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Abstract: This study uses magnetic resonance imaging (MRI) to investigate the potential of the hep-
atospecific contrast agent gadolinium ethoxybenzyl-diethylenetriaminepentaacetic acid (Gd-EOB-DTPA)
in distinguishing G1- from G2/G3-differentiated hepatocellular carcinoma (HCC). Our approach in-
volved analyzing the dynamic behavior of the contrast agent in different phases of imaging by signal
intensity (SI) and lesion contrast (C), to surrounding liver parenchyma, and comparing it across distinct
groups of patients differentiated based on the histopathological grading of their HCC lesions and the
presence of liver cirrhosis. Our results highlighted a significant contrast between well- and poorly-
differentiated lesions regarding the lesion contrast in the arterial and late arterial phases. Furthermore,
the hepatobiliary phase showed limited diagnostic value in cirrhotic liver parenchyma due to altered
pharmacokinetics. Ultimately, our findings underscore the potential of Gd-EOB-DTPA-enhanced MRI
as a tool for improving preoperative diagnosis and treatment selection for HCC while emphasizing the
need for continued research to overcome the diagnostic complexities posed by the disease.

Keywords: hepatocellular carcinoma (HCC); gadolinium ethoxybenzyl-diethylenetriaminepentaacetic
acid (Gd-EOB-DTPA); magnetic resonance imaging (MRI); liver cirrhosis; tumor differentiation

1. Introduction

Hepatocellular carcinoma (HCC) presents a substantial global health challenge as
the predominant form of primary liver cancer. Particularly prevalent in individuals with
pre-existing cirrhosis, it ranks as the fifth most common malignancy in males and ninth in
females with a rising incidence [1–4].

Given its asymptomatic nature in the early stages, HCC often eludes early detection,
resulting in a diagnosis at advanced stages when curative therapy becomes infeasible,
mainly as prognosis is largely dependent on the tumor stage and metastasis [5]. Therefore,
developing robust and efficient strategies for early detection in at-risk populations is
paramount in HCC management. HCC mostly occurs in patients with severe liver fibrosis
or cirrhosis mainly due to infections with hepatitis B or hepatic C viruses as well as chronic
alcohol abuse [6]. However, HCC also develops in patients with non-alcoholic fatty liver
disease, hemochromatosis, or alpha-1 antitrypsin deficiency [4].

Current practices for early detection primarily involve semiannual ultrasound exami-
nations for high-risk individuals. Suspicious findings from these examinations typically
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lead to further investigation using computed tomography (CT) or magnetic resonance imag-
ing (MRI) [7,8]. While these methods have proven somewhat effective, there is ongoing
debate regarding their relative efficiencies and potential for optimization.

Regarding the diagnostic pathway for uncertain liver lesions, lesions suspicious for
malignancy and smaller than 1 cm should undergo sonographic follow-up in three months.
For lesions exceeding 1 cm, further CT or MRI diagnostic imaging is recommended. Several
studies have asserted the superiority of contrast-enhanced MRI over dynamic contrast-
enhanced CT for detecting and differentiating liver lesions [9,10]. Upon arterial hyper-
vascularization and portal venous washout observation, HCC diagnosis is considered
validated [11]. In unclear cases, a biopsy is recommended [12].

Several studies have demonstrated that contrast-enhanced MRI is more sensitive in
detecting HCC compared to dynamic contrast-enhanced CT. This increased sensitivity is
likely due to the superior contrast delineation between the lesion and liver, as well as a
more nuanced presentation of different tissue properties [9,10,13].

In clinical practice, liver MRI using the hepatocyte-specific contrast agent Gd-EOB-
DTPA has become essential for the evaluation of malignant liver lesions.

By using this hepatocyte-specific contrast agent, diagnostic accuracy could be im-
proved by performing an additional hepatobiliary late phase 20 min after contrast agent
application [14].

The uptake of Gd-EOB-DTPA relies on functioning hepatocytes through organic
anion transporters (OATP1B1/B3) and is excreted via the biliary tract through multidrug
resistance-associated protein 2 (MRP2) [15,16].

