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Abstract
Throughout the individual’s reproductive period of life the ovary undergoes continues changes, including cyclic processes 
of cell death, tissue regeneration, proliferation, and vascularization. Tissue-resident leucocytes particularly macrophages, 
play a crucial role in shaping ovarian function and maintaining homeostasis. Macrophages crucially promote angiogenesis in 
the follicles and corpora lutea, thereby supporting steroidogenesis. Recent research on macrophage origins and early tissue 
seeding has unveiled significant insights into their role in early organogenesis, e.g. in the testis. Here, we review evidence 
about the prenatal ovarian seeding of leucocytes, primarily macrophages with angiogenic profiles, and its connection to game-
togenesis. In the prenatal ovary, germ cells proliferate, form cysts, and undergo changes that, following waves of apoptosis, 
give rice to the oocytes contained in primordial follicles. These follicles constitute the ovarian reserve that lasts through-
out the female’s reproductive life. Simultaneously, yolk-sac-derived primitive macrophages colonizing the early ovary are 
gradually replaced or outnumbered by monocyte-derived fetal macrophages. However, the cues indicating how macrophage 
colonization and follicle assembly are related are elusive. Macrophages may contribute to organogenesis by promoting early 
vasculogenesis. Whether macrophages contribute to ovarian lymphangiogenesis or innervation is still unknown. Ovarian 
organogenesis and gametogenesis are vulnerable to prenatal insults, potentially programming dysfunction in later life, as 
observed in polycystic ovary syndrome. Experimental and, more sparsely, epidemiological evidence suggest that adverse 
stimuli during pregnancy can program defective folliculogenesis or a diminished follicle reserve in the offspring. While the 
ovary is highly sensitive to inflammation, the involvement of local immune responses in programming ovarian health and 
disease remains to be thoroughly investigated.
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Introduction

Early prenatal and postnatal life comprises a critical period 
for organ formation, growth and maturation, which occur in 
concerted steps [1, 2]. Mammalian sex specification, recruit-
ment of primordial germ cells into the gonads, prolifera-
tion and apoptosis, which will give place to the oocytes and 
spermatozoa, take place largely during gestation [3]. In the 
case of female individuals, the formation of the so-called 

ovarian reserve, which refers to overall individual’s oocyte 
pool, is largely completed prenatally in humans and in the 
early postnatal days in mice [3, 4]. Moreover, the progeni-
tors of stromal cells that will differentiate into the granulosa 
and theca compartments in the ovarian follicles are already 
present in prenatal/perinatal gonads. Follicle granulosa and 
theca cell layers have crucial steroidogenic functions, as they 
are a main source of sex hormones during the female repro-
ductive life [3, 4]. Through the secretion of estrogens and 
progestogens, these cell compartments are not only involved 
in the female estrous cycle but upon ovulation-induced trans-
formations, they also support early gestation in women and 
the complete gestation in mice.

New insights highlight the pivotal role of the immune 
system in regulating reproductive function [5, 6]. Ovarian 
endocrine roles in young-adult life are possible through the 
tight interaction with ovarian immune components, critically 
involved in folliculogenesis, ovulation and corpus luteum 
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formation and regression [7–9]. These processes not only 
encompass profound tissue remodeling but also the rapid 
formation of vasculature in discrete ovarian regions. Impor-
tantly, macrophages exhibiting hallmarks of M2 activation 
status are localized in the theca cell layer and in the develop-
ing corpus luteum. Here, through the secretion of angiogenic 
factors, they crucially promote the vascularization required 
to support the profound steroidogenic activity of these ovar-
ian compartments [10, 11]. Indeed, vascularization not only 
ensures the influx of oxygens, nutrients, and substrates for 
sex hormone synthesis, but also their rapid egress into circu-
lation. Interestingly, an altered ovarian immune environment 
has been observed in conditions with impaired reproductive 
fitness, such as in polycystic ovary syndrome (PCOS) or 
obesity [12].

Importantly, over the last decades, accumulating epide-
miological data have demonstrated that immune and female 
reproductive health can be programmed prenatally. Intrinsic 
and extrinsic insults to pregnancy can challenge maternal 
physiology, placental function, and fetal organ growth and 
maturation. In fact, the rapid growth and differentiation of 
fetal tissues in response to genetic programmes and environ-
mental signals make them particularly sensitive to prenatal 
insults. According to the Developmental Origins of Health 
and Disease (DOHaD) theory, such early life insults can 
permanently influence health and trigger the vulnerability 
to disease in later life [1, 2, 13].

In this context, it has been recently acknowledged that 
the prenatal tissue resident immune cell compartment is 
an important contributor to organogenesis [14]. Hence, 
we hypothesize that in prenatal life, immune components 
interact with ovarian processes to program postanatal repro-
ductive health or disease. In the present work we aim to 
review current literature on the role of immune components 
in the early development of the ovary. To this end, we delve 
into aspects of vasculogenesis and innervation of the ovary. 
These critical developmental milestones can be modulated 
by immune pathways, and influence early organogenesis and 
ovarian function in later life. We also revisit the literature on 
conditions in which prenatal insults may program ovarian 
dysfunction in adult life and expose the evidence of a pos-
sible involvement of the individual’s immunity, as well as 
current gaps in knowledge.

Milestones of gametogenesis are achieved 
prenatally

In human and mice, germ cell specification occurs in post-
implantation embryos [15]. In this process, a subset of cells 
located in the proximal epiblast of the developing embryo 
[16] are induced to become primordial germ cells by exter-
nal signals [17]. By embryonic day (E) 7.25 in mice these 

cells increase in number and are visible as a cluster at the 
base of the allantois [15, 16] (Fig. 1). Between E9.5 and 
E10.5, primordial germ cells migrate along the hindgut 
until they reach and colonize the incipient and yet undif-
ferentiated gonads, called genital ridges [4]. This process 
occurs in humans until the sixth week of gestation [3, 4]. 
Interestingly, migratory primordial germ cells differ in 
terms of their migration traits from many other types of 
somatic migrating cells, such as fibroblasts, but share many 
characteristics with both migrating leukocytes and certain 
types of metastatic cells [18–20]. For example, the stromal 
cell-derived factor-1 and C-X-C chemokine receptor type 4 
(SDF-1–CXCR4) pathway as well as phospholipid signal-
ing through sphingosine-1 phosphate receptor (S1P) and its 
receptors are important to the migration of these cell types 
[18, 21]. Upon arrival to the gonad, primordial germ cells 
enter synchronous mitotic divisions with incomplete cytoki-
nesis. This leads to the formation of so-called germ cells 
cysts, with sister germ cells derived from a single progenitor 
connected through stable intercellular bridges [22–24].

