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ABSTRACT: Liquid ammonia as the original solvent for Zintl anions has been
replaced by easier to handle or more versatile solvents in most recent Zintl chemistry.
However, methodological advances have made it possible to structurally investigate the
anions in ammoniate crystals via crystallography or in the solutions themselves via
nuclear magnetic resonance. While in some cases liquid ammonia acts as an innocent
solvent, it also provides different possibilities of direct involvement in chemical
reactions. In addition to simple dissolution without changes to the anions observed in
the solid starting materials, protonation of the anion, incongruent dissolution involving
redox processes, and further oxidation and reduction products have been observed. The
use of the solvent liquid ammonia under ambient pressure is limited to low
temperatures, which in turn allows the monitoring of kinetically stabilized species, some of which cannot be accessed at higher
temperatures. In this work, the available literature reports are summarized or referenced, and compounds that have been
characterized as new ammoniate crystals are presented and contextualized. Innocent dissolution is observed for clusters involved in
K2.9Rb5.1[Si4][Si9]·15NH3, Cs4Sn9·12NH3, Cs4Pb9·5NH3, and [Rb@[18]crown-6]2[Rb@[2.2.2]crypt]Rb[Ge9]·4NH3. Formal
protonation of [Ge4]4− results in the crystallization of [Na@[2.2.2]crypt]2[H2Ge4]·3NH3. Tt52− (Tt = Sn or Pb) and HSi93−

cannot be accessed in a binary solid state material but can be crystallized in co-crystals of PPh3 in [Rb@[2.2.2]crypt]2[Sn5][PPh3]2·
NH3, [Rb@[2.2.2]crypt]2[Pb5][PPh3]2·NH3, and [K@[2.2.2]crypt]3[HSi9][PPh3]·5NH3.

■ INTRODUCTION
In 1891, A. Joannis reported on a green solution derived by the
simultaneous dissolution of sodium metal and elemental lead
in liquid ammonia.1 Although not being interpreted as such,
this observation is the first documented evidence of a
homoatomic polyanion of a main group metal produced in
solution. Four decades later, E. Zintl produced and first
structurally characterized the Zintl phase NaTl by reducing
thallium(I) iodide in a solution of sodium in liquid
ammonia.2,3 Again four decades later, Kummer and Diehl
changed the solvent to ethylenediamine4 and Corbett
introduced cryptand as a sequestering agent and reported the
first clear crystal structure of a Zintl ion of a group 14 metal
obtained by dissolution experiments.4,5 Although single crystals
in liquid ammonia had been observed visually, these alterations
were necessary for structural elucidation as X-ray structure
analysis at that time was not possible for thermally labile
crystals. Today, standard preparation techniques for labile
crystals are applied widely for sensitive compounds and are
used in all branches using this analytical method. In particular,
the development of low-temperature devices and procedures
allows for investigations of solvate crystals that decompose well
below room temperature. For Zintl chemistry, this opened the
door for investigation of very sensitive single crystals. In the
following, we concentrate on the solvent with which everything
had started, liquid ammonia. Upon closer examination of the
reported species derived by (re)crystallization experiments in
this solvent, it becomes evident that liquid ammonia might act

as an innocent solvent but provides the capabilities of taking
part in different reactions. In 1985, J. D. Corbett, to whom we
owe major advances in the field of Zintl chemistry, stated, “The
dependence of results on solvent has generally not been well
explored.”6 In the past decades, a number of versatile
compounds, which were obtained by various dissolution
experiments and reactions, have been reported in review
articles.7−15 The products are often unpredicted and surprising
and emphasize the role of Zintl anions as a key to new
homoatomic bonding motifs and interesting reactiv-
ities.8,10,16−20 The scope of this article is not to illustrate
these well-reported issues. In contrast, we here go back to the
roots and address a very general question. What reactivities of
Zintl anions can be expected in solvent liquid ammonia? To
obtain homoatomic p-block (semi)metal clusters in solution,
there are different Zintl phases available. In general, the
solubility of these materials in liquid ammonia is limited to
compounds including alkali metals as less electronegative
constituents. For group 14, A4Tt4 (A = Na−Cs, and Tt = Si−
Pb),21−29 A4Tt9 (A = Na−Cs, and Tt = Ge−Pb),30−33 and
A12Tt17 (A = Na−Cs, and Tt = Si−Pb)32,34 are generally used,
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while the solubility for silicides is commonly known to be best
for A12Si17 materials.35−38 In accord with the Zintl−Klemm
concept, these materials include tetrahedral [Tt4]4− and/or
monocapped square antiprismati- shaped [Tt9]4− polyanions.
A12Tt17 contains [Tt9]4− and [Tt4]4− clusters in a 1:2 ratio. For
stannides, additionally A52Sn82 (A = K or Cs) is known, which
also involves [Sn4]4− and [Sn9]4− clusters.39 It has to be noted
that especially the materials of the heavier tetrelides suffer from
low crystallinity due to disorder and the formation of plastic
crystalline phases.40,41 Convenient representatives for dis-
solution experiments of group 15 Zintl phases are A3Pn7 (A =
Na−Cs, and Pn = P−Sb),42−47 A3Pn11 (A = Na−Cs, and Pn =
P−Sb),48−50 and A4Pn6 (A = Rb or Cs, and Pn = P or
As).51−53 The A3Pn7 phases contain nortricyclane-shaped
[Pn7]3− clusters and the A3Pn11 phases tris-homocubane-
shaped [Pn11]3− (ufosan). In A4Pn6 planar, non-aromatic
[Pn6]4− anions54 represent the anionic entity.

