
This article is available online at http://www.jlr.org Journal of Lipid Research Volume 53, 2012 2405

Copyright © 2012 by the American Society for Biochemistry and Molecular Biology, Inc.

cardiovascular disease ( 1 ). LPA belongs to the apoB-100-
containing lipoproteins consisting of an LDL-like core 
particle linked to the glycoprotein apolipoprotein(a) 
(APOA) by a disulfi de bridge. APOA is a large polymor-
phic glycoprotein with a molecular mass of 350–700 kDa 
that exhibits a striking structure homology to plasmino-
gen ( 2 ). APOA has multiple kringle-4-like repeats that re-
fl ect its pronounced size heterogeneity ( 3 ). Plasma LPA 
concentrations range from <1 to >100 mg/dl and are to 
>90% genetically determined. The number of kringle-4 
repeats correlates negatively with plasma LPA levels, ac-
counting for approximately 50% of the inheritance ( 4 ). 
Despite intensive research, the physiological function of 
LPA remains elusive. 

 APOA is almost exclusively synthesized in the liver. Al-
though LPA shares structural similarities with LDL, these 
two lipoproteins are differentially metabolized. Unlike 
LDL, LPA does not directly originate from VLDL but is 
likely assembled at the surface of hepatocytes or in circu-
lating blood from APOA and LDL ( 5, 6 ). There are, how-
ever, studies supporting an intracellular assembly of LPA 
( 7 ). Turnover studies in humans revealed that the rate of 
APOA biosynthesis greatly determines plasma LPA levels, 
whereas LPA catabolism appears to play only a minor role 
( 8, 9 ). 

 Due to its high atherogenicity, numerous studies have 
been conducted to fi nd drugs that lower plasma LPA. Un-
fortunately, most of the lipid-lowering drugs have little or 
inconsistent effects on LPA, and a specifi c LPA-lowering 
medication does not exist except for apheresis (reviewed 
in Ref.  10 ). Nicotinic acid (niacin) (NA) has been shown 
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The mouse liver was perfused with collagenase solution, and liver 
cells were collected. After fi ltration and centrifugation, the isolated 
hepatocytes were resuspended in DMEM (Invitrogen) supple-
mented with 20% (v/v) fetal calf serum (FCS) (Sigma-Aldrich), 
100 units/ml penicillin, and 100 units/ml streptomycin and placed 
in 6-well, collagen-coated plates (BD Biosciences) at a density of 
8 × 10 5  cells/well at 37°C in an atmosphere of 5% CO 2  for 4 h. 
Thereafter, cells were cultured in DMEM supplemented with 10% 
FCS and 100 units/ml penicillin/streptomycin for 24 h. Further 
experiments were performed in serum-free DMEM supplemented 
with various concentrations of NA (Sigma-Aldrich). The HepG2 
cells were obtained from ATCC and were maintained in DMEM 
containing 10% FCS and 100 units/ml penicillin/ streptomycin. 

 PHH cultures 
 Non-neoplastic tissue samples from liver resections were ob-

tained from patients undergoing partial hepatectomy for meta-
static liver tumors of colorectal cancer. Experimental procedures 
were performed according to the guidelines of the charitable 
state-controlled foundation HTCR (Human Tissue and Cell Re-
search), with the informed consent of patients. The experiments 
adhered to the principles of the Declaration of Helsinki as well as 
to Title 45, US Code of Federal Regulations, Part 46, Protection 
of Human Subjects and were approved by the local ethical com-
mittee of the University of Regensburg. Human hepatocytes were 
isolated using a modifi ed two-step EGTA/collagenase perfusion 
procedure as described previously ( 20 ). Viability of isolated he-
patocytes was determined by trypan blue exclusion and cells with 
a viability > 85% were used for further work. Cells were plated on 
collagen-coated plates (BD Biosciences) at a density of 1.2 × 10 5  
cells/cm 2  in an appropriate volume of culture media. The me-
dium consisted of DMEM with 10% FCS, 2 mM L-glutamine, 100 
mg/ml streptomycin, 100 U/ml penicillin, and supplements as 
follows: 125 mU/ml insulin, 7.3 ng/ml glucagon, and 0.8 µg/ml 
hydrocortisone. After 16 h of plating, medium was replaced by 
FCS-free DMEM without supplements. Cells were incubated at 
37°C in a humidifi ed incubator with 5% CO 2 , and media were 
changed daily except otherwise stated. Viability of hepatocytes 
during the culture period was monitored by cell morphology 
(light microscopy, image analysis) and determination of enzyme 
release into culture medium (AST activity). Further experimen-
tal details are shown in the fi gures legends. 

