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Abstract
Historical resurveys represent a unique opportunity to analyze vegetation dynamics 
over longer timescales than is typically achievable. Leveraging the oldest historical 
dataset of vegetation change in the Bavarian Alps, Germany, we address how environ-
mental conditions, vegetation composition, and functional diversity in the calcareous 
grasslands of the Schachen region have changed across different elevational ranges 
over an 83-year timeframe. We document changes in regional average temperature 
and precipitation. We use indicator values (IV) for species' ecological preferences and 
their palatability to grazers to infer local conditions (temperature, soil moisture/fertility, 
and grazing regime). We further estimate changes in temporal beta-diversity and func-
tional trait community composition between historical (1936) and contemporary (2019) 
surveys in two elevational (subalpine and alpine) belts. Both subalpine and alpine sites 
became drier; subalpine sites also became warmer with more palatable plants. Species 
occurrence and abundance in the Schachen region has not changed substantially over 
time despite changing macroclimate and local environmental conditions under anthro-
pogenic change. Yet these grasslands have experienced several “invisible” changes in 
functional composition over the past 80 years. As the Schachen has become drier, spe-
cies with traits related to drought tolerance and animal-based dispersal have increased 
in dominance. Specifically, in alpine sites, community-weighted means revealed that 
with low fecundity, higher potential for endo-  and epizoochory (seed dispersal via 
animal gut and fur, respectively), higher foliar frost tolerance, and deeper dormancy 
increased in dominance. Similar trends were found for increasing dominance of low 
fecundity, epizoochorous species in subalpine sites. Vegetation data from resurveying 
historical plots in combination with changes in local conditions, classic biodiversity in-
dices, and functional trait indices can provide more holistic insights into changes in the 
environment and potential impacts of those environmental changes on long-term plant 
community and functional diversity.
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1  |  INTRODUC TION

Mountain landscapes, consisting of a mosaic of pastures, meadows, 
forests, and diverse microhabitats that span montane to alpine veg-
etation belts (Körner & Hiltbrunner, 2021), serve as a reservoir of 
biodiversity (Britton et al., 2009). They harbor specialized biota, in-
cluding species adapted to cold, harsh environments at higher el-
evations; species tolerant of intense competition in more densely 
vegetated, lower-elevation habitats; and endemic species resulting 
from geographic isolation and glacial refugia (Körner, 1995; Razgour 
et al., 2015). The topographical complexity of mountainous regions 
(e.g., spatial variability in slope and aspect) also results in steep spa-
tial gradients in environmental conditions (Graae et al., 2018), allow-
ing many species to coexist in a small area and promoting high spatial 
turnover of spatial species composition (Bjorkman et  al.,  2018; 
Elmendorf et  al.,  2012; Jurasinski & Kreyling,  2007). Mountain 
landscapes may also be subject to high temporal turnover in spe-
cies composition because they experience anthropogenic changes, 
including climate change, land use change, grazing pressure, and eu-
trophication (higher soil nutrient loads due to a combination of ni-
trogen deposition and fertilization) (Alexander et al., 2016; Dainese 
et al., 2017; Petitpierre et al., 2016).

Mountain habitats are particularly vulnerable to anthropogenic 
changes. They often experience more dramatic warming than lower 
elevation habitats (Rumpf et al., 2022). For example, in the European 
Alps, temperatures have increased by roughly twice the global mean 
(Kotlarski et  al.,  2023). Temperate mountains have also been sub-
ject to changes in the management of herbivores and increased 
development and recreation (Körner, 1999). Historically, land scar-
city caused humans to take livestock to graze in grasslands above 
treeline in temperate mountain ranges such as the European Alps 
(Gilck & Poschlod, 2019; Mayer & Erschbamer, 2017), the Scottish 
Highlands (Van der Wal et  al.,  2003), and the Spanish Pyrennes 
(Muñoz-Ulecia et  al.,  2024). This shift in grazing management in-
creases herbivore pressure and nitrogen deposition impacts in al-
pine meadows (Van der Wal et  al.,  2003), although alpine grazing 
pressure has since declined with the onset of modern dairy farming 
(Marini et al., 2011). Climate and land use change can result in range 
expansions of more competitive, shrubby, thermophilous, and/
or non-native species into higher-elevation habitats, particularly if 
disturbances like grazing open new niches (Gottfried et  al.,  2012; 
Iseli et  al.,  2023; Lamprecht et  al.,  2018; Rosbakh et  al.,  2014; 
Steinbauer et al., 2018). Climate and land use change can also result 
in local extinction of alpine species (Guisan & Theurillat, 2000; Pauli 
et al., 2012; Steinbauer et al., 2018) and homogenization of alpine re-
gions (Haider et al., 2018; Jurasinski & Kreyling, 2007). However, the 
effects of climate and land use change on vegetation composition 
can vary with elevation (Saatkamp et  al.,  2023). For this example, 