The dissolution route uses the soluble Zintl phases
mentioned above of the alkali metals, which are prepared by
classical solid state methods and subsequently dissolved in
liquid ammonia.55 The anions detected in the ammoniate
crystals that precipitate allow conclusions to be drawn about
the species present in the solution. It has to be pointed out that
while detecting a Zintl anion in an ammoniate crystal is a very
strong indication that it has been present in solution, this does
not per se preclude the presence of additional different species
or even rearrangements during the process of crystallization.
Unfortunately, additional analytical methods are very difficult
to apply due to the solvent being a condensed medium only
below −33 °C at ambient pressure. Higher temperatures
directly cause spontaneous vaporization. In this context, E.
Zintl’s very accomplished experimental works have to be
emphasized, as he performed potentiometric titrations in this
solvent many decades ago.3 In recent years, attempts have
succeeded in preparing nuclear magnetic resonance (NMR)
probes for low-temperature measurements. Standard NMR
probes with the coil for broadband detection located either as
the inner or the outer coil provide large temperature ranges
compatible with the requirements for liquid ammonia as the
solvent and had been successfully applied in Zintl anion
detection.56,57 The sensitivity of these probes is limited, but the
large temperature range allows even for temperature-depend-
ent studies down to 180 K. In contrast, the newer probes with
cryogen-cooled coils provide excellent sensitivities for low-
concentration species or slowly reacting ions.58,59

However, these cryoprobes have a reduced temperature
range of ∼80 °C limiting low-temperature measurements to
≥240 K. These probes can be used only for elements for which
NMR active isotopes are available. For homoatomic Zintl
anion chemistry investigations in liquid ammonia solutions,
31P,54,60 29Si,36,56,57 and 119Sn36,61 have been reported. Very
recently, the possibility of detecting Raman spectra from
ammoniate crystals in bomb tubes was shown,62 which might
also be applicable for Zintl cluster ammoniates in the future. At
the moment, information about ongoing processes during
dissolution is based on solvate crystal structures and solution
NMR spectroscopy where available. In the following, we
provide an overview of the observed species during dissolution
experiments of alkali metal tetrelides (Tt) and pnictogenides
(Pn) in a liquid ammonia solution and new compounds
K2.9Rb5.1[Si4][Si9]·15NH3 (1), Cs4Sn9·12NH3 (2), Cs4Pb9·
5NH3, (3) [Rb@[18]crown-6]2[Rb@[2.2.2.]crypt]Rb[Ge9]·
4NH3 (4), [Na@[2.2.2]crypt]2[H2Ge4]·3NH3 (5),

[Rb@[2.2.2]crypt]2[Sn5][PPh3]2·NH3 (6), [Rb@[2.2.2]-
crypt]2[Pb5][PPh3]2·NH3 (7), and [K@[2.2.2]crypt]3[HSi9]-
[PPh3]·5NH3 (8) are contextualized.

