq across many samples and within an energy window 0.1 < E < 0.12,
at ν = 1,WA = 2.66 for several system sizes from L = 24 → 128. The shape of
the distribution becomes almost invariant for larger L, residual changes can be
attributed to irrelevant finite-size corrections (which however cannot be quantified
precisely due to the relatively small computational limit in linear system sizes).
When reducing the moments by the effective dimension τ(p)q , the distributions
corresponding to larger L (brighter colors) almost collapse. Again finite-size
corrections generate deviations from the expected scaling as can be seen from
the imperfect collapse for small system sizes (L < 64). Additionally, there may be
deviations from the paraobolic shape of the anomalous dimension τ(p)q , which
however cannot be resolved here due to numerical precision and available system
sizes.

The presented data suggests that indeed spectrum-wide criticality can be
observed in this model of an AIII topological insulator. Quantum Hall criticality
is present without fine-tuning the energy. Within the Hamiltonian (42), this
phenomenon seems to be robust; upon changes of E,M,WA,ν the multifractal
fingerprint of finite energy states resembles more conventional quantum Hall
plateau transitions. However, the origin of this phenomenon remains mysterious
at this point. Chiral symmetry in class AIII only protects the zero energy state;
away from which generic class A Anderson localization is naively expected. In the
following section the theory capturing localizability vs. spectrum-wide criticality
for such surface states is summarized; it is originally published and explained
in more detail and mathematical rigour in the original publication Altland et al.,
2024.
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5.2 theory : spectral flow and non-wigner-dyson classes

Topological insulators in any symmetry class generically owe their popularity to
the bulk-boundary principle; the existence and robustness of conducting edge or
boundary states. In the context of disorder this robustness is usually translated to
protection from Anderson localization, even at effective one- or two-dimensional
boundaries, where generic states would localize.

In this thesis we extensively discussed the famous example of the anomalous
quantum Hall effect; edge modes form conducting bands even inside the bulk
gap. Other instances of this principle are the quantum spin Hall effect or the
three-dimensional topological insulator in class AII. In the very beginning of
this thesis we saw that the quantization and the robustness of the conduction
properties with respect to perturbations in the microscopic details of the un-
derlying material or model of such system can be topologically explained by
Laughlin’s gauge argument, essentially relying on a topological pump. A key
ingredient to this argument is the principle of spectral flow, which connects the
conducting boundary modes at the Fermi energy inside the bulk gap spectrally
with extended bulk states deep in the spectrum and by that with the opposite
boundary. There is hence a spectral connection between extended surface states
on opposite boundaries.

Spectral flow itself however relies crucially on the topological equivalence of
all energies in the bulk gap (Altland et al., 2024).

For instance suppose the opposite, an exponentially localizable bulk with
localized eigenstates |ψ(r)⟩ with localization centers r. Then the Hamiltonian of
the full system can be written as the direct sum of a boundary part H∂ and a bulk
part Hbulk, up to corrections of maximally exponential size, where Hbulk is the
projection of the full Hamiltonian H on the eigenstates |ψ(r)⟩ with r further from
the boundary than a cut-off distance (Altland et al., 2024). Due to Hbulk,H∂ being
local operators it is possible to define energies Egap,E∂, such that the eigenvalues
of Hbulk are larger than > Egap and of H∂ smaller than < E∂. Then there exists a
continuous deformation of H,

H ′ =
(
Egap

2E∂
H∂

)
⊕Hbulk. (50)

This Hamiltonian now has a spectral gap between energies Egap/2 < E < Egap
which separates the surface part of the spectrum from the bulk part, cf. Fig. 21

a,b. This contradicts the requirement of equivalent surface states within the bulk
gap.

Now, particle-hole and chiral symmetries generate a special energy inside the
bulk gap, namely the one around which the spectrum is mirror symmetric. By
that the assumption of topologically equivalent in-gap surface states becomes
violated. In contrast to the standard Wigner-Dyson classes, the principle of
spectral flow, and by that, the protection of all in-gap surface states has to be
reconsidered. Essentially, this leaves us with three possible scenarios for non-
Wigner-Dyson classes, where non-equivalent special energies exist in the bulk
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Figure 21: Schematics of surface (red) and bulk (grey) spectra of an Hamiltonian which
is separable into bulk and surface part, H = H∂ ⊕Hbulk, a before and b after rescaling,
opening a gap between surface and bulk spectra. c-d spectrum of HAIII without disorder
with open boundaries in x-direction and M = 2 c without and d with (uf = 0.9) the
fragmenting surface potential opening an indirect gap. Adapted from Altland et al., 2024,
©2024 American Physical Society.

gap: (i) Spectral flow is still guaranteed topologically by a different mechanism
than the chiral or particle-hole symmetry. In this case the surface states remain
delocalized and the topological insulator may behave as a Wigner-Dyson class. (ii)
Spectral flow is not guaranteed by topology but it is uninterrupted nevertheless
for a specific class of models. In this case finite energy surface states may still be
extended and one could observe spectrum-wide criticality nevertheless. However,
it would be topologically fragile, (iii) since a symmetry-conserving perturbation
may open a gap between surface and bulk spectra and localize the finite energy
surface states. We will explore these possibilities in a case study of the model
defined by Eq. (42), which is in symmetry class AIII.

5.3 case study of aiii topological insulators

Both the study by Sbierski et al., 2020 as well as the data presented for the
three-dimensional lattice Hamiltonian (42) suggest that finite energy states away
from the topologically protected zero energy state are still extended; indeed they
behave as a continuum of quantum Hall critical wave functions. In panel c of Fig.
21 the band structure along high symmetry cuts of the Brioullin zone of the clean
Hamiltonian is shown. Indeed the surface bands (red) are connected to the bulk
spectrum; spectral flow to the bulk and in between the separated surface can be
present and an extended band of boundary states in the bulk gap exists, just as
in the class A Chern insulator as argued by Laughlin.

disrupting spectral flow. We here present a construction how to inter-
rupt spectral flow between bulk and surface spectra and by that localize the
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surface states away from the high symmetry point at E = 0, which is protected by
chiral symmetry.

We add the potential term to the AIII lattice model,3

H ′
AIII = HAIII + uf

∑
(x,y,z)∈surface

ψ†
x,y,zτ2σ1ψx,y,z, (51)

where uf quantifies the strength of this fragmenting surface potential. H ′
AIII is

still chirally symmetric and its bulk properties, i.e. its topology is not changed,
since the added potential is local (it is non-zero only on the surface layers).

Fig. 21 d shows the band structure of this model with a surface potential
imposed on the two outer lattice layers. We observe an indirect gap opening
between the surface bands (red) and the bulk (black), similar to the schematic
picture shown in panel b. Spectral flow is hence interrupted.

The localization properties of finite energy surface states can be assessed by
calculating the Berry curvature of the surface bands (Moreno-Gonzalez et al.,
2023). When these are connected to the bulk it is necessarily zero, while in
the detached case it is finite. The latter implies surface localization, the former
extended states. All studied AIII topological models in literature had zero Berry
curvature on their surfaces; cf. Ryu et al., 2010; Ghorashi et al., 2018; Sbierski et al.,
2020; Ghorashi et al., 2020; Karcher and Foster, 2021. Only upon imposing an
additional surface potential the fragility of delocalized finite energy surface states
is revealed.

When the surface band is fully detached from the bulk spectrum it is possible
to define a non-zero Chern number of a surface by integrating over the Berry
curvature of the band.4 The numerical value of the Chern number depends on
the sign of the potential uf, Ch = −sgn(uf) (its parity is fixed by the winding
number, here ν = 1). Hence, detaching the surface and bulk bands necessarily
implies a finite surface Chern number.

surface chern number . Let us consider a fragmenting surface potential
which has domain walls on the surface at which the sign of uf changes. This
leads to puddles of opposite Chern numbers. As we may think of the finite
energy surface band as a two-dimensional class A system, these domains between
opposite Chern numbers come with counter propagating chiral edge modes,
equivalently to a quantum Hall insulator. For those once again Laughlin’s gauge
argument applies implying that the chiral modes must hybridize with extended
states both at E = 0 but also at high energies. At the latter the hybridization must
happen either with delocalized bulk states or with delocalized surface states;
both contradicting a full localizability of the high-energy spectrum.

3 The localizing potential has a different form when the surface is defined in a different direction
of the three-dimensional cubic lattice Altland et al., 2024.

4 For details on the definition and calculation of the surface Chern number when the fragmenting
surface potential is present, the reader is referred to the original publication Altland et al., 2024.
The focus of this thesis lies on the numerical study of the AIII insulator; this paragraph is solely
intended to provide the relevant analytical context.
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Figure 22: Anomalous multifractal dimension ∆q for q = −0.5 (a), q = 0.5 (b), q = 0.75
(c) of surface states for increasing system sizes (transparent to opaque colors, L = 24→
128,Lx = 8), as a function of energy inside the bulk gap. Disorder is uncorrelated, and
chosen as random phases ϕa(r) with correlation length ξϕ = 1 and strength Wϕ. The
data sets correspond to Wϕ = 0.1,uf = 0.3 (blue), Wϕ = 0.15,uf = 0 (black), Wϕ = 0.15
and random uf with zero mean and standard deviation σuf

= 0.3. The dashed line
marks the value of quantum Hall criticality γQH ≈ 1/4, the localization limit τq |q>0= 0

corresponds to ∆q/q(1− q) → ∞, 4, 8/3 for q = −0.5, 0.5, 0.75. (The value ∞ reflects the
formal divergence of the moments in the localized limit for negative q.) Adapted from
Altland et al., 2024, ©2024 American Physical Society.

Going one step further, let us imagine puddles of opposite sign of uf, Ch with
equal probability distributed on the surface. A network of propagating chiral
edge modes must form, which percolate critically through the entire surface.
Topologically this represents the Chalker-Coddington network at criticality, pro-
tected from Anderson localization. This mechanism explains the observation of
spectrum-wide criticality. As soon as a non-vanishing average between puddles
of opposite sign uf appears we expect localization of finite energy states (Altland
et al., 2024).

localizing finite energy surface states . Similarly to Fig. 19 we
analyse the anomalous dimension using the numerical pseudo-derivative (22) for
the disordered three-dimensional AIII model with fragmenting surface potential
H ′

AIII. As our primary focus lies on the finite energy states and we skip another
detailed analysis of the zero energy AIII critical wave functions it is not required
to construct the disordered phases ϕax,y,z from a vector potential. Instead they are
directly sampled from Eq. (46), with a small correlation length ξϕ and amplitude
Wϕ.

The modified (surface) wave function moments are averaged over many disor-
der realizations and over small windows of energy. The system sizes are varied
from L = 24→ 128, with Lx = 8.5

5 The convergence with the slab thickness Lx has been verified, cf. appendix A.2 and Altland et al.,
2024.
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Fig. 22 shows the system-size dependent anomalous multifractal dimension as a
function of energy for different moments q, with constant (blue), vanishing (black),
and random (green) fragmenting potential uf. The data is consistent with an
approximately parabolic shape of the AIII critical state for E = 0 with a prefactor
γAIII ∼ 1.3 for all three cases. Thus, it exhibits much stronger multifractality
than the quantum Hall critical states known from the previous chapters, but
is comparable to the values obtained in the very beginning of this chapter for
correlated vector potentials.

For vanishing fragmenting surface potential uf = 0 we observe consistency
with the quantum Hall critical multifractal dimension, with a parabolic prefactor
of around γQH ∼ 1/4 (black curves). As seen above this is the signature of
spectrum-wide criticality for HAIII, and further confirms the results by Sbierski
et al., 2020.

A constant fragmenting potential uf = 0.3 however leads to a clear tendency
away from QH criticality for E > 0, towards localization when system size L is
increased (transparent to opaque, blue). This is expected because uf ̸= 0 – as
argued above – distrupts spectral flow and induces a finite surface Chern number
on the finite energy surfaces.

Motivated by the scenario of puddles of different Chern numbers inducing
percolating chiral domain wall modes across the surface a random fragmenting
potential with zero mean and variance ⟨uf(x,y, z)uf(x,y ′, z)⟩ens = u2f δxx ′δyy ′ ,
is simulated (green) curves. This perturbation again leads to quantum Hall
delocalization and an agreement with the approximate quantum Hall critical
form of the anomalous dimension ∆q. This observation is in perfect consistency
with the qualitative considerations of the previous section.

An alternative diagnostic of quantum Hall criticality vs. localization are the
distribution functions of the wave function moments Pq for different disorder
configurations directly. The distribution functions should become shape invariant
and scale with the multifractal dimension of the quantum Hall critical point in
the former case, while in the latter scenario they do not collapse. An analysis of
the distribution functions is presented in appendix A.2.

5.4 generalization and conclusion : ten-fold way and localiz-
ability

conclusion and implications . In this chapter a theory has been pre-
sented how the observation of spectrum-wide criticality plays together with the
topological properties of surfaces of non-Wigner-Dyson topological insulators,
here namely in class AIII.

Apart from the very interesting phenomenology itself – in particular the ob-
servation of relatively robust quantum Hall criticality upon statistical properties
of the discussed perturbations, and localization of surface states when a gap
between surface and bulk is induced – some very general but just as interesting
remarks are in order.
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Cartan label T P C d = 1 d = 2 d = 3

A (unitary) 0 0 0 0 ZD 0

AI (orthogonal) +1 0 0 0 0 0

AII (symplectic) −1 0 0 0 ZD2 ZD2
AIII (ch. unit.) 0 0 1 Z× 0 Z×

BDI (ch. ortho.) +1 +1 1 Z× 0 0

CII (ch. sympl.) −1 −1 1 2Z× 0 Z×
2

D (BdG) 0 +1 0 Z×
2 ZD 0

C (BdG) 0 −1 0 0 2ZD 0

DIII (BdG) −1 +1 1 Z×
2 ZD2 ZD/×

CI (BdG) +1 −1 1 0 0 2Z×

Table 3: Localizability of topological materials. The classification of Table 1 is extended by
a superscript × indicating localizable, orDnon-localizable topological phases. For class
DIII in three dimensions, phases with even bulk winding number can be localized, while
those with odd winding number cannot. Spectral flow is only robust in non-localizable
classes. Adapted from Altland et al., 2024, ©2024 American Physical Society.

In literature surface states of topological insulators are often described by
minimal models, linearized around the Dirac points, for instance by Sbierski
et al., 2020. Even though this approach is very simple and has been incredibly
successful in describing certain phenomena, it is fundamentally insufficient to
describe even as basic properties as wave function localization: A minimal Dirac
model of the AIII surface would always result in a zero Chern number and
therefore predict delocalization. As we saw, in certain cases this is wrong. In
the study presented here and in the original publication Altland et al., 2024 this
problem is cured by the inclusion of the full lattice dispersion; it allows to explore
spectral flow to the bulk explicitly. In the language of minimal Dirac models this
can be achieved complementarily by including trivial bulk bands, cf. Altland
et al., 2024 for details.

outlook : ten-fold way of localizability. A key ingredient of eval-
uating the stability or fragility of extended states is the exploration of spectral
flow of a certain Hamiltonian. If spectral flow can be interrupted by some local
potential, for instance uf in the case discussed, a Chern number is induced on the
surface bands and finite energy states localize. The disruption of spectral flow in
turn crucially relies on the possibility of separating the bulk and surface in local
operators (up to exponentially small corrections). The relevant criterion for the
fragility of surface states hence can be formulated as the localizability of the bulk
spectrum. This can be in principle generalized beyond symmetry class AIII to
the entire ten-fold way of topological insulators.

73



To this end three cases need to be considered: (i) Wigner-Dyson classes are in
principle non-localizable. As soon as there are edge states, extended bulk states
appear due to spectral flow guaranteed by the equivalence of energies inside the
bulk gap. (ii) Non-Wigner Dyson classes have a special energy around which
the spectrum is typically symmetric. Therefore spectral flow need not be robust.
However, if upon the explicit breaking of the symmetry related to this special
energy, i.e. particle-hole or chiral symmetry, the then symmetry broken system
(now in a Wigner-Dyson class) still can host a topological phase, spectral flow
is still protected. Spectral flow here is then robust due to the Wigner-Dyson
sibling and not due to the additional chiral or particle-hole symmetry. (iii) If
such a topological phase in the Wigner-Dyson sibling does not exist, the bulk
spectrum generically is localizable and spectral flow is fragile. For this we saw
the example of the three-dimensional AIII insulator; the sibling class A does not
have a topological phase in three dimensions, hence spectral flow is not robust.
These considerations are summarized in a full characterization of the ten-fold
way with respect to its localizability in Table 3.

