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Abstract
We synthesize the extended linear beta regression with a neural network structure 
to model and predict the mean and precision of market-based loss rates. We can 
incorporate non-linearity in mean and precision in a flexible way and resolve the 
problem of specifying the underlying form in advance. As a novelty, we can show 
that the proportion of non-linearity for the mean estimates is 14.10% and 80.37% 
for the precision estimates. This implies that especially the shape of the loss rate 
distribution entails a large amount of non-linearity and, thus, our approach consist-
ently outperforms its linear counterpart. Furthermore, we derive trainable activation 
functions to allow a data-driven estimation of their shape. This is important if pre-
dictions have to be in a certain interval, e.g., (0, 1) or (0,∞) . Conducting a scenario 
analysis, we observe that our estimated distributions are more refined compared to 
traditional models, thereby demonstrating their suitability for risk management pur-
poses. These estimated distributions can assist financial institutions in better identi-
fying diverse risk profiles among their creditors and across various macroeconomic 
states.
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1 Introduction

The current economic climate is characterized by different challenges. Financial 
markets have experienced significant turmoils recently due to global economic 
uncertainty, geopolitical tensions, fluctuations in currency exchange rates and 
a different interest rate environment. The European Banking Authority (2022) 
states that these factors also impact financial institutions due to increased funding 
costs for banks and an overall asset quality deterioration. These circumstances 
put banks’ internal risk management again into the focus of regulators and poli-
tics. The largest share of risk a bank faces is determined by its credit risk. Follow-
ing the latest data, credit risk accounts for 83.3% of risk-weighted assets of 131 
major EU banks as of June 2022, underlining its importance (European Banking 
Authority 2022). The expected loss (EL) of credit risk related assets can be split 
into three components. Probability of Default (PD) quantifies the probability that 
a obligor will not meet his agreed obligations. Exposure at Default (EAD) defines 
the amount of outstanding obligations. Finally, Loss Given Default (LGD) refers 
to the percentage share of outstanding debt that is lost, given the obligor defaults. 
This paper focuses on so-called market-based LGDs, which are relevant for pub-
licly traded instruments such as bonds. They are defined as one minus the ratio 
of the market price 30 days after default over the outstanding amount. Especially 
market-based LGDs entail challenging characteristics such as bounded support, 
skewed distribution, and heteroskedasticity (Gambetti et  al. 2019). Moreover, 
the estimation of market-based LGDs has also macro-economic implications. 
According to SIFMA Research (2022) the US corporate bond market has a vol-
ume of 10 trillion USD and therefore the estimation of the LGDs can be essential 
for the financial stability of the economy. The Basel Accord allows banks to use 
their own models to provide estimates for LGDs as well as the other components 
of the expected loss (Basel Committee on Banking Supervision 2017). Therefore, 
academia aims at providing guidance on how to estimate LGDs and which meth-
ods to use, see, e.g., Altman and Kalotay (2014), Kalotay and Altman (2017), 
Bellotti et al. (2021), Kellner et al. (2022) or Gürtler and Zöllner (2023).

In this paper we utilize market-based LGDs sourced from Moody’s Default 
and Recovery Database spanning from January 1990 to March 2021. This dataset 
stands out as the most comprehensive when focusing on market-based LGDs. It 
comprises a range of LGD-specific variables, including seniority, industry sec-
tor, and default type, among other pertinent information. Additionally, we extend 
this dataset by incorporating commonly used macroeconomic and uncertainty-
related variables described in the literature. Past literature uses classical statisti-
cal models, such as fractional response regression, to predict LGDs using this 
data, see, e.g., Bastos (2010). These methods commonly focus only on the mean 
LGD predictions, neglecting the challenging characteristics of LGD distributions. 
Furthermore, most recent literature reinforces the evidence of non-linearity of 
drivers for mean market-based LGD estimates using machine learning models, 
see, e.g., Bastos and Matos (2021), Olson et al. (2021), Bellotti et al. (2021) or 
Sopitpongstorn et  al. (2021). Most of these methods have in common that only 
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the conditional mean is estimated. Although machine learning models increase 
the flexibility of the modelling framework and are capable of incorporating some 
distributional aspects, none of the studies explicitly account for these aspects nor 
investigate their drivers and potential impact.

Making decisions based only on one location parameter, e.g., by using standard 
machine learning algorithms, may not be holistic in the sense that further distribu-
tional characteristics carry important information. For example the dispersion can 
enhance the understanding of the underlying mechanics between drivers and the 
whole distribution and be supportive of the managerial decision process. However, 
they are frequently neglected in the literature.1 For example, different parts of the 
distribution can be interpreted as scenarios for banks and risk managers. In that 
sense, lower quantiles of the distribution can be interpreted as good scenarios for 
banks, i.e., a low loss realization. On the contrary, higher quantiles imply higher 
losses. Hence, risk managers can conduct a scenario analysis to investigate how their 
loan portfolios face losses in adverse, normal, and good scenarios based on the indi-
vidual loss distribution of their obligors. This enables managers also to reveal dif-
ferent risk profiles among obligors based on their individual distribution. As future 
realizations are unknown, comparing (predicted) quantiles can provide risk manag-
ers with a good indication of how likely low and high LGD realizations can realize 
and how individual obligors compare to each other. Against this background, we 
suggest jointly modeling mean and precision, i.e., a dispersion parameter, to allow 
for varying shapes of the distribution. This paper doesn’t aim for a competitive horse 
race of various methods but contributes by proposing a novel method for explaining 
market-based LGDs. It focuses on understanding the factors influencing LGDs mean 
and precision, an area that has been underexplored so far. Rather than predicting 
future mean LGDs, it uncovers hidden relationships in the LGD distribution, aiding 
scenario analysis and deriving implications. Thus, it is designed as a non-parametric 
tool for exploring these connections.

We contribute to the literature in four important ways. First, we combine beta 
regression by Ferrari and Cribari-Neto (2004) and its extension by Smithson and 
Verkuilen (2006) and Simas et al. (2010) with artificial neural networks. This con-
tributes to the literature on market-based LGDs, as the combination is the first to 
allow non-linearity in the mean and precision of the LGD distribution. It extends 
the work of Gambetti et al. (2019) as we detect a large amount of non-linearity espe-
cially in the shape of the distribution. Furthermore, our combination achieves a sub-
stantially better performance in and out-of-sample compared to its linear counter-
part. Hence, non-linearity plays an important role for the mean and precision of the 
loss rates.

Second, we use Accumulated Local Effects (ALE) plots by Apley and Zhu 
(2020) to unveil the non-linear relationships in mean and precision. Furthermore, we 

1 There are studies which include distributional characteristics of LGD into their modeling strategy, 
see, e.g. Calabrese (2014), Altman and Kalotay (2014), Kalotay and Altman (2017), Krüger and 
Rösch (2017), Betz et al. (2018), Hwang and Chu (2018); Hwang et al. (2020) or Kellner et al. (2022). 
However, they do not explicitly model the drivers of different parameters of the LGD distribution.
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quantify the amount of non-linearity in the mean and precision estimation according 
to Apley and Zhu (2020) and Nagl (2021). To the best of our knowledge, this paper 
is the first to incorporate, visualize and quantify non-linearity in the precision of 
market-based loss rates.

Third, we derive trainable activation functions similar to He et  al. (2015b) to 
increase the robustness of predictions, especially for unseen data. The trainable acti-
vation function offers the neural network a data-driven way of estimating the shape 
of final predictions, which is new to the finance and credit risk literature. In gen-
eral, this contribution is not restricted to our discipline but may be beneficial for any 
other field of research where bounded outputs play an important role, e.g., demand 
or sales forecasting.

Fourth, we find the that accounting for non-linearity and interactions the mod-
eled distributions differ compared to the beta regression such that they can be better 
distinguished. This enables risk managers and regulators to better quantify the indi-
vidual risk of obligors in a straightforward and interpretable way.

The remainder of this paper is structured as follows. In Sect. 2, we give a sum-
mary of the relevant literature of LGD estimation. Data is presented in Sect.  3, 
while the methodology is described in Sect. 4. Our empirical results are discussed in 
Sect. 5 and Sect. 6 concludes.