■ MATERIALS AND METHODS
Synthesis. K2.9Rb5.1[Si4][Si9]·15NH3 (1). First, 30 mg (0.025

mmol) of the solid state material with the nominal composition
K6Rb6Si17 and 13 mg (0.013 mmol) of dibenzo-[18]crown-6 were
dissolved in 5 mL of anhydrous liquid ammonia. The reddish orange
solution was stored for nine months at 203 K, and orange needles of 1
could be isolated and characterized by single-crystal X-ray diffraction
(SCXRD).
Cs4Sn9·12NH3 (2). First, 200 mg (0.125 mmol) of the solid state

material with the nominal composition Cs4Sn9 was dissolved in 5 mL
of anhydrous liquid ammonia. The dark red solution was stored for
five months at 203 K, and red crystals of 1 could be isolated and
characterized by SCXRD. In addition, a solution of 200 mg of the
nominal phase Cs4Sn4 in 5 mL of anhydrous liquid ammonia yielded
crystals of 2 after storage at 203 K for five months.
Cs4Pb9·5NH3 (3). First, 211 mg (0.848 mmol) of cesium, 389 mg

(1.878 mmol) of lead, and 55 mg (0.207 mmol) of [18]crown-6 were
dissolved in anhydrous liquid ammonia. After storage at 233 K for two
months, black blocks of 3 could be isolated and characterized by
SCXRD.
[Rb([18]crown-6)]2[Rb@[2.2.2]crypt]Rb[Ge9]·4NH3 (4). First, 50

mg (0.022 mmol) of the solid state material with the nominal
composition Rb12Ge17 and 12.4 mg (0.033 mmol) of [2.2.2]crypt
were dissolved in anhydrous liquid ammonia, yielding a reddish
brown solution. After storage at 203 K for four months, yellow
needles of 4 could be isolated and characterized by SCXRD.
[Na@[2.2.2]crypt]2[H2Ge4]·3NH3 (5). First, 50 mg (0.022 mmol) of

the solid state material with the nominal composition Rb12Ge17, 22
mg (0.083 mmol) of [18]crown-6, and 19 mg (0.049 mmol) of
[2.2.2]crypt were dissolved in anhydrous liquid ammonia, yielding a
yellow solution. After storage at 203 K for four months, yellow crystals
of 5 could be isolated and characterized by SCXRD.
[Rb@[2.2.2]crypt]2[Sn5][PPh3]2·NH3 (6). First, 25 mg (0.030 mg) of

the solid state material with the nominal composition Rb4Sn4, 12 mg
(0.030 mmol) of [2.2.2]crypt, and 35 mg (0.030 mmol) of Pd(PPh3)4
were dissolved in anhydrous liquid ammonia. After storage at 233 K
for six months, dark red blocks of 6 could be isolated and
characterized by SCXRD.
[Rb@[2.2.2]crypt]2[Pb5][PPh3]2·NH3 (7). First, 50 mg (0.040 mmol)

of the solid state material with the nominal composition Rb4Pb4, 24.1
mg (0.060 mmol) of [2.2.2]crypt, and 21.1 mg (0.040 mmol) of
Au(PPh3)Cl were dissolved in anhydrous liquid ammonia, yielding a
dark green solution. After storage at 233 K for two months, dark violet
plates of 7 could be isolated and characterized by SCXRD.
[K@[2.2.2]crypt]3[HSi9][PPh3]·5NH3 (8). First, 30 mg (0.025 mmol)

of the solid state material with the nominal composition K6Rb6Si17, 28
mg (0.073 mmol) of [2.2.2]crypt, 9 mg (0.037 mmol) of [18]crown-
6, and 30 mg (0.025 mmol) of Pt(PPh3)4 were dissolved in anhydrous
liquid ammonia, yielding an orange brown solution. After storage at
233 K for one year, yellow blocks of 8 could be isolated and
characterized by SCXRD.
Single-Crystal X-ray Diffraction. For the general procedure, see

the Supporting Information for details regarding the individual
compounds. All compounds are highly sensitive to moisture, air, and
temperature. A small amount of crystals was transferred directly from
the mother liquor from a cooled Schlenk vessel into liquid nitrogen
stream-cooled perfluoroether oil. Suitable single crystals were isolated
and subsequently transferred onto the goniometer using a MiTeGen
loop cooled in liquid nitrogen during the transport. Data were
collected at a temperature of 123 K with different diffractometers (see
the Supporting Information for the respective setup used for the
individual compounds). For data reduction, CrysAlisPro was used.
Structure solution (ShelXT)63 and refinement (ShelXL)64 were
performed in Olex2.65 The figures were created in Diamond 466

using displacement ellipsoids at the 50% probability level.
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■ RESULTS AND DISCUSSION
Dissolution without Reaction. The simplest process of

generating Zintl anions in solution is represented by the
dissolution of Zintl phases, including precast polyanions, where
no subsequent reaction of the anions is monitored. The
solubility of the Zintl salts can be influenced by applying
different sequestering agents. For this reason, [18]crown-6