74



Part II

M A N Y- B O D Y L O C A L I Z AT I O N A N D E R G O D I C I T Y





6
T H E R M A L I Z AT I O N A N D M A N Y- B O D Y L O C A L I Z AT I O N

6.1 thermalized systems and ergodicity

The overarching theme of the first part of this thesis is universality: Properties of
the quantum Hall effect, for instance its conductance quantization, the appearance
of boundary states or the characteristics of the critical point of topological phase
transitions have been shown to have the same fingerprint despite of their vastly
different microscopic origins; at least for the models studied in this thesis.

By that reasoning, the theory of the integer quantum Hall effect or – more
general – the theory of disordered topological materials is an effective theory,
which separates irrelevant degrees of freedom (microscopic details) from relevant
effective degrees of freedom (for instance the topological winding number, or the
surface Chern number determined in chapter 5).

Beyond topological materials a concept to describe and understand generic
physical systems is (equilibrium) statistical mechanics. The goal is similar, namely
to resolve the dilemma of the infinite number of microscopic degrees of freedom in
nature, obscuring physical insight into its most important emergent phenomena.
It offers highly successful and generically applicable ways to coarse-grain from
a microscopically exact physical system or model towards a tractable effective
theory of relevant and interesting properties.

The following chapter is intended to give a brief phenomenological overview
over interacting many-body dynamics and the conditions of thermalization. A de-
tailed account of the underlying mathematical foundations is not provided. Parts
of the following paragraphs loosely follow the review articles by Nandkishore
and Huse, 2015; Tikhonov and Mirlin, 2021b.

What is thermalization?

At the heart of statistical mechanics lies the concept of thermal equilibrium, as
detailed in the introduction to this thesis. It defines the final, thermodynamic
state of the time evolution of generic interacting many-body systems, which –
due to coarse-graining – "forget" all the details of their microscopic nature and
their initial state. The physical descriptors necessary to understand the majority
of phenomena of such systems are restricted to generic averaged quantities
like temperature, particle density or the energy density; they define so-called
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macroscopic states. This theory not only successfully describes physical systems
of different microscopic origin but even classical and quantum mechanical physics
on equal footing.1

Classical many-particle systems can realize the process of equilibration so as to
evolve to a universal thermal state in different ways. Conceptually, the simplest
mechanism is to consider the system of interest A coupled to an environment
B. Through the coupling system A can interact with the bath B, and spread
information about the initial state of A where A and B may have been uncoupled,
e.g. the initial momentum of a specific particle, on all degrees of freedom of the
combined system A+ B. In this way energy and possibly also particles can be
exchanged between A and B, defining the so-called canonical and grand canonical
ensembles.

If we now measure properties of system A after long times without access to or
interest in the bath B, one is not able to extract the information about the original
initial microscopic state, e.g. the energy or exact particle number, of A. Only
average quantities such as the average energy and particle number are accessible
to local measurements. Information about the initial state is hidden in the full
system A+B and is only accessible to global measurements.

Thermalization in closed quantum systems

Considering now a system which is not in contact with an external bath – called
micro canonical ensemble – the notion of thermalization and the associated for-
getting of information has to be adjusted conceptually, in particular in a closed
quantum system.

Considering a general, initial mixed state density matrix ρ0 of some closed quan-
tum system with many degrees of freedom, its time evolution (in the Schrödinger
picture) is given by

i h
dρ

dt
= [H, ρ] ,

ρ(t) = e−iH/
 htρ0e

iH/ ht. (52)

It is one of the main dogmas of quantum mechanics that the time evolution
is unitary, meaning that information present at t = 0 is also present at t →∞ (Sakurai and Napolitano, 2020). A closed quantum system cannot loose
information.

The obvious question is how to reconcile this fact with our daily observation
of nature, where we almost exclusively see thermal states, at least locally. The an-
swer is that the information is not really lost on a global level. Instead it becomes
hidden more and more by the time evolution which spreads the entanglement

1 The different nature of classical and quantum mechanics is captured in the definition of the
objects entering the theory, most prominently the density operator of a quantum, or the ensemble
probabilities of a classical system.
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throughout the entire system. Consequently, to recover the initial local infor-
mation at long times it would be necessary to measure global operators, which
in general are not accessible to experiments. For local measurement, however,
the time evolved quantum state looks thermal. This process is called decoherence
(Nandkishore and Huse, 2015).

Eigenstate thermalization hypothesis

Consider the density matrix at time t = 0 to be initialized in a many-body
eigenstate of the system of interest. The time evolution of said system with
its Hamiltonian hence is trivial, ρ(t) = ρ(0). A very instructive concept is the
eigenstate thermalization hypothesis (ETH) which suggests that thermalization of
all initial states consequently must imply that all eigenstates of the system must
be thermal to begin with. Studying the thermalization properties of a many-body
quantum system it is thus sufficient to understand the many-body eigenstates
(Deutsch, 1991; Srednicki, 1994; Tasaki, 1998; Rigol et al., 2008). The validity of
this hypothesis is difficult to assess because it is typically not possible to access
all eigenstates of a many-body system (except for very small ones). Still it is very
useful when studying thermalization properties, because it allows us to define
thermodynamic ensembles containing just a single many-body eigenstate in order
to study its thermalizing properties.

Thermalization in the language of the ETH happens along the following lines:
the density matrix of the many-body system is prepared in its eigenbasis; making
its diagonal elements, the probability densities, trivially time-independent. The
coherences in the off-diagonals of the density matrix aquire a phase which is
given by the energy differences between the many-body levels. The ETH in this
context now translates to the corresponding phase oscillations of the coherences
contributing to local observables effectively randomly due to their fast and diverse
frequencies, such that they interfere destructively and eventually cancel. The
coherences decay for long times, giving rise to the mechanism of decoherence.
The mechanism of thermalization in this language is thus dephasing of the
off-diagonal entries in the density matrix (Nandkishore and Huse, 2015).

The ETH allows us to focus on single eigenstates when assessing thermalization
characteristics. Therefore, another class of ensembles can be introduced to the
theory of statistical mechanics, adding to the microcanonical, canonical and
(generalized) grandcanonical ensembles: Defining the single eigenstate ensembles
as containing only a single wave function of a many-body Hamiltonian at a certain
energy (somewhat similarly to the microcanonical ensemble) it is possible to
extrapolate the correct thermodynamics information of the system in its thermal
equilibrium; just as in the traditional ensemble types (Nandkishore and Huse,
2015). These single eigenstate ensembles play an important role in studying
statistical properties of many-body problems numerically, for instance when
calculating the wave function moments, as shown in the next chapters.
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This consideration suggests to connect the concept of thermalization – the loss
of memory of initial conditions during time evolution – with ergodicity, or ergodic
wave functions, respectively. Such wave functions uniformly explore the entire
Fock or Hilbert space and thus serve as a quantum analogy to classically ergodic
trajectories which uniformly cover the entire available phase space of a classical
system. Investigating ergodicity of wave functions now can be addressed on the
level of single eigenstate ensembles and in that sense this concept is again closely
related to the ETH.

Exceptions: integrable systems

Generically, not all quantum systems thermalize. Most prominently integrable
system, exhibiting an extensive number of local conservation laws, evade ther-
malization and keep memory of their initial state forever2. However, in general
integrable systems are rare and require fine-tuning, while a slight perturbation in
the system’s parameters can drive them back to a thermalizing behavior.

Consider for instance the famous example of classical or quantized billiards: A
perfectly circular shape of the boundary results in regular, integrable dynamics,
while already a small deviation from that, for instance a cardioid billiard results
in eventual thermalization and ergodic behavior (Robnik, 1983; Bäcker et al.,
1995).

Therefore, an interesting question in the context of thermalization vs. inte-
grability is if there exists a class of systems which exhibit non-thermal behavior
without fine-tuning, i.e. a finite, stable phase in the space spanned by Hamilto-
nian parameters. If so, a natural extension of this question is, if one can observe
and characterize the transition between the thermal and the localized phases.

Ergodicity breaking: Localization

A candidate for a generic class of physical systems which do evade quantum
thermalization appears to be certain disordered systems3. If there was localization
of wave functions in a random potential – analogously to single-particle Anderson
localization which we encountered in the first part of this thesis, however with
interactions – such a class of systems would have been found.

Theory and experiment have been attempting to judge if such a many-body
localized (MBL) quantum phase exists, and – if the answer is yes – under which
circumstances it arises.

In the following section the basic concept and some selected recent develop-
ments and their status within the field of MBL will be introduced.

2 Integrable systems are argued to have their own version of the ETH and thermalization within
the constraints of extensive local conservation laws (Nandkishore and Huse, 2015).

3 There are more ways to break ergodicity. For instance so-called quantum many-body scarring
describes the phenomenon that a many-body system relaxes to equilibrium for most initial
conditions, while for specific states non-thermalizing behavior is observed (Serbyn et al., 2021).
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6.2 many-body localization

Some of the most studied models in the context of many-body localization and
ergodicity are short-range interacting spin-less fermions, for instance formalized
by

H = −
1

2

NB−1∑
i=1

c
†
ici+1 + h.c. +

NB∑
i=1

ϵi (ni −
1

2
) +V

NB−1∑
i=1

(ni −
1

2
)(ni+1 −

1

2
), (53)

with ni = c
†
ici, and ci, c

†
i fermionic annihilation and creation operators. NB

represents the number of real space lattice sites in one dimension and V the
strength of the nearest-neighbor density interaction, which is set to unity. The
onsite potentials are chosen randomly from an uncorrelated box-distribution
ϵi ∈ [−W,W], where W represents the interaction strength (Evers et al., 2023).
Identifying or discarding a localization transition as a function of W at a crit-
ical disorder strength Wc is one of the main goals of the field of many-body
localization and ergodicity.

Recap: single-particle localization

To introduce the concept of many-body localization and highlight its differences
to conventional single-particle Anderson localization we briefly recapitulate
the latter. To this end we reconsider the non-interacting disordered model
Hamiltonian from Eq. (5).

In one or two dimensions all eigenstates of this Hamiltonian localize due to
constructive interference of particles scattered at the disorder potential. A key
ingredient to this argument is coherence: If the particle dephases, due to the
coupling to external degrees of freedom, or interaction with another particle,
before it is able to scatter back to its original position in a closed path, coherence
is lost and the pattern of constructive and destructive interference giving rise
to weak and eventually Anderson localization ceases to exist. Essentially, the
coherence length has to be larger than the scattering length (Nandkishore and
Huse, 2015).

Of course upon transforming Eq. (5) into its eigenbasis one can extend this
picture easily into a many-body problem (however still non-interacting), by filling
up the localized orbitals to a Fermi energy. Most many-body wave functions –
being product states of the single-particle orbitals – then violate the ETH as soon
as at least some single-particle eigenstate are localized.

What happens now upon introducing interactions? Since then dephasing
definitely enters the picture due to electron-electron interactions, coherence is
lost and the original mechanism which localized the single-particle orbitals in
general fails. Can interactions stabilize a localized phase nevertheless?
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Many-body localization: selected models and their status

For the sake of brevity the focus of this section lies on the numerical understanding of
MBL and the current status of research there. As there are interesting developments also
in analytical theory4 and modeling as well as experiments the reader is referred to recent
reviews, e.g. by Nandkishore and Huse, 2015; Abanin et al., 2019; Sierant et al., 2024.

Generally, most approaches to MBL have in common that investigations are
carried out at high or infinite temperature 5. This is due to the fact that high-
energy/temperature thermal states are those to which initial states far from
equilibrium tend to at long times. Since those are also the states for which
we expect MBL to be more abundant, it is natural to study high temperature
properties. From this consideration derives the common belief that it does not
really matter too much which kind of statistics underlie the theoretical models.
This is why all, fermion, boson and spin, models are common tools in the study
of MBL (Nandkishore and Huse, 2015). In the remainder of this paragraph some
of these models and approaches are introduced.

As the field still lacks a controlled analytical approach to microscopic models
of many-body localization, e.g. the disordered Heisenberg spin chain, numer-
ical studies serve as the most direct way to tackle the problem. However, also
that comes with obvious restrictions: the Fock space of many-body basis states
becomes exponentially large as the system size is increased. Therefore, exact
simulations are very challenging compared to single-particle Anderson local-
ization studies, where the Hilbert space is only polynomial in linear system
size. Effectively, exact diagonalization (ED) studies are restricted to around ∼ 20

spin-1/2 like degree of freedoms.
Within these studies there has been evidence of MBL or MBL-like regimes,

their exact nature is still under activate debate. The same holds for the presence
or absence of a phase transition between extended and localized phases for the
thermodynamic limit, as finite-size corrections are very large in particular when
trying to determine the position of a possible critical disorder strength. For ED
studies it is also essentially impossible to estimate critical exponents, systems
larger than > 100 spin degrees of freedoms would be necessary (Tikhonov and
Mirlin, 2021b).

A way to reach such large systems are methods from the family of matrix
product states. However, here only moderately long time scales can be simulated

4 In particular the popular phenomenological theory of l-bits as well as the details around the
developments concerning so-called avalanches and associated instabilities in the context of
rare region effects in disordered spin chains (Nandkishore and Huse, 2015; Thiery et al., 2018;
Morningstar et al., 2022) are not touched upon in the following chapters. They are not essential
for the specific context of this thesis, however important when attempting to grasp an overview
over the full field of many-body localization.

5 for instance by studying the central part of the many-body spectrum of a finite system
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Figure 23: Schematic phase diagram of disordered spin chains (for instance the isotropic
Heisenberg model). The thermal/pre-MBL regime is characterized by power laws for
instance for the density imbalance or the entanglement entropy. At Wc ⩾ 4.5 a cross-over
to decelerating dynamics, characterized by a decreasing effective diffusion exponent
happens. The regime above Wmbl is largely unexplored but believed to host the actual
MBL phase, fully evading thermalization in the long time limit, Evers et al., 2023.

which are often not sufficient to estimate the long time and infinite system size
asymptotic properties.

The status quo: many open questions

After numerical studies suggested a critical disorder strengthWc ∼ 3− 4 (referring
to models of the type described in Eq. (53)) – cf. Luitz et al., 2015; Macé et al.,
2019 – in recent years the number has shifted to ever increasing values (Bera
et al., 2017; Doggen et al., 2018; Weiner et al., 2019; Sierant et al., 2020; Lezama
et al., 2019; Doggen et al., 2021; Sierant and Zakrzewski, 2022; Morningstar et al.,
2022; Sels, 2022). This is a manifestation of the strong finite-size effects related to
the believed localized character of a potential critical point. Most recently it has
been hypothesized that Wc ⩾ 20 which is out of reach of numerical studies at the
moment (Tikhonov and Mirlin, 2021b; Evers et al., 2023).

Therefore, recent studies focused on the regime of W ∼ 2− 10, i.e. the regime
where the critical disorder strength was believed to lie earlier (Evers et al., 2023).
Currently a common belief is that in this regime the onset of many-body local-
ization can be observed, while the thermodynamic asymptotic behavior is still
thermal. This is seen for instance in a strongly reduced rate of thermalization,
caused by the need for a collective organization of quantum particles in such
strongly disordered potential landscapes during time evolution. This regime has
been dubbed pre-MBL while the actual MBL phase for W >Wc is referred to as
proper MBL (Weiner et al., 2019; Morningstar et al., 2022; Evers et al., 2023).

A current interpretation of the phase diagram of the MBL transition is summa-
rized in Fig. 23, according to Evers et al., 2023.

Anderson localization on random regular graphs

Analytical approaches to the problem of many-body localization have proven
to be notoriously difficult. The extension to an interacting many-body problem
complicates theoretical investigations strongly: The corresponding Hilbert space
grows exponentially with the number of particles while the interaction induces a
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huge degree of correlations between the matrix elements in this high-dimensional
Hilbert space. This is why to date there are no efficient exact ways to systemat-
ically capture the quantitative physics of the MBL problem (Nandkishore and
Huse, 2015; Tikhonov and Mirlin, 2021b).

Several approaches to tackle its qualitative features have been put forward.
Analytically for instance, perturbative expansion has been used to search for
a transition between localized and ergodic/thermal behavior. However, such
and other approaches suffer fundamental qualitative shortcomings: Rare region
effects of unusually high and low disorder can be missed, which turn out to
have significant qualitative influence on the scaling of the MBL transition and the
critical behavior in the limit of large system sizes. Additionally, some approxi-
mations were shown to enhance delocalization and thus are not useful to study
localization properties (Gornyi et al., 2005; Basko et al., 2006; Gornyi et al., 2017a;
Agarwal et al., 2017; Thiery et al., 2018; Tikhonov and Mirlin, 2021b). With some
success phenomenological renormalization group schemes have been introduced
which capture the effect of rare regions of anomalous disorder (Dumitrescu et al.,
2019; Morningstar et al., 2020; Tikhonov and Mirlin, 2021b; Morningstar et al.,
2022).