2  Literature review

Concerning the special characteristics of LGD distributions, mainly advanced sta-
tistical methods are applied. These include for example beta regression, mixture 
regression, and factorial regression among many others, see, e.g., Gambetti et  al. 
(2019) or Sopitpongstorn et al. (2021) as recent examples. Due to the increased com-
putational power and progress in academia, machine learning models become more 
and more apparent. They were used by academics at the beginning, but become 
increasingly applied by practitioners and heavily discussed by regulators. However, 
the vast majority of these studies focus only on mean estimates of LGDs, see Bastos 
and Matos (2021), Kellner et al. (2022) or Gürtler and Zöllner (2023) for a recent 
overview. Nagl et  al. (2022) focus on the uncertainty quantification of machine 
learning models for market-based LGDs and finds that the aleatoric uncertainty, 
i.e., uncertainty in the data itself, is more significant than epistemic uncertainty, i.e., 
uncertainty due to a limited sample size. This study emphasises the importance of 
estimating LGD distributions instead of just point estimates. Focussing on the dis-
tribution of LGDs is not entirely new to the literature. Closely related to our paper 
is Gambetti et al. (2019) who use a linear generalized beta regression to model the 
distribution of market-based LGDs. However, they do not consider non-linearity in 
mean or precision in their model. Furthermore, related to the contributions of our 
paper are Krüger and Rösch (2017) and Kellner et  al. (2022). They both estimate 
quantile regression or machine learning-based extensions thereof, focusing on work-
out LGDs. They emphasize the importance of accounting for distributional aspects 
in these LGDs. Their approaches require a sizable dataset to reliably estimate multi-
ple quantiles to describe a full distribution. Furthermore, some papers use classical 
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statistical models, such as mixture models for LGDs. Altman and Kalotay (2014), 
Calabrese (2014), Kalotay and Altman (2017), and Betz et al. (2018) utilize these 
mixture models, consisting of a combination of different distributions, to disaggre-
gate the estimation of a full conditional distribution into subparts. However, with an 
increasing number of components, these models become less interpretable, and the 
drivers of LGDs are linearly connected to the components, reducing flexibility. A 
novel approach proposed by Gürtler and Zöllner (2023) suggests that the modality 
type of workout LGDs is crucial in determining the best estimation method. Using 
cluster analysis, they identify three clusters/modality types suitable for their sample. 
While this approach outperforms traditional models, it requires a sizable dataset, as 
the entire dataset is divided into clusters, resulting in less data to fit various mod-
els. Overall, the methods proposed to account for distributional aspects necessitate a 
considerable dataset size, making them especially useful for workout LGDs, where 
data is typically much larger compared to market-based LGDs as used in our paper.

Recent literature on LGD estimation has seen significant growth, particularly 
with the widespread application of machine learning models. However, several gaps 
remain. Firstly, while many studies concentrate on mean LGD predictions, they 
often overlook distributional characteristics, including aleatoric uncertainty, identi-
fied as a primary source of uncertainty in LGD estimation by Nagl et  al. (2022). 
Moreover, approaches addressing distributional aspects are typically only viable 
for large datasets, such as workout LGDs, rather than market-based LGDs. Hence, 
this paper aims to bridge this gap by synthesizing existing evidence and proposing 
a suitable method for market-based LGDs. Secondly, there is a notable absence of 
studies focusing on potential non-linearity in the shape of LGD distributions. Such 
non-linearities could significantly impact scenario analysis by allowing for different 
distributional shapes across categories.

3  Data

We use bond loss given defaults from Moody’s Default and Recovery Database 
(Moody’s DRD). The examined data contain 2315 market-based LGDs and 
related bond characteristics ranging from January 1990 until March 2021. Finding 
suitable drivers of market-based LGD’s mean and precision is a challenging task. 
Gambetti et  al. (2019) synthesizes the evidence of the literature on important 
predictor variables. We follow Gambetti et  al. (2019) and use the same features 
as a starting point. The variables can be divided into three subgroups, bond 
characteristics, macroeconomic, and uncertainty related determinants. The bond 
specific characteristics are coupon rate, maturity, the seniority of the bond as well 
as the issuer’s industrial sector. Furthermore, we include the severity of the default 
type, the defaulted amount and a dummy variable which indicates whether the bond 
is backed by guarantees. We use several macroeconomic related variables. These 
include the industrial production returns computed monthly, the S &P 500 returns2 

2 https:// fred. stlou isfed. org/ series/ SP500

https://fred.stlouisfed.org/series/SP500
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as well as the recession indicator3 provided by the National Bureau of Economic 
Research. Furthermore, delinquency rates in commercial and industrial loans4 are 
included quarterly. Following Gambetti et al. (2019), we gather the American default 
rates from Moody’s database and control for withdrawal effects by using the number 
of defaults registered in a given month divided by the number of firms followed in 
the same period. We include both rates because delinquency is commonly used if a 
borrower misses a single payment. Default is usually triggered when a borrower fails 
to keep up with the loan repayments agreed upon or in some other way fails to fulfill 
the terms of the loan. Hence, both indices focus on financial distress, but vary in 
degree and time dimensionality. The third set of variables reflects different types of 
uncertainty. This may be of particular interest when the focus is on the uncertainty 
around the estimated means, modeled via their precision. Therefore, we include 
the VIX,5 as a proxy for the uncertainty in the stock market. To reflect financial 
uncertainty the financial uncertainty index6 derived by Jurado et  al. (2015) and 
Ludvigson et al. (2021) is added. Furthermore, we take the policy uncertainty into 
account by extending the dataset with the news-based economic policy uncertainty7 
provided by Baker et al. (2016). The last two uncertainty measures are uncertainty 
based on forecast dispersion of the consumer price index8 to reflect the inflation and 
the expenditures of federal and state/local purchases.9 Those rely on the dispersion 
of forecasts computed from the Federal Reserve Bank of Philadelphia’s Survey of 
Professional Forecasters. For further details on the variables, we refer to Gambetti 
et  al. (2019). Similar to Olson et  al. (2021) all macroeconomic variables and 
uncertainty indices are lagged by one quarter to ensure predictive properties.

Similar to Görgen et  al. (2022) Fig.  1 shows the slightly negatively skewed 
bimodal distribution of the realized market-based LGDs in our sample. The aver-
age LGD is 61.40%. The lowest LGD is only half a percent, while the highest one 
is close to 100%. Overall, we recover the stylized empirical features of bond-related 
LGDs such as bounded support and skewed distribution.

Taking a closer look at the correlations of the uncertainty measures in Table 1, 
one can observe that the highest correlation is between VIX and financial uncer-
tainty with a value of 76.64%. The other correlations are moderate to low.

As this database is often used for investigating market-based LGDs, different 
periods are frequently used in the literature, see, e.g. Altman and Kalotay (2014), 
Kalotay and Altman (2017), Hwang and Chu (2018), Gambetti et al. (2019), Hwang 
et al. (2020), Sopitpongstorn et al. (2021) just to name a few.10 Therefore, stylized 

3 https:// fred. stlou isfed. org/ series/ USREC
4 https:// fred. stlou isfed. org/ series/ DRALA CBS
5 https:// fred. stlou isfed. org/ series/ VIXCLS
6 https:// www. sydne yludv igson. com/ macro- and- finan cial- uncer tainty- index es
7 http:// www. polic yunce rtain ty. com/ global_ month ly. html
8 https:// www. phila delph iafed. org/ surve ys- and- data/ real- time- data- resea rch/ dispe rsion- forec asts
9 https:// www. phila delph iafed. org/ surve ys- and- data/ rfedg ov
10 The actual number of observation varies between these studies as they do not use the same set of 
bond characteristics. For example, Hwang and Chu (2018), Hwang et al. (2020) and Sopitpongstorn et al. 
(2021) report a higher number of observations by not considering the coupon rate, contrary to Gambetti 
et al. (2019) and our approach. However, the stylized descriptive facts remain comparable.

https://fred.stlouisfed.org/series/USREC
https://fred.stlouisfed.org/series/DRALACBS
https://fred.stlouisfed.org/series/VIXCLS
https://www.sydneyludvigson.com/macro-and-financial-uncertainty-indexes
http://www.policyuncertainty.com/global_monthly.html
https://www.philadelphiafed.org/surveys-and-data/real-time-data-research/dispersion-forecasts
https://www.philadelphiafed.org/surveys-and-data/rfedgov
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facts such as the LGD increasing for lower seniority and differences for average 
LGDs across industries are well known. Hence, we move the discussion of these 
facts to Appendix  A. Table  6 displays a overview of summarizing statistics for 
the total dataset. Tables  7,  8 and  9 give an overview of the descriptive statistics 
according to the seniority, industry sector and the default type.

4  Methods

The distribution of LGDs ranges from 0 to 1 and can be skewed and multimodal. 
As a starting point, we rely on the beta regression because of its flexibility and the 
fact that the distributional assumption matches the range of the LGDs. We use the 
alternative definition with two parameters 0 < 𝜇 < 1 and 𝜙 > 0 to model the LGD, 
Y, with support 0 < Y < 1 . � corresponds to the mean of Y, whereas � is the preci-
sion parameter. Following Ferrari and Cribari-Neto (2004) the density of the beta 
distribution is:

Fig. 1  Histogram of LGDs

Table 1  Upper triangle of the correlation matrix of uncertainty features in percentages

All displayed values are expressed as percentages

VIX Fin. unc. News-based EPU CPI unc. F.S.L. exp. unc.

VIX 100.00 76.64 40.14 41.24 12.34
Fin. unc. 100.00 27.17 47.54 − 8.59
News-based EPU 100.00 29.48 − 0.79
CPI unc. 100.00 7.62
F.S.L. exp. unc. 100.00
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where Γ(.) denotes the Gamma function. The parameters � and � can be linked to 
the first two central moments of Y by:

By Eq. (3) we see, that for a fixed � the variance decreases in � . Especially the 
extension to a generalized form, where the precision � can be modeled as a depend-
ent variable in addition to the mean � , is useful to analyze LGD uncertainty. To 
model the density in Eq. (1) one can formulate a regression model called the beta 
regression as stated by Ferrari and Cribari-Neto (2004), Smithson and Verkuilen 
(2006), Simas et  al. (2010). In this regression model, the input variables are 
weighted by their regression coefficients and transformed to match the desired sup-
port of � and � . Usually for � the logistic and for � the exponential function is used. 
The regression coefficients are estimated by maximum likelihood optimization. In 
this approach, � and � are modeled as a function of the explanatory variables. We 
maximize the sum of the log likelihood over N bonds of Eq. (1), where yi represent 
the LGD of the i-th of N bonds11:

Despite the flexibility of the beta regression, it is limited in that the relationships 
between the predictors and the dependent variable have to be specified beforehand. 
To resolve this restriction we propose the Beta Regression Artificial Neural Network 
(BRANN) and its extension, the Generalized Beta Regression Artificial Neural Net-
work (G-BRANN).