(1,4,7,10,13,16-hexaoxacyclooctadecane) or [2.2.2]cryptand
(4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane)
is commonly used. The cryptates in return also facilitate
crystallization, and these large molecular units significantly
influence the observed three-dimensional structure in the solid
state. Ammonia molecules of crystallization can act as rather
innocent additives concerning solid state structures. Already in

Figure 1. Unit cells of K2.9Rb5.1[Si4][Si9]·5NH3 (1), Cs4Sn9·12NH3 (2), Cs4Pb9·5NH3 (3), and [Rb@[18]crown-6]2[Rb@[2.2.2]crypt]Rb[Ge9]·
5NH3 (4). For the sake of clarity, disorder and A−N (A = K or Rb) contacts in 1 have been omitted (for details, see Figure S2), whereas chelating
agents in 4 are shown as wires and sticks.

Figure 2. Overview of some of the known protonated tetrelides (Tt) and pnictogenides (Pn) from liquid ammonia.

Table 1. Protonated Tetrelide Clusters in Liquid Ammonia

cluster method or compound ref

[HSi4]3− 29Si NMR 57
[H2Ge4]2− [Na(crypt)]2[H2Ge4]·3NH3 this work
[HTt9]3− (K(DB-[18]crown-6))(K@[2.2.2]crypt)2[HSi9]·8.5NH3 56
Tt = Si or Ge [Rb@crypt]2[Rb([18]crown-6)][HGe9]·4NH3 96

[K([18]crown-6)3(HSi9)]·2NH3·2THFa 95
aAfter dilution with tetrahydrofuran and exchange of NH3.

Figure 3. Atom arrangement and distances in [H2Ge4]2− (a) from the crystal structure and (b) for an optimized geometry. (c) Optimized geometry
of a hypothetical [Ge4]2−.
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1989, the room-temperature stable ammoniate Cs3(NH3)As7
was prepared and the comparison to Cs3As7 demonstrated the
possibility of including ammonia of crystallization in binary
Zintl phases.67 The obtained ammoniate is structurally related
to the parental phase Cs3As7. A similar observation can be
deduced for group 14 by comparing A4Tt4 (A = alkali metal,
and Tt = Si−Pb) solid state phases and ammoniate
structures.68 The first coordination sphere of the anion in
the binaries and ammoniates is strongly related. Subsequently,
several “pure” ammoniate crystal structures without further

additives of [Tt9]4−, [Tt4]4−, [Pn7]3−, and [Pn11]3− have been
reported, all of which prove the innocent dissolution of the
parental phases in liquid ammonia. In addition, it could be
shown that [As6]4− rings are retained in solution when
dissolving binary phase Rb4As6.

60 Heavier alkali metal cations
K+−Cs+ tend to coordinate directly to the cluster units;
therefore, usually three-dimensional cation−anion networks
are observed. An example is given by K2.9Rb5.1[Si4][Si9]·
15NH3 [1 (Figure 1); for crystallographic information, see
Table S1], which could be crystallized from solutions of silicide
K6Rb6Si17 in liquid ammonia. The compound is structurally
related to K8[Si4][Si9]·14.6NH3

69 and demonstrates the
possibility of substituting two potassium positions by rubidium
(see Figure S1), while the remaining alkali cation sites are
mixed occupied by potassium and rubidium.

In general, ammonia acting as a ligand toward the alkali
cations is also capable of breaking the three-dimensional
cation−anion network. This is usually the case when lithium or
sodium is present, as homoleptic ammine complexes are
formed. For example, in [Li(NH3)4]3As7·NH3 or [Li-
(NH3)4]4Sn9·NH3 and [Li(NH3)4]4Pb9·NH3 lithium−tetraam-
mine complexes are present, which prevent direct cation−
anion contacts.70,71 In contrast, Cs4Sn9·12NH3 (2) represents
a new and first example in which the high ammonia content
causes the formation of Cs+−[Sn9]4− double layers built from
cation−anion interactions, which are separated by ammonia
molecules only [2 (Figure 1); for crystallographic information,
see Table S3]. To date, the formation of these types of layers
in the respective crystal structures was observed only when
cryptates or crown ethers were present during crystallization.
Thus, Cs4Sn9·12NH3 shows the broad variety of possible
arrangements in ammoniate crystal structures, even in the