By E12.5 in mice and 6–7 weeks of gestation in humans, 
the yet bipotential gonads commit to a sex-specific fate. In 
XY embryos the activation of the sex-determining region 
Y (Sry) gene on the Y chromosome which codes for a tran-
scription factor that induces Sry-box transcription factor 9 
(Sox9) expression and a cascade of events that drives the 
development of gonads into testis. In turn in XX individu-
als, due to a lack of the Sry gene, gonads develop as ova-
ries. The sex differentiation of gonadal somatic cells dictates 
the subsequent differentiation of primordial germ cells into 
oogonia. Of note, germ cells are not required for somatic 
cell sex differentiation [25]. In contrast to male germ cells, 
differentiating oogonia present asymmetric accumulation of 
organelle and cytoplasm over the cyst [22]. The process of 
sex determination in the gonads will also direct the differ-
entiation of the remaining reproductive organs. In females, 
in the absence of SOX-9-induced anti-müllerian hormone 
(AMH), and testosterone produced by the primitive testis, 
the internal and external urogenital system will continue a 
female development pathway [4].

By E13.5 in mice, oogonia cease dividing and enter an 
asynchronous transition from mitosis to meiosis to form 
oocytes. As oocytes progress through different stages of 
meiotic prophase I, cyst breakdown begins. During this pro-
cess, two main waves of cell death of germ cells by apoptosis 
are described [26, 27]. The first wave of cell death coincides 
with the entry of oogonia into meiosis (E13.5–E15.5) and 
the second wave occurs between E17.5 and the day of birth 
[28, 29]. In humans, only one wave of depletion of the germ 
cells is reported in the fetal ovary and occurs during mid 
gestation, with highest apoptosis between weeks 14 and 28 
and decreasing towards birth [30, 31]. It has been estimated 
that the ~ 7 million germ cells in the fetal human ovaries at 
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around week 20 of gestation are decimated to 1–2 million 
viable oocytes in early neonatal life [31, 32]. Although the 
most studied type of germ cell death in the ovary is apopto-
sis, autophagy, necrosis, ferroptosis, or necroptosis may also 
take place [27, 33].

The oocytes that avoid cell death progress through prophase 
I of meiosis and initiate primordial follicle assembly. Assem-
bly of the primordial follicle occurs with the encapsulation of 
individual oocytes by somatic support cells [34]. With assem-
bly of the primordial follicles, the oocytes arrest at diplotene 
stage of meiosis [3, 4] and initiate the association with proxi-
mal somatic cells that later differentiate into two subsets of 
granulosa cells: mural granulosa and cumulus cells [4, 36]. 
Perinatally, the ovarian recruitment of theca cells allows the 
final follicle assembly. Generally, resting oocytes in primordial 
follicles reside in avascular zones of the ovary. When follicles 
are recruited to undergo maturation a multilayer blood-follicle 
barrier forms and protects the oocyte from systemic harmful 
stimuli and pathogens [35]. The blood-follicle barrier com-
prises the vascular endothelium and corresponding basement 
membrane, the thecal cell layer, rich in macrophages, followed 

by a follicular basement membrane and the granulosa cell 
layer, in contact with the oocyte [35].

Folliculogenesis starts after birth in mice [28, 29, 31, 37] 
whereas, in humans the recruitment of resting primordial fol-
licles into the growing follicle population starts already before 
birth [3]. This gonadotropin-independent follicle recruitment 
and growth is a continuous but slow process in the prepuber-
tal phase [38]. After puberty, with the initiation of pituitary 
endocrine stimulation ovulation is achieved. At this time the 
oocytes complete the first meiotic division with concomitant 
extrusion of the first polar body [21, 38]. If fertilization with a 
haploid spermatozoon occurs, the oocyte completes the second 
meiotic division and extrudes the second polar body [38].

Multiple systems converge in the female 
gonad to trace its blueprint

Progression through ovarian organogenesis depends on 
cell differentiation, proliferation, migration, and tissue 
remodeling that are guided both by genetic programs and 

Fig. 1   Ovarian seeding of leukocytes raises questions about their 
potential contribution to organogenesis in mice. The upper panel 
illustrates ovarian organogenesis. Primordial germ cells (PGCs) 
migrate to the genital ridges at E10.5 and undergo proliferation by 
synchronous mitotic divisions followed by two later waves of germ 
cell death. After sex determination (E12.5), PGCs enter meiosis 
to form oocytes. The vascular (pink) and the neural (blue) innerva-
tion begins prenatally. Postnatally, newly formed primordial follicles 
(P0) start folliculogenesis, developing into primary (Pri), secondary 
(Se), and antral follicles, leading to ovulation after puberty. Simul-
taneous to gametogenesis, the ovary is colonized by macrophages 
(Ma) derived from three hematopoietic waves (lower panel). The 
first wave, in the yolk sac blood islands, produce “early” erythro-

myeloid progenitors (EMPs). “Early” EMPs differentiate into (pre-)
primitive macrophages (green) that colonize and expand in the fetal 
gonad. Also in the yolk sac, the second wave generates “late” EMPs 
and lymphoid-myeloid progenitors (LMPs). “Late” EMPs seed the 
fetal liver and differentiate into fetal monocytes. Monocytes colonize 
the developing ovary to form monocyte-derived macrophages (pink). 
The third wave gives rise to hematopoietic stem cells (HSCs) in the 
aorta-gonad-mesonephros (AGM) region, the placenta, and yolk sac, 
which colonize the liver, and perinatally the bone marrow, to give rise 
to bone marrow-derived macrophages (red). Macrophage origins and 
associated markers are color-coded for clarity. Other organs contrib-
uting to hematopoiesis are not depicted for simplicity. E: embryonic 
day; PnD: postnatal day
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environmental factors. Although the germ cells confer repro-
ductive function to the ovaries, they do not fully determine 
their morphology [31]. Rather, ovarian somatic cells with 
simultaneously developing immune, vascular, and neural 
fetal systems converge in the primitive gonad to trace the 
blueprint for ovarian structure as follows.

