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Abstract
In this paper, we consider a singular limit problem for a diffuse interface model
for two immiscible compressible viscous fluids. Via a relative entropy method,
we obtain a convergence result for the low Mach number limit to a correspond-
ing system for incompressible fluids in the case of well-prepared initial data and
same densities in the limit.
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1 INTRODUCTION AND MAIN RESULT

Diffuse interface models are an important modeling approach to describe two- or multi-phase flows in fluid mechanics.
In comparison with classical sharp interface models they have the theoretical and practical advantage that surfaces sep-
arating the fluids do not need to be resolved explicitely. In the case of two fluids the (diffuse) interface is described as the
region, where an order parameter, which will be the concentration difference of the two fluids in the following, is not
close to one of two values, which describe the presence of only one fluid (±1 in the following).

In this contribution we consider the relation between two diffuse interface models for a two-phase flow of viscous
Newtonian fluids. The first one is for the case of compressible fluids and leads to the Navier-Stokes/Cahn-Hilliard system
for compressible fluids:

𝜚𝜕tv + 𝜚v ⋅ ∇v − div S + 1
M

∇p = −div
(
∇c ⊗ ∇c − |∇c|2

2
I

)
, (1.1)

𝜕t𝜚 + div (𝜚v) = 0, (1.2)
𝜚𝜕tc + 𝜚v ⋅ ∇c = Δ𝜇, (1.3)

𝜚𝜇 = 𝜚
1
M

𝜕f
𝜕c

− Δc, (1.4)

in Ω × (0,T), where Ω ⊆ R3 is a bounded C2-domain and p = 𝜚2 𝜕f
𝜕𝜚
(𝜚, c) and

S = 2𝜈(c)Dv + 𝜂(c)div v I, (1.5)

Dv = 1
2
(∇v + ∇vT) − 1

3
div vI.
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Here c ∶ Ω × (0,T) → R describes the concentration difference of two partly miscible compressible fluids, 𝜌 ∶ Ω ×
(0,T) → [0,∞) is the density of the fluid mixture and v ∶ Ω × (0,T) → R3 its (barycentric) mean velocity. Moreover, 𝜆, 𝜂 ∶
R → [0,∞) are functions describing the shear and bulk viscosity of the mixture, f ∶ [0,∞) × R → R is a homogeneous
free energy density of the mixture and M > 0 is an analogue of a Mach number. Precise assumptions will be given below.
This system is a variant of the model derived by Lowengrub and Truskinovsky [34] in a non-dimensionalized form, com-
pare of also [4]. Here we have set the Reynolds and Peclet number to one for simplifity and the Cahn number proportional
to M, compare of [34, eq. (3.35)] for the details. We note that in the present variant the total free energy is given by

Efree(𝜚, c) = ∫Ω

(
𝜚f (𝜚, c) + 1

2
|∇c|2) dx, (1.6)

while in [34] there is an additional factor 𝜌 in front of |∇c|2. The system is closed by the initial and boundary conditions

v|𝜕Ω = ∇c ⋅ n|𝜕Ω = ∇𝜇 ⋅ n|𝜕Ω = 0, (1.7)
(v, c)|t=0 = (v0, c0), (1.8)

where n is the exterior normal of Ω. Existence of weak solutions for this system was proved by Feireisl and the first
author in [2]. This result was extended to the case of certain dynamic boundary conditions by Cherfils et al. [6]. Existence
and uniqueness of strong solutions for this system was shown by Kotschote and Zacher [30], see also [29]. Existence of
dissipative martingal solutions of a stochastically perturbed version of this system was shown by Feireisl and Petcu [18].
In the time-independent, stationary situation existence of weak solutions was shown by Liang and Wang [31, 32]. Exis-
tence of weak solutions for a similar Navier-Stokes/Allen-Cahn system for compressible fluids was shown by Feireisl
et al. [21], while an entropy stable finite volume method for this instationary system was proposed by Feireisl, Petcu and
She [20], where also existence of weak solutions of the discretized system was shown. For this system Feireisl, Petcu, and
Pražák [19] studied a relative entropy and obtained results on weak-strong uniqueness and on a low Mach number limit
similar to our result in the following.

It is the goal of this contribution to study the low Mach number limit M → 0 for (1.1)–(1.4) and show convergence to
solutions of the system

𝜕tv + v ⋅ ∇v − div (2𝜈(c)Dv) + ∇𝜋 = −div (∇c ⊗ ∇c), (1.9a)
div v = 0, (1.9b)

𝜕tc + v ⋅ ∇c = Δ𝜇, (1.9c)
𝜇 = −Δc + G′(c). (1.9d)

under suitable assumptions and well-prepared initial data. We note that we consider a situation, where the two fluids in
limit M → 0 have the same density (or the density difference is neglected). The latter system is known as “model H” and
is one of the basic diffuse interface models for the two-phase flow of incompressible fluids. It first appeared in Hohenberg
and Halperin [26] and was later derived in the framework of rational continuum mechanics by Gurtin et al. [24]. A first
analytic result on existence of strong solutions, if Ω = R2 and G is a suitably smooth double well potential was obtained
by Starovoitov [36]. More complete results were presented by Boyer [5] in the case that Ω ⊂ Rd is a periodical channel
and a smooth double well potential G and the first author in [1] in the case of a bounded smooth domain and singular
double well potential. We refer to Abels, Giorgini, and Garcke [3] for recent analytic results for an extension of this model
to different densities and further references.

We note that, using (1.9d), one observes that (1.9a) is equivalent to

𝜕tv + v ⋅ ∇v − div (2𝜈(c)Dv) + ∇𝜋 = 𝜇∇c − ∇G(c).

The mathematical study of the low Mach number limit for systems of equations describing a motion of fluids gets
back to the seminal work of Klainerman and Majda [27]. Studying various types of singular limits allows us to eliminate
unimportant or unwanted modes of the motion as a consequence of scaling and asymptotic analysis. The aim of the
mathematical analysis of low Mach number limits is to fill up the gap between compressible fluids and their "idealized"
incompressible models. There are two ways to introduce the Mach number into the system, which are different from
the physical point of view, but from the mathematical one–completely equivalent. The first approach considers a varying
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equation of state as well as the transport coefficients see the works of Ebin [12], Schochet [35]. The second way is to
evaluate qualitatively the incompressibility using the dimensional analysis. We rewrite our system in the dimensionless
form by scaling each variable by its characteristic value, see Klein [28]. The mathematical analysis of singular limits in the
frame of strong solutions can be referred to works of Gallagher [22], Schochet [35], Danchin [8] or Hoff [25]. The seminal
works of Lions [33] and its extension by Feireisl et al. [17] on the existence of global weak solutions in the barotropic case
gave a new possibility of a rigorous study of singular limits in the frame of weak solutions, see the works of Desjardins
and Grenier [9], Desjardins, Grenier, Lions and Masmoudi [10].