Table 2. Unit Cell Parameters of (A@[2.2.2]crypt)2Tt5 and Related Compounds That Suggest Similar Three-Dimensional
Arrangements

X2Sn5
104,a X2Pb5

105,a X2[H2Ge4]·3NH3
a Z2Ge5·4NH3

106,b

a (Å) 11.620(1) 11.615(3) 11.6200(6) 11.2887(9)
b (Å) 11.620(1) 11.615(3) 21.8720(7) 11.8949(9)
c (Å) 22.160(7) 22.120(12) 11.6979(6) 11.9433(9)
α (deg) 90 90 90 117.911(8)
β (deg) 90 90 119.469(6) 98.650(9)
γ (deg) 120 120 90 91.797(9)
crystal system, space group trigonal, P3c1 trigonal, P3̅c1 monoclinic, P21 triclinic, P1

aFor the sake of clarity, the cryptand complexes have been replaced by X = (Na@[2.2.2]crypt). bFor the sake of clarity, the cryptand complexes
have been replaced by Z = (K@[2.2.2]crypt).

Figure 4. Structural similarity of CaIn2 and [Na@[2.2.2]-
crypt]2[H2Ge4]·3NH3.

Figure 5. Clusters in tetrelide and pnictogenide Zintl phases in the
dependency of charge per atom. Highly reduced clusters like [Tt4]4−

and [Pn6]4− tend to dissolve incongruently, while the less reduced
species like [Tt9]4− or [Pn7]3− are found to be stable in liquid
ammonia solution.

Figure 6. Projection of the unit cells of the compounds [Rb@[2.2.2]crypt]2[Sn5][PPh3]2·NH3 (6), [Rb@[2.2.2]crypt]2[Pb5][PPh3]2·NH3 (7), and
[K@[2.2.2]crypt]3[HSi9][PPh3]·5NH3 (8) along the crystallographic b-axis. For the sake of clarity, [2.2.2]crypt and PPh3 are shown as wires and
sticks.
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simplest case without additives. This is underlined by the
crystal structure of Cs4Pb9·5NH3 (3), which indeed shows the
expected three-dimensional cation−anion network [3 (Figure
1); for crystallographic information, see Table S5]. As
mentioned above, the addition of cryptating agents prevents
the formation of a three-dimensional network. This is also well-
reported for tetrelide cluster solvates of the solvent ethyl-
enediamine.8 The same is true in liquid ammonia,38,70,72 and in
the new example, [Rb@[18]crown-6]2[Rb@[2.2.2]crypt]Rb-
[Ge9]·4NH3 (4), the coordination motifs for Rb+ can be nicely
demonstrated, as [Rb@[18]crown-6]+, [Rb@2.2.2crypt]+, and
nonchelated Rb+ are present in the unit cell [4 (Figure 1); for
crystallographic information, see Table S7].

Altogether, recrystallization experiments suggest a certain
stability of the precast [Tt9]4−, [Pn7]3−, and [Pn11]3− anions in
solution. This is also supported by 119Sn NMR of binary
stannides in liquid ammonia. The [Sn9]4− clusters are not
affected by the solvent, as the well-known signal at
approximately −1200 ppm is stable for a long time under
these solutions.61 In contrast, the availability of [Sn4]4− clusters
in solutions of Rb4Sn4 can be monitored by its characteristic
119Sn signal at approximately −1800 ppm, which is observed
only when cryptand is added or when the stannides are
produced by an experimental procedure different from
dissolution (direct reduction). This can be interpreted as a
first hint that these clusters provide additional reactivities in a
liquid ammonia solution. In general, ammoniate crystals of the
ligand-free tetrahedral [Tt4]4− clusters are rarely observed
compared to the comparatively stable [Tt9]4−.35,68,73,74

Reactions in and/or with Liquid Ammonia. The
oxidation of Zintl phases is a chemically plausible and
straightforward way to form bonds and the buildup of larger
homoatomic entities, and different groups address this issue by
various approaches under a range of experimental condi-
tions.75−80 In particular, the oxidative coupling of homoatomic
polyanions to form new elemental modifications is very
promising.81−83 A prominent example is the oxidation of
homoatomic clusters [Ge9]4− in ionic liquids, as even a new
elemental modification of germanium in terms of a guest-free
germanium clathrate could be achieved.84 Furthermore, a
variety of other novel mesoporous germanium materials can be
obtained through the oxidation of such anionic clusters.85−87