A conceptual alternative to microscopic theories in understanding the qualita-
tive physics are toy models. The following paragraph is devoted to Anderson
localization on so-called random regular graphs and its connection to the MBL
problem.

The model is fairly simple, we consider nearest neighbor hopping between
lattice sites and an uncorrelated random potential just as in the d-dimensional
Anderson model on a square lattice (5). However, the role of the underlying
lattice is now taken by a random regular graph (RRG). An RRG is a finite graph
with a fixed coordination number p = m+ 1, which has a local tree-like structure
without a boundary.

The motivation for this structure comes from considering an interacting many-
body problem in the Fock space in the basis of its single-particle eigenstates.
Those also form a graph which is not represented by a simple crystalline lattice.
The single-particle orbitals now take the role of the vertices of the RRG while
the interaction-induced couplings are represented by its links (Tikhonov and
Mirlin, 2021b). Due to its conceptual simplicity the model has gained significant
popularity in recent years, cf. De Luca et al., 2014; Tikhonov et al., 2016; García-
Mata et al., 2017; Metz and Castillo, 2017; Biroli and Tarzia, 2017; Kravtsov et al.,
2018; Bera et al., 2018; Tikhonov and Mirlin, 2019a; Tikhonov and Mirlin, 2019b;
García-Mata et al., 2020; Tikhonov and Mirlin, 2021a.

Obviously, this is not more than a greatly simplified model of the interaction
structure in the Fock space of an actual microscopic Hamiltonian. First, the Fock
space graph of a physical system will not have the structure of an RRG, and
second, correlation effects between matrix elements are completely neglected
in this model. This can already be seen from the difference in the number of
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parameters between the two models, which is polynomial in system size in a
Hamiltonian model and exponential in the RRG problem.

The big advantage of this toy model is its analytical accessibility: Using a field
theoretical approach one gains access to key properties, such as level statistics
and the scaling of the many-body eigenfunctions which allow to distinguish
between localization and ergodicity, as well as characterize the transition as
a function of the disorder strength. This allows, by solving self-consistency
equations resulting from field theory numerically with a high efficiency, to access
Hilbert space sizes of O(1019) compared to ED studies of microscopically defined
Hamiltonians which are limited to O(106). This leads to a very precise numerical
estimate of the critical disorder strength. For coordination number m+ 1 = 3 and
box-distributed potential disorder – the most studied case – the critical disorder
strength is Wc = 18.17(1) (Tikhonov and Mirlin, 2021b).

Even though such drastic simplifications have been made Anderson localization
on RRGs shows remarkable similarities to known or suspected properties of MBL:

(i) the thermal side of the transition at disorder strengths smaller than the
critical valueWc is ergodic, meaning wave functions spread over the entire Hilbert
space;

(ii) in contrast to metal-insulator transitions in single-particle physics for in-
stance in the d-dimensional Anderson model the critical point has localized
properties. This manifests itself both in Poissonian level spacing statistics as well
as an inverse participation ratio of order O(1).

(iii) The latter point causes strong finite-size corrections close to the critical
point on the ergodic side W < Wc. This is because at the small system sizes
which are usually available to numerical investigations wave functions which are
extended in the thermodynamic limit appear localized and reveal their ergodic
character only for large systems. Therefore, the critical point determined by
numerics appears to "shift" strongly to larger disorder strengths as the system
sizes are increased (Tikhonov and Mirlin, 2021b).

Apart from those striking similarities to MBL the interest in RRGs within this
thesis additionally derives from the close relation to a different model, which
actually is defined microscopically, but still is a drastic simplification of the MBL
problem.

The toy model of interest is a quantum dot with random all-to-all interactions
between a finite but large number of fermions. It is a variant of the Sachdev-
Ye-Kitaev model, which is introduced in the following section. The surprisingly
close connection to Anderson localization on random regular graphs is discussed
then later in section 6.4.

6.3 excursion : sachdev-ye-kitaev (syk) model

This section is intended to provide a very short introduction to the Sachdev-Ye-Kitaev
model for complex fermions, focusing solely on aspects important for the remainder of
this thesis. The interested reader is referred to recent comprehensive reviews such as
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Maldacena and Stanford, 2016; Gu et al., 2020; Chowdhury et al., 2022.

In a number of sub-fields of theoretical physics the Sachdev-Ye-Kitaev (SYK)
model in several of its variants has received a fair amount of attention. Although
the original model introduced by Kitaev, 2015 – after a proposal in the context
of spin-glasses by Sachdev and Ye, 1993 – was given for Majorana fermions and
many of its properties have been proven first in the Majorana version, this thesis
will solely refer to the complex version of the SYK model. Although slightly
more complicated, since particle number conservation is present and some of
its properties depend on the respective symmetry sector, the basic physics is
identical. Its Hamiltonian reads

HcSYK =

NB∑
i,j,k,l

Jijklc
†
ic

†
jckcl, (54)

where ci, c
†
i denote the fermionic annihilation and creation operators at site i.

The interaction kernel Jijkl represents a complex valued matrix with randomly
distributed elements sampled from a Gaussian distribution with zero mean and
variance ⟨J2ijkl⟩ = J2/(2NB)

3 subject to the condition of Hermiticity (Gu et al.,
2020).

After choosing J as the unit of energy, the Hamiltonian (54) features only
two parameters: the size of the single-particle basis NB and the number of
fermions N. The temporal and spatial dynamics thus mediated is structureless
in the thermodynamic limit in the sense that per time two particle-hole pairs
are redistributed with the only constraint of particle-number conservation. The
SYK model can thus be thought of as an artificial zero-dimensional interacting
quantum dot.

The interest in the SYK model derives from this simplicity causing it to be
exactly solvable at large (but finite) NB. Solubility in this context means that it
is possible to obtain all two- and four-point correlators exactly by resummation
of a special class of perturbative diagrams, or alternatively by solving the path
integral for its partition function directly. Conceptually, these calculations are
fairly simple; they will however not be repeated here. The reader is referred to
recent reviews, e.g by Maldacena and Stanford, 2016; Gu et al., 2020; Chowdhury
et al., 2022.

Despite the aforementioned conceptual simplicity the SYK model reveals a
number of interesting phenomena.

When first discussed in the present (Majorana) form the SYK model triggered
particular interest in the community of quantum gravity. This is due to the fact
that in the strong coupling limit at low temperature T and large fermion number,
1 < J/T < NB, its correlation functions become scale invariant and resemble the
Green’s function of black holes in two-dimensional gravity in Anti-de Sitter space
also known as Jackiw-Teisselbloem (JT) gravity. The duality between SYK and
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JT gravity is a very prominent instance of the famous holographic duality or
Anti-de Sitter/ Conformal field theory (AdS/CFT) principle, according to which
a strongly coupled conformal quantum field theory in d space-time dimensions
corresponds to a weakly coupled gravity theory in d+ 1 space-time dimension.
Here the role of the CFT is taken by 0+ 1 dimensional quantum mechanics of
the SYK model in the aforementioned strong coupling limit, and the gravity side
by the 1+ 1 dimensional JT gravity theory. Interesting consequences of the SYK
model and the aforementioned duality have been revealed by e.g. Sachdev, 2015;
Kitaev and Suh, 2018; Maldacena and Stanford, 2016; Maldacena et al., 2016b;
Fu et al., 2017; Cotler et al., 2017; Bagrets et al., 2017; Stanford and Witten, 2017;
Moitra et al., 2019; Sachdev, 2019; Iliesiu and Turiaci, 2021; Heydeman et al., 2022.

Connected with this duality several stunning properties of the SYK model have
been discovered. It has been shown, for instance, that local information subject to
time evolution of the SYK model is transported and mixed within the many-body
system with the fastest rate possible; the so-called quantum Lyapunov exponent
λL – named in analogy to the classical Lyapunov exponent in the phase space of
a classical chaotic system – saturates its upper bound λL ⩽ 2πT (Maldacena et al.,
2016a). This fact is responsible for the SYK model being called "maximally chaotic"
or "scrambling". By this we can estimate the typical relaxation times of excitations
within the SYK model to be of the order of τrelax ∼ 1/λL ∼ 1/T . This linear-in-
temperature scaling translates also to transport coefficients such as resistivity (for
instance using the Drude formula), and is in striking contrast to Fermi liquid
theory which has been extremely successful in describing the properties of most
metals. Instead this linear-in-temperature resistivity observed in the SYK model
and its relatives (for instance coupled SYK quantum dots on a square lattice, cf.
Patel and Sachdev, 2019) closely resembles the so-called strange metal phase of
cuprates above the critical temperature of superconductivity. Therefore, the SYK
model and its lattice extensions are thought of as useful toy models of non-Fermi
liquids which could play an essential role in understanding some properties of
high-temperature superconductors (Parcollet and Georges, 1999; Georges et al.,
2001; Sachdev, 2011; Grissonnanche et al., 2021; Hartnoll and MacKenzie, 2022).
Partly in this context it has been attempted to reproduce signature characteristics
of strange metals, like the linear-in-temperature resistivity in SYK derived models
on real space lattices, see for instance Zhang, 2017; Haldar et al., 2018; Chowdhury
et al., 2018; Patel and Sachdev, 2019; Guo et al., 2019.

Last but not least the SYK model has gained significant attention in the context
of chaos-integrable transitions and – closely related – the many-body localization
problem (García-García et al., 2018; Micklitz et al., 2019; Monteiro et al., 2021a;
Monteiro et al., 2021b; Dieplinger et al., 2021; Dieplinger and Bera, 2023). This
application of the SYK model and its properties will play the most important role
in the remainder of this thesis and is therefore elaborated upon in the following
sections.
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6.4 minimal models of many-body localization and ergodicity

A great consensus on the existence, the position and the nature of a potential
phase transition between a localized and an ergodic phase as a function of the
strength of a disordered potential in interacting systems has not emerged.

This is greatly due to the immense complexity of the problem: spatial extension
and the form of the Hamiltonian structure the huge Hilbert or Fock space in
an intractable way. Both numerical simulation and analytical description are
essentially uncontrolled at the moment in the relevant parameter regimes.

Therefore, it turns out to be useful to take a very different, in some sense radical,
approach to the problem: We completely give up the microscopic structure of our
model system and with it its connection to experiment and microscopic reality,
but try and keep the only problem-specific important feature: the existence of
both localized and extended states as a function of disorder.

This approach has prominently been taken by Monteiro et al., 2021a and is
discussed in the following paragraph.

Giving up realistic microscopic Hamiltonian structure allows us to consider
the most generic and maximally entropic version of the form

H = H2 +H4, (55)

where H2 contains two fermionic operators representing a single-particle term,
and H4 four fermionic operators, representing generic two-particle interaction.

In the Majorana representation this leads to the Hamiltonian

H =
1

2

∑
ij

Jijχiχj +
1

4!

∑
ijkl

Jijklχiχjχkχl, (56)

with random zero-mean couplings with variances J2ij = δ2/2NB and J2ijkl =

6J2/(2NB)
3. χi are Majorana operators.

The maximum entropy requirement (imposing the least possible structure
on the matrix elements of (55)) directly implies that H2,H4 are variants of the
Sachdev-Ye-Kitaev model with randomly distributed matrix elements of the
interaction kernels. Changing to the basis of eigenstates of H2 it is clear that (55)
then supports a fully localized single-particle spectrum and by extension then a
trivially localized many-body spectrum. Additionally, we know that H4 hosts a
fully chaotic phase, reminiscent of random matrix theory (RMT). By changing the
relative strength of both parts of (55) it should be possible to observe a transition
between the two regimes. Studies in this direction have gained significant interest
in recent years, e.g. by García-García et al., 2018; Haque and McClarty, 2019;
Lunkin et al., 2018; Altland et al., 2019; Haldar et al., 2020; Nandy et al., 2022;
Larzul and Schiró, 2022. The big advantage of this approach is that understanding
this model analytically is possible exactly, as the Sachdev-Ye-Kitaev model can be
solved exactly and mapped to well-understood random matrix theories (Monteiro
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et al., 2021a). Studying the properties of the transition/cross-over may then be
possible in much better detail and – more importantly – with higher precision.

Still we need to hope that some of the properties of the model and its chaotic-
integrable transition or cross-over can be extended to models with more structure
and are thus more relevant for experiments and the theory of many-body local-
ization in finite dimensions.

Even though the (thermodynamic) localization properties of interacting quan-
tum materials in principle have to be determined in the limit of infinite system
size, or at least estimated by an appropriate extrapolation, the study of localiza-
tion properties in mesoscopic systems of intermediate size has gained significant
attention in recent years. The motivation is twofold: Partly driven by pragmatism,
mesoscopic systems such as SYK and its relatives offer more analytic control
while at the same time they can be dealt with numerically as well. Additionally,
the localization properties of smaller systems are still not well understood, but
highly relevant for a number of mesoscopic devices (Monteiro et al., 2021a), such
as quantum dot or qubit arrays (Altshuler et al., 1997; Silvestrov, 1997; Silvestrov,
1998; Gornyi et al., 2016; Gornyi et al., 2017b; Xu et al., 2018; Roushan et al.,
2017) and small size optical lattices (Rubio-Abadal et al., 2019; Choi et al., 2016;
Schreiber et al., 2015).

The main result of Monteiro et al., 2021a in the SYK quantum dot problem is the
analytical identification of the transition point between localized and extended
states, which is given by6

δc ∼ JN
5/2
B lnNB, (57)

where δ represents the variance of the single-particle couplings in Eq. (56).
Interestingly, here the relationship to the RRG calculations described earlier

appears: It has a similar structure as the RRG model with a Hilbert space volume
of V = 2NB and coordination number m+ 1 ∼ N4B. Considering this RRG setting
one again arrives at the same scaling of the critical point δc, showing the close
connection between the two toy models (Tikhonov and Mirlin, 2021b).

Additionally, a prediction for the wave function moments, defined as

Pq =
∑
ν

| ⟨ν | ψ⟩ |2q, (58)

where the sum is over the Fock space basis |ν⟩ in occupation number representa-
tion of real space orbitals, is given:

While in the localized limit and in the limit of infinite interaction strength J
the situation is clear, namely Pq is unity or represents the ergodic limit, at δ ∼ δc
close to the critical point the moments are non-trivial: On the ergodic side of
the transition they scale with a power law of the effective interaction strength

6 Actually, Monteiro et al., 2021a chose a normalization of the many-body energy which is not
extensive in NB, and therefore cite an expression of the form ∼ JN2

B lnNB.
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δ/J. This behavior was interpreted as a sign of a regime of non-ergodic extended
states, since they do not have full Fock space support. However, in the following
discussion it turned out that this is actually a misinterpretation: In fact these state
also are ergodic, however only on a subspace of Fock space, namely only on a
finite energy-shell around the wave function under consideration (Tikhonov and
Mirlin, 2021b; Monteiro et al., 2021b).

In summary, the models and results offered in this and the previous sections
offer insightful toy models where theory can actually provide microscopic predic-
tions for the nature of wave functions in the vicinity of a localization transition. It
is therefore hoped that these results may be useful also for more complex models
with a more realistic structure such as disordered spin chains.
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7
T H E S Y K M O D E L A N D D E N S I T Y- D E N S I T Y I N T E R A C T I O N S :
S P E C T R A L & WAV E F U N C T I O N S TAT I S T I C S A C R O S S T H E
F I N I T E - S I Z E E R G O D I C I T Y- I N T E G R A B I L I T Y T R A N S I T I O N

This chapter is largely based on the publication Dieplinger et al., 2021.

7.1 motivation : towards a more realistic interaction structure

By construction the SYK model Eq. (54) has a very different structure than
systems studied in more conventional investigations of many-body localized and
ergodic phases, for instance the spinless Fermi-Hubbard model. This is true for
theoretical studies but much more importantly also for experimental settings, e.g.
in optical lattices.

Usually, electronic many-body Hamiltonians realized in experiments and stud-
ied in theory have the real space form

H = Hkin +
∑
i,j

Uijnrinrj , (59)

where the interaction kernel is usually motivated by the Coulomb repulsion
between electrons (screened or unscreened). Importantly, in contrast to the SYK
model, the interaction term commutes with all local densities in real space. Most
famously the celebrated Fermi-Hubbard model takes this form (when including
spin as an additional local degree of freedom) and hosts many electronic phases,
such as BCS superconductivity or magnetically ordered ground states, which are
prominent also in nature.