Subsequent waves of hematopoiesis give 
rise to immune cells that colonize the tissues 
during organogenesis

The immune cell fraction is more abundant in male than 
in female fetal gonads [39–42]. Still, evidence arising for 
example from the application of high throughput methods to 
prenatal ovaries such as single cell mRNA sequencing is rap-
idly accumulating (Table 1). Data from fetal mouse (E14.5), 
monkey (E84 and E116), and human (20–26 weeks post 
coitum (WPC)) ovaries [43–45] indicates that the immune 
compartment shares similarities between species [46] and 
that macrophages of diverse origins generally account for 
the main leucocyte subset resident in the prenatal ovary. This 
relies on the progress of hematopoiesis that, concomitant to 
early gametogenesis, emerges in three sequential and par-
tially overlapping waves or programs [47] (Fig. 1).

The first hematopoietic wave, or primitive program 
starts in mice at E7.0 and at 2.5 WPC in humans [48]. By 
then, originating from a progenitor in the yolk sac blood 
islands, the “early” erythro-myeloid progenitors give rise 
to erythroid, megakaryocyte and macrophage progenitors. 
Without passing through monocyte intermediates, mac-
rophage progenitors differentiate into pre-macrophages [14]. 
With the establishment of blood circulation and thus over-
lapping with the second wave of hematopoiesis, macrophage 
progenitors, including erythromyeloid progenitors and pre-
macrophages, leave the yolk sac and migrate through the 
bloodstream to colonize all tissues while maintaining their 
proliferative capacity at least until E12.5 in mice [47–50]. 
Developing tissues are first colonized by these circulating 
pre-macrophages, which differentiate into tissue-specific 
macrophages [14, 50, 51], also known as "primitive mac-
rophages" [47], underscoring the essential role of mac-
rophages in organogenesis.

The second wave or transient definitive program initi-
ates within the hemogenic endothelium of the newly devel-
oping blood vessels of the yolk sac as from E8.25 in mice 
and 3.25 WPC in human [49]. The hemogenic endothelium 
gives then rise to “late” erythro-myeloid progenitors and 
by E9.5 also to lympho-myeloid progenitors (LMPs), none 
of them exhibiting the long-term reconstitution potential 
of HSCs. “Late” erythro-myeloid progenitors generate the 
first fetal monocytes in the liver, after they colonize it by 
E9.5. Here, erythro- and lympho-myeloid progenitors con-
tinue hematopoiesis so that the liver becomes the main 

hematopoietic organ until late gestation [14, 52]. The gen-
erated monocytes infiltrate the gonads and every fetal tissue, 
except for the brain, and remain long term to differentiate 
into tissue resident macrophage populations which will per-
sist at different rates, depending on the tissues [14, 47, 53]. 
In turn, lympho-myeloid progenitors develop into T and B 
lymphoid precursors, and later into lymphocytes [47].

The third wave or definitive program starts on E10.5 in 
mice and at 4–5 WPC in human with the emergence of the 
first hematopoietic stem cells (HSC) from the hemogenic 
endothelium at the aorta-gonads-mesonephros region [47, 
54–56] and beyond E10.5, also at umbilical and vitelline 
arteries, the placenta and yolk sac. As before the erythro- 
and lymphoid-myeloid progenitors, HSCs also rapidly seed 
the fetal liver. At E13.5–14.5 fetal liver is at the peak of 
hematopoiesis, providing a niche for the expansion and dif-
ferentiation of hematopoietic stem and progenitor cells [51, 
57]. It is unclear to what extent fetal liver HSCs contribute 
to hematopoiesis before birth [14, 58]. Yet, in the perinatal 
period, HSC-derived monocytes give rise to a minor popula-
tion of tissue resident macrophages [47]. Close to birth and 
in early postnatal life in mice, HSCs egress the liver and 
seed the maturing bone marrow niche, where they continue 
hematopoiesis and eventually reach quiescence [14].

Following the sequential immune ontogeny, macrophages 
are the first and main leucocyte subset seeding the ovaries

Macrophages, likely originated from the first and second 
hematopoietic waves (Fig. 1) [53, 59, 60], are detected 
around E10.5 in the bipotential XY gonad of mice; however, 
their presence in the ovaries still needs confirmation. There 
is general consensus on the importance of macrophages in 
early life, but not on the nomenclature used across authors 
(Table 1). Here we refer to mouse macrophages as primi-
tive, when derived from the first wave at the yolk sac, or 
as monocyte-derived, when originated either in the second 
wave at the yolk sac or liver, or in the third wave, at the liver. 
The origin of tissue resident macrophages can be demon-
strated e.g. by means of fate mapping models and depletion 
experiments in mice [60], or cell trajectory analysis in single 
cell sequencing data [41]. Jokela et al. have used techni-
cally sound models to provide a thorough overview of the 
early life ovarian macrophage compartment. Among prenatal 
macrophages, generally negative for the major histocom-
patibility complex class II (MHCII), two populations were 
described based on the expression of the cluster of differ-
entiation (CD) 11b and the pan macrophage marker F4/80 
[53]. In the ovaries at E14.5 CD11bintermediate (int) F4/80high 
“primitive” macrophages lacking expression of the mono-
cyte marker Ly6C, but positive for the scavenger receptor 
CD206 are the most abundant population of macrophages. 
Their origin in the first wave of hematopoiesis is proven by 
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their decline upon antibody mediated-depletion of yolk sac-
macrophage progenitors on E6.5 [53]. These observations 
are in line with those in fetal testis [40, 60, 61], in which tis-
sue CD206 + MHCII- macrophages were abundant and inter-
preted as exhibiting a M2-alternative activated phenotype.

In humans, early in development (< 9 WPC), at the time 
that germ cells are migrating to the nascent organ, the ovary 
immune compartment was to some extent similar to that 
described in the AGM region [41]. With macrophages rep-
resenting more than 50% of the total leucocytes, tissue resi-
dent cell subsets also included dendritic cells, monocytes 
and innate lymphoid cells. In these embryonic phases, yolk 
sac derived-macrophage progenitors and -macrophages are 
present in the ovary as a small fraction among the major 
population of pre-macrophages or macrophages with angio-
genic features, like in the heart and kidney [41]. This fact, 
together with the observation that immune cells scattered 
in the gonad, hilum and extragonadal tissues [42] suggests 
a rather tissue-unspecific colonization of the ovaries by 
circulating primitive macrophages and fetal monocytes. 
Intriguingly, trajectory analysis supported that these early 
human ovarian macrophages differentiated from yolk sac 
derived progenitors, without a monocyte intermediary, open-
ing questions about the applicability of the above-described 
model for immune ontogeny in mice to human early tissue 
resident macrophages.