The relative energy inequality was introduced by Dafermos [7] and in the fluid dynamic context was introduced by
Germain [23]. Deriving the relative energy inequality for sufficiently smooth test functions and proving the weak-strong
uniqueness it gives us very powerful and elegant tool for the purpose of measuring the stability of a solution compared to
another solution with better regularity. This method was developed by Feireisl, Novotný and co-workers in the framework
of singular limits problems (see e.g., [13–16] and references therein).

The structure of this contribution is as follows: In Section 2 we summarize our assumptions, basic definitions and
state our main result on the low Mach number limit. Then in Section 3 we prove the main result with the aid of a relative
entropy method.

Notations

In the manuscript, we denote the usual Lebesgue and Sobolev spaces by Lp and W k,p respectively for 1 ≤ p ≤ ∞, k ≥ 0.
The corresponding norms are || ⋅ ||Lp and || ⋅ ||Wk,p . In particular, we define Hk ∶= W k,2. Throughout the paper, the letter
C will indicate a generic positive constant that may change its value from line to line, or even in the same line.

2 ASSUMPTIONS AND MAIN RESULT

We assume that f is given in the form

f (𝜚, c) = fe(𝜚) + MG(c). (2.1)

This choice coincides with the assumptions in [2] with H ≡ 0 therein. We only added the factor M in front of G, which
can be incorporated in G. This yields

p(𝜚, c) = 𝜚2 𝜕f (𝜚, c)
𝜕𝜚

= pe(𝜚), fe(𝜚) = ∫
𝜚

1

pe(z)
z2 dz (2.2)

where pe ∈ C([0,∞)) ∩ C1(0,∞). Moreover, it was assumed that

pe(0) = 0, p
1
𝜚𝛾−1 − p

2
≤ p′

e(𝜚) ≤ p(1 + 𝜚𝛾−1) (2.3)

for a certain 𝛾 >
3
2

and

G′′(c) ≥ −𝜅 for some 𝜅 ∈ R, G1c − G2 ≤ G′(c) ≤ G(1 + c),
||G′(c1) − G′(c2)|| ≤ G|c1 − c2|, ||G′′(c1) − G′′(c2)|| ≤ G|c1 − c2| (2.4)

for all c, c1, c2 ∈ R. Hence (1.1)–(1.4) reduce to

𝜚𝜀𝜕tv𝜀 + 𝜚𝜀v𝜀 ⋅ ∇v𝜀 − div S𝜀 +
1
𝜀2 ∇(pe(𝜚𝜀) − pe(1)) = 𝜚𝜀𝜇𝜀∇c𝜀 − 𝜚𝜀G′(c𝜀)∇c𝜀, (2.5a)

𝜕t𝜚𝜀 + div (𝜚𝜀v𝜀) = 0, (2.5b)
𝜚𝜀𝜕tc𝜀 + 𝜚𝜀v𝜀 ⋅ ∇c𝜀 = Δ𝜇𝜀, (2.5c)

𝜚𝜀𝜇𝜀 = 𝜚𝜀G′(c𝜀) − Δc𝜀, (2.5d)
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4 of 15 ABELS et al.

subject to the boundary conditions

v𝜀|𝜕Ω = ∇c𝜀 ⋅ n|𝜕Ω = ∇𝜇𝜀 ⋅ n|𝜕Ω = 0. (2.5e)

Let us recall the definition of weak solutions in the sense of [2, theorem 1.2] (with H ≡ 0 there):

Definition 2.1. Let T > 0, QT = Ω × (0,T), 𝜚0,𝜀 ∈ L𝛾 (Ω)with 𝜚0,𝜀 ≥ 0 almost everywhere, and m0,𝜀 ∶ Ω → R3

be measurable such that 𝜚−1
0,𝜀|m0,𝜀|2 ∈ L1(Ω). Then 𝜚𝜀 ∈ L∞(0,T;L𝛾 (Ω)) with 𝜚𝜀 ≥ 0, v𝜀 ∈ L2(0,T;H1(Ω;R3)),

c𝜀 ∈ L∞(0,T;H1(Ω)) are a weak solution of (2.5) if the following holds true:

1. For every 𝝋 ∈ (Ω × (0,T);R3)

− ∫QT

(
𝜚𝜀v𝜀 ⋅ 𝜕t𝝋 +

(
𝜚𝜀v𝜀 ⊗ v𝜀 +

1
M

pe(𝜚𝜀) I − S𝜀

)
∶ ∇𝝋

)
dxdt

= ∫QT

(
(∇c𝜀 ⊗ ∇c𝜀) ∶ ∇𝝋 − |∇c𝜀|2

2
div 𝝋

)
dxdt, (2.6)

where S𝜀 = 2𝜈(c𝜀)Dv𝜀 + 𝜂(c𝜀)div v𝜀 I.
2. 𝜚𝜀 is a renormalized solution of (2.5b) in the sense of DiPerna and Lions [11], that is,

∫QT

(𝜚𝜀B(𝜚𝜀)𝜕t𝜑 + 𝜚𝜀B(𝜚𝜀)v𝜀 ⋅ ∇𝜑 − b(𝜚𝜀)div v𝜀 𝜑) dxdt = 0 (2.7)

for any test function 𝜑 ∈ (Ω × (0,T)), and any

B(𝜚𝜀) = B(1) + ∫
𝜚𝜀

1

b(z)
z2 dz, (2.8)

where b ∈ C0([0,∞)) is a bounded function.
3. For every 𝜑 ∈ (Ω × (0,T))

∫QT

(𝜚𝜀c𝜀 𝜕t𝜑 + 𝜚𝜀c𝜀v𝜀 ⋅ ∇𝜑) dxdt = ∫QT

∇𝜇𝜀 ⋅ ∇𝜑 dxdt (2.9)

and

∫QT

𝜚𝜀𝜇𝜀𝜑 dxdt = ∫QT

(
𝜚𝜀G′(c𝜀)𝜑 + ∇c𝜀 ⋅ ∇𝜑

)
dxdt. (2.10)