The structure of actual electronic Hamiltonians realized in experiments is
therefore much less general than the SYK model since it is missing all off-diagonal
matrix elements (in real space). Even effective low-energy models with more
complex "off-diagonal" electronic interactions, such as the famous t-J model,
eventually capture only physics already present in (59).

Coming back to the question of thermalization vs. localization and possible
phase transitions between these two extremes, we therefore need to address the
question how results obtained for SYK-related systems translate to these actually
microscopically more realistic Hamiltonians of the form of (59).

In the following we will address this question by restoring the density-density
form of the interaction part while still keeping the structureless nature of the
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corresponding interaction kernel. We show the presence of similar regimes as
observed in Monteiro et al., 2021a between two localized and a chaotic, thermal
regimes. To this end we compare the statistics of both the energy levels as well as
the wave functions of the different models.

model . Inspired by Eq. (59) we study a model of the form

HtU =

NB∑
ij

tijc
†
icj +

NB∑
ij

Uijninj, (60)

where ni=c
†
ici. In contrast to the SYK Hamiltonian (54) its interaction commutes

with all local densities ni in the real space occupation number basis.
All other possible structure, such as a spatial dependence of the kernels tij,Uij

is omitted in accordance with the SYK model: The matrix elements tij,Uij
are zero-mean Gaussian random numbers with variance ⟨t2ij⟩=t2/(64NB) and
⟨U2ij⟩=U2/(64NB), chosen such that HtU is Hermitian. The scale factor in the
variance ensures volume scaling of the many-body energy, analogously to the
definition of the matrix elements in (54).

method. To access thermodynamic properties of this model the Hamiltonian
is written and diagonalized in matrix form exactly for a finite NB = 12, 16, 20,
using a Jordan-Wigner transformation to a spin system

c
†
i =

 i−1∏
j=1

σzj

σ+i , (61)

where σ±i = 1/2(σxi ± iσ
y
i ) and σx,y,z

i the Pauli-matrices in x,y, z direction at site i
(Jordan and Wigner, 1928; Fu and Sachdev, 2016; García-Álvarez et al., 2017). By
that the Hamiltonian is represented as a matrix in Fock space in the occupation
number basis of ni. Due to particle number conservation of (60) a block diagonal
form can be found with blocks of reduced Fock space dimension of symmetry
sectors at a specific filling. In this chapter a filling of 1/4 is chosen throughout;
the qualitative results are independent of this choice.

7.2 chaotic and integrable phases with density-density interac-
tions

The approach to identifying the integrable and chaotic phases (corresponding to
localized and thermal in the language of many-body localization) is threefold:
First, we study the level spacing statistics of the many-body spectrum, namely by
identifying the distribution function of the spacings of subsequent (many-body)
energy levels. This approach however is blind to the structure of wave functions
in Fock space. Additionally, we investigate the spectral form factor, which again is
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Figure 24: Phase diagram of the SYK inspired density-density model, Eq. (60). The
regions I, II/III, IV refer to the regimes identified by Monteiro et al., 2021a in the full
extended SYK model. The integrable limits are expected to collapse to t/U → 0,∞,
Dieplinger et al., 2021.

a measure of energy level correlations in the many-body spectrum. This measure
is able to discriminate to some degree between different integrable phases in its
intermediate time behavior. Last but not least we study the wave function statistics
directly, giving access to the complex statistical structure of wave functions in
Fock space. This allows us to differentiate between different ergodic regimes
in the vicinity of the chaotic-integrable transition. In summary these statistical
measures allow us to make detailed statements about the properties of localized
and ergodic regimes of (60) as a function of the relative interaction strength and
compare to the deformed SYK model studied in Monteiro et al., 2021a.

We find five different regimes, some of which can be identified with the regimes
found by Micklitz et al., 2019; Monteiro et al., 2021a: a fully ergodic regime with
wave function support in the entire Fock space, reminiscent of the RMT phase of
the SYK model (regime I), two ergodic regimes with support only on shells of
constant energy in Fock space, on either side of regime I (regimes II/III, II’/III’)
and finally two fully localized regimes in the limiting cases t→ 0,U→ 0 (IV’ and
IV, respectively). This structure is depicted in Fig. 24.1

7.2.1 Energy level correlations

distribution function P(s) . The distribution function of subsequent
energy level spacings is defined as

P(s) = ⟨δ(s− sl)⟩ens,spectrum, (62)

where sl = (El − El−1)/∆ denotes the spacing between two neighboring eigenval-
ues of the Hamiltonian (60) in units of the corresponding mean level spacing ∆
(Guhr et al., 1998; Mehta, 2014) and the average runs over energy levels in the
spectrum of a given realization of (60) and ensembles of different realizations.

This quantity is a hall-mark measure of random matrix theory. A Poissonian
distribution P(s) of this quantity corresponds to an integrable system while

1 In Refs. Monteiro et al., 2021a; Dieplinger et al., 2021 the intermediate finite support ergodic
regimes have been dubbed "non-ergodic". This is a misleading naming, since the wave function
in this regime actually are ergodic, however only on a subset of Fock space sites (Tikhonov and
Mirlin, 2021b; Monteiro et al., 2021b).
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Figure 25: Level spacing distribution in selected interesting parameter settings of model
(60), compared to the theoretical curves of a Gaussian unitary ensemble (Wigner-Dyson)
and an integrable system (Poisson). Adapted from Dieplinger et al., 2021, ©2021 Elsevier.

a Wigner-Dyson distribution for a Gaussian unitary, Gaussian orthogonal or
Gaussian symplectic RMT ensemble correspond to quantum chaos (Mehta, 2014;
Bohigas et al., 1984). For the Gaussian unitary ensemble the Wigner-Dyson
distribution of level spacings reads

PGUE(s) =
32

π2
s2e−

4
πs

2
. (63)

It was observed that for instance the level spacings of heavi nuclei follow the
characteristic RMT distribution (Weidenmüller and Mitchell, 2009).

The qualitative difference in particular refers to the limit s → 0, i.e. the
probability of finding two energies infinitesimally close to one another: While
in the integrable, Poissonian case the probability is finite, even maximal, in
chaotic systems it goes to zero for all ensembles. This phenomenon is called level
repulsion and often appears as avoided crossings in spectral analyses. The SYK
model (54) – being a prime example of a many-body quantum chaotic system –
prominently follows the predictions from random matrix theory (Kitaev, 2015;
Maldacena and Stanford, 2016; García-García and Verbaarschot, 2016; García-
García and Verbaarschot, 2017; García-García et al., 2018; Haque and McClarty,
2019; Gu et al., 2020; Behrends and Béri, 2020; Kobrin et al., 2021). To probe the
infinite temperature thermodynamics of the model Hamiltonian we only take
into account the central part (∼ 60%) of the many-body spectrum of the finite-size
system.

Fig. 25 shows the level spacing distribution for the density-density model (60)
at different relative interaction strengths t/U. In the intermediate case, i.e. t = U,
in panel b P(s) resembles the Gaussian unitary random matrix ensemble. This
is a clear signature of a quantum chaotic system. In the limiting cases t = 0 (a)
and U = 0 (c) the system is trivially integrable, which is reflected by the clear
Poissonian fingerprint of P(s). The quantum chaotic behavior in the intermediate
interaction regime resembles the SYK model (54) away from half filling.
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(inset) Level spacing ratios of the interpolation between SYK and the density-density
model (60) at t = U as a function of the interpolation parameter λ. Adapted from
Dieplinger et al., 2021, ©2021 Elsevier.

level spacing ratios . Closely related to P(s) one can define the level
spacing ratios,

rl =
min(sl, sl+1)
max(sl, sl+1)

, (64)

and its average r = ⟨rl⟩ens,spectrum (Oganesyan and Huse, 2007; Cuevas et al.,
2012; García-García et al., 2018). This definition has the additional benefit that
(i) it is valid also for strongly varying spectral densities and avoids unfolding2

(Oganesyan and Huse, 2007) and (ii) allows to track the resemblance of P(s)

to the Wigner-Dyson or Poissonian limit using a single parameter. r ∼ 0.388
corresponds to Poissonian statistics while r ∼ 0.599 for a GUE Wigner-Dyson
distribution (Oganesyan and Huse, 2007; Atas et al., 2013; Cuevas et al., 2012;
García-García et al., 2018).

In Fig. 26 r is shown as a function of relative interaction strength t/U for
the density-density model (60). The level spacing ratio indicates two transitions
between two integrable regimes in the limiting cases t≪ 0,U≪ 0 (corresponding
to panels a and c in Fig. 25, indicated by IV’ and IV) and a non-integrable one in
between at t ∼ U.

The limit where U≪ t – resembling the structure of the SYK model, however
in a quadratic operator form – has been studied by Liao et al., 2020; Winer et al.,
2020. Integrability was expressed in terms of a large SU(2) symmetry group
which destroys energy level correlations.

2 As the spectrum is smooth and roughly constant in the regime studied here, this is not relevant
for this chapter.
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In order to identify the RMT phase of Fig. 26 of the model (60) with the original
SYK model we define a new family of Hamiltonians which interpolate between
SYK and the density-density interacting variant (60)

H(λ) = λ ·HcSYK + (1− λ) ·HtU, (65)

with λ ∈ [0, 1]. If a phase transition – to which r is sensitive – occurs it should
be visible upon varying λ. The inset of Fig. 26 shows r(λ) for t = U. It stays at
the GUE value for all λ indicating a RMT phase. No phase transition is crossed
suggesting that the two RMT phases of the SYK model and the intermediate
interaction regime of (60) can be identified with each other; at least on the level
of the infinite temperature level correlations.

spectral form factor . The so-called spectral form factor is an alternative
descriptor of quantum chaos (Brézin and Hikami, 1997; Müller et al., 2004).
Similarly to measuring the level spacing statistics directly it quantifies correlations
between subsequent energy level spacings. Part of the interest in this form of
measuring level correlations in the field of quantum chaos derives significantly
from its accessibility in semiclassical periodic orbit theory (Sieber and Richter,
2001; Müller et al., 2005) and field theories, including the the gravity duals, for
instance JT gravity (Cotler et al., 2017; Saad et al., 2018).

We here take the simple definition of the spectral form factor K(T) to be

K(T) = ⟨| Z(β+ iT) |2⟩ens, (66)

where Z(β+iT) is the partition function taken at (inverse) temperature β and
observation time T .

Level repulsion – being the primary indicator of quantum chaos in the dis-
tribution of level spacings as seen above – translates to a so-called linear ramp
feature, which can be most easily seen when visualizing K(T) for a set of random
matrices for instance of the Gaussian unitary ensemble (GUE). Fig. 27 a shows
the infinite temperature spectral form factor of a GUE, defined as HGUE with
Hilbert space dimension L and complex Gaussian uncorrelated matrix elements

⟨HGUE
ij HGUE

i ′j ′ ⟩ens =
1

L
δii ′δjj ′ , (67)

under the constraint of Hermiticity of the Hamiltonian.
Here, for a wide range of times T , after an initial system dependent behavior up

to a time of order one, K(T) grows linearly up to times of the order of the inverse
level spacing (Heisenberg time, vertical dashed line). After that the spectral form
factor saturates to the so-called plateau (horizontal dashed line) (Saad et al., 2018).
K(T) encodes many of the interesting quantities of quantum chaotic systems

and even its gravitational duals, for instance JT gravity. Additionally, it is
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conjectured that any two point correlator of the SYK model Eq. (54) can be
expressed in terms of K(T), stressing its universal features and significance.

Here, we use the spectral form factor only to discriminate between different
regimes, resembling integrable and chaotic/ergodic parameter regions. As it
turns out its sensitivity of characterizing the regimes of different t/U is enhanced
compared to the distribution of the nearest neighbor level spacing statistics.

In panel b of Fig. 27 K(T) is calculated at infinite temperature for different
values of the interaction parameter t/U. The many-body bandwidth is kept
approximately constant and comparable to the energy scale J of the bare SYK
model (54), which can be seen from the fact that the plateau is reached at the
same (Heisenberg) time for all curves. The plateau-/Heisenberg time is a measure
of the inverse level spacing and by that of the many-body energy scale.

Before the plateau develops, at TJ ⩾ 10 the different parameter regimes can be
distinguished by the qualitative form of the "ramp": In the case we found to be
reminiscent of the RMT case before, t = U (green) a wide range of linear behavior
can be observed, similar to the GUE in panel a.

For smaller t/U the linear part of the ramp becomes shorter and develops
a shallower initial slope (yellow) until it vanishes completely and assumes the
plateau value immediately (grey, regime IV’). This is consistent with the study
by Prakash et al., 2021 which observed a similar regime, when localizing an
ergodic system by adding a strong disordered Fock space diagonal term in the
Hamiltonian.

Contrasting that, in the opposite case, U = 0, when the model becomes
quadratic and non-interacting (blue to red, regime IV), Liao et al., 2020; Winer
et al., 2020 reported a very steep slope of the ramp feature, resulting in an
exponential growth until the plateau value is reached. We confirm their finding
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qualitatively; the slope is significantly steeper than linear in T . However, in our
model the exponential character cannot be uniquely resolved.

Interestingly, K(T) is able to discriminate between the two extreme limits which
are both integrable. This is not possible using the nearest neighbor level spacing
statistics as seen in Fig. 26 — there both regimes have the same characteristics.

Here, analyzing the energy correlations at infinite temperature, a rich structure
of qualitatively different parameter regimes could be identified, including an
RMT phase connected to the bare SYK model.

Additionally, it would be interesting to study K(T) also in the low temperature
regime. Studies of SYK models equipped with a single-particle term have been
shown a cross-over to a renormalized Fermi liquid at small temperatures (Song
et al., 2017; Parcollet and Georges, 1999).

7.2.2 Wave function statistics

To further analyze possible substructures of the integrable and in particular of
the ergodic regime – already hinted at by Fig. 27 and observed in the deformed
SYK model by Monteiro et al., 2021a – we study statistical properties of the wave
functions of model (60).

A common statistical measure to quantify properties of wave functions of
disordered systems are the wave function moments or inverse particpation ratios.
Analogously to the analysis of quantum Hall criticality, where the moments were
analyzed in a single-particle setting, cf. Eq. (18), they are defined as

Pq =
∑
ν

| ⟨ν | Ψ⟩ |2q, (68)
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where the sum runs over the real space occupation number basis |ν⟩ in L =
( NB

NB/4

)
dimensional Fock space. Pq here is averaged over disorder ensembles as well
as all energies in the center of the spectrum, analogously to the level spacing
statistics as seen above.

The two extreme limits result in Pq>0 = 1 for fully localized (to a single Fock
space site) and the Porter-Thomas distribution Pq = q!L1−q for fully ergodic
wave functions (on the entire Fock space volume), resembling independently
distributed Gaussian random matrix ensembles.