 Cyclic AMP ELISA 
 cAMP levels were measured using the Cyclic AMP Assay kit from 

R&D Systems according to the manufacturer’s protocol. Cells were 
treated for 15 min with 30 µM forskolin ± 1 mM IBMX before 1 h 
exposure to NA. The cAMP levels were calculated using a standard 
curve as per the protocol. Data represent mean ± SEM. 

 Plasma lipid parameters in mice 
 Blood was collected by retro-orbital bleeding, and EDTA 

plasma was harvested. Plasma concentrations of APOA were 
measured enzymatically by an in-house DELFIA method ( 21 ). 
Plasma triglyceride (DiaSys) and total cholesterol concentrations 
(Greiner Diagnostics AG) were determined enzymatically accord-
ing to the manufacturer’s protocols. Plasma samples from six 
mice of each group were pooled and used for lipoprotein separa-
tion by fast protein liquid chromatography (FPLC) using the Phar-
macia P-500 FPLC System and a Superose 6 column (Amersham 
Biosciences, Piscataway, NJ). 

 RNA extraction, reverse transcription, and real-time PCR 
 Total RNA from cells and mouse tissues was isolated using 

TrIzol (Invitrogen) according to the manufacturer’s protocol. 

to signifi cantly reduce plasma LPA ( 11 ), but the mecha-
nism of how it lowers LPA is unknown ( 12, 13 ). (NA) also 
has pleiotropic effects and reduces not only triglycerides 
and APOB-containing lipoproteins but also increases 
APOA-1 and HDL ( 14, 15 ). The molecular mechanisms of 
these effects on plasma lipids and HDL are beginning to 
unravel, yet the mode of action on LPA is unknown. 

 We have recently shown that a pathological increase of 
plasma bile acids strongly negatively correlates with plasma 
LPA and vice versa ( 16 ). Bile acids have a dual effect on 
APOA expression. One pathway is mediated by a HNF4 �  
binding site at –826 to  � 814 of the APOA promoter that is 
competitively inhibited by activated FXR ( 16 ). The other 
mechanism is mediated by FXR stimulation of FGF-19 ex-
pression in the intestine that binds to FGFR4 on liver cells 
and in turn down-regulates APOA expression by MAPK-
ERK1/2 signaling ( 17 ). In the present study, none of these 
pathways related to the action of NA on LPA. We provide 
evidence that NA reduces plasma concentrations of APOA 
by more than 50%in transgenic mice whose APOA expres-
sion is under the control of the genuine human promoter. 
In cultured primary hepatocytes from mice and humans, 
 APOA  mRNA was reduced by 30–40% by NA treatment. 
Luciferase reporter assays revealed that the observed ef-
fect of NA on  APOA  transcription is mediated through a 
segment between  � 1446 and  � 857 bp in the APOA pro-
moter that contains binding sites for several regulatory ele-
ments involved in lipid metabolism. 

 MATERIALS AND METHODS 

 Chemicals 
 NA, 8-Br-cAMP, forskolin, and 3-isobutyl-1-methylxanthine 

(IBMX) were purchased from Sigma-Aldrich (Vienna, Austria). 
cAMP assay kit was purchased from R&D systems (Vienna, Aus-
tria). Collagenase was from Worthington Corp. (Harrison, NJ). 

 Animal experiments 
 The research was conducted in conformity with the Public Health 

Service policy, and all animal experiments were performed after 
approval of the protocol by the Austrian Federal Ministry of 
Science and Research, Division of Genetic Engineering and Ani-
mal Experiments (Vienna, Austria). Transgenic  APOA  (tg- APOA ) 
mice generated by Frazer et al. ( 18 ) carried a 110kb human  APOA  
gene surrounded by more than 60 kb 5 ′ - and 3 ′ -fl anking DNA in 
the YAC controlled by its native promoter and were the same as 
used in previous experiments ( 16, 17 ). Mice were hosted under a 
standard 12 h light/12 h dark cycle and fed standard rodent chow 
diet and water ad libitum. Female mice, between 10 and 12 weeks 
old, were used in all the experiments. For feeding studies, tg -APOA  
( n  = 10) expressing the human APOA were divided into two groups 
(n = 6 per group). Animals were randomized based on plasma 
APOA levels. One group received a normal rodent chow diet (con-
trol), whereas the other group received the same diet supple-
mented with 10 g of NA per kilogram of chow for 2 weeks. Mice 
were fasted for 4 h before blood samples were collected. Liver 
samples were harvested for further analysis. 