4. The energy inequality

E(t) + ∫Q𝜏

(
S𝜀 ∶ ∇v𝜀 + |∇𝜇𝜀|2) dxd𝜏 ≤ E(s) (2.11)

holds for almost every 0 ≤ s ≤ T including s = 0 and all t ∈ [s,T], where

E(t) = ∫Ω
𝜚𝜀(t)

|v𝜀(t)|2
2

dx + Efree(𝜚𝜀(t), c𝜀(t)), (2.12)

E(0) = E0 = ∫Ω
𝜚−1

0,𝜀
|m0,𝜀|2

2
dx + Efree(𝜚0,𝜀, c0,𝜀). (2.13)

5. 𝜚𝜀, 𝜚𝜀v𝜀, c𝜀 are weakly continuous with respect to t ∈ [0,T]with values in L1(Ω) and 𝜚𝜀|t=0 = 𝜚0,𝜀, 𝜚𝜀v𝜀|t=0 =
m0,𝜀, c𝜀|t=0 = c0,𝜀.
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We note that existence of weak solutions follows from [2, theorem 1.2] and the well-posedness result of the limit
system (1.9) is referred to [1].

Our main result in this contribution is:

Theorem 2.2. Let 𝛾 ≥ 12
5

, Ω ⊆ R3 be a bounded domain with C2-boundary, T > 0, M = 𝜀2, 𝜀 > 0, and let
(v, c, 𝜇) be a (sufficiently) smooth solution of (1.9). Moreover, we assume that 𝜚0,𝜀 ∈ L𝛾 (Ω), v0,𝜀 ∈ L2(Ω)3, c0,𝜀 ∈
H1(Ω) are given such that 𝜚0,𝜀 ∶= 1 + 𝜀𝜚

(1)
0,𝜀 and

||𝜚(1)0,𝜀||L∞(Ω) + ‖‖v0,𝜀‖‖L2(Ω) + ‖‖∇c0,𝜀‖‖L2(Ω) ≤ C. (2.14)

and 𝜚
(1)
0,𝜀 →𝜀→0 0 in L∞(Ω), v0,𝜀 →𝜀→0 v0 in L2(Ω)3, c0,𝜀 →𝜀→0 c0 in H1(Ω). Then

𝜚𝜀(t, ⋅) →𝜀→0 1 in L1(Ω), v𝜀(t, ⋅) →𝜀→0 v in L2(Ω)3, c𝜀(t, ⋅) →𝜀→0 c(t, ⋅) in H1(Ω)

uniformly in t ∈ [0,T].

Remark 2.3. Here the restriction of 𝛾 ≥ 12
5

comes essentially from addressing the nonconvex part of the poten-
tial G, cf. (3.11). If one considers a convex potential G, we may relax it to 𝛾 ≥ 2, which is due to the convection
𝜚𝜀𝜇𝜀v ⋅ ∇c𝜀, compare of (3.27).

3 LOW MACH LIMIT

3.1 Relative energy inequality

To compare (2.5) and (1.9), we proceed with the so-called relative energy (entropy):

 (𝜚𝜀, v𝜀, c𝜀|1, v, c) ∶= ∫Ω

[1
2
𝜚𝜀|v𝜀 − v|2 + 1

𝜀2

(
Fe(𝜚𝜀) − F′

e(1)(𝜚𝜀 − 1) − Fe(1)
)]

dx

+ ∫Ω

[1
2
|∇c𝜀 − ∇c|2 + 𝜚𝜀(G(c𝜀) − G′(c)(c𝜀 − c) − G(c))

]
dx,

where Fe(𝜚𝜀) = 𝜚𝜀fe(𝜚𝜀). Here (𝜚𝜀, v𝜀, c𝜀) is a weak solution to (2.5) depending on 𝜀 in the sense of Definition 2.1, while
(1, v, c) is a pair of smooth test functions which is then chosen as the solution to (1.9).

By the weak formulation of (2.5a) for v𝜀, that is, (2.6), with v as the test function we obtain for every 𝜏 ∈ [0,T]

−
[
∫Ω

𝜚𝜀v𝜀v dx
]t=𝜏

t=0
= −∫Q𝜏

𝜚𝜀v𝜀 ⋅ 𝜕tv dxdt

− ∫Q𝜏

(𝜚𝜀v𝜀 ⊗ v𝜀 − 2𝜈(c𝜀)Dv𝜀) ∶ ∇v dxdt

− ∫Q𝜏

𝜚𝜀𝜇𝜀∇c𝜀 ⋅ v dxdt + ∫Q𝜏

𝜚𝜀v ⋅ ∇c𝜀G′(c𝜀) dxdt.

(3.1)

Let 1
2
|v|2 be the test function in the weak formulation of continuity Equation (2.5b). This yields

[
∫Ω

𝜚𝜀

2
|v|2 dx

]t=𝜏

t=0
= ∫Q𝜏

(𝜚𝜀v ⋅ 𝜕tv + 𝜚𝜀v𝜀 ⋅ ∇v ⋅ v) dxdt (3.2)

for every 𝜏 ∈ [0,T]. Summing (3.1), (3.2) and the energy inequality of weak solutions, one ends up with
[
∫Ω

𝜚𝜀

2
|v𝜀 − v|2 dx

]t=𝜏

t=0

+
[
∫Ω

(
𝜚𝜀G(c𝜀) +

1
2
|∇c𝜀|2) dx

]t=𝜏

t=0
+
[
∫Ω

1
𝜀2 Fe(𝜚𝜀) dx

]t=𝜏

t=0
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6 of 15 ABELS et al.

+ ∫Q𝜏

2𝜈(c𝜀)|Dv𝜀|2 dxdt + ∫Q𝜏

|∇𝜇𝜀|2 dxdt (3.3)

≤ −∫Q𝜏

𝜚𝜀(v𝜀 − v) ⋅ (𝜕tv + v ⋅ ∇v) dxdt − ∫Q𝜏

𝜚𝜀(v𝜀 − v) ⋅ ∇v ⋅ (v − v𝜀) dxdt

+ ∫Q𝜏

2𝜈(c𝜀)Dv𝜀 ∶ ∇v dxdt − ∫Q𝜏

𝜚𝜀𝜇𝜀∇c𝜀 ⋅ v dxdt + ∫Q𝜏

𝜚𝜀v ⋅ ∇c𝜀G′(c𝜀) dxdt.

