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A B S T R A C T

We prove existence of weak solutions to a diffuse interface model describing the flow of a
fluid through a deformable porous medium consisting of two phases. The system non-linearly
couples Biot’s equations for poroelasticity, including phase-field dependent material properties,
with the Cahn–Hilliard equation to model the evolution of the solid, and is further augmented
by a visco-elastic regularization of Kelvin–Voigt type. To obtain this result, we approximate the
problem in two steps, where first a semi-Galerkin ansatz is employed to show existence of weak
solutions to regularized systems, for which later on compactness arguments allow limit passage.
Notably, we also establish a maximal regularity theory for linear visco-elastic problems.

. Introduction

Interactions of fluid flow, elastic effects and phase-separation can be observed in diverse natural, biological and mechanical
ituations with many practical applications of relevance. Due to the intricate interplay between several physical laws and
hermodynamic relations, accurate mathematical models of such are often challenging and require subtle techniques to analyze.

prime example is the flow of a fluid through a deformable porous medium consisting of different phases with distinct properties,
s exhibited in, e.g., biogrout processes and tumor growth.

This paper is concerned with the analysis of a diffuse interface, Cahn–Hilliard–Biot model recently proposed on this topic by
torvik et al. [1] and aims to establish the existence of weak solutions under general assumptions on material parameters, boundary
onditions and source terms. While the quasi-static Biot equations are a standard model to describe single-phase flow through porous
aterials subject to linear elasticity, the coupling to the Cahn–Hilliard equation allows for the inclusion of phase changes in the

olid, where the resulting elastic deformations, changing material properties and fluid pressure all mutually affect each other. This
eads to a three-way coupled system of parabolic–elliptic type featuring several nonlinearities. Moreover, we account for viscous
ffects by augmenting the equation for linear elasticity with a visco-elastic term that has a dampening effect on the system and
llows us to deduce higher regularity. The analysis is further aided by an underlying generalized gradient flow structure, cf. [1],
hich is crucial for the derivation of a priori estimates. We note that the visco-elastic term is purely dissipative and therefore retains

his property.
The Cahn–Hilliard equation was originally proposed in [2] as a model for phase separation in nonuniform, binary alloys and

as been studied extensively over the past decades, cf. e.g. [3–5]. The coupling of this system with linear elasticity goes back to
ahn and Larché [6] and Onuki [7], for which analytical results can be found in [8–11]. Moreover, there are various extensions of
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these models to describe different phenomena. In particular, for well-posedness results which also incorporate flow fields, we refer
to [12–16].

Poroelasticity, as proposed by Biot [17], combines Darcy’s law for fluid flow within a saturated porous medium with elastic
ffects and has many applications ranging from petroleum engineering to biological tissues. Fundamental analytical results on these
quations can be found in [18–20], while more recent works include [21–23]. We particularly refer to [24] and the references cited
herein. Moreover, results that include nonlinear relations in the Biot model can be found in [25–28].

As mentioned earlier, we include a visco-elastic regularization in the equation for linear elasticity, which is not only an established
pproach in nonlinear poroelasticity, cf. e.g. [20,21,29], but can also be justified in view of physical applications, as we observe
oth elastic and visco-elastic behavior in biological tissues, cf. [24,30,31]. Moreover, poro-visco-elasticity was already discussed by
iot in [32] and a chapter in Coussy’s book [33] is dedicated to this subject.

The principle unknowns we consider in this work are the phase-field variable 𝜑 with an associated chemical potential 𝜇, the
isplacement 𝒖 of the solid due to (visco-)elastic deformations and the volumetric fluid content 𝜃 along with the pore pressure 𝑝.

The full system, including a detailed derivation, can be found in Section 2.
The main difficulties in the analysis arise due to the nonlinear coupling of the Cahn–Hilliard equation with linear elasticity and

fluid flow. As we will discuss later on, the equation for the chemical potential 𝜇 includes quadratic dependencies on the displacement
and the volumetric fluid-content 𝜃. We also allow for phase-field depended material properties, mixed boundary conditions on

he displacement 𝒖, body forces and external loading, as well as general source terms, which will further complicate the analysis.
Our strategy can be briefly summarized as follows: We will first consider a regularized system, featuring an additional bi-

aplacian of 𝜑 in the equation for 𝜇 along with an additional Laplacian of 𝜃 in the equation for 𝜇, and employ a semi-Galerkin
cheme to show existence of weak solutions. This includes splitting the equations into two subsystems and solving these separately
n a first step utilizing both ODE methods and maximal regularity. Finding an approximate solution to the whole system is then
educed to a fixed-point problem, which we solve by using the Leray–Schauder principle. With the help of the Aubin–Lions–Simon
heorem (in the version with translation), we can deduce strong convergence for the pressure 𝑝, which in turn yields the strong
onvergences of 𝒖. Finally, we pass to the limit in which the previously added regularization vanishes.

At this point, it is important to point out that a Faedo–Galerkin ansatz should also suffice for the existence proof. Our approach,
owever, exploits the evolutionary structure of the visco-elastic equation, which allows us to consider the problem in the framework
f maximal regularity and establish well-posedness results, while also providing useful tools for further investigations regarding
igher regularity and the existence of strong solutions.

We would like to discuss two other recently published, independent papers [34,35], which also study the Cahn–Hilliard–Biot
ystem we present here. While both discuss well-posedness of these equations, [34] also includes numerical experiments and
ighlights its application in tumor growth. A study of solution strategies can also be found in [36] and a structure-preserving
pproximation is the subject of [37]. Since the present work is merely concerned with existence of weak solutions, the following
omparison of results is limited to this aspect.

In the paper by Fritz [34], the underlying assumptions are very general and permit all material parameters and source terms
o depend on the phase-field 𝜑. Moreover, he considers mixed boundary conditions for the displacement 𝒖, albeit restricted to the

homogeneous case, and forgoes any regularization in the form of visco-elastic terms. To obtain existence of solutions, he uses a
Faedo–Galerkin ansatz and derives a priori estimates from energy methods, exploiting the gradient flow structure. However, the
treatment of the nonlinearities in the equation defining the chemical potential contain erroneous arguments for the limit passage
from the discrete to the continuous problem. In particular, there are quadratic dependencies on the gradient of the displacement 𝒖
and the volumetric fluid content 𝜃 but the author merely discusses weak convergence for the involved functions.

On the other hand, Riethmüller et al. [35] enhance the Cahn–Hilliard–Biot model with the regularizing, visco-elastic term
⋅ (𝜂𝜕𝑡(∇ ⋅ 𝒖)), which is a slightly weaker assumption compared to ∇ ⋅ (C𝜈 (𝜑)(𝜕𝑡𝒖)), controlling the full 𝐻1-norm, we use. We

ote that they also mention general laws of our form, but only consider homogeneous visco-elastic properties. We further remark
hat while some of our arguments would not work in their visco-elastic setting due to missing ellipticity (cf. Theorem 7), it is easy
o see that the main arguments yielding the necessary convergence properties in our study also work in their setting.

Moreover, unlike our analysis, the source terms in [35] are assumed to be independent of the evolution, and homogeneous
irichlet boundary conditions are prescribed for the displacement 𝒖. Our results further differ in the notion of weak solutions,
here we use a weak identity for the pressure 𝑝, while the formulation of Riethmüller et al. exploits the fluid flux.

Most significant is the dependency of the Biot–Willis coefficient 𝛼 and the compressibility 𝑀 on the phase-field 𝜑 in our model,
hereas 𝛼,𝑀 are assumed to be constant by the other authors. This relaxation is also discussed in their work, cf. [35, Rem. 4,
em. 5, §5]. Taking advantage of the weaker assumption, a Faedo–Galerkin ansatz is employed by Riethmüller et al. to show the
xistence of weak solutions, where the strong compactness result for the projected pressure 𝜋𝑘 in [35, Lem. 12] follows with the help
f the Aubin–Lions–Simon theorem. However, they proceed by trying to establish the convergence ‖𝑝𝑘 − 𝜋𝑘‖ → 0 of the difference

between the pressure 𝑝𝑘 and its projection, which would yield the crucial strong convergence of 𝑝𝑘. To this end, they use that the
orthogonal projection converges to the identity in operator-norm, see [35, Lem. 12], which does not hold. Hence, the compactness
arguments are insufficient, rendering the proof in the current version of [35] incomplete.

While we encounter a similar problem in Lemma 25, we exploit the additional regularity of 𝜑, originating from the regularization,
which allows us to apply another version of the Aubin–Lions–Simon theorem, utilizing translations in time instead of derivatives,
and consider these in a weaker space, thus obtaining the strong convergence of 𝑝. We further point out that at this point the

𝑦

2

regularization is necessary since the projection 𝛱𝑘 is not regular enough due to the mixed boundary conditions.
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Before concluding the discussion of related literature, let us mention that the results on uniqueness and continuous dependence
n both [34,35] are limited to quite restrictive cases and assume 𝑀,𝜅, 𝛼,𝑀 and C to be constant. Moreover, there are also further

restrictions to 𝜓,  and in [35] it is assumed that the partial visco-elastic regularization vanishes. Since, in general, uniqueness even
for the Cahn–Hilliard equation with variable mobility is still an open problem, better results seem to be out of reach for now. While
some results concerning weak-strong uniqueness for systems which include the Cahn–Hilliard equation are known, e.g. [38,39], the
complexity of the system at hand adds many difficulties to finding an appropriate relative entropy functional and could be subject
of future investigations.

A main novelty of our work is that we use maximal regularity theory to obtain an existence result under very general assumptions
on the constitutive relationship between material properties and coefficient functions, while also allowing for the physically more
relevant mixed boundary conditions.

This paper is structured as follows. We start in Section 2 with the derivation of the system as a generalized gradient flow,
especially focusing on the constitutive relations, balance laws and Kelvin–Voigt visco-elastictiy. This is followed by the precise
formulation of the required assumptions and our main theorem in Section 3. Before starting with the analysis, Section 4 introduces
notation and the principle spaces for our solutions along with relevant results on elliptic regularity theory. Moreover, we recall
an important theorem on maximal 𝐿𝑝-regularity of non-autonomous abstract Cauchy-problems, for which an additional bound is
shown under suitable assumptions.

The main part of this article starts in Section 5, where the Cahn–Hilliard–Biot system is enhanced with regularizing terms and
a semi-Galerkin ansatz is employed to show existence of weak solutions. More precisely, we use ODE-methods to find solutions
of one subsystem in linear subspaces, while maximal regularity theory yields solvability on the whole space for the other. After
reducing the problem to a quasi-linear partial differential equation, a fixed-point argument exploiting the Leray–Schauder principle
establishes the existence of consolidated approximate solutions. We proceed with the derivation of a priori estimates, relying on the
generalized gradient flow structure, and deduce first compactness properties. Next, we derive additional strong convergence for 𝑝,
which follows immediately with the help of a version of the Aubin–Lions–Simon theorem once we have found an estimate for the
differences of time-translations of 𝑝 in the space 𝑊 −3,2(𝛺). This allows us to also deduce strong convergence for 𝒖.

It is in Section 6 that we obtain a solution to our original problem as the limit of weak solutions to the regularized problems.
Without being restricted to a projection identity for the pressure, strong convergence for 𝑝 can be derived without the aid of a more
regular 𝜑. Finally, it remains to show strong convergence of 𝜃 without relying on the regularization, for which we exploit that the
operators (−𝜚𝛥 + 1)−1 pointwise converge to the identity in 𝐿2(𝛺) as 𝜚 ↘ 0.

2. Derivation of the system

In this section, we carefully introduce all principle variables and derive the full Cahn–Hilliard–Biot system under investigation.
In particular, we highlight the underlying balance laws, thermodynamic relations and constitutive assumptions, especially stressing
the generalized gradient flow structure and inclusion of visco-elastic effects.

Free energy
The total energy of the system can be split into the following three parts:

 (𝜑, 𝒖, 𝜃) = gl(𝜑) + el(𝜑, 𝒖) + f(𝜑, 𝒖, 𝜃),

where 𝜑 is a phase-field variable acting as an order parameter of the diffuse interface, 𝒖 is the displacement of the solid with respect
to a reference configuration and 𝜃 is the volumetric fluid content.

Here, gl is the Ginzburg–Landau interfacial energy defined by

gl(𝜑) ∶= ∫𝛺
𝜀
2
|∇𝜑|2 + 1

𝜀
𝜓(𝜑) 𝑑𝐱,

which penalizes rapid changes of concentration through the first term and deviations from the pure phases through the second one.
Note that the small parameter 𝜀 > 0 is proportional to the thickness of the interface between the phases. A typical choice for the
free energy density 𝜓 is

𝜓(𝜑) ∶= 𝛼(1 − 𝜑2)2, 𝛼 ∈ R>0,

eaturing a double-well shape with global minima at 𝜓(−1) = 𝜓(1) = 0. Other examples include the so-called logarithmic potential,
hich becomes singular as |𝜑| → 1 and was already considered by Cahn and Hilliard in the original derivation [2], as well as

he obstacle potential, see [3,40], as its pointwise limit. For the promising application of the Cahn–Hilliard–Biot system in tumor
rowth simulations, this diffuse interface approach allows us to model malignant and healthy tissue by associating them with the
alues ±1 of the order parameter 𝜑, respectively. Moreover, the system is also fit to account for interactions between the elastic
isplacement in the cellular matrices and the interstitial fluid flow and pressure, which will be discussed below.

The second contribution to the energy is due to inherent elastic effects and takes the form

el(𝜑, 𝒖) ∶= ∫𝛺
C(𝜑)((𝒖) −  (𝜑)) ∶ ((𝒖) −  (𝜑)) 𝑑𝐱,

here (𝒖) = 1
2 (∇𝒖 + ∇𝒖𝑇 ) denotes the symmetrized gradient of the displacement 𝒖, corresponding to the linearized strain tensor

under the assumption of infinitesimal deformations. The function  is a suitable interpolation of the eigenstrains of the pure phases,
3
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i.e., the strain the material would attain if it was uniform in the phases associated with the values 𝜑 = ±1 and unstressed. Moreover,
we denote by C(𝜑) the elasticity tensor, characterizing the stiffness of the material depending on the order parameter 𝜑.

Lastly, the fluid energy f is given by

f(𝜑, 𝒖, 𝜃) ∶= ∫𝛺
𝑀(𝜑)
2

(𝜃 − 𝛼(𝜑)∇ ⋅ 𝒖)2 𝑑𝐱,

where the compressibility 𝑀(𝜑) and the pressure-deformation coupling coefficient 𝛼(𝜑), usually referred to as Biot–Willis coefficient,
cf. [20,41], are functions of the phase-field.

Note that in order to exploit the gradient-flow structure of the system, this study assumes uniform positivity for the compress-
ibility coefficient 𝑀 , i.e., 𝑀 > 𝑐 > 0; since the fluid content is usually given as 𝜃 = 𝑐0𝑝+𝛼∇ ⋅𝒖, other treatments of the Biot equation
lso consider the degenerate case 𝑐0 = 0, cf. e.g. [20,24] and the references cited therein.

alance laws
We assume the evolution of the phase field to adhere to

𝜕𝑡𝜑 + ∇ ⋅ 𝑱 = 𝑅,

here 𝑱 is the phase-field flux and 𝑅 is a reaction term. Denoting by 𝒒 the fluid flux and by 𝑆𝑓 some source term, we impose the
following volume balance law on the fluid

𝜕𝑡𝜃 + ∇ ⋅ 𝒒 = 𝑆𝑓 .

With the assumption that the mechanical equilibrium is attained at a much faster time scale than the diffusion processes take place,
we obtain the quasi-static law

−∇ ⋅ 𝝈 = 𝒇 ,

where 𝝈 is the stress tensor, describing the balance of elastic forces within the medium and external body forces 𝒇 .

hermodynamic relations
We start by defining the chemical potential as the derivation of the total energy with respect to the phase-field variable 𝜑

𝜇 = 𝛿𝜑 (𝜑, 𝒖, 𝜃) = 𝛿𝜑gl(𝜑) + 𝛿𝜑el(𝜑, 𝒖) + 𝛿𝜑f(𝜑, 𝒖, 𝜃)

where

𝛿𝜑gl(𝜑) = −𝜀𝛥𝜑 + 𝜓 ′(𝜑),

𝛿𝜑el(𝜑, 𝒖) =
1
2
C′(𝜑)((𝒖) −  (𝜑)) ∶ (𝒖 −  (𝜑)) − C(𝜑)((𝒖) −  (𝜑)) ∶  ′(𝜑),

𝛿𝜑f(𝜑, 𝒖, 𝜃) =
𝑀 ′(𝜑)

2
(𝜃 − 𝛼(𝜑)∇ ⋅ 𝒖)2 −𝑀(𝜑)(𝜃 − 𝛼(𝜑)∇ ⋅ 𝒖)𝛼′(𝜑)∇ ⋅ 𝒖.

Assuming the solid material to exhibit Kelvin–Voigt type visco-elastic behavior, we can decompose the total stress 𝝈 into the
elastic stress 𝝈𝑒 and a visco-elastic part 𝝈𝑣, where the former is defined by

𝝈𝑒 = 𝛿𝒖 (𝜑, 𝒖, 𝜃) = 𝛿𝒖el(𝜑, 𝒖) + 𝛿𝒖f(𝜑, 𝒖, 𝜃)

with

𝛿𝒖el(𝜑, 𝒖) = C(𝜑)((𝒖 −  (𝜑))),

𝛿𝒖f(𝜑, 𝒖, 𝜃) =𝑀(𝜑)𝛼(𝜑)(𝜃 − 𝛼(𝜑)∇ ⋅ 𝒖)𝑰 .

Denoting by C𝜈 (𝜑) the phase-field dependent modulus of visco-elasticity, the viscous contribution is given as

𝝈𝑣 = C𝜈 (𝜑)(𝜕𝑡𝒖).

For the inclusion of viscous effects in this manner, we to refer to [42, Sec. 2.1] and the references cited therein. These ideas are
also exploited in [21] for the analysis of a nonlinear poro-visco-elastic model. Moreover, similar assumptions are made in [43, Sec.
4], with the difference that the authors distinguish between the standard elastic strain and stored visco-elastic energy.

Lastly, the pore pressure is given as the derivation of the total energy with respect to volumetric fluid content

𝑝 = 𝛿𝜃f(𝜑, 𝒖, 𝜃) =𝑀(𝜑)(𝜃 − 𝛼(𝜑)∇ ⋅ 𝒖).

Constitutive equations
We assume the phase-field flux to be given by

𝑱 = −𝑚(𝜑)∇𝜇

according to Fick’s law. Moreover, the fluid flux is required to obey Darcy’s law, i.e.,

𝒒 = −𝜅(𝜑)∇𝑝.
4

Here, the mobility 𝑚(𝜑) and the permeability 𝜅(𝜑) are both functions of the phase-field.
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Gradient flow structure
The system at hand was derived by Storvik et al. in [1] as a generalized gradient flow of the energy

 (𝜑, 𝒖, 𝜃) = ∫𝛺
𝜀
2
|∇𝜑|2 + 1

𝜀
𝜓(𝜑) 𝑑𝐱 + ∫𝛺

𝑊 (𝜑, (𝒖)) 𝑑𝐱 + ∫𝛺
𝑀(𝜑)
2

(𝜃 − 𝛼(𝜑)∇ ⋅ 𝒖)2 𝑑𝐱, (1)

odeling the flow of a fluid through a deformable porous media consisting of multiple phases. We wish to point out that they did
ot include the linear visco-elastic term ∇ ⋅ (C𝜈(𝜕𝑡𝒖)), which is purely dissipative and therefore preserves the generalized gradient
low structure.

This work investigates the following system of partial differential equations:

𝜕𝑡𝜑 = ∇ ⋅ (𝑚(𝜑)∇𝜇) + 𝑅(𝜑, (𝒖), 𝜃) in (0, 𝑇 ) ×𝛺, (2a)

𝜇 = −𝜀𝛥𝜑 + 1
𝜀
𝜓 ′(𝜑) +𝑊,𝜑(𝜑, (𝒖))−𝑀(𝜑)(𝜃 − 𝛼(𝜑)∇ ⋅ 𝒖)𝛼′(𝜑)∇ ⋅ 𝒖 +

𝑀 ′(𝜑)
2

(𝜃 − 𝛼(𝜑)∇ ⋅ 𝒖)2 in (0, 𝑇 ) ×𝛺, (2b)

∇ ⋅ 𝝈 = 𝒇 in (0, 𝑇 ) ×𝛺, (2c)

𝝈 = 𝑊, (𝜑, (𝒖)) + C𝜈 (𝜑)(𝜕𝑡𝒖) − 𝛼(𝜑)𝑀(𝜑)(𝜃 − 𝛼(𝜑)∇ ⋅ 𝒖) 𝑰 in (0, 𝑇 ) ×𝛺, (2d)

𝜕𝑡𝜃 = ∇ ⋅ (𝜅(𝜑)∇𝑝) + 𝑆𝑓 (𝜑, (𝒖), 𝜃) in (0, 𝑇 ) ×𝛺, (2e)

𝑝 =𝑀(𝜑)(𝜃 − 𝛼(𝜑)∇ ⋅ 𝒖) in (0, 𝑇 ) ×𝛺 (2f)

together with the boundary conditions

∇𝜑 ⋅ 𝒏 = 0 and ∇𝜇 ⋅ 𝒏 = 0 on (0, 𝑇 ) × 𝜕𝛺, (2g)

𝒖 = 𝟎 and 𝑝 = 0 on (0, 𝑇 ) × 𝛤𝐷, (2h)

𝝈 𝒏 = 𝒈 on (0, 𝑇 ) × 𝛤𝑁 , (2i)

∇𝑝 ⋅ 𝒏 = 0 on (0, 𝑇 ) × 𝛤𝑁 (2j)

and the initial conditions

𝜑(0) = 𝜑0 and 𝒖(0) = 𝒖0 and 𝜃(0) = 𝜃0 in 𝛺. (2k)

Note that here, we split the boundary in a Dirichlet part 𝛤𝐷 and a Neumann part 𝛤𝑁 .
For sufficiently smooth solutions, we obtain the following energy dissipation differential inequality

𝑑
𝑑𝑡

 (𝜑, 𝒖, 𝜃) + ‖𝜕𝑡𝒖‖2𝑯1 + ‖∇𝜇‖2
𝐿2 + ‖∇𝑝‖2

𝐿2 ≤ 𝐶
(

∫𝛺
𝑅(𝜑, (𝒖), 𝜃)𝜇 𝑑𝐱 + ‖𝑆𝑓 (𝜑, (𝒖), 𝜃)‖2𝐿2 + ‖𝒇‖2

𝑳2 + ‖𝒈‖2
𝑳2(𝛤𝑁 )

)

.

ote that since we can only use the Poincarè–Wirtinger inequality for 𝜇, in order to obtain an estimate for the term ∫𝛺 𝑅(𝜑, (𝒖))𝜇 𝑑𝐱,
e first have to estimate the mean value −∫ 𝜇 ∶= −∫𝛺 𝜇 𝑑𝐱.

emark 1.
(i) Note that in contrast to the partial visco-elastic regularization ∇ ⋅ (𝜂𝜕𝑡(∇ ⋅ 𝒖)) employed by Riethmüller et al. in [35], which

only accounts for volumetric effects, we exploit full Kelvin–Voigt visco-elasticity via ∇ ⋅ (C𝜈 (𝜑)(𝜕𝑡𝒖)), utilizing the full stain
rate tensor. Though this assumption is slightly stronger, we obtain the fully parabolic evolution Eq. (2c) for the displacement
𝒖, giving us the chance to apply maximal regularity theory and set up helpful tools for further investigations regarding the
existence of strong solutions.
Moreover, we stress that visco-elastic effects are physically meaningful and do not only serve as a mathematical regularization.
Lastly, let us point out that full visco-elasticity is sorely needed to deduce invertibility and boundedness of the operators
𝒗 ↦ ∫𝛺 C𝜈 (𝜑)(𝒗) ∶ (⋅) 𝑑𝐱 in suitable spaces, cf. (24), which is essential for the application of maximal regularity and the
fixed point argument. In particular, the main arguments yielding compactness for the pressure 𝑝, and hence for 𝒖 and 𝜃, cf.
Lemmas. 25, 26, 27, 28, do not rely on this property and can easily be adopted for the more general case in [35].

(ii) We continue with a short discussion, whether other nonlinear dependencies, specifically in the permeability 𝜅, could be
allowed, as is the case in other studies, e.g., [21,23,25]. While there are some technicalities, in particular in the proof
of the ‘‘Uniqueness and continuous dependence’’-part of Lemma 17, our strong convergence results could accommodate a
permeability of the form

𝜅 = 𝜅(𝜑,∇ ⋅ 𝒖, 𝜃, 𝑝).

Permitting similar dependencies in 𝛼,𝑀 would give raise to chain rules due to the gradient flow structure and (possibly)
significantly complicate the system.

(iii) Observe that by inserting (2f) into (2e) we could eliminate the pressure 𝑝 altogether, but would obtain an equation that is of
third order in the displacement 𝒖. As regularity theory for the elastic subproblem is rather intricate, splitting the system as
5

in (2a)–(2f) is analytically preferable.
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3. Assumptions and main theorem

We start by introducing all necessary assumptions and the notion of a weak solution to the Cahn–Hilliard–Biot system. Moreover,
e precisely state the main theorem we aim to establish in this work.

(A1) Let 𝛺 ⊂ R𝑛 be a bounded and connected 𝐶1,1-domain in dimension 𝑛 ≤ 3; additionally, we assume that the subset 𝛤𝐷 ⊂ 𝜕𝛺
is relatively closed and satisfies 𝑛−1(𝛤𝐷) > 0. Setting 𝛤𝑁 ∶= 𝜕𝛺 ⧵ 𝛤𝐷, it holds that

𝛤𝑁 ∩ 𝛤𝐷 = ∅ and 𝛤𝑁 ∪ 𝛤𝐷 = 𝜕𝛺,

which we further require to be regular in the sense of Gröger, cf. [44, Def. 2], Remark 2(i).
(A2) The potential is of the form

𝜓(𝜑) = 𝜓1(𝜑) + 𝜓2(𝜑) for all 𝜑 ∈ R,

with 𝜓1, 𝜓2 ∈ 𝐶1(R,R) and 𝜓1 convex. Moreover, 𝜓 ′ is required to be Lipschitz continuous on all bounded intervals.

(A2.1) The potential is non-negative, i.e.,

𝜓(𝑧) ≥ 0 for all 𝑧 ∈ R.

(A2.2) We further require 𝜓1 to satisfy the following growth conditions: there exist 𝛾𝜓1 , 𝑐𝜓1 > 0 and 𝑝 > 2 such that

𝛾𝜓1 |𝑧|
𝑝 − 𝑐𝜓1 ≤ 𝜓1(𝑧),

|𝜓 ′(𝑧)| ≤ 𝜌𝜓1𝜓(𝑧) + 𝐶𝜌𝜓1
for all 𝑧 ∈ R, 𝜌𝜓1 > 0 and constants 𝑐𝜓1 , 𝐶𝜌𝜓1 > 0, where the latter may depend on 𝜌𝜓1 .

(A2.3) There exists a constant 𝐶2 > 0 such that

|𝜓 ′′
2 (𝑧)| ≤ 𝐶2 for all 𝑧 ∈ R.

(A3) The elastic free energy density 𝑊 ∈ 𝐶1(R × R𝑛×𝑛𝑠𝑦𝑚) is of the form

𝑊 (𝜑′,  ′) = C(𝜑′)( ′ −  (𝜑′)) ∶ ( ′ −  (𝜑′)),

where C ∶ R → (R𝑛×𝑛𝑠𝑦𝑚) is a bounded, Lipschitz continuous and differentiable tensor whose derivative C′ is also bounded
and Lipschitz continuous. We require it to fulfill the standard assumptions of linear elasticity, i.e., C(𝜑′) is symmetric and
uniformly positive definite on R𝑛×𝑛𝑠𝑦𝑚, mapping symmetric matrices to symmetric matrices such that

 ∶ C(𝜑′) ≥ 𝑐||2,
 ∶ C(𝜑′) = C(𝜑′) ∶ 

for all symmetric matrices  , ∈ R𝑛×𝑛𝑠𝑦𝑚 and all 𝜑′ ∈ R.
The eigenstrain  ∶ R → R𝑛×𝑛𝑠𝑦𝑚 is a Lipschitz continuous, differentiable, matrix-valued function with Lipschitz continuous
derivative  ′, such that  (𝜑) is symmetric for any 𝜑′ ∈ R.

(A4) The modulus of visco-elasticity C𝜈 satisfies the same assumptions as the elasticity tensor C.
(A5) The function 𝒈 ∶ 𝛤𝑁 → R𝑛, modeling applied outer forces, fulfills 𝒈 ∈ 𝑳2(𝛤𝑁 ).
(A6) The function 𝒇 ∶𝛺 → R𝑛, modeling body forces, satisfies 𝒇 ∈ 𝑳2(𝛺).
(A7) There exist constants 𝑚,𝑚 > 0 such that the mobility 𝑚 ∈ 𝐶0,1(R) fulfills

𝑚 ≤ 𝑚(𝑧) ≤ 𝑚 for all 𝑧 ∈ R.

(A8) There exist constants 𝜅, 𝜅 > 0 such that the function 𝜅 ∈ 𝐶0,1(R) fulfills

𝜅 ≤ 𝜅(𝑧) ≤ 𝜅 for all 𝑧 ∈ R.

(A9) The maps 𝛼,𝑀 ∈ 𝐶1,1(R) are non-negative and satisfy

𝛼(𝑧) + |𝛼′(𝑧)| ≤ 𝛼 for all 𝑧 ∈ R and some 𝛼 > 0,

𝑀 ≤𝑀(𝑧) ≤𝑀 for all 𝑧 ∈ R and some 𝑀,𝑀 > 0.

We further assume 𝑀 ′ to be bounded, i.e.,

|𝑀 ′(𝑧)| ≤𝑀 for all 𝑧 ∈ R.

A10) The source terms 𝑅,𝑆𝑓 are in the space 𝐶0,1(R × R𝑛×𝑛 × R). Moreover, we require 𝑅 to be a bounded function.
A11) The initial datum 𝜑0 satisfies

𝜑0 ∈ 𝐻1(𝛺) and 𝜓(𝜑0)𝑑𝒙 < ∞.
6

∫𝛺
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Remark 2.
(i) The subset 𝛺 ∪ 𝛤𝑁 is regular in the sense of Gröger, cf. [44, Def. 2], if for every 𝑦 ∈ 𝜕𝛺 there exists an open neighborhood

𝑈 ⊂ R𝑛 of 𝑦 and a bi-Lipschitz map 𝛷 ∶ 𝑈 → R𝑛 such that 𝛷(𝑦) = 0 and 𝛷(𝑈 ∩ (𝛺 ∪ 𝛤𝑁 )) equals one of the following sets:

𝐸1 ∶= {𝑥 ∈ R𝑛 ∶ |𝑥| < 1, 𝑥𝑛 < 0},

𝐸2 ∶= {𝑥 ∈ R𝑛 ∶ |𝑥| < 1, 𝑥𝑛 ≤ 0},

𝐸3 ∶= {𝑥 ∈ R𝑛 ∶ 𝑥𝑛 < 0 or 𝑥1 > 0}.

In particular, it is explicitly allowed that 𝛤𝐷 ∩ 𝛤𝑁 ≠ ∅.
(ii) The following results are immediate consequences of the assumptions above.

(A3.1) The mapping  ′ ↦ 𝑊, (𝜑′,  ′) is strongly monotone uniformly in 𝜑′ in the following sense: there exists a 𝐶1 > 0 such
that for all symmetric  ′

1, 
′
2 ∈ R𝑛×𝑛 it holds,

(

𝑊, (𝜑′,  ′
2) −𝑊, (𝜑′,  ′

1)
)

∶
(

 ′
2 −  ′

1
)

≥ 𝐶1| ′
1 −  ′

2|
2.

(A3.2) There exists a constant 𝐶2 > 0 such that for all 𝜑′ ∈ R and all symmetric  ′ ∈ R𝑛×𝑛,

|𝑊 (𝜑′,  ′)| ≤ 𝐶2

(

| ′
|

2 + |𝜑′
|

2 + 1
)

,

|𝑊,𝜑(𝜑′,  ′)| ≤ 𝐶2

(

| ′
|

2 + |𝜑′
|

2 + 1
)

,

|𝑊, (𝜑′,  ′)| ≤ 𝐶2
(

| ′
| + |𝜑′

| + 1
)

.

(ii.i) Using the fundamental theorem of calculus, (A3.1), (A3.2) and Young’s inequality, it easily follows that

𝑊 (𝜑′,  ′) ≥ −𝐶 ′
(

|𝜑′
|

2 + 1
)

+
𝐶1
4
| ′

|

2. (3)

A weak solution of the system derived in Section 2 is defined as follows, where the notation for the function spaces will be
defined in the following section.

Definition 3 (Weak Solutions). For any 𝑇 > 0 a quintuple (𝜑, 𝜇, 𝒖, 𝜃, 𝑝) with the properties

𝜑 ∈ 𝐿2(0, 𝑇 ;𝐻1(𝛺)) ∩𝐻1(0, 𝑇 ;𝐻1(𝛺)′),

𝜇 ∈ 𝐿2(0, 𝑇 ;𝐻1(𝛺)),

𝒖 ∈ 𝐻1(0, 𝑇 ;𝑯1
𝛤𝐷

(𝛺)),

𝜃 ∈ 𝐿2(𝛺𝑇 ) ∩𝐻1(0, 𝑇 ; (𝐻1
𝛤𝐷

(𝛺))′),

𝑝 ∈ 𝐿2(0, 𝑇 ;𝐻1
𝛤𝐷

(𝛺))

is a weak solution to the Cahn–Hilliard–Biot system if the following equations are satisfied:

∫

𝑇

0
(𝐻1)′ ⟨𝜕𝑡𝜑, 𝜁⟩𝐻1 𝑑𝑡 = ∫𝛺𝑇

−𝑚(𝜑)∇𝜇 ⋅ ∇𝜁 + 𝑅(𝜑, (𝒖), 𝜃)𝜁 𝑑(𝑡,𝒙) (4a)

for all 𝜁 ∈ 𝐿2(0, 𝑇 ;𝐻1(𝛺));

∫𝛺𝑇
𝜇 𝜁 𝑑(𝑡,𝒙) = ∫𝛺𝑇

𝜀∇𝜑 ⋅ ∇𝜁+
[ 1
𝜀
𝜓 ′(𝜑)+𝑊,𝜑(𝜑, (𝒖)) +

𝑀 ′(𝜑)
2

(𝜃 − 𝛼(𝜑)∇𝒖)2 − 𝑀(𝜑)(𝜃 − 𝛼(𝜑)∇ ⋅ 𝒖)𝛼′(𝜑)∇ ⋅ 𝒖
]

𝜁 𝑑(𝑡,𝒙)

(4b)

or all 𝜁 ∈ 𝐿∞(𝛺𝑇 ) ∩ 𝐿2(0, 𝑇 ;𝐻1(𝛺));

∫𝛺𝑇
C𝜈(𝜑)(𝜕𝑡𝒖) ∶ (𝜼) +𝑊, (𝜑, (𝒖)) ∶ (𝜼) −𝑀(𝜑)𝛼(𝜑)(𝜃 − 𝛼(𝜑)∇ ⋅ 𝒖)∇ ⋅ 𝜼 𝑑(𝑡,𝒙)

= ∫𝛺𝑇
𝒇 ⋅ 𝜼 𝑑(𝑡,𝒙) + ∫

𝑇

0 ∫𝜞𝑵

𝒈 ⋅ 𝜼 𝑑𝑛−1 𝑑𝑡 (4c)

or all 𝜼 ∈ 𝐿2(0, 𝑇 ;𝑯1
𝛤𝐷

(𝛺));

∫

𝑇

0
(𝐻1

𝛤𝐷
)′ ⟨𝜕𝑡𝜃, 𝜉⟩𝐻1

𝛤𝐷
𝑑𝑡 = ∫𝛺𝑇

−𝜅(𝜑)∇𝑝 ⋅ ∇𝜉 + 𝑆𝑓 (𝜑, (𝒖), 𝜃)𝜉 𝑑(𝑡,𝒙) (4d)

or all 𝜉 ∈ 𝐿2(0, 𝑇 ;𝐻1
𝛤𝐷

(𝛺));

𝑝 =𝑀(𝜑)(𝜃 − 𝛼(𝜑)∇ ⋅ 𝒖) a.e. in 𝛺𝑇 (4e)

nd
1 ′
7

𝜃(0) = 𝜃0 in (𝐻𝛤𝐷
(𝛺)) and (𝜑, 𝒖)

|𝑡=0 = (𝜑0, 𝒖0) a.e. in 𝛺 (4f)
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The primary goal of this work is to show the following existence theorem. In what follows, we refer to later sections for the
efinitions of the function spaces involved.

heorem 4. Assume 𝑇 > 0 and that (A1)–(A11) hold. Moreover, suppose that 𝜃0 ∈ 𝐿2(𝛺) and 𝒖0 ∈ 𝑯1
𝛤𝐷

(𝛺). Then, there exists at least
one weak solution to the Cahn–Hilliard–Biot system in the sense of Definition 3 such that

𝜑 ∈ 𝐿∞(0, 𝑇 ;𝐻1(𝛺)) ∩𝐻1(0, 𝑇 ;𝐻1(𝛺)′),

𝜇 ∈ 𝐿2(0, 𝑇 ;𝐻1(𝛺)),

𝒖 ∈ 𝐻1(0, 𝑇 ;𝑯1
𝛤𝐷

(𝛺)),

𝜃 ∈ 𝐿∞(0, 𝑇 ;𝐿2(𝛺)) ∩𝐻1(0, 𝑇 ; (𝐻1
𝛤𝐷

(𝛺))′),

𝑝 ∈ 𝐿2(0, 𝑇 ;𝐻1
𝛤𝐷

(𝛺)) ∩ 𝐿∞(0, 𝑇 ;𝐿2(𝛺)).

Moreover, the weak solution satisfies the following estimate

‖𝜑‖𝐿∞(𝐻1) + ‖𝜑‖𝐻1((𝐻1)′) + ‖𝜇‖𝐿2(𝐻1) + ‖𝜓(𝜑)‖𝐿∞(𝐿1) + ‖𝒖‖𝐻1(𝑯1
𝛤𝐷

) + ‖𝜃‖𝐿∞(𝐿2) + ‖𝜃‖𝐻1((𝐻1
𝛤𝐷

)′) + ‖𝑝‖𝐿2(𝐻1
𝛤𝐷

) ≤ 𝐶,

where 𝐶 > 0 only depends on the data and on 𝑇 .
If 𝒖0 ∈ 𝑾 1,𝑟

𝛤𝐷
(𝛺) with 𝑟 > 2, then there exists some 2 < 𝑞 ≤ 𝑝 such that 𝒖 ∈ 𝐿2(0, 𝑇 ;𝑾 1,𝑞

𝛤𝐷
(𝛺)).