A typical assessment of HCC involves the qualitative evaluation of signal intensity
and the relative enhancement ratios, comparing the Gd-EOB-DTPA uptake in liver lesions
to that in the surrounding liver parenchyma. However, the uptake of Gd-EOB-DTPA
is also influenced by the presence and severity of cirrhosis [17], showing less Gd-EOB-
DTPA uptake in cirrhotically remodeled liver parenchyma. Additionally, as the degree
of differentiation of HCC increases, the number of hepatocytes expressing OATP1B1/B3
decreases and MRP2 increases, therefore leading to a reduced accumulation of Gd-EOB-
DTPA compared to normal liver parenchyma [16,18]. As HCCs commonly occur in cirrhotic
livers with impaired Gd-EOB-DTPA uptake, this assessment can be challenging.

Certain studies have also identified distinct enhancement patterns that could poten-
tially correlate with different HCC stages [16,19–22]. However, there remains considerable
ambiguity and controversy regarding whether these patterns reliably vary according to
tumor grade.

The role of liver cirrhosis in influencing the diagnostic accuracy of these imaging
techniques remains contentious and underexplored.

In this context, the primary objective of this study is to investigate whether specific
enhancement patterns correspond to different grades of HCC. We also seek to examine the
impact of liver cirrhosis on the diagnostic accuracy of these imaging strategies. Through this
dual-pronged investigation, we hope to clarify some of the existing ambiguities in the field
and contribute to the ongoing efforts to refine imaging strategies for early HCC detection.

2. Materials and Methods
2.1. Data Collection and Inclusion Criteria

This retrospective study was approved by the local institutional review board, ensuring
that all the regulations and guidelines were followed. Our study incorporated patients who
had undertaken Gd-EOB-DTPA-enhanced MRI of the liver before liver resection and had a
histopathological confirmed, untreated, HCC within three months from the examination.

The initial data set comprised 59 resected HCC lesions derived from 52 patients.
Exclusion criteria were respiratory artifacts (n = 4), incomplete detection of contrast medium
phases (n = 3), infiltrative growth of the tumor (n = 4), or pre-treatment (n = 1). Thus,
we inspected 47 lesions from 40 patients for their dynamic contrast behavior. Based on
differentiation grade, 18 were classified as G1, 23 as G2, and 6 lesions as G3.
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2.2. Imaging

Liver MRI scans were procured using a clinical whole-body 3T system (MAGNETOM
Skyra, Siemens Healthcare, Erlangen, Germany), using a composite of body-spine array coil
elements (comprising an 18-channel body matrix coil and a 32-channel spine matrix coil)
for signal reception. The hepatospecific contrast agent was Gd-EOB-DTPA (Primovist®,
Bayer Vital GmbH, Leverkusen, Germany). Each patient was administered a dose of
Gd-EOB-DTPA, adapted according to their body weight (0.025 mmol/kg body weight).
The administration was performed as a bolus injection at a flow rate of 1 mL/s, followed
by a 20 mL NaCL flush. A T1-weighted volume interpolated breath-hold examination
(VIBE) sequence with fat suppression was used for the signal intensity measurement. The
specifications of this sequence are repetition time (TR) of 3.09 ms, echo time (TE) of 1.16 ms,
a flip angle of 10◦, parallel imaging factor of 2, 64 slices, a reconstructed voxel size of
1.3 × 1.3 × 3.0 mm, and a measured voxel size of 1.7 × 1.3 × 4.5 mm. This sequence
spanned the entire liver and was captured in a single breath-hold before contrast injection
(plain), during the arterial phase (AP) at 10 s, in the late arterial phase (LAP) at 40 s, in the
portal venous phase (PVP) at 75 s, and in the hepatobiliary phase (HBP) at 20 min. The
acquisition time for each VIBE sequence was 14 s.