In view of the weak formulation of (2.5c), we have

[
∫Ω

𝜚𝜀c𝜀𝜇 dx
]t=𝜏

t=0
− ∫Q𝜏

(𝜚𝜀c𝜀𝜕t𝜇 + 𝜚𝜀c𝜀v𝜀 ⋅ ∇𝜇) dxdt = −∫Q𝜏

∇𝜇𝜀 ⋅ ∇𝜇 dxdt. (3.4)

Moreover, with 𝜇 = G′(c) − Δc one gets

∫Q𝜏

𝜚𝜀c𝜀𝜕t𝜇 dxdt = ∫Q𝜏

𝜚𝜀c𝜀𝜕t(G′(c) − Δc) dxdt. (3.5)

Adding (3.4) and (3.5) and integration by parts gives

[
−∫Ω

𝜚𝜀c𝜀G′(c) − ∇c𝜀 ⋅ ∇c dx
]t=𝜏

t=0

=
[
∫Ω

(𝜚𝜀 − 1)c𝜀Δc dx
]t=𝜏

t=0
− ∫Q𝜏

𝜚𝜀c𝜀v𝜀 ⋅ ∇𝜇 dxdt

+ ∫Q𝜏

∇𝜇𝜀 ⋅ ∇𝜇 dxdt − ∫Q𝜏

𝜚𝜀c𝜀(G′′(c)𝜕tc − Δ𝜕tc) dxdt. (3.6)

Direct calculations yield

[
∫Ω

𝜚𝜀cG′(c) dx
]t=𝜏

t=0
=
[
∫Ω

(𝜚𝜀 − 1)cG′(c) dx
]t=𝜏

t=0
+ ∫

𝜏

0

d
dt ∫Ω

cG′(c) dxdt

=
[
∫Ω

(𝜚𝜀 − 1)cG′(c) dx
]t=𝜏

t=0
+ ∫Q𝜏

𝜕tcG′(c) dxdt + ∫Q𝜏

cG′′(c)𝜕tc dxdt.

Then we have
[
∫Ω

𝜚𝜀cG′(c) − 𝜚𝜀G(c) dx
]t=𝜏

t=0
=
[
∫Ω

(𝜚𝜀 − 1)cG′(c) dx
]t=𝜏

t=0

+
[
∫Ω

(1 − 𝜚𝜀)G(c) dx
]t=𝜏

t=0
+ ∫Q𝜏

cG′′(c)𝜕tc dxdt.
(3.7)

It follows from the strong formulation of (1.9) that

[
∫Ω

1
2
|∇c|2 dx

]t=𝜏

t=0
= −∫Q𝜏

G′(c)𝜕tc dxdt − ∫Q𝜏

|∇𝜇|2 dxdt − ∫Q𝜏

v ⋅ ∇c𝜇 dxdt. (3.8)

Now we summarize from (3.3), (3.6), (3.7), (3.8) that

[
∫Ω

𝜚𝜀

2
|v𝜀 − v|2 dx

]t=𝜏

t=0
+
[
∫Ω

1
𝜀2 Fe(𝜚𝜀) dx

]t=𝜏

t=0

+
[
∫Ω

(
𝜚𝜀(G(c𝜀) − G′(c)(c𝜀 − c) − G(c)) + 1

2
|∇c𝜀 − ∇c|2) dx

]t=𝜏

t=0

 15222608, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/gam

m
.202470008 by U

niversitaet R
egensburg, W

iley O
nline L

ibrary on [11/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



ABELS et al. 7 of 15

+ ∫Q𝜏

2𝜈(c𝜀)Dv𝜀 ∶ (Dv𝜀 − Dv) dxdt + ∫Q𝜏

|∇𝜇𝜀 − ∇𝜇|2 dxdt

≤ −∫Q𝜏

𝜚𝜀(v𝜀 − v) ⋅ (𝜕tv + v ⋅ ∇v) dxdt − ∫Q𝜏

𝜚𝜀(v𝜀 − v) ⋅ ∇v ⋅ (v − v𝜀) dxdt

+
[
∫Ω

(𝜚𝜀 − 1)c𝜀Δc dx
]t=𝜏

t=0
+
[
∫Ω

(𝜚𝜀 − 1)cG′(c) dx
]t=𝜏

t=0
+
[
∫Ω

(1 − 𝜚𝜀)G(c) dx
]t=𝜏

t=0

− ∫Q𝜏

𝜚𝜀𝜇𝜀∇c𝜀 ⋅ v dxdt + ∫Q𝜏

𝜚𝜀v ⋅ ∇c𝜀G′(c𝜀) dxdt

− ∫Q𝜏

𝜚𝜀c𝜀v𝜀 ⋅ ∇𝜇 dxdt − ∫Q𝜏

𝜚𝜀c𝜀(G′′(c)𝜕tc − Δ𝜕tc) dxdt

+ ∫Q𝜏

cG′′(c)𝜕tc dxdt − ∫Q𝜏

G′(c)𝜕tc dxdt − ∫Q𝜏

v ⋅ ∇c𝜇 dxdt.

In view of the strong formulation of (1.9a),

− ∫Q𝜏

𝜚𝜀(v𝜀 − v) ⋅ (𝜕tv + v ⋅ ∇v) dxdt

= −∫Q𝜏

𝜚𝜀(v𝜀 − v) ⋅ (div (2𝜈(c)Dv) − ∇𝜋 + 𝜇∇c − ∇G(c)) dxdt

= −∫Q𝜏

(𝜚𝜀 − 1)(v𝜀 − v) ⋅ (div (2𝜈(c)Dv) + 𝜇∇c) dxdt

− ∫Q𝜏

𝜚𝜀(v𝜀 − v) ⋅ ∇(𝜋 + G(c)) dxdt

− ∫Q𝜏

(v𝜀 − v) ⋅ (div (2𝜈(c)Dv)) dxdt − ∫Q𝜏

(v𝜀 − v) ⋅ 𝜇∇c dxdt.