4. Notation and preliminaries

This section begins with the introduction of relevant function spaces, particularly Sobolev spaces and Bessel potential spaces,
along with associated notation and embedding properties. We proceed by recalling a theorem on elliptic regularity theory, which will
be used later on. This is followed by a brief excursion into maximal 𝐿𝑝-regularity theory, where we revisit an existence theorem
for non-autonomous abstract Cauchy-problems by Arendt et al. [45] and, under similar assumptions as we will encounter when
investigating the Cahn–Hilliard–Biot model, extend the proof by an additional estimate for the solutions in terms of the right-hand
side. Lastly, we also recall the Leray–Schauder principle.

For brevity we write 𝛺𝑇 instead of (0, 𝑇 ) ×𝛺 for any 𝑇 > 0.

Notation
For 𝑝 ∈ [1,∞], we denote by 𝑊 1,𝑝(𝛺) the usual Sobolev spaces and use the abbreviations

𝐻1(𝛺) ∶= 𝑊 1,2(𝛺), 𝐻2
𝒏 (𝛺) ∶= {𝑓 ∈ 𝑊 2,2(𝛺) ∶ ∇𝑓 ⋅ 𝒏 = 0 on 𝜕𝛺},

where 𝒏 is the outer normal vector on 𝜕𝛺. Moreover, we define

𝑊 1,𝑝
𝛤𝐷

(𝛺) ∶= {𝑓
|𝛺 ∶ 𝑓 ∈ 𝐶∞

𝑐 (R𝑛,R), supp 𝑓 ∩ 𝛤𝐷 = ∅}
‖⋅‖𝑊 1,𝑝 , 𝑊 −1,𝑝

𝛤𝐷
(𝛺) ∶= (𝑊 1,𝑝

𝛤𝐷
(𝛺))′

and set

𝑋(𝛺) ∶= 𝑊 1,2
𝛤𝐷

(𝛺), 𝑾 1,𝑝
𝛤𝐷

(𝛺) ∶=
𝑛
∏

𝑖=1
𝑊 1,𝑝
𝛤𝐷

(𝛺), 𝑿(𝛺) ∶= 𝑾 1,2
𝛤𝐷

(𝛺).

We further denote by 𝑾 −1,𝑝
𝛤𝐷

(𝛺) the duals of the vector-valued Sobolev spaces and also use the abbreviation 𝑋′(𝛺) and 𝐻1(𝛺)′ for
the duals of 𝑋(𝛺) and 𝐻1(𝛺), respectively.

Finally, we write ⋅⟨⋅, ⋅⟩⋅ for the duality product between spaces specified in the indices and denote by ⟨⋅, ⋅⟩ the 𝐿2-inner product.
For a given function, e.g., 𝑓 (𝑥, 𝑦) with multiple variables 𝑥, 𝑦, we express the directional derivatives by 𝑓,𝑥 = 𝑓𝑥 = 𝜕

𝜕𝑥𝑓 and
𝑓,𝑥 = 𝑓𝑦 =

𝜕
𝜕𝑦𝑓 , respectively.

efinition 5 (Bessel-Potential Spaces, [46, Def. 2.42], [47, Thm. 2.3.3], [48, Sec. 4]).

(i) Let 𝑠 ∈ R and let 1 < 𝑝 <∞. Then the (𝐿𝑝)-Bessel potential space of order 𝑠 is denoted as 𝐻𝑠,𝑝(R𝑛).
(ii) For 1

𝑝 < 𝑠 < 1 + 1
𝑝 set

𝐻𝑠,𝑝
𝛤𝐷

(R𝑛) ∶=

{

𝑓 ∈ 𝐻𝑠,𝑝(R𝑛) ∶ lim
𝑟↘0

1
|𝐵𝑟(𝑥)| ∫𝐵𝑟(𝑥)

𝑓 (𝑦) 𝑑𝐲 = 0 for 𝑑−1-a.e. 𝑥 ∈ 𝛤𝐷

}

with ‖ ⋅ ‖𝐻𝑠,𝑝
𝛤𝐷

(R𝑛) = ‖ ⋅ ‖𝐻𝑠,𝑝(R𝑛).

(iii) Finally, set

𝐻𝑠,𝑝
𝛤𝐷

(𝛺) ∶= {𝑓
|𝛺 ∶ 𝑓 ∈ 𝐻𝑠,𝑝

𝛤𝐷
(R𝑛)}

endowed with the norm

‖𝑓‖𝐻𝑠,𝑝 (𝛺) ∶= inf
{

‖𝑔‖𝐻𝑠,𝑝 (R𝑛) ∶ 𝑔 ∈ 𝐻𝑠,𝑝 (R𝑛), 𝑔
|𝛺 = 𝑓

}

.

8

𝛤𝐷 𝛤𝐷
𝛤𝐷
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Remark 6.
(i) As before, we define 𝑯𝑠,𝑝

𝛤𝐷
(𝛺) ∶=

∏𝑛
𝑖=1𝐻

𝑠,𝑝
𝛤𝐷

(𝛺).
(ii) To shorten notation, we set 𝐻𝑠

𝛤𝐷
(𝛺) ∶= 𝐻𝑠,2

𝛤𝐷
(𝛺) and ‖ ⋅ ‖𝐻𝑠

𝛤𝐷
∶= ‖ ⋅ ‖𝐻𝑠,2

𝛤𝐷
(𝛺), with the analogous conventions for 𝑯𝑠

𝛤𝐷
(𝛺).

(iii) As discussed in [48, Prop. 1], [49, Cor. 3.8], the spaces 𝑊 1,2
𝛤𝐷

(𝛺) and 𝐻1
𝛤𝐷

(𝛺) are isomorphic. Therefore, it holds 𝑋(𝛺) ≅
𝐻1
𝛤𝐷

(𝛺) and 𝑿(𝛺) ≅ 𝑯1
𝛤𝐷

(𝛺).

(iv) It is well known, e.g. cf. [50, Ch. 2.5], that the embedding 𝐻1+𝛿,𝑝(𝛺)
𝑐𝑝𝑡
←←←←←←←←←←→ 𝐻1,𝑝(𝛺) is compact.

lliptic regularity
Treating problems in linear elasticity with classic elliptic theory yields a unique solution in 𝑯1

𝛤𝐷
(𝛺). The following theorem is

more subtle, allowing us to find solutions in 𝑾 1,𝑝
𝛤𝐷

(𝛺), and provides uniform estimates in terms of the right-hand side.

Theorem 7 ([51, Thm. 1.1, Prop. 1.2]). Assume that 𝛺 satisfies (A1) and let  be a set of (nonlinear) measurable functions
𝒄 ∶ 𝛺 × R𝑛×𝑛𝑠𝑦𝑚 → R𝑛×𝑛𝑠𝑦𝑚 such that for all 𝒄 ∈  it holds

(i) 𝒄(⋅, 𝟎) ∈ 𝐿∞(𝛺,R𝑛×𝑛𝑠𝑦𝑚),
(ii) 𝒄(⋅,  ′) is measurable for all  ′ ∈ R𝑛×𝑛𝑠𝑦𝑚,
(iii) (𝒄(𝒙,  ′

1) − 𝒄(𝒙,  ′
2)) ∶ ( ′

1 −  ′
2) ≥ 𝑐| ′

1 −  ′
2|

2,
(iv) |𝒄(𝒙,  ′

1) − 𝒄(𝒙,  ′
2)| ≤ 𝐶| ′

1 −  ′
2|

for almost all 𝒙 ∈ 𝛺 and all  ′
1, 

′
2 ∈ R𝑛×𝑛𝑠𝑦𝑚 with constants 0 < 𝑐 ≤ 𝐶 independent of 𝒄 ∈ . Then there exists some 𝑝∗ > 2 such that

for all 𝑝 ∈ [2, 𝑝∗] the operators

C ∶ 𝑾 1,𝑝
𝛤𝐷

(𝛺) → 𝑾 −1,𝑝
𝛤𝐷

(𝛺), 𝒗 ↦ ∫𝛺
𝒄(𝒙, (𝒗)) ∶ (⋅) 𝑑𝐱

are continuously invertible. Moreover, their inverses share a uniform Lipschitz constant, i.e., there exists some 𝐿 > 0 such that for all
1, 𝑓2 ∈ 𝑾 −1,𝑝

𝛤𝐷
(𝛺)

‖C−1𝑓1 − C−1𝑓2‖𝑾 1,𝑝
𝛤𝐷

≤ 𝐿‖𝑓1 − 𝑓2‖𝑾 −1,𝑝
𝛤𝐷

.

emark 8. Since the functions C and C𝜈 satisfy (A3) and (A4), respectively, the assumptions of Theorem 7 are fulfilled with
onstants 𝑐, 𝐶 independent of 𝜑′ ∈ 𝐿2(𝛺). Moreover, as 𝐶(𝜑′),C𝜈 (𝜑′) are linear maps on R𝑛×𝑛𝑠𝑦𝑚 for all 𝜑′ ∈ R, the induced

operators are topological isomorphisms of 𝑾 1,𝑝
𝛤𝐷

(𝛺) and 𝑾 −1,𝑝
𝛤𝐷

(𝛺) with a common bound for the inverses.

Maximal 𝐿𝑝-regularity
The following definitions and results are taken from [45]. Here, we assume 𝐷, 𝑌 to be Banach spaces such that the embedding

𝐷
𝑑
←←←←←→ 𝑌 is dense.

Definition 9. An operator 𝐴 ∈ (𝐷, 𝑌 ) is said to have 𝐿𝑝-maximal regularity for 𝑝 ∈ (1,∞) if for some interval (𝑎, 𝑏) and all
𝑓 ∈ 𝐿𝑝(𝑎, 𝑏; 𝑌 ) there exists a unique 𝑢 ∈ 𝑊 1,𝑝(𝑎, 𝑏; 𝑌 ) ∩ 𝐿𝑝(𝑎, 𝑏;𝐷) satisfying

𝜕𝑡𝑢 + 𝐴𝑢 = 𝑓 𝑎.𝑒.𝑜𝑛(𝑎, 𝑏), 𝑢(𝑎) = 0.

In this case, 𝐴 already has 𝐿𝑝-maximal regularity for all bounded intervals and all 𝑝 ∈ (1,∞), cf. [45], and we write 𝐴 ∈ .

The following theorem is a modification of [45, Thm. 2.7] and yields a uniform estimate for the solution under some additional
assumptions.

Theorem 10. Let the family 𝑖 ∶ [0, 𝜏] → (𝐷, 𝑌 ), 𝑖 ∈ , be strongly measurable, 𝜏 > 0, and suppose that there are 𝑡∗𝑖 ∈ [0, 𝑇 ] such that
𝑖(𝑡∗𝑖 ) ∈  with 𝑖(𝑡∗𝑖 ) −𝑗 (𝑡∗𝑗 ) ∈ (𝑌 ) and ‖𝑖(𝑡∗𝑖 ) −𝑗 (𝑡∗𝑗 )‖(𝑌 ) ≤ 𝐶 for some 𝐶 > 0 and any two 𝑖, 𝑗 ∈ . Moreover, assume that
there exists 𝜂 = 𝜂(𝑀) ≥ 0 such that for all 𝑥 ∈ 𝐷 and 𝑠, 𝑡 ∈ [0, 𝑇 ], 𝑖 ∈ 

‖𝑖(𝑡)𝑥 −𝑖(𝑠)𝑥‖𝑌 ≤ 1
2𝑀

‖𝑥‖𝐷 + 𝜂‖𝑥‖𝑌 , (5)

where 𝑀 is the constant from Lemma 31. Then 𝑖 ∈  = 𝑝(0, 𝑇 ) for all 𝑝 ∈ (1,∞) and all 𝑖 ∈ .
In particular, for each 𝑓 ∈ 𝐿𝑝(0, 𝜏; 𝑌 ) and each 𝑥 ∈ (𝑌 ,𝐷) 1

𝑝′ ,𝑝
there exists a unique function 𝑢 ∈ 𝑊 1,𝑝(0, 𝜏; 𝑌 ) ∩ 𝐿𝑝(0, 𝜏;𝐷) satisfying

{

𝜕𝑡𝒖 +𝑖(𝑡)𝒖 = 𝒇 a.e. on (0, 𝜏),
𝒖(0) = 𝑥.

Moreover, there exists a constant 𝐶 > 0, independent of 𝑖 ∈ , such that

‖𝑢‖MR(0,𝑇 ) ≤ 𝐶‖𝑥‖(𝑌 ,𝐷) 1
𝑝′
,𝑝
+ 4𝑀e𝑇𝜆‖𝑓‖𝐿𝑝(𝑎,𝑏;𝑌 ), (6)

where 𝐶,𝑀, 𝜆 depend on 𝐶 .
9
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Proof. The proof of this theorem can be found in Appendix. □

emark 11. Comparing this theorem to [45, Thm. 2.7], we would like to point out that while we only require (𝑡) ∈  for a
ingle 𝑡∗ ∈ [0, 𝑇 ], our assumption (5) is much stricter than in the original, where a similar estimate is only required to hold in small
eighborhoods. However, without any further assumptions, an estimate as in (6) could not be obtained.

eray–Schauder principle
The Leary–Schauder principle, which is sometimes also referred to as Schaefer’s theorem, is a well-known consequence of

chauder’s fixed point theorem. The following formulation was taken from [52, II Lem. 3.1.1].

efinition 12. A, not necessarily linear, operator 𝐵 ∶ 𝑌 → 𝑌 is called completely continuous if
(i) 𝐵 is continuous;

(ii) for each bounded sequence (𝑦𝑛)𝑛∈N ⊂ 𝑌 the sequence (𝐵𝑦𝑛)𝑛∈N contains an in 𝑌 strongly converging subsequence.

heorem 13 (Leray–Schauder Principle). Let 𝑌 be a Banach space and 𝐵 ∶ 𝑌 → 𝑌 be a completely continuous operator. Assume there
xists some 𝑟 > 0 such that for all 𝑥 ∈ 𝑌 , 𝜆 ∈ [0, 1] satisfying 𝑥 = 𝜆𝐵𝑥 it holds ‖𝑦‖𝑌 ≤ 𝑟. Then there exists at least one 𝑦∗ ∈ 𝑌 such that
∗ = 𝐵𝑦∗ and ‖𝑥∗‖𝑌 ≤ 𝑟.

. Existence of weak solutions to a regularized system

The goal of this section is to prove the existence of weak solutions to a regularized Cahn–Hilliard–Biot system with an additional
i-laplacian of 𝜑 in the equation for the chemical potential 𝜇. To this end, we employ a semi-Galerkin ansatz, solving the subsystem
onsisting of (2a), (2b), (2e), (2f) and some fixed 𝒖 for 𝜑, 𝜇, 𝜃, 𝑝 in subspaces of 𝐻1(𝛺) and 𝑋(𝛺), respectively. Here, we reduce
he differential–algebraic system to a system of ordinary differential equations for 𝜑, 𝜃 and exploit a Lipschitz-estimate along with
Gronwall-type argument to show uniqueness and continuous dependence on the data. On the other hand, for fixed 𝜑, 𝑝, maximal
𝑞-regularity yields a unique solution 𝒖 to (2c) and we use a fixed-point argument relying on the Leray–Schauder principle to find
n approximate solution to the whole system.

Exploiting the generalized gradient flow structure, we derive a priori estimates and deduce first compactness results. Since these
re not sufficient to pass to the limit, we use a lesser known version of the seminal Aubin–Lions–Simon theorem to deduce strong
onvergence of 𝑝 in 𝐿2(𝛺𝑇 ), which in turn allows us to establish strong convergence of 𝒖 in 𝐿2(0, 𝑇 ;𝑯1

𝛤𝐷
(𝛺)) and of 𝜃 in 𝐿2(𝛺𝑇 ).

The main result of this section is the following theorem.

heorem 14 (Existence of Weak Solutions to the Regularized Problem). Assume that List (A1)–(A11) are fulfilled. Further, let 𝜑0 ∈ 𝐻2
𝒏 (𝛺),

0 ∈ 𝑯1
𝛤𝐷

(𝛺), 𝜃0 ∈ 𝑋(𝛺) and 𝜚 > 0. Finally, let 𝜙 ∈ 𝐶∞
𝑐 (R𝑛) be a standard convolution kernel. Then, there exist functions (𝜑, 𝜇, 𝒖, 𝜃, 𝑝)

uch that

𝜑 ∈ 𝐿∞(0, 𝑇 ;𝐻2
𝒏 (𝛺)) ∩𝐻1(0, 𝑇 ;𝐻1(𝛺)′),

𝜇 ∈ 𝐿2(0, 𝑇 ;𝐻1(𝛺)),

𝒖 ∈ 𝐻1(0, 𝑇 ;𝑿(𝛺)),

𝜃 ∈ 𝐿∞(0, 𝑇 ;𝐿2(𝛺)) ∩𝐻1(0, 𝑇 ;𝑋′(𝛺)),

𝑝 ∈ 𝐿2(0, 𝑇 ;𝑋(𝛺)) ∩ 𝐿∞(0, 𝑇 ;𝐿2(𝛺))

satisfying the following equations:

∫

𝑇

0
(𝐻1)′ ⟨𝜕𝑡𝜑, 𝜁⟩𝐻1 𝑑𝑡 = ∫𝛺𝑇

−𝑚(𝜑)∇𝜇 ⋅ ∇𝜁 + 𝑅(𝜑, (𝒖), 𝜃)𝜁 𝑑(𝑡,𝒙) (7a)

for all 𝜁 ∈ 𝐿2(0, 𝑇 ;𝐻1(𝛺));

∫𝛺𝑇
𝜇 𝜁 𝑑(𝑡,𝒙) = ∫𝛺𝑇

𝜀∇𝜑 ⋅ ∇𝜁 + 𝜚1∕2𝛥𝜑𝛥𝜁

+
[

1
𝜀𝜓

′(𝜑) +𝑊,𝜑(𝜑, (𝒖)) +
𝑀 ′(𝜑)

2
(𝜃 − 𝛼(𝜑)∇ ⋅ 𝒖)2 −𝑀(𝜑)(𝜃 − 𝛼(𝜑)∇ ⋅ 𝒖)𝛼′(𝜑)∇ ⋅ 𝒖

]

𝜁 𝑑(𝑡,𝒙) (7b)

or all 𝜁 ∈ 𝐿∞(𝛺𝑇 ) ∩ 𝐿2(0, 𝑇 ;𝐻2
𝒏 (𝛺));

∫𝛺𝑇
C𝜈(𝜑)(𝜕𝑡𝒖) ∶ (𝜼) +𝑊, (𝜑, (𝒖)) ∶ (𝜼) − 𝛼(𝜑)𝑝 (∇ ⋅ 𝜼) ∗ 𝜙𝑑(𝑡,𝒙)

= ∫𝛺𝑇
𝒇 ⋅ 𝜼 𝑑(𝑡,𝒙) + ∫

𝑇

0 ∫𝜞𝑵

𝒈 ⋅ 𝜼 𝑑𝑛−1 𝑑𝑡 − 𝜚∫𝛺𝑇
∇𝜃 ⋅ ∇(𝛼(𝜑)(∇ ⋅ 𝜼) ∗ 𝜙) 𝑑(𝑡,𝒙) (7c)

or all 𝜼 ∈ 𝐿2(0, 𝑇 ;𝑿(𝛺));
𝑇

𝑋′ ⟨𝜕𝑡𝜃, 𝜉⟩𝑋 𝑑𝑡 = −𝜅(𝜑)∇𝑝 ⋅ ∇𝜉 + 𝑆𝑓 (𝜑, (𝒖), 𝜃)𝜉 𝑑(𝑡,𝒙) (7d)
10
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for all 𝜉 ∈ 𝐿2(0, 𝑇 ;𝑋(𝛺));

∫𝛺𝑇
𝑝𝜉 𝑑(𝑡,𝒙) = ∫𝛺𝑇

𝜚∇𝜃 ⋅ ∇𝜉 +𝑀(𝜑)(𝜃 − 𝛼(𝜑)∇ ⋅ 𝒖) 𝜉 𝑑(𝑡,𝒙) (7e)

for all 𝜉 ∈ 𝐿2(0, 𝑇 ;𝑋(𝛺)); and

(𝜑, 𝜃, 𝒖)
|𝑡=0 = (𝜑0, 𝜃, 𝒖0) a.e. in 𝛺. (7f)

Moreover, the weak solution satisfies

‖𝜑𝜚(𝑡)‖2𝐻1 + ‖𝜚1∕4𝛥𝜑𝜚(𝑡)‖2𝐿2 + ‖𝜓(𝜑𝜚)(𝑡)‖𝐿1 + ‖𝒖𝜚(𝑡)‖2𝑿 + ‖𝜃𝜚(𝑡)‖2𝐿2 + ‖𝜚1∕2∇𝜃𝜚(𝑡)‖2𝐿2

+ ‖𝜕𝑡𝜑𝜚‖
2
𝐿2((𝐻1)′)

+ ‖𝜕𝑡𝜃𝜚‖
2
𝐿2(𝑋′)

+ ‖𝜇𝜚‖
2
𝐿2(𝐻1)

+ ‖𝑝𝜚‖
2
𝐿2(𝑋)

+ ‖𝜕𝑡𝒖𝜚‖2𝐿2(𝑿)
≤ 𝐶,

for almost every 𝑡 ∈ (0, 𝑇 ) and some 𝐶 = 𝐶(𝑇 ) > 0 independent of (𝜑, 𝜇, 𝒖, 𝜃, 𝑝) and 𝜚 ∈ (0, 1).

.1. Definition of the discretized problem

As discussed before, we want to employ a semi-Galerkin ansatz, discretizing parts of the system in space while solving the other
n the whole function space. First, we give a precise formulation of the approximate problems we investigate, for which we consider

• {𝑧𝑖}𝑖∈N a subset of eigenfunctions to the Neumann-Laplace operator with homogeneous boundary conditions. It is well known
that these can be chosen as an orthonormal Schauder basis of 𝐿2(𝛺), which is simultaneously orthogonal in 𝐻1(𝛺) such that
𝑧1 ≡

1
|𝛺|

1∕2 . Moreover, it was shown in [53, Sec. 3] that these also form a Schauder basis of 𝐻2
𝒏 (𝛺);

• {𝑦𝑖}𝑖∈N a subset of eigenfunctions to the corresponding eigenvalue problem with mixed boundary conditions

⎧

⎪

⎨

⎪

⎩

−𝛥𝑦 = 𝜆𝑦 in 𝛺,
𝑦 = 0 on 𝛤𝐷,
∇𝑦 ⋅ 𝒏 = 0 on 𝛤𝑁 .

Spectral theory for self-adjoint, compact operators implies that these can be chosen to form an orthonormal basis of 𝐿2(𝛺),
which is simultaneously a dense subset of 𝑋(𝛺).

Using the notation

𝑍𝑘 ∶= span{𝑧𝑖 ∶ 𝑖 ≤ 𝑘}, 𝑌𝑘 ∶= span{𝑦𝑖 ∶ 𝑖 ≤ 𝑘}

and defining 𝛱𝑧
𝑘 , 𝛱𝑦

𝑘 as the orthogonal 𝐿2-projections onto the spaces 𝑍𝑘 and 𝑌𝑘, respectively, the goal is to find functions of the
form

𝜑𝑘(𝑡,𝒙) =
𝑘
∑

𝑖=1
𝑎𝑘𝑖 (𝑡)𝑧𝑖(𝒙), 𝜇𝑘(𝑡,𝒙) =

𝑘
∑

𝑖=1
𝑏𝑘𝑖 (𝑡)𝑧𝑖(𝒙), (8a)

𝜃𝑘(𝑡,𝒙) =
𝑘
∑

𝑖=1
𝑐𝑘𝑖 (𝑡)𝑦𝑖(𝒙), 𝑝𝑘(𝑡,𝒙) =

𝑘
∑

𝑖=1
𝑒𝑘𝑖 (𝑡)𝑧𝑖(𝒙), (8b)

together with a function 𝒖𝑘 ∈ 𝐻1(0, 𝑇 ;𝑿(𝛺)) with 𝒖𝑘(0) = 𝒖0 such that for all 𝑡 ∈ [0, 𝑇 ] and all 𝑗 ≤ 𝑘 the following equations hold:

0 = ⟨𝜕𝑡𝜑𝑘, 𝑧𝑗⟩ + ⟨𝑚(𝜑)∇𝜇𝑘,∇𝑧𝑗⟩ − ⟨𝑅(𝜑𝑘, (𝒖𝑘), 𝜃𝑘), 𝑧𝑗⟩, (9a)

0 =⟨𝜇𝑘 −
1
𝜀
𝜓 ′(𝜑𝑘), 𝑧𝑗⟩−⟨𝜀∇𝜑𝑘,∇𝑧𝑗⟩ − 𝜚1∕2⟨𝛥𝜑𝑘, 𝛥𝑧𝑗⟩ − ⟨𝑊,𝜑(𝜑𝑘, (𝒖𝑘)), 𝑧𝑗⟩

+ ⟨𝑀(𝜑𝑘)(𝜃𝑘 − 𝛼(𝜑𝑘)∇ ⋅ 𝒖𝑘)𝛼′(𝜑𝑘)∇ ⋅ 𝒖𝑘, 𝑧𝑗⟩
− ⟨

𝑀 ′(𝜑𝑘)
2 (𝜃𝑘 − 𝛼(𝜑𝑘)∇ ⋅ 𝒖𝑘)2, 𝑧𝑗⟩,

(9b)

0 = ⟨𝜕𝑡𝜃𝑘, 𝑦𝑗⟩ + ⟨𝜅(𝜑𝑘)∇𝑝𝑘,∇𝑦𝑗⟩ − ⟨𝑆𝑓 (𝜑𝑘, (𝒖𝑘), 𝜃𝑘), 𝑦𝑗⟩, (9c)

0 = ⟨𝑝𝑘, 𝑦𝑗⟩ − 𝜚⟨∇𝜃𝑘,∇𝑦𝑗⟩ − ⟨𝑀(𝜑𝑘)(𝜃𝑘 − 𝛼(𝜑𝑘)∇ ⋅ 𝒖𝑘), 𝑦𝑗⟩, (9d)

𝜑𝑘(0) = 𝜑0,𝑘 ∶= 𝛱𝑧
𝑘 (𝜑0), (9e)

𝜃𝑘(0) = 𝜃0,𝑘 ∶= 𝛱𝑦
𝑘 (𝜃0), (9f)

here ⟨⋅, ⋅⟩ denotes the 𝐿2-inner product. Moreover, for all 𝜼 ∈ 𝑿(𝛺) the following equation has to be satisfied for almost all 𝑡 ∈ (0, 𝑇 )

∫𝛺
C𝜈(𝜑𝑘)(𝜕𝑡𝒖𝑘) ∶ (𝜼) +𝑊, (𝜑𝑘, (𝒖𝑘)) ∶ (𝜼) − 𝛼(𝜑𝑘)𝑝𝑘(∇ ⋅ 𝜼) ∗ 𝜙𝑑𝐱

= 𝒇 ⋅ 𝜼 𝑑𝐱 + 𝒈 ⋅ 𝜼 𝑑𝑛−1 − 𝜚 ∇𝜃𝑘 ⋅ ∇(𝛼(𝜑𝑘)(∇ ⋅ 𝜼) ∗ 𝜙) 𝑑𝐱. (9g)
11

∫𝛺 ∫𝛤𝐷 ∫𝛺
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L
a

Remark 15. Owing to the properties of the projection, it follows from (9d) that for all 𝜉 ∈ 𝐻1(𝛺)

∫𝛺
𝑝𝑘𝜉 𝑑𝐱 = ∫𝛺

𝑝𝑘(𝛱
𝑦
𝑘𝜉) 𝑑𝐱 = ∫𝛺

𝜚∇𝜃𝑘 ⋅ ∇𝛱
𝑦
𝑘𝜉 +𝑀(𝜑𝑘)(𝜃𝑘 − 𝛼(𝜑𝑘)∇ ⋅ 𝒖𝑘)(𝛱

𝑦
𝑘𝜉) 𝑑𝐱

= ∫𝛺
𝜚∇𝜃𝑘 ⋅ ∇𝜉 +𝛱

𝑦
𝑘 (𝑀(𝜑𝑘)(𝜃𝑘 − 𝛼(𝜑𝑘)∇ ⋅ 𝒖𝑘)) 𝜉 𝑑𝐱 (10)

5.2. Energy estimates

Exploiting the gradient flow-like structure of the Cahn–Hilliard–Biot system, we will now derive the energy estimates on which
all a priori estimates in this work rely on. Note that we will frequently refer to this section instead of repeating these computations.

Let us first point out that

𝑑
𝑑𝑡 ∫𝛺

𝑊 (𝜑𝑘, (𝒖𝑘)) 𝑑𝐱 = ⟨𝑊,𝜑(𝜑𝑘, (𝒖𝑘)), 𝜕𝑡𝜑𝑘⟩ + ⟨𝑊, (𝜑𝑘, (𝒖𝑘)), (𝜕𝑡𝒖𝑘)⟩,

and
𝑑
𝑑𝑡 ∫

𝜀
2
|∇𝜑𝑘|

2 + 1
𝜀
𝜓(𝜑𝑘) 𝑑𝐱 = ⟨𝜀∇𝜑𝑘,∇𝜕𝑡𝜑𝑘⟩ +

1
𝜀
⟨𝜓 ′(𝜑𝑘), 𝜕𝑡𝜑𝑘⟩.

We further find
𝑑
𝑑𝑡 ∫𝛺

𝑀(𝜑𝑘)
2

(𝜃𝑘 − 𝛼(𝜑𝑘)∇ ⋅ 𝒖𝑘)2 𝑑𝐱 = ⟨

𝑀 ′(𝜑𝑘)
2

(𝜃𝑘 − 𝛼(𝜑𝑘)∇𝒖𝑘)2, 𝜕𝑡𝜑⟩ − ⟨𝑀(𝜑𝑘)(𝜃𝑘 − 𝛼(𝜑𝑘)∇ ⋅ 𝒖𝑘)𝛼′(𝜑𝑘)∇ ⋅ 𝒖𝑘, 𝜕𝑡𝜑𝑘⟩

− ⟨𝑀(𝜑𝑘)𝛼(𝜑𝑘)(𝜃𝑘 − 𝛼(𝜑𝑘)∇ ⋅ 𝒖𝑘),∇ ⋅ 𝜕𝑡𝒖𝑘⟩ + ⟨𝑀(𝜑𝑘)(𝜃𝑘 − 𝛼(𝜑𝑘)∇ ⋅ 𝒖𝑘), 𝜕𝑡𝜃𝑘⟩.

To obtain suitable a priori estimates for solutions to the system of differential–algebraic equations, we test (9a)–(9d) with suitable
functions under the assumption that 𝒖𝑘 ∈ 𝐻1(0, 𝑇 ;𝑿(𝛺)) is given. In particular, we multiply (9a) with 𝑏𝑗𝑘 and (9b) with (𝑎𝑗𝑘)

′.
Moreover, we multiply (9c) with 𝑑𝑗𝑘 and (9d) with (𝑐𝑗𝑘)

′. Finally, summing from 𝑗 = 1 to 𝑘 yields

0 = ⟨𝜕𝑡𝜑𝑘, 𝜇𝑘⟩ + ⟨𝑚(𝜑)∇𝜇𝑘,∇𝜇𝑘⟩ − ⟨𝑅(𝜑𝑘, (𝒖𝑘), 𝜃𝑘), 𝜇𝑘⟩,

0= ⟨𝜇𝑘 −
1
𝜀
𝜓 ′(𝜑𝑘), 𝜕𝑡𝜑𝑘⟩−⟨𝜀∇𝜑𝑘,∇𝜕𝑡𝜑𝑘⟩ − 𝜚1∕2⟨𝛥𝜑𝑘, 𝛥𝜕𝑡𝜑𝑘⟩ − ⟨𝑊,𝜑(𝜑𝑘, (𝒖𝑘)), 𝜕𝑡𝜑𝑘⟩

+ ⟨𝑀(𝜑𝑘)(𝜃𝑘 − 𝛼(𝜑𝑘)∇ ⋅ 𝒖𝑘)𝛼′(𝜑𝑘)∇ ⋅ 𝒖𝑘, 𝜕𝑡𝜑𝑘⟩ − ⟨

𝑀 ′(𝜑𝑘)
2 (𝜃𝑘 − 𝛼(𝜑𝑘)∇𝒖𝑘)2, 𝜕𝑡𝜑𝑘⟩,

0 = ⟨𝜕𝑡𝜃𝑘, 𝑝𝑘⟩ + ⟨𝜅(𝜑𝑘)∇𝑝𝑘,∇𝑝𝑘⟩ − ⟨𝑆𝑓 (𝜑𝑘, (𝒖𝑘), 𝜃𝑘), 𝑝𝑘⟩,

0 = ⟨𝑝𝑘, 𝜕𝑡𝜃𝑘⟩ − 𝜚⟨∇𝜃𝑘,∇𝜕𝑡𝜃⟩ − ⟨𝑀(𝜑𝑘)(𝜃𝑘 − 𝛼(𝜑𝑘)∇ ⋅ 𝒖𝑘), 𝜕𝑡𝜃𝑘⟩.

Summing over these equations while adding and subtracting the term

⟨𝑊, (𝜑𝑘, (𝒖𝑘)), (𝜕𝑡𝒖𝑘)⟩ − ⟨𝑀(𝜑𝑘)(𝜃𝑘 − 𝛼(𝜑𝑘)∇ ⋅ 𝒖𝑘)𝛼(𝜑𝑘),∇ ⋅ 𝜕𝑡𝒖𝑘⟩

leads to

‖𝑚(𝜑𝑘)1∕2∇𝜇𝑘‖2𝐿2 + ‖𝜅(𝜑𝑘)1∕2∇𝑝𝑘‖2𝐿2

+ 𝑑
𝑑𝑡

[

∫𝛺
𝜀
2
|∇𝜑𝑘|

2+1
𝜀
𝜓(𝜑𝑘) +

𝜚1∕2

2
|𝛥𝜑𝑘|

2 +
𝜚
2
|∇𝜃𝑘|

2 𝑑𝐱 + ∫𝛺
𝑊 (𝜑𝑘, (𝒖𝑘)) 𝑑𝐱 + ∫𝛺

𝑀(𝜑𝑘)
2

(𝜃𝑘 − 𝛼(𝜑𝑘)∇ ⋅ 𝒖𝑘)2 𝑑𝐱
]

= ⟨𝑅(𝜑𝑘, (𝒖𝑘), 𝜃𝑘), 𝜇𝑘⟩+⟨𝑆𝑓 (𝜑𝑘, (𝒖𝑘), 𝜃𝑘), 𝑝𝑘⟩ + ⟨𝑊, (𝜑𝑘, (𝒖𝑘)), (𝜕𝑡𝒖𝑘)⟩ − ⟨𝑀(𝜑𝑘)(𝜃𝑘 − 𝛼(𝜑𝑘)∇ ⋅ 𝒖𝑘)𝛼(𝜑𝑘),∇ ⋅ 𝜕𝑡𝒖𝑘⟩. (11)

Estimates for the right-hand side
Observe that the function which is constant with value 1

|𝛺|

1∕2 is an eigenfunction associated with the eigenvalue 0 of the Neumann-
aplace operator. Hence, testing (9b) with this function and invoking Young’s inequality yields, together with Poincaré’s inequality
nd (A2.2),

|𝛺|

1∕2|
|

|

−
∫ 𝜇𝑘

|

|

|

= 1
|𝛺|

1∕2
|

|

|∫𝛺
𝜓 ′(𝜑𝑘) +𝑊,𝜑(𝜑𝑘, (𝒖𝑘)) +

𝑀 ′(𝜑𝑘)
2 (𝜃𝑘 − 𝛼(𝜑𝑘)∇ ⋅ 𝒖𝑘)2 −𝑀(𝜑𝑘)(𝜃𝑘 − 𝛼(𝜑𝑘)∇ ⋅ 𝒖𝑘)𝛼′(𝜑𝑘)∇ ⋅ 𝒖 𝑑𝐱||

|

≤ 𝐶(‖𝜓 ′(𝜑𝑘)‖𝐿1 + ‖𝜑𝑘‖
2
𝐿2 + ‖𝜃𝑘‖

2
𝐿2 + ‖(𝒖𝑘)‖2𝐿2 + ‖∇ ⋅ 𝒖𝑘‖2𝐿2 + 1)

≤ 𝐶(‖𝜓(𝜑𝑘)‖𝐿1 + ‖𝜑𝑘‖
2
𝐿2 + ‖𝜃𝑘‖

2
𝐿2 + ‖𝒖𝑘‖2𝑿 + 1). (12)

We rewrite the first term on the right-hand side of (11) as

⟨𝑅(𝜑𝑘, (𝒖𝑘), 𝜃𝑘), 𝜇𝑘⟩ = ⟨𝑅(𝜑𝑘, (𝒖𝑘), 𝜃𝑘), 𝜇𝑘 − −
∫ 𝜇𝑘⟩ + ⟨𝑅(𝜑𝑘, (𝒖𝑘), 𝜃𝑘),−∫ 𝜇𝑘⟩

and deduce from the fact that 𝑅 is bounded

|

⟨

𝑅(𝜑𝑘, (𝒖𝑘), 𝜃𝑘),− 𝜇𝑘
⟩

| ≤ 𝐶(‖𝜓(𝜑𝑘)‖ 1 + ‖𝜑𝑘‖
2 + ‖𝜃‖2 + ‖𝒖𝑘‖2 + 1).
12

∫ 𝐿 𝐿2 𝐿2 𝑿
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E

The inequalities of Young and Poincaré further imply

|

⟨

𝑅(𝜑𝑘, (𝒖𝑘), 𝜃𝑘), 𝜇𝑘 − −
∫ 𝜇𝑘

⟩

| ≤ 𝐶 + 𝜌𝜇‖𝜇𝑘 − −
∫ 𝜇𝑘‖

2
𝐿2 ≤ 𝐶 + 𝜌𝜇𝐶𝑝‖∇𝜇𝑘‖2𝐿2 ,

where 𝜌𝜇 > 0 is a small parameter yet to be determined.
Recalling the growth conditions for 𝑆𝑓 , similar arguments as above show for all 𝜌𝑝 > 0

|⟨𝑆𝑓 (𝜑𝑘, (𝒖𝑘), 𝜃𝑘), 𝑝𝑘⟩| ≤ 𝐶‖𝑆𝑓 (𝜑𝑘, (𝒖𝑘), 𝜃𝑘)‖2𝐿2 + 𝜌𝑝‖𝑝𝑘‖
2
𝐿2

≤ 𝐶(‖𝜑𝑘‖2𝐿2 + ‖𝜃𝑘‖
2
𝐿2 + ‖𝒖𝑘‖2𝑿 ) + 𝜌𝑝𝐶𝑝‖∇𝑝𝑘‖

2
𝐿2 ,

where the constant 𝐶 = 𝐶(𝜌𝑝) may depend on 𝜌𝑝.
It remains to estimate the terms we added artificially. Here, the growth conditions on the elastic energy along with Young’s

inequality imply that, for some small parameter 𝜌𝜕𝑡𝒖 > 0,

|⟨𝑊, (𝜑𝑘, (𝒖𝑘)), (𝜕𝑡𝒖𝑘)⟩| ≤ 𝐶(‖𝜑𝑘‖2𝐿2 + ‖𝒖𝑘‖2𝑿 + 1) +
𝜌𝜕𝑡𝒖
2

‖𝜕𝑡𝒖𝑘‖2𝑿 .