2.3. Signal Intensity Measurement

Signal intensity (SI) was measured in liver lesions and adjacent liver tissue before and
during various contrast medium phases, namely arterial, late arterial, portal venous, and
hepatobiliary phase. One region of interest (ROI) was manually placed around the tumor
boundary on the slice with the greatest tumor extension. This was done individually for
each contrast medium phase.

For measuring the signal intensity of liver tissue, a second circular ROI was manually
placed in the same slice in the liver parenchyma while avoiding any additional lesions or
vascular structures.

The lesion contrast (C) was calculated for each liver lesion relative to the surrounding
liver tissue using the formula:

C = (SILesion − SILiver parenchyma)/SILiver parenchyma

where during the respective contrast phases, this measure demonstrated the contrast agent
uptake ratio of the liver lesions to the surrounding liver tissue. It was correlated with the
respective histopathological differentiation grade relative to each contrast medium phase.

2.4. Histopathological Analysis

For diagnostic purposes, tissue specimens were gathered from standard therapeutic
surgeries conducted in a five-year period. The samples were preserved in neutral buffered
formalin, followed by paraffin embedding. Tissue sections, 4 µm thick, were prepared
following a conventional protocol and stained using hematoxylin and eosin (HE). A senior
pathologist carried out histological evaluations. The grading of HCC was ascertained
following the criteria laid down by the World Health Organization (WHO 5th edition) [23].
Based on the severity of malignancy, the HCCs were classified into three groups: G1,
signifying well differentiated; G2, moderately differentiated; and G3, poorly differentiated.
The fibrosis grade was graded using the Ishak scoring system [24]. In total, 26 HCC lesions
were associated with incomplete or complete cirrhotic liver remodeling (ISHAK scores 5
and 6), whereas 21 lesions were not underpinned by cirrhosis (ISHAK scores 1–4).

2.5. Statistical Analysis

Statistical analysis was conducted using IBM SPSS Statistics Version 26 (Chicago, IL,
USA). The measured signal intensities’ mean value and corresponding standard deviations
were presented. Liver lesions were compared in terms of their degree of differentiation
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concerning contrast uptake using the non-parametric Mann-Whitney U test for independent
variables. Statistical significance was set at p values < 0.05.

3. Results
3.1. Patient Demographics and Lesion Classification

In this study, we analyzed 47 HCC lesions from 40 patients. Well-differentiated HCC,
denoted as G1 (n = 18), and poorly-differentiated HCC, combining G2 (n = 23) and G3
(n = 6) grades, were considered for analysis. The average age of the patients at the time of
the MRI examination was 68.2 years, ranging from 44 to 83 years. No significant differences
in the patients’ ages, body weights, heights, or BMIs were identified between the patients
with normal liver function and those with liver cirrhosis. The majority of the patients were
males (n = 35, 87.5%), while females constituted a minor proportion (n = 5, 12.5%). 26 HCC
lesions (22 patients) were associated with precirrhotic or cirrhotic liver remodeling (ISHAK
scores 5 and 6), whereas 21 lesions (18 patients) were not underpinned by cirrhosis (ISHAK
scores 1–4). Table 1 provides a summary of the patient characteristics.

Table 1. Patient characteristics (NCL, non-cirrhotic liver parenchyma; LC, liver cirrhosis).

All (n = 40) NCL (n = 18) LC (n = 22)

age (years) 68.2 (44–83) 67.3 (44–79) 68.8 (45–83)
gender
- men, n (%) 35 (87.5%) 16 (88.9%) 19 (86.4%)
- women, n (%) 5 (12.5%) 2 (11.1%) 3 (13.6%)
height (m) 1.72 ± 0.09 1.72 ± 0.10 1.72 ± 0.09
weight (kg) 80.20 ± 16.63 78.59 ± 18.18 80.48 ± 16.37
BMI 27.13 ± 4.48 26.29 ± 4.99 27.18 ± 4.44

3.2. Qualitative Analysis of Signal Intensity

The signal intensities and contrast of HCC lesions were systematically evaluated
against the surrounding liver parenchyma across distinct contrast medium phases. Mean
values of the signal intensities for individual contrast medium phases with the correspond-
ing lesion contrast are demonstrated in Tables 2 and 3.