By integration by parts, one obtains

− ∫Q𝜏

(v𝜀 − v) ⋅ (div (2𝜈(c)Dv)) dxdt

= ∫Q𝜏

(Dv𝜀 − Dv) ∶ (2𝜈(c)Dv) dxdt

= ∫Q𝜏

(Dv𝜀 − Dv) ∶ (2𝜈(c𝜀)Dv) dxdt + ∫Q𝜏

(Dv𝜀 − Dv) ∶ (2(𝜈(c) − 𝜈(c𝜀))Dv) dxdt

Then adding all together with (2.5b) multiplied by F′
e(𝜚𝜀) entails that

[ (𝜚𝜀, v𝜀, c𝜀|1, v, c)]t=𝜏
t=0

+ ∫Q𝜏

2𝜈(c𝜀)|Dv𝜀 − Dv|2 dxdt + ∫Q𝜏

|∇𝜇𝜀 − ∇𝜇|2 dxdt

≤
[
∫Ω

(𝜚𝜀 − 1)c𝜀Δc dx
]t=𝜏

t=0
+
[
∫Ω

(𝜚𝜀 − 1)cG′(c) dx
]t=𝜏

t=0
+
[
∫Ω

(1 − 𝜚𝜀)G(c) dx
]t=𝜏

t=0

− ∫Q𝜏

(𝜚𝜀 − 1)(v𝜀 − v) ⋅ div (2𝜈(c)Dv) dxdt

− ∫Q𝜏

𝜚𝜀(v𝜀 − v) ⋅ ∇v ⋅ (v − v𝜀) dxdt − ∫Q𝜏

𝜚𝜀(v𝜀 − v) ⋅ ∇(𝜋 + G(c)) dxdt

− ∫Q𝜏

𝜚𝜀(v𝜀 − v) ⋅ ∇(c𝜇) dxdt − ∫Q𝜏

𝜚𝜀(v𝜀 − v) ⋅ ∇𝜇(c𝜀 − c) dxdt
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8 of 15 ABELS et al.

− ∫Q𝜏

(𝜚𝜀 − 1)v ⋅ ∇𝜇c𝜀 dxdt − ∫Q𝜏

v ⋅ ∇(c𝜀 − c)(𝜇𝜀 − 𝜇) dxdt

− ∫Q𝜏

(𝜚𝜀 − 1)𝜇𝜀∇c𝜀 ⋅ v dxdt + ∫Q𝜏

(𝜚𝜀 − 1)v ⋅ ∇c𝜀G′(c𝜀) dxdt

+ ∫Q𝜏

(Dv𝜀 − Dv) ∶ (2(𝜈(c) − 𝜈(c𝜀))Dv) dxdt

+ ∫Q𝜏

𝜚𝜀𝜕tc
(

G′(c𝜀) − (c𝜀 − c)G′′(c) − G′(c)
)

dxdt

− ∫Q𝜏

(𝜚𝜀 − 1)
(

G′′(c)c𝜕tc − G′(c)𝜕tc
)

dxdt

− ∫Q𝜏

(𝜚𝜀 − 1)c𝜀Δ𝜕tc dxdt − ∫Q𝜏

(𝜚𝜀 − 1)𝜇𝜀𝜕tc dxdt, (3.9)

where we used

∫Q𝜏

𝜚𝜀v ⋅ ∇c𝜀G′(c𝜀) dxdt = ∫Q𝜏

(𝜚𝜀 − 1)v ⋅ ∇c𝜀G′(c𝜀) dxdt + ∫Q𝜏

v ⋅ ∇G(c𝜀) dxdt

= ∫Q𝜏

(𝜚𝜀 − 1)v ⋅ ∇c𝜀G′(c𝜀) dxdt.

Concerning the potential part of G, here due to the assumption (2.4) we employ the decomposition of G such that
G(c) = G0(c) + G1(c) with G1(c) = −𝜅 c2

2
for 𝜅 > 0 where G0(c) is convex. Then we have

∫Ω
𝜚𝜀(G0(c𝜀) − G′

0(c)(c𝜀 − c) − G0(c)) dx ≥ 0,

and

−
[
∫Ω

𝜚𝜀(G1(c𝜀) − G′
1(c)(c𝜀 − c) − G1(c)) dx

]t=𝜏

t=0
=
[
∫Ω

𝜚𝜀
𝜅

2
(c𝜀 − c)2 dx

]t=𝜏

t=0
. (3.10)

As G1(c) is a nonconvex part, in the following we would like to justify the following identity to ensure a suitable relative
energy inequality:

[
∫Ω

𝜚𝜀

2
(c𝜀 − c)2 dx

]t=𝜏

t=0

= −∫Q𝜏

(∇𝜇𝜀 − ∇𝜇) ⋅ (∇c𝜀 − ∇c) dxdt − ∫Q𝜏

(𝜚𝜀 − 1)(c𝜀 − c)𝜕tc dxdt

− ∫Q𝜏

(c𝜀 − c)(v𝜀 − v) ⋅ ∇c dxdt − ∫Q𝜏

(𝜚𝜀 − 1)(c𝜀 − c)v𝜀 ⋅ ∇c dxdt. (3.11)

We give an essential claim for the justification.
Claim: It holds that

[
∫Ω

𝜚𝜀
c2
𝜀

2
dx

]t=𝜏

t=0
= −∫Q𝜏

∇𝜇𝜀 ⋅ ∇c𝜀 dxdt. (3.12)

Proof of the claim. Let 0 ≤ t ≤ t + h ≤ T. Integrating (2.5b) over [t, t + h] in its weak formulation (using a standard
approximation argument) and testing with 1

2
c𝜀(t + h)c𝜀(t) yields

∫Ω

(𝜚𝜀(t + h) − 𝜚𝜀(t))c𝜀(t + h)c𝜀(t)
2h

dx = ∫Ω

1
2h∫

t+h

t
𝜚𝜀(𝜏)v𝜀(𝜏) d𝜏 ⋅ ∇(c𝜀(t + h)c𝜀(t)) dx.
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ABELS et al. 9 of 15

Similarly, integrating (2.5c) on [t, t + h] in its weak formulation (using a standard approximation argument) and testing
with 1

2
(c𝜀(t + h) + c𝜀(t)) yields

∫Ω

(𝜚𝜀(t + h)c𝜀(t + h) − 𝜚𝜀(t)c𝜀(t))(c𝜀(t + h) + c𝜀(t))
2h

dx

= ∫Ω

1
2h∫

t+h

t
(𝜚𝜀(𝜏)c𝜀(𝜏)v𝜀(𝜏) − ∇𝜇𝜀(𝜏)) d𝜏 ⋅ ∇(c𝜀(t + h) + c𝜀(t)) dx.