 Cell cultures 
 Primary hepatocytes from tg- APOA  mice were prepared and 

cultured as described previously ( 19 ), with minor modifi cations. 
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food intake were observed between the control and treated 
groups (supplementary  Fig. I ). FPLC analysis revealed 
that the major reduction by NA was found in the LDL 
peak, whereas VLDL and HDL remained virtually the 
same (  Fig. 2A  ).  NA feeding signifi cantly reduced plasma 
total cholesterol by 20 ± 6% and triglycerides by 24 ± 5% 
( Fig. 2B, C ). 

 NA acts directly on hepatocytes reducing APOA 
mRNA abundance 

 Because NA primarily affects adipocytes and endothe-
lial cells by binding to GPR109A followed by downstream 
signaling, it was important to address the question of 
whether the effect described in  Fig. 1  might be direct or 
indirect. To study the effect of NA on human  APOA  gene 
expression, primary hepatocytes isolated from tg- APOA  
mice were incubated with increasing amounts of NA. 
Analysis by real-time quantitative PCR revealed a signifi -
cant dose-dependent decrease of  APOA  mRNA levels 
(  Fig. 3A, 3B  ).  Western blot analysis confi rmed that this NA-
mediated repression also occurs at the protein level in cell 
lysates ( Fig. 3C ). Cell viability assessed by trypan blue ex-
clusion test revealed that all concentrations of NA were 
well tolerated (data not shown). 

Two micrograms of total RNA were reverse transcribed using the 
High-Capacity cDNA Reverse Transcription Kit (Applied Biosys-
tems). Quantitative real-time PCR was performed on a Light 
Cycler 480 instrument (Roche Diagnostics), using the Quanti 
Fast SYBR Green PCR Kit (Qiagen). Primer sequences were 
identical to those published ( 16 ). The gene expression values 
were normalized to cyclophilin A ( Ppia ) as a housekeeping 
gene. The data were analyzed by the public domain program 
Relative Expression Software Tool ( 22 ). Values are presented as 
mean ± SEM. 

 Protein extraction and immunoblotting 
 Livers were homogenized, or cells were lysed in ice-cold 

RIPA buffer. The lysates were centrifuged (12,000  g ) at 4°C for 
10 min, and the supernatant was collected. Protein was quan-
titated using the Bradford protein assay (Bio-Rad). Equivalent 
amounts of protein homogenates were resolved by SDS-PAGE, 
transferred to a nitrocellulose membrane, and probed with 
rabbit polyclonal antibodies to human APOA (1:1,250) and 
a monoclonal anti-mouse  � -actin (1:2,000) (Santa Cruz Bio-
technology Inc.). The immunoblots were visualized by the 
Pierce ECL Chemiluminescence Detection System (Thermo 
Scientifi c). 

 Plasmids 
 Expression plasmids encoding the human  APOA  promoter con-

struct (h APOA  –1,952/+52) was obtained by PCR amplifi cation us-
ing human genomic DNA as a template. The PCR product was 
cloned into the pGL3 basic vector (Promega) as a  Mlu I/ Bgl II frag-
ment to generate human  APOA -Luc. The primers used are as 
follows: for forward reaction, 5 ′ -ACGCGTTCTGAGAGGGAGGT-
CAAAGTTTTC-3 ′ ; for reverse reaction, 5 ′ -AGATCTCTTGAGAAA-
GCCAGCCCCAAAGGT-3 ′ . The 5 ′  promoter deletion constructs 
were the same as described in detail previously ( 16 ). All constructs 
were verifi ed by DNA sequencing (LGC Genomics). 

 Transient transfection and reporter gene assays 
 Reporter gene assays were performed in HepG2 cells. Cells at 

60–70% confl uency were transiently transfected with the indi-
cated reporter or expression plasmids using FuGENE® 6 reagent 
as described previously ( 16 ). 

 Statistics 
 Statistical analyses of the experiments were performed with 

GraphPad Prism 5.0. Two-tailed, unpaired Student’s  t -test was ap-
plied to determine statistical signifi cance (***  P   �  0.001; **  P   �  
0.01; *  P  < 0.05). 