Another example, which involves alkali metal Zintl phases,
including cluster units, is the oxidation of K4Si4 under
hydrogen pressure. There, reversible oxidation produces
KSiH3, which is thus discussed as a promising material for
hydrogen storage.88 The reactions with liquid ammonia at low
temperatures allow the isolation of kinetically stabilized
transitional compounds and therefore can yield precious
information about ongoing processes during oxidation
reactions. In general, one must distinguish among three
reaction pathways. First, the clusters are in equilibrium with
their oxidized counterparts and solvated electrons.89 Second,
protonation of the clusters is possible due to the protic

character of the solvent liquid ammonia (Protonation). Finally,
incongruent dissolution can be observed for some Zintl phases,
which yields new or formally oxidized homoatomic polyanions
(Incongruent Dissolution). Different additives allow for the
formation of interlinked clusters, the combination of both
reaction pathways, or co-crystal formation (Further Examples
of Oxidations and Reactions).
Protonation. Phosphorus hydrides including protonated

Zintl clusters have thoroughly been studied by 31P NMR in
different solvents.90−93 Additionally, HSn9

3−94 and H2Si92−95 in
different solvents are reported in the literature. In liquid
ammonia, protonation of homoatomic Zintl anions is known
for silicon, germanium, phosphorus, and arsenic by single-
crystal X-ray structures and/or solution NMR investigations. It
has to be noted that protonation of the anion in this context is
the formal reaction only. According to the electronegativities,
the H atom in the protonated anion has to be considered as
hydride, which is supported by the chemical shifts in related
1H NMR investigations.56,57,91,94 The Brønsted acid−base
chemistry of pnictogenide clusters is discussed and summar-
ized elsewhere;13,14 therefore, the focus here is set on the
tetrelide clusters. Figure 2 shows examples for protonated
tetrelide and pnictogenide clusters obtained from liquid
ammonia solutions, and Table 1 gives examples for protonated
tetrelides in and/or from liquid ammonia.

In general, the observation of protonated clusters in liquid
ammonia seems to be restricted to the lighter homologues of a
group, which is in accord with the rapidly decreasing stability
of the element hydrides of the heavier congeners. While the
31P NMR investigations of M. Baudler mentioned above
proved the formation of protonated phosphide clusters by the
reduction of diphosphane in liquid ammonia,90 single crystals
of the latter from liquid ammonia solutions were observed only
when additives were present.97−99 In contrast, the protonation
of silicides occurs spontaneously without the need for further
additives. This is plausible given the higher charge of the
tetrelides.

Attention needs to be drawn to protonated tetrahedral
[Tt4]4− species. While [HSi4]3− was unambiguously detected
in 29Si NMR experiments, a related crystal structure involving
this anion is still missing. Interestingly, it was shown by the
single-crystal structure of [K@[18]crown-6][Rb@[18]crown-
6]2[HGe4ZnPh2]·8NH3

100 that the related [HGe4]3− can act
as a ligand toward transition metals. To the best of our
knowledge, similar observations of [HSi4]3− are still missing.
29Si NMR solution studies and subsequent theoretical
calculations suggest the protonation taking place not at one
vertex of the tetrahedron but edge capping,57 just as in the
heavier congener [HGe4]3− in [HGe4ZnPh2]2−. This is also
supported by calculations dealing with the solid state material
K2BaSi4,

101 which also suggest that the protonation of one
vertex of [Si4]4− is less favored. This is also observed for
valence isoelectronic [HP4]+ cation with edge-capping hydro-
gen, according to the pseudoelement concept.102,103 Crystal-

Figure 7. Overview of selected condensed tetrelide or pnictogenide clusters from liquid ammonia. A detailed overview for groups 14 and 15 is given
in refs 14 and 18.
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lization of ligand-free protonated tetrelides is very rarely
observed. We recently succeeded in crystallizing [Na@[2.2.2]-
crypt]2[H2Ge4]·3NH3, which includes [H2Ge4]2− anions.
Unfortunately, the quality of the diffraction data of the
SCXRD experiment is insufficient for determining the
positions of the H atoms, which therefore have been modeled
in the refinement using restraints. The positions of the Ge
atoms yield distances that differ significantly from those of an
ideal [Ge4]4− tetrahedron (2.5−2.6 Å)68 as two edges are
elongated (2.7418(11) and 2.7240(11) Å), which supports the
structural interpretation. A first geometry optimization also
strongly indicates a protonated species, as the optimized
geometry for unprotonated [Ge4]2− did not result in a
tetrahedral anion but a strongly distorted four-atom ring. In
contrast, the obtained Ge−Ge distances of the optimized
geometry for [H2Ge4]2− match the experimental values from
the crystal structure very well (Figure 3; for computational
details and crystallographic information see Table S9).
Therefore, the overall charge of −2 together with the best
structure solution from single-crystal data of the proposed
model strongly supports the presence of [H2Ge4]2− in liquid
ammonia.