Modeling approaches of beta regression neural networks The potential mod-
eling approaches to connect neural networks with the beta regression can be divided 
into three cases. First, if the input variables are the same for both outputs, � and 
� , a vanilla feed-forward neural network with two output neurons can be used.12 
This allows interactions of the input variables between � and � . Hence, one would 
assume, that � and � can be explained by the exact same variables, which can inter-
act with each other. Second, this can be relaxed by using skip connections, see, e.g., 
He et al. (2015a). Hence, the input variables of one parameter are a subset of the 

(1)f (y;�,�) =
Γ(�)

Γ(��) ⋅ Γ((1 − �)�)
⋅ y��−1 ⋅ (1 − y)(1−�)�−1,

(2)E(Y) = �

(3)Var(Y) =
�(1 − �)

1 + �

(4)

LL(y1,… , yN ;�1,… ,�N ,�1,… ,�N)

=

N∑

i=1

(
log(Γ(�i)

)
− log

(
Γ(�i�i)

)
− log

(
Γ(1 − �i)�i

)

+
(
�i�i − 1

)
yi +

(
(1 − �i)�i − 1

)(
1 − yi

)
.

11 Because some of the explanatory variables are bond-specific for each observation i, i=1,...,N, we also 
subscript �

i
 and �

i
 in the log likelihood.

12 For sparsity of notation, we skip subscripts for � and � here.
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other and one would assume that � and � are driven by the same dynamics. Third, 
the input variables for the two parameters can be different and do not need to share 
any input variables. So each parameter can be modeled by a separate neural net-
work, a �-sub-network and a �-sub-network, and then merged together. This is the 
most flexible approach, and, thus, we follow this path. In BRANN, which is based 
on a beta regression, � is modeled as a constant. So the � -sub-network can be rep-
resented by a neural network with a constant as input and no hidden layers. Similar 
to the beta regression, � has to be a positive value, thus, we impose a transformation 
�(.) which is the exponential function following Ferrari and Cribari-Neto (2004).

BRANN The �-sub-network can consist of L layers, l = 1,… , L with Kl neu-
rons each. The first layer is called the input layer. This layer takes the input matrix 
X ∈ ℝ

N×p , which typically consists of N observations with p exogenous features, 
and feeds every observation into the network. Each layer l takes as input the output 
of the previous layer ol−1 ∈ ℝ

Kl−1×1 and weights it by multiplying it with a weights 
matrix Wl ∈ ℝ

Kl×Kl−1 and adding a bias vector bl ∈ ℝ
Kl×1 . The weighted output of the 

previous layer is activated by a non-linear activation function �(.)

This produces the output ol of the current layer l. For the last layer L the weighted 
output of the previous layer is activated by a function �(.) . Since the desired range for 
� is between 0 and 1, the logistic function is chosen for �(.) to ensure the output of 
the �-sub-network, o� , stays in the desired interval from 0 to 1.

Since the � parameter of BRANN is modeled as a constant, the �-sub-network in 
BRANN can be formalized as follows:

with r ∈ ℝ as the constant input, usually r = 1 , w� ∈ ℝ and b� ∈ ℝ are weight and 
bias for r. In a final step o� and o� are merged to get predictions of � and �.

G-BRANN For G-BRANN we use the same procedure as for BRANN, but 
increase the flexibility in the �-sub-network by allowing multiple input variables, 
that can differ from the input variables of the �-sub-network. Hence, we allow our 
model to incorporate non-linearity, which can be different in the � - and the �-sub-
network. Since the �-sub-network is the same as in Eq. (6), only the �-sub-network 
changes to a network with Z layers where z = 1,… , Z.

Trainable activation functions Outliers can impact the optimization tremendously 
and cause problems in the whole estimation process. This is especially true for the 
�-part and out-of-sample predictions. The usual link function for the �-part of the 

(5)ol = �(Wlol−1 + bl)

(6)o𝜇 = 𝜄(oL) =
1

1 + e−oL
≡ �̂�BRANN

(7)o𝜙 = 𝜁(r) = ew𝜙r+b𝜙 ≡ �̂�BRANN

(8)oz =�(Wzoz−1 + bz)

(9)o𝜙 =𝜁(oZ) ≡ �̂�G−BRANN
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generalized beta regression is the exponential function to ensure positivity of �̂� , but 
this link function can be too steep or too flat. Because we do not know the best suit-
ing link function, we choose a data-driven approach and give G-BRANN the flex-
ibility to learn the last activation function for � from the data. We introduce three 
trainable activation functions in the spirit of the Parametric Rectified Linear Unit by 
He et al. (2015b). Hence, the last activation function for � , labeled as �(.) differs for 
G-BRANN. The first one, the trainable exponential function (t-exp), can be modeled 
in terms of the exponential function, with the addition that the steepness of the curve 
is defined by the parameter a. This trainable parameter makes it possible for the 
G-BRANN to determine how steep the function should be in a data-driven fashion. 
If a is equal to Euler’s number, the function results in the original link function. The 
trainable exponential function with a as the trainable parameter can be calculated as 
follows:

The second function, trainable softplus (t-soft), is based on the softplus function 
with a steepness parameter q. Analogous to the first function, the network can learn 
how steep the activation function should be. The trainable softplus function with q 
as a trainable steepness parameter can be represented as:

The last activation function is called the trainable sigmoid function (t-sig), which 
is an extension of the adjustable generalized sigmoid as described in Apicella et al. 
(2021) as we introduce an additional shifting parameter c. The sigmoid is bounded 
on the open interval from zero to one. Because the � parameter of a beta distribu-
tion can be any positive number a few adaptions have to be made. A multiplicative 
constant h can be used to stretch the sigmoid function to the open interval from zero 
to h, which can be any positive number. A common problem of the sigmoid function 
is saturation. To resolve that, we introduce two additional trainable parameters. The 
parameter s is the steepness parameter of the sigmoid function. For decreasing nega-
tive s the sigmoid function tends toward a step function. The last parameter c is the 
shifting parameter. This can be helpful if the output of the function tends towards 
the lower bound. Since zero is the lower bound of the sigmoid function and the � of 
a beta regression, the log likelihood can explode for very low �.

The trainable logistic function with h, s, and c as height, scale, and shift 
parameters are defined as:

Graphical illustrations of the activation functions can be found in Figs. 13, 14 and 
15 in Appendix B. Table 2 summarizes the proposed activation functions.

A simple graphical illustration of BRANN and G-BRANN with an arbitrary 
number of hidden layers is provided in Fig. 2. In this example we take the variables 
{ x1, x2, x3, x4 } as input variables for modeling the �-sub-network. Each input is 

(10)�(oZ) = eoZ ⋅log(a) = aoZ

(11)�(oZ) =
log(1 + eq⋅oZ )

q

(12)�(oZ) =
h

1 + es⋅oZ
+ c
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weighted and non-linearly transformed in the hidden layers. The �-sub-network gets 
the constant input r, which usually has the value r = 1 as the sub-network models 
� by weighting the constant without a non-linear transformation. This results in a 
constant � for every observation. G-BRANN can consist of the same �-part, but this 
is not mandatory. The �-part shares the input variable x3 with the �-sub-network, 
but has additional variables x5 and x7 . These input variables are also non-linearly 
transformed in the hidden layers. The objective function for both network types is 
the same as for the beta regressions, defined in Eq. (4). For stability reasons, we 
minimize the mean of the negative log likelihood instead of the sum, so the gradients 
do not tend to explode. For every market-based LGD i, we model individual values 
of �̂�i and �̂�i . For BRANN and the linear beta regression, �̂�i is constant for all 
observations.

Accumulated Local Effects plots As BRANN and G-BRANN rely  on neural 
networks, they are black-box by nature. However, the body of literature focusing on 
explanation methods has grown fast. Bastos and Matos (2021) provide a compre-
hensive overview of recent XAI techniques for credit risk. They show that financial 
institutions can use these techniques to (probably) comply with regulatory concerns 
of recovery rate predictions. Similar conclusions are drawn by Kellner et al. (2022). 
We use Accumulated Local Effect (ALE) Plots by Apley and Zhu (2020) to analyze 
BRANN and G-BRANN. This method is a common choice for visualizing feature 
effects in credit risk. One example is Bellotti et al. (2021), who use ALE plots on 
workout LGDs or Barbaglia et al. (2021) also using ALE Plots to analyze the drivers 
of probability of defaults of European mortgage. Multiple XAI methods, including 
ALE plots as well as Shapley values, are compared by Bastos and Matos (2021).