Invoking Young’s inequality once again leads to

⟨𝑀(𝜑𝑘)(𝜃𝑘 − 𝛼(𝜑𝑘)∇ ⋅ 𝒖𝑘)𝛼(𝜑𝑘),∇ ⋅ 𝜕𝑡𝒖𝑘⟩| ≤ 𝐶(‖𝒖𝑘‖2𝑿 + ‖𝜃𝑘‖
2
𝐿2 ) +

𝜌𝜕𝑡𝒖
2

‖𝜕𝑡𝒖𝑘‖2𝑿 .

Thus, the right-hand side can be estimated from above as

|⟨𝑅(𝜑𝑘, (𝒖𝑘), 𝜃𝑘), 𝜇𝑘⟩|+|⟨𝑆𝑓 (𝜑𝑘, (𝒖𝑘), 𝜃𝑘), 𝑝𝑘⟩| + |⟨𝑊, (𝜑𝑘, (𝒖𝑘)), (𝜕𝑡𝒖)⟩| + |⟨𝑀(𝜑𝑘)(𝜃𝑘 − 𝛼(𝜑𝑘)∇ ⋅ 𝒖𝑘)𝛼(𝜑𝑘),∇ ⋅ 𝜕𝑡𝒖𝑘⟩|

≤ 𝐶(‖𝜓(𝜑𝑘)‖𝐿1 + ‖𝜑𝑘‖
2
𝐿2 + ‖𝜃𝑘‖

2
𝐿2 + ‖𝒖𝑘‖2𝑿 + 1) + 𝜌𝑝𝐶𝑝‖∇𝑝𝑘‖2𝐿2 + 𝜌𝜇𝐶𝑝‖∇𝜇𝑘‖

2
𝐿2 + 𝜌𝜕𝑡𝒖‖𝜕𝑡𝒖𝑘‖

2
𝑿 .

Remark 16. We wish to point out that the term 𝐶‖𝜕𝑡𝒖𝑘‖2𝑿 only appears because we had to artificially add certain terms, which is
not necessary when deriving a priori estimates for the full system. In the application of Gronwall’s lemma later on, this term can be
bounded by a constant.

Estimates for the left-hand side
To establish the crucial estimates from below, we remind ourselves of the decomposition of the total energy into three

components, as discussed in Section 2, and treat each contribution separately.

Interface energy:
Recalling the assumptions (A2.2) and (A2.3), we calculate with the help of Young’s inequality for some 𝜌𝜓2 > 0 and all 𝑡 ∈ [0, 𝑇 ]

∫𝛺
𝜓(𝜑𝑘) 𝑑𝐱 = ∫𝛺

𝜓1(𝜑𝑘) + 𝜓2(𝜑𝑘) 𝑑𝐱 ≥ ∫𝛺
𝛾𝜓1 |𝜑𝑘|

𝑝 − 𝑐𝜓1 − 𝐶2|𝜑𝑘|
2 − 𝐶𝜓2 𝑑𝐱

≥ (𝛾𝜓1 − 𝜌𝜓2 )‖𝜑𝑘‖
𝑝
𝐿𝑝 − 𝐶.

Note that this is well-defined, as can be seen from 𝜑𝑘 ∈ 𝑍𝑘 ↪ 𝐻2(𝛺) ↪ 𝐿∞(𝛺). Using this, we compute for all 𝑡 ∈ [0, 𝑇 ]

∫𝛺
𝜀
2
|∇𝜑𝑘|

2 + 1
𝜀
𝜓(𝜑𝑘) 𝑑𝐱 ≥ 𝜀

2
‖∇𝜑𝑘‖2𝐿2 +

1
2𝜀

‖𝜓(𝜑𝑘)‖𝐿1 +
𝛾𝜓1 − 𝜌𝜓2

2𝜀
‖𝜑𝑘‖

𝑝
𝐿𝑝 − 𝐶. (13a)

On the other hand, it holds

∫𝛺
𝜀
2
|∇𝜑0,𝑘|

2 + 1
𝜀
𝜓(𝜑0,𝑘) 𝑑𝐱 ≤ 𝜀

2
‖𝜑0,𝑘‖

2
𝐻1 +

1
𝜀
‖𝜓(𝜑0,𝑘)‖𝐿1 . (13b)

lastic energy:
Taking advantage of the estimate derived in (3) along with Korn’s inequality and Young’s inequality, we see

∫𝛺
𝑊 (𝜑𝑘, (𝒖𝑘)) 𝑑𝐱 ≥ ∫𝛺

𝐶1
4
|(𝒖𝑘)|2 − 𝐶 ′(|𝜑𝑘|

2 + 1) 𝑑𝐱 ≥ 𝐶𝒖‖𝒖𝑘‖2𝑿 − 𝜌𝜑‖𝜑𝑘‖
𝑝
𝐿𝑝 − 𝐶, (14a)

where the last step holds due to

‖𝜑𝑘‖
2
𝐿2 = ∫𝛺

𝜑2
𝑘 𝑑𝐱 ≤ ∫𝛺

1

𝑞′(𝜌𝜑𝑞)
𝑞′
𝑞

+ 𝜌𝜑𝜑
2𝑞
𝑘 𝑑𝐱 = 𝜌𝜑‖𝜑𝑘‖

𝑝
𝐿𝑝 + 𝐶𝜌𝜑

with 𝑞 > 1 such that 2𝑞 = 𝑝. We remark that 𝜌𝜑 > 0 can be chosen as small as necessary.
Moreover, the growth conditions (A3.2) imply

𝑊 (𝜑0,𝑘, (𝒖0)) 𝑑𝐱 ≤ 𝐶(‖𝜑0,𝑘‖
2
2 + ‖𝒖0‖2 + 1). (14b)
13

∫𝛺 𝐿 𝑿
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Fluid energy:
Using Young’s inequality and the positivity of 𝑀 , we calculate

−𝜃𝑘
(

2
(

𝛼(𝜑𝑘)∇ ⋅ 𝒖𝑘
))

≥ −𝜌𝜃𝜃2𝑘 +
1
𝜌𝜃

(𝛼(𝜑𝑘)∇ ⋅ 𝒖𝑘)2

for all 𝜌𝜃 > 0, from which we deduce

∫𝛺
𝑀(𝜑𝑘)

2 (𝜃𝑘 − 𝛼(𝜑𝑘)∇ ⋅ 𝒖𝑘)2 𝑑𝐱 ≥ ∫𝛺
𝑀
2

[

𝜃2𝑘 − 2𝜃𝑘(𝛼(𝜑𝑘)∇ ⋅ 𝒖𝑘) + (𝛼(𝜑𝑘)∇ ⋅ 𝒖𝑘)2
]

≥ 𝑀
2

(

(1 − 𝜌𝜃)‖𝜃𝑘‖2𝐿2 − ( 1
𝜌𝜃

− 1)‖𝛼(𝜑𝑘)∇ ⋅ 𝒖𝑘‖2𝐿2

)

≥ 𝑀
2 (1 − 𝜌𝜃)‖𝜃𝑘‖2𝐿2 +

𝑀
2 (1 − 1

𝜌𝜃
)𝛼2‖𝒖𝑘‖2𝑿 (15a)

if we choose 𝜌𝜃 < 1.
Moreover, similar arguments show

∫𝛺
𝑀(𝜑𝑘)

2 (𝜃𝑘,0 − 𝛼(𝜑𝑘,0)∇ ⋅ 𝒖0)2 𝑑𝐱 ≤ 𝐶(‖𝜃0,𝑘‖2𝐿2 + ‖𝒖0‖2𝑿 ). (15b)

Full energy estimate
Integrating (11) with respect to time and invoking the fundamental lemma of calculus along with the estimates (13b)–(15a)

finally yields

(𝑚 − 𝜌𝜇𝐶𝑝)∫

𝑡

0
‖∇𝜇𝑘‖2 𝑑𝑡 + (𝜅 − 𝜌𝑝𝐶𝑝)∫

𝑡

0
‖∇𝑝𝑘‖2 𝑑𝑡

+ 𝜀
2
‖∇𝜑𝑘(𝑡)‖2𝐿2 +

1
2𝜀

‖𝜓(𝜑𝑘(𝑡))‖𝐿1 +
𝜚1∕2

2
‖𝛥𝜑𝑘‖

2
𝐿2 + (

𝛾𝜓1 − 𝜌𝜓2
2𝜀

− 𝜌𝜑)‖𝜑𝑘(𝑡)‖
𝑝
𝐿𝑝

+ (𝐶𝒖 −
𝑀
2
𝛼2( 1

𝜌𝜃
− 1))‖𝒖𝑘(𝑡)‖2𝑿 +

𝑀
2
(1 − 𝜌𝜃)‖𝜃(𝑡)‖2𝐿2 +

𝜚
2
‖∇𝜃𝑘(𝑡)‖2𝐿2 (16)

≤ 𝐶 ∫

𝑡

0
‖𝜓(𝜑𝑘)‖𝐿1 + ‖𝜑𝑘‖

2
𝐿2 + ‖𝜃𝑘‖

2
𝐿2 + ‖𝒖𝑘‖2𝐻1 + 𝜌𝜕𝑡𝒖‖𝜕𝑡𝒖𝑘‖

2
𝑿 + 1 𝑑𝑡

+ 𝐶(‖𝜑0,𝑘‖
2
𝐻1 + 𝜚

1∕2
‖𝛥𝜑0,𝑘‖

2
𝐿2 + 𝜚‖∇𝜃0,𝑘‖

2
𝐿2 +

1
𝜀
‖𝜓(𝜑0,𝑘)‖𝐿1 + ‖𝒖0‖2𝐻1 + ‖𝜃0,𝑘‖

2
𝐿2 + 1).

Choosing 𝜌𝜑, 𝜌𝜇 , 𝜌𝑝, 𝜌𝜓2 , 𝜌𝜕𝑡𝒖 > 0 small enough and 0 < 𝜌𝜃 < 1 sufficiently close to 1 will allow us to find a priori estimates by
means of Gronwall’s lemma.

5.3. Existence of approximate solutions

This section contains three major arguments. Firstly, we consider the system of differential–algebraic Eqs. (9a)–(9f) and reduce
it to a system of ordinary differential equations for the coefficient functions 𝒂 and 𝒅 with continuous right-hand side. Applying
Peano’s theorem, we obtain local in time solutions 𝜑, 𝜇, 𝜃, 𝑝 on some interval, which can be extended to global solutions due to a
priori estimates relying on the energy estimates derived in the last section. In order to apply a fixed point theorem, the solution
has to be unique and continuously depend on the data. We prove these properties by showing a Lipschitz-type estimate for the
difference of the coefficient functions 𝒂𝑖,𝒅𝒊, 𝑖 = 1, 2, of two solutions and an application of Gronwall’s lemma.

Secondly, we define an abstract Cauchy-problem with unique solution which continuously depends on the data and also solves
(9g). Here, we apply maximal 𝐿𝑝-regularity theory using Theorem 10, where regularity in space is a consequence of Theorem 7.

Building on these results, we can define an operator T and apply the Leray–Schauder principle to find a fixed-point of T, which,
by definition, gives rise to an approximate solution of the regularized system (9a)–(9g).

Lemma 17. For any given 𝒖 ∈ 𝐻1(0, 𝑇 ;𝑿(𝛺)) there exist unique functions

(𝜑, 𝜇, 𝜃, 𝑝) ∈ 𝐶1([0, 𝑇 ];𝑍𝑘) × 𝐶0([0, 𝑇 ];𝑍𝑘) × 𝐶1([0, 𝑇 ]; 𝑌𝑘) × 𝐶0([0, 𝑇 ]; 𝑌𝑘)

satisfying the system (9a)–(9g) and continuously depend on 𝒖. Moreover, the weak derivative 𝜕𝑡𝑝𝑘 exists and is in the space 𝐿2(0, 𝑇 ;𝐿2(𝛺)).

Proof (Existence). We define the functions 𝒂 ∶= (𝑎1𝑘,… , 𝑎𝑘𝑘)
⊺, 𝒃 ∶= (𝑏1𝑘,… , 𝑏𝑘𝑘)

⊺, 𝒄 ∶= (𝑐1𝑘 ,… , 𝑐𝑘𝑘 )
⊺ and 𝒅 ∶= (𝑑1𝑘 ,… , 𝑑𝑘𝑘 )

⊺. Exploiting the
orthonormality of the chosen basis, the system (9a)–(9d) reduces to

𝑑
𝑑𝑡
𝑎𝑗𝑘 = −⟨𝑚(𝜑)∇𝜇𝑘,∇𝑧𝑗⟩ + ⟨𝑅(𝜑𝑘, (𝒖), 𝜃𝑘), 𝑧𝑗⟩, (17a)

𝑏𝑗𝑘 = ⟨

1
𝜀
𝜓 ′(𝜑𝑘), 𝑧𝑗⟩ + ⟨𝜀∇𝜑𝑘,∇𝑧𝑗⟩ + 𝜚1∕2⟨𝛥𝜑𝑘, 𝛥𝑧𝑗⟩ + ⟨𝑊,𝜑(𝜑𝑘, (𝒖)), 𝑧𝑗⟩ (17b)

− ⟨𝑀(𝜑𝑘)(𝜃𝑘 − 𝛼(𝜑𝑘)∇ ⋅ 𝒖)𝛼′(𝜑𝑘)∇ ⋅ 𝒖, 𝑧𝑗⟩ + ⟨

𝑀 ′(𝜑𝑘)
2 (𝜃𝑘 − 𝛼(𝜑𝑘)∇ ⋅ 𝒖)2, 𝑧𝑗⟩,

𝑑
𝑑𝑡
𝑐𝑗𝑘 = −⟨𝜅(𝜑𝑘)∇𝑝𝑘,∇𝑦𝑗⟩ + ⟨𝑆𝑓 (𝜑𝑘, (𝒖), 𝜃𝑘), 𝑦𝑗⟩, (17c)

𝑑𝑗 = 𝜚⟨∇𝜃,∇𝑦 ⟩ + ⟨𝑀(𝜑 )(𝜃 − 𝛼(𝜑 )∇ ⋅ 𝒖), 𝑦 ⟩ (17d)
14

𝑘 𝑗 𝑘 𝑘 𝑘 𝑗
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for all 1 ≤ 𝑗 ≤ 𝑘 and all fixed 𝑘 ∈ N. We observe that the right-hand side of the last Eq. (17d) only depends on 𝒂, 𝒄 and due to the
continuity of 𝑀,𝛼 and 𝒖 ∈ 𝐻1(0, 𝑇 ;𝑿(𝛺)) ↪ 𝐶0([0, 𝑇 ];𝑿(𝛺)), the function 𝑯𝑝 defined as

𝑯𝑝 ∶ R × R𝑘 × R𝑘 → R𝑘,

(𝑡,𝒂, 𝒄) ↦

(

𝜚⟨∇
𝑘
∑

𝑗=1
𝑐𝑗𝑘𝑦𝑗 ,∇𝑦𝑖⟩ + ⟨𝑀(

𝑘
∑

𝑗=1
𝑎𝑗𝑘𝑧𝑗 )((

𝑘
∑

𝑗=1
𝑐𝑗𝑘𝑦𝑗 ) − 𝛼(

𝑘
∑

𝑗=1
𝑎𝑗𝑘𝑧𝑗 )∇ ⋅ 𝒖(𝑡)), 𝑦𝑗⟩

)𝑘

𝑗=1

is continuous. Moreover, we define 𝑯𝜇(𝑡,𝒂, 𝒄) similarly and note that due to the continuity of 𝜓 ′,𝑊,𝜑,𝑀,𝑀 ′, 𝛼, 𝛼′ and 𝑯𝑝, this map
is also continuous. Substituting the identities

𝒃(𝑡) = 𝑯𝜇(𝑡,𝒂(𝑡), 𝒄(𝑡)), 𝒅(𝑡) = 𝑯𝑝(𝑡,𝒂(𝑡), 𝒄(𝑡))

into (17a) and (17c), we arrive at

𝑑
𝑑𝑡
𝑎𝑗𝑘(𝑡) = −⟨𝑚(

𝑘
∑

𝑗=1
𝑎𝑗𝑘(𝑡)𝑧𝑗 )∇(

𝑘
∑

𝑗=1
𝑯 𝑗
𝜇(𝑡,𝒂(𝑡), 𝒄(𝑡))𝑧𝑗 ),∇𝑧𝑗⟩ + ⟨𝑅(

𝑘
∑

𝑗=1
𝑎𝑗𝑘(𝑡)𝑧𝑗 , (𝒖),

𝑘
∑

𝑗=1
𝑐𝑗𝑘𝑦𝑗 ), 𝑧𝑗⟩,

𝑑
𝑑𝑡
𝑐𝑗𝑘(𝑡) = −⟨𝜅(

𝑘
∑

𝑗=1
𝑎𝑗𝑘(𝑡)𝑧𝑗 )∇(

𝑘
∑

𝑗=1
𝑯 𝑗
𝑝(𝑡,𝒂(𝑡), 𝒄(𝑡))𝑦𝑗 ),∇𝑦𝑗⟩ + ⟨𝑆𝑓 (

𝑘
∑

𝑗=1
𝑎𝑗𝑘(𝑡)𝑧𝑗 , (𝒖),

𝑘
∑

𝑗=1
𝑐𝑗𝑘𝑦𝑗 ), 𝑦𝑗⟩,

i.e., the differential–algebraic system (17a)–(17d) reduces to a system of ordinary differential equations for 𝒂, 𝒄 with continuous
right-hand side and initial conditions

𝑎𝑗𝑘(0) = ⟨𝜑0, 𝑧𝑗⟩ for all 𝑗 = 1,… , 𝑘, 𝑐𝑗𝑘(0) = ⟨𝜃0, 𝑦𝑗⟩ for all 𝑗 = 1,… , 𝑘.

Thus, we can apply Peano’s theorem and obtain the existence of a, possibly small, 𝑇 ∗ ∈ (0, 𝑇 ) and local solutions 𝒂, 𝒄 ∈ 𝐶1([0, 𝑇 ∗];R𝑘)
giving rise to 𝒃,𝒅 ∈ 𝐶0([0, 𝑇 ∗];R𝑘).

Making use of the energy estimate (16) established above, we find for all applicable 𝑡 ∈ R+

‖𝜑𝑘(𝑡)‖2𝐻1 + 𝜚
1∕2

‖𝛥𝜑𝑘(𝑡)‖2𝐿2 + ‖𝜓(𝜑𝑘(𝑡))‖𝐿1 + ‖𝜃𝑘(𝑡)‖2𝐿2 + 𝜚‖∇𝜃𝑘(𝑡)‖
2
𝐿2

≤ 𝐶 ∫

𝑡

0
‖𝜑𝑘‖

2
𝐿2 + ‖𝜓(𝜑𝑘)‖𝐿1 + ‖𝜃𝑘‖

2
𝐿2 + ‖𝒖‖2𝑿 + ‖𝜕𝑡𝒖‖2𝑿 + 1 𝑑𝑡

+ 𝐶(‖𝜑0,𝑘‖
2
𝐻1 + 𝜚

1∕2
‖𝛥𝜑0,𝑘‖

2
𝐿2 + 𝜚‖∇𝜃0,𝑘‖

2
𝐿2 +

1
𝜀
‖𝜓(𝜑0,𝑘)‖𝐿1 + ‖𝜃0,𝑘‖

2
𝐿2 + ‖𝒖0‖2𝑿 + 1).

By estimating the contributions from the fixed function 𝒖 with its norm in the space 𝐻1(0, 𝑇 ;𝑿(𝛺)), this expression simplifies to

‖𝜑𝑘(𝑡)‖2𝐻1 + 𝜚
1∕2

‖𝛥𝜑𝑘(𝑡)‖2𝐿2 + ‖𝜓(𝜑𝑘(𝑡))‖𝐿1 + ‖𝜃(𝑡)‖2
𝐿2 + 𝜚‖∇𝜃𝑘(𝑡)‖

2
𝐿2 ≤ 𝐶 ∫

𝑡

0
‖𝜑𝑘‖

2
𝐿2 + ‖𝜓(𝜑𝑘)‖𝐿1 + ‖𝜃𝑘‖

2
𝐿2 𝑑𝑡 + 𝐶

and Gronwall’s lemma yields for all applicable 𝑡 ∈ [0, 𝑇 ] the uniform estimate

‖𝜑𝑘(𝑡)‖2𝐻1 + ‖𝜓(𝜑𝑘(𝑡))‖𝐿1 + ‖𝜃𝑘(𝑡)‖2𝑋 ≤ 𝐶. (18)

Since 𝜑𝑘, 𝜃𝑘 lie in finite dimensional subspaces of 𝐻1(𝛺) and 𝐿2(𝛺), respectively, where all norms are equivalent, this implies the
boundedness of 𝒂, 𝒄 on [0, 𝑇 ∗]. Hence, well known theorems for ordinary differential equations let us extend the local solution to
the whole interval [0, 𝑇 ] and we obtain functions

(𝜑𝑘, 𝜇𝑘, 𝜃𝑘, 𝑝𝑘) ∈ 𝐶1([0, 𝑇 ];𝑍𝑘) × 𝐶0([0, 𝑇 ];𝑍𝑘) × 𝐶1([0, 𝑇 ]; 𝑌𝑘) × 𝐶0([0, 𝑇 ]; 𝑌𝑘)

satisfying the system (9a)–(9g).
To establish 𝜕𝑡𝑝𝑘 ∈ 𝐿2(0, 𝑇 ;𝐿2(𝛺)), we consider the derivative

𝑑
𝑑𝑡 ∫𝛺

𝜚∇𝜃𝑘 ⋅ ∇𝑦𝑗 +𝑀(𝜑𝑘)(𝜃𝑘 − 𝛼(𝜑𝑘)∇ ⋅ 𝒖)𝑦𝑗 𝑑𝐱

= ∫𝛺
𝜚∇𝜕𝑡𝜃𝑘 ⋅ ∇𝑦𝑗 𝑑𝐱 + ∫𝛺

𝑀 ′(𝜑)𝜕𝑡𝜑(𝜃𝑘 − 𝛼(𝜑𝑘)∇ ⋅ 𝒖)𝑦𝑗 +𝑀(𝜑)(𝜕𝑡𝜃 − 𝛼′(𝜑𝑘)𝜕𝑡𝜑𝑘∇ ⋅ 𝒖 − 𝛼(𝜑)∇ ⋅ 𝜕𝑡𝒖)𝑦𝑗 𝑑𝐱.

We take note of the fact that the basis functions satisfy 𝑧𝑗 ∈ 𝐻2
𝒏 (𝛺) for all 𝑗 ∈ N and recall the continuous embedding

𝐻2
𝒏 (𝛺) ↪ 𝐶(𝛺) ↪ 𝐿∞(𝛺) for 𝑛 ≤ 3. Therefore, 𝜕𝑡𝜑𝑘 ∈ 𝐶0([0, 𝑇 ];𝐿∞(𝛺)), implying that the expression above is well defined for

all 𝑡 ∈ [0, 𝑇 ]. In particular, an application of Hölders’s inequality yields the estimate

|

𝑑
𝑑𝑡
𝑑𝑗𝑘| ≤ 𝐶(‖𝜕𝑡𝜑𝑘‖𝐿∞(𝐿2), 𝑘) (‖𝜃𝑘‖𝐿2 + ‖𝜕𝑡𝜃𝑘‖𝐿2 + 𝜚‖∇𝜕𝑡𝜃𝑘‖𝐿2 + ‖𝒖‖𝑿 + ‖𝜕𝑡𝒖‖𝑿 ).

Thus, we deduce from 𝜃𝑘 ∈ 𝐶1([0, 𝑇 ]; 𝑌𝑘) and 𝒖 ∈ 𝐻1(0, 𝑇 ;𝑿(𝛺))

‖𝜕𝑡𝑝𝑘‖
2
𝐿2(𝐿2)

= ∫

𝑇

0
‖

𝑘
∑

𝑖=1

𝑑
𝑑𝑡
𝑑𝑖𝑘𝑦𝑖‖

2
𝐿2 𝑑𝑡 = ∫

𝑇

0

𝑘
∑

𝑖=1
|

𝑑
𝑑𝑡
𝑑𝑖𝑘|

2
‖𝑦𝑖‖

2
𝐿2 𝑑𝑡

≤ 𝐶(‖𝜕𝑡𝜑𝑘‖𝐿∞(𝐿2), 𝑘)
𝑇
‖𝜃𝑘‖

2
2 + ‖𝜕𝑡𝜃𝑘‖

2
2 + 𝜚‖∇𝜕𝑡𝜃𝑘‖

2
2 + ‖𝒖‖2 + ‖𝜕𝑡𝒖‖2 𝑑𝑡
15

∫0 𝐿 𝐿 𝐿 𝑿 𝑿
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l

𝑧

𝐶

F

and therefore 𝜕𝑡𝑝𝑘 ∈ 𝐿2(0, 𝑇 ;𝐿2(𝛺)).
Uniqueness and continuous dependence: So far we have established the existence of at least one solution to the Galerkin

system for any given 𝒖 ∈ 𝐿2(0, 𝑇 ;𝑿(𝛺)). We proceed to show uniqueness of this solution and continuous dependence on the data.
To this end, let 𝒖1, 𝒖2 ∈ 𝐿2(0, 𝑇 ;𝑿(𝛺)) and (𝜑𝑖, 𝜇𝑖, 𝜃𝑖, 𝑝𝑖) 𝑖 = 1, 2, be two solutions to the corresponding differential–algebraic system
for some fixed 𝑘 ∈ N. The aim is to find estimates for the differences ∑

|𝑎𝑗1 − 𝑎
𝑗
2| + |𝑐𝑗1 − 𝑐

𝑗
2|, such that an application of Gronwall’s

emma yields the desired result. Note that here, in general, the constants 𝐶 = 𝐶(𝑘) > 0 cannot be chosen uniformly in 𝑘 ∈ N.
Ad 𝒅: Exploiting the orthogonality of our basis, the Lipschitz continuity and boundedness of 𝑀 along with the embedding

𝑗 ∈ 𝐻2
𝒏 (𝛺) ↪ 𝐿∞(𝛺), we find

|⟨𝑀(𝜑1)𝜃1 −𝑀(𝜑2)𝜃2, 𝑦𝑗⟩| ≤ |⟨𝑀(𝜑1)
𝑘
∑

𝑖=1
(𝑐𝑖1 − 𝑐

𝑖
2)𝑦𝑖, 𝑦𝑗⟩| + |⟨𝜃2(𝑀(𝜑1) −𝑀(𝜑2)), 𝑦𝑗⟩|

≤𝑀|𝑐𝑗1 − 𝑐
𝑗
2|⟨𝑦𝑗 , 𝑦𝑗⟩ + 𝐿

𝑘
∑

𝑖=1
|𝑎𝑖1 − 𝑎

𝑖
2|⟨|𝑧𝑗 ||𝜃2|, |𝑦𝑗 |⟩ ≤ 𝐶(

𝑘
∑

𝑖=1
|𝑎𝑖1 − 𝑎

𝑖
2| + |𝑐𝑗1 − 𝑐

𝑗
2|). (19a)

Exploiting the Lipschitz-continuity of 𝛼,𝑀 imposed in (A9) along with the fact that the product of two bounded Lipschitz functions
is still Lipschitz continuous, we compute

|𝑀(𝜑1)𝛼(𝜑1)∇ ⋅ 𝒖1 −𝑀(𝜑2)𝛼(𝜑2)∇ ⋅ 𝒖2| ≤ 𝐶(|∇ ⋅ (𝒖1 − 𝒖2)| +
𝑘
∑

𝑖=1
|𝑎𝑖1 − 𝑎

𝑖
2||𝑧𝑖||∇ ⋅ 𝒖2|).

Since 𝑢𝑖 ∈ 𝐻1(0, 𝑇 ;𝑿(𝛺)) ↪ 𝐶([0, 𝑇 ];𝑿(𝛺)) implies an uniform bound on ‖𝒖𝑖(𝑡)‖𝑿 for all 𝑡 ∈ [0, 𝑇 ], 𝑖 = 1, 2, we arrive at

|⟨𝑀(𝜑1)𝛼(𝜑1)∇ ⋅ 𝒖1 −𝑀(𝜑2)𝛼(𝜑2)∇ ⋅ 𝒖2, 𝑦𝑗⟩| ≤ 𝐶⟨|∇(𝒖1 − 𝒖2)|, |𝑦𝑗 |⟩ + 𝐶
𝑘
∑

𝑖=1
|𝑎𝑖1 − 𝑎

𝑖
2|⟨|𝑧𝑗 ||∇ ⋅ 𝒖2|, |𝑦𝑗 |⟩

≤ 𝐶(
𝑘
∑

𝑖=1
|𝑎𝑖1 − 𝑎

𝑖
2| + ‖𝒖1 − 𝒖2‖𝑿 ), (19b)

where we also used 𝑧𝑗 ∈ 𝐻2
𝒏 (𝛺) ↪ 𝐿∞(𝛺).

We further obtain

𝜚|⟨∇(𝜃1 − 𝜃2),∇𝑦𝑗⟩| ≤ 𝜚
𝑘
∑

𝑖=1
|𝑐𝑖1 − 𝑐

𝑖
2||⟨∇𝑦𝑖,∇𝑦𝑗⟩| ≤ 𝐶

𝑘
∑

𝑖=1
|𝑐𝑖1 − 𝑐

𝑖
2| (19c)

Taking the difference of (17d) for the two solutions, we conclude with the help of (19a) and (19b)

|𝑑𝑗1 − 𝑑
𝑗
2| ≤ 𝜚|⟨∇(𝜃1 − 𝜃2),∇𝑦𝑗⟩| + |⟨𝑀(𝜑1)𝜃1 −𝑀(𝜑2)𝜃2, 𝑦𝑗⟩| + |⟨𝑀(𝜑1)𝛼(𝜑1)∇ ⋅ 𝒖1 −𝑀(𝜑2)𝛼(𝜑2)∇ ⋅ 𝒖2, 𝑦𝑗⟩|

≤ 𝐶(𝑘)(
𝑘
∑

𝑖=1
|𝑎𝑖1 − 𝑎

𝑖
2| + |𝑐𝑗1 − 𝑐

𝑗
2| + ‖𝒖1 − 𝒖2‖𝑿 ). (19d)

Ad 𝒃: To derive a similar estimate for the differences |𝑏𝑗1 − 𝑏
𝑗
2|, we consider the terms in (17b) separately. Taking advantage of

orthogonality, it follows that

𝜀|⟨∇(𝜑1 − 𝜑2),∇𝑧𝑗⟩| ≤ 𝜀
𝑘
∑

𝑖=1
|𝑎𝑖1 − 𝑎

𝑖
2||⟨∇𝑧𝑖,∇𝑧𝑗⟩| ≤ 𝐶|𝑎𝑗1 − 𝑎

𝑗
2|, (20a)

𝜚1∕2|⟨𝛥(𝜑1 − 𝜑2), 𝛥𝑧𝑗⟩| ≤ 𝜚1∕2
𝑘
∑

𝑖=1
|𝑎𝑖1 − 𝑎

𝑖
2||𝛥𝑧𝑖|

2
𝐿2𝛿𝑖𝑗 ≤ 𝐶

𝑘
∑

𝑖=1
|𝑎𝑖1 − 𝑎

𝑖
2|. (20b)

Since the boundedness of 𝒂1,𝒂2 in [0, 𝑇 ] and the continuity of the basis functions 𝑧𝑗 , 𝑗 = 1,… , 𝑘, in 𝛺 imply |𝜑𝑖| ≤ 𝐶 in 𝛺𝑇 ,
we find along with (A2), which stipulates that 𝜓 ∈ 𝐶2(R) and therefore implies local Lipschitz continuity, that |𝜓 ′(𝜑1) − 𝜓 ′(𝜑2)| ≤
|𝜑1 − 𝜑2|. Hence,

1
𝜀
|⟨𝜓 ′(𝜑1) − 𝜓 ′(𝜑2), 𝑧𝑗⟩| ≤

𝐿
𝜀

𝑘
∑

𝑖=1
|𝑎𝑖1 − 𝑎

𝑖
2||⟨|𝑧𝑗 |, |𝑧𝑖|⟩| ≤ 𝐶

𝑘
∑

𝑖=1
|𝑎𝑖1 − 𝑎

𝑖
2|. (20c)

Consider

𝑀 ′(𝜑1)(𝜃1 − 𝛼(𝜑1)∇ ⋅ 𝒖1)2 −𝑀 ′(𝜑2)(𝜃2 − 𝛼(𝜑2)∇ ⋅ 𝒖2)2

=
(

𝑀 ′(𝜑1)𝜃21 −𝑀
′(𝜑2)𝜃22

)

−
(

𝑀 ′(𝜑1)𝜃1∇ ⋅ 𝒖1 +𝑀 ′(𝜑2)𝜃2∇ ⋅ 𝒖2
)

+ 𝑀 ′(𝜑1)𝛼(𝜑1)2(∇ ⋅ 𝒖1)2 −𝑀 ′(𝜑2)𝛼(𝜑2)2(∇ ⋅ 𝒖2)2

=∶ 𝐼 + 𝐼𝐼 + 𝐼𝐼𝐼.

or 𝐼 , it holds that

|𝑀 ′(𝜑1)𝜃21 −𝑀
′(𝜑2)𝜃22 | ≤𝑀|𝜃1|

𝑘
∑

|𝑐𝑖1 − 𝑐
𝑖
2||𝑦𝑖| +𝑀|𝜃2|

𝑘
∑

|𝑐𝑖1 − 𝑐
𝑖
2||𝑦𝑖| + 𝐶|𝜃

2
2 |

𝑘
∑

|𝑎𝑖1 − 𝑎
𝑖
2||𝑧𝑖|,
16

𝑖=1 𝑖=1 𝑖=1
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which, along with our a priori estimates, leads to

|⟨𝑀 ′(𝜑1)𝜃21 −𝑀
′(𝜑2)𝜃22 , 𝑧𝑗⟩| ≤ 𝐶(

𝑘
∑

𝑖=1
|𝑎𝑖1 − 𝑎

𝑖
2| +

𝑘
∑

𝑖=1
|𝑐𝑖1 − 𝑐

𝑖
2|). (20d)

ince 𝐼𝐼 is of a similar structure, we proceed analogously, computing

|𝑀 ′(𝜑1)𝜃1∇ ⋅ 𝒖1 −𝑀 ′(𝜑2)𝜃2∇ ⋅ 𝒖2| ≤𝑀|𝜃1||∇ ⋅ 𝒖1 − ∇ ⋅ 𝒖2| +𝑀|∇ ⋅ 𝒖2|
𝑘
∑

𝑖=1
|𝑐𝑖1 − 𝑐

𝑖
2||𝑦𝑖| + 𝐶|𝜃2||∇ ⋅ 𝒖2|

𝑘
∑

𝑖=1
|𝑎𝑖1 − 𝑎

𝑖
2||𝑧𝑖|

nd we arrive at

|⟨𝑀 ′(𝜑1)𝜃1∇ ⋅ 𝒖1 −𝑀 ′(𝜑2)𝜃2∇ ⋅ 𝒖2, 𝑧𝑗⟩| ≤ 𝐶(
𝑘
∑

𝑖=1
|𝑎𝑖1 − 𝑎

𝑖
2| +

𝑘
∑

𝑖=1
|𝑐𝑖1 − 𝑐

𝑖
2| + ‖𝒖1 − 𝒖2‖𝑿 ). (20e)

Finally we observe that 𝐼𝐼𝐼 can be treated similarly to 𝐼 , yielding the estimate

|⟨𝑀 ′(𝜑1)𝛼(𝜑1)2(∇ ⋅ 𝒖1)2 −𝑀 ′(𝜑2)𝛼(𝜑2)2(∇ ⋅ 𝒖2)2, 𝑧𝑗⟩| ≤ 𝐶(
𝑘
∑

𝑖=1
|𝑎𝑖1 − 𝑎

𝑖
2| + ‖𝒖1 − 𝒖2‖𝑿 ), (20f)

such that, along with (20d) and (20e), we can conclude

|⟨𝑀 ′(𝜑1)(𝜃1 − 𝛼(𝜑1)∇ ⋅ 𝒖1)2 −𝑀 ′(𝜑2)(𝜃2 − 𝛼(𝜑2)∇ ⋅ 𝒖2)2, 𝑧𝑗⟩| ≤ 𝐶(
𝑘
∑

𝑖=1
|𝑎𝑖1 − 𝑎

𝑖
2| +

𝑘
∑

𝑖=1
|𝑐𝑖1 − 𝑐

𝑖
2| + ‖𝒖1 − 𝒖2‖𝑿 ). (20g)

Next, we look at the difference

𝑀(𝜑1)(𝜃1 − 𝛼(𝜑1)∇ ⋅ 𝒖1)𝛼′(𝜑1)∇ ⋅ 𝒖1 −𝑀(𝜑2)(𝜃2 − 𝛼(𝜑2)∇ ⋅ 𝒖2)𝛼′(𝜑2)∇ ⋅ 𝒖2

and observe that the structure of this difference is identical to the cases 𝐼𝐼 and 𝐼𝐼𝐼 from above. We therefore omit the relevant
calculations and simply state the estimate

|⟨𝑀(𝜑1)(𝜃1 − 𝛼(𝜑1)∇ ⋅ 𝒖1)𝛼′(𝜑1)∇ ⋅ 𝒖1 −𝑀(𝜑2)(𝜃2 − 𝛼(𝜑2)∇ ⋅ 𝒖2)𝛼′(𝜑2)∇ ⋅ 𝒖2, 𝑧𝑗⟩|

≤ 𝐶(
𝑘
∑

𝑖=1
|𝑎𝑖1 − 𝑎

𝑖
2| +

𝑘
∑

𝑖=1
|𝑐𝑖1 − 𝑐

𝑖
2| + ‖𝒖1 − 𝒖2‖𝑿 ). (20h)

At last, it remains to find suitable estimates for 𝑊,𝜑(𝜑1, (𝒖1)) −𝑊,𝜑(𝜑2, (𝒖2)). Since

2𝑊,𝜑(𝜑, (𝒖)) = C′(𝜑)(𝒖) ∶ (𝒖) − 2C′(𝜑)(𝒖) ∶  (𝜑) + C′(𝜑) (𝜑) ∶  (𝜑) − 2C(𝜑)(𝒖) ∶  ′(𝜑) + 2C(𝜑) ′(𝜑) ∶  (𝜑),

we, once again, proceed termwise. Taking advantage of the boundedness and Lipschitz continuity of C,C′ imposed in Assumption
(A3), we see with the help of the Cauchy–Schwarz inequality

|C′(𝜑1)(𝒖1) ∶ (𝒖1) − C′(𝜑2)(𝒖2) ∶ (𝒖2)|

= |C′(𝜑1)(𝒖1) ∶ ((𝒖1) − (𝒖2)) + C′(𝜑1)(𝒖2) ∶ ((𝒖1) − (𝒖2)) + (C′(𝜑1) − C′(𝜑2))(𝒖2) ∶ (𝒖2)|

≤ 𝐶(‖(𝒖1)‖ + ‖(𝒖2)‖)‖(𝒖1) − (𝒖2)‖ + 𝐶‖(𝒖2)‖2|𝜑1 − 𝜑2|.