Upon closer examination of the unit cell parameters of
[Na@[2.2.2]crypt]2[H2Ge4]·3NH3, a relationship with the
(A@[2.2.2]crypt)2Tt5 compounds (Tt = Sn or Pb)5,104,105 that
contain E5

2− anions becomes evident (Table 2).
While the ammonia-free compounds crystallize in high-

symmetry trigonal space groups P3c1 and P3̅c1, respectively,
ammonia of crystallization causes a lower observed symmetry.
The cell parameters of [Na@[2.2.2]crypt]2[H2Ge4]·3NH3 still
resemble a trigonal metric of the unit cell; in contrast, the
symmetry in [K@[2.2.2]crypt]2Ge5·4NH3 is reduced even to
triclinic P1 without any additional translational symmetry
except identity.106

In general, these compounds can be structurally related to
binary CaIn2,

104 and ammonia of crystallization causes a
distortion in that arrangement in [A@[2.2.2]crypt]2Tt5·4NH3
(Tt = Si or Ge).37 A similar structural relationship can be
visualized for [Na@[2.2.2]crypt]2[H2Ge4]·3NH3 (Figure 4).
Of course, the atom positions differ significantly, which makes
a comparison in terms of a formal isostructural derivation
impossible.

The 2-fold negatively charged anion governs the 1:2
anion:cryptand ratio, which results in the best three-dimen-
sional arrangement in the (distorted) CaIn2 packing. This is
true for [Tt5]2− (Tt = Si−Pb) as well as for [H2Ge4]2− and
demonstrates that for the evaluation of the observable anions
in the solid state by recrystallization experiments the optimized
packing in three dimensions should not be neglected.
Incongruent Dissolution. The central challenge for the

clean generation of Zintl ions in solution from solid state
starting materials is posed by the reactivity toward the solvent.
In the case of liquid ammonia, the clusters mentioned in
Protonation can be readily dissolved and (re)crystallized as
ammoniates from the solutions, which indicates that they are at
least somewhat stable toward this traditional Zintl ion solvent.
In contrast, incongruent dissolution is also possible and
common where the precast entity in the solid state transforms
during dissolution. In these cases, mainly formally oxidized
molecular units can be observed. With regard to group 14,
incongruent dissolution is observed in NMR experiments for
Rb4Sn4, which leads to [Sn9]4− cage anions in the liquid
ammonia solutions.61 Further evidence for this transformation

from [Sn4]4− to [Sn9]4− is provided by the fact that Cs4Sn9·
12NH3 (2) could also be crystallized from cryptand-free
solutions of Cs4Sn4 (see Materials and Methods for 2). In
contrast, upon addition of [2.2.2]crypt, [Sn4]4− anions can be
detected as they accumulate and are stabilized in solution. The
presence of [2.2.2]crypt in return enables the crystallization of
trigonal bipyramidal-shaped [Sn5]2− anions,104,105,107 for which
no binary solid state material is known. The same is true for
[Pb5]2−, which forms from solutions of Na4Pb4 and K4Pb4 in
the presence of cryptand in liquid ammonia.5,105 The large
cryptate complexes enable crystallization of [A@[2.2.2]-
crypt]2Tt5, which is hierarchically related to the CaIn2
structure type (see above). The lighter homologues yield
[A@[2.2.2]crypt]2Tt5·4NH3 crystals from solutions of A12Tt17
materials (Tt = Si or Ge).37,106,108 In the crystal structures of
the latter, additional ammonia of crystallization is needed for
effective packing in lower-symmetry triclinic space groups.
While [Tt9]4− clusters are known to be more or less flexible on
the NMR time scale,56,94,95 the 29Si NMR signal of [Si5]2−

recently proved the rigid character of the trigonal bipyramidal-
shaped anion.57

Even approximately 50 years ago, the use of cryptand also
provided the possibility of observing Sb4

2− and Bi42− anions
crystallizing from not further characterized metallic alloys upon
dissolution in ethylenediamine.109,110 The lighter homologues
As42− and P4

2− can also be accessed by directly reducing red
phosphorus or gray arsenic in liquid ammonia.54,111−113

Furthermore, the dissolution of A4Pn6 (A = Rb or Cs, and
Pn = P or As) does not result in [P6]4− but yields lone-pair
aromatic [P4]2− anions as a formal oxidation product. [As6]4−

is known to be more stable in solution as ammoniate crystals
that contain this anion have been obtained (see Protonation).
Additionally, dissolution of A4As6 (A = Rb or Cs) also provides
formally oxidized As73−70 and As42−54,111 in solution.