To compute the ALE plots, we first divide the range Z of one specific predic-
tor Xj ∈ ℝ

N×1 , where j = 1,… , p , into a grid with k ∈ [0, 1,… ,K] , where K is the 
number of total bins. Following Apley and Zhu (2020), Zk is chosen as the k

K
 quantile 

of the empirical distribution of Xj , where Z0 is the minimum and ZK is the maxi-
mum. Let Sk define a set of observations that lies between the boundaries Zk−1 and 
Zk . Furthermore, nk denotes the number of observations in Sk , and k(Xj) is an index 
that indicates in which bin a given value of Xj falls. The (uncentered) ALE can then 
be written as

Table 2  Trainable activation functions

This table illustrates the different definitions of the novel trainable activation functions. Each of the 
parameters is trained during the model fit and can be estimated data-driven

Function Formula Parameters

Trainable exponential function � (oZ) = eoZ ⋅log(a) = aoZ a: Steepness parameter
Trainable softplus function � (oZ) =

log(1+eq⋅oZ )

q
q: Steepness parameter

Trainable logistic function � (oZ) =
h

1+es⋅oZ
+ c h: Height parameter

s: Scale parameter
c: Shift parameter
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Xρ ∈ ℝ
N×p−1 defines the set of variables without the variable j and f(.) denotes the 

neural network’s predictor before the final transformation. For each observation i 
we obtain a prediction assuming Xj to be the upper and lower limit of the interval, 
i.e., Zk−1 and Zk , and calculate its difference. These differences are summed over all 
observations in the bin and weighted by the number of observations in that bin, nk , 
to obtain the (uncentered) local effect of Xj . Finally, we accumulate these weighted 
summed differences up to a given value of Xj using the outer sum. This result is cen-
tered such that the mean effect of Xj is zero:

The ALE plots have many advantages. Among other things, they are fast to compute 
and unbiased. Therefore, they can be used even if features are correlated in contrast 
to many other XAI techniques, such as partial dependence plots, see Apley and Zhu 
(2020). ALE plots are centered so that the mean effect of the features is zero. There-
fore, the y-Axis of the ALE can be interpreted as the main effect of the independent 
variable at a certain point in comparison to the average predicted value. Further-
more ALE plots provide a R2-like measure, which describes up to which degree the 
prediction can be explained by main order, second order, etc. effects. The proposed 
R2

ALE,m
 by Apley and Zhu (2020) can be formalized as follows:

(13)gALE(Xj) =

k(Xj)∑

k=1

nk
−1

∑

i∈Sk

[
f (Zk,Xρ,i) − f (Zk−1,Xρ,i)

]
.

(14)ΘALE(Xj) = gALE(Xj) − N−1

N∑

i=1

gALE(Xj,i)

Fig. 2  Graphical illustration BRANN and G-BRANN. Notes: This figure illustrates a stylized network 
structure of BRANN and G-BRANN. The advantage of these structures is that we can allow different 
input variables for each of the distributional parameters of the beta distribution
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where m describes up to which order of effects the R2

ALE
 is calculated. Therefore, it 

holds that R2

ALE,d
= 1 . Nagl (2021) extended this approach by introducing R2

ALE,linear
 , 

which measures how much linearity the prediction of the model contains. The 
R2

ALE,linear
 is defined as:

where Θlinear
ALE

(Xj) can be calculated by fitting a linear regression on ΘALE(Xj) , which 
are the first order effects. Therefore, 1 − R2

ALE,linear
 quantifies the degree of non-lin-

earity in the prediction. All ALE plots are generated with a grid size of K = 10 and 
we calculate the ALE Plots for oL (Eq. (5)) and oZ (Eq. (8)), i.e., before the final 
transformation in the output layer.

5  Results

5.1  Feature selection and model estimation

Feature selection The selection of important drivers for market-based LGDs is not 
trivial. Therefore, we use the selection of Gambetti et al. (2019) as a starting point of 
our analysis. However, as our study additionally uses data after 2015 (about 7 years 
more), we follow an iterative process to select the most relevant to our sample. We 
divide our dataset randomly into an in-sample (80%) and an out-of-sample (20%) 
groups. For the feature selection process, we further divide the in-sample set into 
a training (70%) and testing set (30%). During this process, various feature sets are 
calibrated on this training set and predictions are generated for the testing set. The 
value of the loss function, i.e. the negative log-likelihood, on the testing set serves as 
metric for the feature selection process. Therefore, we select our feature to be suit-
able to predict out-of-sample data. Alternatively, we can use the same approach as 
Gambetti et al. (2019) and follow a step-GAIC approach. Then, however, we would 
select our feature only on training data, i.e. in-sample. As we want a model which 
can also predict out-of-sample/time data, we opt for selecting features by out-of-
sample losses. Using AIC instead of the negative log-likelihood, does not change 
our results.

Since the �-part is well researched in terms of drivers, see Gambetti et al. (2019), 
we choose the same variables for the �-part, which are best performing in Gambetti 

(15)R2

ALE,m
=

var{
∑

J⊊{1,…,d},�J�≤m ΘALE(XJ)}

var{f (X)}

(16)R2

ALE,linear
=

var{
∑p

j=1
Θlinear

ALE
(Xj)}

var{f (X)}
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et  al. (2019).13 For the �-part we apply the forward selection algorithm using the 
generalized linear beta regression, assuming the same selection for the �-part from 
the previous step, following Gambetti et al. (2019).14 Please note that the final set of 
features is robust to different splitting points in the training (70%) and testing (30%) 
set. Table 3 shows the final variables for the � - and �-parts.

Model estimation To find the optimal parameters for BRANN and G-BRANN, 
we conduct a random 5-fold cross-validation of the training sample. In summary, 
we draw 500 different configurations of hyperparameter values. Similar to Kell-
ner et al. (2022) we adopt the multiple approach to find the number of neurons in 
each subpart of our network. The baseline for the multiple approach is (32, 16), i.e., 
we use maximum two hidden layers. In this approach we sample a multiplier for 
the baseline network structure instead of directly sampling the number of neurons 
in each hidden layer.15 The descending number of neurons in each hidden layer is 
inspired by Gu et al. (2020). Furthermore, we use Stochastic Gradient Decent (SGD) 
as an optimizer and ReLU as an activation function in all hidden layers, which is in 
line with the literature, see, e.g., Gunnarsson et al. (2021) or Nagl et al. (2022). To 
increase the robustness of our results, we fit every constellation 10 times and use the 
average of these repetitions in the hyperparameter search. This eliminates the impact 
of the random weight initialization in the first step of the training phase.16 Hyperpa-
rameters are the learning rate, the multiple, the dropout rate, the number of hidden 
layers, and our novel trainable activation functions for the �-part in G-BRANN. In 
addition to that we include a MaxNorm kernel constraint of 3.0 as recommended 
by Srivastava et al. (2014) for dropout in neural networks. The search space and the 
final values are reported in Table 4.

Interestingly, the estimated coefficient of the t-exp activation function differs to 
Euler’s number, indicating that G-BRANN selects a different shape of this activa-
tion function to be optimal.17

Our main metric for the performance comparison is the log likelihood, as it meas-
ures the performance concerning the distributional fit. However, we additionally 
include two common metrics from the literature, namely the MSE and the Pseudo-R2 
to assess how well the mean estimates perform.18

14 Alternatively, one could also use BRANN and G-BRANN for feature selection, but this would include 
a hyperparameter search in each step. As the aim of this paper is not to find the ultimate selection of 
drivers of market-based LGDs, we think that our approach is sufficient. Overall our selection recovers 
recent findings by Sopitpongstorn et al. (2021), Nazemi et al. (2021) and Bastos and Matos (2021).
15 For example, if we sample a multiplier of 4 in a two hidden layer network, we have (128, 64).
16 We find that 10 repetitions are enough in our setup. The differences in the means of 10 independent 
repetitions are negligible, and, thus, we find our results robust and reproducible.
17 As robustness, we also conduct a hyperparameter search for G-BRANN where we use only 
the standard activation function in the output layer of � . Overall, the trainable activation function 
outperforms the standard functions consistently.
18 The MSE measures the quadratic difference between true and predicted mean LGDs. The Pseudo-R2 
is derived by Ferrari and Cribari-Neto (2004) and quantifies the squared correlation between the linear 
predictors of the model and the true realization.

13 In contrast to Gambetti et al. (2019) we dropped the Real Gross Domestic Product(GDP) as it worsens 
the performance considerably. This may partly be traced back to the recent crisis, where we observed 
large variations in GDP but almost no variation in the resulting LGD in these quarters.
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Table  5 illustrates that BRANN and G-BRANN outperform their linear 
counterparts by a large margin in terms of sum and mean log Likelihood. This 
also holds for MSE, and Pseudo-R2 in-sample as well as out-of-sample. Bold 
values indicate the best value, underlined values indicate the second best. Overall, 
the neural networks are first or second-best choice for every metric. To remain 
comparable with Gambetti et  al. (2019), we report the sum of the log likelihood. 
Hence, the values of the out-of-sample dataset are smaller due to the smaller sample 
size. Looking at the mean log likelihood, we observe that the values are, as expected, 
slightly smaller but comparable to the in-sample values. Overall, we see substantial 
improvements in the log-likelihood by the BRANN and G-BRANN models.