Moreover, Assumption (A3) further requires  to be Lipschitz continuous, which along with (18) yields the uniform bound
‖ (𝜑2)‖ ≤ 𝐶. Hence,

|C′(𝜑1)(𝒖1) ∶  (𝜑1) − C′(𝜑2)(𝒖2) ∶  (𝜑2)| ≤ 𝐶(‖(𝒖1)‖ + ‖(𝒖2)‖)|𝜑1 − 𝜑2| + 𝐶‖(𝒖1) − (𝒖2)‖.

We note that C′,  are Lipschitz continuous functions and 𝜑1, 𝜑2 are bounded in 𝛺𝑇 , which implies the following Lipschitz property
for their product

|C′(𝜑1) (𝜑1) ∶  (𝜑1) − C′(𝜑2) (𝜑2) ∶  (𝜑2)| ≤ 𝐶|𝜑1 − 𝜑2|.

Treating the fourth and fifth term analogously to the second and third, respectively, yields the necessary estimates to deduce

|𝑊,𝜑(𝜑1, (𝒖1)) −𝑊,𝜑(𝜑2, (𝒖2))| ≤ 𝐶(|(𝒖1)| + |(𝒖2)| + |(𝒖2)|2 + 1)|𝜑1 − 𝜑2| + 𝐶(|(𝒖1)| + |(𝒖2)| + 1)|(𝒖1) − (𝒖2)|

and we can conclude

|⟨𝑊,𝜑(𝜑1, (𝒖1)) −𝑊,𝜑(𝜑2, (𝒖2)), 𝑧𝑗⟩|

≤ 𝐶
𝑘
∑

𝑖=1
|𝑎𝑖1 − 𝑎

𝑖
2|⟨(|(𝒖1)| + |(𝒖2)| + |(𝒖2)|2 + 1)|𝑧𝑖|, |𝑧𝑗 |⟩ + 𝐶⟨(|(𝒖1)| + |(𝒖2)| + 1)|(𝒖1) − (𝒖2)|, |𝑧𝑗 |⟩

≤ 𝐶(
𝑘
∑

𝑖=1
|𝑎𝑖1 − 𝑎

𝑖
2| + ‖𝒖1 − 𝒖2‖𝑿 ). (20i)
17
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Finally, taking the difference of Eqs. (17b) for the corresponding solutions 𝒃1, 𝒃2 and employing (20a)–(20i), we obtain

|𝑏𝑗1 − 𝑏
𝑗
2| ≤ 𝐶(

𝑘
∑

𝑖=1
|𝑎𝑖1 − 𝑎

𝑖
2| + |𝑐𝑖1 − 𝑐

𝑖
2| + ‖𝒖1 − 𝒖2‖𝑿 ). (20j)

Ad 𝒄: Exploiting the Lipschitz continuity of 𝜅 along with (19d) gives

|𝜅(𝜑1)∇𝑝1 − 𝜅(𝜑2)∇𝑝2| ≤ 𝜅|∇(𝑝1 − 𝑝2)| + |∇𝑝2||𝜅(𝜑1) − 𝜅(𝜑2)|

≤ 𝐶
𝑘
∑

𝑖=1
|∇𝑦𝑖|

𝑘
∑

𝑙=1
|𝑎𝑙1 − 𝑎

𝑙
2| + |𝑐𝑙1 − 𝑐

𝑙
2| + ‖𝒖1 − 𝒖2‖𝑿 + 𝐶|∇𝑝2|

𝑘
∑

𝑖=1
|𝑎𝑖1 − 𝑎

𝑖
2||𝑧𝑖|

and therefore

|⟨𝜅(𝜑1)∇𝑝1 − 𝜅(𝜑2)∇𝑝2,∇𝑦𝑗⟩| ≤ 𝐶
(

𝑘
∑

𝑖=1
|𝑎𝑖1 − 𝑎

𝑖
2| + |𝑐𝑖1 − 𝑐

𝑖
2| + ‖𝒖1 − 𝒖2‖𝑿

)

. (21a)

Moreover, the Lipschitz continuity of 𝑆𝑓 leads to

|⟨𝑆𝑓 (𝜑1, (𝒖1), 𝜃1) − 𝑆𝑓 (𝜑2, (𝒖2), 𝜃2), 𝑦𝑗⟩| ≤ 𝐶
(

𝑘
∑

𝑖=1
|𝑎𝑖1 − 𝑎

𝑖
2| + |𝑐𝑖1 − 𝑐

𝑖
2| + ‖𝒖1 − 𝒖2‖𝑿

)

.

By taking the difference of (17c) and integrating with respect to time, we obtain

|𝑐𝑗1 − 𝑐
𝑗
2|(𝑡) ≤ ∫

𝑡

0
|⟨𝜅(𝜑1)∇𝑝1 − 𝜅(𝜑2)∇𝑝2,∇𝑦𝑗⟩| + |⟨𝑆𝑓 (𝜑1, (𝒖1), 𝜃1) − 𝑆𝑓 (𝜑2, (𝒖2), 𝜃2), 𝑦𝑗⟩| 𝑑𝑡 + |𝑐𝑗1 − 𝑐

𝑗
2|(0)

≤ 𝐶 ∫

𝑡

0

𝑘
∑

𝑖=1
|𝑎𝑖1 − 𝑎

𝑖
2| + |𝑐𝑖1 − 𝑐

𝑖
2| + ‖𝒖1 − 𝒖2‖𝑿 𝑑𝑡 + |𝑐𝑗1 − 𝑐

𝑗
2|(0). (21b)

Ad 𝒂: At last it remains to establish a similar estimate for the differences |𝑎𝑗1 − 𝑎
𝑗
2|. Here we use the Lipschitz continuity of 𝑚

ogether with (20j) to compute

|𝑚(𝜑1)∇𝜇1 − 𝑚(𝜑1)∇𝜇2| ≤ 𝑚|∇(𝜇1 − 𝜇2)| + |∇𝜇2||𝑚(𝜑1) − 𝑚(𝜑2)|

≤ 𝐶
𝑘
∑

𝑖=1
|∇𝑧𝑖|

𝑘
∑

𝑙=1
|𝑎𝑙1 − 𝑎

𝑙
2| + |𝑐𝑙1 − 𝑐

𝑙
2| + ‖𝒖1 − 𝒖2‖𝑿 + 𝐶|∇𝜇2|

𝑘
∑

𝑖=1
|𝑎𝑖1 − 𝑎

𝑖
2||𝑧𝑖|,

yielding

|⟨𝑚(𝜑1)∇𝜇1 − 𝑚(𝜑1)∇𝜇2,∇𝑧𝑗⟩| ≤ 𝐶
(

𝑘
∑

𝑖=1
|𝑎𝑖1 − 𝑎

𝑖
2| + |𝑐𝑖1 − 𝑐

𝑖
2| + ‖𝒖1 − 𝒖2‖𝑿

)

.

Taking advantage of the Lipschitz continuity of 𝑅, cf. (A10), and arguing exactly as above, we arrive at

|𝑎𝑗1 − 𝑎
𝑗
2|(𝑡) ≤ ∫

𝑡

0
|⟨𝑚(𝜑1)∇𝜇1 − 𝑚(𝜑1)∇𝜇2,∇𝑧𝑗⟩| + |⟨𝑅(𝜑1, (𝒖1), 𝜃1) − 𝑅(𝜑2, (𝒖2), 𝜃2), 𝑦𝑗⟩| 𝑑𝑡 + |𝑎𝑗1 − 𝑎

𝑗
2|(0)

≤ 𝐶 ∫

𝑡

0

∑

𝑖=1
|𝑎𝑖1 − 𝑎

𝑖
2| + |𝑐𝑖1 − 𝑐

𝑖
2| + ‖𝒖1 − 𝒖2‖𝑿 𝑑𝑡 + |𝑎𝑗1 − 𝑎

𝑗
2|(0). (22)

Summing over (22) and (21b) for all 𝑗 ≤ 𝑘 leads to
𝑘
∑

𝑗=1
|𝑎𝑗1 − 𝑎

𝑗
2|(𝑡) + |𝑐𝑗1 − 𝑐

𝑗
2|(𝑡) ≤ 𝐶 ∫

𝑡

0

𝑘
∑

𝑗=1
|𝑎𝑗1 − 𝑎

𝑗
2|(𝜏) + |𝑐𝑗1 − 𝑐

𝑗
2|(𝜏) 𝑑𝑡 + 𝐶‖𝒖1 − 𝒖2‖𝐿1(𝑿) +

𝑘
∑

𝑗=1
|𝑎𝑗1 − 𝑎

𝑗
2|(0) + |𝑐𝑗1 − 𝑐

𝑗
2|(0).

ith the help of Gronwall’s lemma we can thus conclude that for any 𝒖 ∈ 𝐻1(0, 𝑇 ;𝑿(𝛺)) and matching initial conditions the solution
𝜑, 𝜇, 𝜃, 𝑝) is unique. Moreover, if ‖𝒖1 − 𝒖2‖𝐿2(0,𝑇 ;𝑿) → 0, then the corresponding solutions also converge in their respective spaces,
.e. the solution continuously depends on 𝒖. □

The lemma above gives rise to the continuous operator ∗ defined by

𝐻1(0, 𝑇 ;𝑿(𝛺)) → 𝐶1([0, 𝑇 ];𝑍𝑘) × 𝐶0([0, 𝑇 ];𝑍𝑘) × 𝐶1([0, 𝑇 ]; 𝑌𝑘) × 𝐶0([0, 𝑇 ]; 𝑌𝑘) ∩𝑊 1,2(0, 𝑇 ;𝐿2(𝛺)),
𝒖 ↦ ∗(𝒖) = (𝜑, 𝜇, 𝜃, 𝑝),

mapping any given 𝒖 to the unique solution of the corresponding system of differential–algebraic equations for some fixed 𝑘 ∈ N.
Observe that the embeddings

𝑍𝑘
𝑐𝑝𝑡
←←←←←←←←←←→ 𝐻2

𝒏 (𝛺)
𝑐
←←←←→ 𝐻1(𝛺) and 𝑌𝑘

𝑐𝑝𝑡
←←←←←←←←←←→ 𝑋(𝛺)

𝑐
←←←←→ 𝐿2(𝛺)

satisfy the assumptions of the Aubin–Lions-Simon theorem, implying compactness for the following operator

 ∶ 𝐻1(0, 𝑇 ;𝑿(𝛺))
𝑐𝑝𝑡
←←←←←←←←←←→ 𝐶0([0, 𝑇 ];𝐻2

𝒏 (𝛺)) × 𝐶0([0, 𝑇 ];𝑋(𝛺))) × 𝐶0([0, 𝑇 ];𝑋(𝛺)),
∗ ∗ ∗

(23)
18

𝒖 ↦ (1𝒖,3𝒖,4𝒖) = (𝜑, 𝜃, 𝑝).
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Before we can state the theorem that will allow us to derive solutions to the linear elasticity Eq. (9g) for any given (𝜑, 𝜇, 𝜃, 𝑝),
ome preparations are necessary.

For a fixed function 𝜑 ∈ 𝐿2(𝛺) and some 𝑞 ∈ R close to 2, we denote by (𝜑) and (𝜑) the operators

(𝜑) ∶ 𝑾 1,𝑞
𝛤𝐷

(𝛺) → 𝑾 −1,𝑞
𝛤𝐷

(𝛺), 𝒗 ↦ ∫𝛺
C𝜈 (𝜑)(𝒗) ∶ (⋅) 𝑑𝐱,

(𝜑) ∶ 𝑾 1,𝑞
𝛤𝐷

(𝛺) → 𝑾 −1,𝑞
𝛤𝐷

(𝛺), 𝒗 ↦ ∫𝛺
C(𝜑)(𝒗) ∶ (⋅) 𝑑𝐱.

s observed in Remark 8, the assumptions for linear elasticity suffice to find Theorem 7 to be applicable, i.e., for all 𝜑 ∈ 𝐿2(𝛺) the
perators (𝜑),(𝜑) are topological isomorphism between 𝑾 1,𝑞

𝛤𝐷
(𝛺) and 𝑾 −1,𝑞

𝛤𝐷
(𝛺) and there exists a common bound for the norm

f the inverse. In particular, it holds

sup
𝜑∈𝐿2(𝛺)

(‖(𝜑)‖(𝑾 1,𝑞
𝛤𝐷

,𝑾 −1,𝑞
𝛤𝐷

) + ‖−1(𝜑)‖(𝑾 −1,𝑞
𝛤𝐷

,𝑾 1,𝑞
𝛤𝐷

) + ‖(𝜑)‖(𝑾 1,𝑞
𝛤𝐷

,𝑾 −1,𝑞
𝛤𝐷

) + ‖−1(𝜑)‖(𝑾 −1,𝑞
𝛤𝐷

,𝑾 1,𝑞
𝛤𝐷

)) ≤ 𝐶. (24)

ence, the operator

(𝜑) ∶ 𝑾 1,𝑞
𝛤𝐷

(𝛺) → 𝑾 1,𝑞
𝛤𝐷

(𝛺), 𝒗 ↦ −1(𝜑)(𝜑)𝒗

s a well-defined automorphism of 𝑾 1,𝑞
𝛤𝐷

(𝛺).
For the application of fixed-point methods, it is crucial that these operators are continuous, which we investigate in the following

emma.

emma 18. Suppose (𝜑𝑛)𝑛∈N ⊂ 𝐿2(𝛺) is a convergent sequence with limit 𝜑 and assume that (𝜑𝑛)𝑛∈N and 𝜑 are bounded in 𝐿6(𝛺). Then
t holds for all 𝒇̂ ∈ 𝑾 1,𝑞

𝛤𝐷
(𝛺) and all 𝒇̃ ∈ 𝑾 −1,𝑞

𝛤𝐷
(𝛺), respectively,

(𝜑𝑛)𝒇̂ → (𝜑)𝒇̂

−1(𝜑𝑛)𝒇̃ → (𝜑)−1𝒇̃

and
and

(𝜑𝑛)𝒇̂ → (𝜑)𝒇̂

(𝜑𝑛)−1𝒇̃ → (𝜑)−1𝒇̃

in 𝑾 −1,𝑞
𝛤𝐷

(𝛺),

in 𝑾 1,𝑞
𝛤𝐷

(𝛺).

roof. As the proof for  is completely analogous, we restrict ourselves in the following to the operator  and its inverse. By
efinition, we obtain for all 𝜼 ∈ 𝑾 1,𝑞′

𝛤𝐷
(𝛺)

|((𝜑)𝒇̂ − (𝜑𝑛)𝒇̂ )𝜼| =
|

|

|∫𝛺
[C𝜈 (𝜑𝑛) − C𝜈 (𝜑)](𝒇̂ ) ∶ (𝜼) 𝑑𝐱||

|

≤ ‖[C𝜈 (𝜑𝑛) − C𝜈 (𝜑)](𝒇̂ )‖𝐿𝑞‖(𝜼)‖𝐿𝑞′

allowing us to deduce

‖(𝜑)𝒇̂ − (𝜑𝑛)𝒇̂‖𝑾 −1,𝑞
𝛤𝐷

= sup
‖𝜼‖

𝑾 1,𝑞′
𝛤𝐷

=1

|

|

|∫𝛺
[C𝜈 (𝜑𝑛) − C𝜈 (𝜑)](𝒇̂ ) ∶ (𝜼) 𝑑𝐱||

|

≤ ‖[C𝜈 (𝜑𝑛) − C𝜈 (𝜑)](𝒇̂ )‖𝑳𝑞 ,

which tends to zero as 𝑛 → ∞. To see this, recall that {𝒉
|𝛺 ∶ 𝒉 ∈ 𝐶∞

𝑐 (R𝑛,R𝑛), supp 𝑓 ∩ 𝛤𝐷 = ∅} is dense in 𝑾 1,𝑝
𝛤𝐷

(𝛺). Therefore, for
any fixed 𝒇̂ ∈ 𝑾 1,𝑝

𝛤𝐷
(𝛺) and any 𝜀 > 0, there exists some smooth 𝒇̂ 𝜀 such that ‖𝒇̂ − 𝒇̂ 𝜀‖𝑾 1,𝑝

𝛤𝐷
< 𝜀 and we compute with the help of

the Lipschitz continuity of C𝜈 that

‖[C𝜈 (𝜑𝑛) − C𝜈 (𝜑)](𝒇̂ )‖𝑳𝑞 ≤ ‖[C𝜈 (𝜑𝑛) − C𝜈 (𝜑)](𝒇̂ − 𝒇̂ 𝜀)‖𝑳𝑞 + ‖[C𝜈(𝜑𝑛) − C𝜈(𝜑)](𝒇̂ 𝜀)‖𝑳𝑞

≤ 𝐶𝜈‖𝒇̂ − 𝒇̂ 𝜀‖𝑾 1,𝑝
𝛤𝐷

+ ‖(𝒇̂ 𝜀)‖𝑳∞‖[C𝜈 (𝜑𝑛) − C𝜈 (𝜑)]‖𝑳𝑞

< 𝐶𝜈𝜀 + 𝐿‖(𝒇̂ 𝜀)‖𝑳∞‖𝜑𝑛 − 𝜑‖𝜗𝐿2‖𝜑𝑛 − 𝜑‖
1−𝜗
𝐿6 , (25)

where 𝐶𝜈 , 𝐿 only depend on C𝜈 and 𝜗 = 6−𝑝
2𝑝 . Since 𝜑𝑛 → 𝜑 in 𝐿2(𝛺) and this sequence is also bounded in 𝐿6(𝛺), we obtain for

sufficiently large 𝑛 ∈ N

‖[C𝜈 (𝜑𝑛) − C𝜈 (𝜑)](𝒇̂ )‖𝑳𝑞 ≤ 𝐶𝜈𝜀 + 𝜀.

As 𝜀 > 0 was chosen arbitrarily, this entails the convergence

[C𝜈 (𝜑𝑛) − C𝜈 (𝜑)](𝒇̂ ) → 0 in 𝐿𝑞(𝛺).

It remains to show strong convergence for the inverse −1. Recalling that by (24) the norms of −1 are uniformly bounded, a
standard argument shows for all 𝒇̃ ∈ 𝑾 −1,𝑞

𝛤𝐷

‖−1(𝜑𝑛)𝒇̃ − −1(𝜑)𝒇̃‖𝑾 1,𝑞
𝛤𝐷

= ‖(−1(𝜑𝑛)[(𝜑) − (𝜑𝑛)]−1(𝜑))𝒇̃‖𝑾 1,𝑞
𝛤𝐷

≤ ‖−1(𝜑𝑛)‖(𝑾 −1,𝑞
𝛤𝐷

,𝑾 1,𝑞
𝛤𝐷

)‖[(𝜑) − (𝜑𝑛)](−1(𝜑)𝒇̃ )‖𝑾 −1,𝑞
𝛤𝐷

≤ 𝐶‖[(𝜑) − (𝜑𝑛)](−1(𝜑)𝒇̃ )‖𝑾 −1,𝑞
𝛤𝐷

.

hus, the result follows from the strong convergence of . □
19
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Given these operators, we now turn to study an abstract Cauchy-problem and already note that for the appropriate right-hand
ide, the solution also solves (9g).

emma 19. Let 𝜑 ∈ 𝐶0([0, 𝑇 ];𝐿2(𝛺)), 𝒇̂ ∈ 𝐿2(0, 𝑇 ;𝑾 1,𝑞
𝛤𝐷

(𝛺)) and 𝑢0 ∈ 𝑾 1,𝑞
𝛤𝐷

(𝛺). Then the non-autonomous, abstract Cauchy-problem
{

𝜕𝑡𝒖(𝑡) +(𝜑(𝑡))𝒖(𝑡) = 𝒇̂ (𝑡) a.e. on (0, 𝑇 ),
𝒖(0) = 𝒖0

has a unique solution 𝒖 ∈ 𝐻1(0, 𝑇 ;𝑾 1,𝑞
𝛤𝐷

(𝛺)).

Proof. Once we have verified that the assumptions of Theorem 10 are indeed satisfied, the result will follow immediately. We start
by examining  and note that the discussion above already implies (𝑡) ∈ (𝑾 1,𝑞

𝛤𝐷
(𝛺)) for all 𝑡 ∈ [0, 𝑇 ]. Moreover, the continuity

f 𝜑 in time together with the uniform estimates (24) yields that the map 𝑡 ↦ (𝑡) in [0, 𝑇 ] is strongly measurable.
Concerning relative continuity, it holds for all 𝒘 ∈ 𝑾 1,𝑞

𝛤𝐷
(𝛺) and any 𝑡, 𝑠 ∈ [0, 𝑇 ]

‖(𝜑(𝑡))𝒘 −(𝜑(𝑠))𝒘‖𝑾 1,𝑞
𝛤𝐷

≤ ‖−1(𝜑(𝑡))(𝜑(𝑡)) − −1(𝜑(𝑠))(𝜑(𝑠))‖(𝑾 1,𝑞
𝛤𝐷

)‖𝒘‖𝑾 1,𝑞
𝛤𝐷

≤ ‖−1(𝜑(𝑡))‖(𝑾 −1,𝑞
𝛤𝐷

,𝑾 1,𝑞
𝛤𝐷

)‖(𝜑(𝑡))‖(𝑾 1,𝑞
𝛤𝐷

,𝑾 −1,𝑞
𝛤𝐷

)‖𝒘‖𝑾 1,𝑞
𝛤𝐷

+ ‖−1(𝜑(𝑠))‖(𝑾 −1,𝑞
𝛤𝐷

,𝑾 1,𝑞
𝛤𝐷

)‖(𝜑(𝑠))‖(𝑾 1,𝑞
𝛤𝐷

,𝑾 −1,𝑞
𝛤𝐷

))‖𝒘‖𝑾 1,𝑞
𝛤𝐷

≤ 𝐶‖𝒘‖𝑾 1,𝑞
𝛤𝐷
.

Setting 𝐷 = 𝑾 1,𝑞
𝛤𝐷

= 𝑌 in Theorem 10, we can choose 𝜂 = 𝐶.
Moreover, (𝜑(𝑡)) is a bounded, linear operator which is defined on the whole space 𝑾 1,𝑞

𝛤𝐷
(𝛺) and therefore closed for every

𝑡 ∈ [0, 𝑇 ]. It is well known that under these conditions (𝜑(𝑡)) ∈ 𝑞 on every bounded interval and for all 𝑞 ∈ (1,∞), cf. [54].
Hence, (𝜑(𝑡)) ∈  for all 𝑡 ∈ [0, 𝑇 ], cf. [45]. In particular, we can choose 𝑡∗ as any 𝑡 ∈ [0, 𝑇 ].

Observing that 𝑢0 ∈ 𝑾 1,𝑞
𝛤𝐷

(𝛺) = (𝑾 1,𝑞
𝛤𝐷

(𝛺),𝑾 1,𝑞
𝛤𝐷

(𝛺)) 1
𝑞∗ ,

= (𝐷,𝑋) 1
𝑝′ ,𝑝

concludes the proof. □

In particular, Lemma 19 establishes that for all 𝜑 ∈ 𝐶0([0, 𝑇 ];𝐿2(𝛺)) the bounded linear operator

L(𝜑) ∶ 𝐻1(0, 𝑇 ;𝑾 1,𝑞
𝛤𝐷

(𝛺)) → 𝐿2(0, 𝑇 ;𝑾 1,𝑞
𝛤𝐷

(𝛺)) ×𝑾 1,𝑞
𝛤𝐷

(𝛺), 𝒖 ↦ (𝜕𝑡𝒖 +(𝜑)𝒖, 𝒖(0))

is invertible. Moreover, we deduce from (6) and (24) that the operators

L−1(𝜑, 𝒖0) ∶ 𝐿2(0, 𝑇 ;𝑾 1,𝑞
𝛤𝐷

(𝛺)) → 𝐻1(0, 𝑇 ;𝑾 1,𝑞
𝛤𝐷

(𝛺)), 𝒇̂ ↦ 𝒖

are uniformly bounded in 𝜑, i.e.,

‖L−1(𝜑, 𝒖0)‖(𝐿2(0,𝑇 ;𝑾 1,𝑞
𝛤𝐷

(𝛺))×𝑾 1,𝑞
𝛤𝐷

(𝛺),𝐻1(0,𝑇 ;𝑾 1,𝑞
𝛤𝐷

(𝛺))) ≤ 𝐶 (26)

for some 𝐶 > 0 independently of 𝜑. To see this, observe that since 𝑌 = 𝑾 1,𝑞
𝛤𝐷

(𝛺) = 𝐷, it holds that (𝜑1) −(𝜑2) ∈ (𝑋) for any
𝜑1, 𝜑2 ∈ 𝐿2(𝛺) with ‖(𝜑1) −(𝜑2)‖(𝑾 1,𝑞

𝛤𝐷
(𝛺)) ≤ 𝐶 =∶ 𝐶 .

As we shall see in the following lemma, these estimates imply that the dependency of L−1 on 𝜑 is also continuous.

Lemma 20. Let (𝜑𝑛)𝑛∈N ⊂ 𝐶0([0, 𝑇 ];𝐿2(𝛺)) be a convergent sequence with limit 𝜑. Then it holds for all (𝒇̂ , 𝒖0) ∈ 𝐿2(0, 𝑇 ;𝑾 1,𝑞
𝛤𝐷

(𝛺)) ×
𝑾 1,𝑞

𝛤𝐷
(𝛺)

L−1(𝜑𝑛, 𝒖0)(𝒇̂ ) → L−1(𝜑, 𝒖0)(𝒇̂ , 𝒖0) in 𝐻1(0, 𝑇 ;𝑾 1,𝑞
𝛤𝐷

(𝛺)).

Proof. We start by observing that

‖L−1(𝜑𝑛, 𝒖0)(𝒇̂ ) − L−1(𝜑, 𝒖0)(𝒇̂ )‖𝐻1(𝑾 1,𝑞
𝛤𝐷

) = ‖L−1(𝜑𝑛, 𝒖0)[L(𝜑) − L(𝜑𝑛)](L−1(𝜑, 𝒖0)(𝒇̂ ))‖𝐻1(𝑾 1,𝑞
𝛤𝐷

)

≤ ‖L−1(𝜑, 𝒖0)‖(𝐿2(𝑾 1,𝑞
𝛤𝐷

)×𝑾 1,𝑞
𝛤𝐷

,𝐻1(𝑾 1,𝑞
𝛤𝐷

))‖[L(𝜑) − L(𝜑𝑛)](L−1(𝜑, 𝒖0)(𝒇̂ ))‖𝐿2(𝑾 1,𝑞
𝛤𝐷

)×𝑾 1,𝑞
𝛤𝐷

≤ 𝐶‖[L(𝜑) − L(𝜑𝑛)](L−1(𝜑, 𝒖0)(𝒇̂ ))‖𝐿2(𝑾 1,𝑞
𝛤𝐷

)×𝑾 1,𝑞
𝛤𝐷
,

where the last estimate is due to (26). Therefore, it is sufficient to establish the convergence

L(𝜑𝑛)𝒗 → L(𝜑)𝒗 in 𝐿2(0, 𝑇 ;𝑾 1,𝑞
𝛤𝐷

(𝛺)) ×𝑾 1,𝑞
𝛤𝐷

(𝛺) (27)

for all 𝒗 ∈ 𝐻1(0, 𝑇 ;𝑾 1,𝑞
𝛤𝐷

(𝛺)). Since by definition

(L(𝜑𝑛)𝒗) = (𝜕𝑡𝒗 +(𝜑𝑛)𝒗, 𝒗(0)),

the only term depending on 𝜑𝑛 is (𝜑𝑛)𝒗. Hence, the result will follow immediately from
2 1,𝑞
20

(𝜑𝑛)𝒗 → (𝜑)𝒗 in 𝐿 (0, 𝑇 ;𝑾 𝛤𝐷
(𝛺)).
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As by definition ((𝜑𝑛)𝒗)(𝑡) = −1(𝜑𝑛(𝑡))(𝜑𝑛(𝑡))𝒗(𝑡), Lemma 18 together with (24) imply for all 𝑡 ∈ [0, 𝑇 ] the convergence

‖((𝜑𝑛)𝒗)(𝑡) − ((𝜑)𝒗)(𝑡)‖𝑾 1,𝑞
𝛤𝐷

= ‖−1(𝜑𝑛(𝑡))(𝜑𝑛(𝑡))𝒗(𝑡) − −1(𝜑(𝑡))(𝜑(𝑡))𝒗(𝑡)‖𝑾 1,𝑞
𝛤𝐷

≤ ‖−1(𝜑𝑛(𝑡))‖(𝑾 −1,𝑞
𝛤𝐷

,𝑾 1,𝑞
𝛤𝐷

)‖(𝜑𝑛(𝑡))𝒗(𝑡) − (𝜑(𝑡))𝒗(𝑡)‖𝑾 −1,𝑞
𝛤𝐷

+ ‖[−1(𝜑𝑛(𝑡)) − −1(𝜑(𝑡))](𝜑(𝑡))𝒗(𝑡)‖ → 0.

Observing that (24) yields a uniform bound for the norm ‖(𝜑𝑛)‖(𝑾 1,𝑞
𝛤𝐷

), we estimate

‖(𝜑𝑛(𝑡))𝒗(𝑡)‖2𝑾 1,𝑞
𝛤𝐷

≤ 𝐶‖𝒗(𝑡)‖2
𝑾 1,𝑞

𝛤𝐷

, (28)

which allows us to deduce (27) with the help of Lebesgue’s convergence theorem, cf. [55, Sec. 3.25]. □

Lastly we need to define the appropriate right-hand side for our abstract Cauchy-problem. Therefore, we set

F ∶ 𝐿∞(0, 𝑇 ;𝐻2
𝒏 (𝛺)) × 𝐿2(0, 𝑇 ;𝑋(𝛺)) × 𝐿2(0, 𝑇 ;𝑋(𝛺)) → 𝐿2(0, 𝑇 ;𝑾 1,𝑞

𝛤𝐷
(𝛺)), (𝜑, 𝜃, 𝑝) ↦ F(𝜑, 𝜃, 𝑝),

where

F(𝜑, 𝜃, 𝑝)(𝑡) = −1(𝜑(𝑡))𝒇 ∗(𝜑, 𝜃, 𝑝)(𝑡),

𝒇 ∗(𝜑, 𝜃, 𝑝)(𝑡)𝜼 ∶= ∫𝛺
C(𝜑) (𝜑) ∶ (𝜼) + 𝛼(𝜑)𝑝(∇ ⋅ 𝜼) ∗ 𝜙+𝒇 ⋅ 𝜼 𝑑𝐱 + ∫𝛤𝑁

𝒈 ⋅ 𝜼 𝑑𝑛−1 − 𝜚∫𝛺
∇𝜃 ⋅ ∇(𝛼(𝜑)(∇ ⋅ 𝜼) ∗ 𝜙) 𝑑𝐱.

Lemma 21. The operator F is well-defined and strongly continuous.

Proof. To verify that F is well-defined, i.e., F(𝜑, 𝑝) ∈ 𝐿2(0, 𝑇 ;𝑾 1,𝑞
𝛤𝐷

(𝛺)) for all admissible 𝜑, 𝜃, 𝑝, we recall the uniform bound on
−1(𝜑), which implies that it suffices to show 𝒇 ∗(𝜑, 𝑝) ∈ 𝐿2(0, 𝑇 ;𝑾 −1,𝑞

𝛤𝐷
(𝛺)). To this end, let 𝜼 ∈ 𝑾 1,𝑞′

𝛤𝐷
(𝛺) and compute

|

|

|∫𝛺
C(𝜑) (𝜑) ∶ (𝜼) + 𝛼(𝜑)𝑝(∇ ⋅ 𝜼) ∗ 𝜙 + 𝒇 ⋅ 𝜼 𝑑𝐱 + ∫𝛤𝑁

𝒈 ⋅ 𝜼 𝑑𝑛−1|
|

|

≤ 𝐶(‖𝜑‖𝐿𝑞 + 1)‖(𝜼)‖𝑳𝑞′ + 𝐶‖𝑝‖𝑳𝑞‖∇ ⋅ 𝜼‖𝑳𝑞′ + 𝐶‖𝜼‖𝑳𝑞′ + 𝐶‖𝜼‖𝑳𝑞′ (𝛤𝐷)
≤ 𝐶(‖𝜑‖𝐻1 + 1)‖𝜼‖

𝑾 1,𝑞′
𝛤𝐷

+ 𝐶‖𝑝‖𝑋‖𝜼‖𝑾 1,𝑞′
𝛤𝐷

.

Using Hölder’s inequality and Young’s inequality for convolutions, we further obtain
|

|

|

|

∫𝛺
∇𝜃 ⋅ ∇(𝛼(𝜑)(∇ ⋅ 𝜼) ∗ 𝜙) 𝑑𝐱

|

|

|

|

=
|

|

|

|

∫𝛺
∇𝜃 ⋅

(

𝛼′(𝜑)∇𝜑(∇ ⋅ 𝜼) ∗ 𝜙
)

+ ∇𝜃 ⋅ (𝛼(𝜑)(∇ ⋅ 𝜼) ∗ ∇𝜙) 𝑑(𝑡,𝒙)
|

|

|

|

≤ 𝐶
(

‖∇𝜃‖𝑳2‖∇𝜑‖𝑳4‖(∇ ⋅ 𝜼) ∗ 𝜙‖𝑳4 + ‖∇𝜃‖𝑳2‖(∇ ⋅ 𝜼) ∗ ∇𝜙‖𝐿2
)

≤ 𝐶
(

‖∇𝜃‖𝑳2‖∇𝜑‖𝑳4‖∇ ⋅ 𝜼‖𝐿𝑞′ ‖𝜙‖𝐿𝑠 + ‖∇𝜃‖𝑳2‖∇ ⋅ 𝜼‖𝐿𝑞′ ‖∇𝜙‖𝑳𝑟
)

where 𝑠 = 4𝑞′
5𝑞′−4 and 𝑟 = 2𝑞′

3𝑞′−2 . Hence,

‖𝒇 ∗(𝜑, 𝜃, 𝑝)(𝑡)‖𝑾 −1,𝑞
𝛤𝐷

= sup
‖𝜼‖

𝑾 1,𝑞′
𝛤𝐷

=1
|𝒇 ∗(𝜑, 𝜃, 𝑝)(𝑡)𝜼| ≤ 𝐶(‖𝜑(𝑡)‖𝐻1 + ‖𝑝(𝑡)‖𝑋 + ‖∇𝜃‖𝑳2‖∇𝜑‖𝑳6 + ‖∇𝜃‖𝑳2 + 1), (29)

hich in turn yields, due to 𝜑 ∈ 𝐿∞(0, 𝑇 ;𝐻2
𝒏 (𝛺)), that

‖𝒇 ∗(𝜑, 𝜃, 𝑝)‖2
𝐿2(𝑾 −1,𝑞

𝛤𝐷
)
= ∫

𝑇

0
‖𝒇 ∗(𝜑, 𝜃, 𝑝)(𝑡)‖2

𝑾 −1,𝑞
𝛤𝐷

𝑑𝑡 ≤ ∫

𝑇

0
𝐶(‖𝜑(𝑡)‖𝐻1 + ‖𝑝(𝑡)‖𝑋 + ‖∇𝜃‖𝐿2‖∇𝜑‖𝐿6 + ‖∇𝜃‖𝐿2 + 1)2 𝑑𝑡 <∞.

o see that F is strongly continuous, we take a convergent sequence

(𝜑𝑛, 𝜃𝑛, 𝑝𝑛)𝑛∈N ⊂ 𝐿∞(0, 𝑇 ;𝐻1(𝛺)) × 𝐿2(0, 𝑇 ;𝑋(𝛺)) × 𝐿2(0, 𝑇 ;𝑋(𝛺))

nd start by considering the convergence

𝒇 ∗(𝜑𝑛, 𝜃𝑛, 𝑝𝑛)(𝑡) → 𝒇 ∗(𝜑, 𝜃, 𝑝)(𝑡) in 𝑾 −1,𝑞
𝛤𝐷

(𝛺) (30)

or any 𝑡 ∈ [0, 𝑇 ], where 𝜑, 𝜃, 𝑝 are the respective limits. Similar to the calculation above, we obtain the estimate
|

|

|

|

∫𝛺
∇𝜃𝑛 ⋅ ∇(𝛼(𝜑𝑛)(∇ ⋅ 𝜼) ∗ 𝜙) − ∇𝜃 ⋅ ∇(𝛼(𝜑)(∇ ⋅ 𝜼) ∗ 𝜙) 𝑑𝐱

|

|

|

|

≤ ‖𝛼′(𝜑𝑛)∇𝜃𝑛 ⋅ ∇𝜑𝑛 − 𝛼′(𝜑)∇𝜃 ⋅ ∇𝜑‖𝐿4∕3‖(∇ ⋅ 𝜼) ∗ 𝜙‖𝐿4 + ‖𝛼(𝜑𝑛)∇𝜃𝑛 − 𝛼(𝜑)∇𝜃‖𝑳2‖(∇ ⋅ 𝜼) ∗ ∇𝜙‖𝑳2

≤ 𝐶
(

‖𝛼′(𝜑𝑛)∇𝜃𝑛 ⋅ ∇𝜑𝑛 − 𝛼′(𝜑)∇𝜃 ⋅ ∇𝜑‖𝐿4∕3 + ‖𝛼(𝜑𝑛)∇𝜃𝑛 − 𝛼(𝜑)∇𝜃‖𝑳2

)

‖𝜼‖
𝑾 1,𝑞′

𝛤
.

21

𝐷
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This leads to

|𝒇 ∗(𝜑𝑛, 𝜃𝑛, 𝑝𝑛)(𝑡)𝜼 − 𝒇 ∗(𝜑, 𝜃, 𝑝)(𝑡)𝜼|

≤ ‖C(𝜑𝑛) (𝜑𝑛) − C(𝜑) (𝜑)‖𝑳𝑞‖𝜼‖𝑾 1,𝑞′ + ‖𝛼(𝜑𝑛)𝑝𝑛 − 𝛼(𝜑)𝑝‖𝑳𝑞‖𝜼‖𝑾 1,𝑞′

+ 𝐶
(

‖𝛼′(𝜑𝑛)∇𝜃𝑛 ⋅ ∇𝜑𝑛 − 𝛼′(𝜑)∇𝜃 ⋅ ∇𝜑‖𝐿4∕3 + ‖𝛼(𝜑𝑛)∇𝜃𝑛 − 𝛼(𝜑)∇𝜃‖𝑳2

)

‖𝜼‖𝑾 1,𝑞′

and thus

‖𝒇 ∗(𝜑𝑛, 𝜃𝑛, 𝑝𝑛)(𝑡) − 𝒇 ∗(𝜑, 𝜃, 𝑝)(𝑡)‖𝑾 −1,𝑞
𝛤𝐷

= sup
‖𝜼‖

𝑾 1,𝑞′ =1
|𝒇 ∗(𝜑𝑛, 𝜃𝑛, 𝑝𝑛)(𝑡)𝜼 − 𝒇 ∗(𝜑, 𝜃, 𝑝)(𝑡)𝜼|

≤ ‖C(𝜑𝑛) (𝜑𝑛) − C(𝜑) (𝜑)‖𝑳𝑞 + ‖𝛼(𝜑𝑛)𝑝𝑛 − 𝛼(𝜑)𝑝‖𝐿𝑞 + 𝐶
(

‖𝛼′(𝜑𝑛)∇𝜃𝑛 ⋅ ∇𝜑𝑛 − 𝛼′(𝜑)∇𝜃 ⋅ ∇𝜑‖𝐿4∕3 + ‖𝛼(𝜑𝑛)∇𝜃𝑛 − 𝛼(𝜑)∇𝜃‖𝑳2

)

.