Table 2. Mean signal intensity (SI) by phase and differentiation grade.

All (SI) G1 (SI) G2/G3 (SI) p

plain 168.85 ± 52.29 169.00 ± 54.18 168.76 ± 52.05 0.95
arterial phase 251.68 ± 73.86 260.11 ± 57.50 246.45 ± 82.95 0.30
late arterial phase 266.91 ± 68.06 283.83 ± 63.13 256.41 ± 69.94 0.06
portal venous phase 265.15 ± 67.63 267.78 ± 61.65 263.52 ± 72.10 0.73
hepatobiliary phase 235.34 ± 70.95 246.33 ± 80.21 228.69 ± 65.12 0.39

Table 3. Lesion contrast (C) by phase and differentiation grade.

All (C) G1 (C) G2/G3 (C) p

plain −0.09 −0.01 −0.14 0.08
arterial phase 0.25 0.40 0.17 0.01
late arterial phase −0.07 0.03 −0.12 0.04
portal venous phase −0.09 −0.04 −0.13 0.11
hepatobiliary phase −0.25 −0.19 −0.29 0.14
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In the plain phase, the lesions’ average signal intensity (SI) was 168.85 ± 52.29, with a
corresponding C of −0.09. When analyzed by differentiation grade, the G1 lesions had an
SI of 169.00 ± 54.18 and a C of −0.01, while the combined G2/G3 lesions recorded an SI of
168.76 ± 52.05 and a C of −0.14. In the arterial phase, an increase in SI was observed. The
average SI for all lesions was 251.68 ± 73.86, with a C of 0.25. The well-differentiated G1
lesions showed an SI of 260.11 ± 57.50 and a C of 0.40, whereas the combined G2/G3 lesions
presented an SI of 246.45 ± 82.95 and a C of 0.17. In the late arterial phase, the average
SI for all lesions was 266.91 ± 68.06, with a C of −0.07. The G1 lesions showed an SI of
283.83 ± 63.13 and a C of 0.03, while the G2/G3 lesions showed an SI of 256.41 ± 69.94 and
a C of −0.12. In the portal venous phase, the average SI for all lesions was 265.15 ± 67.63,
with a C of −0.09. The G1 lesions had an SI of 267.78 ± 61.65 and a C of −0.04, while the
G2/G3 lesions recorded an SI of 263.52 ± 72.10 and a C of −0.13. In the hepatobiliary phase,
the average SI for all lesions dropped to 235.34 ± 70.95 with a C of −0.25. The G1 lesions
showed an SI of 246.33 ± 80.21 and a C of −0.19, whereas the G2/G3 lesions exhibited an
SI of 228.69 ± 65.12 and a C of −0.29.

Figure 1a depicts the absolute signal intensities of liver lesions in each contrast medium
phase and Figure 1b displays the C of HCC compared to adjacent liver parenchyma. A
significant difference emerges between the well-differentiated and the G2/G3 lesions
regarding the C in the arterial (p = 0.010) and late arterial phases (p = 0.040). However, no
significant difference is noted in the subsequent phases. Both groups exhibit the typical
HCC contrast behavior, characterized by arterial hypervascularization of the lesions and a
washout of the contrast agent in the portal venous and hepatobiliary phases.
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3.3. Influence of Liver Cirrhosis

The contrasting behavior was further investigated for the presence of liver cirrhosis.
A total of 26 HCC lesions were associated with precirrhotic or cirrhotic liver remodeling
(ISHAK scores 5 and 6), whereas 21 lesions were not underpinned by cirrhosis (ISHAK
scores 1–4). For G1, the distribution was as follows: 8 lesions in patients without liver
cirrhosis and 10 in patients with liver cirrhosis. For combined G2 and G3, the distribution
was: 13 lesions in patients without liver cirrhosis and 16 in patients with liver cirrhosis.