One might argue that the comparison of the “raw” likelihood is not fair as we do 
not control for the larger number of parameters in the neural networks and we should 
rely on metrics like the Akaike Information Criterion (AIC) instead. This could be 

Table 3  Selected variables for 
the subnetworks

The NBER-based recession indicators for the United States are 
retrieved from the Federal Reserve Bank of St. Louis (FRED) web-
site as well as the industrial production and S &P 500 and the delin-
quency rate on All Loans. Following Gambetti et  al. (2019), we 
gather the American default rates from Moody’s database and con-
trol for withdrawal effects. The uncertainty measures are retrieved 
from the author’s website. These include financial uncertainty 
(Jurado et al. 2015 and Ludvigson et al. 2021), the news-based EPU 
from Baker et al. (2016). Furthermore, we use survey-based proxies 
of uncertainty by including the inflation uncertainty measure for the 
United States (CPI uncertainty) and a proxy of uncertainty relative 
to both federal and state/local purchases

Variable �-subnetwork �-subnetwork

Bond characteristics
 Coupon rate ✓ ✓

 Maturity ✓ ✓

 Industry sector ✓ ✓

 Seniority ✓ ✓

 Default type ✓

Macroeconomic variables
 Recession indicator ✓ ✓

 Industry production ✓ ✓

 S &P 500 Returns ✓ ✓

 Delinquency rates ✓

 Default rate ✓ ✓

Uncertainty measures
 Financial uncertainty ✓ ✓

 CPI uncertainty ✓ ✓

 News-based EPU ✓

 Uncertainty relative to
 Federal/state/local expenditures ✓
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the case for in-sample values due to overfitting resulting in higher likelihood values. 
However, if we interpret this along with the (mean) likelihood values of the out-
of-sample data, we do not see evidence for overfitting as we implemented various 
regularization techniques and rely on cross-validation. Furthermore, the number of 
parameters in neural networks does not necessarily coincide with the complexity. 
Recent literature shows that overparameterized neural networks even generalize 
better than those with a lower number of parameters, see, e.g. Belkin et al. (2019) or 
Yang et al. (2020).

To counteract concerns that our results are not robust to an out-of-time exer-
cise and in comparison to other well-known machine learning models, we conduct 
a robustness check in Appendix C. The search space of possible hyperparameters 
including the final results can be found in Table 10. As displayed in the subtables of 
Table 11 we observe that the superiority of (G-) BRANN holds also for future pre-
dictions, and regarding the mean estimate, we observe similar performance.

5.2  Drivers of � and �

Bond related drivers of �
The following figures unveil the relationship between the selected variables and 
the predicted mean of the LGD distribution. To allow a better comparison with the 
traditional approach, i.e. linear models, we also add their relationship. Overall, the 
ALE plots in the �-part from G-BRANN and BRANN point in the same direction. 
Therefore, only the ALE plots of G-BRANN are presented in the following.19 As 
the number of observations varies across the value range of the drivers, areas with 
a low number of observations should be interpreted with caution. Nonetheless, we 
have enhanced the robustness of our interpretations by refitting the models and 
recalculating the ALE Plots 100 times.

Table 4  Setup and final values of the hyperparameter search

The table shows different values for the hyperparameter search. Uc labels the continuous uniform distri-
bution, whereas Ud labels the discrete uniform distribution. We observe that G-BRANN requires a wider 
network structure for the �-part and a wide and deep structure for the �-part

Parameter Distribution BRANN G-BRANN

�-part �-part �-part

Learning rate Uc ∼ [0.001, 0.1] 0.0396              0.0091
Dropout rate Uc ∼ [0.05, 0.50] 0.4385 0.3435 0.3144
Hidden layer Ud ∼ [1, 2] 2 2 2
Multiple Ud ∼ [1, 8] 1 3 8
Activation function t-exp, t-sig, t-soft – – t-exp ( � = 3.37)

19 The plots for BRANN as well as the plots of the control variables, such as industry sector, seniority, 
and default type are available upon request.
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Figure 3 shows that the slopes of the linear model (dashed line) coincide with 
the (linear) evidence from the literature, i.e., LGD increases with maturity and 
decreases with coupon rate, see, e.g., Gambetti et  al. (2019). However, the ALE 
plots of G-BRANN reveal a more nuanced picture. We observe that a higher 
maturity results in higher mean LGDs up to a certain point, but this increasing 
effect vanishes for bonds with a maturity greater than roughly 20 years. Generally, 
the positive relationship could be explained by sell-side pressure originating from 
institutional investors who usually hold bonds with longer maturity, see Jankowitsch 
et  al. (2014). This effect decreases for maturities greater than 20 years and even 
gets negative. But this negative effect could be due to the small number of bonds 
with very long maturities. For BRANN the effect of the maturity is almost constant 
after the 10 years mark. For the coupon rate, we observe a u-shaped relationship, as 
the LGD decreases for coupon rates up to 9%, but increases afterwards. A negative 
relationship is plausible as bonds with a higher coupon rate could be of higher value 
given there is a reasonable probability that all cash flows can be collected during 
the resolution of the bond, see Jankowitsch et al. (2014). However, a higher coupon 
rate also indicates higher risk, and, thus, for riskier bonds, the market expects higher 
losses as the probability that all cash flows can be recovered may be lower.

Table 5  Evaluation Metrics

This table shows the average performance metric of BRANN and G-BRANN over 100 repetitions and 
their linear counterparts. The first row shows the sum of log likelihood to be comparable to the literature. 
The second row shows the average log likelihood, whereas the third row shows the mean squared error. 
The last row displays the Pseudo-R2 following Ferrari and Cribari-Neto (2004). We observe that the neu-
ral network related methods consistently outperform the linear models in every performance metric. To 
remain comparability to Gambetti et al. (2019) we report the sum of the log likelihood. Bold values indi-
cate the best, whereas underlined values the second best performance
Bold values indicate best values

(a) In Sample

Generalized linear

Beta regression BRANN Beta regression G-BRANN

Σ Log Likelihood 747.470 1211.769 968.669 2085.335
∅ Log Likelihood 0.404 0.654 0.523 1.126
MSE 0.038 0.022 0.038 0.022
Pseudo-R2 0.464 0.688 0.447 0.636

(b) Out of Sample

Generalized linear

Beta regression BRANN beta regression G-BRANN

Σ Log Likelihood 165.536 232.737 227.342 300.546
∅ Log Likelihood 0.358 0.503 0.491 0.649
MSE 0.041 0.031 0.041 0.030
Pseudo-R2 0.403 0.549 0.398 0.538
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Macroeconomic drivers of � 
Figure  4 shows that the default rate has the largest impact of the macroeconomic 
drivers on market-based LGDs, which appears logarithmic. For S &P 500 returns the 
linear model finds a (counterintuitive) positive relationship, whereas G-BRANN finds 
a (intuitive) negative relationship. Similarly, higher industry production is associated 
with higher losses in the linear model, but has a negative effect in the G-BRANN 
model. The last macroeconomic variable delinquency rate has an intuitive positive sign 
in the linear model, but a counterintuitive relation in the G-BRANN model. This is 
similar to Gambetti et al. (2019), where the delinquency rate has no significant impact 
in their best model. The counterintuitive sign might be due to correlations in the 
macroeconomic variables. The problem of counterintuitive signs when incorporating 
many of them is well-known in the credit risk literature. Figlewski et al. (2012) find 
that many macroeconomic variables change their signs and have even statistically 
significant counterintuitive signs if a large selection of them is included.
Uncertainty related drivers of � 
Figure  5 shows the ALE plots of uncertainty related variables. We find a 
substantial positive impact of financial uncertainty, which is similar to Gambetti 
et al. (2019). The effect is linear in G-BRANN and nearly identical with its linear 
counterpart. Financial uncertainty has the largest effect of the uncertainty related 
drivers on market-based LGDs. For the text-related news-based EPU index we 
find a positive relationship, which is close to the linear model from an index 
level of 100 onwards. CPI uncertainty shows a U-shaped relation indicating that 
market-based LGDs decrease for low levels of uncertainty but increase sharply 
after a certain point. FSL uncertainty exhibits a negative effect, which is in line 
with the linear model, but in G-BRANN the effect is more extreme up to a value 
of 2. Then its slope is similar to the linear counterpart. Overall, we find larger 
non-linearities in uncertainty-related variables than in macroeconomic variables.
Bond related drivers of �
Following the definition of precision � , the estimated sign is inversely connected 
to the variance of the LGDs. As a consequence of this an estimated negative effect 
increases the variance of the resulting LGD distribution.