 RESULTS 

 NA reduces plasma APOA levels and mRNA expression 
in the liver in tg-APOA mice 

 To verify the validity of our mouse model for studying 
the NA-lowering effect on LPA, six tg- APOA  mice were fed 
for 2 weeks with normal chow diet (control) or chow diet 
supplemented with 1% (wt/wt) NA. Supplementation 
with 1% NA resulted in signifi cantly decreased plasma 
APOA levels by 43% (  Fig. 1A  )  and hepatic APOA mRNA 
by 65% ( Fig. 1B ) as compared with controls. Western blot 
analysis of liver homogenates confi rmed that this reduc-
tion also occurs at the protein level upon NA feeding in 
tg- APOA  mice ( Fig. 1C ). No changes in body weight or 

  Fig.   1.   NA decreases plasma levels and hepatic expression of 
 APOA  in mice. Tg -APOA  mice were fed a diet containing 10 g 
of NA per kg of standard rodent chow (n = 6 per group) for 
2 weeks. Control mice (n = 6 per group) received normal rodent 
chow. A :  Plasma levels of APOA were measured by DELFIA and 
expressed as mean ± SD. B: Mouse liver  APOA  mRNA levels 
were analyzed by real-time quantitative PCR, normalized to cy-
clophilin, and expressed relative to control mice. Results repre-
sent the mean ± SEM (***  P   �  0.001). C: Western blot analysis 
of APOA levels in the protein extracts from liver tissue of indi-
vidual mice.   
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promoter constructs, indicating that the region between 
 � 1446 and  � 857 of the human  APOA  promoter contains 
a potential negative response element, which might be re-
sponsible for the observed NA effect. 

 NA reduces APOA mRNA in primary human hepatocytes 
 Because the expression of liver genes in mice might be 

quite different from that of humans, it was important to 
verify the results obtained in tg- APOA  mice in the human 
system. Human hepatocytes demonstrate a greatly variable 
expression of APOA, dependent on the genotype of the 
donor that cannot be freely chosen for ethical reasons. 
The access to PHH is limited; therefore, only few control 
experiments could be performed in PHH. Most impor-
tantly, we observed a concentration-dependent reduction 
in  APOA  mRNA in PHH between 18% and 42% at NA con-
centrations ranging from 50 to 200 µM (  Fig. 4  ).  

 Mapping the promoter region conferring the NA 
inhibition of APOA expression 

 To provide direct evidence for the NA-mediated inhibi-
tory effect on  APOA  promoter and to further identify rel-
evant promoter element(s), a 2 kb fragment of human 
 APOA  promoter (h APOA   � 1,952/+52) was cloned into a 
pGL3-luciferase reporter plasmid. In addition, a series of 
5 ′  deletion constructs were generated (  Fig. 5A ) .  

 HepG2 cells were transiently transfected with 5 ′  dele-
tion constructs of the human  APOA  promoter in the ab-
sence or presence of NA (200 µM). Reduced promoter 
activities were noted for the  � 1952 and  � 1446 constructs 
by 49% and 44%, respectively ( Fig. 5B ). However, the re-
pression was relieved for the  � 857,  � 757,  � 477, and  � 148 

  Fig.   2.  Profi le of plasma lipids and lipoproteins in 
control and 1% NA-treated mice. Tg- APOA  mice were 
fed for 2 weeks a diet containing 10 g of NA per kg 
of standard rodent chow. A: Plasma from individual 
mice per group was pooled and subjected to FPLC, 
and the cholesterol content in each fraction was mea-
sured enzymatically. B and C: Total cholesterol and 
triglycerides levels were measured in plasma after a 
4 h fasting period as described in Materials and Meth-
ods. Data are presented as mean ± SD (n = 6). **  P   �  
0.01 when compared with chow-fed control group.   

  Fig.   3.  NA represses  APOA  gene expression in a dose-dependent 
manner in primary mouse hepatocytes. A and B: Primary mouse hepa-
tocytes from tg- APOA  mice were incubated with increasing concentra-
tions of NA (100 and 200  � M) or vehicle (control) for 24 h. mRNA 
levels of  APOA  were analyzed by real-time quantitative PCR. Results 
represent the mean ± SEM of three independent experiments 
(***  P   �  0.001; **  P   �  0.01). C: Western blotting analysis of APOA ex-
pression in whole cell lysates from hepatocytes treated for 24 h with NA.   
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involved in lipid metabolism, we found several cAMP-re-
sponsive element binding sites in this promoter segment. 
This prompted us to study a possible cAMP effect on APOA 
expression in more detail. 

