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Abstract: Background: Suspicious tumors of the lung require specific staging, intraoperative detec-
tion, and histological confirmation. We performed an intrathoracic, intraoperative contrast-enhanced
ultrasound (Io-CEUS) for characterization of lung cancer. Methods: Retrospective analysis of prospec-
tively collected data on the application of Io-CEUS in thoracic surgery for patients with operable
lung cancer. Analysis of the preoperative chest CT scan and FDG-PET/CT findings regarding criteria
of malignancy. Immediately before lung resection, the intrathoracic Io-CEUS was performed with a
contrast-enabled T-probe (6–9 MHz—L3-9i-D) on a high-performance ultrasound machine (Loqic
E9, GE). In addition to intraoperative B-mode, color-coded Doppler sonography (CCDS), or power
Doppler (macrovascularization) of the lung tumor, contrast enhancement (Io-CEUS) was used after
venous application of 2.4–5 mL sulfur hexafluoride (SonoVue, Bracco, Italy) for dynamic recording of
microvascularization. The primary endpoint was the characterization of operable lung cancer with
Io-CEUS. Secondly, the results of Io-CEUS were compared with the preoperative staging. Results:
The study included 18 patients with operable lung cancer, who received Io-CEUS during minimally
invasive thoracic surgery immediately prior to lung resection. In the chest CT scan, the mean size
of the lung tumors was 2.54 cm (extension of 0.7–4.5 cm). The mean SUV in the FDG-PET/CT
was 7.6 (1.2–16.9). All lung cancers were detected using B-mode and power Doppler confirmed
macrovascularization (100%) of the tumors. In addition, Io-CEUS showed an early wash-in with
marginal and mostly simultaneous central contrast enhancement. Conclusions: The intrathoracic
application of Io-CEUS demonstrated a peripheral and simultaneous central contrast enhancement
in the early phase, which seems to be characteristic of lung cancer. In comparison to preoperative
imaging, Io-CEUS was on par with the detection of malignancy and offers an additional tool for the
intraoperative assessment of lung cancer before resection.

Keywords: CEUS; intraoperative CEUS; CEUS lung cancer

1. Introduction

According to the current WFUMB-EFSUMB “Guidelines and Good Clinical Practice
Recommendations for Contrast Enhanced Ultrasound in the Liver” and “on non-hepatic
applications”, contrast-enhanced ultrasound (CEUS) can be used in a variety of diagnostic
and therapeutic settings [1]. Both percutaneous and intraoperative applications are recom-
mended, with percutaneous applications usually requiring smaller amounts of contrast
agent [2–4]. The intravenous application of a gas-containing, micrometer-sized contrast
agent in the form of microbubbles, which are put into a state of persistent oscillation by
suitable ultrasound applications, can increase the echogenicity of the blood and thus enable
the sonographic visualization of blood vessels and the perfusion status of organs [5,6].
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For example, several groups of authors have demonstrated the high value of CEUS in
the diagnosis of thyroid tumors [7–10]. They showed that contrast enhancement patterns
were significantly different in benign and malignant lesions. Platz Batista da Silva N. et al.
demonstrated that in a study involving 54 focal pancreatic lesions (FPLs), intraoperative
CEUS showed a sensitivity of 100% and a specificity of 40% in distinguishing malignant
from benign lesions, with an accuracy of 83.3%. Shear wave elastography (SWE) showed
a sensitivity of 74.4% and a specificity of 46.7% using specific cutoff values. Combining
both techniques resulted in an accuracy rate of 76%, with immediate surgical impact ob-
served in 29.6% of cases [11]. With comparable and proportionally higher sensitivity and
specificity rates of CEUS compared to computed tomography (CT) in the detection and
characterization of hepatic malignancies, several studies have already confirmed the high
diagnostic value of Io-CEUS, particularly in liver tumor diagnostics [12–16]. Werner J.
et al. demonstrated that intraoperative ultrasound (IOUS) with CEUS and elastography
accurately identified 42 malignant tumors and four benign lesions, yielding a sensitivity
of 97.7%, specificity of 57.1%, positive predictive value of 93.3%, and negative predictive
value of 80%. Surgeons’ specific questions were successfully answered in 98% of cases,
and in 76% of cases, IOUS led to modifications (42%) or fundamental changes (34%) in the
planned surgical approach, significantly impacting therapy outcomes. Despite only a slight
difference in procedural times between setup and return transport, the average examination
time of 14 min constituted only one-third of the overall time requirement [17]. The use of
CEUS also offers clear advantages in the intraoperative setting. Improved detection of liver
lesions has been confirmed, and surgical performance has been increased [3,4,18–21].