Later, on E16.5 in mice, CD11bhighF4/80int “monocyte-
derived” tissue resident macrophages expressing the mono-
cyte marker Ly6C but low CD206 become the most abun-
dant ovarian cell subtype [53]. These CD11bhighF4/80low 
macrophages are to a large extent of liver origin, as plasma-
lemma vesicle-associated protein deficient mice (Plvap−/−) 
mice, with intact yolk sac macrophages (first and to some 
extent second wave) but defective exit of fetal liver mono-
cytes (second and to some extent third wave) exhibited 
decreased in CD11bhighF4/80low macrophages in fetal ova-
ries [53].

In  the  ovar y,  both  CD11b intF4/80 high and 
CD11bhighF4/80int macrophages express the gene for col-
ony-stimulating factor 1 receptor (Csf1r) [53]. Csf1r is 
widely used in fate mapping studies of macrophages [40, 
50, 53]. Pathways downstream CSF1R are crucial for mac-
rophage development and maintenance. Notably, female 
Csf1rop/op mice with a naturally occurring Csf1-null muta-
tion [62] show a significant reduction of macrophage in 
most tissues, including the ovaries [63]. This deficiency 
leads to disrupted estrous cycles [64], fewer growing fol-
licles [63], low fertility [63, 64] and a low pregnancy rate 
[64, 65]. A similar reproductive phenotype was observed 
in Csf1r−/− mice [66]. These findings highlight the essential 
role of CSF1 signalling in ovarian function and fertility.

Between 9 and 23 WPC in humans, a period in which 
germ cells first proliferate to form cysts and some later 

undergo cell death, macrophages were variably detected in 
the ovary. During this time, T cells and NK cells were also 
abundantly present [41, 42]. This contrasts with the testis, 
where at all-time points macrophages were the most promi-
nent leucocyte subset. As in mice the phenotype of the mac-
rophages changed with time. After 9 WPC pre-macrophages 
and macrophages gradually replaced yolk sac counterparts 
[41]. These subsets were also abundant in the male gonad, 
where additional macrophages subsets exhibited microglia-
like features exclusive of the testis [41, 42]. Similar to 
mice, ovarian (pre-)macrophages expressed MRC1 gene, 
that codes for CD206, and presented an angiogenic pro-
file [41]. Some evidence suggests that macrophages could 
interact for example with theca cell progenitors [39, 53], as 
they likely interact in postnatal life to promote angiogen-
esis in this follicle layer. Based on their expression profile, 
ovarian macrophages are also referred to as tissue repair 
macrophages [42]. Intriguingly, in Drosophila larval ova-
ries, macrophage-like cells play tissue remodelling roles, by 
building the basement membrane by deposition of collagen 
around germ cells, to protect them from excitatory signals 
that otherwise reduce the reproductive fitness [67]. Notable, 
their phagocytic/scavenger functions were not thoroughly 
evaluated for their involvement in e.g. removal of apoptotic 
germ cells. In other tissues, macrophage mediated phagocy-
tosis of apoptotic cells is key for remodelling processes to 
reach the final tissue architecture [58].

Clearly, functional studies such as those performed in the 
testis [40, 60] are still necessary to determine the contri-
bution of macrophages to the stepwise process of ovarian 
organogenesis. There is also a need for further knowledge 
of their role in other ovarian developmental processes, 
including germ cell meiosis and support for stromal cell 
differentiation and maturation. While a predominant role 
of macrophages in tissue remodeling and morphogenesis 
can be proposed, further investigations of their functions 
in physiological and pathological conditions as well as the 
exploration of other immune populations are needed.

This prenatal seeding of macrophages significantly con-
tributes to the postnatal immune compartment of the ovary. 
Also after definitive hematopoiesis is established, mac-
rophages represent an abundant ovarian leucocyte popu-
lation that accompanies successive tissue changes until 
organogenesis is completed and gives place to folliculo-
genesis and later to ovulation. Fetal macrophages traced by 
labelling of CX3CR1CreERT2;R26R-EYFP on E13.5 could be 
detected in low frequencies in the ovary still at 2 weeks of 
age. At birth, approximately half of macrophages expressed 
CD206, although this expression no longer recapitulated a 
primitive yolk sac origin but rather a tissue resident phe-
notype [53]. Notably, in the early postnatal ovary, ovarian 
macrophages remained negative for MHCII, and distributed 
throughout the stromal compartment and around the follicles 
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in close association with CD144+ blood vessels [53]. By 
2 weeks of age MHCII+ macrophages were first detected 
and there after markedly increased in the maturing ovaries 
from mice at least until puberty [53]. Here, similar to bone 
marrow-derived macrophages, fetal macrophages gained a 
more activated MHCII+ phenotype [40, 53]. In postnatal life 
macrophages exhibiting an M2-like phenotype are known 
to be associated with vascular and tissue remodeling during 
postnatal ovarian development and cancer [39, 40, 45, 48, 
61, 68–70]. However, more in depth analysis e.g. of data sets 
already published (Table 1) could prove useful to understand 
features specific of ovarian macrophages and their role in 
ovarian organogenesis.

Vascularization in the prenatal ovaries coincides 
with the seeding of macrophages with angiogenic 
features

In embryonic life the main vascular circuitries are estab-
lished by the differentiation of stem cells into angioblasts 
that undergo de novo vasculogenesis. Arising from them, 
organ blood networks generally form by sprouting and non-
sprouting angiogenesis [71]. In E11.5 mice, a time at which 
germ cells actively proliferate to form cysts, small branches 
from the mesonephric vessels extent into the 6–8 cell layer 
stratified epithelium that forms the primordial gonads [72, 
73]. This primitive vascular system may constitute a road of 
access for the early seeding of immune cells into the gonads, 
as a reciprocal regulation has been described in the undif-
ferentiated testis: failure to form vasculature inhibits mac-
rophage seeding, and macrophage depletion prevents gonad 
vascularization [60]. In females, this primitive vascular 
system near the gonadal-mesonephros border will serve as 
basis for the further angiogenic proliferation and extension 
of the original branches particularly in the medullar domain 
of the ovary [72, 74, 75]. This gradual angiogenesis in the 
ovary contrast to the drastic tissue remodeling in the testis-
mesonephros border [72]. Indeed, preexisting vessels in the 
mesonephros break down, releasing individual endothelial 
cells that under the influence of cues coded downstream 
SRY and of tissue resident macrophages [39, 60, 72, 75] 
are recruited into the testis. As a result, by E12.5 no large 
vessels or vascular plexuses could be identified near the 
gonadal-mesonephros border in males [72].