Now subtracting the first from the second identity gives

∫Ω

𝜚𝜀(t + h)c2
𝜀(t + h) − 𝜚𝜀(t)c2

𝜀(t)
2h

dx

= ∫Ω

1
2h∫

t+h

t
(𝜚𝜀(𝜏)c𝜀(𝜏)v𝜀(𝜏) − ∇𝜇𝜀(𝜏)) d𝜏 ⋅ ∇(c𝜀(t + h) + c𝜀(t)) dx

− ∫Ω

1
2h∫

t+h

t
𝜚𝜀(𝜏)v𝜀(𝜏) d𝜏 ⋅ ∇(c𝜀(t + h)c𝜀(t)) dx.

To pass to the limit h → 0+ in the first term on the right-hand side it is essential that ∇(c𝜀(. + h) + c𝜀) ∈ L2(0,T;Ls(Ω))
and 1

2h
∫ t+h

t 𝜚𝜀(𝜏)c𝜀(𝜏)v𝜀(𝜏)) d𝜏 ∈ L2(0,T;Ls′ (Ω)) are bounded, where 1
s
= 1

𝛾
− 1

6
, compare of (3.26) below. This is the case if

1
𝛾
+ 1

6
+ 1

6
≤ 1 − 1

𝛾
+ 1

6
, which is equivalent to 𝛾 ≥ 12

5
. This is where we need an extra restriction on 𝛾 . The same estimates

can be applied for the second term on the right-hand side. Hence we can pass to the limit h → 0+ and obtain

d
dt ∫Ω

𝜚𝜀
c2
𝜀

2
dx = −∫Ω

∇𝜇𝜀 ⋅ ∇c𝜀 dx in ′(0,T),

which yields the claim by the fundamental theorem for Sobolev functions and integrating over (0,T). □
Taking c as the test function in the weak formulation of (2.5c) and employing the strong formulation of (1.9c), we find

[
∫Ω

𝜚𝜀c𝜀c dx
]t=𝜏

t=0
= ∫Q𝜏

(−∇𝜇𝜀 + 𝜚𝜀c𝜀v𝜀) ⋅ ∇c dxdt + ∫Ω
𝜚𝜀c𝜀𝜕tc dx

= ∫Q𝜏

(𝜚𝜀 − 1)c𝜀v𝜀 ⋅ ∇c dxdt + ∫Q𝜏

c𝜀(v𝜀 − v) ⋅ ∇c dxdt (3.13)

− ∫Q𝜏

∇𝜇𝜀 ⋅ ∇c dxdt − ∫Q𝜏

∇𝜇 ⋅ ∇c𝜀 dxdt + ∫Ω
(𝜚𝜀 − 1)c𝜀𝜕tc dxdt.

Similarly, taking c2

2
as the test function in the weak formulation of the continuity Equation (2.5b), together with (1.9c),

yields

[
∫Ω

𝜚𝜀
c2

2
dx

]t=𝜏

t=0
= ∫Q𝜏

𝜚𝜀cv𝜀 ⋅ ∇c dxdt + ∫Q𝜏

𝜚𝜀c𝜕tc dxdt

= ∫Q𝜏

(𝜚𝜀 − 1)cv𝜀 ⋅ ∇c dxdt + ∫Q𝜏

c(v𝜀 − v) ⋅ ∇c dxdt

− ∫Q𝜏

∇𝜇 ⋅ ∇c dxdt + ∫Ω
(𝜚𝜀 − 1)c𝜕tc dxdt. (3.14)

Summing (3.12), (3.14), and subtracting (3.13) from the resulting equation entail the desired identity (3.11).
Now we define a modified relative energy ̃ by eliminating the nonconvex part of the chemical potential

̃ (𝜚𝜀, v𝜀, c𝜀|1, v, c) ∶=  (𝜚𝜀, v𝜀, c𝜀|1, v, c) − ∫Ω
𝜚𝜀(G1(c𝜀) − G′

1(c)(c𝜀 − c) − G1(c)) dx.
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10 of 15 ABELS et al.

Adding (3.9) and (3.11), one obtains relative energy inequality
[̃ (𝜚𝜀, v𝜀, c𝜀|1, v, c)

]t=𝜏

t=0

+ ∫Q𝜏

2𝜈(c𝜀)|Dv𝜀 − Dv|2 dxdt + ∫Q𝜏

|∇𝜇𝜀 − ∇𝜇|2 dxdt

≤
[
∫Ω

(𝜚𝜀 − 1)c𝜀Δc dx
]t=𝜏

t=0
+
[
∫Ω

(𝜚𝜀 − 1)cG′(c) dx
]t=𝜏

t=0
+
[
∫Ω

(1 − 𝜚𝜀)G(c) dx
]t=𝜏

t=0

− 𝜅 ∫Q𝜏

(∇𝜇𝜀 − ∇𝜇) ⋅ (∇c𝜀 − ∇c) dxdt − 𝜅 ∫Q𝜏

(𝜚𝜀 − 1)(c𝜀 − c)𝜕tc dxdt

− 𝜅 ∫Q𝜏

(c𝜀 − c)(v𝜀 − v) ⋅ ∇c dxdt − 𝜅 ∫Q𝜏

(𝜚𝜀 − 1)(c𝜀 − c)v𝜀 ⋅ ∇c dxdt

− ∫Q𝜏

(𝜚𝜀 − 1)(v𝜀 − v) ⋅ div (2𝜈(c)Dv) dxdt

− ∫Q𝜏

𝜚𝜀(v𝜀 − v) ⋅ ∇v ⋅ (v − v𝜀) dxdt − ∫Q𝜏

𝜚𝜀(v𝜀 − v) ⋅ ∇(𝜋 + G(c)) dxdt

− ∫Q𝜏

𝜚𝜀(v𝜀 − v) ⋅ ∇(c𝜇) dxdt − ∫Q𝜏

𝜚𝜀(v𝜀 − v) ⋅ ∇𝜇(c𝜀 − c) dxdt

− ∫Q𝜏

(𝜚𝜀 − 1)v ⋅ ∇𝜇c𝜀 dxdt − ∫Q𝜏

v ⋅ ∇(c𝜀 − c)(𝜇𝜀 − 𝜇) dxdt

− ∫Q𝜏

(𝜚𝜀 − 1)𝜇𝜀∇c𝜀 ⋅ v dxdt + ∫Q𝜏

(𝜚𝜀 − 1)v ⋅ ∇c𝜀G′(c𝜀) dxdt

+ ∫Q𝜏

(Dv𝜀 − Dv) ∶ (2(𝜈(c) − 𝜈(c𝜀))Dv) dxdt

+ ∫Q𝜏

𝜚𝜀𝜕tc
(

G′(c𝜀) − (c𝜀 − c)G′′(c) − G′(c)
)