Fig. 28 shows the inverse participation ratio Pq=2 as a function of the parameter
t/U for the density-density model HtU. Several substructures which can be
identified with the regimes found in Fig. 25,26 and 27 reappear, while additional
differences can be resolved:

region iv’ . When the kinetic energy vanishes (t = 0), HtU is diagonal in the
occupation number basis of real space orbitals. Its eigenstates therefore become
trivially localized to a single Fock space site. This comes with a clear Poissonian
level statistics and a largely flat ramp in the spectral form factor, diagnosing
trivial integrability, since the local occupations form an extensive set of local
conservation laws.

region i . This regime is reminiscent of standard RMT, the IPR follows the
Porter-Thomas distribution for fully ergodic wave functions with support on
the entire Fock space and level correlations corresponding to GUE, featuring
Wigner-Dyson level spacings and linear ramp feature in the spectral form factor.

region iv. In this limit, whenU approaches zero, HtU becomes non-interacting.
The quadratic part of the Hamiltonian can be diagonalized and the occupation
of its orbitals forms again an extensive set of conservation laws. The system is
integrable. Since the Hamiltonian is not diagonal in the basis in which Pq is
measured here, the IPR does not approach unity.

region ii/iii . An intermediate regime with neither fully ergodic, over the
full Fock space support, nor localized character emerges, which on the level
of the eigenenergies follows the GUE prediction. This was observed for the
first time by Micklitz et al., 2019; Monteiro et al., 2021a in the deformed SYK
model (56). As the deformed SYK model is accessible easily these authors have
been able to disentangle two subregimes with different characteristics. These
are obscured by finite-size effects in numerical investigations, cf. Monteiro et al.,
2021a. This regime is remarkable because of the following reason: Even though
according to the level correlations – there are clear signs of level repulsion and
a linear ramp feature in Fig. 26 and 27 – the states do not cover the entire Fock
space uniformly/ergodically, i.e. do not follow the Porter-Thomas distribution,
cf. dashed horizontal lines in Fig. 28. In the past this regime has therefore been
said to host non-ergodic extended states (Micklitz et al., 2019; Monteiro et al., 2021a;
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Tikhonov and Mirlin, 2021b). This term is misleading: In fact the reason for this
is that only a finite number of Fock space basis states have a finite overlap with
the eigenstates of energy E, by that defining an energy shell. The wave function
of energy E now only has support on this energy shell in Fock space on which it
is ergodic. In that sense also the states in this regime are ergodic however with a
different effective Fock space size. Consequently, in this regime the level spacing
statistics P(s) is of the random matrix type. As was already the case in region
IV, the precise dependencies on t/U and its nature cannot be resolved with the
choice of the occupation number basis in real space in Fig. 28. A study in the
basis of the occupations of the single-particle orbitals of tij would be in order.
Our main interest however lies the next regime;

region ii’/iii’ . In our model HtU a dual region emerges. In analogy to II/III
it separates the fully ergodic regime I from the second integrable region IV’. The
IPR Pq varys strongly with increasing t/U, cf. Fig. 28; similarly to II/III this
can be interpreted as the wave function occupying ever increasingly large energy
shells ergodically, until it distributes uniformly across the entire Fock space in
regime I. We compare the scaling of Pq(t/U) with the regimes II/III found by
Monteiro et al., 2021a; which predicts a power law in the relative interaction
strength with an exponent a = 1 for regime III and a = 2 for II. The adapted
prediction for the dual region II’ reads

P2 = c · 8
√
NB

U2

πt2
( NB

NB/4

) , (69)

which has been obtained for the extended SYK model (56) analytically using
random matrix theory considerations by Monteiro et al., 2021a. In an extended
parameter range of t/U the parametric scaling in t/U,NB fits well the data
presented in Fig. 28. The prefactor c is an open fit parameter but expected to be
of order unity; a high quality description of the numerical data is obtained for
c ∼ 0.5.

7.3 conclusion : minimal model of ergodic-integrable transi-
tions from a density-density interaction model

In summary, we defined a model featuring the appealing lack of structure of
the SYK model, which simplifies numerical and analytical treatment signficantly,
allowing for detailed analytical predictions, e.g. (69) by Monteiro et al., 2021a.
However, we restricted the interaction Hamiltonian to a density-density form,
as observed in nature for instance in the Coulomb interaction. Interestingly, we
observed that – by analyzing three key diagnostics of statistical characteristics of
(many-body) wave functions and spectra – the rich, but tractable, substructure of
integrable and ergodic regimes observed in the deformed SYK model by Monteiro
et al., 2021a survives this rather drastic restriction. Moreover, dual ergodic regimes
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References model α,β t̃ij Ũij ϵi

Ref. Kitaev, 2015; Maldacena
and Stanford, 2016

majorana α,β=0 0 SYK nr

Ref. Gu et al., 2020; Fu and
Sachdev, 2016

fermion α,β=0 0 SYK nr

Ref. Monteiro et al., 2021a;
García-García et al., 2018;
Haque and McClarty, 2019;
Lunkin et al., 2018; Dieplinger
and Bera, 2023; Nandy et al.,
2022

majorana α,β=0 r SYK nr

This work, Dieplinger et al.,
2021

fermion α,β=0 r r nr

Ref. Burin, 2015a spin α,β ∈ (d, 3) r r r
Ref. Tikhonov and Mirlin, 2018 spin α=β ∈ (d, 2d) r r r
Ref. Thomson and Schiró, 2020 fermion α,β ∈ (0, 2.5) r r r
Ref. De Tomasi, 2019 fermion α ∈ (1, 4),β=∞ r nr r
Ref. Nag and Garg, 2019 fermion α=β ∈ (0.5, 3) nr nr r
Ref. Safavi-Naini et al., 2019 spin α=β ∈ (0.5, 2.5) nr nr r
Ref. Kloss and Bar Lev, 2020 spin α=β ∈ (1.75,∞) nr nr r
Ref. Modak and Nag, 2020 fermion α ∈ (1.2, 4),β=∞ nr nr r
Ref. Roy and Logan, 2019 spin α,β ∈ (0,∞) nr nr r
Ref. Deng et al., 2020 boson α,β ∈ (0,∞) nr nr r

Table 4: Selection of models appearing in literature which conncect the model proposed
in this chapter (60) with fermion, spin and boson models in the context of SYK and
many-body localization; from fully structureless (SYK-type, top rows) to more realistic
Hamiltonians (bottom) which partly are realizable for instance in cold atom experiments.
Some form of disorder enters the models in the kinetic energy, tij=t̃ij/|i− j|α, with
randomized hoppings t̃ij and similarly in the density-density interaction matrix elements,
Uij=Ũij/|i− j|

β, and as random potential energies, ϵi. In Safavi-Naini et al., 2019; Deng
et al., 2020 power-law correlated disorder is realized in tij,Uij by random site positions.
Abbreviations: r for random and nr for non-random matrix elements; β=∞ refers to
nearest-neighbor interactions; SYK denotes an interaction as in Eq. (54), i.e. deviating
from the density-density form. Adapted from Dieplinger et al., 2021, ©2021 Elsevier.

on energy shells in Fock space emerge due to the existence of a second integrable
limit at U → ∞ (Dieplinger et al., 2021). We found that contrary to intuition –
this dual regime does not exist in the original deformed SYK model – its wave
function moments Pq can be described using an analogous analytical form.
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The model and the results presented offer another puzzle piece in the connec-
tion between the well understood SYK model and its rich physics when including
a single-particle term (studies summarized at the top of table 4); and the much
less understood but microscopically much more relevant models of many-body
localization/ergodicity in real space (bottom of table 4).

Computationally – by an analysis of spectral and wave function statistics – we
found five qualitatively different regimes of HtU; two integrable limits, which
differ in their nature qualitatively, cf. Fig. 27, a fully ergodic phase with support
in the entire Fock space, reminiscent of the RMT phase of the bare SYK model
54; and two corresponding ergodic regimes with support only on a fraction of
the Fock space – they separate the SYK type from the integrable regimes. While
we do not have high resolution access to the regime on the strongly interacting
side of the RMT phase due to our choice of the basis (Monteiro et al., 2021a),
we have found that the dual phase, which has arisen due to the restriction on
density-density interactions, follows a similar law. Its wave function moments
scale with power laws as a function of the relative interaction strength; their
exponents and amplitude can almost fully be predicted by Eq. (69). The latter is
a modification of the RMT prediction for the deformed SYK model by Monteiro
et al., 2021a once more highlighting the close connection of our model HtU to
the Sachdev-Ye-Kitaev model even though the interaction is restricted to the
density-density type.

The proposed model, (60), therefore represents a significant step to put SYK
physics – here in the context of ergodicity breaking – closer to experimentally
realizable systems, such as those at the bottom of table 4. Table 4 puts our
work in context with literature results from the conventional SYK field dealing
with quantum chaos to the more microscopically relevant models of many-body
localization, which can for instance be realized in cold-atom set-ups. A future
direction of research in this context would be the study of the evolution of the
phase diagram shown in Fig. 24 when moving down in the table, i.e. towards the
actual many-body localization problem for instance in disordered spin-chains.
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8
D Y N A M I C S I N M I N I M A L M O D E L S O F E R G O D I C I T Y A N D
I N T E G R A B I L I T Y: F I N I T E - S I Z E P R E - T H E R M A L I Z AT I O N

This chapter is largely based on the publication Dieplinger and Bera, 2023.

8.1 motivation : dynamics close to the transition

The previous chapter focused solely on the statistical properties of the many-body
energy spectrum of (de)localized phases. Specifically, the spacings of energy levels
as well as the distribution of wave functions in Fock space has been investigated;
by that the identification of integrable and ergodic phases was possible. This
translates to the properties of the system in the limit of infinite time t→ ∞.

In actual experiments, as well as in many numerical investigations, however,
physicists usually have access to finite time properties, such as density correla-
tions. The time evolution in such experiments or simulations is limited either
by experimental constraints, such as dephasing times of cold atom experiments,
or by finite-size effects, which become relevant when the time evolved state has
explored the finite boundaries of a model system after a finite time. Therefore,
investigating the effect of (de)localization, integrability and ergodicity on finite
time properties close to a possible MBL transition is an important task in un-
derstanding the interplay of thermodynamic properties and actual observable
phenomena in simulations and experiments.

The present chapter is dedicated to exploring the finite time dynamics of
toy models of ergodicity breaking; in particular we will focus on a variant of
the mass-deformed SYK model, Eq. (56) considered by Monteiro et al., 2021a.
As detailed in section 6.4, Eq. (56) hosts a finite-size ergodicity-integrability
transition, which can be interpreted as a toy model of a MBL transition. Here the
goal is to understand not only the infinite time, statistical properties of such a
model, but rather its finite time dynamics which could in principle be accessed
by experiments.

The main quantity of interest in this chapter is the density-density correlator
at finite times and – complementarily – the real time dynamics of a propagating
wave function in Fock space. The finite-size transition between localized and
ergodic regimes occurs as a function of the relative interaction strength, as seen
above. At intermediate times a per-thermal regime emerges, before eventually
the system thermalizes. This regime exhibits signatures of the localized phase at
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Figure 29: Finite time phase diagram of the minimal model Hamiltonian (70) for increas-
ing interaction strength λ. NB denotes the real space sites in the SYK quantum dot.
tH is the Heisenberg time, and the thermalization time tth (dashed line) depends on λ.
Adapted from Dieplinger and Bera, 2023, ©2023 American Physical Society.

the opposite side of the transition which can similarly be observed in the Fock
space dynamics of single wave functions. Fig. 29 shows a qualitative "dynamical"
phase diagram for finite times.

model and method. To study dynamical properties of an ergodic-integrable
transition we employ the deformed SYK model introduced by Monteiro et al.,
2021a. Its definition is adjusted to complex fermions,

H = λHSYK4
+ (1− λ)HSYK2

, (70)

where λ ∈ [0, 1] denotes the relative interaction strength of the two Hamiltonian
terms and

HSYK4
=

NB∑
ijkl

Jijklc
†
ic

†
jckcl, (71)

and

HSYK2
=

NB∑
ij

tijc
†
icj. (72)

As before c†i(ci) indicate complex fermions at site i and NB the number of sites.
Analogously to the structureless Hamiltonians dealt with so far in this thesis,
Eq. (54), (56), (60), the couplings are zero mean random numbers with variances
given by

⟨t2ij⟩ens =
J2

64NB
and ⟨J2ijkl⟩ens =

J2

2N3B
, (73)
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with constraints to ensure Hermiticity of H. This model conserves the global
particle number, in contrast to the original Majorana version by Monteiro et al.,
2021a, Eq. (56). Since properties of SYK are qualitatively independent of the
particle number sector chosen we henceforth restrict all simulations to half filling,
nfill = 1/2, without loss of generality.

Similarly to the model studied in the previous chapter as well as the Majorana
version of Monteiro et al., 2021b H hosts an ergodic and an integrable phase
depending on the parameters λ,NB. For λ = 1 the model is identical to the
SYK Hamiltonian which is known to be (maximally) chaotic, while at λ = 0 the
Hamiltonian becomes non-interacting, Therefore, it is many-body integrable, due
to the set of occupations of the single-particle orbitals forming an extensive set of
local integrals of motions. In the presence of both terms, 0 < λ < 1 a transition
between both qualitative limits is expected to happen as a function of λ for given
NB (García-García et al., 2018; Monteiro et al., 2021a); in this regime we will probe
the dynamical properties in form of the density-density correlator and the wave
function propagation in real space.

Models of the type SYK4 + SYK2 have been studied in recent years in diverse
contexts, see for instance Monteiro et al., 2021a; García-García et al., 2018; Haque
and McClarty, 2019; Lunkin et al., 2018; Altland et al., 2019; Haldar et al., 2020;
Nandy et al., 2022; Larzul and Schiró, 2022. In particular, Nandy et al., 2022

have examined the spectral form factor of a mass-deformed SYK model, which
is closely related to Eq. (70); however in the eigenbasis of the single-particle
hopping term HSYK2

1. They found a time scale (Thouless time), which is scaling
with the system size supporting an ergodic regime for long times at large enough
system sizes.

In the following a numerical investigation of the density correlations is pre-
sented which supports the notion of a cross-over time scale for large enough time
scales to an ergodic behavior. Additionally, a semi-analytical scaling argument is
presented for the associated time scale. The latter is verified by exact numerical
simulations of the time evolution of Eq. (70).

observables . Numerically, we calculate the infinite temperature density-
density correlator and its sample-sample fluctuations2,

Ci(t) = ⟨| ⟨ni(t)ni(0)⟩∞ −n2fill |⟩dis. (74)

The time evoloved densities at site i are given by

ni(t) = e
−iHt c

†
ici e

iHt, (75)

1 In Nandy et al., 2022 the single-particle energies are uncorrelated, in contrast to the spectrum of
HSYK2

. It is believed that this does not affect the ergodic-integrable characteristics qualitatively
(Monteiro et al., 2021a).

2 The average density-density correlator is known to be qualitatively similar to the spectral form
factor which was for instance studied by Nandy et al., 2022. An exact relation is known for the
bare SYK model. Both the effect of the mass deformation, and the behavior of the ensemble
fluctuations on this correspondence is not known precisely.
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where i = 0 is chosen without loss of generality due to the structureless na-
ture of the model (70); all sites are equivalent up to fluctuations. ⟨ · ⟩T =

Tr(e−H/T · )/Tr(e−H/T ) is the quantum mechanical expectation value at tempera-
ture T (Dieplinger and Bera, 2023).

The computational method used to calculate the time evolved operators ni(t)
is provided by the kernel polynomial method (KPM), where the time evolution
operator e−iHt is expanded in Chebyshev polynomials (Weiße et al., 2006). Quan-
tum typicality is used by evaluating quantum mechanical expectations values
stochastically (Weiße et al., 2006; Bera et al., 2017). Some details about KPM
and Chebyshev expansions are delegated to appendix C; for a detailed review
the reader is referred to the article by Weiße et al., 2006. Infinite time, t → ∞,
calculations have been performed using exact diagonalization, analogously to
chapter 7.

8.2 results : pre-thermal plateaus at finite times

The main result of the present chapter is the existence and the quantification of a
(long) finite time window on the ergodic side of the ergodic-integrable transition,
reminiscent of the integrable phase. The thermalization process is qualitatively
different from the sub-diffusive regimes observed e.g. in disordered spin models
in the vicinity of the MBL transition. The slow power-law process governing for
instance the return probability towards thermal equilibrium (Weiner et al., 2019)
is replaced by the formation of a finite-time plateau, where the dynamics are
reminiscent of the integrable regime. As the system parameters approach the
transition this plateau becomes longer before it eventually thermalizes quickly
(qualitatively similar to the bare SYK model (54)). The cross-over time scale
to the thermodynamic limit can be quantified by a simple scaling argument,
and physical intuition regarding the Fock space wave function propagation is
provided on both sides of the ergodic-integrable transition (Dieplinger and Bera,
2023).

8.2.1 Density correlations

limiting cases . The dynamics of both limiting cases λ = 0, 1 can be under-
stood quite easily. The purely interacting case, i.e the proper SYK model (54) is
studied in Fig. 30 a for different numbers of basis sites NB. The densities ni are
expected to become uncorrelated and uniformly distributed when ergodicity is
present, decoupling the density-density correlator in the limit t→ ∞. Therefore,
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Figure 30: Infinite temperature density-density correlator fluctuations Eq. (74) of the
modified SYK model with random single-particle kinetics, Eq. (70). Limiting cases
of λ = 1, i.e. the bare SYK model (a) and λ = 0, the non-interacting limit (c) of
C(t) for several system sizes NB = 10, 12, 14, 16, 18 as a function of time t. In both
limits the curves saturate to (different) plateaus at t → ∞; its numerical value C(t =∞) = ⟨C(t > tthresh)⟩t is shown as black horizontal lines and in the insets of a, c as a
function of NB, with tthreshJ = 103. b C(t) for different relative interaction strengths
λ = 0.0, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.1 at NB = 18. Depending on λ a finite
time plateau can be observed, which eventually thermalizes to the bare SYK saturation
value (black horizontal line). For numerical purposes we define the system thermalized
when an exponential fit of C(t), marked in the dashed curves, crosses a threshold
Cthresh = 1.5C∞ (black dashed line) at the thermalization time tth, cf. Eq. (78). d
Approximate scaling collapse of C for different NB in a time window O(10−1) −O(100),
where the NB dependent SYK plateau value has been subtracted from C(t) and t is
rescaled by the analytical estimate ta

th(λ). (inset) thermalization time from b as a function
of the interaction strength λ and the analytical estimate Eq. (77). Adapted from Dieplinger
and Bera, 2023, ©2023 American Physical Society.