 APOA transcription is infl uenced by cAMP 
 To examine the involvement of cAMP in the NA effect on 

APOA reduction, we treated primary mouse hepatocytes 
with the stable analog of cAMP, 8Br-cAMP, and followed the 
expression of APOA. 8Br-cAMP induced APOA expression 
in a dose-dependent manner (  Fig. 6A  ).  As a positive con-
trol, we measured the expression levels of Pepck. 8Br-cAMP 
strongly induced Pepck mRNA levels ( Fig. 6B ). The incuba-
tion of primary hepatocytes from tg- APOA  mice with forsko-
lin, a generally used inducer of adenylat cyclase together 
with IBMX, a phosphodiesterase inhibitor revealed a 3.7-
fold elevation of  APOA  mRNA ( Fig. 6C ) when compared 
with vehicle-treated control cells. 

 To study the effect of cAMP on human  APOA  promoter 
activity, HepG2 cells were transfected with the full-length 
h APOA   � 1,952/+52 promoter reporter plasmid in the ab-
sence or presence of 8Br-cAMP. Incubation with 8Br-cAMP 
signifi cantly increased the activity of the h APOA   � 1,952/+52 
promoter ( Fig. 6D ). 

 NA reduces liver cAMP levels mainly by reducing cAMP 
production 

 To address the mode of action of NA on cAMP levels, 
primary hepatocytes from tg- APOA  mice were incubated 
with forskolin with or without NA in the presence and ab-
sence of the phosphodiesterase inhibitor IBMX. Compa-
rable effects of NA on cAMP levels were seen irrespective 
of the inhibition of cAMP degradation by IBMX (  Fig. 7 ) .  
From these experiments, we concluded that the main ef-
fect of NA on cAMP levels is due to interfering with cAMP 
production. 

 Taken together, our results demonstrate that cAMP 
signifi cantly elevates  APOA  mRNA in hepatocytes from 
tg- APOA  mice and that NA reduces intracellular cAMP 
levels in the liver, thereby possibly interfering with APOA 
transcription. 

 DISCUSSION 

 LPA has been suggested for a long time to be linked to 
cardiovascular diseases ( 23, 24 ), yet its role as a causal fac-
tor has been documented only in recent epidemiological 
trials ( 1, 25–28 ). There are very few drugs on the market 
that can be recommended for treatment of patients with 
elevated LPA, and the development of new medications is 
held back by the gaps in understanding its biosynthesis 
and catabolism. Many of the treatment regimes that have 
been recommended in the past show a low effi cacy or are 
accompanied by adverse effects ( 10, 29 ). Optimal cardio-
vascular risk reduction in patients with coronary heart dis-
ease requires integrated pharmacotherapy to normalize 
all classes of lipoproteins, including LPA ( 30 ). NA or the 
derivatives thereof are considered to be good candidates 
to fulfi ll such a task because they not only lower plasma 

 The APOA promoter at nt   �  1446 to  � 857 harbors four 
cAMP-responsive element binding sites 

 In silico Mat-Inspector promoter analysis using the 
Genomatix® database revealed 173 matches of possible 
high-affi nity binding sites for transcriptional regulators 
(supplementary Table I). Among numerous potential 
response elements that are abundant also in other genes 

  Fig.   4.  NA down-regulates  APOA  gene expression in primary hu-
man hepatocytes. Human primary hepatocytes were treated with 
increasing concentrations of NA (50, 100, and 200  � M) or vehicle 
(control) for 24 h. mRNA levels of  APOA  were analyzed by real-
time quantitative PCR. Results represent the mean ± SEM of three 
independent experiments (***  P   �  0.001; *  P  < 0.05).   

  Fig.   5.  NA down-regulates human  APOA  promoter activity in 
HepG2 cells. A: Scheme of the deletion constructs of the h APOA  
promoter used in the luciferase reporter assay. B: HepG2 cells were 
transfected with the indicated h APOA  promoter reporter plasmids 
(150 ng). Cells were subsequently treated for 36 h with vehicle 
or with NA (200 µM) in serum-free DMEM. Transfections were 
performed in triplicates, and each experiment was repeated at 
least three times. Values are normalized to internal control  � -
galactosidase activity and expressed in percentage. Data are pre-
sented as mean ± SD (***  P   �  0.001; **  P   �  0.01). RLU, relative 
light units.   



2410 Journal of Lipid Research Volume 53, 2012

NA with the assembly of apoB-containing lipoproteins, as 
reported previously ( 40 ). In this study, we asked whether 
NA might directly interfere with APOA transcription. 