dxdt

− ∫Q𝜏

(𝜚𝜀 − 1)
(

G′′(c)c𝜕tc − G′(c)𝜕tc
)

dxdt

− ∫Q𝜏

(𝜚𝜀 − 1)c𝜀Δ𝜕tc dxdt − ∫Q𝜏

(𝜚𝜀 − 1)𝜇𝜀𝜕tc dxdt. (3.15)

3.2 Uniform estimates

Let v = 0 and c = 1 in (3.15). Then one obtains
[̃ (𝜚𝜀, v𝜀, c𝜀|1, 0, 1)]t=𝜏

t=0
+ ∫Q𝜏

2𝜈(c𝜀)|Dv𝜀|2 dxdt + ∫Q𝜏

|∇𝜇𝜀|2 dxdt ≤ C

for every 𝜏 ∈ [0,T]. In a similar way as in [13, 19], we obtain the uniform estimates

esssup
t∈(0,T)

‖‖‖√𝜚𝜀v𝜀
‖‖‖L2

≤ C, (3.16)

esssup
t∈(0,T) ∫Ω∩{1∕2≤𝜚𝜀≤2}

||||𝜚𝜀 − 1
𝜀

||||
2

dx ≤ C, (3.17)

esssup
t∈(0,T) ∫Ω⧵{1∕2≤𝜚𝜀≤2}

(1 + |𝜚𝜀|𝛾 ) dx ≤ 𝜀2C, (3.18)

esssup
t∈(0,T)

‖∇c𝜀‖L2(Ω) ≤ C, (3.19)

∫
T

0
‖∇𝜇𝜀‖2

L2(Ω) dt ≤ C, (3.20)
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ABELS et al. 11 of 15

where C > 0 depends on the bounds for the initial data. Moreover, via Korn’s inequality (cf. [16, theorem 11.21]) and
𝜈∗ ≤ 𝜈(c𝜀) ≤ 𝜈∗, one has

∫
T

0
‖∇v𝜀‖2

L2(Ω) dt ≤ C.

In view of a generalized Korn–Poincaré inequality (cf. [16, theorem 11.23]), we obtain

∫
T

0
‖v𝜀‖2

W1,2(Ω) dt ≤ C. (3.21)

Incorporating with (3.19) and the conservation of 𝜚𝜀c𝜀, that is, for a.e. 𝜏 ∈ (0,T),

∫Ω
𝜚𝜀c𝜀(𝜏) dx = ∫Ω

𝜚0c0 dx,

proceeding in a similar way as in [2, lemma 2.1] yields

esssup
t∈(0,T)

‖c𝜀(t)‖W1,2(Ω) ≤ C. (3.22)

Moreover, it follows from (2.4), (2.5d), (3.22) that

||||∫Ω
𝜚𝜀𝜇𝜀 dx

|||| =
||||∫Ω

𝜚𝜀G′(c𝜀) dx
|||| ≤ C‖𝜚𝜀‖L𝛾 (Ω)

(
1 + ‖c𝜀‖L

𝛾
𝛾−1 (Ω)

) ≤ C,

which, in accordance with (3.20), implies

∫
T

0
‖𝜇𝜀(t)‖2

W1,2(Ω) dt ≤ C. (3.23)

With Sobolev embedding in 3D, we have 𝜇𝜀 ∈ L2(0,T;L6(Ω)). Combining with the fact 𝜚𝜀 ∈ L∞(0,T;L𝛾 (Ω)), one obtains
𝜚𝜀𝜇𝜀 ∈ L2(0,T;Lq(Ω)) uniformly, with 1

q
= 1

𝛾
+ 1

6
. Then by means of the elliptic estimates of c𝜀 in (2.5d), namely,

−Δc𝜀 = 𝜚𝜀𝜇𝜀 − 𝜚𝜀G′(c𝜀),

we get

c𝜀 ∈ L2(0,T;W2,q(Ω)) (3.24)

for all 1 < q < 6 satisfying 1
q
= 1

𝛾
+ 1

6
.

3.3 Incompressible limit

Now we are in the position to control the right-hand side terms of (3.15) and derive the desired limit passage. First,

∫Q𝜏

𝜚𝜀(v𝜀 − v) ⋅ ∇v ⋅ (v − v𝜀) dxdt ≤ ∫
𝜏

0
‖∇v‖L∞(Ω)

‖‖‖√𝜚𝜀(v𝜀 − v)‖‖‖2

L2(Ω)
dt ≤ C∫

𝜏

0
̃(t) dt.

By 𝜈∗ ≤ 𝜈 ≤ 𝜈∗, the Lipschitz continuity of 𝜈(c), and Young’s inequality, we have

∫Q𝜏

(Dv𝜀 − Dv) ∶ (2(𝜈(c) − 𝜈(c𝜀))Dv) dxdt
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12 of 15 ABELS et al.

≤ 1
2 ∫Q𝜏

𝜈(c𝜀)|Dv𝜀 − Dv|2 dxdt + C(𝜈−1
∗ )∫

𝜏

0
‖Dv‖2

L∞(Ω)‖c𝜀 − c‖2
L2(Ω) dt

≤ 1
2 ∫Q𝜏

𝜈(c𝜀)|Dv𝜀 − Dv|2 dxdt + C(𝜈−1
∗ )∫

𝜏

0
̃(t) dt.