Maturity

Fig. 3  ALE plots of bond characteristics | � . Notes: The figures show the ALE plots for G-BRANN in 
solid black and the generalized linear beta regression in dashed black. We initialize the G-BRANN 100 
times and calculate the final median ALE plots. We also include a rug plot at the bottom to visualize the 
distribution of the underlying data
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Figure  6 shows the impact of the two bond characteristics. We find a small 
negative effect of maturity on the precision of market-based LGDs. This implies 
that bonds with longer maturities are associated with less variance in the LGD 
estimate. G-BRANN recovers an increasing effect up to a certain coupon rate. 
Therefore for low coupon rates we have a negative effect on the precision, which 
becomes less negative as the coupon rate approaches 5%. For coupon rates 
between 5% and 10% we have a decreasing positive effect on the precision, which 
becomes slightly negative for higher coupon rates. Due to the inverse relationship 
between precision and variance we expect higher variances of the LGDs for low 
and high coupon rates.
Macroeconomic drivers of � 
Turning to the influence of the macroeconomy on the precision of market-based 
LGDs, Fig. 7 illustrates their impact. We find a positive relationship between S &P 
500 returns and precision, implying that the variance decreases for higher returns. 
This is somewhat contrary to Gambetti et al. (2019), but they used the level of the 
S &P 500 and not the (stationary) returns. This positive relationship for very high 
returns can be partly explained as we included the recent Covid-19 pandemic in 
our sample, where we observe large positive returns, although the LGD realization 
stagnated. The positive effect is less pronounced than its linear counterpart. For 
default rates we have an increasing effect on the prediction for very small default 
rates, turning negative  afterwards, which is consistent with the linear model. For 
delinquency rates, we find a similar picture as for the S &P 500 returns. The impact 

Fig. 4  ALE plots of macroeconomic variables. Notes: The figures show the ALE plots for G-BRANN in 
solid black and the generalized linear beta regression in dashed black. We initialize the G-BRANN 100 
times and calculate the final median ALE plots. We also include a rug plot at the bottom to visualize the 
distribution of the underlying data
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on the prediction has the same direction as the linear model but is more conservative. 
The industry production has a small, constant negative effect on average.
Uncertainty related drivers of � 
In our selection, only two uncertainty-related measures were selected for the final 
model. We find that financial uncertainty has a almost linear effect on the precision, 
so that high financial uncertainty correspond to lower variance of the LGD estima-
tion. For this variable the effect is less strong than than the effect modeled by the 
generalized linear beta regression. CPI uncertainty on the other hand shows a nega-
tive trend for increasing uncertainty, but the overall effect is comparable small.
Non-linearity in the estimation of � and �
ALE plots are a powerful tool to visualize the modeled effects of features on the pre-
diction. Due to the connection of ALE plots to a functional-ANOVA-like-decompo-
sition ALE plots are capable to quantify the goodness of fit to the prediction due to 
an arbitrary order of effects according to Apley and Zhu (2020). We calculate the the 
R2

ALE,1
 for the parameter of the modeled distribution. Therefore we can measure how 

well the prediction can be approximated by the first order (main) effects, which are 
visualized in Figs. 3, 4, 5, 6, 7 and 8. For � the R2

ALE,1,�
 is 0.9017. This means, that 

90.17% of the prediction is due to (non-)linear main effects and only the remaining 
9.83% are a result of (non)-linear higher order effects such as interactions. This pic-
ture changes for � . Here the R2

ALE,1,�
 is 0.3531. Therefore, the most part of the pre-

diction is due to (non-)linear higher order effects. Using the R2

ALE,linear
 derived by 

Fig. 5  ALE plots of uncertainty related variables. Notes: The figures show the ALE plots for G-BRANN 
in solid black and the generalized linear beta regression in dashed black. We initialize the G-BRANN 
100 times and calculate the final median ALE plots. We also include a rug plot at the bottom to visualize 
the distribution of the underlying data
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Nagl (2021), we can divide the R2

ALE,1
 further. As R2

ALE,linear
 measures the how well 

the prediction can be explained by linear first order effects, the difference between 
R2

ALE,1
 and R2

ALE,linear
 is the improved approximation by non-linearity in the first order 

effects. For G-BRANN R2

ALE,linear,�
 is 0.8590, which indicates that the improvement 

in the first order effects by non-linearity is only about 4% . For the precision parame-
ter this becomes more pronounced. R2

ALE,linear,�
 is only 0.1963, which means, that 

80.37% of the � predictions is due to non-linearity and higher order effects. More 
specific the increase due to non-linearity in the first order effects is more than 15% . 
Therefore, the non-linearity has a tremendous effect for the estimation of � even in 
the first order effects.

5.3  Scenario analysis

The remaining part of this section focuses on the implications of our findings for risk 
management. As stated in Kellner et al. (2022) only considering the mean or median 
does not allow to differentiate between risk profiles in a holistic way. Therefore, the 
whole distribution should be taken into account to derive risk profiles across possi-
ble realizations of the LGD.

Assume a bank aims at investigating the implications of favorable and unfavorable 
scenarios in their credit risk assessment. These scenarios can be easily derived using 
low and high quantiles of individual LGD distributions, predicted by G-BRANN. To 
examine this, we compare the trained beta regression and G-BRANN as described 
in Sect. 5.1 and predict the � and � for every sample in the training data. Figure 9 
shows the results for the different types of seniority. To obtain a representative 
distribution of each of them, we take the the median � and � for every seniority. 
The left hand side of Fig. 9 shows the estimated distributions by the beta regression 
and on the right side the distributions calculated by G-BRANN are displayed. In the 
beta regression models all samples have the same value for � , whereas G-BRANN 
allows individual values of � . Please recall that the overall fit of G-BRANN in terms 
of likelihood is considerably higher compared to the beta regression. This holds also 
for every individual category, such as seniority. Therefore, we are confident that the 
estimated distributions by G-BRANN are superior as well.

Fig. 6  ALE plots of bond characteristics | � . Notes: The figures show the ALE plots for G-BRANN in 
solid black and the generalized linear beta regression in dashed black. We initialize the G-BRANN 100 
times and calculate the final median ALE plots. We also include a rug plot at the bottom to visualize the 
distribution of the underlying data
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From a risk manager’s perspective a more differentiated picture across categories 
provides a valuable information to derive individual risk profiles. Therefore, the less 
theses distributions overlap between categories, the more refined can the derived risk 

S&P 500 US corp. default rate

Delinquency rate Industry production
Notes: The figures show the ALE plots for G-BRANN in solid black and the generalized linear beta regression in dashed black. We

initialize the G-BRANN 100 times and calculate the final median ALE plots. We also include a rug plot at the bottom to visualize

the distribution of the underlying data.

Fig. 7  ALE plots of macroeconomic variables | � . Notes: The figures show the ALE plots for G-BRANN 
in solid black and the generalized linear beta regression in dashed black. We initialize the G-BRANN 
100 times and calculate the final median ALE plots. We also include a rug plot at the bottom to visualize 
the distribution of the underlying data

Financial uncertainty CPI uncertainty
Notes: The figures show the ALE plots for G-BRANN in solid black and the generalized linear beta regression in dashed black. We

initialize the G-BRANN 100 times and calculate the final median ALE plots. We also include a rug plot at the bottom to visualize

the distribution of the underlying data.

Fig. 8  ALE plots of uncertainty related variables | � . Notes: The figures show the ALE plots for 
G-BRANN in solid black and the generalized linear beta regression in dashed black. We initialize the 
G-BRANN 100 times and calculate the final median ALE plots. We also include a rug plot at the bottom 
to visualize the distribution of the underlying data
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profiles be. Overall, using the beta regression the distributions overlap more than using 
the G-BRANN. Therefore, G-BRANN allows a more refined picture of the different 
distribution. Again, the fit in terms of likelihood is superior for every category and, thus, 
the less overlapping distributions suit the data more. To quantify this effect, we calculate 
the area where the distributions overlap. Since the integral of these distributions is always 
one, the overlapping area is naturally bounded from zero to one, where one means that 
one distribution envelops the other distribution. We calculate the overlapping area for 
every pair of seniority levels. On average the overlapping area of the beta regression is 
0.7443 in contrast to 0.6402 for G-BRANN.

We redo the same analysis for the industry types. Typically, the LGDs vary 
across different industries due to differences in collateralized assets or guaran-
tees. Therefore, a risk manager appreciates a models that allows for a clear dis-
tinction between LGDs in different industries. Similar to the seniority, the fit of 
G-BRANN is superior in every industry compared to the beta regression, which 
is currently industry standard.

Figure  10 shows the estimated distribution for the most common industries 
in our sample. Overall, we observe a similar picture. G-BRANN produces much 
more differentiated distributions than the beta regression.

Calculating the mean overlapping are the beta regression results in 0.6919 
and G-BRANN 0.4444. The individual overlappings are even more different. 
G-BRANN predicts a distribution for the Utilities sector that does not have any 
overlapping with the Nonbank Finance sector. On the contrary, the beta regres-
sion shows a comparable large overlap. In our data, LGDs from the Utilities 
sector have the lowest average LGD, whereas the Nonbank Finance sector has 
the highest according to Table 8. Again, this shows that G-BRANN reflects the 
empirical features of our data much better.

Beta Regression G-BRANN
Notes: The figures show the representative beta distribution modeled by the beta regression and G-BRANN divided into the

seniorities. SB, SR, SS and SU refer to Senior Subordinated, Subordinated, Senior Secured and Senior Unsecured.

Fig. 9  Beta distributions per seniority. Notes: The figures show the representative beta distribution 
modeled by the beta regression and G-BRANN divided into the seniorities. SB, SR, SS and SU refer to 
Senior Subordinated, Subordinated, Senior Secured and Senior Unsecured
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Lastly, risk managers do not only want to differentiate between industry types or 
seniorities, but also between different macroeconomic states. Therefore, we provide 
a scenario analysis which focuses on the economic surrounding. We choose three 
quarters with different average realized LGDs. As “good” scenario we rely on the 
macroeconomic state in Q1 2004 with an average LGD of 0.43, which is compara-
tively low. The "average” scenario is Q4 2005 with a mean LGD of 0.62 which is 
very close to the average of our whole dataset. The “bad” case is Q3 2008, which 
is a quarter of the Global Financial Crisis that is reflected by the very large mean 
LGD of 0.90. The “good”, “average” and “bad ” states are also reflected by the 
macroeconomic variables, such as the S &P 500 return or the US corp. default rate.