we refer to three elevational belts: subalpine habitat (forest and 
grasslands located below treeline), the low-elevation alpine mead-
ows (grasslands located just above treeline), and higher-elevation 
alpine habitats (harsher, colder habitats located above treeline at 
a greater distance from subalpine species pools). In this case, low-
elevation alpine meadows might experience increases in plant cover 
and diversity due to subalpine species readily migrating into suitable 
habitat just above treeline. Low-elevation alpine meadows might 
also show increasing abundance of already-present thermophilic 
species. In contrast, high-elevation alpine meadows might experi-
ence less colonization by subalpine species than lower-elevation 
alpine meadows due to dispersal limitation, longer distances from 
the subalpine species pools, and more unfavorable conditions for 
species establishment (Dirnböck et al., 2011; Rosbakh et al., 2014; 
Smithers et al., 2020). Alternatively, low-elevation alpine meadows 
could experience less diversity change if there are few available gaps 
for newly arrived species (Vittoz et al., 2009). However, few studies 
have addressed changes in vegetation across multiple elevational 
belts within mountain habitats (Rosbakh et al., 2014).

Monitoring changes in montane vegetation requires long-
term monitoring and knowledge of baseline conditions (Kapfer 
et al., 2016). However, we often lack the comprehensive and spa-
tiotemporally replicated datasets that are required to study bio-
diversity change through time (Lindholm et  al.,  2021). Historical 
biodiversity records (e.g., recordings from permanent plots or 
phytosociological surveys) can provide such an indicator of base-
line conditions prior to intensive anthropogenic change because 
they document the presence of alpine species that are at high 
risk of loss under current and future conditions. However, very 
few long-term biodiversity monitoring programs exist in montane 
environments, and those that do are often restricted to the last 
few decades (e.g., GLORIA, which began operations in the early 
2000s; www.​gloria.​ac.​at). Alternatively, we can revisit plots set up 
by independent parties for one-time botanical surveys in the past 
(historical plots; Kapfer et al., 2016). These resurveys have gained 
attention in recent years (Hédl et  al.,  2017) despite their limita-
tions (e.g., these datasets are often only based on two or three 
timepoints and are often missing metadata; Tessarolo et al., 2017). 
Here, we highlight three benefits of historical resurveys for quan-
tifying biodiversity change over time; this list is not exhaustive. 
First, their potentially broad temporal scales can allow us to 
test for temporal variation in species composition, or changes in 
species occupancy over time. In particular, the Temporal Beta-
Diversity Index (TBI; Legendre, 2019) can decompose changes in 
species composition into losses and gains at particular sites and 
potentially guide management by pointing out locations declin-
ing in diversity vs. those that are temporally stable. Second, re-
surveys of historical plots along elevational gradients can detect 

T A X O N O M Y  C L A S S I F I C A T I O N
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altered dynamics in different vegetation belts (e.g., subalpine vs. 
alpine; Gazol et al., 2017; Kapfer et al., 2016; Løkken et al., 2020; 
Spasojevic & Suding,  2012; Virtanen et  al.,  2010; Wilson & 
Nilsson,  2009). Finally, historical resurveys can be used to infer 
changes in community functional composition (e.g., shifts in func-
tional trait mean and variation values).

Shifts in functional composition should reflect the main adap-
tive strategies in response to changing environmental conditions 
(Cerabolini et al., 2010; de Bello et al., 2013; Magurran, 2021; McGill 
et  al.,  2006). For example, increased grazing might result in de-
creasing leaf nitrogen content and thinner leaves (i.e., less palatable 
species; Freitag et al., 2020). In mountains, we might expect alpine 
species adapted to short growing seasons with frequent and severe 
freezing events, and shallow, nutrient-poor soils to disappear from 
the community as conditions warm, seasons lengthen, and nutrient 
inputs increase. These factors might correspond with the disappear-
ance of short species with smaller leaves and lower specific leaf area 
(SLA), as many alpine plants grow low to the ground to cope with 
low temperatures and have thicker leaves to minimize water loss 
and frost damage (Cruz-Maldonado et al., 2021; Onoda et al., 2017; 
Wright et al., 2004).

Here, we ask how vegetation composition and functional di-
versity changes over an 83-year period (1936–2019) across two 
elevational belts in the Wetterstein Mountains (North Calcaerous 
Alps), Germany, using resurveys of semi-permanent plots. Baseline 
data were recorded in 1936–1937 by Niilo Söyrinki (Söyrinki, 
1954) as a series of phytosociological surveys (‘releves’), and a 
resurvey was conducted in 2019. We aim to address how envi-
ronmental conditions (temperature, soil moisture and fertility, and 
grazing regime), species richness and community composition, and 
community functional trait composition have changed across sub-
alpine and alpine communities over the 83-year period. We tested 
three hypotheses:

H1. Both subalpine and alpine plots become 
warmer, drier, and more nutrient-rich with more 
palatable (i.e., increasing leaf N content and thinner 
leaves) plants over time due to climate warming, 
increased nitrogen eutrophication, and declines in 
traditional grazing at high elevations in the study 
area.