In contrast to angiogenesis, lymphangiogenesis to form 
the lymphatic vessel network at the ovary starts postnatally 
in mice [76]. Although proper lymphatic drainage is vital for 
tissue homeostasis, to date little is known about the contribu-
tion of the ovarian immune components to this process as 
well as about their involvement in ovarian physiopathology.

While not yet fully explored in the prenatal ovary, angi-
ogenic processes typically involve the proliferation and 
migration of existing endothelial cells, the recruitment of 

pericytes and smooth muscle cells to stabilize the vessels, 
and the deposition of extracellular matrix by fibroblasts 
and mural cells to form the basal membrane. These pro-
cesses are guided by factors such as vascular endothelial 
growth factor (VEGF), transforming growth factor β and 
activation of platelet-derived growth factor receptor β 
[77]. Alongside cytokines and chemokines, these factors 
influence endothelial cells to promote angiogenesis [71, 
72, 77].

In humans, prenatal tissue pre-macrophages, includ-
ing most in the ovary, express mRNA for genes that favor 
angiogenesis, such as VEGFA, IL1B, and CXCL8 [41]. 
Although not specifically tested in the ovary, fetal mac-
rophages expressing MRC1 (coding for CD206) and CD83 
have been shown to secrete soluble factors that promote 
angiogenesis in vitro [41]. Further, fetal ovarian mac-
rophages expressed adhesion molecules such as ICAM or 
CD40 that could interact with the endothelium [41] or with 
theca cell progenitors [44] to promote angiogenesis. Fur-
ther evidence of such an interaction is the observation of 
human ovarian macrophages, particularly those expressing 
MRC1 preferentially localized at the perivascular space, 
as opposed to other leucocytes scattering through the tis-
sue [41]. This regulation between fetal macrophages and 
endothelium might be reciprocal, as supernatants from 
cultured endothelium also induced angiogenic genes in 
macrophages [41].

Based on their mRNA expression profile, ovarian and 
subtypes of testicular macrophages have also been referred to 
as tissue-repair macrophages [42]. In general, macrophages 
can modify the extracellular matrix e.g. by secreting matrix 
metalloproteinases (MMPs) that degrade the extracellular 
matrix and create a permissive environment for endothelial 
cell migration during angiogenesis [74]. Of note, although 
MMP9 expression was a hallmark of macrophages in the 
testis, it was not expressed by the ones in the ovary [42].

Taken together, accumulating information from mRNA 
expression analysis in human tissues support a role of mac-
rophages in angiogenesis in the ovary [41, 42]. Such angio-
genesis involves less dramatic tissue remodelling than in 
testis [72], where the upstream regulation of macrophages 
has been already experimentally confirmed [40]. In contrast, 
direct evidence, and mechanisms of macrophage-induced 
angiogenesis in the ovaries are missing and require experi-
mental validation, e.g. in mouse models. Importantly, with 
the initiation of folliculogenesis, the vascular net accompa-
nies the changes in the ovary, by irrigating follicles at the 
level of the outer layer, composed by theca cells [76]. This 
involves cyclic processes of angiogenesis during follicular 
development, and, when ovulation is established, in corpus 
luteum development, remodeling, and resorption [10]. In the 
cycling female, these processes are under the close regula-
tion of ovarian macrophages [10].
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Innervation of the female gonads

Postanatally a complex interplay between the autonomic 
(sympathic and parasympathic) nervous system, hormonal 
signals, and sensory nerves [76] contributes to the control 
and coordination of ovarian function to an extent that their 
defect can disrupt ovarian health. However, specific mecha-
nisms of how ovarian and neuronal cells synergize to regu-
late the ovary remain poorly studied [78, 79].

Similar to most of the peripheral nervous system, the 
ovarian nervous system is derived from the neural crest 
progenitor cell population, which colonizes target organs 
during prenatal development [79, 80]. As the vasculature, 
peripheral innervation is a sexually dimorphic component 
of the gonad involved in its organogenesis. The presence 
of neural projections within the ovarian medulla has been 
identified in fetal and adult life in the mouse and human 
ovary [80]. Already by E15.5 neural crest cell-derived pro-
jections are observed entering the dorsal mesonephros of 
both male and female fetal mice [72, 79]. At E16.5 neural 
crest cell-derived progenitors colonize the dorsal face of the 
ovary and differentiate into neurons and glia. In contrast, 
at E16.5 innervation in the male reproductive complex is 
restricted to the epididymis and vas deferens, never reaching 
the interior of the testes due to the expression of avoidance 
signals [79]. From E18.5 onward, ovarian innervation gains 
complexity to give rise to a dense neural network within the 
developing ovarian medulla [72, 79]. Recruitment of neu-
ral crest-derived neurons and glia into the ovary coincides 
with critical patterning events during ovary development, 
including rotation of the cortex to the ventral surface of the 
ovary, establishment of the hilus, germ cell cyst breakdown 
[22], primordial follicle formation [80], and activation of the 
first wave of growing follicles soon after birth [78, 81]. In 
mice, ovarian theca cells are originated from Wt1+ ovarian 
precursor cells and Gli1+ mesenchymal cells migrating from 
the mesonephros between E17.5 and postnatal day (PnD) 
5 [79, 82]. The migration pattern resembles ovarian inner-
vation during development, but whether they use the same 
guidance cues is unknown. It is also unknown whether the 
remodeling of the nerves is guided by macrophages, as it 
occurs in the brain with the microglia [14, 58]. As shown in 
adulthood, peripheral nerves house specific resident mac-
rophages which to some extent originate prenatally and 
hold self-renewal capacities [14, 83]. Whilst recent reports 
indicate that peripheral nervous system macrophages, like 
brain microglia, are critical for remodeling in homeostasis 
and inflammation [83] the literature has not yet described 
such a population and their role in fetal ovarian innervation.