C should tend towards zero.3 Since the system at hand is always finite, fluctua-
tions of C do not decay completely resulting in a finite C(t→ ∞) for a given finite

3 Numerically, the infinite time correlations have been defined as

C(t = ∞) = ⟨C(t > tthresh)⟩t, (76)
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NB even in a fully ergodic phase. Ergodicity can be diagnosed by the scaling of
the fluctuations with the basis size NB (inset). The sample-to-sample fluctuations
of the density correlations C(t) decay exponentially with NB, i.e. with a power
1/2 of the Fock space dimension dim(H). The full Fock space is explored by the
wave function at long times, implying ergodicity.

A different picture emerges for the non-interacting limit λ = 0, cf. panel c:
Another plateau forms whose value is also depending on NB. Upon a careful
examination two qualitative difference to the former case can be observed: (i)
The values of the plateaus are orders of magnitude larger than in the SYK case
(a), and (ii) the scaling of the plateau value C(t = ∞) proceeds with a power-
law of the number of real space sites NB instead of the Fock space dimension,
which is exponential in NB (inset). Absolutely speaking, also states which
evolve governed by the non-interacting Hamiltonian explore ever larger parts of
Fock space due to its extensive connectivity. Relatively speaking, however, the
fraction of the explored Fock space to its total size decreases exponentially. In the
thermodynamic limit NB → ∞ the dynamics is integrable in this sense.

cross-over dynamics . Having understood both limits, now finite λ, mixing
ergodic and integrable evolution, is considered. Following García-García et al.,
2018; Monteiro et al., 2021a; Dieplinger et al., 2021 a transition from an ergodic
regime to an integrable one in the statistics of the spectrum of H is expected.
Monteiro et al., 2021a predicted a critical interaction strength λ ∼ 1/N

5/2
B lnNB;

above which ergodicity and below which integrability emerges for a given NB.
Due to the exponential size of Fock space and the associated computational
complexity of exact simulations using KPM or exact diagonalization, the range of
NB accessible is limited (NB < 20) making it impossible to resolve the logarithmic
part of the scaling of the critical point. We here henceforth focus on the leading
power, λc ∼ 1/N

5/2
B , to benchmark numerical results.

Fig. 30 b depicts the correlator C(t) in the intermediate interaction regime
0 < λ < 1. For the largest values of λ the curve looks qualitatively similar to the
SYK case at λ = 1 (a) with slightly altered short time behavior. When λ becomes
smaller, a qualitative change occurs; a plateau develops which has even a local
maximum at intermediate times when λ is small enough. At these times, cf. for
instance λ = 0.04, at times t < 5× 102/J, the data resembles the non-interacting
cases shown in panel c; the system looks integrable. However, at longer times a
second drop in C(t) is observed after which the thermal plateau, reminiscent of
the bare SYK model (a) is assumed. Apparently, a time scale exists before which
the system looks integrable – dubbed pre-thermal – and after which the system
eventually thermalizes, indicating a finite-time cross-over.

If λ is decreased further and eventually crosses the critical value λc, the system
eventually becomes truly integrable, as expected from Monteiro et al., 2021a. Here

with tthresh a threshold time scale at which the finite-size density correlator C(t) does not change
any more up to fluctuations. ⟨ · ⟩t denotes a long time average.
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the time traces eventually qualitatively follow the non-interacting limit, cf. Fig.
30 c.

thermalization time scale . Next we would like to quantify the cross-
over time scale at which the behavior of the time-evolved states changes from
pre-thermal to thermal in the vicinity of the transition at λc ∼ 1/N

5/2
B . One can

find an analytical estimate from the following qualitative argument: In finite
systems the smallest energy scale is typically the level spacing of the many-body
spectrum. In a disordered system the mean level spacing typically is a sufficient
measure; it usually scales inversely with the number of levels, i.e. the Fock space
dimension; so exponentially in NB.

The smallest energy scale available translates to the largest time scale at which
dynamics can still be non-trivial. This time scale is often referred to as the
Heisenberg time tH, and scales inversely with the level spacing, so tH ∼ O(1)×( NB

NB/2

)
at half filling. This can for instance also be seen when studying the spectral

form factor of a chaotic system, e.g. Eq. (60) shown in Fig. 27; the plateau time is
the latest time at which a change in the dynamics happens in the finite system,
and it is roughly given by the Heisenberg time.

Now we assume that there is a thermalization time as observed in Fig. 30. This
time scale has to be smaller than the Heisenberg time for state evolutions on the
ergodic side of the ergodic-integrable transition and larger than the Heisenberg
time on the integrable side, to be consistent with the pre-thermal plateau. In
this case it is plausible to assume that exactly at the critical point λc the two time
scales coincide, i.e. tath(λ = λc) = tH. Adding the scaling of the critical point,
i.e. λc ∼ 1/N

5/2
B , and approximating the level spacing scaling by an exponential,

tH ∼ 2b×NB , a consistent analytical form for tath is

tath(λ) ∝ 2a/λ
2/5

, (77)

where a = O(1).
Fig. 30 d a verification of this analytical idea is attempted. The time axis is

rescaled by tath, while the ergodic plateaus, shown in panel a, are subtracted
from C(t). Many data traces corresponding to C(t) with system sizes from NB =

14, 16, 18 and interaction strengths from λ = 0.03 to 0.1 are shown, which are all
expected to show a pre-thermal behavior according to the previous analysis.

Assuming Eq. (77) a collapse of all data to a single curve is expected, however
limited to the intermediate time regime, where the plateau was observable in
panel b. Upon setting the open constant in Eq. (77) to a = 2.2 an approximate
collapse of the data traces can be observed around tJ ∼ O(1).

Additionally, we quantify the numerically observed thermalization directly.
For that a threshold value Cthresh is defined slightly higher than the thermal value,
cf. panel a, below which the system is said to be thermal (black horizontal line in
panel c). In the vicinity of Cthresh the correlator C(t) is fitted by an exponential
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to reduce statistical noise (black dashed curves). Their crossing of the threshold
Cthresh defines tth,

tth = t |C<Cthresh . (78)

tth is shown in the inset of Fig. 30 d. The theoretical prediction tath (black
line) is a reasonably good description of the simulated data across a wide range
of parameters λ,NB. Deviations both in the imperfect collapse in panel d and
in the scaling analysis is the inset may be explained by logarithmic corrections,
according to Eq. (57), which are impossible to resolve in detail in exact numerics.
Additionally, the different regimes of the wave function moments observed by
Monteiro et al., 2021a and in a related model in the previous chapter may affect
the scaling of the thermalization time close to the transition; it is conceivable that
different regimes of distinct scaling emerge in the finite time dyanmics which
correspond to the parameter regions II/III in Monteiro et al., 2021a and chapter
7. To resolve these details an energy-resolved study of Eq. (70) may be in order.
The analytical form of tth and its numerical verification is the second main result
of this chapter.

Recent studies cited a Thouless time scale in system such as the one studied
in this chapter; it is defined as the time at which the dynamics of a many-body
system approaches universal behavior and loses memory of its initial conditions
(Schiulaz et al., 2019). It is conceivable that the observed thermalization time can
be interpreted in this context. tth approaches tH when the interaction strength
λ becomes almost critical at finite NB. A similar observation has been made in
disordered spin chain models, where strong disorder prohibits thermalization,
cf. Schiulaz et al., 2019. The role of disorder is taken by the relative interaction
strength λ in the present study.

8.2.2 Wave function propagation in Fock space

The Fock space of many-body models can be interpreted as high-dimensional
graphs where Fock space sites are the nodes and the connections are mediated by
Hamiltonian matrix elements in a fixed basis. Typically the connectivity is highly
complex, in particular when the model has a high degree of (spatial) structure.
There is a variety of works which attempt at modeling many-body properties,
e.g. localization transitions, in simplified graph models of Fock space, cf. section
6.2 and Tikhonov and Mirlin, 2021b. The model (70) connects the two extremes
on some level; the Fock space connectivity is much more complex than in simple
random regular graphs (Tikhonov and Mirlin, 2021b), while its general structure
is still relatively simple compared to e.g. disordered spin chains. While a fully
analytic time-dependent study is beyond the reach of the available method, it
is possible to understand the dynamics of the extended SYK model better by
analyzing its wave functions propagating through Fock space.
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In the ergodic regime of Eq. (70) the wave functions are expected to eventually
distribute over the entire volume of the Fock space uniformly; while on the
integrable side of the transition finite support only on a smaller fraction is
expected, which is not scaling with the lattice size.

Computationally, we consider the time evolution of initial states which are
fully localized on a single Fock space site in occupation number basis, i.e.

ψ(t) = e−itHψ0 = e
−itH |0, 0, 0, . . . , 1, 1, 1 . . .⟩ , (79)

at half filling. The choice of the initial basis state is not relevant since all Fock
space basis states are equivalent up to disorder fluctuations. Here the Fock space
is structured according to the local occupations of the sites i = 1, . . . ,NB; the
basis states are denoted

ψa = |na1 ,na2 , . . . ,naNB
⟩ , (80)

where nai = 0, 1 are fermionic occupations. Structure of propagating wave
function can hence be quantified by the distance4 between two basis states
contributing to a time evolved wave function,

dH(ψa,ψb) =
1

2

NB∑
i=1

| nai −n
b
i |, (81)

with maximum length dmax
H = NB/2.

For the remainder of this section an important quantity is the probability to
find a many-body wave function at a certain "distance" d away from the initial
state. It can be defined as

Pd(t) =
∑

ψa, for dH(ψa,ψ0)=d

| ⟨ψ(t) | ψa⟩ |2 . (82)

When starting with a wave function localized at a single Fock space site, d = 0,
the probabilities for different distances d from that basis site are governed mainly
by the available Fock space sites at these distances; for instance the Fock space
volume of sites with a distance d = NB/4 is always much larger than at d = 1.
As this effect obscures possible alterations due to the relative interaction strength
λ, the probability densities as a function of d are normalized by the respective
Fock space volumes, which can be determined combinatorically,

Pth
d =

1

Nth

(
NB −n

d

)
·
(

n

n− d

)
, (83)

4 The defined distance dH is not necessarily quantifying the shortest possible path in the Fock
space lattice. For the purpose of this study it is sufficient to measure propagation through Fock
space using dH. The connectivity of the Fock space graph is scaling with the system size NB due
to the SYK interaction.
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Figure 31: Normalized probability density as a function of the Fock space distance to the
fully localized initial state for different times (color scale) for the non-interacting (left)
and fully interacting (right) limits. The yellow curves and the inset represent the infinite
time extrapolation of the probability distribution; the color scale in the inset encode the
varying interaction strength λ, increasing from blue to red. The system size is NB = 16.
Adapted from Dieplinger et al., 2021, ©2023 American Physical Society.

for filling factor nfill = n/NB and normalization constant

Nth = 2NBΓ(NB + 1/2)/
√
πΓ(NB + 2/2), (84)

at half filling. This distribution also corresponds to the equilibrium distribution
at which a wave function is uniformly occupying the entire Fock space lattice.

Fig. 31 shows the normalized time-dependent distribution functions Pd(t)/P
th
d

as a function of time t in the two limits λ = 0, 1 for the same time range as shown
in Fig. 30. Initially in both cases the probability broadens from a localized peak
at t = 0 and eventually reaches to all distances d. However, a clear distinction is
offered by the late time behavior: While in the integrable case the distribution
always retains some imbalance towards small distances, in the ergodic case it
eventually becomes flat and uniform. This means that using the distance defined
in Fock space the non-interacting limit is not only integrable but one can even
associate a notion of "localization" in Fock space, while the ergodic limit trivially
is delocalized. For the first time in this work the ergodic-integrable transition
studied in these many-body models can actually be associated with a (finite-size)
localization-delocalization transition. This offers an important puzzle piece to
bridge our results to the problem of actual many-body localization. Fock space
localization has been diagnosed similarly by Creed et al., 2023 in a disordered spin
chain; the authors investigated – similar to the study presented here – probability
transport as a function of the Fock space distance for many-body wave functions
subject to a disordered spin Hamiltonian. They, too, observed homogeneity of
the probability distribution in the long time limit on the ergodic, and a residual
imbalance on the integrable side of the transition. The inset of Fig. 31 extends the
analysis of the long time limit to finite interaction strengths λ. The distributions
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Figure 32: The first moment of the probability distribution Pd as a function of time t,
according to Eq. (86). The interaction strength is varied analogously to Fig. 30; the
curves resemble qualitatively the density-density correlations. The arrows indicate the
respective thermalization time tth(λ), shown in Fig. 30 d in the inset. The system size is
NB = 18. Adapted from Dieplinger and Bera, 2023, ©2023 American Physical Society.

are calculated by a exact time evolution to a time t≫ tH. The localized character
of the distribution functions as a function of the distance to the initial basis state
d appears to be a stretched exponential with

Pd(t→ ∞) ∼ e−
√
d/ξ ×Pth

d , (85)

with ξ defining a localization length in Fock space using the distance dH.
Interestingly, all data sets belonging to the localized side of the transition collapse
to the same stretched exponential with identical localization length ξ, while the
ergodic regime collapses to a uniform flat distribution as expected.

finite time propagation of fock space wave functions . Next we
define the first moment of the distribution Pd to quantify the finite time behavior
of the wave function propagation, starting from a fully localized initial state,

∆x(t) =
∑
d

[Pd(t)d] −
4

NB
, (86)

the term 4/NB referring to the equilibrium distribution Pth
d .

∆x(t) is calculated for increasing interaction strengths λ, cf. Fig. 32, for the
same parameter range and time window as in the calculation of the density
correlations in Fig. 30 b. First a – for quantum chaotic many-body systems
universally expected – initial decay of the form ∆x(t) ∼ e−Γ

2t2 (Schiulaz et al.,
2019) is observed. Here Γ is related to the depletion time of the initial state. For
intermediate times the trajectories of ∆x(t) strongly depend on the interaction
strength; a power-law decay presumably governs the large-λ simulations while in
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B . The curves intersect approximately at the vertical line, separating the integrable
(localized) from the ergodic (delocalized) regime. Adapted from Dieplinger and Bera,
2023, ©2023 American Physical Society.

the vicinity of the transition at λc again plateaus of a similar shape as in the density
correlations emerges. The thermalization time at which we observed the eventual
decay of the density correlations to the thermal limit are marked in colored arrows,
depending on the interaction strength λ. The overall qualitative shape of ∆x(t) is
very similar to Fig. 30, suggesting that the Fock space structure, quantified by the
distance dH, has a very direct impact on the correlation functions of the model.
A similar observation was made by Creed et al., 2023. They showed that the
combination of this metric with the first moment of the probability distribution
Pd can be related rigorously to two-point correlations, such as density-density
correlators, in disordered spin chains.

Finally, to validate this measure we calculate the long time limit of ∆x(t) as
a function of the interaction strength λ and find the critical λc for given NB at
which the transition from ergodic to localized behavior occurs. Fig. 33 shows
∆x∞ = ∆x(t→ ∞), calculated using exact time evolution to t≫ tH, as a function
of the interaction strength λ, which has been rescaled to account for the finite-size
scaling of the critical λc, cf. (57). Clearly, the average of the distribution ∆x
changes from zero, indicating uniform distribution, in the ergodic regime at large
λ to a finite imbalance of the distribution towards the initial state – reminiscent
of the Fock space localization with respect to the metric dH – at small λ. Curves
for different system sizes cross at λ ·N5/2 ∼ O(1), as expected by Monteiro et al.,
2021a; Tikhonov and Mirlin, 2021b.

Coming back to the very introduction of the second part of this thesis the
observed scaling of λc with the number of basis sites matches the prediction
obtained from random regular graphs (RRG). Herre et al., 2023 recently observed
a critical disorder strength in RRG calculations scaling as WRRG

c ∼ N4B lnNB. It is
possible to connect the RRG critical point to the critical interaction strength of
our model, i.e. the modified SYK Hamiltonian, such that Wc ∝ λ−1c N

3/2
B , where

the different normalization of the Hamiltonian conventions account for the factor
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N
3/2
B . Also quantitatively the numerical values of the transition points for given

NB are consistent (Herre et al., 2023; Dieplinger and Bera, 2023).