H2. Temporal beta-diversity in both subalpine 
and alpine site experience species losses and gains 
over time as a result of the putative environmental 
changes suggested in H1. Specifically, we hypothesize 
that, in accordance with expected increased warming 
and eutrophication and decreased grazing pressure in 
the Schachen, species losses will drive any observed 
changes in temporal beta-diversity.

H3. Community-level functional trait com-
position shifts to favor traits associated with 

“thermophilisation” (i.e., warmer and drier conditions; 
e.g., increased plant height, increased specific leaf 
area (thinner leaves), and decreased frost-resistance), 
land use changes (e.g., increased specific leaf area and 
decreased endo- and epizoochory in response to de-
creased grazing pressure), and increased eutrophica-
tion (e.g., increased specific leaf area and leaf nitrogen 
content; Table 1).

2  |  MATERIAL S AND METHODS

2.1  |  Study site

The Schachen area of the Wetterstein Mountains, Bavarian 
Alps, Germany (47.4203727, 11.1135369) extends from 1150 to 
2630 m a.s.l., with treeline located at approximately 1800–1850 m. 
The Schachen area experiences a typical mountain climate, show-
ing a large decrease in mean annual air temperature from 7.2°C in 
Garmisch-Partenkirchen (708 m a.s.l.) to −4.3°C at the Zugspitze, a 
2962 m high summit 10.5 km west of the Schachen area. Mean annual 
precipitation in this area ranges between 1100 and 2150 mm year−1 
(Deutscher Wetterdienst, www.​dwd.​de).

The non-forest vegetation mainly consists of species-rich cal-
careous grasslands on nutrient-poor, shallow soils. The grasslands 
of the montane belt (800–1400 m) are dominated by tall forbs and 
grasses, which are replaced by sedges, short-statured herbs, and 
dwarf shrubs in the subalpine (1400–1900 m) and alpine (1900–
2600 m) belts as elevation increases.

The Schachen's subalpine and alpine grasslands are grazed by 
cattle (mainly montane-subalpine belts, May–September) and sheep 
(almost exclusively alpine belt, mid-July to late-September), begin-
ning in 1726. The density of grazing in the subalpine grasslands has 
decreased over time (100 animals total in 1726, 80 in the 1930s, 
50 in the 2010s; pers. comm., Garmisch-Partenkirchen district ad-
ministration). Two residences, the Meilerhütte (2366 m a.s.l.) and the 
Schachenhaus (1867 m a.s.l.), were constructed in the late 1800s, 
and the area has since opened to recreation (Figure 1).

2.2  |  Historical dataset

Niilo Söyrinki, a Finnish botanist (1907–1991), surveyed 88 plots 
across the Schachen in 1936–1937 (Söyrinki, 1954), following the 
Hult-Sernander-Du Rietz scale (Du Rietz,  1921). In 2019, we re-
surveyed 43 phytosociological plots spanning seven vegetation 
communities defined by Söyrinki, following methods in Braun-
Blanquet (1966) (see Table S1 for variable conversion between sur-
vey methods). The seven communities can be broadly categorized 
as subalpine (1800–1950 m a.s.l.) or alpine (2200–2340 m a.s.l.) 
(Table S2; Figure S1). Sample sizes did not allow for analyses of trends 
in species or trait composition within each of the seven community 
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types. Historical surveys included precise descriptions of land-
marks, elevation, and topography, allowing reliable re-identification 
of “semi-permanent” plots in the field (Lawesson,  2000; Rosbakh 
et  al.,  2014). This approach, without precise georeferencing 
data, is commonly used for historical relevés (Bakker et  al.,  1996; 
Hédl,  2004; Kudernatsch,  2005; Ross et  al.,  2010; Windmaiβer & 
Reisch, 2013). Although the situation of the plots may not be precise, 
these semi-permanent plots were in the same locality and commu-
nity as the original plots (Rosbakh et al., 2014). Plot sizes ranged from 
1 to 25 m2; we retained historical plot size during re-surveys. We 
excluded historical plots in areas that are frequently disturbed by 

descending rocks, floods, and avalanches. Plant taxonomy was uni-
fied using nomenclature in Schönfelder and Bresinky (1990).

2.3  |  Environmental data

We obtained data on air temperature (2 m above the ground) and pre-
cipitation from the closest weather station ‘Zugspitze’ located 11 km 
west of the Schachen area at 2962 m a.s.l. (www.​dwd.​de). We aver-
aged temperature and precipitation data across the growing season, 
which we considered the growing season to be April–September, 

TA B L E  1 Plant functional traits (grouped as vegetative or generative), units, their function (following de Bello et al., 2013; Weiher 
et al., 2009), and their expected response to changes in temperature, eutrophication, land use (largely increased grazing by cattle and sheep).