To date, there have been a few studies on transthoracic CEUS. New potential ap-
plications were described, for example, by the authors Jung et al. who investigated the
applicability of CEUS in intensive care units for severe cases of COVID-19 infection dur-
ing the COVID pandemic [22]. There were indications of a possible benefit of therapy
monitoring. Some studies have described CEUS-assisted biopsy as an effective and safe
method for pleural lesions with increased diagnostic accuracy [23–26]. In a prospective
study involving 460 patients, Sun W. et al. found that CEUS demonstrated higher rates of
internal necrosis and peripheral vessel visualization compared to conventional ultrasound
imaging. CEUS-guided biopsy sampling exhibited a diagnostic accuracy of 98.91%, with
a microbiological diagnostic yield of 71.88% in infectious lesions. In cases of combined
pleural effusion, CEUS-guided biopsy significantly increased the diagnostic yield, partic-
ularly in malignant and infectious lesions, with no reported serious adverse events [23].
Our research group was the first to perform Io-CEUS in thoracic surgery and was able to
demonstrate its feasibility and the possibility of characterizing lung tumors immediately
prior to lung resection [27]. In the context of lung cancer screening, diagnostic tools are
becoming increasingly important in order to avoid initiating unnecessary or even incorrect
therapies that could ultimately harm patients [28,29]. In addition, due to the continuing
high incidence of lung cancer and increasingly upcoming screening examinations, a further
increase in solitary pulmonary nodules (SPNs) of unclear entity, which must be histologi-
cally confirmed, is to be expected [30]. Consequently, in addition to preoperative staging,
we also need innovative procedures to find SPNs intraoperatively on the non-ventilated,
deflated lung and, at best, to characterize them already with regard to their entity. Until
now, the extent of resection in cases of SPNs of unclear dignity is decisive and continues to
depend on the intraoperative frozen section result.

This retrospective comparative study describes the sonographic characteristics of
operable primary lung cancer in intraoperative contrast-enhanced ultrasound (Io-CEUS)
in minimally invasive thoracic surgery. In addition, results on the characterization of
lung cancer in comparison with preoperative staging are described on the basis of their
malignancy criteria.
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2. Materials and Methods
Study Design

This was a retrospective analysis of data (subgroup) from a prospective, observational,
single-center study on patients, who underwent minimally invasive thoracic surgery (video-
assisted thoracic surgery = VATS) for operable lung cancer and who received intrathoracic
Io-CEUS immediately before lung resection. All patients were informed preoperatively
about the additional Io-CEUS and gave written informed consent. The study received
a positive ethics vote from the local ethics committee (reference: 21-2301-101). For the
Io-CEUS procedure, we refer to our previous work [27]. The ultrasound examination was
performed by an experienced radiologist with DEGUM Level III certification. The probe
was operated by the surgeon. Through an auxiliary incision of approximately 4 cm, a
T-probe (6–9 MHz, L3-9i-D, GE) was introduced into the thorax. The tumor was visualized
in B-mode using a high-performance ultrasound machine (LOGIQ E9/10). Power Doppler
and color-coded Doppler sonography (CCDS) were used to depict the macrovascularization,
and contrast-enhanced ultrasound was utilized for the microvascularization. From the
time of contrast application, a timer was started and a cine loop of 60 s was recorded. The
ultrasound probe captures a series of 2D images over a specific area during the examination.
These stored 2D images are processed in a dedicated processor within the ultrasound
machine. This process involves analyzing the positions of structures and the distribution
of the contrast agent. The ultrasound machine uses the processed data to generate a 3D
image that represents the spatial arrangement of structures and the distribution of the
contrast agent.

Only patients with primary and operable lung cancer were included. Preoperative
imaging using contrast-enhanced CT-scan of the chest and FDG-PET/CT was used for
staging the suspicious malignant lung tumor. The CT examinations were analyzed by
radiologists, which included the tumor size, shape, and localization of the lung tumor. The
FDG-PET/CT images were analyzed by nuclear medicine specialists, and the standard
uptake values (SUV) were determined. These were categorized into three categories
based on their SUV level: mild (SUV ≤ 2.5), moderate (SUV > 2.5 and ≤10), and intense
(SUV > 10). In addition to the criteria mentioned above, age, smoking history, and previous
tumor history were used to calculate the probability of malignancy according to the Herder
model as recommended in the German guidelines for lung cancer [31].