8.3 conclusion : emergence of a cross-over time scale close to

the finite-size ergodic-integrable transition

Summarizing the results of this chapter, an interesting dynamical phase diagram
of the modified SYK model Eq. (70) has been found, most prominently featuring
a finite-size transition between an integrable, Fock space localized and an ergodic
regime. In the latter a cross-over time scale was found, which separates finite
time pre-thermal behavior from the thermodynamic ergodic limit, cf. Fig. 29.
The long time limit of our observables, the density-density correlations as well
as Fock space wave function propagation, is consistent with previous studies
which found an analytical expression for the finite-size transition between the
two infinite-time regimes.

Interestingly, we have been able to associate actual localization of the wave
function propagation in time with the integrable regime, bridging the SYK litera-
ture further towards many-body localization problems in the more conventional
sense. This localization, however, must not be understood in real space, but in
Fock space, using the metric defined by dH, inspired by the Hamming distance
between occupation numbers in real space orbitals. Actual real space localiza-
tion presumably requires a spatially local disorder potential ("mass disorder")
instead of non-local random all-to-all hoppings as studied here.5 The analytical
form of the Fock space localization observed here is dominated by a stretched
exponential.

The big question to begin with in the present chapter was how to understand
the dynamics of observables in strongly disordered many-body models; poten-
tially close to a MBL transition. Here we have studied a toy model of such a
system and focused on the dynamics of the ergodic side of such a (finite-size)
transition. How does the specific fingerprint of the pre-thermal behavior of our
minimal model compare to the slow-thermalization behavior found in more
common models of many-body localization, for instance in Weiner et al., 2019;
Evers et al., 2023; Bera et al., 2015; Luitz and Lev, 2017; Doggen et al., 2021? In fact
the slow thermalization behavior of short range spin models does not show signs
of pre-thermalization; the decay of observables such as the imbalance of charge
densities proceeds with power-laws with decreasing exponents. No cross-over
time scale can be observed (Schiulaz et al., 2019; Creed et al., 2023; Torres-Herrera
and Santos, 2015).

However, a possible and very interesting candidate for showing such pre-
thermal plateaus also in more realistic models of many-body localization are
long-range models with a decaying interaction of the form ∼ 1/rα; r representing

5 It is an open question how the lack of energy level correlations in a mass-disordered SYK
Hamiltonian compared to the single-particle spectrum of HSYK2

influences the many-body
properties. It is believed that the effect is not qualitative (Monteiro et al., 2021a).
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a real space distance between interacting electrons. These types of models do
exhibit some aspects of the (infinite range) modified SYK model; a finite-size
localization transition occurs, scaling similarly, namely as Wc ∼ N

2d−α
B lnNB for

dimension d < α < 2d (Burin, 2015b; Gutman et al., 2016; Tikhonov and Mirlin,
2018; Nag and Garg, 2019; De Tomasi, 2019; Roy and Logan, 2019; Thomson and
Schiró, 2020; Deng et al., 2020). The scaling very much resembles the modified
SYK model studied here and e.g. by Monteiro et al., 2021a; Tikhonov and Mirlin,
2021b. It is therefore conceivable that a pre-thermal behavior could be observed
in long-range spin chains, warranting future studies.
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9
C O N C L U S I O N

This thesis is devoted to localization phenomena in ensembles of disordered
Hamiltonians. In the absence of electron-electron interactions, namely in a single-
particle picture, wave functions of disordered systems generically Anderson
localize in two dimensions. A systematic way to protect systems against becoming
pure Anderson insulators is offered by topology and the bulk-boundary principle.
The most famous incarnation of this concept is the integer quantum Hall effect,
where edge states form at the boundaries of an insulating sample and carry
quantized current. The critical theory of transitions between quantum Hall
plateaus of different conductivity is still unknown. In the first part of this thesis
some properties of the quantum Hall plateau transitions have been explored, in
different microscopic realizations.

universality of quantum hall criticality. Recent studies, such as
Gruzberg et al., 2017; Zirnbauer, 2019; Sbierski et al., 2021 or Dresselhaus et al.,
2021 suggested that the critical exponents of the quantum Hall plateau transition
either diverge, rendering the critical theory marginal, or that they are non-
universal suggesting a second fixed point or even a critical line in renormalization
group flow (cf. e.g Sbierski et al., 2021). In particular geometric disorder, by
distorting a regular lattice, or Dirac fermions have been suggested as candidate
systems where the quantum Hall critical exponents show non-universality with
respect to more conventional models, such as the Chalker-Coddington network,
where most high-performance simulations have been carried out.

Two high-precision studies – the first examining finite energy critical properties
as a function of energy in a disordered Chern insulator; the second an amorphous
realization of the anomalous quantum Hall effect – have been presented in this
thesis. Both establish that the critical exponents, in particular those connected
with the divergence of the localization length, are fully consistent with univer-
sality within class A. The numerical values of the exponents ν agree well with
previous results on more conventional models of the quantum Hall effect. In
the case of the disordered Chern insulator on a square lattice, the functional
dependence of the localization length markers investigated even collapse for
different energies together with a fully different microscopic realization built on
Landau levels, cf. chapter 4. Additionally, multifractal properties of the critical
point in the amorphous realization of the quantum Hall effect have been studied.
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The anomalous dimension has been found to be consistent with previous studies
on the Chalker-Coddington network models, showing small but finite quartic
corrections. This result offers evidence against the parabolic scaling paradigm
proposed by Zirnbauer, 2019. Furthermore, numerical values of the (quartic)
corrections agree across different microscopic models, once again suggesting
consistency with universality within class A. As in all numerical finite-size stud-
ies in the quantum Hall realm, a caveat in the presented investigations are the
sizable and slowly decaying finite-size corrections. It is very difficult to exclude
transient observations which may still differ in the true asymptotic limit. In
general, the studies presented in chapter 4 will hopefully help in establishing
narrow conditions for possible candidate theories of the quantum Hall plateau
transition.

ubiquitous appearance of quantum hall states beyond class a .
Usually, quantum Hall criticality is observed only upon fine-tuning a physical
system to the quantum Hall plateau transition, for instance the energy, the
electronic density or the magnetic field. The quantum Hall critical fixed point is
unstable, which is why the interest in the critical properties derives mainly from
academic curiosity and a theoretical perspective.

Recently however, Sbierski et al., 2020 have discovered a relatively stable regime
of quantum Hall critical states, extended over the entire surface spectrum of
a class AIII topological insulator in three dimensions. This is striking for two
reasons: First, states at finite energy which break the AIII underlying (chiral)
symmetry explicitly are usually expected to generically fall into the quantum
Hall insulating phase, but they apparently do not. Second, this offers an escape
from the notorious difficulty of accessing (unstable) quantum Hall critical states:
No fine-tuning to specific system parameters seems to be needed – all states in a
broad range of energies are critical.

In collaboration with analytical theory by A. Altland, P. Brouwer, M. Moreno-
Gonzalez, M. Foster and L. Trifunovic a systematic approach to the emergence of
spectrum-wide criticality on surfaces of topological insulators has been attempted,
cf. chapter 5 and Altland et al., 2024.

We have succeeded in finding simple criteria, which depend on the underly-
ing fundamental symmetries in the ten-fold way, when finite energy (i.e. low-
symmetry) wave functions are protected against localization and spectrum-wide
criticality can emerge; or – on the contrary – when only the high-symmetry
point in the spectrum (i.e. zero energy) is delocalized. In particular, for the
class AIII topological insulator a symmetry conserving surface potential term
is found which can open a gap between bulk and surface spectra of the full
three-dimensional system and thereby localize the surface spectrum. The under-
lying argument is connected to the principle of spectral flow between surface
and bulk states, which can be interrupted by this fragmenting surface poten-
tial. This bridges back to Laughlin’s gauge argument for the quantization of
the Hall conductivity, again closing the circle to the ubiquitous quantum Hall
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effect. Additionally, we have been able to generalize the underlying argument
to all non-Wigner-Dyson symmetry classes in the ten-fold classification, adding
information about the "localizability" of surface and bulk spectra depending on
the symmetry and the spatial dimension, cf. table 3.

An important consequence of this work is that the popular minimal Dirac
Hamiltonians, employed to model the two-dimensional surface states of a three-
dimensional topological insulators suffer serious shortcomings: They do not
contain information about the surface band structure in the vicinity of the bulk
spectrum, which is – as seen in chapter 5 – important for assessing the validity of
the spectral flow principle. Therefore minimal Dirac models cannot capture the
possibly finite Berry curvature of surface states, which leads to non-zero surface
Chern numbers in the case of a detached surface spectrum. Thus the localiza-
tion physics emerging, when a corresponding fragmenting surface potential is
present, is fully missed. Consequently, these types of models cannot even reliably
reproduce the most basic of all properties of disordered wave functions – namely
whether they are extended and conducting or localized and insulating (Altland
et al., 2024).

thermalization vs . "quantum memory". Generically, low-dimensional
non-interacting quantum systems localize in the presence of disorder. In the
first part of this thesis as well as in literature one overarching question is how to
escape this omnipresent emergence of Anderson insulators.

In the second part of the thesis – in the presence of strong interactions –
the relationship of localized and extended systems is reversed to some extent:
electronic interactions induce decoherence among quantum mechanical paths of
scattering electrons. Consequently, the mechanism found by Anderson looses its
rigour, localization breaks down and wave functions may extend over the entire
Hilbert space. For experiments, many-body wave functions time-evolving to a
fully extended state typically look thermal, since usually only local observables
are probed, while the information about the initial state remains hidden in
global properties. The following questions hence have been posed: How can an
interacting quantum system escape thermalization? How can it stabilize localized
wave functions even in the presence of decoherence?

Apart from theoretical and experimental interest, localized many-body wave
functions could be relevant for quantum computing, since they potentially "re-
member" their initial state forever, instead of hiding it in global degrees of
freedom, rendering them inaccessible for (local) read-out procedures. As such
many-body localized phases may serve as candidate systems to realize a quantum
memory (Nandkishore and Huse, 2015). Some other candidate systems which do
evade thermalization, such as integrable Hamiltonians, suffer the shortcoming
that they require fine-tuning of its parameters, and even small perturbations may
render them thermalizing again. In contrast, many-body localization would offer
a more generic path to a "quantum memory".
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minimally modeling many-body localization. Unfortunately, the
huge Hilbert space of many-body interacting quantum systems and their highly
correlated matrix elements make it very hard to reliably assess the localization
properties of wave functions for realistic systems both analytically and numer-
ically. Therefore, in the second part of this thesis we have chosen to follow a
different path inspired by Monteiro et al., 2021a: As a starting point we use
a (microscopically non-realistic) toy model, based on the Sachdev-Ye-Kitaev
Hamiltonian, where a finite-size localization transition and interesting accompa-
nying ergodic regimes have been found even analytically. Compared to more
conventional models, e.g. disordered spin chains, simplifications such as the
structureless interaction Hamiltonian have made this possible (Monteiro et al.,
2021a).

The numerical study presented in chapter 7 extends this work by reintroducing
some structure present in microscopically realistic electronic Hamiltonians, in par-
ticular, the density-density form of electron interaction, reminiscent of real-space
Coulomb repulsion. Interestingly, the different delocalized regimes, where wave
functions have spread ergodically only on a subset of the Fock space, compare
quantitatively to the original SYK-based model. Additionally, dual regimes close
to a second finite-size localization transition in the strongly interacting limit have
been revealed, which can be described on the same footing. After all, two impor-
tant messages can be derived from this investigation: First, it is possible to come
closer to microscopic realism by giving up on some of the analytical tractability.
Still much of the physical properties remains present even on a quantitative level.
In fact, also newly emerging regimes can be described using the original, simple
SYK-based toy model. Related to that, secondly, the observation that as complex
properties as the wave function scaling close to the finite-size transition survive
as drastic alterations of the SYK model as reducing the interaction structure to a
density-density form (Dieplinger et al., 2021) is highly interesting. It can be hoped
that this extends also to different properties of the SYK model for instance its
low temperature characteristics where the holographic duality to gravity theory
emerges. At the moment it remains an open question whether this stability of
SYK characteristics survives even stronger alterations of its microscopic definition,
for instance introducing a spatial structure and a finite (but possibly long) range
of the interaction kernel.

emergence of pre-thermal behavior before eventual thermaliza-
tion. In the previous study of the minimal ergodic-integrable transition only
statistical properties of the spectrum and eigenstates have been analyzed so far,
corresponding to a long-time limit of time evolution. However, in experiments
physicists often have access to finite-time properties of a given Hamiltonian, for
instance in cold atom experiments, which realize disordered spin or fermion
chains in the context of many-body localization1.

1 There, often an imbalance of charges between two spatial regions in a sample system is monitored
when time-evolving a localized initial state, cf. Schreiber et al., 2015; Lüschen et al., 2017.
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Chapter 8 has studied dynamical properties of such a minimal model, a close
relative of the deformed SYK Hamiltonian of Monteiro et al., 2021a. In previous
numerical studies on short-range interacting systems, for instance disordered
spin-chains, a slowing-down of thermalization over a long time window has been
observed when disorder is increased to values potentially close to the many-body
localization transition2, e.g. the real space charge imbalance following a slow
power-law decay. In our study, however, we observe a qualitatively different
behavior: Even in the thermal phase, where eventually information about initial
states, like charge imbalance, is lost, the system looks non-thermal for a long
time. Specifically, (local) information about the initial state is present while
time evolving, while at a certain thermalization time scale, its temporal behavior
crosses over to its actual long-time lime, i.e. equilibrates, leading to a complete
loss of memory of the system’s initial state.

In chapter 8 we have been able to quantitatively associate a time scale with this
cross-over during time evolution, cf. Fig. 29 for a dynamical phase diagram. This
means that even on the ergodic side of the finite-size ergodic-integrable transition
remnants of localization can be observed, for a long (but finite) time window.
Circling back to the concept of "quantum memory" this could be interesting for
quantum computing as well; since the time scale at which the system thermalizes
is potentially exponentially large, there is a huge time window where information
about its initial state is stored, before it is eventually lost. Even if it turns out
that the localization transition does not exist at all for large disorder strengths, or
like in the model studied here, it is only present for finite sizes and the localized
phase vanishes in the thermodynamic limit, this could be useful.

It is known that a relatively sharp cross-over from pre-thermal to thermal
behavior as observed here does not exist for short-range spin chain models.
Instead, a uniform decrease of key localization signatures has been reported.
However, it would be highly interesting if we were able to observe a pre-thermal
plateau in long-range spin or fermion chains, which could be related more closely
to the deformed SYK model studied in this thesis.

outlook and closing remarks . Many future paths of research extending
the understanding both of topological materials as well as thermalization and
its break-down, its appearance in better-controlled toy models and potential
applications have already been discussed. This thesis started out with an attempt
to interconnect several subfields of condensed matter physics with each other
on a theory level. The concept of an effective theory was elaborated upon in the
introduction. Here it originated from a topological interpretation of single-particle
models of disordered materials, or by the categorization of generic many-body
interacting systems in thermalizing – where qualitatively different and interesting
regimes emerged – and non-thermalizing, e.g. many-body localizing.

2 Still, at this point there is no consensus on the existence of such a transition in the strict sense for
large disorder due to analytical and numerical difficulties, cf. Evers et al., 2023.

121



While some bridges to even further subfields of theoretical physics have been
hinted at – thermalizing quantum systems can be naturally related to the field
of quantum chaos, for instance in recent literature on the Sachdev-Ye-Kitaev
model (Maldacena et al., 2016a; Maldacena and Stanford, 2016) – some obvious
questions remain open: To date, for instance, it is very challenging to find a way
to classify disordered Hamiltonian ensembles analogously to the ten-fold way
for single-particle models whenever interactions are present. If possible such
an extension could offer a more natural connection between the research areas
topology/localization and many-body ergodicity/localization, corresponding to part I
and II of this thesis, respectively.

A promising potential intermediary step between the two topics could be
disordered Hamiltonian ensembles emerging from self-consistent mean-field the-
ories: They include electronic interactions but keep a form which is beneficial for
classification along the lines established in single-particle Anderson localization.
This route has already been hinted at by Stosiek, 2020.

