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Abstract: Prosthetic joint infections (PJIs) can have disastrous consequences for patient health,
including removal of the device, and placement of cemented implants is often required during
surgery to eradicate PJIs. In translational research, in vivo models are widely used to assess the
biocompatibility and antimicrobial efficacy of antimicrobial coatings and compounds. Here, we aim
to utilize Galleria mellonella implant infection models to assess the antimicrobial activity of antibiotic-
loaded bone cement (ALBC) implants. Therefore, we used commercially available bone cement
loaded with either gentamicin alone (PALACOS R+G) or with a combination of gentamicin and
vancomycin (COPAL G+V), compared to bone cement without antibiotics (PALACOS R). Firstly,
the in vitro antimicrobial activity of ALBC was determined against Staphylococcus aureus. Next, the
efficacy of ALBC implants was analyzed in both the G. mellonella hematogenous and early-stage
biofilm implant infection model, by monitoring the survival of larvae over time. After 24 h, the
number of bacteria on the implant surface and in the tissue was determined. Larvae receiving
dual-loaded COPAL G+V implants showed higher survival rates compared to implants loaded with
only gentamicin (PALACOS R+G) and the control implants without antibiotics (PALACOS R). In
conclusion, G. mellonella larvae infection models with antibiotic-loaded bone cements are an excellent
option to study (novel) antimicrobial approaches.

Keywords: antibiotic-loaded bone cement; Galleria mellonella; prosthetic joint infection; Staphylococcus
aureus; biofilm; in vivo

1. Introduction

Orthopedic device-related infections (ODRIs) are infections associated with implanted
medical devices used in orthopedic surgeries, such as joint replacements (i.e., prosthetic
joint infections; PJIs), fracture fixation devices (i.e., fracture-related infections; FRIs), and
spinal implants. These infections represent a significant clinical challenge, leading to high
treatment failure rates and substantial patient and socioeconomic burdens. These infections
can lead to prolonged hospital stays, multiple surgeries, and in severe cases, the removal of
the implant. Thus, effective preventive and therapeutic strategies are critical in orthopedic
and trauma surgery [1,2].

PJIs are severe complications following joint replacement surgeries, characterized
by bacteria adhering to implant surfaces and forming protective biofilms that complicate
treatment. These infections occur in about 1–2% of cases, with rising incidence due to the
increasing number of surgeries because of the global trend of population aging. Common
pathogens found in PJIs include Staphylococcus aureus, coagulase-negative staphylococci,
and Gram-negative bacteria. The complexity of PJIs arises from biofilm formation on the
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implant surface and within bone tissue, which reduces the effectiveness of the host immune
system and antimicrobial treatments [3]. The rise in antimicrobial resistance (AMR) has
increased interest in combination-based therapies and the development of advanced drug
delivery technologies [4–6]. Antibiotic-eluting technologies have become widely utilized in
PJI prevention and treatment, as they deliver high, sustained local antibiotic concentrations
in bone tissue that are challenging to achieve through systemic administration, while
minimizing the side effects of long-term systemic therapy [7,8].

Antibiotic-loaded bone cement (ALBC) is based on polymethyl methacrylate (PMMA)
and was introduced in the 1970s [9]. Nowadays, it is commercially available as ready-to-use
pre-mixed formulations. ALBC delivers high local concentrations of antimicrobial agents
directly to the site of implantation, for an extended period, thereby reducing the risk of
infection while maintaining the mechanical stability of the implant [10,11]. These highly
effective levels of antibiotics at the site are difficult to achieve with systemic administration,
and local delivery minimizes the risk of systemic toxicity associated with high doses
of antibiotics.

Gentamicin is a widely used antibiotic for local ODRI treatment due to its broad
spectrum and concentration-dependent antibacterial activity [12]. Although gentamicin
is often used as a single local therapy [13], in vitro studies have demonstrated that the
combination of gentamicin plus clindamycin or vancomycin in bone cement can effectively
reduce bacterial colonization and biofilm formation on the cement surface, suggesting
potential clinical benefits in preventing and treating PJIs [10,12,14]. High-dose dual ALBC
is especially beneficial as prophylaxis for patients with higher risk [11,15–17]. Continued
research and clinical trials are necessary to fully understand the implications of using
combined antibiotic therapies in bone cement for orthopedic infections. In vivo models
play a major role in studying the pathogenesis of ODRIs, biofilm development in situ, and
the efficacy of (novel) preventive or treatment strategies.