3. Results
3.1. Patient Characteristics

A total of 18 patients (female n = 9) with a mean age of 64.3 ± 7.3 years were included.
The smoking status was positive in 14 patients. Six patients had a history of malignancy
within the last five years. The preoperative probability of malignancy according to the
Herder model was 14.3–97.3% (mean 82%). In the imaging, all pulmonary findings were
classified as malignant and worthy of clarification. The resection was sonography-guided
with marking of the tumor area in all cases without complications. There was no contrast
intolerance reaction noted during Io-CEUS. In the histological work-up, the mean size was
2.72 cm ± 1.04 cm (max 0.6 to 4.5 cm). Histology confirmed primary lung cancer in all
patients with the subtypes of adenocarcinoma (n = 10), squamous cell carcinoma (n = 3),
and carcinoid (n = 5).

3.2. Preoperative Imaging

All data regarding the three different diagnostic tools are shown in Table 1. The chest
CT scan showed that the lung tumors had an extension of 0.7–4.5 cm (mean 2.53 cm) and a
distance to the lung surface (visceral pleura) of 0.0–4.6 cm (mean 1.81 cm). Six lesions had a
spiculated shape, whereas eight were sharply defined, three were blurred, and one tumor
had streaky extensions. Based on the size, 16 tumors (89%) were classified as malignant.
In combination with the shape, all 18 tumors (100%) were preoperatively classified as
malignant. No preoperative differentiation could be made between primary lung cancer
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and metastasis. The tumors were located in the upper lobe (n = 11), in the lower lobe
(n = 6), and in the middle lobe (n = 1). The SUV was determined 1.2–16.9 (mean 7.6). In
one case, no FDG-PET/CT was performed. In a further case, no SUV was documented but
strong contrast agent uptake was described. Six patients had a strong (SUV > 10), eight
patients a moderate (SUV > 2.5 and ≤10), and two patients had only low (SUV ≤ 2.5)
nucleotide uptake.

Table 1. Study sample including preoperative imaging, risk calculation, and intraoperative character-
ization using Io-CEUS.

Patients
Chest CT Scan FDG-

PET/CT Herder Model CCDS Io-CEUS Histology

Size (cm) Configuration SUV Max Probability of
Malignancy (%) Vascularization Contrast