Trait (units) Function Response

Vegetative

Plant height (m) Competitive ability, stress tolerance, stress 
avoidance

Temperature (+), eutrophication (+), land use change (+/−)

Specific leaf area (SLA) (m2 kg−1) Relative growth rate, resource acquisition, 
stress tolerance, leaf longevity

Temperature (+), eutrophication (+), land use change (+)

Leaf frost tolerance (%) Leaf longevity, stress tolerance Temperature (+/−)

Leaf nitrogen (N) content (mg g−1) Maximum photosynthetic rate, fecundity Eutrophication (+)

Generative

Seed mass (mg) Dispersal distance, longevity in seed bank, 
establishment success

Temperature (+), eutrophication (+), land use change (+/−)

Seed production (numeric) Establishment success, fecundity Temperature (+/−), eutrophication (+), land use change 
(+/−)

Seed terminal velocity (falling 
speed) (m s−1)

Dispersal distance Temperature (+/−), eutrophication (+/−), land use change 
(+/−)

Seed dormancy (0/1) Establishment success, longevity in seed 
bank

Temperature (+)

Seed dispersal via attachment to fur 
(epizoochory) or animal ingestion 
(endozoochory)

Dispersal distance Land use change (−)

Note: + indicates expected positive response; − indicates expected negative response; +/− indicates an expected response but no a priori hypothesis 
for direction.

F I G U R E  1 The Schachenhaus (1866 m a.s.l.) in 1936 (left) and 2019 (right).
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during which the majority of (sub)alpine plants grow, flower, fruit, 
and senesce.

2.4  |  Plant functional trait data

We selected 10 functional traits for each of the 194 species recorded 
in both the historical (1936) and recent (2019) surveys. Each trait po-
tentially affects plant fitness under environmental changes in upland 
ecosystems (Table 1; Pellissier et al., 2010; Rosbakh et al., 2022). The 
traits were sampled either in the study communities or in plots with 
similar ecological conditions (e.g., elevation, soil properties, grazing). 
For trait measurements, we collected 10–30 individual plants per 
species (depending on the trait of interest), collected at least 2 m 
away from each other, from the site where the species is most abun-
dant (i.e., under optimal ecological conditions; Rosbakh et al., 2022). 
This approach does not account for intraspecific trait variability, but 
instead quantifies a fixed species mean trait value. At this small spa-
tial scale, we do not anticipate substantial amounts of intraspecific 
trait variability. Trait measurements followed standardized protocols 
(Kleyer et  al.,  2008; Pérez-Harguindeguy et  al.,  2013). Seed dor-
mancy data were obtained from Baskin and Baskin (2014), Rosbakh 
et al. (2020), and Nikolaeva et al. (1985).

2.5  |  Statistical analysis

2.5.1  |  Environmental change over eight decades

To assess environmental change at the study site, we first fitted two 
separate ordinary least squares regressions in the nlme R package 
(Pinhiero et al., 2023) to test for temporal trends in mean growing 
season temperature and precipitation. We included both linear and 
quadratic fixed effects of year in the models to account for potential 
nonlinearity in the climate data. We note that this approach does not 
account for potential differences in climate change between subal-
pine vs. alpine sites, but finer-scale climate data (at the plot level) is 
not currently available. Instead, we use ecological indicator values 
(see below) to assess changes in local conditions of subalpine vs. al-
pine sites based on shifts in local species' preferences.

We estimated changes in local soil conditions for subalpine vs. 
alpine sites during the study period using Landolt Indicator Values 
(IV). Landolt's IVs aim to semi-quantitatively describe the most fre-
quent association of a given set of species with environmental con-
ditions (Scherrer & Körner, 2011) Landolt's IVs score the strength 
of a species' relationship with local environmental variables on a 
scale of 1 (low) to 5 (high). These scores are then weighted by each 
species' niche breadth, allowing for a community mean estimate of 
Landolt's IVs (Ivanova & Zolotova, 2023). We used Landolt's T as a 
proxy for mean soil and surface temperature after snowmelt, where 
higher values indicate warmer growing season conditions (Landolt 
et  al.,  2010; Scherrer & Körner,  2011). Landolt's F is a proxy for 
soil moisture, with higher values indicating wetter growing season 

conditions. Landolt's N is a proxy for soil fertility, with higher val-
ues indicating high soil nutrient levels during the growing season. 
IVs are strongly correlated with directly measured soil tempera-
ture (Scherrer & Körner, 2011), nutrients (N, P, and K) and moisture 
(Rosbakh & Poschlod, 2021) in montane ecosystems. We opted for 
these proxies due to the lack of corresponding long-term in situ ob-
servations during the study period.