In translational research regarding ODRI, in vivo models are widely used to assess
the biocompatibility and anti-microbial efficacy of antimicrobial coatings and compounds.
Various animal models, including rodents (rats and mice), rabbits, dogs, and sheep, are used
to study ODRI. Each model offers unique advantages depending on the study objectives,
such as ease of handling, similarity to human bone structure, and the ability to monitor long-
term outcomes. Although animal experiments are invaluable for advancing knowledge
and developing interventions for ODRI, ethical concerns, translational limitations, high
costs, variability, the complexity of models, and regulatory hurdles all pose challenges.
Balancing these disadvantages with the potential benefits requires careful consideration,
ongoing ethical review, and exploration of alternative research methods.

Galleria mellonella, commonly known as the greater wax moth, has emerged as a valu-
able model organism for studying microbial infections and the efficacy of antimicrobial
agents [18]. Using G. mellonella simplifies ethical considerations, reduces costs, and speeds
up preliminary research. Although there are limitations, such as the absence of adaptive
immunity, G. mellonella provides critical insights into pathogenesis, host responses, and
antimicrobial efficacy, paving the way for more detailed studies in mammalian models.
Recently, we have developed a G. mellonella implant-associated infection model by either
implanting S. aureus pre-incubated K-wires (i.e., an early-stage biofilm implant infection
model) or implanting K-wires directly followed by an injection of S. aureus (i.e., a hematoge-
nous implant infection model) and evaluated the efficiency of antibiotics and phages to
prevent or treat implant infections [19,20].

Here, we aimed to utilize the G. mellonella larva implant infection model to evaluate
the efficacy of commercially available ALBC against S. aureus. We successfully adapted the
Galleria mellonella infection models to be used with antibiotic-loaded bone cements. This
adaptation of the models allows further studies of the pathogenesis and prevention of PJIs
in vivo.



Antibiotics 2024, 13, 692 3 of 14

2. Results
2.1. ALBC Discs Show Released Activity and Inhibit Bacterial Attachment In Vitro

To assess the release of the antibiotics from the ALBC discs over time, and the at-
tachment of bacteria to the surface of the discs, the samples were incubated in a bacterial
suspension for up to 3 days and challenged daily with a fresh inoculum suspension. After
1 day of incubation, PALACOS R+G showed a 3.7-log lower number of bacteria attached
when compared to the control (PALACOS R; log 6.2 CFU/disc), whereas COPAL G+V (<DL;
p < 0.001) fully prevented colonization by S. aureus on the surface of the discs (Figure 1A).
The release of gentamicin alone (PALACOS R+G; log 3.9 CFU/mL) or in combination with
vancomycin (COPAL G+V; log 2.5 CFU/mL) showed a 5.2- and 6.6-log lower number of
bacteria in solution, respectively (Figure 1B). On the second day, the release of gentamicin
alone (PALACOS R+G) resulted in only an approximately 1-log lower number of CFU on
the surface (log 6.7 CFU/disc) and in the liquid (log 8.3 CFU/mL), when compared to
the control (PALACOS R; log 7.4 CFU/disc and log 9.6 CFU/mL), and from the 3rd day
on, there was no observable effect at all. Similarly, no effect was observed from day 3
onwards when gentamicin was combined with vancomycin (COPAL G+V); however, a
larger reduction could be seen on day 2, with an approximately 5-log lower number of
CFU on the surface (log 2.7 CFU/disc; p < 0.001) and in the liquid (log 4 CFU/mL; p < 0.05).
Altogether, these results indicate that ALBC is able to prevent bacterial attachment and kill
bacteria in the surroundings of the implants, with COPAL G+V being the most effective;
however, in all cases, the effect decreases over time. This decreased activity over time is
probably due to the dilution or even full removal of the released antimicrobial by the daily
replacement of the medium.
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The larvae receiving implants loaded with antibiotic (i.e., PALACOS R and COPAL 
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Figure 1. In vitro activity of the ALBC discs with (A) attachment to the disc surface and (B) growth
in the suspension after 1–3 days of incubation, with a daily challenge of a fresh S. aureus EDCC 5055
inoculum suspension. Results are expressed as the numbers of viable bacteria retrieved from the
disc surface (n = 6) and medium (n = 3). The horizontal lines represent the median values and are
significantly different from the PALACOS R control groups as calculated by the Kruskal–Wallis rank
sum test for the log CFU values (* = p < 0.05, *** = p < 0.001). The lower limit of detection (DL) is 25
and 5 CFU for the discs and medium, respectively.