Liver cirrhosis had distinct implications for Gd-EOB-DTPA uptake into the surround-
ing liver parenchyma and the respective C of the HCC lesions. Figure 2 illustrates these
impacts, showing that in a cirrhotically altered liver, there is a subtle change in C between
the portal venous and hepatobiliary phase. In contrast, a more noticeable reduction in C is
observed in healthy liver tissue. A significant difference was observed for G2/G3 tumors
between non- cirrhotic and cirrhotic liver parenchyma (p = 0.001), whereas no significant
difference was observed for G1 tumors.
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3.4. Image Examples

Examples of the dynamic contrast behavior of HCC lesions in non-cirrhotic and
cirrhotic liver parenchyma are shown in Figure 3. All HCC lesions show the typical arterial
hypervascularization with washout in the portal venous phase and hypointensity in the
hepatobiliary phase. The uptake of Gd-EOB-DTPA in the surrounding liver parenchyma
differs between non-cirrhotic and cirrhotic liver parenchyma, thus affecting the contrast of
HCC lesions.
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Figure 3. Comparison of well-differentiated and poorly-differentiated HCCs in the presence of liver
cirrhosis (ISHAK Score 6) in T1 weighted VIBE sequences (phases as indicated): (A) well-differentiated
HCC (G1) in liver fibrosis (ISHAK 2), (B) well-differentiated HCC (G1) in liver cirrhosis (ISHAK 6),
(C) poorly-differentiated HCC (G2) in normal liver parenchyma (ISHAK 0), (D) poorly-differentiated
HCC (G2) in in liver cirrhosis (ISHAK 6).

4. Discussion

To the best of our knowledge, this is the first study to investigate the impact of liver
function on Gd-EOB-DTPA for diagnosing HCC in relation to its grading.
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Preoperative determination of the degree of differentiation of HCC is essential for
choosing appropriate therapy [25–28]. Various agents like atorvastatin [29], cefazolin [30],
and chemotherapeutic agents such as methotrexate [31], rifampicin [32], paclitaxel, and
docetaxel [33] are also absorbed into cells via OATP 1B1 and 1B3. This suggests that tumor
therapy effectiveness may depend on tumor differentiation degree as it correlates with
these transporter proteins’ expression.

According to current German guidelines, the treatment of HCC in a cirrhotic liver is
liver transplantation, which also treats the underlying cirrhosis. However, due to organ
shortage, there are strict regulations about the eligibility of liver transplantation such as
the Milan criteria, in which patients are considered eligible for liver transplantation with
one HCC lesion up to 5 cm or up to 3 HCC lesions between 1–3 cm (Mazzaferro 1996).
Because these strict criteria may exclude potential patients who would benefit from liver
transplantation, it has been suggested that the degree of differentiation should also play a
role in the selection criteria for liver transplantation [25,26], as it has been shown that the
histopathological degree of differentiation is a prognostic factor for the survival rate [27,28].

Due to this prognostic influence, patients with poorly-differentiated HCC are excluded
from liver transplantation and treated palliatively in some centers [34,35]. Therefore, deter-
mining the correct degree of differentiation of the presenting HCC plays a significant role.

The histopathological degree of differentiation is determined by biopsy, usually as
part of the primary diagnosis, with the most common procedure being punch biopsy, which
can be associated with complications such as bleeding, infection, or carryover of tumor
tissue [36]. Pawlik et al. [37] show a specificity of 92.5% and a sensitivity of only 34.6%
concerning the determination of a low degree of differentiation (G3) so that a false-negative
classification can frequently occur here.