We used an indicator value of forage quality (FQ; Briemle 
et al., 2002), to infer potential long-term changes in grazing regime at 
subalpine vs. alpine sites. FQ is a rating of plant palatability based on 
field observations ranging from 1 (low forage quality) to 9 (high forage 
quality). FQ has been shown to be a reliable predictor for cattle (Pauler 
et al., 2020) and sheep plant species selection (Mládek et al., 2013). We 
hypothesized that changes in grazing density and/or intensity would 
result in corresponding changes in FQ values over time (e.g., smaller FQ 
values at more intensive grazing). Values for several (sub)alpine species 
missing in Briemle et al. (2002) were supplemented using information 
about their forage quality in Stebler and Schröter (1889).

For every pair of historical-recent vegetation plots we calculated 
the community-weighted mean IV using the fd R package (Laliberté 
et al., 2014). Changes in IV-based environmental conditions in the sub-
alpine and alpine plots over the past eight decades were estimated 
using linear mixed models. We conducted separate models for each 
environmental factor (temperature, soil moisture, nutrients, and forage 
quality). Each model included the relevant IV as the response variable 
and survey year (1936 vs. 2019) as the predictor. We included affilia-
tion with Söyrinki's seven vegetation communities as a random factor. 
Because of the relatively small number of replicate plots and distinct 
ecological conditions (e.g., environmental factors, size and composition 
of species pools), all analyses were conducted for subalpine and alpine 
sites separately. All model assumptions were met in all cases.

2.5.2  |  Temporal changes in beta-diversity

Temporal changes in species occurrence and abundance in subalpine 
vs. alpine sites were estimated using the Temporal Beta-Diversity 
Index (TBI; Legendre, 2019; Lindholm et al., 2021). TBI is a dissimi-
larity index (Sørensen for presence/absence and Ružička for abun-
dance) that measures changes in community composition between 
two points of time and decomposes dissimilarities (turnover) into 
loss and gain components. TBI also tests for significant differences 
between gains and losses, thereby indicating the overall direction of 
change in assemblages. We calculated TBI using the TBI and tpaired.
krandest functions from adespatial R package (Dray et  al.,  2019) 
under 9999 permutations.

2.5.3  |  Temporal changes in community functional 
trait composition

To assess potential changes in functional composition of sub-
alpine vs. alpine sites between 1936 and 2019, we calculated 
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community-weighted means (CWMs) and functional diversity (FD), 
two commonly used metrics to infer community assembly rules 
(Ricotta & Moretti,  2011). The CWM of a community is the aver-
age trait value weighted by species relative abundance. It mainly 
reflects the trait value of the dominant species in a community and 
thus describes the main adaptation strategy to local environmental 
conditions (de Bello et al., 2021). FD reflects trait convergence or 
divergence (i.e., a decrease or increase in trait diversity compared 
to a null expectation) and was calculated using Rao's quadratic en-
tropy (Rao,  1982). For the CWM and FD calculations, we used a 
species abundance table from both historical and recent surveys, a 
functional trait table consisting of the 10 traits for all 187 species 
found in the 1930s and 2010s, and an environmental variables table 
consisting of survey year and vegetation type (subalpine vs. alpine). 
The changes in CWM and FD values between the historic and recent 
surveys were estimated using linear mixed models as described for 
IVs above.

All statistical analyses were conducted in R 4.3.0 (R Core 
Development Team, 2023).

3  |  RESULTS

3.1  |  Environmental change in the Schachen

April–September temperatures increased by approximately 2°C 
over the past eight decades, with a distinctive linear increase from 
the 1980s onwards (Table S3; Figure 2a). April–September precipi-
tation displayed relatively high intradecadal variability but did not 
change significantly during the study period (Table S3; Figure 2b).

Changes in Landolt Indicator Values (IVs) revealed moderate but 
significant thermophilisation of subalpine plots (Table S4). Landolt's 
T increased from 2.4 ± 0.1 in 1936 to 3.1 ± 0.1 in 2019 (Figure 3a). 

In contrast, local thermal conditions did not change significantly 
in the alpine plots. Both subalpine and alpine plots demonstrated 
weak yet significant decreases in soil moisture, as shown by a de-
crease in Landolt's F from 3.1 ± 0.2 to 3.0 ± 0.1 and from 2.9 ± 0.2 
to 2.7 ± 0.1 from 1936 to 2019 in subalpine vs. alpine plots, respec-
tively (Figure 3b). Soil fertility (Landolt's N) did not change signifi-
cantly during the study period (Figure 3c). Subalpine, but not alpine, 
plots increase in forage quality over time, with an increase in FQ 
from 2.9 to 3.2 between 1936 and 2019 (Figure 3d).

3.2  |  Temporal changes in beta-diversity

We detected no temporal turnover in species occurrence in ei-
ther subalpine (losses = 0.23, gains = 0.26, p = .50) nor alpine plots 
(losses = 0.21, gains = 0.29, p = .07; Figure  4a). Species abundance 
decreased in subalpine plots (losses = 0.42, gains = 0.29, p = .003; 
Figure 4b), while species abundance remained unchanged in alpine 
plots (losses = 0.34, gains = 0.39, p = .11; Figure 4b).