From the assumptions, it follows that for every subsequence (𝑛𝑘)𝑘∈N there exists another subsequence (𝑛𝑘𝑙 )𝑙∈N such that for almost
all 𝑡 ∈ (0, 𝑇 )

𝜑𝑛𝑘𝑙 (𝑡) → 𝜑(𝑡) in 𝐻2
𝒏 (𝛺) and a.e. in 𝛺 and ∇𝜑𝑛𝑘𝑙 (𝑡) → ∇𝜑(𝑡) a.e. in 𝛺,

𝜃𝑛𝑘𝑙 (𝑡) → 𝜃(𝑡) in 𝑋(𝛺) and a.e. in 𝛺 and ∇𝜃𝑛𝑘𝑙 (𝑡) → ∇𝜃(𝑡) a.e. in 𝛺,

𝑝𝑛𝑘𝑙 (𝑡) → 𝑝(𝑡) in 𝑋(𝛺) and a.e. in 𝛺.

(31)

The continuity of C,  , 𝛼, 𝛼′ therefore implies that for almost every 𝑡 ∈ (0, 𝑇 )

C(𝜑𝑛𝑘𝑙 (𝑡)) (𝜑𝑛𝑘𝑙 (𝑡)) − C(𝜑(𝑡)) (𝜑(𝑡)) → 0 and 𝛼(𝜑𝑛𝑘𝑙 (𝑡))𝑝𝑛𝑘𝑙 (𝑡) − 𝛼(𝜑(𝑡))𝑝(𝑡) → 0,

pointwise a.e. in 𝛺, along with the pointwise a.e. convergences

𝛼′(𝜑𝑛𝑘𝑙 (𝑡))∇𝜃𝑛𝑘𝑙 (𝑡) ⋅ ∇𝜑𝑛𝑘𝑙 (𝑡) − 𝛼
′(𝜑(𝑡))∇𝜃(𝑡) ⋅ ∇𝜑(𝑡) → 0,

𝛼(𝜑𝑛𝑘𝑙 (𝑡))∇𝜃𝑛𝑘𝑙 (𝑡) − 𝛼(𝜑(𝑡))∇𝜃(𝑡) → 0.

Hence, the growth conditions on C,  , 𝛼, 𝛼′ and Lebesgue’s generalized convergence theorem, cf. [55, Sec. 3.25], along with (31)
yield the strong convergences

‖C(𝜑𝑛𝑘𝑙 (𝑡)) (𝜑𝑛𝑘𝑙 (𝑡)) − C(𝜑(𝑡)) (𝜑(𝑡))‖𝑳𝑞 → 0,

‖𝛼(𝜑𝑛𝑘𝑙 (𝑡))𝑝𝑛𝑘𝑙 (𝑡) − 𝛼(𝜑(𝑡))𝑝(𝑡)‖𝐿𝑞 → 0,

‖𝛼′(𝜑𝑛𝑘𝑙 (𝑡))∇𝜃𝑛𝑘𝑙 (𝑡) ⋅ ∇𝜑𝑛𝑘𝑙 (𝑡) − 𝛼
′(𝜑(𝑡))∇𝜃(𝑡) ⋅ ∇𝜑(𝑡)‖𝐿4∕3 → 0,

‖𝛼(𝜑𝑛𝑘𝑙 (𝑡))∇𝜃𝑛𝑘𝑙 (𝑡) − 𝛼(𝜑(𝑡))∇𝜃(𝑡)‖𝑳2 → 0

for almost all 𝑡 ∈ (0, 𝑇 ). Along with Lemma 18 and the uniform bound (24), we infer, again for almost all 𝑡 ∈ (0, 𝑇 ),

‖−1(𝜑𝑛𝑘𝑙 )𝒇
∗(𝜑𝑛𝑘𝑙 , 𝜃𝑛𝑘𝑙 , 𝑝𝑛𝑘𝑙 ) − −1(𝜑)𝒇 ∗(𝜑, 𝜃, 𝑝)‖𝑾 1,𝑞

𝛤𝐷

≤ ‖−1(𝜑𝑛𝑘𝑙 )(𝒇
∗(𝜑𝑛𝑘𝑙 , 𝜃𝑛𝑘𝑙 , 𝑝𝑛𝑘𝑙 ) − 𝒇 ∗(𝜑, 𝜃, 𝑝))‖𝑾 1,𝑞

𝛤𝐷
+ ‖(−1(𝜑𝑛𝑘𝑙 ) − −1(𝜑))𝒇 ∗(𝜑, 𝜃, 𝑝)‖𝑾 1,𝑞

𝛤𝐷

≤ 𝐶‖𝒇 ∗(𝜑𝑛𝑘𝑙 , 𝜃𝑛𝑘𝑙 , 𝑝𝑛𝑘𝑙 ) − 𝒇 ∗(𝜑, 𝜃, 𝑝)‖𝑾 −1,𝑞
𝛤𝐷

+ ‖(−1(𝜑𝑛𝑘𝑙 ) − −1(𝜑))𝒇 ∗(𝜑, 𝜃, 𝑝)‖𝑾 1,𝑞
𝛤𝐷

→ 0,

i.e., the chosen subsequence converges pointwise almost everywhere in (0, 𝑇 ).
Utilizing the convergences of (𝑝𝑛)𝑛∈N in 𝐿2(0, 𝑇 ;𝑋(𝛺)) and (𝜑𝑛)𝑛∈N in 𝐿∞(0, 𝑇 ;𝐻2

𝒏 (𝛺)) and (𝜃𝑛)𝑛∈N in 𝐿2(0, 𝑇 ;𝑋(𝛺)), the estimate
(29) and the uniform bound on −1(𝜑𝑛), we infer with the help of Lebesgue’s generalized convergence theorem, cf. [55, Sec. 3.25],

F(𝜑𝑛𝑘𝑙 , 𝜃𝑛𝑘𝑙 , 𝑝𝑛𝑘𝑙 ) → F(𝜑, 𝜃, 𝑝) in 𝐿2(0, 𝑇 ;𝑾 1,𝑞
𝛤𝐷

(𝛺)).

In summary, we obtain that every subsequence (𝑛𝑘)𝑘∈N of contains yet another subsequence such that the desired convergence holds.
In particular, (F(𝜑𝑛, 𝑝𝑛))𝑛∈N is precompact with a unique accumulation point, which yields the assertion. □

Suppose we have found (𝜑, 𝑝, 𝒖) in the corresponding spaces such that

L1(𝜑)𝒖 = F(𝜑, 𝜃, 𝑝) (32)

almost everywhere, or equivalently,

𝜕𝑡𝒖 + −1(𝜑)(𝜑)𝒖 = −1(𝜑)𝒇 ∗(𝜑, 𝜃, 𝑝).

Multiplying (𝜑) from the left side then yields that the equation

∫𝛺
C𝜈 (𝜑)(𝜕𝑡𝒖) ∶ (𝜼) +𝑊, (𝜑𝑘, (𝒖)) ∶ (𝜼) − 𝛼(𝜑)𝑝(∇ ⋅ 𝜼) ∗ 𝜙𝑑𝐱

= 𝒇 ⋅ 𝜼 𝑑𝐱 + 𝒈 ⋅ 𝜼 𝑑𝑛−1 − 𝜚 ∇𝜃 ⋅ ∇(𝛼(𝜑)(∇ ⋅ 𝜼) ∗ 𝜙) 𝑑𝐱
22

∫𝛺 ∫𝛤𝑁 ∫𝛺
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e

w
N
d

f

l

holds for all 𝜼 ∈ 𝑾 1,𝑞′
𝛤𝐷

(𝛺), i.e., the functions (𝜑, 𝑝, 𝒖) satisfy (9g) for almost all 𝑡 ∈ (0, 𝑇 ). Rewriting (32) with the help of  and
xploiting that L is invertible leads to the fixed point equation

𝒖 = L−1(1𝒖, 𝒖0) (F𝒖) =∶ T𝒖 (33)

here T ∶ 𝐻1(0, 𝑇 ;𝑿(𝛺)) → 𝐻1(0, 𝑇 ;𝑿(𝛺)) with 𝒖 ↦ L−1(1𝒖, 𝒖0) (F𝒖) .
ote that the initial condition for the displacement is incorporated in the definition of the operator T. It is apparent from the
iscussion above that for a solution of (33), the quintuple (𝜑, 𝜇, 𝜃, 𝑝, 𝒖) ∶= (∗𝒖, 𝒖) satisfies (9a)–(9g), i.e., it is a solution to the

semi-discretized system.

Lemma 22. There exists at least one 𝒖 ∈ 𝐻1(0, 𝑇 ;𝑿(𝛺)) such that 𝒖 = T𝒖.

Proof. Since this is a direct consequence of the Leray–Schauder principle, it remains to verify that
(i) T is completely continuous;

(ii) there exists 𝑟 > 0 such that for all 𝒗 satisfying 𝒗 = 𝜆T𝒗 for any 𝜆 ∈ [0, 1] we have ‖𝒗‖𝐻1(𝑿) ≤ 𝑅.
Ad (i): Let (𝒖𝑛)𝑛∈N ⊂ 𝐻1(0, 𝑇 ;𝑿(𝛺)) be a bounded sequence. Due to the discussion above (23), we already know that the mapping

𝒖𝑛 ↦ (𝒖𝑛) = (𝜑𝑛, 𝜃𝑛, 𝑝𝑛) ∈ 𝐶0([0, 𝑇 ];𝐻2
𝒏 (𝛺)) × 𝐶0([0, 𝑇 ];𝑋(𝛺)) × 𝐶0([0, 𝑇 ];𝑋(𝛺))

is compact, allowing us to extract a convergent subsequence. Without relabeling, we can now apply Lemma 21 and deduce

F𝒖𝑛 = F(𝜑𝑛, 𝜃𝑛, 𝑝𝑛) → F(𝜑, 𝜃, 𝑝) in 𝐿2(0, 𝑇 ;𝑿(𝛺)). (34)

Hence, Lemma 20 along with the uniform estimate (26) yield

‖L−1(𝜑𝑛, 𝒖0)(F(𝜑𝑛, 𝜃𝑛, 𝑝𝑛)) − L−1(𝜑, 𝒖0)(F(𝜑, 𝜃, 𝑝))‖𝐻1(𝑿)

≤ ‖L−1(𝜑𝑛, 𝒖0)‖(𝐿2(0,𝑇 ;𝑿(𝛺)),𝐻1(0,𝑇 ;𝑿(𝛺)))‖F(𝜑𝑛, 𝜃𝑛, 𝑝𝑛) − F(𝜑, 𝜃, 𝑝)‖𝐿2(𝑿) + ‖(L−1(𝜑𝑛, 𝒖0) − L−1(𝜑, 𝒖0))(F(𝜑, 𝜃, 𝑝))‖𝐻1(𝑿) → 0

and we conclude that, along a suitable subsequence,

T𝒖𝑛 → T𝒖 in 𝐻1(0, 𝑇 ;𝑿(𝛺)).

Ad (ii): Suppose 𝜆 ∈ [0, 1] and assume 𝒗 satisfies the equation 𝒗 = 𝜆T𝒗, or equivalently that L1(𝒗)𝒗 = 𝜆F𝒗, which follows from
the definition of T and the linearity of −1. By definition, the functions (𝜑, 𝜇, 𝜃, 𝑝) ∶= ∗𝒗 are a solution to the system (17a)–(17d)
of differential–algebraic equations with the corresponding initial conditions. Similar to above, we further obtain

(𝜑)𝜕𝑡𝒗 + (𝜑)𝒗 = 𝜆𝒇 ∗(𝜑, 𝑝)

for almost all 𝑡 ∈ [0, 𝑇 ] and therefore

∫𝛺
C𝜈 (𝜑)(𝜕𝑡𝒗) ∶ (𝜼) + C(𝜑)(𝒗) ∶ (𝜼) 𝑑𝐱

= 𝜆∫𝛺
C(𝜑) (𝜑) ∶ (𝜼) + 𝛼(𝜑)𝑝 (∇ ⋅ 𝜼) ∗ 𝜙+𝒇 ⋅ 𝜼 𝑑𝐱 + 𝜆∫𝛤𝑁

𝒈 ⋅ 𝜼 𝑑𝑛−1 − 𝜆∫𝛺
𝜚∇𝜃 ⋅ ∇(𝛼(𝜑)(∇ ⋅ 𝜼) ∗ 𝜙) 𝑑𝐱

or all 𝜼 ∈ 𝑿(𝛺). Adding to and subtracting from the right-hand side the term

(1 − 𝜆)∫𝛺
C(𝜑) (𝜑) ∶ (𝜼) 𝑑𝐱 + ∫𝛺

𝑀(𝜑)(𝜃 − 𝛼(𝜑)∇ ⋅ 𝒖)𝛼(𝜑)∇ ⋅ 𝜼 𝑑𝐱

eads to

∫𝛺
C𝜈 (𝜑)(𝜕𝑡𝒗) ∶ (𝜼) +𝑊, (𝜑𝑘, (𝒗)) ∶ (𝜼) −𝑀(𝜑)(𝜃 − 𝛼(𝜑)∇ ⋅ 𝒖)𝛼(𝜑)∇ ⋅ 𝜼 𝑑𝐱

=𝜆∫𝛺
𝒇 ⋅ 𝜼 + 𝛼(𝜑)𝑝 (∇ ⋅ 𝜼) ∗ 𝜙𝑑𝐱 + 𝜆∫𝛤𝑁

𝒈 ⋅ 𝜼 𝑑𝑛−1

+ (𝜆 − 1)∫𝛺
C(𝜑) (𝜑) ∶ (𝜼) −𝑀(𝜑)(𝜃 − 𝛼(𝜑)∇ ⋅ 𝒖)𝛼(𝜑)∇ ⋅ 𝜼 𝑑𝐱

− 𝜆∫𝛺
𝜚∇𝜃 ⋅ ∇(𝛼(𝜑)(∇ ⋅ 𝜼) ∗ 𝜙) 𝑑𝐱.

(35)

After testing the system of differential–algebraic Eqs. (17a)–(17d) just like in Section 5.2 and (35) with 𝜕𝑡𝒗, we arrive at

‖𝑚(𝜑)1∕2∇𝜇‖2
𝐿2 + ‖𝜅(𝜑)1∕2∇𝑝‖2

𝐿2 + ∫𝛺
C𝜈 (𝜑)(𝜕𝑡𝒗) ∶ (𝜕𝑡𝒗) 𝑑𝐱

+ 𝑑
𝑑𝑡

[

∫𝛺
𝜀
2
|∇𝜑|2 +

𝜚1∕2

2
|𝛥𝜑|2 +

𝜚
2
|∇𝜃|2 + 1

𝜀
𝜓(𝜑) 𝑑𝐱

+ ∫𝛺
𝑊 (𝜑, (𝒗)) − 𝜆𝒇 ⋅ 𝒗 𝑑𝐱 − 𝜆∫𝛤𝑁

𝒈 ⋅ 𝒗 𝑑𝑛−1 + ∫𝛺
𝑀(𝜑)
2

(𝜃 − 𝛼(𝜑)∇ ⋅ 𝒗)2 𝑑𝐱
]

= ⟨𝑅(𝜑, (𝒗), 𝜃), 𝜇⟩ + ⟨𝑆𝑓 (𝜑, (𝒗), 𝜃), 𝑝⟩+∫𝛺
(𝜆 − 1)C(𝜑) (𝜑) ∶ (𝜕𝑡𝒗) −𝑀(𝜑)(𝜃 − 𝛼(𝜑)∇ ⋅ 𝒗)𝛼(𝜑)∇ ⋅ 𝜕𝑡𝒗 𝑑𝐱

+ 𝜆 𝛼(𝜑)𝑝 (∇ ⋅ 𝜕𝑡𝒗) ∗ 𝜙 − 𝜚∇𝜃 ⋅ ∇(𝛼(𝜑)(∇ ⋅ 𝜕𝑡𝒗) ∗ 𝜙) 𝑑𝐱,
(36)
23

∫𝛺
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which only slightly differs from (11). Employing the Cauchy–Schwarz inequality and invoking a trace theorem yields for all 𝜌𝒗 > 0

−𝜆∫𝛺
𝒇 ⋅ 𝒗 𝑑𝐱 − 𝜆∫𝛤𝑁

𝒈 ⋅ 𝒗 𝑑𝑛−1 ≥ −𝜆𝜌𝒗‖𝒗‖2𝑿 − 𝜆𝐶(𝜌𝒗,𝒇 , 𝒈) ≥ −𝜌𝒗‖𝒗‖2𝑿 − 𝐶(𝜌𝒗,𝒇 , 𝒈),

where we used 𝜆 ∈ [0, 1]. Hence, instead of (14a), we obtain for suitably small 𝜌𝒗 and all 𝑡 ∈ [0, 𝑇 ], 𝜆 ∈ [0, 1]

∫𝛺
𝑊 (𝜑, (𝒗)) − 𝜆𝒇 ⋅ 𝒗 𝑑𝐱 − 𝜆∫𝛤𝑁

𝒈 ⋅ 𝒗 𝑑𝑛−1 ≥ 𝐶𝒗‖𝒗‖2𝑿 − 𝜌𝜑‖𝜑‖
𝑝
𝐿𝑝 − 𝐶.

Moreover, instead of (14b), we estimate

∫𝛺
𝑊 (𝜑0,𝑘, (𝒗0)) 𝑑𝐱 − 𝜆𝒇 ⋅ 𝒗0 𝑑𝐱 − 𝜆∫𝛤𝑁

𝒈 ⋅ 𝒖0 𝑑𝑛−1 ≤ 𝐶(‖𝜑0,𝑘‖
2
𝐿2 + ‖𝒗0‖2𝑿 + 1).

Finally, we exploit the properties of the tensor C𝜈 and invoke Korn’s inequality to obtain

∫𝛺
C𝜈 (𝜑)(𝜕𝑡𝒗) ∶ (𝜕𝑡𝒗) 𝑑𝐱 ≥ 𝐶𝜈‖𝜕𝑡𝒗‖2𝑿 .

It remains to estimate the right-hand side uniformly in 𝜆. Since |1 − 𝜆| ≤ 1, we find with the help of Assumption (A3) and Young’s
inequality

−(1 − 𝜆)∫𝛺
C(𝜑) (𝜑) ∶ (𝜕𝑡𝒗) 𝑑𝐱 ≤ |1 − 𝜆|(𝐶(‖𝜑‖𝐿2 + 1)‖𝜕𝑡𝒗‖𝑿 ) ≤ 𝐶𝒗,1(‖𝜑‖2𝐿2 + 1) +

𝛿𝒗
3
‖𝜕𝑡𝒗‖2𝑿 .

Taking note of the fact that 𝛼(𝜑)(∇ ⋅ 𝜕𝑡𝒗) ∗ 𝜙 ∈ 𝐻1(𝛺), the identity (10) allows us to rewrite the last term in (36) as

𝜆∫𝛺
𝑝𝛼(𝜑)(∇ ⋅ 𝜕𝑡𝒗) ∗ 𝜙𝑑𝐱 = 𝜆∫𝛺

𝜚∇𝜃 ⋅ ∇(𝛼(𝜑)(∇ ⋅ 𝜕𝑡𝒗) ∗ 𝜙) 𝑑𝐱 + 𝜆∫𝛺
𝛱𝑦
𝑘 (𝑀(𝜑)(𝜃 − 𝛼(𝜑)∇ ⋅ 𝒗))𝛼(𝜑)(∇ ⋅ 𝜕𝑡𝒗) ∗ 𝜙𝑑𝐱

and find that the first integral cancels out against the last term in (36). For the second term, we compute

𝜆∫𝛺
𝛱𝑦
𝑘 (𝑀(𝜑)(𝜃 − 𝛼(𝜑)∇ ⋅ 𝒗))𝛼(𝜑)(∇ ⋅ 𝜕𝑡𝒗) ∗ 𝜙𝑑𝐱 ≤ 𝜆

4𝛿𝒗
‖𝛱𝑦

𝑘 (𝑀(𝜃 − 𝛼(𝜑)∇ ⋅ 𝒗))‖2
𝐿2 +

𝛿𝒗
3
‖𝜕𝑡𝒗‖2𝐻1

≤ 𝐶𝒗,2(‖𝜃‖2𝐿2 + ‖𝒗‖2𝑿 ) +
𝛿𝒗
3
‖𝜕𝑡𝒗‖2𝑿 ,

here we used (A9) and the stability estimate ‖𝛱𝑘
𝑦 (⋅)‖𝐿2 ≤ ‖ ⋅ ‖𝐿2 . Similarly, we further obtain

(

∫𝛺
𝑀(𝜑)(𝜃 − 𝛼(𝜑)∇ ⋅ 𝒗)𝛼(𝜑)∇ ⋅ 𝜕𝑡𝒗 𝑑𝐱

)

≤ 𝐶𝒗,3(‖𝜃‖2𝐿2 + ‖𝒗‖2𝑿 ) +
𝛿𝒗
3
‖𝜕𝑡𝒗‖2𝑿 .

We wish to point out that the constants 𝐶𝒗,1, 𝐶𝒗,2, 𝛿𝒗 in the inequalities above are independent of 𝜆. Hence, we can use the
computation from Section 5.2 to obtain

(𝑚 − 𝜌𝜇𝐶𝑝)∫

𝑡

0
‖∇𝜇‖2 𝑑𝑡 + (𝜅 − 𝜌𝑝𝐶𝑝)∫

𝑡

0
‖∇𝑝‖2 𝑑𝑡 + (𝐶𝜈 − 𝛿𝒗)∫

𝑡

0
‖𝜕𝑡𝒗‖2𝑿 𝑑𝑡

+ 𝜀
2
‖∇𝜑(𝑡)‖2

𝐿2 + 𝜚
1∕2

‖𝛥𝜑(𝑡)‖2
𝐿2 +

1
2𝜀

‖𝜓(𝜑(𝑡))‖𝐿1 + (
𝛾𝜓1 − 𝜌𝜓2

2𝜀
− 𝜌𝜑)‖𝜑(𝑡)‖

𝑝
𝐿𝑝

+ (𝐶𝒗 −
𝑀
2
(1 − 1

𝜌𝜃
)𝛼2)‖𝒗(𝑡)‖2𝑿 +

𝑀
2
(1 − 𝜌𝜃)‖𝜃(𝑡)‖2𝐿2 +

𝜚
2
‖∇𝜃(𝑡)‖2

𝐿2

≤𝐶 ∫

𝑡

0
‖𝜓(𝜑)‖𝐿1 + ‖𝜑‖2

𝐿2 + ‖𝒗‖2𝑿 + 1 𝑑𝑡 + ∫

𝑡

0
(𝐶𝒗,1 + 𝐶𝒗,2 + 𝐶𝒗,3)(‖𝜃‖2𝐿2 + ‖𝒗‖2𝑿 + 1) 𝑑𝑡

+𝐶(‖𝜑0,𝑘‖
2
𝐻1 + 𝜚

1∕2
‖𝛥𝜑0,𝑘‖

2
𝐿2 +

1
𝜀
‖𝜓(𝜑0,𝑘)‖𝐿1 + ‖𝒗0‖2𝑿 + ‖𝜃0,𝑘‖

2
𝐿2 + 𝜚‖∇𝜃𝑘,0‖

2
𝐿2 + 1).

s before, we can choose all parameters 𝜌𝜑, 𝜌𝜇 , 𝜌𝑝, 𝜌𝜃 , 𝜌𝜓2 and 𝛿𝒗 suitably, such that this simplifies to

‖𝜑(𝑡)‖2
𝐿2 + ‖𝜓(𝜑(𝑡))‖𝐿1 + ‖𝜃(𝑡)‖2

𝐿2 + ‖𝒗(𝑡)‖2𝑿 + ∫

𝑇

0
‖𝜕𝑡𝒗‖2𝐻1 𝑑𝑡 ≤ 𝐶 ∫

𝑡

0
‖𝜑‖2

𝐿2 + ‖𝜓(𝜑)‖𝐿1 + ‖𝜃‖2
𝐿2 + ‖𝒗‖2𝑿 𝑑𝑡 + 𝐶

with some constant 𝐶 > 0 independent of 𝜆 ∈ [0, 𝑇 ]. Hence, Gronwall’s lemma in particular yields the existence of some 𝑟 > 0 such
that

‖𝒗‖𝐻1(𝑿) ≤ 𝑟

independently of 𝜆. Thus, the Leray–Schauder principle (Theorem 13) is applicable and we deduce the existence of a fixed-point 𝒖,
as desired. □

5.4. A priori estimates and compactness results

The following is concerned with the derivation of a priori estimates and the extraction of (weakly) convergent subsequences
of the approximate solutions whose existence we showed in the section above. These results heavily rely on the estimates from
24

Section 5.2, the properties of the orthogonal projections 𝛱𝑘, as well as standard compactness theorems.
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Lemma 23. Suppose that (𝜑𝑘, 𝜇𝑘, 𝒖𝑘, 𝜃𝑘, 𝑝𝑘) is a solution to the system (9a)–(9g). Then there exists a constant 𝐶 > 0, independent of
𝑘 ∈ N, such that

‖𝜑𝑘‖𝐿∞(𝐻1) + ‖𝜚1∕4𝛥𝜑‖𝐿∞(𝐿2) + ‖𝜑𝑘‖𝐻1((𝐻1)′) + ‖𝜇𝑘‖𝐿2(𝐻1) + ‖𝜓(𝜑𝑘)‖𝐿∞(𝐿1) + ‖𝒖𝑘‖𝐻1(𝑿)

+ ‖𝜃𝑘‖𝐿∞(𝐿2) + ‖𝜚1∕2∇𝜃𝑘‖𝐿∞(𝐿2) + ‖𝜃𝑘‖𝐻1(𝑋′) + ‖𝑝𝑘‖𝐿2(𝑋) + ‖𝑝𝑘‖𝐿∞(𝐿2) ≤ 𝐶.

Proof. We use the same testing procedure as in Section 5.2 and Lemma 22, i.e., we test (9a) with 𝜇𝑘, (9b) with 𝜕𝑡𝜑𝑘, (9c) with 𝑝𝑘
and (9d) with 𝜕𝑡𝜃𝑘. Moreover, we test (9g) with 𝜕𝑡𝒖 and perform the same computation as before to arrive at

‖𝑚(𝜑)1∕2∇𝜇𝑘‖2𝐿2 + ‖𝜅(𝜑𝑘)1∕2∇𝑝𝑘‖2𝐿2 + ∫𝛺
C𝜈(𝜑𝑘)(𝜕𝑡𝒖𝑘) ∶ (𝜕𝑡𝒖𝑘) 𝑑𝐱

+ 𝑑
𝑑𝑡

[

∫𝛺
𝜀
2
|∇𝜑𝑘|

2 +
𝜚1∕2

2
|𝛥𝜑𝑘(𝑡)|

2 +
𝜚
2
|∇𝜃𝑘|

2 + 1
𝜀
𝜓(𝜑𝑘) 𝑑𝐱

+ ∫𝛺
𝑊 (𝜑𝑘, (𝒖𝑘)) − 𝒇 ⋅ 𝒖𝑘 𝑑𝐱 − ∫𝛤𝑁

𝒈 ⋅ 𝒖𝑘 𝑑𝑛−1 + ∫𝛺
𝑀(𝜑𝑘)

2
(𝜃𝑘 − 𝛼(𝜑𝑘)∇ ⋅ 𝒖𝑘)2 𝑑𝐱

]

=⟨𝑅(𝜑𝑘, (𝒖𝑘), 𝜃𝑘), 𝜇𝑘⟩ + ⟨𝑆𝑓 (𝜑𝑘, (𝒖𝑘), 𝜃𝑘), 𝑝𝑘⟩

+∫𝛺
𝛼(𝜑𝑘)𝑝𝑘(∇ ⋅ 𝜕𝑡𝒖𝑘) ∗ 𝜙−𝜚∇𝜃 ⋅ ∇(𝛼(𝜑)(∇ ⋅ 𝜕𝑡𝒗) ∗ 𝜙) −𝑀(𝜑𝑘)(𝜃𝑘 − 𝛼(𝜑𝑘)∇ ⋅ 𝒖𝑘)𝛼(𝜑𝑘)∇ ⋅ 𝜕𝑡𝒖𝑘 𝑑𝐱.

Similar estimates as in Section 5.2 now lead to

(𝑚 − 𝜌𝜇𝐶𝑝)∫

𝑡

0
‖∇𝜇𝑘‖2 𝑑𝑡 + (𝜅 − 𝜌𝑝𝐶𝑝)∫

𝑡

0
‖∇𝑝𝑘‖2 𝑑𝑡 + (𝐶𝜈 − 𝛿𝜕𝑡𝒖)∫

𝑡

0
‖𝜕𝑡𝒖𝑘‖2𝑿 𝑑𝑡

+ 𝜀
2
‖∇𝜑𝑘(𝑡)‖2𝐿2 +

𝜚1∕2

2
‖𝛥𝜑𝑘(𝑡)‖2𝐿2 +

1
2𝜀

‖𝜓(𝜑𝑘(𝑡))‖𝐿1 + (
𝛾𝜓1 − 𝜌𝜓2

2𝜀
− 𝜌𝜑)‖𝜑𝑘(𝑡)‖

𝑝
𝐿𝑝

+ (𝐶𝒖 −
𝑀
2
(1 − 1

𝜌𝜃
)𝛼2)‖𝒖𝑘(𝑡)‖2𝑿 +

𝑀
2
(1 − 𝜌𝜃)‖𝜃(𝑡)‖2𝐿2 +

𝜚
2
‖∇𝜃𝑘(𝑡)‖2𝐿2

≤ 𝐶 ∫

𝑡

0
‖𝜓(𝜑𝑘)‖𝐿1 + ‖𝜑𝑘‖

2
𝐿2 + ‖𝜃𝑘‖

2
𝐿2 + ‖𝒖𝑘‖2𝐻1 + 1 𝑑𝑡

+ 𝐶
(

‖𝜑0,𝑘‖
2
𝐻1 + 𝜚‖𝛥𝜑0,𝑘‖

2
𝐿2 +

1
𝜀
‖𝜓(𝜑0,𝑘)‖𝐿1 + ‖𝒖0‖2𝑿 + ‖𝜃0,𝑘‖

2
𝐿2 + 𝜚‖∇𝜃0,𝑘‖

2
𝐿2 + 1

)

. (37)

We recall that the eigenfunctions {𝑧𝑖}, {𝑦𝑖} form an orthogonal basis of 𝐿2(𝛺) and that the projections satisfy

‖𝜑0,𝑘‖
2
𝐿2 = ‖𝛱𝑧

𝑘𝜑0‖
2
𝐿2 ≤ ‖𝜑0‖

2
𝐿2

nd

‖𝜃0,𝑘‖
2
𝐿2 = ‖𝛱𝑦

𝑘𝜃0‖
2
𝐿2 ≤ ‖𝜃0‖

2
𝐿2 .

oreover, due to orthogonality, it holds that ‖𝜑0,𝑘‖𝐻1 ≤ 𝐶‖∇𝜑0‖𝐻1 . Since by assumption we have 𝜑0 ∈ 𝐻2
𝒏 (𝛺), it follows from [53,

3] that

𝛱𝑧
𝑘𝜑0 → 𝜑0 in 𝐻2

𝒏 (𝛺).

he embedding 𝐻2
𝒏 (𝛺) ↪ 𝐿∞(𝛺) and the properties of our basis imply, cf. [16, Sec. 3.2], [53, §3],

‖𝛥𝜑0,𝑘‖
2
𝐿2 = ‖𝛥𝛱𝑧

𝑘𝜑0‖
2
𝐿2 = ‖𝛱𝑧

𝑘𝛥𝜑0‖
2
𝐿2 ≤ 𝐶‖𝛥𝜑0‖

2
𝐿2 ,

‖𝜑0,𝑘‖𝐿∞ ≤ 𝐶‖𝛱𝑧
𝑘𝜑0‖𝐻2 ≤ 𝐶‖𝜑0‖𝐻2 ,

nd due to the continuity of 𝜓 , we assert ‖𝜓(𝜑0,𝑘)‖𝐿∞ ≤ 𝐶 for a constant 𝐶 > 0 independent of 𝑘. Now, the strong convergence of
𝜑0,𝑘 in 𝐻2

𝒏 (𝛺) implies uniform convergence of 𝜓(𝜑0,𝑘) to 𝜓(𝜑0) and we conclude with the help of Lebesgue’s theorem that

𝜓(𝜑0,𝑘) → 𝜓(𝜑0) in 𝐿1(𝛺).

Finally, note that with the help of spectral theory and due to the choice of our basis {𝑦𝑖}, we can deduce ‖𝛱𝑦
𝑘𝜁‖𝑋 ≤ 𝐶‖𝜁‖𝑋 for all

𝜁 ∈ 𝑋(𝛺), 𝑘 ∈ N, which entails

‖𝜃0,𝑘‖𝑋 = ‖𝛱𝑦
𝑘𝜃0‖𝑋 ≤ 𝐶‖𝜃0‖𝑋 .

Hence, without loss of generality, it holds

‖𝜑𝑘(𝑡)‖2𝐻1 + ‖𝜚1∕4𝛥𝜑𝑘(𝑡)‖2𝐿2 + ‖𝜓(𝜑𝑘(𝑡))‖𝐿1 + ‖𝜃𝑘(𝑡)‖2𝐿2 + ‖𝜚1∕2∇𝜃𝑘(𝑡)‖2𝐿2 + ‖𝒖𝑘(𝑡)‖2𝑿

+ ∫

𝑡

0
‖∇𝜇𝑘‖2𝐿2 𝑑𝑡 + ∫

𝑡

0
‖∇𝑝𝑘‖2𝐿2 𝑑𝑡 + ∫

𝑡

0
‖𝜕𝑡𝒖𝑘‖2𝑿 𝑑𝑡

≤ 𝐶 ∫

𝑡

0
‖𝜑𝑘‖

2
𝐿2 + ‖𝜓(𝜑𝑘)‖𝐿1 + ‖𝜃𝑘‖

2
𝐿2 + ‖𝒖𝑘‖2𝑿 + 1 𝑑𝑡

+𝐶
(

‖𝜑 ‖

2 + 𝜚1∕2‖𝛥𝜑 ‖

2 + 1
‖𝜓(𝜑 )‖ 1 + ‖𝒖 ‖

2 + ‖𝜃 ‖

2 + 𝜚‖𝜃 ‖

2 + 1
)

25

0 𝐻1 0 𝐿2 𝜀 0 𝐿 0 𝑿 0 𝐿2 0 𝑋
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and Gronwall’s lemma yields for almost all 𝑡 ∈ (0, 𝑇 )

‖𝜑𝑘(𝑡)‖2𝐻1 + ‖𝜚1∕4𝛥𝜑𝑘(𝑡)‖2𝐿2 + ‖𝜓(𝜑𝑘)(𝑡)‖𝐿1 + ‖𝒖(𝑡)‖2
𝑯1 + ‖𝜃𝑘(𝑡)‖2𝐿2 + ‖𝜚1∕2∇𝜃𝑘(𝑡)‖2𝐿2

+ ‖∇𝜇𝑘‖2𝐿2(𝐿2)
+ ‖∇𝑝𝑘‖2𝐿2(𝐿2)

+ ‖𝜕𝑡𝒖𝑘‖2𝐿2(𝑿)

≤ 𝐶
(

‖𝜑0‖
2
𝐻1 + 𝜚

1∕2
‖𝛥𝜑0‖

2
𝐿2 +

1
𝜀
‖𝜓(𝜑0)‖𝐿1 + ‖𝒖0‖2𝑿 + ‖𝜃0‖

2
𝐿2 + 𝜚‖𝜃0‖

2
𝑋 + 1

)

. (38)

With the help of the Poincaré inequality, we can deduce

‖𝑝𝑘‖
2
𝐿2(𝑋)

≤ 𝐶(‖𝜑0‖
2
𝐻1 + 𝜚

1∕2
‖𝛥𝜑0‖

2
𝐿2 +

1
𝜀
‖𝜓(𝜑0)‖𝐿1 + ‖𝒖0‖2𝑿 + 𝜚‖𝜃0‖2𝑋 + 1). (39)

Similarly to (12), it follows that

|

|

|

−
∫ 𝜇𝑘

|

|

|

≤ 𝐶
(

‖𝜓(𝜑𝑘)‖𝐿1 + ‖𝜑𝑘‖
2
𝐿2 + ‖𝜃𝑘‖

2
𝐿2 + ‖𝒖𝑘‖2𝑿 + 1

)

and with the help of the Poincaré–Wirtinger inequality, we get

‖𝜇𝑘‖
2
𝐿2(𝐿2)

≤ 𝐶(‖‖
‖

𝜇𝑘 − −
∫ 𝜇𝑘

‖

‖

‖

2

𝐿2(𝐿2)
+ ‖

‖

‖

−
∫ 𝜇𝑘

‖

‖

‖

2

𝐿2(𝐿2)
) ≤ 𝐶(‖∇𝜇𝑘‖2𝐿2(𝐿2)

+ ‖

‖

‖

−
∫ 𝜇𝑘

‖

‖

‖

2

𝐿2(𝐿2)
).