Enhancement
Differentiation of

Lung Cancer

1 3.4 Soft tissue
dense mass 13 95 Central Central and

peripheral Adenocarcinoma

2 0.7 Spiculated 5 76.4 Central Central Adenocarcinoma

3 0.7 Clearly
definable 1.2 14.3 None Peripheral Carcinoid

4 3.6 Irregularly
limited 6.3 94 Central Central and

peripheral Adenocarcinoma

5 3.2 Soft tissue
dense mass 11 91.7 Central Central and

peripheral Adenocarcinoma

6 1.9 Irregularly
limited 3.8 71.7 Central and

peripheral
Central and
peripheral Adenocarcinoma

7 2.7 Lobulated 2 60 Peripheral Central and
peripheral Carcinoid

8 1.6 Clearly
definable 13.7 85 Central Central and

peripheral Carcinoid

9 2.6 Spiculated 16.9 92.4 Peripheral
Peripheral and

sporadic
central

Adenocarcinoma

10 1.6 Irregularly
limited 4.8 75.5 Central and

peripheral
Central and
peripheral Adenocarcinoma

11 3.8 Clearly
definable 5.8 86.5 Central and

peripheral
Central and
peripheral,

necrotic
Carcinoid

12 4.5 Spiculated 4.2 97.1 Peripheral Peripheral,
central necrotic

Squamous cell
carcinoma

13 3.8 Spiculated Intense 95.4 Peripheral Peripheral and
central Adenocarcinoma

14 2.5 Cavernous - 73 Central and
peripheral

Peripheral and
central

Squamous cell
carcinoma

15 3.8 Lobulated 11.7 97.3 Central and
peripheral

Peripheral and
central Adenocarcinoma

16 1.5 Spiculated 4.0 80 Central and
peripheral

Peripheral and
central Adenocarcinoma

17 1.4 Spiculated 16.1 95.4 Central and
peripheral

Central and
peripheral

Squamous cell
carcinoma

18 2.4 Clearly
definable 3.1 91.5 Central and

peripheral
Central and
peripheral Carcinoid

3.3. B-Mode and Power Doppler/CCDS

In all cases, localization of the tumor was possible by B-mode and could be visualized
by power Doppler or CCDS. Similarly, B-mode was used to visualize and describe the
shape as well as echogenicity of the tumor. Here, primary lung cancer had jagged margins
in B-mode and was predominantly inhomogeneous in echogenicity. Evidence of necrotic
areas was present in some tumors, especially in larger tumors (>3 cm). CCDS or power
Doppler was able to visualize the macrovascularization behavior of the tumors. Primary
lung cancer showed a centrally located vascular gating.
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3.4. Io-CEUS

All tumors already showed central and contemporaneous peripheral contrast enhance-
ment at t = 9–12 s, which extended over the entire tumor as time progressed. Approximately
83% (15/18) of lung tumors showed at t = 9–13 s a peripheral and simultaneous central
contrast enhancement, which extended over the entire tumor as time progressed. Only a
peripheral enhancement was documented in two patients; only a central enhancement was
seen in one patient.

3.5. Case 1

A 65-year-old male patient with a positive smoking history and no history of extratho-
racic tumor. The chest CT scan showed a 1.6 cm SPN in the right upper lobe, which is
partially indistinct. In FDG-PET/CT, there was a moderate FDG uptake. The calculation
of the probability of malignancy according to Herder was 75.5%. Io-CEUS showed a pe-
ripheral and central enhancement in the early phase of contrast agent uptake (Figure 1).
Histological examination confirmed primary pulmonary adenocarcinoma.
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Figure 1. Chest CT scan in axial view (a) and coronal view (b) showing a suspicious tumor in the
upper lobe (red arrows). FDG-PET/CT revealed an SUV of 4.8 (c). In B-mode, the dimensions of the
tumor can be seen (d). The yellow “+” marks the tumor margin. (e) The power Doppler with central
and peripheral vessel sections. In CEUS (f) at t = 9 s, the central and peripheral contrast agent uptake
can be seen, which increasingly spreads throughout the tumor over time (g) at t = 14 s. (h) The 3D
reconstruction of the CEUS confirmed a marginal and central contrast center uptake.

3.6. Case 2

A 64-year-old patient with a positive smoking history and a suspicious pulmonary
tumor in the right lower lobe (Figure 2). There was a history of papillary bladder carcinoma.
A malignancy probability of 85% was calculated according to the Herder model. Io-CEUS
showed an early (t = 12 s) central and simultaneous peripheral contrast enhancement,
which extended over the entire tumor over time. The intraoperative frozen section revealed
a typical carcinoid of the lung.
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Figure 2. Chest CT-scan axial (a) and coronary (b) showed a clearly defined SPN with a diameter of
1.6 cm in the right lower lobe with an SUV of 13.7 in the FDG-PET/CT (c). The red arrow marks the
tumor. In B-mode (d), we see a partially sharply demarcated, echo-heterogeneous tumor. The yellow
“+” marks the tumor margin. In CCDS (e), a peripheral vessel section is distinguishable apically at
the tumor margin and centrally. In the early contrast agent phase (f) at t = 12 s, a clear central and
peripheral contrast can be seen, which rapidly spreads over the tumor (g) at t = 18 s. (h) The 3D
reconstruction of the tumor.

3.7. Case 3

A 62-year-old patient with a cumulative history of 30 pack-years and a history of
endometrial carcinoma presented with a 2.7 cm SPN in the right lower lobe with an SUV
max of 2.0 (Figure 3). The Herder model indicated a malignancy probability of 60%. Power
Doppler demonstrated peripheral macrovessel vascularization. In CEUS, early peripheral
contrast enhancement was observed. As time progressed, the enhancement extended
from the peripheral region to a central section of the tumor. Histopathologically, this was
identified as a 2.8 cm typical carcinoid embedded in fibrotic stroma.
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Figure 3. In the CT thorax, a clearly partially lobulated SPN can be delineated in the right lower lung
lobe (a,b). The red arrow marks the tumor. In the PET-CT (c), the SPN appears faintly. In B-mode (d),
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a partially hypo- and partially hyperechoic structure can be delineated. (e). The yellow “+” marks
the tumor margin. The power Doppler with peripheral and central vessel sections. In CEUS, an early
peripheral contrast enhancement is observed in the wash-in phase at t = 12 s (f), which intensifies
over time at t = 19 s (g). The 3D reconstruction shows central contrast agent uptake with a large
void (h).