Several studies have reported that HCCs’ appearance on Gd-EOB-DTPA-enhanced
MRI examinations vary based on their grading [38–43]. However, several other studies
contradict these results, asserting that Gd-EOB-DTPA uptake in HCC lesions does not
correlate with differentiation degree [44–47]. The regulation of Gd-EOB-DTPA’s uptake
and excretion is controlled by OATP 1B1/1B3 and MRP-2 [15]. OATPs are multispecific
transporter proteins, with OATP 1B1 and 1B3 subtypes expressed explicitly in the liver [48].
Studies have demonstrated that advanced HCC lesions often exhibit reduced OATP 1B1 or
1B3 expression, while MRP2 expression remains stable or increases [16,18]. These findings
corroborate our results, which suggest decreased Gd-EOB-DTPA accumulation in poorly-
differentiated HCC lesions, potentially due to reduced Gd-EOB-DTPA uptake or increased
biliary excretion rates. Frericks et al. [44] and Schelhorn et al. [39] showed no correlation
between the difference in grade and the signaling of liver lesions. Still, histopathological
grading was performed only on biopsy specimens and not completely resected liver tissue.
In addition, the evaluation was based on signaling changes of the lesions compared with the
surrounding liver parenchyma, without considering whether there was underlying cirrhosis
and thus possibly impaired Gd-EOB- DTPA uptake. Tsuboyama et al. [46]. demonstrated
overexpression of OATP—1B3 at all stages of differentiation, linking high Gd-EOB-DTPA
accumulation of lesions to altered expression of MRP-2 and, thus, possibly, decreased
excretion. They defined high Gd-EOB-DTPA enrichment as greater enrichment compared
with surrounding liver parenchyma, independent of liver function. Since they listed only
five lesions with high enhancement in their study, no conclusion could be drawn regarding
the correlation between tumor grade and Gd-EOB-DTPA enhancement.

The presence of liver cirrhosis, one of the most critical risk factors for developing
HCC, also influences Gd-EOB-DTPA uptake in the pre-damaged liver parenchyma [17].
Tamada et al. [49] showed that the accumulation of Gd-EOB-DTPA in the liver parenchyma
is significantly reduced by liver cirrhosis, especially in the Child C stage, most likely
due to a reduced number of healthy hepatocytes or impaired contrast agent uptake into
liver cells. Therefore, marked liver cirrhosis shows a variable appearance of the liver in
contrast-enhanced MRI examinations so that the hepatobiliary phase in liver cirrhosis can
sometimes only be assessed to a limited extent because the surrounding liver parenchyma
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only accumulates suboptimally [50]. In MRI diagnostics, the signal behavior is generally
considered qualitatively, and lesions are therefore assessed in hyper-, iso-, or hypointense,
depending on the surrounding tissue. Similarly, the contrast of liver lesions used in this
work is calculated using the signal intensity of the surrounding liver parenchyma. It is thus
influenced by the condition of the surrounding liver parenchyma in case of liver fibrosis
or cirrhosis.

In the case of impaired liver function, it is therefore not possible to clearly distinguish
based on the lesion contrast whether it is due to reduced uptake of Gd-EOB-DTPA into the
cirrhotically remodeled liver parenchyma or to washout of the liver lesions.

This study’s primary limitation is the small number of HCC lesions included, and the
rarity of G3 lesions limited their inclusion to only six [51]. HCC’s high intratumoral hetero-
geneity also challenges pathologists and radiologists, as different degrees of differentiation
may exist within one tumor [52].

5. Conclusions

This study emphasizes the potential of using the hepatospecific contrast agent Gd-
EOB-DTPA in differentiating well-differentiated from poorly-differentiated HCC during
MRI examinations. By analyzing the dynamic contrast agent behavior, we could distinguish
between different stages of HCC differentiation, thereby contributing to the precision of
preoperative diagnosis and selection of suitable therapeutic strategies. Further research
is needed to confirm the utility of combining radiologic and histopathologic features in
grading HCC, which could lead to more accurate therapeutic decisions.

However, our findings also highlight a potentially limited additional diagnostic value
of the late hepatobiliary phase in cirrhotically remodeled liver parenchyma due to altered
pharmacokinetics affecting the contrast agent behavior of HCC lesions. This illustrates
the complexity of HCC diagnosis and underlines the importance of a comprehensive
understanding of HCC and its behaviors in various physiological contexts.
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