Postnatally, in the prepubertal ovary, each growing fol-
licle is innervated by a single neuronal fiber [84]. These 
projections of nerve fibers reach the theca cell layer of the 
follicles [84], rich in macrophages and blood capillaries, 

where a coupling between nerve activity and modulation of 
the blood flow has been proposed. Here, ovarian innervation 
may be involved in stimulating theca or smooth muscle cells 
during follicle growth and ovulation [79, 85]. To date, a role 
for macrophages in the seeding, differentiation, and elonga-
tion of the neural crest progenitor cell in the fetal ovary, or 
later, in the innervation of the developing follicles has not 
been yet investigated. In other tissues, e.g. in dermis, the 
populations of macrophages associated with blood vessels 
and nerves differentiate with regards to their origin and phe-
notype [14] with nerve-associated macrophages facilitating 
processes of regeneration or remodeling [14]. The mecha-
nisms linking vascular development to ovarian innervation, 
as well as the interplay between immune populations such 
as macrophages and ovarian innervation, remain a challenge 
to be solved.

Early programming of ovarian dysfunction 
in human and rodents

Despite the progress in understanding the fine networks 
regulating ovarian function, subfertility of unknown ori-
gin affects a significant fraction of the female population 
[86]. Upon the formulation of the DoHaD hypothesis [13], 
research has questioned the transgenerational origins of 
ovarian dysfunction. Given the delayed emergence of repro-
ductive symptoms and the influence of adverse postnatal 
environmental factors on the manifestation of fetal program-
ming effects [87], comprehensive investigations are con-
strained by the need of clinical data from population-based 
cohorts or studies entailing long-term participant follow-ups. 
In this section, we examine the evidence arising from the 
investigation of maternal conditions affecting pregnancy, 
namely intrauterine growth restriction, the use of assisted 
reproductive technology, acetaminophen intake, maternal 
stress perception, obesity, and polycystic ovary syndrome, 
which may hold consequences in the programming of repro-
ductive dysfunction (Table 2). In this context, clinically rel-
evant animal models have proved crucial for confirming the 
impact of prenatal insults on postnatal reproductive func-
tion and hold a potential application for exploring potential 
mechanisms or therapies (Table 3).

Intrauterine growth restriction (IUGR), constitutes a 
serious and prevalent condition in which the growth trajec-
tory of the fetus is below its potential [88]. IUGR is asso-
ciated with increased inflammation in the mother and off-
spring, as evidenced e.g. by enhanced levels of cord blood 
G-CSF, IL-12, and IL-8 in this population [89]. Ovarian 
development could be targeted by this perinatal immune 
activation, as a higher incidence of PCOS, and potentially 
reduced fertility [90–95] have been proposed in girls who 
suffered from IUGR. There are indications that inadequate 
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intrauterine growth is linked to reduced ovarian volume 
and primordial follicles [96] early in life. In line with these 
observations, various animal models applying intrauter-
ine hypoxia to simulate placental insufficiency and IUGR 
(Table 3) resulted in reduced primordial follicles and AMH 
[97]. Later in life, compensatory mechanisms may be at play, 
so that ovulation and fertility of the females are preserved in 
the long term [97, 98]. Further research is needed to clarify 
these complex dynamics and to explore the contribution of 
the immune alterations in the context of IUGR to the pro-
gramming of ovarian function. Clearly, a difficulty in the 
context of the human clinical condition, is the diversity of 
factors that can be associated with IUGR symptomatology. 
This includes pregnancy complications such as preeclampsia 
or challenges such as prenatal stress, assisted reproductive 
techniques (ART), or exposure to xenobiotics that have been 
associated with an enhanced risk for IUGR in the offspring 
[99]. Due to the diversity of intrauterine processes in these 
conditions, it is also expected that they may affect differ-
ently the fetal immune and reproductive development, as 
described below.

Maternal stress perception during pregnancy can sig-
nificantly target the offspring’s neuroendocrine development 
and trigger their risk for allergies in later life [100, 101]. 
Exposure to prenatal stress was associated with increased 
serum levels of IL-1β, IL-6, IL-8, IL-4, and IL-5 at birth, 
as well as to deregulated cytokine secretion by cord blood 
cells in vitro stimulated with triggers of innate and adap-
tive immunity [102, 103]. Importantly, large population-
based studies have provided evidence that maternal stress 
exposure was associated with a slightly earlier puberty 
onset [104], higher antral follicle counts, unaffected circu-
lating AMH [105], but lower testosterone and androsten-
edione [106] in adolescence than in the matched reference 
population. Intriguingly, maternal exposure to stressful life 
events resulted in lower prevalence of polycystic ovary mor-
phology, but not PCOS in girls [106]. Despite these mild 
changes, the long-term follow up of a population of more 
than 660 thousand women indicated a higher risk for infer-
tility in women exposed prenatally to stress [107], which 
might reflect trends towards lower rates of follicular matura-
tion and ovulation observed in animal studies [108, 109]. To 
date, short and long-term changes in the ovarian innervation 
have been described in rodents prenatally exposed to stress 
[108]. However, further cues to explain these reproductive 
alterations are still missing and their possible association to 
immune changes in prenatal and postnatal life offer mecha-
nistical pathways to consider.

The use of ART​ has recently raised concerns about 
potential risks for the health of the offspring in later life. 
Common methods of ART include intrauterine insemina-
tion, in vitro fertilization, and intracytoplasmic sperm injec-
tion [110, 111]. Not only are ART conceived individuals Ta
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at increased risk for obstetric complications such as IUGR 
[112]; but also, the environmental conditions during ART 
procedures, e.g. hormone administration, gamete, and 
embryo manipulation, may pose a risk for long-term altera-
tions in the health of the exposed individuals [111]. In fact, 
children born after ART exhibited altered immunity, with 
increased rates of immune-related diseases and elevated 
circulating interferon-γ and IL4 [113] than children born 
after natural conception [101, 114–117]. In line with this, 
immune alterations in mouse models of ART-conception 
were also reported [111, 118, 119]. Nonetheless, it is yet 
unclear whether such immune activation may affect female 
ovarian function. In humans this interconnection is particu-
larly elusive, as parental causes of infertility and maternal 
health may significantly influence outcomes [120]. Of note, 
insights from a register-based study that evaluated 122. 321 
ART-conceived and 6 0.576. 410 non-ART singletons [114] 
concludes that girls born after ART had more diagnoses 
related to early puberty that the ones born after natural con-
ception. In conclusion ART seems to trigger detrimental 
immune responses in the offspring, albeit the effect on the 
ovarian development needs urgent investigation.