4. Discussion

Our first clinical results and practical experience confirmed that operable lung cancer
can be detected by Io-CEUS, but above all, they can be characterized more specifically by
the additional use of color-coded Doppler sonography (CCDS) or power Doppler and the
application of contrast medium (CEUS). The insertion of the T-probe into the chest via
minimally invasive access of about 4 cm length is technically possible. However, we must
note that the intraoperative and intrathoracic handling of the T-probe via such a small
approach is technically difficult, so an endoscopic ultrasound probe with the necessary
functions should be used here in the future. However, it would then also be a prerequisite
that this endoscopic probe also has other functions, which are absolutely necessary for
the specific description of the tumor. We have already been able to test an endoscopic
probe [32]. The surgical handling was significantly simplified. Further studies will follow
in the future.

Other studies have already investigated the significance of intrathoracic ultrasound
with regard to the possibility of detecting pulmonary nodules and compared the results
with intraoperative bimanual palpation [33–36]. Here, the studies confirmed that intratho-
racic ultrasound is a suitable tool compared to conventional palpation. In particular,
Khereba et al. demonstrated the high utility of intraoperative ultrasound for pulmonary
nodule detection also in minimally invasive thoracic surgery [35]. This reduced the rate of
conversions from VATS to conventional open thoracotomy with limited manual palpation
capability in the minimally invasive approach. Increasingly, robot-assisted procedures are
being adopted in thoracic surgery [37,38]. Currently, the lack of palpable control when
using this robotic system is a major disadvantage, as surgeons are unable to locate lesions
with their fingers or a device as is possible with VATS.

In our study, we went one step further and focused instead on the characterization of
pulmonary tumors using CCDS to visualize macrovascularization and Io-CEUS to visualize
microvascularization [27]. Io-CEUS is already used as standard in liver tumor surgery
to differentiate between malignant and benign lesions and metastases and has found its
way into international ultrasound guidelines [39,40]. The resulting advantages of the
examination method directly prior to surgical resection have a significant influence on the
surgical procedure [16,17,41].

Our data provide evidence of different vascularization and contrast agent kinetics
depending on the tumor entity. Primary lung cancers have in common a peripheral and
usually at the same time centrally beginning contrast agent enhancement in the early phase
after contrast agent application. In one tumor, only an early peripheral enhancement
without central enhancement was detected. In this case, however, there was a large
central necrosis zone. In two other cases, the exact determination of the contrast agent
enhancement was difficult due to the size of only 7 mm. There were also differences in
further enhancement. One tumor was limited to central and peripheral enhancement over
time. In contrast, another tumor showed ubiquitous contrast agent enhancement over time.
In the B-mode, the tumors differed in size but also in a centrally hyperechogenic structure,
compatible with possible tumor necrosis, which could have influenced the expansion of
the contrast agent.

Differentiation between malignant and benign SPN is possible on the basis of morpho-
logical criteria such as density, size, and delimitation using CT imaging alone. However,
further classification into primary lung cancer and lung metastases has not yet been success-
ful in many cases. Ultimately, biopsies or follow-up examinations are required to confirm
the diagnosis [42]. In combination with FDG-PET/CT, higher sensitivity and specificity
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rates in the differentiation between malignant and benign SPNs have been achieved in
the literature.