Figure  11 illustrates a clear separation between the good and the bad scenario 
for G-BRANN, whereas the distributions modeled by the beta regression overlap by 
0.3502 compared to 0.0095 for G-BRANN. Again, the fit in every macroeconomic 
state of G-BRANN is considerably better than by the beta regression and, thus, this 
clear separation is more aligned with the data. Furthermore, the clear separation 
between good and bad economic states is also economically more plausible.

Figure 12 visualizes the overlapping area of Fig. 11 to allow for a easy comparison. 
We observe that the difference between “average” and “bad ”, the G-BRANN has less 
than half of overlapping and for “good ” vs. “bad”, we see overlapping close to zero. 
Therefore, G-BRANN offers a data-driven and flexible way to derive tailored scenario 
analysis for risk management tasks and allows for a clear and economic plausible differ-
entiation between macroeconomic states. The detailed results of every pairwise overlap-
ping for every scenario analysis can be found in Appendix D in Figs. 16 and 17.

6  Conclusion

In recent years a broad stream of literature emerged which shows that mean 
LGD estimates are non-linearly connected to well-known drivers, see, e.g., 
Bastos and Matos (2021), Bellotti et al. (2021), Nazemi et al. (2021), Olson et al. 

Fig. 10  Beta distributions per industry type. Notes: The figures show the representative beta distribution 
modeled by the beta regression and G-BRANN divided into the industry types. Here just a selection of 
industry types are shown
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(2021), Sopitpongstorn et al. (2021) or Xia et al. (2021). The drivers of the LGD 
distribution’s precision (variance) are considerably less investigated as noted by 
Gambetti et al. (2019). They find that there are several variables with effect on the 
precision by using a generalized linear beta regression. We extend this approach by 
allowing non-linearity in mean and precision by combining the generalized linear 
beta regression with a neural network structure. This allows us to incorporate 
these little-noticed characteristics such as bounded support, skewed distribution, 
and heteroskedasticity directly into our modeling framework. Furthermore, we 
derive novel trainable activation functions to address the bounded support problem 
in the LGD distribution’s mean and precision. We implement a data-driven way 
to characterize the actual shape of the precision predictions which increases the 
robustness. By accessing Moody’s Default and Recovery Database from January 
1990 until March 2021, we incorporate the most recent evidence in market-based 
LGD realizations. We observe strong non-linearity in the prediction of the precision 
parameter. Therefore, especially this parameter benefits from non-linear modeling.

Modeling the precision and thus, the form of every obligor’s LGD distribution 
enhances the capability of risk managers in several important ways. First, lower and 
high quantiles can be used to derive good and bad scenarios in a data-driven way. 
Therefore, the impact of portfolio losses beyond expectation values can be quanti-
fied. Hence, our approach provides a flexible and data-driven tool to derive con-
servative estimates, i.e., higher quantiles, concerning regulator’s margin of conserv-
atism. Second, by comparing the individual distributions of obligors, risk managers 
can reveal differences in the obligor’s risk profiles by comparing extreme losses, 
for example in terms of Value-at-Risk (VaR). This enables banks to better quan-
tify the riskiness of their business in terms of potential losses. Our scenario analysis 
reveals that the distributions modeled by the beta distribution lack of distinctiveness 
compared to G-BRANN. Thus, scenario analysis with beta regression could lead to 
inadequate loss estimation. Furthermore, the application of BRANN and G-BRANN 
to workout LGDs would be interesting, as they entail similar challenges. As the data 
on this kind of LGD is considerably larger, one could even consider a multilevel 

Fig. 11  Beta distributions per macroeconomic states. Notes: The figures show the representative beta 
distribution modeled by the beta regression and G-BRANN divided into different macroeconomic sates



 M. Nagl et al.

approach by fitting our proposed methods on different seniority levels, industry sec-
tors or default types.20

Our approach of combining well-known statistical methods with neural networks 
and the novel derived activation functions can not only be used for credit risk-related 
problems but to more general and broader set of problems in business and econom-
ics, e.g., demand or retail forecasting.

Descriptive statistics

Table 6 shows the descriptive statistics of LGDs across the whole sample. Over 
the 2,315 LGDs we have a slightly negative skewed distribution with a median 
LGD of 68 %. The following tables should provide an overview of the LGD dis-
tribution across the categorical values.

Dividing the LGDs in their seniority the picture changes in a few regards. 
While the skewness for senior secured and senior unsecured remains relatively 
close to zero, the skewness for senior subordinated and subordinated decreases 
close to -1, which indicates moderate skewness. Furthermore, the average LGD 
per category is different. Higher levels of seniority tend to have lower LGDs 
on average and at median. For the industry sector there are differences as well. 
High LGDs in particular can be observed for technology and for nonbank finance 

Fig. 12  Degree of overlapping across the macroeconomic states. Notes: The figure shows the degree 
of overlapping of the representative beta distribution modeled by the beta regression and G-BRANN 
divided into macroeconomic states

20 We thank an anonymous reviewer for suggesting this potential application of BRANN and 
G-BRANN.
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companies. By far the lowest mean LGD with low standard deviations are located 
in the utility sector followed by the banking companies. Those two sectors are the 
only sectors with highly positive skewness. This low mean LGD in the utilities 
sector corresponds to the high recovery rates in Gambetti et  al. (2019). On the 
contrary low LGDs in the banking sector are quite different from the observed 
ones by Gambetti et al. (2019), but one must take into account that the used sam-
ple size in the banking sector in this paper is more than six times the sample 
size used in Gambetti et al. (2019). The remaining industry sector show slightly 
higher or similar LGDs to the average LGD over the whole sample.

Conditioning the LGDs on the default type there are major differences compared 
to table  6 noticeable. First of all, there are some default types, that barely occur. 
Some of them occur only once or twice in the observed period of more than three 
decades. For the slightly bigger categories it is visible that payment moratorium has 
the lowest average LGD and the smallest standard division by far. The biggest cat-
egory Chapter 11 shows the second highest average LGD. Only Chapter 7 provides 
higher average LGD, but also a very small sample size. Most of the conditional dis-
tributions are negatively skewed except the category distressed exchange, which is 
moderately positive skewed and show low average LGDs.

Trainable activation functions

In the following the trainable activation functions from Sect.  4 are represented 
graphically. Figure  13 illustrates the impact of the steepness parameter a. For a 
larger value for a, a = 3.37 , the curve is even steeper than the original exponential 
function. The value for  Fig.  13 is chosen according to the trained G-BRANN 
in table  4. The trainable parameter q of the trainable softplus function in Fig.  14 
controls for the curvature of the function. For increasing q the trainable softplus 
function tends towards a relu activation function.

The last of the proposed trainable activation functions is the trainable sigmoid 
function. Setting the parameters c = 0 , s = −1 and h = 1 it results in the ordinary 
sigmoid function bounding the output on an intervall from 0 to 1. The parameter c 
shifts the function vertically as displayed by the upper function of Fig. 15. Increasing 
the scale parameter s towards 0 the output tends to flatten the input so that changes 
in the input less affect the output. The last parameter h defines the upper bound of 
the output, so that the trainable sigmoid function can result in higher values than 
the ordinary sigmoid function. The following figure compares the original sigmoid 
function with the sigmoid function, which is trained for the robustness section. Here 
the chosen parameters are c = 1.88 , s = −1.45 and h = 2.68.
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Robustness

Overall, this paper does not seek to conduct a horse race and contributes to the 
literature by finding a new best method of predicting market-based LGDs. Our 
aim is at the rationale behind the drivers of mean LGDs and the drivers of the 
precision of the LGDs, which is considerably less investigated. Hence, our neural 
networks can be seen as explanation models to unveil drivers of the mean and 
variance of the market-based LGDs. We want to use these relations to generate 
estimates in scenario analysis and derive implications. Therefore, they are 
not built as a prediction model for predicting future mean LGDs, but as a non-
parametric way to unveil hidden relationships between drivers and the market-
based LGD distribution. However, to counteract the concerns that our derived 
neural networks are not suitable to predict future realizations, we conduct an out-
of-time benchmark exercise.

For this purpose we split the the whole sample into a training sample and a 
test sample. For the training sample only LGDs until end of 2007 are used. The 
remaining observations act therefore as an out-of-time sample. For BRANN, 
G-BRANN, Neural Networks and Random Forests we optimized the hyperparam-
eters using 5 fold cross validation and run each fold 10 times to ensure stable 
results for every fold. For all models with hyperparameters we draw 500 con-
stellations each by a random search approach. Table 10 shows the setup and the 
resulting parameters for the robustness section.