Using the 𝐿∞-estimates in (38), we infer

‖
−
∫ 𝜇𝑘‖

2
𝐿2(𝐿2)

≤ ∫

𝑇

0

(

𝐶(‖𝜓(𝜑𝑘)(𝑡)‖𝐿1 + ‖𝜑𝑘(𝑡)‖2𝐿2 + ‖𝜃𝑘‖
2
𝐿2 + ‖𝒖𝑘(𝑡)‖2𝑿 + 1)

)2
𝑑𝑡

≤ ∫

𝑇

0
𝐶
(

‖𝜑0‖
4
𝐻1 + 𝜚‖𝛥𝜑0‖

4
𝐿2 +

1
𝜀
‖𝜓(𝜑0)‖2𝐿1 + ‖𝒖0‖2𝑿 + ‖𝜃0‖

4
𝐿2 + 𝜚

2
‖𝜃0‖

4
𝑋 + 1

)

𝑑𝑡

≤ 𝐶
(

‖𝜑0‖
4
𝐻1 + 𝜚‖𝛥𝜑0‖

4
𝐿2 +

1
𝜀
‖𝜓(𝜑0)‖2𝐿1 + ‖𝜃0‖

4
𝐿2 + ‖𝒖0‖2𝑿 + 𝜚2‖𝜃0‖4𝑋 + 1

)

nd hence

‖𝜇𝑘‖
2
𝐿2(𝐻1)

≤ 𝐶(‖𝜑0‖
4
𝐻1 + 𝜚‖𝛥𝜑0‖

4
𝐿2 +

1
𝜀2

‖𝜓(𝜑0)‖2𝐿1 + ‖𝜃0‖
4
𝐿2 + 𝜚

2
‖𝜃0‖

4
𝑋 + ‖𝒖0‖2𝑿 + 1). (40)

Finally, it remains to find estimates for the time derivatives 𝜕𝑡𝜑𝑘 and 𝜕𝑡𝜃𝑘. Since {𝑧𝑖} is an orthogonal system in 𝐿2(𝛺), we derive
rom (9a) that for all 𝜁 ∈ 𝐻1(𝛺)

⟨𝜕𝑡𝜑𝑘, 𝜁⟩ = ⟨𝜕𝑡𝜑𝑘,𝛱
𝑧
𝑘𝜁⟩ = −⟨𝑚(𝜑𝑘)∇𝜇𝑘,∇𝛱𝑧

𝑘𝜁⟩ + ⟨𝑅(𝜑𝑘, (𝒖𝑘), 𝜃𝑘),𝛱𝑧
𝑘𝜁⟩

and exploiting (A7) along with ‖𝛱𝑧
𝑘𝜁‖𝐻1 ≤ 𝐶‖𝜁‖𝐻1 for all 𝜁 ∈ 𝐻1(𝛺), we find

‖𝜕𝑡𝜑𝑘‖(𝐻1)′ ≤ 𝑚‖𝜇𝑘‖𝐻1 + 𝐶. (41)

Recalling the orthogonality of {𝑦𝑖} in 𝐿2(𝛺), the identity (9c) leads to

⟨𝜕𝑡𝜃𝑘, 𝜁⟩ = ⟨𝜕𝑡𝜃𝑘,𝛱
𝑦
𝑘𝜁⟩ = −⟨𝜅(𝜑𝑘)∇𝑝𝑘,𝛱

𝑦
𝑘𝜁⟩ + ⟨𝑆𝑓 (𝜑𝑘, (𝒖𝑘), 𝜃𝑘),𝛱

𝑦
𝑘𝜁⟩

for all 𝜁 ∈ 𝑋(𝛺). With the help of spectral theory and due to the choice of our basis {𝑦𝑖}, we deduce ‖𝛱𝑦
𝑘𝜁‖𝑋 ≤ 𝐶‖𝜁‖𝑋 for all

𝜁 ∈ 𝑋(𝛺), 𝑘 ∈ N and therefore

‖𝜕𝑡𝜃𝑘‖𝑋′ ≤ 𝐶(𝜅‖𝑝𝑘‖𝑋 + ‖𝜑𝑘‖𝐿2 + ‖𝜃𝑘‖𝐿2 + ‖𝒖‖𝑿 + 1). (42)

ogether with the estimates from above, we arrive at

‖𝜑𝑘‖𝐻1((𝐻1)′) + ‖𝜃𝑘‖𝐻1(𝑋′) ≤ 𝐶. □

emma 24. The volumetric fluid content satisfies the regularity 𝜃𝑘 ∈ 𝐿2(0, 𝑇 ;𝐻1+𝛾
𝛤𝐷

(𝛺)) with

‖𝜃𝑘‖𝐿2(𝐻1+𝛾
𝛤𝐷

) ≤ 𝐶

for some 𝐶(𝜚) > 0, 𝛾 > 0 independent of 𝑘 ∈ N.

Proof. Elliptic regularity theory, cf. [48, Thm. 1, Cor. 1], tells us that there exists some 𝛾 > 0 such that the operator

−𝜚𝛥 ∶ 𝐻1+𝛾
𝛤𝐷

(𝛺) → 𝐻𝛾−1
𝛤𝐷

(𝛺), 𝑣↦
(

𝑤↦ ∫𝛺
𝜚∇𝑣 ⋅ ∇𝑤𝑑𝐱

)

is a topological isomorphism between 𝐻1+𝛾
𝛤𝐷

(𝛺) and 𝐻𝛾−1
𝛤𝐷

(𝛺). Since 𝐿2(𝛺) ↪ 𝐻𝛾−1
𝛤𝐷

(𝛺), cf. [48, Rem. 2], this entails that for any
𝑓 ∈ 𝐿2(𝛺) the weak solution 𝑣 to the mixed boundary-value problem with variational formulation

𝜚∇𝑣 ⋅ ∇𝑤𝑑𝐱 = 𝑓𝑤𝑑𝐱 for all 𝑤 ∈ 𝐻1−𝛾 (𝛺)
26

∫𝛺 ∫𝛺 𝛤𝐷
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is in the space 𝐻1+𝛾
𝛤𝐷

(𝛺) and that there exists some 𝐶 > 0 independent of 𝑓 ∈ 𝐿2(𝛺) such that

‖𝑣‖𝐻1+𝛾
𝛤𝐷

≤ 𝐶‖𝑓‖𝐿2 . (43)

For 𝜃∗𝑘 = (−𝜚𝛥)−1
(

𝑝𝑘 −𝛱
𝑦
𝑘 (𝑀(𝜑𝑘)(𝜃𝑘 − 𝛼(𝜑𝑘)∇ ⋅ 𝒖𝑘))

)

it therefore holds that

∫𝛺
𝜚∇𝑣 ⋅ ∇𝑤𝑑𝐱 = ∫𝛺

𝑝𝑘𝑤 −𝛱𝑦
𝑘 (𝑀(𝜑𝑘)(𝜃𝑘 − 𝛼(𝜑𝑘)∇ ⋅ 𝒖𝑘))𝑤𝑑𝐱 for all 𝑤 ∈ 𝐻1−𝛾

𝛤𝐷
(𝛺)

and since 𝑋(𝛺) ⊂ 𝐻1−𝛾
𝛤𝐷

(𝛺), (10) implies that 𝜃𝑘 and 𝜃∗𝑘 both solve the mixed boundary value problem

⎧

⎪

⎨

⎪

⎩

−𝜚𝛥𝑣 = 𝑝𝑘 −𝛱
𝑦
𝑘 (𝑀(𝜑𝑘)(𝜃𝑘 − 𝛼(𝜑𝑘)∇ ⋅ 𝒖𝑘)) in 𝛺,

𝑣 = 0 on 𝛤𝐷,
∇𝑣 ⋅ 𝒏 = 0 on 𝛤𝑁 .

As the solution is unique, we have 𝜃𝑘 = 𝜃∗𝐾 and (43) along with Lemma 23 yields

‖𝜃𝑘‖
2
𝐿2(𝐻1+𝛾

𝛤𝐷
)
≤ 𝐶‖𝑝𝑘 −𝛱

𝑦
𝑘 (𝑀(𝜑𝑘)(𝜃𝑘 − 𝛼(𝜑𝑘)∇ ⋅ 𝒖𝑘))‖2𝐿2(𝐿2)

≤ 𝐶
(

‖𝑝𝑘‖
2
𝐿2(𝐿2)

+ ‖𝜃𝑘‖
2
𝐿2(𝐿2)

+ ‖𝒖‖2
𝐿2(𝑿)

)

≤ 𝐶. □

Moreover, elliptic regularity theory yields the existence of some 𝐶 > 0 such that

‖𝜑𝑘‖𝐻2 ≤ 𝐶(‖𝛥𝜑𝑘‖𝐿2 + ‖𝜑𝑘‖𝐻1 )

and together with Lemma 23, we find

‖𝜑𝑘‖𝐿∞(𝐻2) ≤ 𝐶(‖𝛥𝜑𝑘‖𝐿∞(𝐿2) + ‖𝜑𝑘‖𝐿∞(𝐻1)) ≤ 𝐶(𝜚). (44)

With these estimates, we can invoke the Aubin–Lions–Simon theorem to obtain

𝜑𝑘 → 𝜑 in 𝐶0([0, 𝑇 ];𝑊 1,𝑟(𝛺)), (45)

𝜃𝑘 → 𝜃 in 𝐶0([0, 𝑇 ];𝐿𝑟(𝛺)) ∩ 𝐿2(0, 𝑇 ;𝑋(𝛺)), (46)

where 𝑟 <∞ arbitrarily if 𝑛 ≤ 2 and 𝑟 < 6 if 𝑛 = 3. By passing to an appropriate subsequence, we can also assume that 𝜑𝑘 converges
to 𝜑 pointwise almost everywhere. Hence, we can deduce the existence of functions (𝜑, 𝜇, 𝜃, 𝑝) such that, along a not relabeled
subsequence,

𝜑𝑘 ⇀ 𝜑 in 𝐿2(0, 𝑇 ;𝐻2(𝛺)) ∩𝐻1(0, 𝑇 ;𝐻1(𝛺)′),

𝜇𝑘 ⇀ 𝜇 in 𝐿2(0, 𝑇 ;𝐻1(𝛺)),

𝒖𝑘 ⇀ 𝒖 in 𝐻1(0, 𝑇 ;𝑯1
𝛤𝐷

(𝛺)),

𝜃𝑘 ⇀ 𝜃 in 𝐿2(0, 𝑇 ;𝑋(𝛺)) ∩𝐻1(0, 𝑇 ;𝑋′(𝛺)),

𝑝𝑘 ⇀ 𝑝 in 𝐿2(0, 𝑇 ;𝑋(𝛺)).

(47)

Pointwise convergence of 𝜑𝑘 almost everywhere along with the continuity of 𝜓 ′ further implies

𝜓 ′(𝜑𝑘) → 𝜓 ′(𝜑) pointwise a.e. in 𝛺𝑇 .

o prove convergence for this term in 𝐿1(𝛺𝑇 ), we use the decomposition 𝜓 = 𝜓1 +𝜓2 from (A2) and treat the two cases separately.
irst of all, we note that due to (A2.2), the family {𝜓 ′

1(𝜑𝑘)} is uniformly integrable over 𝛺𝑇 . Indeed, due to Lemma 23, it holds for
ll subsets 𝐸 ⊂ 𝛺𝑇 that

∫𝐸
|𝜓 ′

1(𝜑𝑘)| 𝑑(𝑡,𝒙) ≤ 𝜌𝜓1 ∫𝐸
|𝜓1(𝜑𝑘)| 𝑑(𝑡,𝒙) + 𝐶𝜌𝜓1 |𝐸| ≤ 𝜌𝜓1 ∫𝛺𝑇

|𝜓1(𝜑𝑘)| 𝑑(𝑡,𝒙) + 𝐶𝜌𝜓1 |𝐸| ≤ 𝜌𝜓1𝐶 + 𝐶𝜌𝜓1 |𝐸|,

hich converges to 𝜌𝜓1𝐶 uniformly in 𝑘 ∈ N as |𝐸| → 0. Since 𝜌𝜓1 can be chosen arbitrarily small and the constant 𝐶 does not
epend on 𝑘 ∈ N or the set 𝐸 ⊂ 𝛺𝑇 , we obtain uniform integrability. After applying Vitali’s convergence theorem, we find

𝜓 ′
1(𝜑𝑘) → 𝜓 ′

1(𝜑) in 𝐿1(𝛺𝑇 ).

oreover, the growth (A2.3), the pointwise convergence and Lebesgue’s generalized convergence theorem, cf. [55, Sec. 3.25], yield
′
2(𝜑𝑘) → 𝜓 ′

2(𝜑) in 𝐿2(𝛺𝑇 ) so that we can conclude

𝜓 ′(𝜑𝑘) → 𝜓 ′(𝜑) in 𝐿1(𝛺𝑇 ). (48)

5.5. Additional compactness results

Taking advantage of (4e), we can show a uniform estimate for the differences 𝜏ℎ𝑝𝑘 − 𝑝𝑘 such that an application of a version of
2 2
27

the Aubin–Lions–Simon theorem yields strong convergence in the space 𝐿 (0, 𝑇 ;𝐿 (𝛺)).
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Testing (4c) with both 𝒖𝑘 − 𝒖 and the time derivatives 𝜕𝑡𝒖𝑘 − 𝜕𝑡𝒖 further yields an estimate for the difference ‖𝒖𝑘(𝑡) − 𝒖(𝑡)‖𝑿
uch that an application of Gronwall’s lemma allows us to derive pointwise a.e. convergence in 𝑿. Here, we crucially rely on the
trong convergence of 𝑝𝑘, which was shown before. Finally, an 𝐿𝑝-𝐿𝑞 compactness property delivers the strong convergence of 𝒖𝑘
n 𝐿2(0, 𝑇 ;𝑿).

emma 25. There exists some subsequence of 𝑘 → ∞ such that, along this not relabeled subsequence,

𝑝𝑘 → 𝑝 in 𝐿2(0, 𝑇 ;𝐿2(𝛺)).

roof. Due to the a priori estimates we already know a uniform bound for all 𝑝𝑘, 𝑘 ∈ N in 𝐿2(0, 𝑇 ;𝐻1(𝛺)). For any suitable function
, let 𝜏ℎ𝑓 (𝑡) ∶= 𝑓 (𝑡+ℎ) and define 𝑊 3,2

0 (𝛺) ∶= 𝐶∞
𝑐 (𝛺)

‖⋅‖𝑊 3,2 , with 𝑊 −3,2(𝛺) denoting the dual space (𝑊 3,2
0 (𝛺))′. If we can show that

‖𝜏ℎ𝑝𝑘 − 𝑝𝑘‖𝐿1(0,𝑇−ℎ;𝑊 −3,2(𝛺)) 𝑑𝑡→ 0 as ℎ → 0 uniformly in 𝑘,

or some subsequence of 𝑘→ ∞, then [56, Thm. 5] already yields the assertion, since

𝑋(𝛺)
𝑐𝑝𝑡
←←←←←←←←←←→ 𝐿2(𝛺)

𝑐
←←←←→ 𝑊 −3,2

0 (𝛺).

Recalling the isomorphism 𝐿1(0, 𝑇 − ℎ;𝑊 −3,2(𝛺)) ≅ (𝐿∞(0, 𝑇 − ℎ;𝑊 3,2
0 (𝛺)))′, it suffices to show that

sup
‖𝜉‖

𝐿∞(0,𝑇−ℎ;𝑊 3,2
0 (𝛺))

=1

|

|

|

|

|

∫𝛺𝑇−ℎ
(𝜏ℎ𝑝𝑘 − 𝑝𝑘)𝜉 𝑑(𝑡,𝒙)

|

|

|

|

|

→ 0 as ℎ → 0 uniformly in 𝑘.

ith the help of (10) and the boundary conditions in the space 𝑊 3,2
0 (𝛺), we obtain

∫𝛺𝑇−ℎ
𝑝𝜉 𝑑(𝑡,𝒙) = ∫𝛺𝑇−ℎ

𝜚∇𝜃 ⋅ ∇𝜉 +𝑀(𝜑𝑘)(𝜃𝑘 − 𝛼(𝜑𝑘)∇ ⋅ 𝒖𝑘)𝛱
𝑦
𝑘𝜉 𝑑(𝑡,𝒙) = ∫𝛺𝑇−ℎ

−𝜚𝜃 𝛥𝜉 +𝑀(𝜑𝑘)(𝜃𝑘 − 𝛼(𝜑𝑘)∇ ⋅ 𝒖𝑘)𝛱
𝑦
𝑘𝜉 𝑑(𝑡,𝒙)

for all 𝜉 ∈ 𝐿∞(0, 𝑇 − ℎ;𝑊 3,2
0 (𝛺)). Setting 𝛥ℎ𝑓 ∶= 𝜏ℎ𝑓 − 𝑓 , it follows that

∫𝛺𝑇−ℎ
𝛥ℎ𝑝𝑘 𝜉 𝑑(𝑡,𝒙) = ∫𝛺𝑇−ℎ

−𝜚𝛥ℎ𝜃𝑘 𝛥𝜉 𝑑(𝑡,𝒙) + ∫𝛺𝑇−ℎ
𝜏ℎ𝑀(𝜑𝑘)𝛥ℎ𝜃𝑘𝛱

𝑦
𝑘𝜉 𝑑(𝑡,𝒙) + ∫𝛺𝑇−ℎ

𝜃𝑘𝛥ℎ𝑀(𝜑𝑘)𝛱
𝑦
𝑘𝜉 𝑑(𝑡,𝒙)

+ ∫𝛺𝑇−ℎ
𝜏ℎ(𝑀(𝜑𝑘)𝛼(𝜑𝑘))𝛥ℎ(∇ ⋅ 𝒖𝑘)𝛱

𝑦
𝑘𝜉 𝑑(𝑡,𝒙) + ∫𝛺𝑇−ℎ

∇ ⋅ 𝒖𝑘𝛥ℎ(𝑀(𝜑𝑘)𝛼(𝜑𝑘))𝛱
𝑦
𝑘𝜉 𝑑(𝑡,𝒙)

=∶ 𝐼 + 𝐼𝐼 + 𝐼𝐼𝐼 + 𝐼𝑉 + 𝑉 ,

hich we need to treat separately.
d (𝐼𝑉 ): Due to the well-known stability property ‖𝛱𝑦

𝑘 (⋅)‖𝐿2 ≤ ‖⋅‖𝐿2 of the projection operator and since 𝑀,𝛼 are bounded functions,
e find

|

|

|

|

|

∫𝛺𝑇−ℎ
𝜏ℎ(𝑀(𝜑𝑘)𝛼(𝜑𝑘))𝛥ℎ(∇ ⋅ 𝒖𝑘)𝛱

𝑦
𝑘𝜉 𝑑(𝑡,𝒙)

|

|

|

|

|

≤ ‖𝜏ℎ(𝑀(𝜑𝑘)𝛼(𝜑𝑘))𝛥ℎ(∇ ⋅ 𝒖𝑘)‖𝐿1(0,𝑇−ℎ;𝐿2)‖𝛱
𝑦
𝑘𝜉‖𝐿∞(0,𝑇−ℎ;𝐿2)

≤ ‖𝛥ℎ(∇ ⋅ 𝒖𝑘)‖𝐿1(0,𝑇−ℎ;𝐿2)‖𝜉‖𝐿∞(0,𝑇−ℎ;𝑊 3,2
0 ). (49)

Ad (𝐼𝐼𝐼)&(𝑉 ): Recalling the continuous embedding 𝑋(𝛺) ↪ 𝐿6(𝛺), we deduce with the help of Hölder’s inequality and a duality
argument that 𝐿6∕5(𝛺) ↪ 𝑋′(𝛺). As mentioned before, {𝑦𝑖} is a basis of 𝑋(𝛺) satisfying the stability property ‖𝛱𝑦

𝑘 (⋅)‖𝑋 ≤ 𝐶‖ ⋅ ‖𝑋

and 𝑊 3,2
0 (𝛺)

𝑐
←←←←→ 𝑋(𝛺). Thus, it holds that

|

|

|

|

|

∫𝛺𝑇−ℎ
𝜃𝑘𝛥ℎ𝑀(𝜑𝑘)𝛱

𝑦
𝑘𝜉 𝑑(𝑡,𝒙)

|

|

|

|

|

≤ ‖𝜃𝑘𝛥ℎ𝑀(𝜑𝑘)‖𝐿1(0,𝑇−ℎ;𝑋′)‖𝛱
𝑘
𝑦 𝜉‖𝐿∞(0,𝑇−ℎ;𝑋) ≤ 𝐶‖𝜃𝑘𝛥ℎ𝑀(𝜑𝑘)‖𝐿1(0,𝑇−ℎ;𝐿6∕5) ‖𝜉‖𝐿∞(0,𝑇−ℎ;𝑋)

≤ 𝐶‖𝜃𝑘‖𝐿∞(0,𝑇−ℎ;𝐿2) ‖𝛥ℎ𝑀(𝜑𝑘)‖𝐿1(0,𝑇−ℎ;𝐿3) ‖𝜉‖𝐿∞(0,𝑇−ℎ;𝑊 3,2
0 ). (50)

Similarly, we find for (𝑉 )
|

|

|

|

|

∫𝛺𝑇−ℎ
∇ ⋅ 𝒖𝑘𝛥ℎ(𝑀(𝜑𝑘)𝛼(𝜑𝑘))𝛱

𝑦
𝑘𝜉 𝑑(𝑡,𝒙)

|

|

|

|

|

≤ ‖∇ ⋅ 𝒖𝑘𝛥ℎ(𝑀(𝜑𝑘)𝛼(𝜑𝑘))‖𝐿1(0,𝑇−ℎ;𝑋′)‖𝛱
𝑘
𝑦 𝜉‖𝐿∞(0,𝑇−ℎ;𝑋)

≤ 𝐶‖∇ ⋅ 𝒖𝑘𝛥ℎ(𝑀(𝜑𝑘)𝛼(𝜑𝑘))‖𝐿1(0,𝑇−ℎ;𝐿6∕5) ‖𝜉‖𝐿∞(0,𝑇−ℎ;𝑋)

≤ 𝐶‖∇ ⋅ 𝒖𝑘‖𝐿∞(0,𝑇−ℎ;𝐿2) ‖𝛥ℎ(𝑀(𝜑𝑘)𝛼(𝜑𝑘))‖𝐿1(0,𝑇−ℎ;𝐿3) ‖𝜉‖𝐿∞(0,𝑇−ℎ;𝑊 3,2
0 ). (51)

Ad (𝐼𝐼): Due to the uniform bound on 𝜑𝑘 in 𝐿∞(0, 𝑇 ;𝐻2
𝒏 (𝛺)), see (44), and the continuous embedding 𝐻2(𝛺) ↪ 𝑊 1,6(𝛺), we deduce

‖𝜏ℎ𝑀(𝜑𝑘)𝛱
𝑦
𝑘𝜉‖𝑋 ≤ ‖𝜏ℎ𝑀(𝜑𝑘)𝛱

𝑦
𝑘𝜉‖𝐿2 + ‖𝜏ℎ(𝑀 ′(𝜑𝑘)∇𝜑𝑘)𝛱

𝑦
𝑘𝜉‖𝑳2 + ‖𝜏ℎ𝑀(𝜑𝑘)∇𝛱

𝑦
𝑘𝜉‖𝑳2

≤𝑀‖𝜉‖𝑳2 +𝑀‖𝜏ℎ∇𝜑𝑘‖𝑳4‖𝛱𝑦
𝑘𝜉‖𝐿4 +𝑀‖𝛱𝑦

𝑘𝜉‖𝑋 ≤𝑀‖𝜉‖𝐿2 +𝑀‖𝜏ℎ𝜑𝑘‖𝐻2
𝒏
‖𝜉‖𝑋 + 𝐶𝑀‖𝜉‖𝑋 ≤ 𝐶‖𝜉‖𝑊 3,2

0

28
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for all 𝜉 ∈ 𝑊 3,2
0 (𝛺). Exploiting this estimate, we infer

|

|

|

|

|

∫𝛺𝑇−ℎ
𝜏ℎ𝑀(𝜑𝑘)𝛥ℎ𝜃𝑘𝛱

𝑦
𝑘𝜉 𝑑(𝑡,𝒙)

|

|

|

|

|

≤ ‖𝛥ℎ𝜃𝑘‖𝐿1(0,𝑇−ℎ;𝑋′)‖𝜏ℎ𝑀(𝜑𝑘)𝛱
𝑦
𝑘𝜉‖𝐿∞(0,𝑇−ℎ;𝑋) ≤ 𝐶‖𝛥ℎ𝜃𝑘‖𝐿1(0,𝑇−ℎ;𝑋′)‖𝜉‖𝐿∞(0,𝑇−ℎ;𝑊 3,2

0 ). (52)

Ad (𝐼): Since 𝛥𝜉 ∈ 𝑋(𝛺) for all 𝜉 ∈ 𝑊 2,3
0 (𝛺), it holds

|

|

|

|

|

∫𝛺𝑇−ℎ
−𝜚𝛥ℎ𝜃𝑘 𝛥𝜉 𝑑(𝑡,𝒙)

|

|

|

|

|

≤ 𝜚‖𝛥ℎ𝜃𝑘‖𝐿1(0,𝑇−ℎ;𝑋′)‖𝛥𝜉‖𝐿∞(0,𝑇−ℎ;𝑋) ≤ 𝐶‖𝛥ℎ𝜃𝑘‖𝐿1(0,𝑇−ℎ;𝑋′)‖𝜉‖𝐿∞(0,𝑇−ℎ;𝑊 3,2
0 ). (53)

ere, we want to emphasize that this estimate is independent of all 𝜚 < 1.
Along with (49), (50), (51), (52) and the Lipschitz continuity of 𝛼 and 𝑀 , see (A9), as well as the uniform bounds on 𝒖𝑘 in

𝐿∞(0, 𝑇 ;𝐻1
𝛤𝐷

(𝛺)) and 𝜃𝑘 in 𝐿∞(0, 𝑇 ;𝐿2(𝛺)), we conclude

‖𝜏ℎ𝑝𝑘 − 𝑝𝑘‖𝐿1(0,𝑇−ℎ;𝑊 −3,2
00 (𝛺)) = sup

𝜉∈𝐿∞(0,𝑇−ℎ;𝑊 3,2
0 (𝛺))

‖𝜉‖=1

|

|

|

|

|

∫𝛺𝑇−ℎ
(𝜏ℎ𝑝𝑘 − 𝑝𝑘)𝜉 𝑑(𝑡,𝒙)

|

|

|

|

|

≤ sup
𝜉∈𝐿∞(0,𝑇−ℎ;𝑊 3,2

0 (𝛺))
‖𝜉‖=1

𝐶
(

‖𝛥ℎ𝜃𝑘‖𝐿1(0,𝑇−ℎ;𝑋′) + ‖𝛥ℎ𝑀(𝜑𝑘)‖𝐿1(0,𝑇−ℎ;𝐿3) + ‖𝛥ℎ(∇ ⋅ 𝒖𝑘)‖𝐿1(0,𝑇−ℎ;𝐿2)

+ ‖𝛥ℎ(𝑀(𝜑𝑘)𝛼(𝜑𝑘))‖𝐿1(0,𝑇−ℎ;𝐿3)

)

‖𝜉‖𝐿∞(0,𝑇−ℎ;𝑊 3,2
0 )

≤ 𝐶
(

‖𝛥ℎ𝜃𝑘‖𝐿1(0,𝑇−ℎ;𝑋′) + ‖𝛥ℎ(∇ ⋅ 𝒖𝑘)‖𝐿1(0,𝑇−ℎ;𝐿2) + ‖𝛥ℎ𝜑𝑘‖𝐿1(0,𝑇−ℎ;𝐿3)

)

ecalling the estimates

‖𝛥ℎ𝜃𝑘‖𝐿1(0,𝑇−ℎ;𝑋′) = ‖𝜏ℎ𝜃𝑘 − 𝜃𝑘‖𝐿1(0,𝑇−ℎ;𝑋′) ≤ ℎ𝐶‖𝜃𝑘‖𝐻1(0,𝑇 ;𝑋′),

‖𝛥ℎ(∇ ⋅ 𝒖𝑘)‖𝐿1(0,𝑇−ℎ;𝐿2) = ‖∇ ⋅ 𝜏ℎ𝒖𝑘 − ∇ ⋅ 𝒖𝑘‖𝐿1(0,𝑇−ℎ;𝐿2) ≤ ℎ𝐶‖∇ ⋅ 𝒖𝑘‖𝐻1(0,𝑇 ;𝐿2)

rom [56, Lem. 4], together with the a priori estimate ‖𝜃𝑘‖𝐻1(0,𝑇 ;𝑋′) + ‖𝒖𝑘‖𝐻1(0,𝑇 ;𝐻1) ≤ 𝐶, we obtain

sup
𝑘∈N

(

‖𝛥ℎ𝜃𝑘‖𝐿1(0,𝑇−ℎ;𝑋′) + ‖𝛥ℎ(∇ ⋅ 𝒖𝑘)‖𝐿1(0,𝑇−ℎ;𝐿2)

)

→ 0 as ℎ → 0. (54)

oreover, due to the compact embedding 𝐿∞(0, 𝑇 ;𝐻1(𝛺)) ∩ 𝐻1(0, 𝑇 ; (𝐻1(𝛺)′))
𝑐𝑝𝑡
←←←←←←←←←←→ 𝐶0([0, 𝑇 ];𝐿3(𝛺)) it holds that, along a

ubsequence,

𝜑𝑘 → 𝜑 in 𝐶0([0, 𝑇 ];𝐿3(𝛺)) as 𝑘 → ∞.

he Azelá-Ascoli theorem for Banach space valued functions asserts that this implies uniform equi-continuity, i.e.,

sup
𝑘∈N

(

‖𝜑𝑘(𝑡) − 𝜑𝑘(𝑠)‖𝐿3

)

→ 0 as |𝑡 − 𝑠| → 0.

hus, we conclude ‖𝛥ℎ𝜑𝑘‖𝐿1(0,𝑇−ℎ;𝐿3) → 0, which, along with (54), implies 25. □

With this convergence result, we finally turn to show the strong convergence of 𝒖𝑘.

emma 26. There exists a subsequence of 𝑘 → ∞ such that, along this not relabeled subsequence,

𝒖𝑘 → 𝒖 in 𝐿2(0, 𝑇 ;𝑿(𝛺)).

roof. Recall that the weak formulation for the approximate problems (9g) asserts that for all test functions 𝜼 ∈ 𝐿2(0, 𝑇 ;𝑿(𝛺)) it
olds

∫𝛺𝑇
C𝜈 (𝜑𝑘)(𝜕𝑡𝒖𝑘) ∶ (𝜼) +𝑊, (𝜑𝑘, (𝒖𝑘)) ∶ (𝜼) − 𝛼(𝜑𝑘)𝑝𝑘(∇ ⋅ 𝜼) ∗ 𝜙𝑑(𝑡,𝒙)

= ∫𝛺𝑇
𝒇 ⋅ 𝜼 𝑑(𝑡,𝒙) + ∫

𝑇

0 ∫𝛤𝐷
𝒈 ⋅ 𝜼 𝑑𝑛−1 𝑑𝑡 − 𝜚∫𝛺𝑇

∇𝜃𝑘 ⋅ ∇(𝛼(𝜑𝑘)(∇ ⋅ 𝜼) ∗ 𝜙) 𝑑(𝑡,𝒙).

ue to our a priori estimates, we can pass to the limit and obtain the analogous equation for the weak limit 𝒖, cf. Section 5.6.
ere we need to use that 𝑊, (𝜑𝑘, (𝒖𝑘)) = C(𝜑𝑘)((𝒖𝑘) −  (𝜑𝑘)). Testing with the difference 𝒖𝑘𝜒[0,𝑡] − 𝒖𝜒[0,𝑡] ∈ 𝐿2(0, 𝑇 ;𝑿(𝛺)) and

subtracting the equations leads to

∫𝛺𝑡
[C𝜈 (𝜑𝑘)(𝜕𝑡𝒖𝑘) − C𝜈 (𝜑)(𝜕𝑡𝒖)] ∶ (𝒖𝑘 − 𝒖) + [C(𝜑𝑘)(𝒖𝑘) − C(𝜑)(𝒖)] ∶ (𝒖𝑘 − 𝒖)

+ [C(𝜑𝑘) (𝜑𝑘) − C(𝜑) (𝜑)] ∶ (𝒖𝑘 − 𝒖) 𝑑(𝑡,𝒙) − (𝛼(𝜑𝑘)𝑝𝑘 − 𝛼(𝜑)𝑝)∇ ⋅ (𝒖𝑘 − 𝒖) ∗ 𝜙𝑑(𝑡,𝒙)

= −𝜚∫𝛺𝑡
∇𝜃𝑘 ⋅ ∇(𝛼(𝜑𝑘)(∇ ⋅ (𝒖𝑘 − 𝒖)) ∗ 𝜙) − ∇𝜃 ⋅ ∇(𝛼(𝜑)(∇ ⋅ (𝒖𝑘 − 𝒖)) ∗ 𝜙) 𝑑(𝑡,𝒙).
29
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For the first term, we calculate

∫𝛺𝑡
[C𝜈 (𝜑𝑘)(𝜕𝑡𝒖𝑘) − C𝜈 (𝜑)(𝜕𝑡𝒖)] ∶ (𝒖𝑘 − 𝒖) 𝑑(𝑡,𝒙)

= ∫

𝑡

0

𝑑
𝑑𝑡

1
2
‖(𝒖𝑘 − 𝒖)‖2

𝐿2 𝑑𝑡+∫𝛺𝑡
𝜕𝑡(𝒖𝑘 − 𝒖) ∶ (C𝜈(𝜑𝑘)(𝒖𝑘 − 𝒖) − (𝒖𝑘 − 𝒖)) 𝑑(𝑡,𝒙)

− ∫𝛺𝑡
(C𝜈 (𝜑) − C𝜈 (𝜑𝑘))(𝜕𝑡𝒖) ∶ (𝒖𝑘 − 𝒖) 𝑑(𝑡,𝒙).

And for the second we have

∫𝛺𝑡
[C(𝜑𝑘)(𝒖𝑘) − C(𝜑)(𝒖)] ∶ (𝒖𝑘 − 𝒖) 𝑑(𝑡,𝒙) = ∫𝛺𝑡

C(𝜑𝑘)(𝒖𝑘 − 𝒖) ∶ (𝒖𝑘 − 𝒖) − (C(𝜑) − C(𝜑𝑘))(𝒖) ∶ (𝒖𝑘 − 𝒖) 𝑑(𝑡,𝒙).

We leave the remaining terms for now and test the weak formulations with 𝜕𝑡𝒖𝑘𝜒[0,𝑡] − 𝜕𝑡𝒖𝜒[0,𝑡] to obtain

∫𝛺𝑡
[C𝜈 (𝜑𝑘)(𝜕𝑡𝒖𝑘) − C𝜈 (𝜑)(𝜕𝑡𝒖)] ∶ 𝜕𝑡(𝒖𝑘 − 𝒖) + [C(𝜑𝑘)(𝒖𝑘) − C(𝜑)(𝒖)] ∶ 𝜕𝑡(𝒖𝑘 − 𝒖)

+ [C(𝜑𝑘) (𝜑𝑘) − C(𝜑) (𝜑)] ∶ 𝜕𝑡(𝒖𝑘 − 𝒖)

− (𝛼(𝜑𝑘)𝑝𝑘 − 𝛼(𝜑)𝑝)∇ ⋅ (𝜕𝑡𝒖𝑘 − 𝜕𝑡𝒖) ∗ 𝜙𝑑(𝑡,𝒙)

= −𝜚∫𝛺𝑡
∇𝜃𝑘 ⋅ ∇(𝛼(𝜑𝑘)(∇ ⋅ (𝜕𝑡𝒖𝑘 − 𝜕𝑡𝒖)) ∗ 𝜙) − ∇𝜃 ⋅ ∇(𝛼(𝜑)(∇ ⋅ (𝜕𝑡𝒖𝑘 − 𝜕𝑡𝒖)) ∗ 𝜙) 𝑑(𝑡,𝒙)

gain, we want to rewrite the first two terms as

∫𝛺𝑡
[C𝜈 (𝜑𝑘)(𝜕𝑡𝒖𝑘) − C𝜈 (𝜑)(𝜕𝑡𝒖)] ∶ 𝜕𝑡(𝒖𝑘 − 𝒖) 𝑑(𝑡,𝒙)

= ∫𝛺𝑡
C𝜈 (𝜑𝑘)𝜕𝑡(𝒖𝑘 − 𝒖) ∶ 𝜕𝑡(𝒖𝑘 − 𝒖) − (C𝜈 (𝜑) − C𝜈 (𝜑𝑘))(𝜕𝑡𝒖) ∶ 𝜕𝑡(𝒖𝑘 − 𝒖) 𝑑(𝑡,𝒙)

and

∫𝛺𝑡
[C(𝜑𝑘)(𝒖𝑘) − C(𝜑)(𝒖)] ∶ 𝜕𝑡(𝒖𝑘 − 𝒖) 𝑑(𝑡,𝒙)

= ∫

𝑡

0

𝑑
𝑑𝑡

1
2
‖(𝒖𝑘 − 𝒖)‖2

𝐿2 𝑑𝑡+ (C(𝜑𝑘)𝜕𝑡(𝒖𝑘 − 𝒖) − 𝜕𝑡(𝒖𝑘 − 𝒖)) ∶ (𝒖𝑘 − 𝒖)

− (C(𝜑𝑘) − C(𝜑))(𝒖) ∶ 𝜕𝑡(𝒖𝑘 − 𝒖) 𝑑(𝑡,𝒙).

sing that the tensors C𝜈 ,C are uniformly positive definite and applying Korn’s inequality, we find

∫𝛺𝑡
C(𝜑𝑘)(𝒖𝑘 − 𝒖) ∶ (𝒖𝑘 − 𝒖) 𝑑𝐱 + ∫𝛺𝑡

C𝜈 (𝜑𝑘)𝜕𝑡(𝒖𝑘 − 𝒖) ∶ 𝜕𝑡(𝒖𝑘 − 𝒖) 𝑑𝑡 ≥ 𝐶(‖𝒖𝑘 − 𝒖‖2
𝐿2(𝑿)

+ ‖𝜕𝑡(𝒖𝑘 − 𝒖)‖2
𝐿2(𝑿)

).

ith the help of Young’s inequality, we further estimate

−∫𝛺
𝜕𝑡(𝒖𝑘 − 𝒖) ∶ (C𝜈 (𝜑𝑘)(𝒖𝑘 − 𝒖) − (𝒖𝑘 − 𝒖)) + (𝒖𝑘 − 𝒖) ∶ (C(𝜑𝑘)𝜕𝑡(𝒖𝑘 − 𝒖) − 𝜕𝑡(𝒖𝑘 − 𝒖)) 𝑑𝐱

≤ 𝜌𝒖‖𝜕𝑡(𝒖𝑘 − 𝒖)‖2𝑿 + 𝐶‖𝒖𝑘 − 𝒖‖2𝑿

nd remark that for sufficiently small 𝜌𝒖 the first term can be absorbed on the right-hand side. Moreover, we observe that the last
wo integrals can be dealt with similarly to Lemma 21. Invoking the fundamental theorem of calculus and Korn’s inequality therefore
ields

‖𝒖𝑘 − 𝒖‖2𝑿 (𝑡) + ‖𝒖𝑘 − 𝒖‖2
𝐿2(0,𝑡;𝑿)

+ (1 − 𝜌𝒖)‖𝜕𝑡(𝒖𝑘 − 𝒖)‖2
𝐿2(0,𝑡;𝑿)

≤ 𝐶 ∫

𝑡

0
‖𝒖𝑘 − 𝒖‖2𝑿 (𝜏) 𝑑𝜏 + ‖𝒖𝑘 − 𝒖‖2𝑿 (0)

+𝐶||
|∫𝛺𝑡

[C𝜈 (𝜑) − C𝜈 (𝜑𝑘)](𝜕𝑡𝒖) ∶ (𝒖𝑘 − 𝒖) + [C(𝜑) − C(𝜑𝑘)](𝒖) ∶ (𝒖𝑘 − 𝒖)

+ [C𝜈 (𝜑) − C𝜈 (𝜑𝑘)](𝜕𝑡𝒖) ∶ 𝜕𝑡(𝒖𝑘 − 𝒖) + [C(𝜑𝑘) − C(𝜑)](𝒖) ∶ 𝜕𝑡(𝒖𝑘 − 𝒖) 𝑑(𝑡,𝒙)||
|

+||
|∫𝛺𝑡

[C(𝜑𝑘) (𝜑𝑘) − C(𝜑) (𝜑)] ∶ (𝒖𝑘 − 𝒖) + [𝛼(𝜑𝑘)𝑝𝑘 − 𝛼(𝜑)𝑝](∇ ⋅ (𝒖𝑘 − 𝒖)) ∗ 𝜙

+[C(𝜑𝑘) (𝜑𝑘) − C(𝜑) (𝜑)] ∶ 𝜕𝑡(𝒖𝑘 − 𝒖) + [𝛼(𝜑𝑘)𝑝𝑘 − 𝛼(𝜑)𝑝](∇ ⋅ (𝜕𝑡𝒖𝑘 − 𝜕𝑡𝒖)) ∗ 𝜙𝑑(𝑡,𝒙)
|

|

|

+𝜚‖𝛼′(𝜑𝑘)∇𝜃𝑘 ⋅ ∇𝜑𝑘 − 𝛼′(𝜑)∇𝜃 ⋅ ∇𝜑‖𝐿2(0,𝑡;𝐿4∕3)‖𝜙‖𝐿∞(0,𝑡;𝐿4∕3)‖𝒖𝑘 − 𝒖‖𝐻1(0,𝑡;𝑿)

+𝜚‖𝛼(𝜑𝑘)∇𝜃𝑘 − 𝛼(𝜑)∇𝜃‖𝐿2(0,𝑡;𝑳2)‖∇𝜙‖𝐿∞(0,𝑡;𝑳1)‖𝒖𝑘 − 𝒖‖𝐻1(0,𝑡;𝑿).
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Observe that we can again employ Young’s inequality on the last three integrals and obtain after absorbing some of the resulting
terms on the left hand side that

‖𝒖𝑘 − 𝒖‖2𝑿 (𝑡) ≤ 𝐶 ∫

𝑡

0
‖𝒖𝑘 − 𝒖‖2𝑿 (𝜏) 𝑑𝜏 + ‖𝒖𝑘 − 𝒖‖2𝑿 (0)

+ 𝐶
(

‖[C𝜈(𝜑) − C𝜈 (𝜑𝑘)](𝜕𝑡𝒖)‖2𝐿2(𝑳2)
+ ‖[C(𝜑) − C(𝜑𝑘)](𝒖)‖2𝐿2(𝑳2)

)

+ 𝐶
(

‖[C(𝜑𝑘) (𝜑𝑘) − C(𝜑) (𝜑)]‖2
𝐿2(𝑳2)

+ ‖𝛼(𝜑𝑘)𝑝𝑘 − 𝛼(𝜑)𝑝‖2𝐿2(𝐿2)

)

+ 𝐶
(

‖𝛼′(𝜑𝑘)∇𝜃𝑘 ⋅ ∇𝜑𝑘 − 𝛼′(𝜑)∇𝜃 ⋅ ∇𝜑‖2𝐿2(𝐿4∕3)
+ ‖𝛼(𝜑𝑘)∇𝜃𝑘 − 𝛼(𝜑)∇𝜃‖2𝐿2(𝑳2)

)

. (55)

On account of the strong convergence 𝜃𝑘 → 𝜃 in 𝐿2(0, 𝑇 ;𝑋(𝛺)), see (46), and the strong convergence of the phase-field variable
𝜑𝑘 → 𝜑 in 𝐶0([0, 𝑇 ];𝑊 1,4(𝛺)), see (45), along with the embedding 𝑊 1,4(𝛺)) ↪ 𝐿∞(𝛺) and the continuity of 𝛼′, we deduce that

(𝛼′(𝜑𝑘)∇𝜃𝑘 ⋅ ∇𝜑𝑘)(𝑡) → (𝛼′(𝜑)∇𝜃 ⋅ ∇𝜑)(𝑡) in 𝐿2(0, 𝑇 ;𝐿4∕3(𝛺)),

(𝛼(𝜑𝑘)∇𝜃𝑘)(𝑡) → (𝛼(𝜑)∇𝜃)(𝑡) in 𝐿2(0, 𝑇 ;𝑳2(𝛺)).