3.3  |  Temporal changes in community functional 
trait composition

Comparisons of community-weighted means (CWMs) and Rao's 
functional diversity (FD) between the historic and the recent sur-
veys revealed several changes in functional trait composition in both 
subalpine and alpine sites (Table  2). Using CWMs, the dominance 
of species producing fewer seeds with a high potential for epi- and 
endozoochory significantly moderately increased in alpine sites over 
the last eight decades. Similar trend for seed production and epi-
zoochory was detected for the subalpine sites. Additionally, species 
with higher values for foliar frost-tolerance and dormancy depth (i.e., 

F I G U R E  2 Growing season temperature increases while precipitation remains stable over eight decades in the Schachen area. Changes 
in average growing season (April–September) (a) air temperature (°C) and (b) precipitation (mm year−1). Blue points show annual means, blue 
lines show interannual variability, the black regression line shows climatic trends from 1936 to 2019, and shaded areas show 95% CIs.
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species better adapted to harsh, cold environments) increased their 
dominance in alpine sites.

Analyzing changes in FD, we revealed a significant reduction 
in values for seed production in both subalpine and alpine sites. 
A similar pattern was detected for seed dormancy in alpine sites. 
Additionally, we detected a significant increase in FD for specific leaf 
area and leaf frost tolerance in the alpine sites. The significant shift 
towards trait divergence implies an increase in species with con-
trasting SLA and leaf frost tolerance values.

4  |  DISCUSSION

The long-term effects of climate and land use change on mountain 
habitats can vary across elevational belts. Yet we have limited data 
on how environmental conditions and plant community and func-
tional structure have shifted over long time periods in different 
elevational belts due to a lack of comprehensive and spatiotempo-
rally replicated datasets on biodiversity in montane areas. We lev-
erage a series of phytosociological surveys and a recent resurvey 
to assess how vegetation composition and functional diversity have 
shifted in subalpine vs. alpine elevational belts over 83 years in the 
Wetterstein Mountains. Subalpine and alpine sites have become in-
creasingly thermophilus, with a greater abundance of more palatable 

plants and plants associated with warm and dry conditions. Although 
we detected remarkable stability in species occurrence over time, 
functional diversity has shifted in subtle ways. Specifically, spe-
cies with low fecundity, high capacity for animal dispersal, and 
greater drought- and frost-tolerance have increased in abundance. 
Investigating community and trait turnover in response to climate 
change using historical resurveys of semi-permanent plots may be 
a fruitful avenue for understanding how species composition may 
shift with changing climate and land use regimes.

4.1  |  Signs of thermophilisation of subalpine 
vegetation

The Schachen area is experiencing considerable changes in macro-
climate, like many uplands across the globe (e.g., Sweden's subalpine 
forests (Kullman, 2010), Dovrefjell, Norway (Michelsen et al., 2011)), 
and indeed across all 60 summits (mainly alpine and nival vegetation 
belts) in the European mountains (Gottfried et al., 2012). Specifically, 
the mean temperature of growing season is nowadays almost 2°C 
warmer than at the time of the first vegetation survey in the area, 
but precipitation has remained the same over time. As a result, higher 
evaporation rates could increase the frequency, duration, and sever-
ity of summer droughts amplifying water scarcity in the upland and 

F I G U R E  3 Subalpine plots become warmer, drier, and more palatable over time. Changes in Landolt Indicator Values (LIVs) between 1936 
and 2019 for (a) soil and above-ground temperature (Landolt's T), (b) soil moisture (Landolt's F), (c) soil nutrients (Landolt's N), and (d) plant 
forage quality (Briemle et al.'s FQ value) in subalpine vs. alpine plots. Asterisks indicate statistically significant (p < .05) differences between 
the historic (1936) and recent (2019) surveys; n. s. – not significant.
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shallow soil on porous calcareous bedrocks (Kammer & Möhl, 2018; 
Rosbakh et al., 2017). However, we note that this study does not assess 
rainfall frequency, snowfall, fog, or other moisture sources explicitly. 
As predicted in our first hypothesis (H1), Landolt Indicator Values (IVs) 
revealed thermophilisation of subalpine plots, which became drier and 
more palatable over time (i.e., species that preferred dry conditions 
and were of better forage quality increased in abundance). These envi-
ronmental changes, in accordance with our second hypotheses, could 
explain the decline in species abundance in subalpine sites.

We did not find any support for the second part of our first hy-
pothesis, regarding effects of eutrophication on vegetation in nei-
ther subalpine nor alpine sites. Due to its relatively close position to 
sources of nitrogen emissions from urban, agricultural and industrial 
areas and rising CO2 levels, the Schachen area should have experi-
enced eutrophication to some extent through atmospheric nitrogen 
deposition (Rosbakh et al., 2021). Yet, the unaltered IV for soil nutri-
ents contradicts the eutrophication hypothesis and suggests that the 
(sub)alpine grasslands were not affected by the high levels of N depo-
sition in the past (Kirchner et al., 2014). Alternatively, even if nitro-
gen deposition increased nitrogen inputs, decreased nitrogen inputs 
from livestock (e.g., urine; Chirinda et al., 2019) could have resulted 
in no net change in soil nitrogen content. Furthermore, the extreme 
topographic heterogeneity of uplands combined with highly species-
specific responses to nitrogen fertilization (Körner et al., 1997) might 
mask (sub)alpine vegetation responses to increased nitrogen inputs. 