Acetaminophen intake  The recognition that exposure to 
chemicals during pregnancy can affect offspring’s develop-
ment with long-lasting effects on the reproductive health 
has raised concerns on the use of medication in pregnancy. 
Currently, N-acetyl-para-aminophenol commonly called 
acetaminophen or paracetamol, is the most frequently used 
over-the-counter analgesic to treat fever and pain during 
pregnancy [121–124] often also as a self-administered treat-
ment without clinical supervision [124]. Although safer than 
other pain medications, acetaminophen can cross the pla-
centa [121, 125, 126], and its toxicity is enhanced in preg-
nancy due to decreased liver drug-metabolism [121, 125]. 
For these reasons, addressing possible effects of acetami-
nophen has become a matter of outmost urgency. Studies 
in humans and rodents demonstrate that maternal acetami-
nophen intake can lead to signs of immune activation in 
the mother, placenta and offspring [125, 127–129]. Fetal 
immune ontogeny appears particularly vulnerable as HSCs 
were reduced in infants’ cord blood [123] and in mouse fetal 
liver [129] after maternal acetaminophen intake during preg-
nancy. Maternal acetaminophen exposure in rodents also 
influenced the prenatal gonadal development in male and 
female offspring [127]. Whilst comparatively fewer stud-
ies evaluated the effects on female offspring (Table 2, 3) 
acetaminophen exposure in utero decreased the number of 
ovarian germ cells [130–132] and AMH expression [130]. 
These observations hold truth regardless of the various time 
of exposure during all, mid or late pregnancy, pinpointing 
mid-late gestation as especially vulnerable periods to target 
the follicular reserve. In human ex vivo fetal ovary cultures, 

acetaminophen directly reduced steroidogenic function [133] 
and the density of small, immature germ cells [133] also 
altering their expression of differentiation markers [134]. 
So far, cohort studies only described earlier puberty onset in 
females exposed prenatally to acetaminophen [128]. Taken 
together, while the evidence on the deleterious effects of 
acetaminophen on germ cells and immunity is robust, poten-
tial associations between the local effect of acetaminophen 
on ovarian tissue resident immune cells and formation of the 
ovarian reserve require further investigation, particularly in 
humans.

Maternal obesity during pregnancy is also becoming 
increasingly prevalent [135], as are the complications asso-
ciated with this condition. Maternal obesity-associated pla-
cental dysfunction can result in small-, or, more frequently, 
on large-for-gestational-age neonates. Both conditions left 
children at an increased risk of metabolic, inflammatory, and 
chronic diseases later in life [136, 137]. Enhanced oxidative 
stress and inflammation [103] may explain the exacerbated 
immune activation (Table 3) with e.g. increased IFNα2, 
IL-6, TNF-α, and IL-1 in the cord blood of neonates born 
to obese mothers [137]. The impact of maternal obesity on 
female offspring’s fertility is not clear in humans, with no 
effects on the follicular reserve or fertility reported (Table 2). 
In stark contrast, rodent models of dams fed high fat/sugar 
diet (HFD/HSD) before and during pregnancy indicated that 
female offspring enter puberty early, tend towards a reduced 
ovarian reserve and present a disrupted ovarian and estrous 
cycle [138–147] with upregulated ovarian NF-kB expres-
sion [143, 144]. In the ovary, NF-kB is known to promote 
immune and inflammatory responses and to regulate granu-
losa cells in the formation of ovarian follicles [143, 144], 
which may offer insights into the mechanisms leading to 
decreased follicular reserve in these females. Despite these 
insights, in depth investigation of early immune regulation in 
the ovary is essential to shed light on potential downstream 
processes such as the development of vasculature and inner-
vation, and their contribution to an impaired follicular ovar-
ian reserve upon prenatal maternal obesity. Of note, HFD 
during pregnancy suffices to affect offspring fertility but not 
to induce maternal obesity. Instead, it seems likely that nutri-
ents and metabolites originated by the diet and/or changes 
in the maternal microbiome are important mediators and 
effectors of these reproductive changes other than increased 
BMI. Shall this be the case, it may provide an explanation 
for the variability observed in outcomes from women with 
high BMI compared to HFD rodent models.

Polycystic ovary syndrome (PCOS), often associated 
with obesity and metabolic derangements, is the most fre-
quent neuro-endocrine disorder among women of reproduc-
tive age [148]. PCOS women present high levels of ovarian 
androgen production, ovulatory disorders, and/or ovarian 
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follicular cysts. Intriguingly, PCOS is associated with low-
grade inflammatory symptoms which also manifest in the 
ovary by means of exacerbated activation of the NF-κB path-
way, cytokines, adhesion molecules, and chemoattractant 
factors [149]. There is a high heritability of PCOS features 
from mothers to daughters, that exceeds genetic inheritance 
and is consistent with fetal programming effects [150]. 
Such features include elongated anogenital distance (AGD) 
[151, 152], elevated circulating androgens and AMH [151, 
153–155], as well as polycystic ovary morphology [150, 
152, 155]. PCOS-like characteristics can also be reproduced 
in rodent and primate models by prenatal androgenisation 
[152] (Table 2), pinpointing the hyperandrogenism in preg-
nancies as the main driver of the long-term changes in the 
offspring, for example at the hypothalamus / pituitary level 
[152]. However, PCOS and prenatal androgenisation mod-
els also induce signs of maternal immune activation [153]. 
The exacerbated immune status of PCOS women persists 
during pregnancy [156]. E.g. circulating IL-1β, IL-2, IL-6, 
IL-12, CRP, IL-8, and TNF [156] are particularly increased 
in the first trimester of pregnancy, a crucial time for off-
spring's ovary and immune development. Hence, important 
questions about how this cytokine milieu may contribute to 
the seeding of macrophages in the ovary, its development 
and dysfunction later in life remain open. In fact, ovarian 
inflammatory macrophages appear consistently increased 
in women and mice with polycystic ovaries, implying a 
likely contribution to the ovarian pathology [149, 153]. In 
line with this, excessive vasculature and VEGF levels are 
described in polycystic ovaries [157]. Ovarian innervation 
may also be involved in ovarian derangements as follicular 
cysts have been observed in transgenic mice overexpressing 
nerve growth factor in the theca cell layer [158]. As ovar-
ian vascularization and innervation initiate in prenatal life, 
and might be influenced by macrophages, it is tempting to 
hypothesize that they might be additional targets of the dys-
regulated prenatal development.