Since 𝒖𝑘(0) → 𝒖(0), cf. Section 5.6, the strong convergences of 𝜑𝑘 → 𝜑 and 𝑝𝑘 → 𝑝 in 𝐿2(𝛺𝑇 ) and Gronwall’s lemma yield that along
a suitable subsequence ‖𝒖𝑘 − 𝒖‖𝑿 (𝑡) → 0 a.e. in [0, 𝑇 ]. Reminding ourselves of the embedding 𝐻1(0, 𝑇 ;𝑿(𝛺)) → 𝐶0([0, 𝑇 ];𝑿(𝛺)), we
can employ 𝐿𝑝-𝐿𝑞-compactness to obtain 𝒖𝑘 → 𝒖 in 𝐿2(0, 𝑇 ;𝑿(𝛺)). □

5.6. Limit passage

After all the preparation above, we are finally in the position to pass to the limit in the semi-Galerkin system (9a)–(9g).
Ad (7a): Starting with (9a), we choose some 𝑧𝑗 and an arbitrary function 𝜗 ∈ 𝐶∞

𝑐 (0, 𝑇 ) to obtain 𝜗𝑧𝑗 ∈ 𝐿2(0, 𝑇 ;𝑍𝑘) for all 𝑘 ≥ 𝑗.
Hence, integration with respect to time leads to

∫

𝑇

0
(𝐻1)′ ⟨𝜕𝑡𝜑𝑘, 𝜗𝑧𝑗⟩𝐻1 𝑑𝑡 = ∫𝛺𝑇

−𝑚(𝜑𝑘)∇𝜇𝑘 ⋅ 𝜗∇𝑧𝑗 + 𝑅(𝜑𝑘, (𝒖𝑘), 𝜃𝑘)𝜗𝑧𝑗 𝑑(𝑡,𝒙)

for all 𝑘 ≥ 𝑗. The weak convergence 𝜑𝑘 ⇀ 𝜑 in 𝐿2(0, 𝑇 ; (𝐻1(𝛺))′) and 𝜗𝑧𝑗 ∈ 𝐿2(0, 𝑇 ;𝐻1(𝛺)) allow us to pass to the limit on the left-
hand side. Since 𝑚 is uniformly bounded and (𝜑𝑘)𝑘∈N converges pointwise, we obtain with the help of dominated convergence that
𝑚(𝜑𝑘)𝜗∇𝑧𝑗 → 𝑚(𝜑)𝜗∇𝑧𝑗 in 𝐿2(0, 𝑇 ;𝐿2(𝛺)). Together with ∇𝜇𝑘 ⇀ ∇𝜇 in 𝐿2(0, 𝑇 ;𝑳2(𝛺)) and the weak-strong convergence principle,
we can pass to the limit in the first term on the right-hand side.

At last, we deduce the strong convergence 𝑅(𝜑𝑘, (𝒖𝑘), 𝜃𝑘) → 𝑅(𝜑, (𝒖), 𝜃) in 𝐿2(𝛺𝑇 ) from the bound on 𝑅 and the strong
convergences of 𝜑𝑘, ∇𝒖𝑘 and 𝜃𝑘 in 𝐿2(𝛺𝑇 ), allowing us to pass to the limit in the last term.

Ad (7b): Similarly, testing (9b) with 𝜗𝑧𝑗 and integrating with respect to time yields

∫𝛺𝑇
𝜇𝑘𝜗𝑧𝑗 𝑑(𝑡,𝒙) =∫𝛺𝑇

𝜀∇𝜑𝑘 ⋅ 𝜗∇𝑧𝑗 + 𝜚1∕2𝛥𝜑𝑘 ⋅ 𝜗𝛥𝑧𝑗

+
[

1
𝜀𝜓

′(𝜑) +𝑊,𝜑(𝜑, (𝒖)) +
𝑀 ′(𝜑𝑘)

2
(𝜃𝑘 − 𝛼(𝜑𝑘)∇ ⋅ 𝒖𝑘)2 −𝑀(𝜑𝑘)(𝜃𝑘 − 𝛼(𝜑𝑘)∇ ⋅ 𝒖𝑘)𝛼′(𝜑𝑘)∇ ⋅ 𝒖𝑘

]

𝜗𝑧𝑗 𝑑(𝑡,𝒙).

Since 𝜇𝑘 ⇀ 𝜇 in 𝐿2(0, 𝑇 ;𝐻1(𝛺)) and 𝜑𝑘 ⇀ 𝜑 in 𝐿2(0, 𝑇 ;𝐻2(𝛺)) and 𝜗𝑧𝑗 ∈ 𝐿2(0, 𝑇 ;𝐻2(𝛺)), limit passage on the left-hand side and
in the first two terms on the right-hand side is possible.

Exploiting 𝑧𝑗 ∈ 𝐻2
𝒏 (𝛺) ↪ 𝐿∞(𝛺) along with the strong convergence (48), we can invoke the dominated convergence theorem to

find 𝜓 ′(𝜑𝑘)𝜗𝑧𝑗 → 𝜓 ′(𝜑)𝜗𝑧𝑗 in 𝐿1(𝛺𝑇 ) and hence,

∫𝛺𝑇

1
𝜀
𝜓 ′(𝜑𝑘)𝜗𝑧𝑗 𝑑(𝑡,𝒙) → ∫𝛺𝑇

1
𝜀
𝜓 ′(𝜑)𝜗𝑧𝑗 𝑑(𝑡,𝒙).

Along with the strong convergence of 𝒖𝑘 in 𝐿2(0, 𝑇 ;𝑿(𝛺)) and the growth condition (A3.2) imposed on 𝑊, , generalized dominated
convergence implies 𝑊,𝜑(𝜑𝑘, (𝒖𝑘)) → 𝑊,𝜑(𝜑, (𝒖)) in 𝐿1(𝛺𝑇 ) along a not relabeled subsequence. Since 𝜗𝑧𝑗 ∈ 𝐿∞(𝛺𝑇 ), we can also
pass to the limit in this term. Similarly, the strong convergences of 𝒖𝑘 in 𝐿2(0, 𝑇 ;𝑿) and 𝑝𝑘, 𝜃𝑘 in 𝐿2(𝛺𝑇 ) imply

𝑀 ′(𝜑𝑘)
2

(𝜃𝑘 − 𝛼(𝜑𝑘)∇ ⋅ 𝒖𝑘)2 −𝑀(𝜑𝑘)(𝜃𝑘 − 𝛼(𝜑𝑘)∇ ⋅ 𝒖𝑘)𝛼′(𝜑𝑘)∇ ⋅ 𝒖𝑘

→
𝑀 ′(𝜑)

2
(𝜃 − 𝛼(𝜑)∇ ⋅ 𝒖)2 −𝑀(𝜑)(𝜃 − 𝛼(𝜑)∇ ⋅ 𝒖)𝛼′(𝜑)∇ ⋅ 𝒖 in 𝐿1(𝛺𝑇 ),

along some subsequence, and we can pass to the limit in the last two terms just as before.
Ad (7c): For an arbitrary 𝜂 ∈ 𝑿(𝛺), we obtain from (9g) along with the identity 𝑊, (𝜑𝑘, (𝒖𝑘)) = C(𝜑𝑘)((𝒖𝑘) −  (𝜑𝑘)) that

∫𝛺𝑇
C𝜈 (𝜑𝑘)(𝜕𝑡𝒖𝑘) ∶ 𝜗(𝜼) + C(𝜑𝑘)((𝒖𝑘) −  (𝜑𝑘)) ∶ 𝜗(𝜼) − 𝛼(𝜑𝑘)𝑝𝑘(∇ ⋅ 𝜗𝜼) ∗ 𝜙𝑑(𝑡,𝒙)

= ∫𝛺
𝒇 ⋅ 𝜗𝜼 𝑑(𝑡,𝒙) + ∫

𝑇

0 ∫𝛤
𝒈 ⋅ 𝜗𝜼 𝑑𝑛−1 𝑑𝑡 − 𝜚∫𝛺

∇𝜃𝑘 ⋅ ∇(𝛼(𝜑𝑘)(∇ ⋅ 𝜼) ∗ 𝜙) 𝑑(𝑡,𝒙).
31
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O

Using the properties of the tensors C,C𝜈 , we can rewrite the first two terms as

∫𝛺𝑇
C𝜈(𝜑𝑘)(𝜕𝑡𝒖𝑘) ∶ 𝜗(𝜼) + C(𝜑𝑘)(𝒖𝑘) ∶ 𝜗(𝜼) 𝑑(𝑡,𝒙) = ∫𝛺𝑇

(𝜕𝑡𝒖𝑘) ∶ C𝜈 (𝜑𝑘)𝜗(𝜼) + (𝒖𝑘) ∶ C(𝜑𝑘)𝜗(𝜼) 𝑑(𝑡,𝒙).

nce again we deduce from the strong convergence 𝜑𝑘 → 𝜑 in 𝐿2(𝛺𝑇 ) together with the boundedness of the tensors that, along a
suitable subsequence, C𝜈 (𝜑𝑘)𝜗(𝜼) → C𝜈 (𝜑)𝜗(𝜼) and C(𝜑𝑘)𝜗(𝜼) → C(𝜑)𝜗(𝜼) in 𝑳2(𝛺𝑇 ). By the same arguments, it follows that
C(𝜑𝑘) (𝜑𝑘) → C(𝜑) (𝜑) in 𝑳2(𝛺𝑇 ).

Taking advantage of the weak convergence 𝒖𝑘 ⇀ 𝒖 in 𝐻1(0, 𝑇 ;𝑿(𝛺)), we obtain the desired limit.
Moreover, we deduce that 𝛼(𝜑𝑘)𝜗(∇ ⋅ 𝜼) ∗ 𝜙 → 𝛼(𝜑)𝜗(∇ ⋅ 𝜼) ∗ 𝜙 in 𝐿2(𝛺𝑇 ) and exploit the weak convergence of 𝑝𝑘 to get

∫𝛺𝑇
𝑝𝑘𝛼(𝜑𝑘)𝜗(∇ ⋅ 𝜼) ∗ 𝜙𝑑(𝑡,𝒙) → ∫𝛺𝑇

𝑝𝛼(𝜑)𝜗(∇ ⋅ 𝜼) ∗ 𝜙𝑑(𝑡,𝒙) as 𝑘 → ∞.

Lastly, the strong convergence 𝜑𝑘 → 𝜑 in 𝐶0([0, 𝑇 ];𝑊 1,4(𝛺)) implies

∇(𝛼(𝜑𝑘)(∇ ⋅ 𝜼) ∗ 𝜙) → ∇(𝛼(𝜑)(∇ ⋅ 𝜼) ∗ 𝜙) in 𝐿2(0, 𝑇 ;𝑳2(𝛺)).

Along with 𝜃𝑘 → 𝜃 in 𝐿2(0, 𝑇 ;𝑋(𝛺)), this entails

𝜚∫𝛺𝑇
∇𝜃𝑘 ⋅ ∇(𝛼(𝜑𝑘)(∇ ⋅ 𝜼) ∗ 𝜙) 𝑑(𝑡,𝒙) → 𝜚∫𝛺𝑇

∇𝜃 ⋅ ∇(𝛼(𝜑)(∇ ⋅ 𝜼) ∗ 𝜙) 𝑑(𝑡,𝒙).

Ad (7d): For any fixed 𝑦𝑗 , we obtain from (9c) that

∫

𝑇

0
𝑋′ ⟨𝜕𝑡𝜃𝑘, 𝜗𝑦𝑗⟩𝑋 𝑑𝑡 = ∫𝛺𝑇

−𝜅(𝜑𝑘)∇𝑝𝑘 ⋅ 𝜗∇𝑦𝑗 + 𝑆𝑓 (𝜑𝑘, (𝒖𝑘), 𝜃𝑘)𝜗𝑦𝑗 𝑑(𝑡,𝒙)

for all 𝑘 ≥ 𝑗. The assumptions on 𝜅 and 𝑆𝑓 along with the compactness results for 𝜃𝑘 and 𝑝𝑘 allow us to argue analogously to the
first Eq. (7a). Ad (7e): At last, we test (9d) with 𝜗𝑦𝑗 and find the postulated identity by similar arguments as above.

Recall that span{𝑧𝑗 ∶ 𝑗 ∈ N} is a dense subset of 𝐻2
𝒏 (𝛺) and span{𝑦𝑗 ∶ 𝑗 ∈ N} is dense in 𝑋(𝛺). Since 𝐶∞

0 (0, 𝑇 ) is a dense subspace
of 𝐿2(0, 𝑇 ), the discussion above already suffices to conclude that the limit (𝜑, 𝜇, 𝒖, 𝜃, 𝑝) satisfies (7a)–(7e) for all applicable test
functions 𝜁, 𝜼 and 𝜉, as postulated in Theorem 14.

Recovery of initial conditions
Due to the a priori estimates from Lemma 23, the Aubin–Lions–Simon theorem yields

𝜑𝑘 → 𝜑 in 𝐶0([0, 𝑇 ];𝐿2(𝛺)),

𝒖𝑘 → 𝒖 in 𝐶0([0, 𝑇 ];𝐿2(𝛺)),

𝜃𝑘 → 𝜃 in 𝐶0([0, 𝑇 ];𝐿2(𝛺)).

(56)

In particular, this implies

𝜑𝑘(0) → 𝜑(0) and 𝒖𝒌(0) → 𝒖(0) and 𝜃𝑘(0) → 𝜃(0) in 𝐿2(𝛺).

Recalling that as 𝑘→ ∞

𝜑𝑘(0) = 𝜑0,𝑘 = 𝛱𝑧
𝑘 (𝜑0) → 𝜑0 and 𝜃𝑘(0) = 𝜃0,𝑘 = 𝛱𝑧

𝑘 (𝜃0) → 𝜃0 in 𝐿2(𝛺),

the uniqueness of limits yield

𝜑(0) = 𝜑0 and 𝜃(0) = 𝜃0 a.e. in 𝛺.

Lastly, we observe 𝒖𝑘(0) = 𝒖0 for all 𝑘 ∈ N and deduce 𝒖(0) = 𝒖0 a.e. in 𝛺.

A priori estimates
We start by collecting some results from Lemma 23. Inserting (40) into (41), we obtain

‖𝜕𝑡𝜑𝑘‖
2
𝐿2((𝐻1)′)

≤ 𝐶
(

‖𝜑0‖
4
𝐻1 + 𝜚‖𝛥𝜑0‖

4
𝐿2 +

1
𝜀2

‖𝜓(𝜑0)‖2𝐿1 + ‖𝒖0‖2𝑿 + ‖𝜃0‖
4
𝐿2 + 𝜚

2
‖𝜃0‖

4
𝑋 + 1

)

. (57)

Moreover, we insert (39) into (42) and deduce together with the estimates (38) that

‖𝜕𝑡𝜃𝑘‖
2
𝐿2((𝐻1)′)

≤ 𝐶
(

‖𝜑0‖
2
𝐻1 + 𝜚

1∕2
‖𝛥𝜑0‖

2
𝐿2 +

1
𝜀
‖𝜓(𝜑0)‖𝐿1 + ‖𝒖0‖2𝑿 + ‖𝜃0‖

2
𝐿2 + 𝜚‖𝜃0‖

2
𝑋 + 1

)

.

Thus, these two estimates together with (38) establish

‖𝜑𝑘(𝑡)‖2𝐻1 + ‖𝜚1∕4𝛥𝜑𝑘(𝑡)‖2𝐿2 + ‖𝜓(𝜑𝑘)(𝑡)‖𝐿1 + ‖𝒖(𝑡)‖2𝑿 + ‖𝜃𝑘(𝑡)‖2𝐿2 + ‖𝜚1∕2∇𝜃𝑘(𝑡)‖2𝐿2

+ ‖𝜕𝑡𝜑𝑘‖
2
𝐿2((𝐻1)′)

+ ‖𝜕𝑡𝜃𝑘‖
2
𝐿2(𝑋′)

+ ‖𝜇𝑘‖
2
𝐿2(𝐻1)

+ ‖𝑝𝑘‖
2
𝐿2(𝐻1)

+ ‖𝜕𝑡𝒖𝑘‖2𝐿2(𝑿)

≤ 𝐶(‖𝜑0‖
4
𝐻1 + 𝜚‖𝛥𝜑0‖

4
𝐿2 +

1
𝜀2

‖𝜓(𝜑0)‖2𝐿1 + ‖𝒖0‖4𝑿 + ‖𝜃0‖
4
𝐿2 + 𝜚

2
‖𝜃0‖

4
𝑋 + 1)
32
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for almost all 𝑡 ∈ (0, 𝑇 ) and all 𝜚 < 1.
Recall that (A2.1) stipulates 𝜓(𝜑′) ≥ 0 for all 𝜑′ ∈ R. Hence, 𝜓(𝜑𝑘) is a nonnegative, continuous function and since 𝜑𝑘 → 𝜑

pointwise a.e. in 𝛺𝑇 , applying Fatou’s lemma yields

∫𝛺
𝜓(𝜑(𝑡)) 𝑑𝐱 ≤ lim inf

𝑘→∞ ∫𝛺
𝜓(𝜑𝑘(𝑡)) 𝑑𝐱

for almost all 𝑡 ∈ (0, 𝑇 ). By taking the limit inferior on both sides above and exploiting weak/weak* lower semi-continuity, we
conclude

‖𝜑(𝑡)‖2
𝐻1 + ‖𝜚1∕2𝛥𝜑(𝑡)‖2

𝐿2 + ‖𝜓(𝜑)(𝑡)‖𝐿1 + ‖𝒖(𝑡)‖2𝑿 + ‖𝜃(𝑡)‖2
𝐿2 + ‖𝜚1∕2∇𝜃(𝑡)‖2

𝐿2

+ ‖𝜕𝑡𝜑‖
2
𝐿2((𝐻1)′)

+ ‖𝜕𝑡𝜃‖
2
𝐿2(𝑋′)

+ ‖𝜇‖2
𝐿2(𝐻1)

+ ‖𝑝‖2
𝐿2(𝐻1)

+ ‖𝜕𝑡𝒖‖2𝐿2(𝑿)

≤ 𝐶(‖𝜑0‖
4
𝐻1 + 𝜚‖𝛥𝜑0‖

4
𝐿2 +

1
𝜀2

‖𝜓(𝜑0)‖2𝐿1 + ‖𝒖0‖4𝑿 + ‖𝜃0‖
4
𝐿2 + 𝜚

2
‖𝜃0‖

4
𝑋 + 1). (58)

. Existence of weak solutions

We now aim to establish the existence of weak solutions to the Cahn–Hilliard–Biot system without regularizations. To this end,
e consider a family of weak solutions (𝜑𝜚, 𝜇𝜚, 𝒖𝜚, 𝜃𝜚, 𝑝𝜚) to the regularized system and pass the limit 𝜚 → 0.

To recover our initial conditions, these need to be approximated in the corresponding spaces. In particular, we need to find a
amily {𝜑𝜚,0}𝜚 with 𝜑𝜚,0 → 𝜑0 as 𝜚 ↘ 0 such that ‖𝜓(𝜑𝜚,0)‖𝐿1 can be bounded by ‖𝜓(𝜑0)‖𝐿1 . We note that this is not necessary for
0 but refer to Section 6.5 for a more detailed discussion.

Moreover, since we can no longer rely on the additional regularity for 𝜑𝜚, we need to slightly change the arguments which
llowed us to deduce the strong convergences for 𝑝 and 𝒖 in the previous section.

Most importantly, we will deduce the strong convergence of 𝜃 in 𝐿2(𝛺𝑇 ) even for the case that 𝜚 ↘ 0.

.1. More general initial conditions

To obtain weak solutions for the regularized problem, we had to assume that the initial conditions satisfy 𝜑0 ∈ 𝐻2
𝒏 (𝛺). We would

ike to weaken these assumptions and allow for more general initial conditions better fitted to the problem.
Suppose 𝜑0 ∈ 𝐻1(𝛺) such that 𝜓(𝜑0) ∈ 𝐿1(𝛺). We want to employ a strategy by Colli, Frigeri and Grasselli [57], which was

lso used by Garcke, Lam and Signiori [53], to find a family of functions {𝜑𝜚,0} ⊂ 𝐻2
𝒏 (𝛺) that converges to 𝜑0 in a suitable manner,

hile simultaneously the integral over 𝜓(𝜑𝜚,0) remains bounded. To this end, consider the elliptic problem
{

−𝜚1∕2𝛥𝜑𝜚,0 + 𝜑𝜚,0 = 𝜑0 in 𝛺,
∇𝜑𝜚,0 ⋅ 𝒏 = 0 on 𝛤 .

(59)

mploying the Lax–Milgram theorem, we find that these problems admit unique weak solutions and elliptic regularity theory further
mplies 𝜑0,𝜚 ∈ 𝐻2

𝒏 (𝛺). We test the weak formulation with 𝜑𝜚,0 and obtain with the help of Young’s inequality

2𝜚1∕2‖∇𝜑𝜚,0‖2𝐿2 + ‖𝜑𝜚,0‖
2
𝐿2 ≤ ‖𝜑0‖

2
𝐿2 . (60)

n the other hand, integration by parts and the fundamental lemma of the calculus of variations imply that (59) already holds
lmost everywhere in 𝛺. Multiplication with 𝛥𝜑𝜚,0 and integration by parts further yield

2𝜚1∕2‖𝛥𝜑𝜚,0‖2𝐿2 + ‖∇𝜑𝜚,0‖2𝐿2 ≤ ‖∇𝜑0‖
2
𝐿2 . (61)

ogether with (60), this implies

‖𝜑𝜚,0‖
2
𝐻1 + 𝜚

1∕2
‖𝛥𝜑𝜚,0‖

2
𝐿2 ≤ 𝐶‖𝜑0‖

2
𝐻1 . (62)

n summary, this tells us that the family {𝜑𝜚,0} is uniformly bounded in 𝐻1(𝛺) and we deduce the existence of some function
∗ ∈ 𝐻1(𝛺) such that

𝜑𝜚,0 ⇀ 𝜑∗ in 𝐻1(𝛺)

long a not relabeled subsequence. Exploiting 𝜚∇𝜑𝜖,0 ⇀ 0 when passing to the limit in the weak formulation gives

∫𝛺
𝜑∗𝜁 𝑑𝐱 = ∫𝛺

𝜑0𝜁 𝑑𝐱 for all 𝜁 ∈ 𝐻1(𝛺)

and invoking the fundamental lemma of the calculus of variations, we find 𝜑∗ = 𝜑0. Moreover, the Rellich–Kondrachov theorem
and the uniqueness of weak limits imply

𝜑𝜚,0 → 𝜑0 in 𝐿2(𝛺). (63)

We proceed by defining the function 𝐺(𝑠) ∶= 𝜓(𝜑)+ 1
2𝐶2𝜑2, which is nonnegative due to (A2.1). Moreover, using (A2.2) and (A2.3),

we compute
′′ ′′ ′′
33

𝐺 (𝜑) = 𝜓1 (𝜑) + 𝜓2 (𝜑) + 𝐶2 ≥ 0
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and find that 𝐺 is convex. Lastly, we would like to remark that due to (A11), we have 𝐺(𝜑0) ∈ 𝐿1(𝛺).
From the embedding 𝐻2(𝛺) ↪ 𝐿∞(𝛺), we deduce 𝐺′(𝜑𝜚,0) ∈ 𝐻1(𝛺), which is therefore a valid test function in (59). Hence,

∫𝛺
(𝜑𝜚,0 − 𝜑0)𝐺′(𝜑𝜚,0) = −∫𝛺

𝜚𝐺′′(𝜑𝜚,0)|∇𝜑𝜚,0|
2 𝑑𝐱 ≤ 0

and together with the convexity of 𝐺 and the characterization [55, E4.7(1)], we find

∫𝛺
𝐺(𝜑𝜚,0) 𝑑𝐱 ≤ ∫𝛺

𝐺(𝜑0) + 𝐺′(𝜑𝜚,0)(𝜑𝜚 − 𝜑0) 𝑑𝐱 ≤ ∫𝛺
𝐺(𝜑0) 𝑑𝐱 < ∞.

Thus, by the strong convergence (63), we infer

lim sup
𝜚→0 ∫𝛺

𝜓(𝜑𝜚,0) 𝑑𝐱 ≤ lim sup
𝜚→0 ∫𝛺

𝐺(𝜑𝜚,0) 𝑑𝐱 − lim
𝜚→0∫𝛺

𝐶2
2
𝜑2
𝜚,0 𝑑𝐱 ≤ ∫𝛺

𝐺(𝜑0) −
𝐶2
2
𝜑2
0 𝑑𝐱 = ∫𝛺

𝜓(𝜑0) 𝑑𝐱.

.2. A priori estimates and compactness results

Suppose 𝜑0 ∈ 𝐻1(𝛺) such that 𝜓(𝜑0) ∈ 𝐿1(𝛺) and assume 𝒖0 ∈ 𝐻1(𝛺). Moreover, we choose a family {𝜑𝜚,0} ⊂ 𝐻2
𝒏 (𝛺) as

n Section 6.1 and obtain from Theorem 14 the existence of weak solutions (𝜑𝜚, 𝜇𝜚, 𝒖𝜚, 𝜃𝜚, 𝑝𝜚) to the regularized Cahn–Hilliard–Biot
ystem with corresponding initial conditions (𝜑𝜚,0, 𝒖0, 𝜃0). Moreover, the energy estimate (58) along with yield the uniform estimate

‖𝜑𝜚(𝑡)‖2𝐻1 + ‖𝜚1∕4𝛥𝜑𝜚(𝑡)‖2𝐿2 + ‖𝜓(𝜑𝜚)(𝑡)‖𝐿1 + ‖𝒖𝜚(𝑡)‖2𝑿 + ‖𝜃𝜚(𝑡)‖2𝐿2 + ‖𝜚1∕2∇𝜃𝜚(𝑡)‖2𝐿2

+ ‖𝜕𝑡𝜑𝜚‖
2
𝐿2((𝐻1)′)

+ ‖𝜕𝑡𝜃𝜚‖
2
𝐿2(𝑋′)

+ ‖𝜇𝜚‖
2
𝐿2(𝐻1)

+ ‖𝑝𝜚‖
2
𝐿2(𝑋)

+ ‖𝜕𝑡𝒖𝜚‖2𝐿2(𝑿)

≤ 𝐶(‖𝜑0‖
4
𝐻1 +

1
𝜀2

‖𝜓(𝜑0)‖2𝐿1 + ‖𝒖0‖4𝑿 + ‖𝜃0‖
4
𝐿2 + 𝜚

2
‖𝜃0‖

4
𝑋 + 1),

or more concisely,

‖𝜑𝜚‖𝐿∞(𝐻1) + ‖𝜚1∕2𝛥𝜑𝜚‖𝐿∞(𝐿2) + ‖𝜑𝜚‖𝐻1((𝐻1)′) + ‖𝜇𝜚‖𝐿2(𝐻1) + ‖𝜓(𝜑𝜚)‖𝐿∞(𝐿1)

+ ‖𝒖𝜚‖𝐻1(𝑿) + ‖𝜃𝜚‖𝐿∞(𝐿2) + ‖𝜚1∕2∇𝜃𝜚‖𝐿∞(𝐿2) + ‖𝜃𝜚‖𝐻1(𝑋′) + ‖𝑝𝜚‖𝐿2(𝑋)

≤ 𝐶(‖𝜑0‖
4
𝐻1 +

1
𝜀2

‖𝜓(𝜑0)‖2𝐿1 + ‖𝒖0‖4𝑿 + ‖𝜃0‖
4
𝐿2 + 𝜚

2
‖𝜃0‖

4
𝑋 + 1), (64)

where 𝐶 > 0 does not depend on 𝜚 ∈ (0, 1).
Hence, we deduce the existence of functions (𝜑, 𝜇, 𝒖, 𝜃, 𝑝) such that, along suitable subsequences as 𝜚 → 0,

𝜑𝜚 ⇀ 𝜑 in 𝐿2(0, 𝑇 ;𝐻1(𝛺)) ∩𝐻1(0, 𝑇 ;𝐻1(𝛺)′),

𝜚1∕2𝛥𝜑𝜚 ⇀ 0 in 𝐿2(0, 𝑇 ;𝐿2(𝛺)),

𝜇𝜚 ⇀ 𝜇 in 𝐿2(0, 𝑇 ;𝐻1(𝛺)),

𝒖𝜚 ⇀ 𝒖 in 𝐻1(0, 𝑇 ;𝑯1
𝛤𝐷

(𝛺)),

𝜃𝜚 ⇀ 𝜃 in 𝐿2(0, 𝑇 ;𝐿2(𝛺)) ∩𝐻1(0, 𝑇 ;𝑋′(𝛺)),

𝜚∇𝜃𝜚 ⇀ 0 in 𝐿2(0, 𝑇 ;𝑳2(𝛺)),

𝑝𝜚 ⇀ 𝑝 in 𝐿2(0, 𝑇 ;𝐻1(𝛺)). (65)

As in Section 5.3, we further find

𝜑𝜚 → 𝜑 in 𝐶0([0, 𝑇 ];𝐿𝑟(𝛺)), (66)

𝜓 ′(𝜑𝜚) → 𝜓 ′(𝜑) in 𝐿1(𝛺𝑇 ), (67)

where 1 ≤ 𝑟 <∞ if 𝑛 ≤ 2 and 1 ≤ 𝑟 < 6 if 𝑛 = 3. Lastly, we apply elliptic theory, which entails that, cf. [58, Prop. 5.7.2]

‖𝜚1∕4𝜑𝜚‖
2
𝐿∞(𝐻2

𝒏 )
≤ 𝐶

(

‖𝜚1∕4𝛥𝜑𝜚‖
2
𝐿∞(𝐿2)

+ ‖𝜚1∕4𝜑𝜚‖
2
𝐿∞(𝐻1)

)

< 𝐶, (68)

here 𝐶 > 0 independent of 𝜚 ∈ (0, 1).

.3. Additional compactness results

As mentioned above, for the limit 𝜚 → 0 we need a different argument to obtain the necessary compactness result for 𝑝. Observe
hat for the weak solutions to the regularized problem the identity (10) already holds without the projection and that the functions
n the right-hand side are weakly differentiable with respect to time. Taking advantage of these properties, we can show an uniform
stimate for the differences 𝜏ℎ𝑝𝜚 − 𝑝𝜚 and an application of a version of the Aubin–Lions–Simon theorem yields strong convergence
n the space 𝐿2(0, 𝑇 ;𝐿2(𝛺)).

emma 27. There exists a subsequence of 𝜚 → 0 such that, along this subsequence,
2 2
34

𝑝𝜚 → 𝑝 in 𝐿 (0, 𝑇 ;𝐿 (𝛺)).
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Proof. Due to the a priori estimates, we already have 𝑝𝜚 ∈ 𝐿2(0, 𝑇 ;𝑋(𝛺)). Recall that, if we can further show

‖𝜏ℎ𝑝𝜚 − 𝑝𝜚‖𝐿1(0,𝑇−ℎ;𝑊 −3,2(𝛺)) 𝑑𝑡→ 0 as ℎ→ 0 uniformly in 𝑘, (69)

for some subsequence 𝜚 → 0, then [56, Thm. 5] already yields the assertion due to the compact embedding

𝑋(𝛺)
𝑐𝑝𝑡
←←←←←←←←←←→ 𝐿2(𝛺)

𝑐
←←←←→ 𝑊 −3,2(𝛺).

Using the notation from Lemma 25, the identity (7e) gives rise to

∫𝛺𝑇−ℎ
𝛥ℎ𝑝𝜚 𝜉 𝑑(𝑡,𝒙) =∫𝛺𝑇−ℎ

−𝜚𝛥ℎ𝜃𝜚 𝛥𝜉 𝑑(𝑡,𝒙) + ∫𝛺𝑇−ℎ
𝜏ℎ𝑀(𝜑𝜚)𝛥ℎ𝜃𝜚 𝜉 𝑑(𝑡,𝒙) + ∫𝛺𝑇−ℎ

𝜃𝜚𝛥ℎ𝑀(𝜑𝜚) 𝜉 𝑑(𝑡,𝒙)

+ ∫𝛺𝑇−ℎ
𝜏ℎ(𝑀(𝜑𝜚)𝛼(𝜑𝜚))𝛥ℎ(∇ ⋅ 𝒖𝜚) 𝜉 𝑑(𝑡,𝒙) + ∫𝛺𝑇−ℎ

∇ ⋅ 𝒖𝜚𝛥ℎ(𝑀(𝜑𝜚)𝛼(𝜑𝜚)) 𝜉 𝑑(𝑡,𝒙)

=∶ 𝐼 + 𝐼𝐼 + 𝐼𝐼𝐼 + 𝐼𝑉 + 𝑉 ,

or all 𝜉 ∈ 𝐿∞(0, 𝑇 − ℎ;𝑊 3,2
0 (𝛺)) and observe that 𝐼𝐼𝐼, 𝐼𝑉 and 𝑉 can be treated analogously to the previous arguments. The same

s true for 𝐼 since (53) holds independently for all 𝜚 ∈ (0, 1). For 𝐼𝐼 , we note that 𝑊 3,2
0 (𝛺) ↪ 𝐿∞(𝛺) and compute

‖𝜏ℎ𝑀(𝜑𝜚)𝜙‖𝑋 ≤ ‖𝜏ℎ𝑀(𝜑𝜚)𝜉‖𝐿2 + ‖𝜏ℎ(𝑀 ′(𝜑𝜚)∇𝜑𝜚)𝜉‖𝑳2 + ‖𝜏ℎ𝑀(𝜑𝜚)∇𝜉‖𝑳2 ≤𝑀‖𝜉‖𝐿2 +𝑀‖𝜏ℎ∇𝜑𝜚‖𝑳2‖𝜉‖𝐿∞ +𝑀‖∇𝜉‖𝑳2

≤𝑀‖𝜉‖𝐿2 +𝑀‖𝜏ℎ𝜑𝜚‖𝐻1‖𝜉‖𝑊 3,2
0

+𝑀‖𝜉‖𝑋 ≤ 𝐶‖𝜉‖𝑊 3,2
0
.

Now we can argue just as before to find
|

|

|

|

|

∫𝛺𝑇−ℎ
𝜏ℎ𝑀(𝜑𝜚)𝛥ℎ𝜃𝜚 𝜉 𝑑(𝑡,𝒙)

|

|

|

|

|

≤ ‖𝛥ℎ𝜃𝑘‖𝐿1(0,𝑇−ℎ;𝑋′)‖𝜏ℎ𝑀(𝜑𝑘) 𝜉‖𝐿∞(0,𝑇−ℎ;𝑋) ≤ 𝐶‖𝛥ℎ𝜃𝑘‖𝐿1(0,𝑇−ℎ;𝑋′)‖𝜉‖𝐿∞(0,𝑇−ℎ;𝑊 3,2
0 ).

and conclude the proof. □

As in the previous section, we would now like to deduce 𝒖𝜚 → 𝒖 in 𝐿2(0, 𝑇 ;𝑿) and 𝜃𝜚 → 𝜃 in 𝐿2(𝛺𝑇 ). along suitable
subsequences of 𝜚 ↘ 0. Due to missing uniform estimates for 𝜃𝜚 in 𝐿2(0, 𝑇 ;𝐻1+𝛾

𝛤𝐷
(𝛺)), the respective arguments need to be modified.