Finally, the IV for soil nutrients considers three macronutrients: ni-
trogen, phosphorus, and potassium. All three macronutrients must 
increase for the IV for soil nutrients to increase. However, the main 
soil nutrient limiting plant growth on calcareous soils is phosphorous 
rather than nitrogen (Litaor et al., 2005), so increased nitrogen lev-
els are unlikely to benefit (sub)alpine grassland plant growth without 
concurrent increases in phosphorus (Guan et al., 2024).

4.2  |  Alpine plant diversity remains stable over the 
last eight decades

Despite the relative spatial proximity to the subalpine plots, our 
analyses of temporal beta diversity revealed that local ecological 
conditions in the alpine vegetation in the Schachen area and its char-
acteristics have remained relatively constant over the past 80 years, 
in contrast with our second hypothesis (H2). Although warmer grow-
ing seasons likely reduced soil moisture content, species richness, 
occurrence, and abundance have not considerably changed since 
the first survey in the 1930s. Although considerable changes in al-
pine species richness and composition are more commonly reported 
(Lamprecht et al., 2018; Pauli et al., 2012; Steinbauer et al., 2018), 
other studies have detected no changes in overall species richness 
in alpine areas (Keller et al., 2000; Vittoz et al., 2009; Windmaiβer 
& Reisch, 2013). Several reasons could underlie this finding. First, 

F I G U R E  4 Temporal changes in (a) species occurrence and (b) abundance as estimated with the temporal beta-diversity index 
(Legendre, 2019). Asterisks indicate statistically significant (p < .05) differences over time between the historic and recent plots; n. s. – not 
significant.
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many studies reporting changes in alpine species composition are 
based on floristic surveys in high mountain regions with low indi-
vidual density (i.e., many unoccupied sites), allowing for migration of 
subalpine species to higher elevations (Windmaiβer & Reisch, 2013). 
The grasslands studied here lack unoccupied sites, limiting microsites 
for germination and thus potentially limiting migration (“initial floris-
tic concept” sensu Egler, 1954). Second, although grazing density has 
declined, alpine sites still experience some grazing in the Schachen. 
Continued presence of grazers could contribute to the stability of 
plant occurrence and abundance in the region. Third, climate warm-
ing can open new habitats for species from low elevations without 
losing the coldest habitats due to topographic heterogeneity (Körner 
& Hiltbrunner,  2021; Scherrer & Körner,  2011). Microtopography 
may allow other drivers such as soil conditions, nutrient availability, 
and eutrophication to affect species composition. Fourth, seed banks 
may contribute to the consistency of alpine plant communities (Ma 
et al., 2010, 2020), Finally, the longevity of many alpine species could 
result in constancy over time since it allows continuous occupation of 
vegetation gaps, promotes long extinction lags, and stabilizes the ex-
isting community (Dullinger et al., 2012; Körner & Hiltbrunner, 2021; 
Rumpf et  al.,  2019; Schweingruber & Poschlod, 2006; Svenning & 
Sandel, 2013; Windmaiβer & Reisch, 2013; Witte et al., 2012).

4.3  |  Plant traits responses to long-term decrease 
in soil moisture and changes in grazing regimes

We detected several changes in functional trait composition over 
time in both the alpine and subalpine belts, in concordance with our 
third hypothesis (H3). Here, we discuss potential links between trait 
responses and changes in both regional climate conditions and local 
environmental conditions (measured using IVs). However, we note 
that we are unable to link trait change directly to hypothesized envi-
ronmental change in subalpine vs. alpine plots because we used IVs 
to estimate environmental conditions, which were estimated from 
the same suite of species.

Species producing fewer seeds (lower fecundity) increased in 
both alpine and subalpine sites. This pattern was detected using 
both CWMs and FD, meaning that both mean and variation in seed 
production decreased. Seed production is highly sensitive to envi-
ronmental stressors such as water, temperature, and nutrient supply 
(Jump & Woodward,  2003; Rosbakh et  al.,  2018; Salisbury,  1942; 
Vaupel & Matthies, 2012; Walters & Reich, 2000) so decreases in 
soil moisture and/or warming temperatures in this region likely limit 
seed production. Similarly, upland species in the Schachen pro-
duce lower seed set under experimental extreme drought (Rosbakh 
et al., 2017). Our findings imply that species with high fecundity may 
be maladapted to current (dry) ecological conditions and are filtered 
out of the plant community.