2.2. ALBC Implants Prevent S. aureus Infections In Vivo
2.2.1. ALBC Is Biocompatible in G. mellonella Larvae

The larvae receiving implants loaded with antibiotic (i.e., PALACOS R and COPAL
G+V) were similarly active to the non-loaded PALACOS R group, and their survival rate
at five days after implantation was 100% (PALACOS R+G and COPAL G+V) and 90%
(PALACOS R), respectively (Figure 2). Thus, the implantation of ALBC did not cause any
adverse effects such as wound healing disturbances, melanization at the site of implantation
or toxicity due to the antibiotics released in case of PALACOS R+G and COPAL G+V.
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Figure 2. Biocompatibility assay. No significant differences are seen between the survival rates
of larvae implanted with (A) the non-loaded control bone cement (PALACOS R), (B) ALBC with
gentamicin alone (PALACOS R+G) or (C) ALBC with the combination of gentamicin and vancomycin
(COPAL G+V). Experiments were conducted with 10 larvae per group.

2.2.2. ALBC Implants Prevent Both Early-Stage Biofilm and Hematogenous Infections
In Vivo

In order to assess the effectiveness of ALBC in preventing an early-stage S. aureus
biofilm implant infection, we implanted ALBC implants, pre-incubated for 1 h in an S.
aureus suspension, in the G. mellonella larvae. After 5 days of incubation at 37 ◦C, both types
of ALBC implants significantly improved the survival of the larvae (Figure 3A, resulting
in an improved survival rate with PALACOS R+G (57 ± 9%; p < 0.05) and COPAL G+V
(82 ± 7%; p < 0.001), compared to the control (PALACOS R; 27 ± 8%).
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the ALBC implants were pre-incubated for 60 min in S. aureus solution (5 × 106 CFU/mL) prior
to implantation in the larvae. The mean number of bacteria before implantation was log 4.6 CFU
(PALACOS R), log 3.4 CFU (PALACOS R+G) and log 2.4 CFU (COPAL G+V) per implant (n = 3 per
group). In case of the hematogenous implant infection, the ALBC implants were first implanted
in the larvae, followed by an injection with 10 µL of S. aureus inoculum (5 × 104 CFU/larva) after
60 min. Percent survival (±SEM) over time (in days) is displayed after implantation of implants
loaded with gentamicin alone (PALACOS R+G) or the combination of gentamicin and vancomycin
(COPAL G+V), and non-loaded implants served as controls (PALACOS R). The data from three
independent experiments were analyzed (n = 10 larvae per experiment) and statistical analysis
was performed using a log rank test. The number of S. aureus on the ALBC implant (“Implant”)
and in the tissue of the larvae (“Tissue”) after 24 h incubation in the (C) early-stage biofilm and
(D) hematogenous implant infection model was determined. The horizontal lines represent the
median values. Statistical analysis was performed using Kruskal–Wallis rank sum test (n = 6 per
group). * = p < 0.05, ** = p < 0.01, *** = p < 0.001. The lower limit of detection (DL) is 5 and 3 CFU for
the tissue and implants, respectively.