Kim et al., for example, compared the performances of FDG-PET alone, CT alone,
and FDG-PET/CT [43]. They reported a sensitivity and specificity of 93% and 31% for CT,
69% and 85% for PET, and 97% and 85% for PET/CT, respectively. Several other studies
underlined the value of joint morphological and functional analysis [44,45]. In these studies,
the interpretation of the hypermetabolic foci seen on PET images also took into account
the nodule’s morphological features (regular, lobulated, or spiculated margins; presence of
central, peripheral, or popcorn calcifications; etc.), its density (strong attenuation, ground
glass opacity, fluid, necrosis), and lesion enhancement in the event of injection of iodinated
contrast agent. The subjective categorization of SUV values in FDG-PET/CT also shows
weaknesses here [46]. A meta-analysis of FDG-PET and PET/CT studies for the initial
diagnosis of lung masses or known lung cancer evaluated the utility of SUV for prognostic
stratification of non-small cell lung cancer. These studies employed diverse calculation
methods and thresholds for SUV values, resulting in variable outcomes. Nevertheless, most
studies demonstrated significant differences in overall survival based on SUV values, with
higher values associated with an increased risk of premature death. The combined hazard
ratio for patients with high SUV values was 2.27, indicating a markedly elevated mortality
risk [47–49]. However, due to the risk of false-negative findings, PET is not indicated for
characterizing small nodules. The American College of Chest Physicians recommended
an FDG-PET/CT scan for SPNs > 8 mm in diameter [50]. This threshold of 8 mm was set
to take into account the spatial resolution of PET systems, due to the significant risk of
false-negative findings for small lesions. The main cancers for which false-negative findings
are observed are typical carcinoid tumors and certain early forms of adenocarcinoma, such
as adenocarcinoma in situ [51].

A validated calculation model (e.g., Herder Model, Mayo Clinic, Brock Model) can be
used to estimate the probability of malignancy of a newly occurring SPN [29,31]. However,
only statements on the probability of malignancy can be made here, but none on the
differentiation between primary lung cancer and lung metastasis.

To date, it should be emphasized that it appears possible to differentiate between
primary lung cancer and metastasis using intrathoracic Io-CEUS. Analogous to the use
of Io-CEUS in liver surgery, the contrast agent kinetics of primary lung cancer can be
explained by tumor angiogenesis [52]. However, the blood supply to the liver differs
from that to the lungs. Here, an arterial, a portal venous, and a late venous phase can be
distinguished. Based on wash-in and wash-out kinetics, the liver lesion can be characterized
as an arterial hypervascularized or irregularly vascularized lesion with wash-out in the
portal venous to late phase being classified as malignant. Increasing wash-in to portal
venous and late phase is considered a criterion of benignity [1,53]. The lung, on the other
hand, presents an entirely different perfusion situation with the vasa privata et publica.
Here, contrast enhancement depends on the perfusion of the tumor by the lung’s own
vessels or by the pulmonary arteries. From which vascular system the tumor is fed is
currently unclear [54]. A wash-out has been observed only in isolated cases. A possible
hypothesis would be that an early and rapid contrast enhancement, for example, from
t = 6 s, is observed in lung tumors, which has a direct connection to the pulmonary arterial
supply, whereas a later enhancement, t = 15 s, is rather supplied by the bronchial arteries,
analogous to the CT contrast-enhanced protocol commonly used in clinical practice. Tumor
perfusion turns out to be complex and multimodal. This should be explored in further
studies. In all cases, CCDS was feasible to visualize macrovascularization and Io-CEUS
to visualize microvascularization. Quantification using TIC analysis is possible under
optimal conditions. Differentiation of tumor entities based on the contrast agent behavior
thus appears possible. TIC analyses and collection of parametric data could confirm the
assumptions in the future. However, the examination method is highly dependent on the
experience of the surgeon and the ultrasound examiner. A clean contact surface with good
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acoustic conditions is necessary for meaningful image quality. Further differentiation using
elastography (sharewave analysis) would be desirable in the future.

5. Limitations

As a limitation of the study, the small sample size must be mentioned. Due to the
description of data obtained from a small number of cases, meaningful statistical analysis
is not feasible. Additionally, the retrospective study design represents another limitation.

6. Conclusions

Io-CEUS using a T-probe and high-performance ultrasound device can be used in
minimally invasive thoracic surgery (VATS) to detect and characterize operable lung
cancer. This innovative technique could be a new method for intraoperative visualization
of pulmonary nodules or tumors. Particularly in VATS, Io-CEUS offers entirely new
possibilities for intraoperative imaging. This is because pulmonary nodules can often not
be visualized or palpated during VATS. Io-CEUS has advantages in detecting pulmonary
nodules, visualizing pulmonary lesions, and characterizing them through perfusion and
contrast agent uptake. The differentiation of individual tumor entities directly prior to
surgical resection appears to be possible with the aid of high-performance sonography
including power Doppler or CCDS and contrast agent application. In comparison to
preoperative imaging, Io-CEUS was on par with the detection of malignancy. Further
examinations and analyses are carried out by our working group.
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