Species with higher potential for dispersal, especially by epi-
zoochory (attachment of plant propagules to animal body sur-
faces) increased in both alpine and subalpine sites. Epizoochory 
could be a vector for dispersal into alpine plots if seeds adhere to TA
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cattle, sheep, small mammals (e.g., marmots, ibex, chamois), or to 
domestic livestock such as cattle, horses, or sheep (Römermann 
et al., 2005; Rosbakh et al., 2022). The Schachen has experienced 
a shift in grazing system over time. Specifically, grazing shifted 
from cattle to sheep over the course of this study, potentially 
allowing greater attachment of seeds to wool. Additionally, en-
dozoochory (carrying plant propagules in the gut) increased in 
alpine sites. Species such as alpine chamois (Rupicapra rupicapra) 
ingest seeds and disperse them across the alpine belt (Dullinger 
et al., 2013). These findings suggest that understanding changes in 
alpine vegetation under anthropogenic change would benefit from 
integrating information on multiple dispersal vectors (Poschlod & 
Bonn, 1998).

Species with higher frost and drought tolerance increased in 
alpine sites. Specifically, species with higher foliar frost tolerance 
and deeper seed dormancy increased in dominance. In other words, 
species better adapted to harsh, dry, cold environments increased. 
These trait shifts both corresponded with regional climate trends 
wherein temperatures warmed while precipitation remained con-
stant. First, increased evaporation rates may have exacerbated 
summer droughts. Frost tolerance shares an ecophysiological mech-
anism with drought tolerance (Visakorpi et  al.,  2024). For exam-
ple, higher concentrations of osmolytes help plants withstand low 
temperatures as well as maintain high osmotic pressure (Dubrovina 
et al., 2015; Hajihashemi et al., 2020; Ugarte et al., 2021). Second, as 
temperatures warm, snow melts out earlier, increasing plants' prob-
ability of experiencing frost events. Higher frost tolerance could 
promote survival under these freezing temperatures after snow in-
sulation is removed. Species with deeper seed dormancy might have 
a higher probability of persisting in harsh alpine conditions if they 
can delay germination until conditions are suitable (Cohen,  1967; 
Gremer et al., 2016; Mondoni et al., 2012). Moreover, the increase 
in community weighted means for seed dormancy and concurrent 
decrease in functional diversity of seed dormancy suggests that 
environmental stress (e.g., frost events and drought) may select for 
species with deeper dormancy which need a longer period of cold 
stratification.

Finally, functional diversity in specific leaf area (SLA) and foliar 
frost tolerance increased in alpine sites. SLA, like frost and drought 
tolerance, is related to water availability (Poorter et  al.,  2009). 
Drought- and frost-tolerant species typically have lower SLA values 
(Hamann et  al.,  2018); indeed, this pattern holds in the Schachen 
(Bucher & Rosbakh,  2020). The increase in functional diversity of 
SLA and foliar frost tolerance in the alpine belt may be driven by the 
increasing number of drought- and frost-tolerant species. Increasing 
functional diversity (i.e., trait divergence) in SLA and foliar leaf toler-
ance implies an increase in species with wider variation in SLA and 
leaf frost tolerance. In this case, alpine communities would typically 
have low community-weighted mean SLA (Scheepens et al., 2010), 
but variation in SLA is increasing as thinner-leaved, faster-growing 
species increase in dominance even as thick-leaved, slow-growing 
species remain in the community. Similarly, more variation in fo-
liar frost tolerance suggests a rise in dominance for frost-  and 

drought-tolerant species. Since the alpine sites studied here have 
not experienced species losses, this data suggests that the vegeta-
tion within the Schachen's alpine belt is showing increasingly mixed 
growth and persistence strategies.

4.4  |  Importance of incorporating historical 
resurveys and multiple diversity metrics in 
understanding changes in biodiversity

Historical (re)surveys are a valuable source of information on base-
line conditions pre-intensive anthropogenic change. Moreover, 
historical datasets can be used to measure temporal changes in 
vegetation abundance and community structure that may not be 
reflected in measurements of species occurrence or richness. For 
example, we detected no temporal changes in species occurrence 
but some evidence for changes in species abundance in subalpine 
plots. We also detected significant changes in community func-
tional trait composition and functional diversity, especially in the 
alpine belt. This illustrates that functional trait metrics like com-
munity weighted means and functional diversity can capture invis-
ible changes not shown by classic biodiversity indices such as TBI. 
Ultimately, the variation in our results using TBI in species occur-
rence and abundance and community functional trait values, as 
well as the discrepancy between landscape-scale loss of montane 
grasslands and limited species loss at a smaller scale within mon-
tane grasslands, indicate that studies not incorporating a compre-
hensive view of diversity should be evaluated with care. Our study 
demonstrates that historical records can be combined with ecologi-
cal indictors to assess past conditions as well as both classic and 
functional diversity indices to take a holistic approach to examine 
long-term vegetation changes.
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