Maternal immune activation, referring to the activa-
tion of inflammatory pathways e.g. due to viral and bacterial 
infection, results in the release of cytokines and chemokines 
that can cross the placenta. Maternal immune activation is 
a condition well known to alter offspring’s neuroendocrine 
and immune responses, often in a permanent manner [159, 
160]. Bacterial lipopolysaccharide (LPS)-triggered mater-
nal immune activation during mid or late pregnancy in rats 
further resulted in smaller female offspring with delayed 
puberty onset, lower sex hormone secretion [161, 162], and 
fewer ovarian follicles [163], often forming follicular cysts 
[162] (Table 3). LPS exposure coincided either with the time 
of sex specification and germ cell proliferation in mid preg-
nancy, or later, with the waves of apoptosis prior to germ cell 
cyst break down. However, it is unknown how systemic or 
ovarian inflammation affected the process of gametogenesis, 

and whilst an involvement of the ovarian immune compart-
ment is very likely, it has not yet been investigated.

Many conditions, one mechanism?

Considering the outcomes presented in Table 2, the repro-
ductive features in human cohorts exposed to the reviewed 
prenatal conditions were variable. In girls, the most frequent 
observation was an earlier puberty onset than in the refer-
ence population. In contrast, in rodents the puberty onset 
was mostly unaffected or delayed (often linked to impaired 
follicle maturation) upon prenatal challenges. As puberty 
onset occurs by similar mechanisms in mice and human, pri-
marily responding to hypothalamus and pituitary activation, 
and heavily influenced by postnatal metabolic and environ-
mental factors, the origin of the mismatch between species 
is unknown and requires further investigations. As referred 
to in Table 3, in rodent models of challenges to pregnancy 
alterations in ovarian cyclicity and a reduced ovarian reserve 
were often observed. Still in human cohorts menstrual cycle 
was not reported and no significant changes in the ovar-
ian follicle reserve were observed. This might reflect the 
difficulties to assess the ovarian reserve in humans, which 
generally relies on circulating AMH or number of devel-
oping follicles. By not directly assessing resting follicles, 
these measurements could be subject to error. Intriguingly, 
a reduced follicular ovarian reserve does not result in neces-
sarily subfertility in young individuals [164]. For example, 
female rats with a low ovarian reserve were fertile although 
their pups experienced impaired development, growth, and 
fitness upon pregnancy [165]. This is not surprising, as 
many of the discussed challenges to pregnancy transmitted 
the reproductive phenotype over generations. In the affected 
individuals, a reduced ovarian reserve can lead instead to a 
precocious depletion of oocytes and a shortened reproduc-
tive life span for females, with later consequences for bone 
and vascular health [166]. To date, investigations addressing 
the incidence of premature ovarian insufficiency, ovarian 
aging, or menopause in females affected by prenatal chal-
lenges, which in humans would require a particular long 
follow up time of study participants, are missing.

Intriguingly signs of maternal immune activation were 
observed in most challenges to human pregnancy summa-
rized in Table 2 and reproduced in rodent models (Table 3). 
Also, alterations in cytokines or chemokines were often 
detected in cord blood of infants born upon prenatal chal-
lenges. Hence, the reduced ovarian reserve upon prenatal 
insults in rodents not only pinpoints the vulnerability of 
germ cell formation to environmental cues. Experimental 
and clinical observations on factors that can influence the 
ovarian reserve also puts a spotlight on immune reactions 
as a common denominator of prenatal challenges (Table 2, 
3). Likely maternal and infant immune activation in human 
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and rodents experiencing metabolic or endocrine conditions 
or challenges to pregnancy were of a smaller magnitude than 
those elicited by infections or LPS intervention. Regardless, 
these observations open unanswered questions about the role 
of maternal immune activation as a common pathway to 
mediate fetal programming of female reproductive health.

The postnatal ovary is in fact highly vulnerable to inflam-
mation. Although a rarely described event, Mumps or cyto-
megalovirus tropism and infection to the ovary can lead to 
acute inflammation (oophoritis), tissue necrosis including 
follicle depletion, and premature ovarian failure [167, 168]. 
Evidence on whether equivalent congenital infection of the 
offspring during pregnancy can also affect the follicular 
reserve is still elusive. However, life stages in which the 
assembly of primordial follicles is still ongoing, such as the 
early postnatal period in rodents (~ second trimester of preg-
nancy in women) [3, 4], and hence prior to the formation of 
the blood-follicular barrier [35], appear particularly vulner-
able to inflammation [165]. In neonate rats, the administra-
tion of LPS upregulated systemic inflammatory cytokines, 
and was sufficient to induce ovarian NFκB pathways, local 
inflammation resulting in oocyte depletion, and impaired 
ovarian reserve [165]. In this context as well as in offspring 
affected by prenatal insults, it remains to be investigated 
whether ovarian macrophages, as the main tissue resident 
cell subset at the time, are responsible for sensing and react-
ing to such signals to amplify inflammation [169], and what 
are the consequences for apoptosis of germ cells, vasculari-
zation, and innervation of the gonad prenatally and during 
the female fertile life.

Final remarks

Despite significant progress in understanding the contribu-
tion of fetal macrophages to early organogenesis, research 
on their role in ovarian morphogenesis lags behind. Due to 
macrophage sensitivity and plasticity to the environment, 
their dysregulation in the context of prenatal insults affect-
ing the ovary is also expected. Whether tissue resident yolk 
sac and/or fetal monocyte derived macrophages enhance or 
ameliorate the impact of insults on the ovary, including the 
programming of impaired function and shortened reproduc-
tive life remains to be investigated. The ongoing advance-
ments in the development of mouse models and technical 
methods that enable the analysis of small sample sizes and 
cell numbers, as is the case with fetal ovaries, promise excit-
ing opportunities to bridge these gaps in knowledge in the 
near future.
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