For each model type we choose those hyperparameters, which return the 
lowest negative log likelihood or mean squared error (MSE), respectively, 
averaged over the 5 hold out folds. The (extended) beta regression and (G-)
BRANN are optimized by  the mean of the negative log likelihood in Eq. (4), 
while the objective of the remaining models is to minimize the MSE. Since the 
Pseudo-R2 is based solely on the �-part of the (extended) beta regression and (G-)
BRANN, which represents the predicted LGD, it can be calculated for all models. 

Table 6  Descriptive statistics of 
LGDs across the whole sample

All displayed values except the sample size are expressed as percent-
ages

N Min Median Mean Max St.Dev Skewness

LGD 2315 0.50 68.00 61.40 99.99 28.11 − 0.35

Table 7  Descriptive statistics of LGDs according to the seniority of the defaulted bond

N Min Median Mean Max St.Dev Skewness

Senior secured 195 0.50 47.5 49.42 99.25 28.91 0.0594
Senior unsecured 1599 0.50 65.0 59.59 99.97 28.36 − 0.2206
Senior subordinated 360 0.50 79.0 72.02 99.99 23.87 − 0.9923
Subordinated 161 0.87 74.0 70.17 99.87 23.74 − 0.9030
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However, this does not apply to the log likelihood calculation. For the out-of-time 
comparison we form a portfolio of 100 randomly drawn bonds and evaluate the 
MSE, Pseudo-R2 and, if possible, the log likelihood. This procedure was repeated 
10 times and their average is provided in table 11.

Comparing the values for the log likelihood in- and out-of-time, we observe that 
in both samples one of our neural network approaches outperform the linear beta 
regressions. Therefore, we can argue that the good performance illustrated in Table 5 
can be recovered when we focus on future predictions. Overall the non-linear models 
recover the distribution of market-based LGDs best. While focusing only on the �
-part, i.e. only on mean predictions, we observe that the Random Forest performs 
best in-sample and third best out-of-time. This is similar to findings in the literature, 
see, e.g., Kaposty et al. (2020); Bellotti et al. (2021); Nazemi et al. (2021). However, 
as previously noted, the aim of this paper is not to predict the mean of market-based 
LGDs best as done by various studies, e.g., Bastos (2010); Loterman et al. (2012); Qi 
and Zhao (2012); Bastos and Matos (2021); Olson et al. (2021); Nazemi et al. (2021) 
among many others. The contribution of this paper is to model the precision of the 

Table 8  Descriptive statistics of LGDs according to the industry sector of the defaulted bond

N Min Median Mean Max St.Dev Skewness

Banking 276.0 7.92 28.96 35.52 99.75 19.13 2.6608
Capital industries 471.0 0.75 72.50 66.58 99.87 25.51 − 0.6049
Consumer industries 307.0 0.50 71.50 63.78 99.99 26.07 − 0.6349
Energy & environment 296.0 0.50 66.25 63.37 99.97 24.12 − 0.5381
Media & publishing 164.0 1.00 56.50 55.70 99.99 28.96 − 0.0344
Nonbank finance 261.0 14.00 90.00 74.06 99.87 29.63 − 1.3282
REIT 17.0 36.65 76.48 66.03 98.12 21.37 − 0.0421
Retail & distribution 164.0 0.50 68.25 63.85 99.50 25.45 − 0.6727
Technology 224.0 1.00 79.75 71.46 99.62 25.34 − 1.2007
Transportation 84.0 4.75 77.75 66.94 98.25 23.72 − 0.8157
Utilities 51.0 6.25 16.00 18.84 80.00 12.65 2.7352

Table 9  Descriptive statistics of LGDs according to the default type

For comparability some categories are displayed consolidated, but feed to the network separately

N Min Median Mean Max St.Dev Skewness

Chapter 11 749 0.75 85.00 73.84 99.99 25.14 − 1.2891
Chapter 7 7 54.00 96.00 89.32 99.47 16.19 − 2.2681
Distressed exchange 554 0.50 29.00 39.82 98.00 21.33 0.8111
Grace period default 26 2.00 49.94 46.17 92.00 22.22 − 0.0041
Missed interest payment 700 1.00 73.50 66.70 99.99 24.19 − 0.6654
Others 94 1.00 67.00 62.36 99.75 29.36 − 0.3277
Payment moratorium 35 14.87 16.83 16.79 17.95 0.55 − 1.8553
Prepackaged chapter 11 150 0.50 76.75 65.41 99.64 28.81 − 0.5668
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Fig. 13  Trainable exponential function

Fig. 14  Trainable softplus function

Fig. 15  Trainable sigmoid function
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market-based LGDs distribution in a straightforward non-linear way, which is a novelty 
in the literature of LGD modeling.

Scenario analysis

The following provides the detailed results of our scenario analysis in Sect.  5. 
The estimated overlappings are illustrated via heatmaps. The lower triangle 
refers to the results of G-BRANN and the upper triangle to the results of the beta 
regression. In general, a lower value refers to less overlapping and vice versa.

Table 10  Setup and final values of the hyperparameter search - robustness

The table shows different values for the hyperparameter search. Uc labels the continuous uniform dis-
tribution, whereas Ud labels the discrete uniform distribution, in which the upper bound was excluded. 
For the random forest and the regression tree the splitsamples and the leafsamples refer to the minimum 
number of samples to split respectively to include in a leaf

Model Parameter Distribution Final parameter

BRANN Learning rate Uc ∼ [0.001, 0.1] 0.0893
Dropout rate Uc ∼ [0.05, 0.50] 0.3289
Hidden layer Ud ∼ [1, 2] 1
Multiple Ud ∼ [1, 8] 1

G-BRANN Learning rate Uc ∼ [0.001, 0.1] 0.0636
Dropout rate � Uc ∼ [0.05, 0.50] 0.4314
Dropout rate � Uc ∼ [0.05, 0.50] 0.1827
Hidden layer � Ud ∼ [1, 2] 2
Hidden layer � Ud ∼ [1, 2] 2
Multiple � Ud ∼ [1, 8] 1
Multiple � Ud ∼ [1, 8] 7
Activation function t-exp, t-sig, t-soft t-sig

Neural network Learning rate Uc ∼ [0.001, 0.1] 0.0796
Dropout rate Uc ∼ [0.05, 0.50] 0.4951
Hidden layer Ud ∼ [1, 2] 1
Multiple Ud ∼ [1, 8] 6

Random forest Number trees Ud ∼ [10, 250] 90
Splitsamples Ud ∼ [2, 10] 3
Leafsamples Ud ∼ [1, 10] 1

Regression tree Splitsamples Ud ∼ [2, 10] 7
Leafsamples Ud ∼ [1, 10] 10

Ridge regression Regularizationparameter Uc ∼ [0.0, 10] 0.0023
Lasso regression Regularizationparameter Uc ∼ [0.0, 0.02] 0.0001
Elastic net Ratio Uc ∼ [0.0, 1] 0.1711

Regularizationparameter Uc ∼ [0.0, 0.02] 0.0129
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Figure  16 shows the overlapping estimates for the different seniority types 
and macroeconomic states. Overall, we can see that G-BRANN has in every 
constellation a lower overlapping, which implies that GBRANN helps to 
differentiate between seniority and industry type better than the standard beta 
regression. Please recall that the fit of G-BRANN is better in any seniority type 
or macroeconomic state. Therefore, we argue that the less overlapping better 
represents the underlying data.

Figure  17 shows the overlapping estimates for the different industry types. 
Interestingly, G-BRANN shows very less overlapping for the banking industry 
with any other industry type. On the contrary, the Beta Regression shows medium 
overlapping. It is well known that the banking industry differs from other industry 
types due to their special business model and their impact on financial stability. It 
seems that the difference is also visible in the LGD estimates in our sample. Sim-
ilar to Fig. 16 G-BRANN shows considerable less overlappings and, thus, allows 
for a better differentiation between industry types.

Table 11  Evaluation Metrics

Bold values indicate best values

LogLikelihood MSE Pseudo-R2

(a) In Sample
 Beta regression 434.178 0.039 0.433
 BRANN 441.049 0.039 0.447
 Generalized beta regres-

sion
487.562 0.039 0.423

 G-BRANN 478.603 0.037 0.485
 Neural network – 0.045 0.398
 Random forest – 0.005 0.948
 Regression tree – 0.023 0.681
 Linear regression – 0.039 0.472
 Ridge regression – 0.040 0.459
 Lasso regression – 0.039 0.471
 Elastic net – 0.044 0.417

(b) Out of time
 Beta regression 15.723 0.057 0.339
 BRANN 8.838 0.061 0.262
 Generalized beta regres-

sion
− 21.463 0.056 0.361

 G-BRANN 20.651 0.058 0.286
 Neural network – 0.115 0.173
 Random forest – 0.053 0.426
 Regression tree – 0.068 0.300
 Linear regression – 0.062 0.379
 Ridge regression – 0.052 0.450
 Lasso regression – 0.061 0.386
 Elastic net – 0.047 0.461
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Fig. 16  Overlappings | Seniority & Macroeconomic State. Notes: The figures show  the overlapping of 
the estimated distributions of GBRANN on the lower triangle and the Beta Regression on the upper 
triangle. A lower value indicates less overlapping

Fig. 17  Overlappings | Industry. Notes: The figure shows the overlapping of the estimated distributions 
of GBRANN on the lower triangle and the Beta Regression on the upper triangle. A lower value 
indicates less overlapping
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