"More is different."
– P. W. Anderson

The perspective adopted by this thesis emphasizes the need for a theory capable
to break down many degrees of freedom into an effective theory with only a
handful of important tuning parameters. Anderson’s paper More is different
expresses a similar idea from a slightly different angle. While the fundamental
laws which govern physics and other sciences, namely the standard model of
elementary particles, remain the same, this does not mean that all higher-level
phenomena become their direct corollaries. On the contrary, Anderson highlights
that dealing with several, many or even infinitely many of the same degrees of
freedom, which are individually understood in the most fundamental theories
of physics, opens the door to an entirely new world of phenomena hosting
qualitatively different physical effects (Anderson, 1972).

While Anderson’s statement probably applies to all natural and even social
sciences, in this thesis we have seen some interesting examples within condensed
matter theory. For instance, in the first part we observed topological protection
against Anderson localization emerging from the multitude of fermionic degrees
of freedom in a topological insulator; in the second part we studied many-
body localization phenomena coming from microscopic degrees of freedom
of the studied toy models. Both phenomena have emerged in systems whose
fundamental laws are the same: Particles moving and interacting according to
the Schrödinger equation of quantum mechanics – the same idea as in any other
(quantum) condensed matter problem we can imagine.

The huge difference between these problems cannot be explained by different
microscopic origins. On the contrary, because of subtle variations in relevant
energy, length or time scales, the multitude of the same microscopic constituents
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leads to a large variety of emergent phenomena. Therefore, while this thesis
focused on localization, criticality and ergodicity, other observable effects could
span from viscous electron flow to emergent relativistic effects to unconventional
superconductivity.
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Part III

A P P E N D I X





A
S U P P O RT I N G N U M E R I C A L D ATA

a.1 disordered chern insulator on a square lattice
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Figure 34: Full distribution functions of wave function moments P(lnPq) at q = 0.5 at the
critical point of the Chern insulator (Ec,Wc,Rc) = (0.59, 1.45, 1.2), corresponding to the
critical point in Fig. 6 a. The colors encode increasing system sizes from blue to orange,
L = 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1024. Inset: logarithmic plot rescaled
by the parabolic prediction for the multifractal dimension by Zirnbauer. Adapted from
Moreno-Gonzalez et al., 2023, ©2023 Elsevier.

In Fig. 34 the distribution functions of the wave function moments Pq=0.5 are
shown for increasing system sizes. The parameter set shown belongs to the
green arrow, pointing at the maximum of the multifractal dimension shown
in the main text chapter in Fig. 6 a. The shape of the distribution functions
becomes almost invariant for large system sizes, indicating criticality. In the
inset the horizontal axis is rescaled by the theoretical scaling exponent predicted
by Zirnbauer, τ(p)q . The shape as well as the mean of the distributions collapse
approximately. The residual differences can be explained by possible corrections
to Zirnbauer’s parabolic prediction for τq and by additional non-zero finite-size
scaling corrections. Both are analyzed for the disordered Chern insulator on a
square lattice in the main text in chapter 4.
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a.2 surface localization in aiii topological insulators

Distribution functions of wave function moments with and without fragmenting surface
potential
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Figure 35: Distribution function of wave function moments for the cases shown in Fig. 22,
at E = 0.2,M = 2 with fragmenting potential uf = 0.3, Wϕ = 0.1 (a) uf = 0, Wϕ = 0.15
(b) and zero mean and standard deviation 0.3, Wϕ = 0.15 (c). The moments have been
rescaled with the parabolic prediction for the multifractal dimension τ(p)

q . (inset) Scaling
of the mean wave function moment ⟨Pq⟩ with the system size, compared to the parabolic
prediction (black). Adapted from Altland et al., 2024, ©2024 American Physical Society.

A more direct diagnostic of quantum Hall criticality compared to the effective
multifractal dimension, Eq. (22), are the distributions of the wave function
moments Pq directly; they are shown in Fig. 35, the panels a,b,c corresponding
to the data in Fig. 22 with constant, zero and random fragmenting potential uf.
The energy is chosen to be E = 0.2. The horizontal axes are rescaled with the
parabolic prediction for τq ≈ τ

(p)
q , such that for quantum Hall critical states an

approximate collapse should be observed (up to finite-size and quartic corrections
to τ(p)q ).

In panel b the scenario of spectrum-wide criticality as in the first section of
chapter 5 can be identified; when no fragmenting potential is present spectral flow
survives and surface states are quantum Hall critical even at finite energies. When
uf ̸= 0, as in panel a, quantum Hall criticality breaks down; the data does not
collapse to a master curve and the distribution functions are not scale-invariant for
increasing system sizes. The effective "flow" with system size becomes gradually
slower hinting at eventual localization with τq |q>0= 0.

When a fragmenting potential is present but distributed randomly around zero,
the picture resembles the uf = 0 case again, cf. panel c: Chiral domain wall states
percolate through the entire surface and generate critically delocalized states, as
explained in the main text.
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The inset of Fig. 35 shows the mean ⟨Pq⟩ with subtracted metallic scaling, to
enhance visibility: The trend observed in the shape of the distribution functions
is corroborated; the green and yellow data corresponding to zero fragmenting
potential and zero mean fragmenting potential eventually closely follow the
theoretical curve for quantum Hall criticality (black) while the blue data shows a
clear curvature away from the quantum Hall critical fingerprint, corresponding
to a non-zero mean of the fragmenting potential.

Uncorrelated phase disorder model

In the main text the simulations on the AIII topological insulator with disorder
and fragmenting potential, chapter 5, in particular for Fig. 22 and 35, have
assumed correlated disorder of strength Wϕ and a small short-range correlation
length ξϕ = 1. Both localization – in case of non-zero mean fragmenting potential –
and criticality of finite energy surface states have been resolved well. Alternatively,
it is possible to choose zero correlation length, i.e. uncorrelated Gaussian disorder
for the phases, Eq. (46). The data corresponding to such a setting is published
in Altland et al., 2024 and shows the same qualitative trends, depending on the
nature of the fragmenting potential uf as presented in the main text and the
previous section. Details in the convergence are however slightly different: The
localization length presumably is shorter, the effective exponent τ̃q approaches
zero faster (for q > 0); and the distributions, analogously to Fig. 35 differ more
strongly for the shown system sizes. At the same time, however, in particular
the case with random fragmenting potential uf shown in green in Fig. 22 and in
panel c of Fig. 35 converges more slowly than in the correlated case shown in this
thesis; it seems the additional finite-size scaling corrections are more pronounced
in this case. Qualitatively, the two data sets do agree; however some details, for
instance prefactors of scaling corrections, may differ. This is not important at
all for this thesis; the origin of these details may lie in the microscopics of the
two disorder models and has no influence on the coarse-grained theory in the
regime of large system sizes. For the complementary data, showing uncorrelated
disorder models, the interested reader is referred to the original publication
Altland et al., 2024.

Convergence of slab thickness of three dimensional samples

To calculate wave function properties of the surface of the investigated topological
insulator, full three-dimensional lattice simulations of the Hamiltonian Eq. (42)
are necessary. To optimize the linear surface length, which we want to scale to
maximally large sizes, an optimal geometry has to be found.

We here present evidence that calculations of surface properties converge very
fast in the transverse direction of the three-dimensional slab, orthogonal to the
surfaces. This is because the surface localization in the bulk gap is exponentially
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Figure 36: Convergence of the distribution function of the surface wave function moments
Pq with the slab width Lx. The parameters are E = 0.1, uf = 0, WA = 2.66, ξA = 1.1,
corresponding to the data shown in Fig. 20. Adapted from Altland et al., 2024, ©2024

American Physical Society.

strong – even in the disordered case only very few layers of lattice points below
the actual surface host significant wave function weight in the bulk gap.

An example parameter set with distribution functions when spectrum-wide
criticality is present, corresponding to the simulations shown in Fig. 20 in the
main text, is shown in Fig. 36 for different slab widths Lx (transverse to the
surface). The distribution functions are shape-invariant and do not move when
Lx is increased, indicating convergence of the surface wave function moments
already at transverse slab thickness Lx ⩾ 8. Here and in all simulations presented
in chapter 5 only surface states with > 75% surface weight are taken into account
to avoid spurious effects due to low-lying in-gap bulk states (which exist due to
disorder).

Due to the strong surface localization and fast convergence of the moments Pq
with Lx all simulations are carried out at Lx = 8 to maximize the possible system
sizes in the in-surface directions.
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B
D E TA I L E D I N F O R M AT I O N A B O U T E N S E M B L E AV E R A G E S

part I, L 16 24 32 48 64 96 128 192 256 384 512 768

dis. Chern
ins. E = 0

– – 5700 2500 930 1050 490 200 56 56 30 16

dis. Chern
ins. E = 0.6

– – 1200 530 750 290 140 108 62 52 46 15

amorph. QH
MFA

28000 11200 6050 2220 1030 318 146 187 259 159 109 14

amorph. QH
transport

– – 1500 1500 1250 750 500 500 315 225 190 45

AIII top. ins.
vector pot.

21 12 4.5 9.4 3.6 1.8 1.1 – – – – –

AIII top. ins.
phase dis.

100 81 39 16 6 1.2 0.3 – – – – –

part II, NB 10 12 14 16 18 20

density int. – 5 – 0.2 – 0.005
dynamics
deformed SYK

0.2 0.9 1.1 0.37 0.19 –

Table 5: Ensembles information for different projects covered in this thesis in part I (top)
and part II (bottom) for all shown system sizes L,NB, respectively. The numbers denotes
the number of ensemble configurations calculated for each system sizes ×103. Since in
many problems more than a single disorder average have to be performed, the numbers
only represent a reference value for a single parameter set (typically at a critical point).

Table 5 summarizes the numbers of configurations calculated for the sub-
projects studied in this thesis. The columns correspond to system sizes L,NB,
while the rows denote the different projects. The numbers correspond to a
disorder average of a single parameter set, for example at a critical point of
the disordered Chern insulator (Ec,Wc,Rc). Therefore, the numbers cited serve
only as a guideline: In most calculations much more configurations have to
be calculated in total to extract relevant information. In the disordered Chern
insulator for instance it is necessary to collect data for parameter sets away from
the critical point to gain access to the localization length exponent. The full
information about all ensemble averages necessary for all data figures shown
in the main text is not shown here; however, it is encoded in the errorbars of
the data points which are propagated through every fitting or post-processing

131



procedure performed. The errorbars always represent one standard error of the
mean for uncorrelated data sets.
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C
D E TA I L S O F S U P P O RT I V E N U M E R I C A L A L G O R I T H M S

recursive greens function algorithm (rgfa)

The full details of the RFGA method used for Fig. 8 and developed and applied by M.
Puschmann are explained in the publication by Puschmann and Vojta, 2021. This section
merely introduces the most important objects entering the method.

The recursive Green’s function algorithm is a technique to calculate the Lya-
punov exponent of a quasi-1d lattice of width L and length N with N≫ L, and
by that investigate its localization properties. The time-independent Green’s
function is G(L;R,W) = limη→0 [(E+ iη)1 −H(R,W)]−1 with E,R,W being the
system parameters of the disordered Chern insulator on a square lattice, Eq. (16).
The lattice is constructed as a stack of layers. The Lyapunov exponent γ can then
be represented by a single block of G,

γ(L;E,R,W) = lim
N→∞ 1

2N
ln | GN1N |2 . (87)

Hence, it effectively measures the exponential decay of the wave function between
the first and the last layer of the lattice of width L. GN1N,γ can be constructed recur-
sively; for details the interested reader is referred to publications by Puschmann
and Vojta, 2021; Huckestein, 1995; Huckestein and Kramer, 1990.

In the analysis of the localization length exponent, the dimensional Lyapunov
exponent Γ = L⟨γ⟩ens is considered, where ⟨·⟩ens represents the ensemble average
over disorder realizations. The data presented in the main text, cf. Fig. 8, was
calculated for N = 106 taking into account 72 disorder realizations for system
sizes between L = 8 → 256. The RGFA calculations shown in Fig. 8 in the
main text have been performed by and are presented with permission from M.
Puschmann; they are based on the code developed by Puschmann and Vojta,
2021.

2-terminal conductance calculation

This section is a very short introduction to the calculation of the conductance shown
in Fig. 13 and applied by S. Bera and N. P. Nayak. Its main goal is to define the
objects appearing in the main text. For more details about the concrete calculation of the
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conductance in chapter 4.4 the reader is referred to the original publication Bera et al.,
2024; for a comprehensive review over transport coefficients in the context of scattering
and transmission to Imry and Landauer, 1999.

landauer conductance . In a two-terminal transport set-up two leads are
connected to the sample, which is modeled by the tight binding Hamiltonian in
the main text, cf. Eq. (35).

Plane-wave electronic states in the lead channels scatter with the sample region,
represented by a scattering matrix S. The latter transforms incoming waves ψin

to outgoing modes ψout, by

ψout = Sψin, (88)

with

S =

(
r t ′

t r ′

)
. (89)

r, r ′ represent the reflection and t, t ′ the transmission matrices (from left to right,
and right to left).

The differential conductance g can consequently be expressed as

g =
e2

h
Tr[t†t]. (90)

The conductance g characterizes quantum Hall plateaus and hence can be
adopted as an order parameter of the zero temperature quantum Hall plateau
transitions appearing in the main text in chapter 4.4. The conductance g is
calculated for a given set of parameters and system sizes using the python
package KWANT, Groth et al., 2014. The conductance calculations in the main text
have been performed by S. Bera and N. P. Nayak; the data is presented with their
permission.

fitting model of conductance . The conductance g as a function of the
system parameters and the linear sample size is modeled by a one-parameter
scaling approach, similar to Eq. (28). Specifically, g is expanded as

g = F0(x) + b0L
−yF1(x) + c0L

−2yF2(x), (91)

with Fj =
∑r
n=0 ajnx

n, and x = (M−Mc)/Mc · L1/ν, where Mc is the position
of the critical point, ν,y are the relevant and irrelevant scaling exponents and
b0, c0,ajn expansion coefficients. Note that in comparison to the scaling ansatz
used in the analysis of the quantum Hall transition of the disordered Chern
insulator on a square lattice, the subleading irrelevant contribution is assumed to
scale with 2y instead of a second independent scaling exponent y ′.
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To corroborate numerical values of ν,y originating from this model, the fitting
orders of the irrelevant expansion and the series expansion r are varied. A
detailed analysis is presented in the original publication, Bera et al., 2024.

In the main text we present a scaling collapse of the conductance across the
transition, Fig. 13. To this end the conductance has to be corrected, because of its
irrelevant scaling contributions, therefore,

gcorr. = g− b0L
−yF1(x) − c0L

−2yF2(x), (92)

is defined.

kernel polynomial method (kpm)

A comprehensive overview of the kernel polynomial method and Chebyshev expansion is
provided by Weiße et al., 2006 and Stosiek, 2020.

The kernel polynomial method relies on the expansion of quantum mechanical
operators, which are functions of the Hamiltonian, in polynomials of the latter.
By that the matrix dimension of the computational problem can be reduced
significantly, while only sparse matrix operations remain to be performed. Mostly
Chebyshev polynomials are chosen as a polynomial basis, because of advanta-
geous convergence properties and the existence of a simple recursion relation, cf.
Stosiek, 2020; Weiße et al., 2006; Bera et al., 2017;

Tk+1(x) = 2xTk(x) − Tk−1(x), (93)

where the argument needs to be −1 < x < 1 and T0(x) = 1, T1(x) = x.
In particular relevant for this thesis, chapter 8, is the time evolution operator,

U(t) = e−itH, (94)

for instance for a many-body Hamiltonian as in Eq. (70); it appears both in the
density-density correlator and in the Fock space wave function propagation.

Expanded in terms of Chebyshev polynomials Tk, it reads

U(t) ≈ e−ibt
NKPM∑
k=0

µkTk(H̃), (95)

with

µk = (−i)kJk(at). (96)

Here H = (H−a)/b is the rescaled Hamiltonian where the parameters a,b derive
from the maximum and minimal eigenvalues of H; a = (Emax − Emin)/2,b =
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(Emax + Emin)/2 and Jk(x) are the kth Bessel functions. In simulations shown
above, the number of Chebyshev moments NKPM > 2at to ensure convergence
(Weiße et al., 2006).

The original time evolution code which the calculations in the main text are
based upon has been developed by S. Bera and has previously been employed
in Bera et al., 2017; Weiner et al., 2019, where further details about the numerical
implementations as well as convergence benchmarks can be obtained. It has
been adjusted and further developed to be applicable to the problem studied in
chapter 8 by the author of the thesis.
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