To assess the ability of ALBC to prevent hematogenous implant infections, the larvae
first received an implant and were infected with S. aureus 1 h later. The survival of the
larvae was comparable to the early-stage biofilm model, with a moderate improvement
in survival with PALACOS R+G (43 ± 9%; p < 0.01), but almost complete survival with
COPAL G+V (93%; p < 0.001) compared to the non-loaded control (PALACOS R; 17%)
(Figure 3B).

2.2.3. ALBC Implants Eradicate Bacteria on Surface and in Tissue

At 1 day after implantation of the pre-incubated COPAL G+V implants, the bacte-
ria were (almost) fully eradicated on the implant surface (<DL; p < 0.001) as well as in
the larval tissue (<DL; p < 0.01), compared to the control group receiving PALACOS R
(log 6.6 CFU/implant and log 7.6 CFU) (Figure 3C). However, PALACOS R+G hardly
showed any reduction in numbers of CFU at all (log 6.3 CFU/implant and log 7.7 CFU in
the tissue).

A similar effect is seen at 1 day after implantation and subsequent infection of the
ALBC implants, mimicking hematogenous infections. COPAL G+V resulted in a significant
4.6-log and 4.1-log reduction in numbers of CFU on the implant surface (<DL; p < 0.01)
and in the tissue (log 2.1 CFU; p < 0.05), respectively (Figure 3D). On the other hand,
PALACOS R+G showed hardly any reduction in numbers of CFU (log 5.7 CFU/implant
and log 4.9 CFU in the tissue), when compared to the control group receiving PALACOS R
(log 5.1 CFU/implant and log 6.1 CFU in the tissue).

These findings are confirmed by SEM analysis of explanted bone cement implants
from the hematogenous infection model. A high number of bacteria colonized the surface of
non-loaded ALBC implants (PALACOS R), with starting biofilm formation being observed,
and less bacteria on the PALACOS R+G implants (Figure 4). In line with the quantitative
culture results, only individual bacteria were seen on the surface of COPAL G+V.
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Figure 4. Scanning electron microscopy (SEM) analysis of S. aureus attachment on the different
explanted ALBC implants after 24 h of incubation in the G. mellonella hematogenous implant infection
model. The unloaded ALBC (PALACOS R) shows patches of bacteria, indicating possible biofilm
formation, whereas the antibiotic-loaded implants show reduced (PALACOS R+G) or hardly any
bacterial attachment (COPAL G+V); only individual bacteria could be observed (see *). Scale bars
indicate 100 µm (800× magnification; left panels), 10 µm (5000× magnification; middle panels) or
5 µm (10,000× magnification; right panels).

3. Discussion

Commercially available (antibiotic-loaded) bone cements are widely used in clinics
for the fixation of prostheses in primary total arthroplasties, fracture fixation or revision
surgeries. In this study, we have adapted the G. mellonella early-stage biofilm and hematoge-
nous implant infection models to be used with ALBC implants and subsequently evaluated
the efficacy of these ALBCs against S. aureus. The overall outcome is the superior effect
of the dual-loaded bone cement COPAL G+V in preventing infection compared to the
limited effect of PALACOS R+G, which contains only gentamicin. In this study, we delib-
erately chose to use the clinically available formulations to be able to compare—or even
validate—the outcomes of our models to the clinical practice. Thus, by using clinically
relevant commercially available bone cements, we could mimic the clinical situation and
thereby validate the model.

The elution of individual antibiotics from dual-loaded bone cement is better than
when bone cement is loaded with a single antibiotic, thereby enhancing each other’s
effect [21]. Dual ALBC is increasingly used in arthroplasty procedures after femoral neck
fractures and demonstrates a reduction in PJI after hemiarthroplasty and seems, therefore,
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to be a useful method for the prevention of infection [17]. High-dose ALBC is especially
beneficial for patients with increased risk factors for PJI [11,17], for instance, those with an
intracapsular fracture of the hip [15]. However, in people aged 60 years or older receiving a
hemiarthroplasty for intracapsular fracture of the hip, the use of high-dose dual-antibiotic
loaded cement did not reduce the rate of deep surgical site infection in a randomized
superiority trial [22].