Moreover,

∫Q𝜏

𝜚𝜀(v𝜀 − v) ⋅ ∇𝜇(c𝜀 − c) dxdt

≤ ∫
𝜏

0
‖𝜚𝜀‖L𝛾 (Ω)‖∇𝜇‖L∞(Ω)‖v𝜀 − v‖L6(Ω)‖c𝜀 − c‖L6(Ω) dt

≤ 1
2 ∫Q𝜏

𝜈(c𝜀)|Dv𝜀 − Dv|2 dxdt + C(𝜈−1
∗ )∫

𝜏

0
̃(t) dt,

for all 𝛾 > 3∕2, where we used the energy boundedness of 𝜚𝜀, the Sobolev embedding of W1,2 → L6 in three dimensions
and the Poincaré inequality. Analogously, it follows

− ∫Q𝜏

v ⋅ ∇(c𝜀 − c)(𝜇𝜀 − 𝜇) dxdt = ∫Q𝜏

v ⋅ ∇(𝜇𝜀 − 𝜇)(c𝜀 − c) dxdt

≤ ∫
𝜏

0
‖v‖2

L∞(Ω)‖c𝜀 − c‖2
L2(Ω) dt + 1

4 ∫Q𝜏

|∇𝜇𝜀 − ∇𝜇|2 dxdt

≤ 1
4 ∫Q𝜏

|∇𝜇𝜀 − ∇𝜇|2 dxdt + C∫
𝜏

0
̃(t) dt,

and

− 𝜅 ∫Q𝜏

(∇𝜇𝜀 − ∇𝜇) ⋅ (∇c𝜀 − ∇c) dxdt − 𝜅 ∫Q𝜏

(c𝜀 − c)(v𝜀 − v) ⋅ ∇c dxdt

≤ 1
4 ∫Q𝜏

|∇𝜇𝜀 − ∇𝜇|2 dxdt + 1
2 ∫Q𝜏

𝜈(c𝜀)|Dv𝜀 − Dv|2 dxdt + C(𝜈−1
∗ )∫

𝜏

0
̃(t) dt.

By direct calculations and weak formulation of continuity equation for 𝜚𝜀,

∫Q𝜏

𝜚𝜀(v𝜀 − v) ⋅ ∇(𝜋 + c𝜇 + G(c)) dxdt

= −𝜀∫Q𝜏

𝜚𝜀 − 1
𝜀

𝜕t(𝜋 + c𝜇 + G(c)) dxdt

+ 𝜀

[
∫Ω

𝜚𝜀 − 1
𝜀

(𝜋 + c𝜇 + G(c)) dx
]t=𝜏

t=0
− 𝜀∫Q𝜏

𝜚𝜀 − 1
𝜀

v ⋅ ∇(𝜋 + c𝜇 + G(c)) dxdt. (3.25)

For sufficiently smooth (v, 𝜋, c, 𝜇), it follows from (3.17) and the Hölder inequality that (3.25) is controlled by

∫Q𝜏

𝜚𝜀(v𝜀 − v) ⋅ ∇(𝜋 + c𝜇 + G(c)) dxdt ≤ 𝜀C,

where C depends on the initial data and (v, p, c, 𝜇), but is independent of 𝜀 > 0.
Concerning the terms associated with (𝜚𝜀 − 1), it follows from (3.17) and (3.18) that

∫Q𝜏

(𝜚𝜀 − 1)f dxdt ≤ 𝜀C,
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for all f ∈ L1(0,T;L2(Ω) ∩ L
𝛾

𝛾−1 (Ω)) with 𝛾 >
3
2
. Similarly,

[
∫Ω

(𝜚𝜀 − 1)c𝜀Δc dx
]t=𝜏

t=0
+
[
∫Ω

(𝜚𝜀 − 1)cG′(c) dx
]t=𝜏

t=0

+
[
∫Ω

(𝜚𝜀 − 1)cG′(c) dx
]t=𝜏

t=0
+
[
∫Ω

(1 − 𝜚𝜀)G(c) dx
]t=𝜏

t=0
≤ 𝜀C.

However, for the term ∫Q𝜏
(𝜚𝜀 − 1)𝜇𝜀∇c𝜀 ⋅ v dxdt, we know from (3.22) and (3.23) that 𝜇𝜀∇c𝜀 ∈ L2(0,T;L

3
2 (Ω)), which is

not sufficient for all 𝛾 >
3
2
. By (3.24) and Sobolev embedding W2,q → W1,s with 1

s
= 1

q
− 1

3
= 1

𝛾
− 1

6
, one obtains

∇c𝜀 ∈ L2(0,T;Ls(Ω)) (3.26)

for all s satisfying 1
s
= 1

𝛾
− 1

6
. Then

∫Q𝜏

(𝜚𝜀 − 1)𝜇𝜀∇c𝜀 ⋅ v dxdt ≤ ∫
𝜏

0
||𝜚𝜀 − 1||L𝛾 (Ω)||𝜇𝜀||L6(Ω)||∇c𝜀||Lp(Ω)||v||L∞(Ω) dt ≤ 𝜀C (3.27)

for 1 ≥ 1
𝛾
+ 1

6
+ 1

s
= 2

𝛾
, which holds for all 𝛾 ≥ 2.

Furthermore,

∫Q𝜏

𝜚𝜀𝜕tc
(

G′(c𝜀) − (c𝜀 − c)G′′(c) − G′(c)
)

dxdt

≤ C ∫Q𝜏

|c𝜀 − c|2 dxdt + ∫Q𝜏

(𝜚𝜀 − 1)𝜕tc
(

G′(c𝜀) − (c𝜀 − c)G′′(c) − G′(c)
)

dxdt

≤ C∫
𝜏

0
̃(t) dt + 𝜀C.

Collecting all the estimates above, we then obtain a Gronwall’s type inequality:

[̃ (𝜚𝜀, v𝜀, c𝜀|1, v, c)
]t=𝜏

t=0
≤ C∫

𝜏

0
̃ (𝜚𝜀, v𝜀, c𝜀|1, v, c) (t) dt + 𝜀C

for all 𝜏 ∈ (0,T), which yields

̃ (𝜚𝜀, v𝜀, c𝜀|1, v, c) (𝜏) ≤ C
(̃ (

𝜚0,𝜀, v0,𝜀, c0,𝜀|1, v0, c0
)
+ 𝜀

)
e𝜏

for all 𝜏 ∈ (0,T). If additionally one has for the initial data

v0,𝜀 → v0, in L2(Ω),

𝜚
(1)
0,𝜀 → 0, in L∞(Ω),

∇c0,𝜀 → ∇c0, in L2(Ω),

as 𝜀 → 0, one concludes the low Mach number limit immediately, which finishes the proof of Theorem 2.2.
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