Lemma 28. There exists a subsequence of 𝜚 → 0 such that, along this not relabeled subsequence,

𝒖𝜚 → 𝒖 in 𝐿2(0, 𝑇 ;𝑿(𝛺)).

Proof. First of all, we obtain for 𝜚 ↘ 0 that

𝜚∫𝛺𝑇
∇𝜃𝜚 ⋅ ∇(𝛼(𝜑𝜚)(∇ ⋅ 𝜼) ∗ 𝜙) 𝑑(𝑡,𝒙)

= 𝜚∫𝛺𝑇
𝛼′(𝜑𝜚)∇𝜃𝜚 ⋅ ∇𝜑𝜚 (∇ ⋅ 𝜼) ∗ 𝜙 + 𝛼(𝜑𝜚)∇𝜃𝜚 ⋅ (∇ ⋅ 𝜼) ∗ ∇𝜙𝑑(𝑡,𝒙)

≤ 𝜚𝐶
(

‖∇𝜃𝜚‖𝐿∞(𝑳2)‖∇𝜑𝜚‖𝐿2(𝐿4)‖𝜼‖𝐿2(𝑿)‖𝜑‖𝐿∞(𝐿4∕3) + ‖𝛼(𝜑𝜚)‖𝐿∞(𝐿∞)‖∇𝜃𝜚‖𝐿2(𝑳2)‖∇𝜙‖𝐿∞(𝑳1)‖𝜼‖𝐿2(𝑿)

)

≤ 𝜚1∕4𝐶(𝜼)
(

‖𝜚1∕2∇𝜃𝜚‖𝐿∞(𝑳2)‖𝜚
1∕4𝜑𝜚‖𝐿∞(𝐻2

𝒏 )
+ ‖𝜚1∕2∇𝜃𝜚‖𝐿∞(𝑳2)

)

→ 0, (70)

ince ‖𝜚1∕2∇𝜃𝜚‖𝐿∞(𝑳2) + ‖𝜚1∕4𝜑𝜚‖𝐿∞(𝐻2
𝒏 )

< 𝐶 for some 𝐶 > 0 independent of 𝜚 > 0, cf. (64) and (68). As this holds for all
∈ 𝐿2(0, 𝑇 ;𝑿(𝛺)), the compactness results (65) and similar arguments as in Section 5.6 allow us to pass to the limit in (7c)

nd we arrive at

∫𝛺𝑇
C𝜈 (𝜑)(𝜕𝑡𝒖) ∶ (𝜼) +𝑊, (𝜑, (𝒖)) ∶ (𝜼) − 𝛼(𝜑)𝑝 (∇ ⋅ 𝜼) ∗ 𝜙𝑑(𝑡,𝒙) = ∫𝛺𝑇

𝒇 ⋅ 𝜼 𝑑(𝑡,𝒙) + ∫

𝑇

0 ∫𝜞𝑵

𝒈 ⋅ 𝜼 𝑑𝑛−1 𝑑𝑡,

which again holds for all 𝜼 ∈ 𝐿2(0, 𝑇 ;𝑿(𝛺)). As in Lemma 26, we test this equation and (7c) with both 𝒖𝑘𝜒[0,𝑡] − 𝒖𝜒[0,𝑡] and
𝜕𝑡𝒖𝑘𝜒[0,𝑡] − 𝜕𝑡𝒖𝜒[0,𝑡]. The same computations as before now lead to

‖𝒖𝜚 − 𝒖‖2𝑿 (𝑡) ≤ 𝐶 ∫

𝑡

0
‖𝒖𝜚 − 𝒖‖2𝑿 (𝜏) 𝑑𝜏 + ‖𝒖𝜚 − 𝒖‖2𝑿 (0)

+ 𝐶
(

‖[C𝜈 (𝜑) − C𝜈 (𝜑𝜚)](𝜕𝑡𝒖)‖2𝐿2(𝑳2)
+ ‖[C(𝜑) − C(𝜑𝜚)](𝒖)‖2𝐿2(𝑳2)

)

+ 𝐶
(

‖[C(𝜑𝜚) (𝜑𝜚) − C(𝜑) (𝜑)]‖2
𝐿2(𝑳2)

+ ‖𝛼(𝜑𝜚)𝑝𝜚 − 𝛼(𝜑)𝑝‖2𝐿2(𝐿2)

)

+ 𝜚∫𝛺𝑇
|

|

|

∇𝜃𝜚 ⋅ ∇
(

𝛼(𝜑𝜚)(∇ ⋅ (𝒖𝜚 − 𝒖) ∗ 𝜙)
)

|

|

|

𝑑(𝑡,𝒙)

+ 𝜚∫𝛺𝑇
|

|

|

∇𝜃𝜚 ⋅ ∇
(

𝛼(𝜑𝜚)(∇ ⋅ 𝜕𝑡(𝒖𝜚 − 𝒖) ∗ 𝜙)
)

|

|

|

𝑑(𝑡,𝒙).

Hence, (70) and the arguments from above yield the assertion. □
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Finally, we have to show the strong convergence of the volumetric fluid content 𝜃𝜚. Here, we exploit that for all 𝜚 > 0 Eq. (10)
defines an elliptic problem, whose solution operators, considered as an operator from 𝐿2(𝛺) → 𝐿2(𝛺), are uniformly bounded and
strongly continuous.

Lemma 29. There exists a subsequence of 𝜚 → 0 such that, along this not relabeled subsequence,

𝜃𝜚 → 𝜃 in 𝐿2(0, 𝑇 ;𝐿2(𝛺)).

Proof. We define the family of operators

−𝜚𝛥 +𝑀(𝜑𝜚(𝑡)) ∶ 𝑋(𝛺) → 𝑋′(𝛺), 𝑣↦
(

𝑤 ↦ ∫𝛺
𝜚∇𝑣 ⋅ ∇𝑤 +𝑀(𝜑𝜚(𝑡))𝑣𝑤𝑑𝐱

)

nd deduce with the help of the Lax–Milgram theorem that these are bijective. Let 𝑓 ∈ 𝐿2(𝛺) ⊂ 𝑋′(𝛺) and set 𝑣̃ = (−𝜚𝛥+𝑀(𝜑𝜚(𝑡)))−1,
hen we can test with 𝑣̃ ∈ 𝑋(𝛺) and obtain

𝜚∫𝛺
∇𝑣̃ ⋅ ∇𝑣̃ +𝑀(𝜑𝜚(𝑡))𝑣̃2 𝑑𝐱 = ∫𝛺

𝑓𝑣̃ 𝑑𝐱.

ecalling that 𝑀 is uniformly positive, an application of Young’s inequality implies

‖𝑣̃‖2
𝐿2 + 𝜚‖∇𝑣‖

2
𝐿2 ≤ 𝐶‖𝑓‖2

𝐿2 , (71)

here 𝐶 > 0 is independent of 𝑡 ∈ [0, 𝑇 ] and 𝜚 > 0. In particular, the family of linear operators (−𝜚𝛥 +𝑀(𝜑𝜚(𝑡)))−1 is uniformly
ounded, i.e.,

(−𝜚𝛥 +𝑀(𝜑𝜚(𝑡)))−1 ∶ 𝐿2(𝛺) → 𝐿2(𝛺), ‖(−𝜚𝛥 +𝑀(𝜑𝜚(𝑡)))−1‖(𝐿2) < 𝐶. (72)

On account of the separability of 𝑋(𝛺) and with the help of the fundamental lemma of the calculus of variations, it follows from
(7e) that for all 𝜉 ∈ 𝑋(𝛺)

∫𝛺
𝜚𝑗∇𝜃𝜚𝑗 (𝑡) ⋅ ∇𝜉 +𝑀(𝜑𝜚𝑗 (𝑡))𝜃𝜚𝑗 (𝑡)𝜉 𝑑𝐱 = ∫𝛺

(

𝑝𝜚𝑗 (𝑡) +𝑀(𝜑𝜚𝑗 (𝑡))𝛼(𝜑𝜚𝑗 (𝑡))∇ ⋅ 𝒖𝜚𝑗 (𝑡)
)

𝜉 𝑑𝐱

for almost all 𝑡 ∈ (0, 𝑇 ) and all (𝜚𝑗 )𝑗∈N in some subsequence with 𝜚𝑗 ↘ 0, i.e.,

𝜃𝜚𝑗 (𝑡) = (−𝜚𝛥 +𝑀(𝜑𝜚𝑗 (𝑡)))
−1(𝑝𝜚𝑗 (𝑡) +𝑀(𝜑𝜚𝑗 (𝑡))𝛼(𝜑𝜚𝑗 (𝑡))∇ ⋅ 𝒖𝜚𝑗 (𝑡)

)

.

We will now show the convergence

(−𝜚𝛥 +𝑀(𝜑𝜚𝑗 (𝑡)))
−1𝑓 →𝑀−1(𝜑(𝑡))𝑓 as 𝑗 → ∞ (73)

for all 𝑓 ∈ 𝐿2(𝛺) and almost every 𝑡 ∈ (0, 𝑇 ), which implies pointwise a.e. convergence of 𝜃𝜚𝑗 in 𝐿2(𝛺). To this end, let 𝑓 ∈ 𝐶∞
𝑐 (𝛺)

and set 𝑣𝑗 ∶= (−𝜚𝛥+𝑀(𝜑𝜚𝑗 (𝑡)))
−1𝑓 for all 𝑗 ∈ N, as well as 𝑣 ∶=𝑀−1(𝜑(𝑡))𝑓 . Since 𝜑 ∈ 𝐿2(0, 𝑇 ;𝐻1(𝛺)), it follows that 𝑣 ∈ 𝑋(𝛺) for

a.e. 𝑡 ∈ (0, 𝑇 ) and hence,

𝜚𝑗 ∫𝛺
∇𝑣 ⋅ ∇𝜉 +𝑀(𝜑𝜚𝑗 (𝑡))𝑣 𝜉 𝑑𝐱 = ∫𝛺

𝑓𝜉 + 𝜚𝑗∇𝑣 ⋅ ∇𝜉 + (𝑀(𝜑𝜚𝑗 )(𝑡) −𝑀(𝜑(𝑡)))𝑣 𝜉 𝑑𝐱

for all 𝜉 ∈ 𝑋(𝛺). On the other hand, all 𝑣𝑗 , 𝑗 ∈ N, satisfy a similar equation by definition and we obtain after subtraction

∫𝛺
𝜚𝑗∇(𝑣 − 𝑣𝑗 ) ⋅ ∇𝜉 +𝑀(𝜑𝜚𝑗 (𝑡))(𝑣 − 𝑣𝑗 ) 𝜉 𝑑𝐱 = ∫𝛺

𝜚𝑗∇𝑣 ⋅ ∇𝜉 + (𝑀(𝜑𝜚𝑗 )(𝑡) −𝑀(𝜑(𝑡)))𝑣 𝜉 𝑑𝐱

for all 𝜉 ∈ 𝑋(𝛺). Testing this equation with 𝑣 − 𝑣𝑗 ∈ 𝑋(𝛺) yields

𝑀‖𝑣 − 𝑣𝑗‖2𝐿2 + 𝜚𝑗‖∇𝑣 − ∇𝑣𝑗‖2𝐿2 ≤ 𝜚1∕2𝑗 ‖∇𝑣‖𝐿2

(

‖𝜚1∕2𝑗 ∇𝑣‖𝐿2 + ‖𝜚1∕2∇𝑣𝑗‖𝐿2

)

+ ‖(𝑀(𝜑𝜚𝑗 )(𝑡) −𝑀(𝜑(𝑡)))𝑣‖𝐿2‖𝑣 − 𝑣𝑗‖𝐿2 .

Since the term ‖∇𝑣‖𝐿2

(

‖𝜚1∕2𝑗 ∇𝑣‖𝐿2 + ‖𝜚1∕2𝑗 ∇𝑣𝑗‖𝐿2

)

is bounded, which easily follows from (71), it vanishes as 𝜚𝑗 → 0. Due to the
strong convergence 𝜑𝜚 → 𝜑 in 𝐶0([0, 𝑇 ];𝐿2(𝛺)), cf. (66), a similar argument as for (25) shows (𝑀(𝜑𝜚𝑗 )(𝑡) −𝑀(𝜑(𝑡)))𝑣 → 0 in 𝐿2(𝛺).
Thus,

𝑣𝑗 → 𝑣 in 𝐿2(𝛺) as 𝑗 → ∞.

As 𝐶∞
𝑐 (𝛺) is dense in 𝐿2(𝛺) and the family (−𝜚𝛥+𝑀(𝜑𝜚𝑗 (𝑡)))

−1 is bounded in (𝐿2), we deduce the convergence postulated in (73).
This implies

𝜃𝜚𝑗 (𝑡) = (−𝜚𝛥 +𝑀(𝜑𝜚𝑗 (𝑡)))
−1(𝑝𝜚𝑗 (𝑡) +𝑀(𝜑𝜚𝑗 (𝑡))𝛼(𝜑𝜚𝑗 (𝑡))∇ ⋅ 𝒖𝜚𝑗 (𝑡)

)

= (−𝜚𝛥 +𝑀(𝜑𝜚𝑗 (𝑡)))
−1
(

𝑝𝜚𝑗 (𝑡) +𝑀(𝜑𝜚𝑗 (𝑡))𝛼(𝜑𝜚𝑗 (𝑡))∇ ⋅ 𝒖𝜚𝑗 (𝑡) − 𝑝(𝑡) −𝑀(𝜑(𝑡))𝛼(𝜑(𝑡))∇ ⋅ 𝒖(𝑡)
)

+ (−𝜚𝛥 +𝑀(𝜑𝜚𝑗 (𝑡)))
−1
(

𝑝(𝑡) +𝑀(𝜑(𝑡))𝛼(𝜑(𝑡))∇ ⋅ 𝒖(𝑡)
)

→𝑀(𝜑)−1
(

𝑝(𝑡) +𝑀(𝜑(𝑡))𝛼(𝜑(𝑡))∇ ⋅ 𝒖(𝑡)
)

,
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where the first term vanishes due to (72) and since the compactness properties for 𝑝, 𝒖 and 𝜑 allow us to assume that without loss
f generality

𝑝𝜚𝑗 (𝑡) +𝑀(𝜑𝜚𝑗 (𝑡))𝛼(𝜑𝜚𝑗 (𝑡))∇ ⋅ 𝒖𝜚𝑗 (𝑡) → 𝑝(𝑡) +𝑀(𝜑(𝑡))𝛼(𝜑(𝑡))∇ ⋅ 𝒖(𝑡) in 𝐿2(𝛺).

n particular, 𝜃𝜚𝑗 converges to 𝑀(𝜑)−1
(

𝑝(𝑡) +𝑀(𝜑(𝑡))𝛼(𝜑(𝑡))∇ ⋅ 𝒖(𝑡)
)

= 𝜃 pointwise a.e. in 𝐿2(𝛺). Finally, we test (7e) with 𝜗𝜃𝜚𝑗 with
𝜗 ∈ 𝐶∞([0, 𝑇 ]) and apply the fundamental lemma of the calculus of variations to obtain

‖𝜃𝜚𝑗 (𝑡)‖
2
𝐿2 ≤ 𝐶‖(𝑝𝜚𝑗 +𝑀(𝜑𝜚𝑗 )𝛼(𝜑𝜚𝑗 )∇ ⋅ 𝒖𝜚𝑗 )(𝑡)‖

2
𝐿2

for almost all 𝑡 ∈ (0, 𝑇 ). Since

‖(𝑝𝜚𝑗 +𝑀(𝜑𝜚𝑗 )𝛼(𝜑𝜚𝑗 )∇ ⋅ 𝒖𝜚𝑗 )(𝑡)‖
2
𝐿2 → ‖𝑝 +𝑀(𝜑)𝛼(𝜑)∇ ⋅ 𝒖‖2

𝐿2 in 𝐿1(0, 𝑇 ),

we can apply Lebesgue’s generalized convergence theorem, concluding the proof. □

6.4. Limit process

Limit passage is now very similar to Section 5.6, with the difference that we do not have to restrict ourselves to test functions
in linear subspaces. We also point out that the regularizations 𝜚1∕2𝛥𝜑𝜚 and 𝜚∇𝜃 vanishes in the limit, which can be seen by using
the weak convergences 𝜚1∕2𝛥𝜑𝜚 ⇀ 0 and 𝜚∇𝜃𝜚 ⇀ 0 when passing to the limit in

∫𝛺𝑇
𝜚1∕2𝛥𝜑𝜚𝛥𝜁 𝑑(𝑡,𝒙) → 0 and ∫𝛺𝑇

𝜚∇𝜃𝜚𝛥𝜉 𝑑(𝑡,𝒙) → 0,

for all 𝜁 ∈ 𝐿2(0, 𝑇 ;𝐻2
𝒏 (𝛺)) and 𝜉 ∈ 𝐿2(0, 𝑇 ;𝑋(𝛺)), respectively. Keeping these differences in mind, we can pass to the limit and find

that (𝜑, 𝜇, 𝒖, 𝜃, 𝑝) satisfy the Eqs. (4a), (4b), (4d) and (4e), but as we saw in Lemma 28, we only obtain

∫𝛺𝑇
C𝜈 (𝜑)(𝜕𝑡𝒖) ∶ (𝜼) +𝑊, (𝜑, (𝒖)) ∶ (𝜼) − 𝛼(𝜑)𝑝 (∇ ⋅ 𝜼) ∗ 𝜙𝑑(𝑡,𝒙) = ∫𝛺𝑇

𝒇 ⋅ 𝜼 𝑑(𝑡,𝒙) + ∫

𝑇

0 ∫𝜞𝑵

𝒈 ⋅ 𝜼 𝑑𝑛−1 𝑑𝑡,

instead of (4c). Below, we briefly remark on how to pass to the limit in which this convolution vanishes.
Moreover, since 𝐻2(𝛺) is dense in 𝐻1(𝛺), we can infer that (4b) also holds for all 𝜁 ∈ 𝐿2(0, 𝑇 ;𝐻1(𝛺)) ∩ 𝐿∞(𝛺𝑇 ). Similarly, we

find that (4e) also holds for all 𝜉 ∈ 𝐿2(𝛺𝑇 ).
As before, the strong convergences

𝜑𝜚 → 𝜑 in 𝐶0([0, 𝑇 ];𝐿2(𝛺)),

𝒖𝜚 → 𝒖 in 𝐶0([0, 𝑇 ];𝐿2(𝛺)),

𝜃𝜚 → 𝜃 in 𝐶0([0, 𝑇 ];𝑋′(𝛺)) (74)

follow with the help of the Aubin–Lions–Simon theorem. Along with (63), this implies that the initial conditions (4f) are also fulfilled.
Lastly, we exploit weak/weak* lower semi-continuity and Fatou’s lemma on (64) to find

‖𝜑(𝑡)‖2
𝐻1 + ‖𝜓(𝜑)(𝑡)‖𝐿1 + ‖𝒖(𝑡)‖2𝑿 + ‖𝜃(𝑡)‖2

𝐿2 + ‖𝜕𝑡𝜑‖
2
𝐿2((𝐻1)′)

+ ‖𝜕𝑡𝜃‖
2
𝐿2(𝑋′)

+ ‖𝜇‖2
𝐿2(𝐻1)

+ ‖𝑝‖2
𝐿2(𝐻1)

+ ‖𝜕𝑡𝒖‖2𝐿2(𝑿)

≤ 𝐶(‖𝜑0‖
4
𝐻1 +

1
𝜀2

‖𝜓(𝜑0)‖2𝐿1 + ‖𝒖0‖4𝑿 + ‖𝜃0‖
4
𝐿2 + 1), (75)

for almost all 𝑡 ∈ (0, 𝑇 ) and some 𝐶 > 0 which only depends on the initial conditions. In particular, the right-hand side is now
independent of ‖𝜃0‖𝑋 , which will be important for more general initial conditions.

6.5. Vanishing convolution

Concerning the initial conditions, we can choose an arbitrary sequence {𝜃𝜚,0}𝜚 ⊂ 𝑋(𝛺) such that 𝜃𝜚,0 → 𝜃0 in 𝐿2(𝛺) and since the
right-hand side of (75) is independent of ‖𝜃0,𝜚‖𝑋 , we still obtain uniform a priori estimates. The embedding 𝐿2(𝛺) ↪ 𝑋′(𝛺) along
with (74) then imply that we obtain 𝜃(0) = 𝜃0 for the limit.

As we already remarked in the preliminaries, if 𝜙 is a standard convolution kernel it holds that 𝜂 ∗ 𝜙𝜚 → 𝜂 for all 𝜂 ∈ 𝐿𝑝(𝛺),
∈ [1,∞), as 𝜚 → 0. Along with the estimate ‖𝜂 ∗ 𝜙𝜚‖𝐿𝑝 ≤ ‖𝜂‖𝐿𝑝‖𝜙𝜚‖𝐿1 and the fact that ‖𝜙𝜚‖𝐿1 = 1, we obtain that

(∇ ⋅ 𝜼) ∗ 𝜙𝜚 → ∇ ⋅ 𝜼 in 𝐿2(𝛺𝑇 )

or all 𝜼 ∈ 𝐿2(0, 𝑇 ;𝑿(𝛺)). Therefore, we only need to verify that the same compactness properties as before can be deduced. Firstly,
e remark that our a priori estimates are independent of the convolution kernel 𝜙. Moreover, it is obvious that the argument for

he strong convergence of 𝑝 in 𝐿2(0, 𝑇 ;𝐿2(𝛺)) remains valid. For the strong convergence of 𝒖, we find that

|

|

|∫𝛺𝑡
[𝛼(𝜑𝑘)𝑝𝜚 − 𝛼(𝜑)𝑝](∇ ⋅ (𝒖𝜚 − 𝒖)) ∗ 𝜙𝜚 + [𝛼(𝜑𝑘)𝑝𝜚 − 𝛼(𝜑)𝑝](∇ ⋅ (𝜕𝑡𝒖𝜚 − 𝜕𝑡𝒖)) ∗ 𝜙𝜚 𝑑(𝑡,𝒙)

|

|

|

≤ 𝐶‖𝛼(𝜑𝑘)𝑝𝜚 − 𝛼(𝜑)𝑝‖𝐿2(𝐿2) + 𝜌𝒖‖𝒖𝜚 − 𝒖‖𝐿2(𝑿)‖𝜙𝜚‖𝐿∞(𝐿1)
37

≤ 𝐶‖𝛼(𝜑𝑘)𝑝𝜚 − 𝛼(𝜑)𝑝‖𝐿2(𝐿2) + 𝜌𝒖‖𝒖𝜚 − 𝒖‖𝐿2(𝑿)
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for some 𝐶 = 𝐶(𝜌𝒖) > 0 and 𝜌𝒖 > 0 sufficiently small. We emphasize that ‖𝜙𝜚‖𝐿∞(𝐿1) = 1 independently of 𝜚 > 0. Hence, a similar
estimate as in (55), but without the last line, holds with constants that are independent of the convolution kernel and we infer the
desired strong convergence for 𝒖.

Lastly, we take advantage of the identity 𝑝𝜚 = 𝑀(𝜑𝜚)(𝜃𝜚 − 𝛼(𝜑𝜚)∇ ⋅ 𝒖𝜚), which follows from (4e) and holds pointwise almost
verywhere, and deduce strong convergence for 𝜃 from the compactness properties of 𝜑𝜚, 𝒖𝜚, 𝑝𝜚.

After passing to the limit it only remains the use the pointwise identity for 𝑝 and replace the respective terms in the other
quations.

emark 30. Lastly, we point out that maximal regularity theory as applied in Section 5.3 also yields the regularity 𝒖 ∈
𝐿2(0, 𝑇 ;𝑾 1,𝑞

𝛤𝐷
(𝛺)) if 𝒖0 ∈ 𝑾 1,𝑞

𝛤𝐷
(𝛺) with 𝑞 > 2 sufficiently small, cf. Lemma 19.

For regularized problems, one can even show 𝒖𝜚 ∈ 𝐿2(0, 𝑇 ;𝑯1+𝛿
𝛤𝐷

(𝛺)), where 𝑯1+𝛿
𝛤𝐷

(𝛺) is some Bessel potential space and 𝛿 > 0.
Again, the proof relies on maximal regularity theory as well as elliptic regularity in Bessel potential spaces, cf. [48, Thm. 1]. Note
that since these arguments utilize the 𝐿∞(0, 𝑇 ;𝐻2

𝒏 (𝛺)) norm of 𝜑𝜚, we do not obtain an uniform estimate in the Bessel potential
spaces.
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Appendix. Proof of Theorem 10

The following lemma studies the inverse operators to families of perturbed autonomous abstract Cauchy-problems associated
with a family of operators {𝐴𝑖}.

Lemma 31. Assume that {𝐴𝑖 ∶ 𝑖 ∈ } ⊂ (𝐷, 𝑌 ), for some index set , is a family of linear operators such that 𝐴𝑖 ∈  and
𝐴𝑖 − 𝐴𝑗 ∈ (𝑌 ) with ‖𝐴𝑖 − 𝐴𝑗‖(𝑌 ) ≤ 𝐶 for all 𝑖, 𝑗 ∈ . Moreover, define the operator L𝐴𝑖 as

𝐷(L𝐴𝑖 ) = {𝑢 ∈ MR(0, 𝑇 ) ∶ 𝑢(0) = 0} where MR(𝑎, 𝑏) ∶= 𝑊 1,𝑝(𝑎, 𝑏; 𝑌 ) ∩ 𝐿𝑝(𝑎, 𝑏;𝐷),
and ‖ ⋅ ‖𝑀𝑅 ∶= ‖ ⋅ ‖𝑊 1,𝑝(𝑎,𝑏;𝑌 ) + ‖ ⋅ ‖𝐿𝑝(𝑎,𝑏;𝐷),

L𝐴𝑖𝑢(𝑡) = 𝜕𝑡𝑢(𝑡) + 𝐴𝑖𝑢(𝑡).

Then, there exists a constant 𝑀 ≥ 0 such that

‖(𝜆 + L𝐴𝑖 )
−1
‖(𝐿𝑝(𝑎,𝑏;𝑌 ),MR(𝑎,𝑏)) ≤𝑀 and ‖(1 + 𝜆)(𝜆 + L𝐴𝑖 )

−1
‖(𝐿𝑝(𝑎,𝑏;𝑌 )) ≤𝑀

for all intervals (𝑎, 𝑏) ⊂ (0, 𝑇 ), all 𝑖 ∈  and all 𝜆 ≥ 0.

Proof. From the arguments in [45, Sec. 1] it follows for all 𝑖 ∈  that the operators −L𝐴𝑖 have empty spectrum and generate
nilpotent 𝐶0-semigroups (𝑇 𝑖(𝑡))𝑡≥0 on 𝐿𝑝(0, 𝑇 ; 𝑌 ). In particular, there exist constants 𝜔𝑖 ≥ 0 and 𝑀𝑖 ≥ 1 such that, cf. [59, Thm. 2.2],

‖𝑇 𝑖(𝑡)‖(𝐿𝑝(0,𝑇 ;𝑌 )) ≤𝑀𝑖 𝑒
𝜔𝑖𝑡 for all 𝑡 ≥ 0.

For any two indices 𝑖, 𝑗 ∈ , we compute for all 𝑢 ∈ 𝐷(−𝐴𝑖 ) = 𝐷(−𝐴𝑗 )

(L𝐴𝑖 − L𝐴𝑗 )𝑢(𝑡) = (𝐴𝑖 − 𝐴𝑗 )𝑢(𝑡).

Since 𝐷(−𝐴𝑖 ) is dense in 𝐿𝑝(0, 𝑇 ; 𝑌 ) and 𝐴𝑖 − 𝐴𝑗 ∈ (𝑌 ), this implies L𝐴𝑖 − L𝐴𝑗 ∈ (𝐿𝑝(0, 𝑇 ; 𝑌 )) with

‖L𝐴𝑖 − L𝐴𝑗 ‖(𝐿𝑝(0,𝑇 ;𝑌 )) ≤ 𝐶

Therefore, −L𝐴𝑗 = −L𝐴𝑖 + (L𝐴𝑖 − L𝐴𝑗 ) is a perturbation of the generator of a 𝐶0-semigroup by a bounded, linear operator and [60,
Thm. 3.2] implies

‖𝑇 𝑗 (𝑡)‖(𝐿𝑝(0,𝑇 ;𝑌 )) ≤𝑀𝑖 𝑒
𝜔∗𝑡 for all 𝑡 ≥ 0,

where 𝜔∗ = 𝜔𝑖 +𝑀𝑖‖L𝐴𝑖 − L𝐴𝑗 ‖(𝐿𝑝(0,𝑇 ;𝑌 )) ≤ 𝜔𝑖 + 𝐶 . Hence, there exists some constant 𝐶 > 0 such that

sup
𝑖∈

‖𝑇 𝑖(𝑡)‖(𝐿𝑝(0,𝑇 ;𝑌 )) ≤ 𝐶
38

𝑡∈[0,𝑇 ]
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and since the semigroups (𝑇 𝑖(𝑡))𝑡≥0 are nilpotent, i.e. 𝑇 𝑖(𝑡) = 0 for all 𝑡 > 𝑇 and all 𝑖 ∈ , we find some 𝑀 ≥ 1 such that

‖𝑇 𝑖(𝑡)‖(𝐿𝑝(0,𝑇 ;𝑌 )) ≤𝑀 𝑒−𝑡 for all 𝑡 ≥ 0

or all 𝑖 ∈ . The generation theorem for semigroups [61, II Thm. 3.8] now yields

‖(𝜆 + L𝐴𝑖 )−1‖(𝐿𝑝(0,𝑇 ;𝑌 ),MR(0,𝑇 )) ≤
𝑀
𝜆 + 1

≤𝑀,

‖(1 + 𝜆)(𝜆 + L𝐴𝑖 )−1‖(𝐿𝑝(0,𝑇 ;𝑌 )) ≤𝑀

for all 𝜆 ≥ 0. Now the result follows analogously to [45, Lem. 1.2]. □

Now, we fix an operator 𝐴 ∈ (𝐷, 𝑌 ) and perturb the associated abstract Cauchy-problem with a time-dependent, operator
valued, function 𝐵. This lemma is a modification of [45, Prop. 1.3] and includes an additional bound for the solution 𝑢 in terms of
the right-hand side and the initial value.

Lemma 32. Let (𝑎, 𝑏) ⊂ (0, 𝑇 ) and 𝐴 ∈ (𝐷, 𝑌 ) with 𝐴 ∈ . Suppose that 𝐵 ∶ (𝑎, 𝑏) → (𝐷, 𝑌 ) is strongly measurable and that there
xists some 𝜂 ≥ 0 such that

‖𝐵(𝑡)𝑦‖𝑌 ≤ 1
2𝑀

‖𝑦‖𝐷 + 𝜂‖𝑦‖𝑌

for all 𝑦 ∈ 𝐷, 𝑡 ∈ (𝑎, 𝑏), where 𝑀 is the constant from Lemma 31. Then, the abstract Cauchy problem

𝜕𝑡𝑢 + 𝐴𝑢 + 𝐵(𝑡)𝑢 = 𝑓 a.e. on (𝑎, 𝑏), 𝑢(𝑎) = 𝑥 (76)

has a unique solution for all 𝑥 ∈ (𝑌 ,𝐷) 1
𝑝′ ,𝑝

, 𝑓 ∈ 𝐿𝑝(𝑎, 𝑏; 𝑌 ) where 𝑝 ∈ (1,∞) and 𝑝′ = 𝑝
𝑝−1 . Moreover, there exists a constant 𝐶 > 0 such

that

‖𝑢‖MR(𝑎,𝑏) ≤ 𝐶‖𝑦‖(𝐷,𝑌 ) 1
𝑝′
,𝑝
+ 4𝑀e|𝑏−𝑎|𝜆‖𝑓‖𝐿𝑝(𝑎,𝑏;𝑌 ),

where 𝜆 ≥ 0 only depends on 𝑀 .

The following proof closely follows the arguments by Arendt et al. in [45].

Proof. For now we assume 𝑦 = 0 and define the operator 𝐵̃ ∈ (MR(𝑎, 𝑏), 𝐿𝑝(𝑎, 𝑏; 𝑌 )) by

(𝐵̃𝑢)(𝑡) = 𝐵(𝑡)𝑢(𝑡).

he assumption on 𝐵 along with Minkowski’s inequality then gives rise to

‖𝐵̃𝑢‖𝐿𝑝(𝑎,𝑏;𝑌 ) ≤
(

∫

𝑏

𝑎
‖𝐵(𝑡)𝑢(𝑡)‖𝑝𝑌 𝑑𝑡

)

1
𝑝
≤
( 1
2𝑀

‖𝑢‖𝐿𝑝(𝑎,𝑏;𝐷) + 𝜂‖𝑢‖𝐿𝑝(𝑎,𝑏;𝑌 )
)

.

Defining the operator L analogously to above, we see with the help of Lemma 31 that

‖𝐵̃(𝜆 + L)−1𝑓‖𝐿𝑝(0,𝑇 ;𝑌 ) ≤
( 1
2𝑀

‖(𝜆 + L)−1𝑓‖𝐿𝑝(𝑎,𝑏;𝐷) + 𝜂‖(𝜆 + L)−1𝑓‖𝐿𝑝(𝑎,𝑏;𝑌 )
)

≤
( 1
2𝑀

‖(𝜆 + L)−1𝑓‖MR(𝑎,𝑏) +
𝜂𝑀
1 + 𝜆

‖𝑓‖𝐿𝑝(𝑎,𝑏;𝑌 )
)

≤ 1
2
‖𝑓‖𝐿𝑝(𝑎,𝑏;𝑌 ) +

𝜂𝑀
1 + 𝜆

‖𝑓‖𝐿𝑝(𝑎,𝑏;𝑌 )

for all 𝜆 ≥ 0. In particular, there exists some 𝜆 = 𝜆(𝑀, 𝜂) ≥ 0 such that

‖𝐵̃(𝜆 + L)−1‖(𝐿𝑝(0,𝑇 ;𝑌 )) ≤
3
4
,

hich implies that the operator 𝐼 + 𝐵̃(𝜆 + L)−1 is invertible. A simple calculation further yields the invertibility of

𝜆 + L + 𝐵̃ = (𝐼 + 𝐵̃(𝜆 + L)−1)(𝜆 + L) ∈ (𝐷(L), 𝐿𝑝(𝑎, 𝑏; 𝑦))

and therefore the unique solvability of the problem

𝜕𝑡𝑣 + (𝐴 + 𝜆)𝑣 + 𝐵(𝑡)𝑣 = 𝑔 a.e. on (𝑎, 𝑏), 𝑣(𝑎) = 0

for all 𝑔 ∈ 𝐿𝑝(𝑎, 𝑏; 𝑌 ). Moreover, it holds that

(𝜆 + L + 𝐵̃)−1 = (𝜆 + L)−1(𝐼 + 𝐵̃(𝜆 + L)−1)−1,

from which we deduce

‖(𝜆 + L + 𝐵̃)−1‖(𝐿𝑝(𝑎,𝑏;𝑌 );𝐷(L)) ≤ ‖(𝜆 + L)−1‖(𝐿𝑝(𝑎,𝑏;𝑌 ),MR(𝑎,𝑏))‖(𝐼 + 𝐵̃(𝜆 + L)−1)−1‖(𝐿𝑝(𝑎,𝑏;𝑌 )) ≤ 4𝑀.
39
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Hence,

‖𝑣‖MR(𝑎,𝑏) ≤ 4𝑀‖𝑔‖𝐿𝑝(𝑎,𝑏;𝑌 ).

To get back to our original problem, we consider 𝑔(𝑡) = e−𝜆(𝑡−𝑎)𝑓 (𝑡) and 𝑦 = 0. Then, the function 𝑢(𝑡) = e𝜆(𝑡−𝑎)𝑣(𝑡) is the unique
olution of (76) for 𝑥 = 0 with

‖𝑢‖MR(𝑎,𝑏) ≤ e|𝑏−𝑎|𝜆‖𝑣‖MR(𝑎,𝑏) ≤ 4𝑀e|𝑏−𝑎|𝜆‖𝑓‖𝐿𝑝(𝑎,𝑏;𝑌 ).

In order to treat non-trivial initial conditions, i.e. 𝑦 ∈ (𝐷, 𝑌 ) 1
𝑝′ ,𝑝

, we introduce the space

Tr ∶= {𝑢(𝑎) ∶ 𝑢 ∈ MR(𝑎, 𝑏)} with the norm ‖𝑥‖TR = inf{‖𝑢‖MR(𝑎,𝑏) ∶ 𝑦 = 𝑢(𝑎)} (77)

nd note that, cf. [62, Prop. 1.2.10],

(𝐷, 𝑌 ) 1
𝑝′ ,𝑝

≅ Tr. (78)

oreover, for any 𝑤 ∈ MR(𝑎, 𝑏) with 𝑤(𝑎) = 𝑦, the results from above give rise to a unique 𝑣 ∈ MR(𝑎, 𝑏) such that

𝜕𝑡𝑣 + (𝐴 + 𝐵(𝑡))𝑣 = −𝜕𝑡𝑤 − (𝐴 + 𝐵(𝑡))𝑤 + 𝑓 a.e. on (𝑎, 𝑏), 𝑣(𝑎) = 0.

Therefore, 𝑢 ∶= 𝑣 +𝑤 is the unique solution of (76) and it holds that

‖𝑢‖MR(𝑎,𝑏) ≤ ‖𝑣 +𝑤‖MR(𝑎,𝑏) ≤ 4𝑀e|𝑏−𝑎|𝜆‖ − 𝜕𝑡𝑤 − (𝐴 + 𝐵(𝑡))𝑤 + 𝑓‖𝐿𝑝(𝑎,𝑏;𝑌 ) + ‖𝑤‖𝐿𝑝(𝑎,𝑏;𝑌 )
≤ 𝐶‖𝑤‖MR(𝑎,𝑏) + 4𝑀e|𝑏−𝑎|𝜆‖𝑓‖𝐿𝑝(𝑎,𝑏;𝑌 ).

ince this holds for all 𝑤 ∈ MR(𝑎, 𝑏) with 𝑤(𝑎) = 𝑦, definition (77) and (78) lead to

‖𝑢‖MR(𝑎,𝑏) ≤ 𝐶‖𝑥‖(𝐷,𝑌 ) 1
𝑝′
,𝑝
+ 4𝑀e|𝑏−𝑎|𝜆‖𝑓‖𝐿𝑝(𝑎,𝑏;𝑌 ),

which concludes the proof. □

As an immediate consequence, we obtain Theorem 10.
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