Morris et al. used Dawley rats to establish a PJI knee model [23]. They implanted
a porous titanium implant into the femur and an ultra-highly cross-linked polyethylene
implant into the tibia, using gentamicin-coated bone cement (PALACOS R+G) to analyze
the effectiveness against an S. aureus infection. Despite negative blood cultures with the
gentamicin-loaded bone cement, S. aureus was still present in the joint tissue and on the im-
plant surface. Similarly, our larvae model also revealed the presence of bacteria on both the
surface and within the larvae tissue. Using a dual antibiotic-loaded (gentamicin and van-
comycin) PMMA nail, rabbits with femoral osteomyelitis caused by a methicillin-resistant
Staphylococcus aureus (MRSA) were successfully treated following surgical debridement
and implantation [24]. Consistent with these findings, COPAL G+V achieved complete
eradication of bacteria on the implant surface and a more than 2-log reduction in numbers
of bacteria in the tissue in the G. mellonella implant infection model. The major advantages
of using the G. mellonella implant infection model over other PJI models include the ability
to conduct large cohort studies, high-throughput screening of new drugs, and testing
various antibiotic combinations. This approach facilitates new drug development and
reduces and refines the use of mammalian models in studies of orthopedic device-related
infections [25].

Thus, we successfully adapted G. mellonella models for the use of ALBC. This is an
important addition to the in vivo models, as bone cement is often used in the manage-
ment of PJI for implant fixation or as a spacer. These spacers serve both therapeutic and
mechanical functions during the interval between the removal of an infected prosthesis
and the implantation of a new one. These in vivo models allow for detailed studies in
the prevention or even treatment of PJI, in a relatively high-throughput, simple and cost-
effective way. The ALBC released local high doses of antibiotics, without any signs of
toxicity in the G. mellonella models. Unlike mammalian models, such as osteomyelitis
mouse models [26,27], using G. mellonella raises fewer ethical concerns, making it easier to
conduct large-scale studies without the need for extensive regulatory approval. Moreover,
maintaining and handling G. mellonella is less expensive compared to vertebrate models, as
they do not require specialized facilities, reducing overall research costs. The larvae are
easy to handle and manipulate, and can be infected with a variety of pathogens, including
bacteria and fungi. For example, we recently showed that G. mellonella can be used as an
alternative in vivo models to study implant-associated fungal infections [28]. The life cycle
of G. mellonella is relatively short and infection outcomes can be observed within days,
allowing for quick assessment of pathogen virulence and treatment efficacy. They possess
a complex innate immune system, including phagocytosis, melanization, and production
of antimicrobial peptides, which provides insights into host-pathogen interactions relevant
to higher organisms. On the other hand, unlike vertebrates, G. mellonella lacks an adaptive
immune system and is unable to produce antibodies, which limits the ability to study long-
term immune responses and vaccine efficacy. However, recent studies have demonstrated
that insects possess mechanisms to maintain immunity, known as ‘immune priming’ [29].
Primary exposures of insects to bacteria and fungi lead to increased hemocyte production
and enhanced resistance to subsequent infections by the same or similar pathogens [30,31].
Furthermore, Gallorini et al. established the immunophenotyping of hemocytes from
infected G. mellonella larvae using cell membrane markers expressed by human immune
cells [32]. This study highlights the analogies between vertebrate and invertebrate immune
responses, as hemocytes react with anti-human antibodies. Consequently, this model could
be used as a tool for screening new compounds, antibiotics, and vaccines. Lastly, results
obtained from G. mellonella may not always translate directly to humans or other mammals
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due to differences in physiology and immune system complexity [18,33]. However, by
using clinically applied ALBC in the current study, we could show a good correlation of
the outcome in the in vivo model with the clinical practice.