Very recently, it was shown that group 13 Zintl phases Na2In
and Na7KIn4 are oxidized upon dissolution in liquid ammonia
to form binary NaIn. As Na7KIn4 includes tetrahedral Zintl
anion [In4]8−, this might be interpreted as the first evidence for
a solution behavior of trielides in anhydrous liquid ammonia
similar to the reactivities of tetrelides or pnictogenides
mentioned above.114−116

Altogether, Zintl phases including more reduced cluster
species tend to dissolve incongruently under the formation of
formally oxidized cluster units in solution (Figure 5).
Simultaneously, ammonia is reduced to form alkali metal
amide and elemental hydrogen. In general, the side product
alkali metal amide can be detected by NMR in solution as well
as by PXRD of the residue after the evaporation of ammonia.
Further Examples of Oxidations and Reactions. The

examples mentioned above are due to reactions with ammonia
as no further additives except [18]crown-6 or cryptand were
added. In the past, attention was drawn to reactions of the
cluster units with different transition metal complexes. This
gave rise to further observations, because co-crystallization is
possible with, e.g., PPh3, as this well-known ligand molecule
was present in solution due to the degradation of the
complexes. In [Rb@[2.2.2]crypt]2[Sn5][PPh3]2·NH3 and
[Rb@[2.2.2]crypt]2[Pb5][PPh3]2·NH3, PPh3 is present in
addition to the cryptates in the unit cells and obviously
further facilitates the crystallization of [Tt5]2− upon incon-
gruent dissolution of the Zintl phases Rb4Sn4 and Rb4Pb4,
respectively. This is also true for [K@[2.2.2]crypt]3[HSi9]-
[PPh3]·5NH3, where the protonated silicide is present in the
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unit cell (Figure 6; for crystallographic information about the
compounds, see Tables S11, S13, and S15).

In contrast to [Na@[2.2.2]crypt]2[H2Ge4]·3NH3, in
[Rb@[2.2.2]crypt]2[Sn5][PPh3]2·NH3 and [Rb@[2.2.2]-
crypt]2[Pb5][PPh3]2·NH3 the additive PPh3 causes an even
more distorted structure that cannot be directly related to
CaIn2 (for further information, see Figure S10). More
systematic investigations of crystal packing in co-crystals with
further additives like PPh3 could show if up to now hidden
Zintl ions might be accessible in co-crystals.

More severe conditions are necessary to observe the
oxidative coupling of group 14 and group 15 clusters to
form larger interlinked clusters, as these are obtained
exclusively when additional oxidants are provided. The
oxidative strength of the solvent liquid ammonia itself seems
not to be sufficient for the formation of interlinked clusters
like, e.g., [P14]4−117 or [Ge18]6−118 (Figure 7).

The observations of these units from liquid ammonia
solution are very serendipitous and are not yet well
understood. A very rare example is represented by CsP7,
which is formed by the reaction of Cs3P11 and tellurium in
liquid ammonia. CsP7 includes one-dimensional chains of
linked P7 clusters, but no ammonia molecules of crystallization
are present.119 This example emphasizes the large potential of
liquid ammonia also for preparing binary compounds and
alloys, which are difficult to access by classical solid state
synthesis.

■ SUMMARY
Zintl anions in liquid ammonia make up a very fascinating and
at the same time very challenging class of compounds, as their
chemistry in solution is dependent on a filigree interplay of
stabilization in solid state, solubility, and acidity. The
documentation of results, obtained by crystallization and
NMR in solution, allows one to gain further insights into
ongoing processes. Slight changes in the experimental
approach often result in a severe impact on the whole system.
The results demonstrate that the common hypothesis of liquid
ammonia as not only a historic but also a prototypic innocent
solvent for Zintl anions needs to be revised. In other words,
liquid ammonia must also be seen as a very potent reaction
medium for yet not very well investigated ongoing oxidation
processes of Zintl anions at low temperatures.
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