 Because such studies for ethical reasons are diffi cult to 
perform in humans in vivo, we fi rst addressed the question 
whether NA might be active also in our tg- APOA  animal 
model. Feeding tg- APOA  mice with a 1% NA-containing 
diet for 1 week reduced APOA protein in plasma and 
mRNA in the liver by 53% and 59%, respectively ( Fig.1 ). 
These mice do not form LPA lipoproteins because mouse 
apoB100 does not bind covalently to human APOA ( 42 ). 

triglycerides and cholesterol but also are one of the most 
effective drugs in raising HDL. In addition, numerous tri-
als have shown NA to signifi cantly reduce plasma LPA 
( 11–14, 29–32 ). 

 NA has pleiotropic effects far beyond its action on lipo-
proteins ( 33, 34 ). It affects the metabolism of numerous 
tissues, including endothelial cells, macrophages, adipose 
tissue, and liver, and in theory is suitable for the manage-
ment of lipid abnormalities in type 2 diabetes mellitus and 
metabolic syndrome ( 35 ). With respect to its use as an an-
tiatherogenic drug, NA is characterized by anti-infl amma-
tory effects that are mediated by binding to its receptor 
GPR109A, which is expressed in adipocytes and some leu-
kocytes ( 36 ). In a recent report, it has been also shown 
that NA induces the expression of heme oxigenase-1 by 
activating Nrf2 and the p38-MAPK signaling cascade ( 37 ). 
Heme oxigenase-1 catalyzes the formation of bilirubin, a 
very effective natural antioxidant. Nicotinic acid was shown 
to reduce lipoprotein associated phospholipase-A2 ( 38 ), 
an enzyme that has a high affi nity for LPA ( 39 ). 

 The action of NA on plasma lipoproteins is highlighted 
in several review articles ( 30, 40, 41 ). Among the numer-
ous suggested effects, NA reduces peripheral lipolysis of 
triglycerides, the fl ux of free fatty acids to the liver, and in 
turn the biosynthesis of VLDL. It activates the transcrip-
tion of apoAI and the activity of lipoprotein lipase and re-
duces the biosynthesis of triglycerides in the liver. However, 
little is known about the mechanism causing the reduction 
of plasma LPA concentrations, and there are only specula-
tions on the possible mode of action. One plausible mech-
anism that is not proven may relate to the interference of 

  Fig.   6.  8Br-cAMP increases the expression of hu-
man  APOA . Primary hepatocytes from tg- APOA  mice 
were treated with 8Br-cAMP at the concentrations in-
dicated for 24 h. mRNA levels of (A)  APOA  and (B) 
 Pepck  were analyzed by real-time quantitative PCR. C: 
Primary hepatocytes from tg- APOA  mice were treated 
with forskolin (30 µM) and IBMX (1 mM) for 24 h. 
mRNA levels of  APOA  were analyzed by real-time 
quantitative PCR. Results represent the mean ± SEM 
of three independent experiments (***  P   �  0.001; 
*  P  < 0.05). D: HepG2 cells were transfected with the 
full-length h APOA  promoter reporter plasmid (150 ng). 
Cells were subsequently treated for 36 h with vehicle 
or with 8-Br-cAMP (0.5 mM) in serum-free DMEM. 
Data are presented as mean ± SD (***  P   �  0.001). 
RLU, relative light units.   

  Fig.   7.  Effect of nicotinic acid on cellular cAMP. Primary hepato-
cytes from tg- APOA  mice were treated with 200 µM NA in presence 
or absence of forskolin (A) and forskolin with the phosphodiesterase 
inhibitor IBMX (B). The amount of cAMP present was calculated as 
described in Materials and Methods. Results represent the mean ± 
SEM of three independent experiments (* P  < 0.05).   
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transcriptional regulators, four cAMP response element 
binding sites have been found. Because cAMP strongly in-
creases  APOA  mRNA in liver of tg- APOA  mice and NA re-
duces the cellular cAMP content, we suggest that this 
mechanism might be responsible for the lowering effect of 
NA on LPA. Our results do not exclude the possibility that 
other mechanisms might act in parallel. Further work is 
necessary to identify the response element(s) involved and 
to clarify the molecular mechanism in detail. This may 
help to design medications for the treatment of patients 
with cardiovascular disease with elevated plasma LPA.  

 The authors thank Anton Ibovnik for technical assistance. 
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