In the future, the G. mellonella infection models could be used to study the pathogenesis
of difficult-to-treat implant-associated infections, caused by multidrug-resistant (MDR)
Gram-positive and Gram-negative bacterial strains belonging to the so-called ESKAPE
panel (i.e., Enterococcus faecium, S. aureus, Klebsiella pneumoniae, Acinetobacter baumannii,
Pseudomonas aeruginosa, and Enterobacter species) [34], also listed on the World Health
Organization’s priority pathogen list [35,36]. The ESKAPE panel represents a global threat
to human health because these bacterial strains can evade commonly used antibiotics.
Therefore, the development of ALBC with broad-spectrum coverage needs to be considered
in the fight against MDR bacteria. Moreover, these G. mellonella models could potentially
be adapted to study infections of partially cemented metal implants, to further mimic
clinical procedures. Therefore, G. mellonella implant infection models could be used to
evaluate the effect of bone cement containing several combinations of antibiotics against
multidrug-resistant pathogens.

4. Materials and Methods
4.1. Bacterial Cultures

The methicillin-sensitive S. aureus (MSSA) EDCC 5055, a strain with biofilm-forming
capacity originally isolated from a wound infection, was used in the present study [37].
S. aureus EDCC 5055 is resistant to gentamicin (MIC: 4–8 mg/L; breakpoint: 2 mg/L)
and susceptible to vancomycin (MIC: 1 mg/L; breakpoint: 2 mg/L), according to the
EUCAST [38]. Prior to each experiment, bacteria from frozen stocks were grown overnight
at 37 ◦C on LB agar plates (Carl Roth, Karlsruhe, Germany). From a single colony, an
overnight culture was prepared in Brain-Heart Infusion (BHI; Merk, Darmstadt, Germany)
broth by incubating at 37 ◦C and 180 rpm.

The overnight bacterial culture was diluted 100-fold in fresh BHI, and the bacteria
were cultured to mid-logarithmic growth phase at 37 ◦C and 180 rpm, pelleted, washed
once with phosphate-buffered saline (PBS; 140 mM NaCl, pH 7.4; Gibco, Life technologies,
Paisley, UK), resuspended and diluted in BHI or PBS to 5 × 106 CFU/mL for the in vivo
experiments, based on the optical density of the suspension at 600 nm. The concentration
of the inoculum suspension was verified by culturing duplicate 5 µL aliquots from 10-fold
serial dilutions of the suspension on LB agar and determining the CFU/mL on the following
day (quantitative culture).

4.2. Preparation of ALBC Discs and Implants

The bone cements PALACOS R (containing no antibiotics; non-loaded), PALACOS
R+G (containing 0.5 g gentamicin), and COPAL G+V (containing 0.5 g gentamicin and
2 g vancomycin) were obtained from Heraeus medical GmbH (Wehrheim, Germany). The
radiopaque polymer (40–43 g powder, depending on the type of bone cement) was mixed
well with 20 mL of monomer liquid in a bowl. The resulting paste was pressed into Teflon
moulds (Karl Lettenbauer, Erlangen, Germany) using a spatula to prepare uniform discs
(Ø 13 mm, 3.5 mm in height) and cylindrical implants (Ø 1.2 mm, 8 mm in length), for the
in vitro and in vivo assays, respectively (Figure 5). After polymerization, the samples were
removed from the moulds by applying force with a metal pin. Finally, the implants were
sharpened using an electric combination tool (Georg Roth GmbH, Fürth, Germany).
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Figure 5. Development of experimental procedures. In short, the polymer powder was mixed with
the monomer liquid and the resulting paste pressed into Teflon moulds to prepare uniform discs and
cylindrical ALBC implants, for the in vitro and in vivo assays, respectively. The in vitro antimicrobial
activity of the ALBC discs was determined. The in vivo biocompatibility was assessed in G. mellonella.
Next, the in vivo effectivity was determined in the G. mellonella early-stage biofilm and hematogenous
implant infection models.

4.3. In Vitro Antimicrobial Activity of ALBC Discs

Two ALBC discs were placed in an Erlenmeyer flask with 50 mL of an S. aureus inocu-
lum suspension, prepared by diluting the overnight culture 1:100 in fresh BHI (containing
~1 × 107 CFU/mL), and incubated at 37 ◦C and 100 rpm. After 24 h, the discs were
rinsed with demineralized water, placed in fresh inoculum suspension and the process
was repeated for up to 3 days. After incubation for 1–3 days, two measures of bacterial
growth were quantified: the planktonic bacterial growth in the medium and the bacterial
attachment and possible biofilm formation on the disc surface. Therefore, the medium
was collected, and the discs were rinsed with demineralized water and then sonicated
in 5 mL of PBS for 5 min at 45 kHz in a water bath sonicator (Ultrasonic Cleaner USC-T;
VWR, Ismaning, Germany) and vortexed for 30 sec to detach and disperse adherent biofilm
cells. This procedure does not affect bacterial viability [39]. The medium and sonicates
were serially diluted tenfold and 5 droplets of 5 µL were plated on LB agar and incubated
overnight at 37 ◦C. To increase the limit of detection, an additional 200 µL was plated on
LB agar. The numbers of CFU per mL (medium) or per sample (discs) were determined
after overnight incubation at 37 ◦C and expressed as log10 CFU per mL (medium) or as
log10 CFU per sample (disc). The lower limit of detection was 5 CFU and 25 CFU for the
medium and discs, respectively. For each group, 2 discs were incubated per Erlenmeyer
flask, and each experiment was repeated 3 times. So, a total of n = 3 medium and n = 6 discs
per group were used. To visualize the data on a logarithmic scale, a value of 1 CFU was
assigned when no growth occurred.

4.4. G. mellonella Implant Infection Models
4.4.1. Animals

G. mellonella larvae were ordered from Evergreen GmbH (Augsburg, Germany) and
maintained on wheat germ (Tropic Shop GmbH, Nordhorn, Germany) at room temperature
during the entire experiment. For each survival experiment, ten larvae in the last instar
stage weighing around 500 mg were utilized per group, and each experiment was repeated
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3 times (total of n = 30 larvae per group). To determine the number of bacteria on the
implant surfaces and in the tissue of the larvae, 6 larvae per group were used.

4.4.2. Early-Stage Biofilm Implant Infection Model

For an early-stage biofilm infection, the cylindrical ALBC implants were pre-incubated
in the S. aureus inoculum suspension in BHI (containing 5 × 106 CFU/mL) for 1 h at
180 rpm, washed with PBS, and subsequently implanted at the rear end of the larvae by
piercing their cuticle with the sharp end of the implant (Figure 6A). After implantation, the
G. mellonella larvae were maintained at 37 ◦C and their survival was monitored for 5 days.
Immediately before implantation, the number of bacteria on the surface of (additional;
n = 3) the implants was determined according to the quantitative culture procedure in the
following section.
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Figure 6. Schematic overview of the Galleria mellonella implant infection models used in this study.
(A) Early-stage biofilm implant infection model: An ALBC implant was incubated in an S. aureus
solution (5 × 106 CFU/mL) for 60 min before implantation in the larva. (B) Hematogenous implant
infection model: a sterile ALBC implant was implanted in the larva, and 10 µL S. aureus inoculum
(5 × 104 CFU/larva) was injected after 60 min. The survival of the larvae was monitored for 5 days.
N = 30 larvae per experimental group. At 1 day after infection (see *), the number of CFU at the
implant surface and in the tissue of the larvae was quantitatively determined (additional larvae, n = 6
per group).

4.4.3. Hematogenous Implant Infection Model

To mimic the hematogenous infection route, a cylindrical ALBC implant was implanted
in the larvae, as stated above, and incubated at 37 ◦C (Figure 6B). After 1 h, the larvae received
an injection with 10 µL of an S. aureus inoculum suspension of 5 × 106 CFU/mL in PBS (i.e.,
5 × 104 CFU/larva). The larvae were maintained and monitored as described above.



Antibiotics 2024, 13, 692 11 of 14

4.4.4. Quantitative Culture

The antimicrobial effect of ALBC implants was determined by retrieving bacteria
from the implant surface and from the tissue of the larva. At 1 day after implantation,
the implants were separated from the tissue for the quantitative culture of bacteria. The
implants were rinsed in demineralized water, sonicated in 0.5 mL PBS for 2 min at 45 kHz
in a water bath sonicator and vortexed for 30 sec to dislodge all bacteria (Ultrasonic Cleaner
USC-T; VWR, Ismaning, Germany). The tissue samples were homogenized in 1 mL of PBS
using a combination of six large (Ø 2.8–3.2 mm) and ~15 smaller (Ø 1.4–1.6 mm) yttrium
stabilized zirconium oxide grinding beads (Cerdur, Vechta, Germany) in the Precellys
system (VWR), with six cycles of 30 s at 8000 rpm, with 30 s rest between cycles, under
continuous cooling at 4 ◦C. The sonicates and homogenates were serially diluted tenfold
and 5 droplets of 5 µL were plated on mannitol salt agar (MSA) plates (Sigma-Aldrich), to
suppress growth of skin flora of the larvae, and incubated overnight at 37 ◦C. To increase
the limit of detection, an additional 200 µL was plated. The numbers of CFU/sample were
determined after overnight incubation at 37 ◦C and expressed as log10 CFU per implant
or log10 CFU per larva. The lower limit of detection was 3 CFU and 5 CFU for implants
and tissue, respectively. To visualize the data on a logarithmic scale, a value of 1 CFU was
assigned when no growth occurred.

4.5. Scanning Electron Microscopy

Bacterial attachment to the ALBC implants, retrieved from the hematogenous implant
infection model at 1 day, was studied using scanning electron microscopy (SEM). After
removal from the larvae, the implants were washed twice with 1 mL of PBS to remove any
non-adherent bacteria and fixed in 2.5% (v/v) glutaraldehyde (NeoFroxx GmbH, Einhausen,
Germany) for 30 min at room temperature. Next, the implants were washed twice in PBS
to remove the fixative and dehydrated in a graded ethanol concentration series (30%, 50%,
70%, 80% and 96%; Carl Roth) for 15 min each, followed by washing three times with
100% ethanol for 30 min. The implants were dried in a critical point dryer (EM CPD300,
Leica, Wetzlar, Germany). Before imaging, samples were mounted on aluminum stubs
(Ø 12.5 mm, Baltic Präparation, e.K., Wetter, Germany) and sputter-coated with a 4 nm
gold–palladium layer (Polaron Sputter Coater SC760, Leica). Images were acquired at 15 kV
using a LEO1530 (Ziess, Oberkochen, Germany). At least 10 fields of each implant were
inspected and photographed at magnifications of 800×, 5000× and 10,000×.

4.6. Statistical Analysis

Statistical analysis of the data was performed using GraphPad Prism 9.5 (GraphPad
Software, San Diego, CA, USA). For the analysis of bacterial numbers, the Kruskal–Wallis
rank sum test, with Dunn’s correction for multiple comparisons, was applied, and the data
were represented as log10 CFU with the median value per group. Differences between
pairs of survival curves of the G. mellonella larvae were analyzed using the Mantel–Cox log
rank test. The data were represented as means ± standard error of the mean from three
independent experiments with 10 technical replicates of each survival experiment. The
data were considered significant if the p-value was ≤0.05.

5. Conclusions

We successfully adapted G. mellonella implant infection models to be used with
(antibiotic-loaded) cemented implants. First, bone cement, containing no antibiotics (PALA-
COS R), gentamicin alone (PALACOS R+G) or gentamicin in combination with vancomycin
(COPAL G+V), was shaped into discs or cylindrical implants for the in vitro and in vivo
experiments, respectively. Next, the cylindrical ALBC implants were implemented in the
previously developed early-stage biofilm implant infection and hematogenous implant
infection models [19]. To mimic an early-stage biofilm implant infection, the implants were
incubated in an S. aureus solution for 60 min and subsequently implanted in the larvae. The
hematogenous implant infection model was adapted as follows: a sterile ALBC implant
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was implanted in the larva, followed by an injection with S. aureus 60 min after implanta-
tion. In this way, both G. mellonella infection models can be used with ALBC to study the
pathogenesis and prevention of PJIs in vivo. Thus, the G. mellonella larvae infection model
with ALBC could be used as an alternative in vivo model to evaluate (novel) antimicrobial
therapies against infections related to implant-related infections.
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