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Abstract
We give a very simple construction of the string 2-group as a strict Fréchet Lie 2-
group. The corresponding crossed module is defined using the conjugation action of
the loop group on its central extension, which drastically simplifies several construc-
tions previously given in the literature. More generally, we construct strict 2-group
extensions for a Lie group from a central extension of its based loop group, under the
assumption that this central extension is disjoint commutative. We show in particular
that this condition is automatic in the case that the Lie group is semisimple and simply
connected.
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1 Introduction

In the seminal paper [5] by Baez, Crans, Stevenson and Schreiber, a certain Fréchet Lie
2-group extension of a Lie group G of Cartan type (i.e., compact, connected, simple,
simply connected) was constructed, using a particular presentation of the universal
central extension of the loop group LG. For G = Spin(n), their construction realizes
a model for the string 2-group.

In an attempt to generalize this construction, the second-named author described
in [18–20] another, diffeological 2-group extension of an arbitrary Lie group G, using
an arbitrary central extension of LG equipped with a certain additional structure—a
multiplicative fusion product. If G is of Cartan type, such a central extension can be
provided canonically, and one can prove abstractly that the corresponding 2-group is
weakly equivalent to the one of Baez et al.

The purpose of the present paper is to (drastically) simplify and to unify both
constructions. For this purpose, we study in the first part of this paper, Sect. 2, central
extensions of loop groups and of groups of paths, in the category of Fréchet Lie groups.
We identify a property of central extensions of a loop group, disjoint commutativity,
as crucial for the construction of 2-groups. A central extension

1 → U(1) → ˜LG → LG → 1

is disjoint commutative if elements �,�′ ∈ ˜LG commute if they project to loops
γ, γ ′ ∈ LG with disjoint supports. Disjoint commutativity has been introduced in
[20] as a property of transgressive central extension, and it is relevant for the theory
of nets of operator algebras [6]. Our first result is the following (see Corollary 2.4.4
and, for a more general statement, Theorem 2.4.10).

Theorem 1.1 If G is semisimple and simply connected, then all central extensions of
LG are disjoint commutative.

The relevance of disjoint commutativity for Lie 2-groups lies in the construction
of crossed module actions. We denote by PeG the Fréchet Lie group of paths in G
that start at the identity element e, and all whose derivatives at both end points vanish.
We denote by ˜�(0,π)G the restriction of ˜LG to the group �(0,π)G of those loops
whose support is in their first half (0, π) ⊂ S1. Then, we consider the Lie group
homomorphism

t : ˜�(0,π)G → PeG

thats projects to the first half of the base loop, considered as a (closed) path. In order to
turn the homomorphism t into a crossedmodule, it remains to provide a crossedmodule
action α of PeG on ˜�(0,π)G. In the above-mentioned paper [5] by Baez et al., such an
action is constructed (in a slightly different setting) using Lie-algebraic methods and
particularities of a specific model of˜�G. In the second above-mentioned approach
[18, 20], a crossed module action is constructed using the given fusion product.

In our setting, the required action α is both simple and canonical: a path γ ∈ PeG
is first „doubled“ to a thin loop in �G, lifted to˜�G, and then acts by conjugation
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on � ∈ ˜�(0,π)G, see Sect. 3.2. In general, this canonical action α will not be a
crossed module action, as it does not satisfy the so-called Peiffer identity. One of our
main insights is that this problem is resolved when˜�G is disjoint commutative, see
Theorem 3.2.4.

Theorem 1.2 If˜�G is a disjoint commutative central extension of �G, then the canon-
ical action α turns t : ˜�(0,π)G → PeG into a central crossed module. Moreover, if G
is semisimple, then α is the only such action.

Weemphasize that Theorem1.2 provides a drastic simplification of the construction
of 2-group extensions; in particular, for the construction of string 2-group models.
Neither additional structure on the central extension is needed, nor any other special
knowledge about its concrete model.

We denote by X(˜�G) the crossed module of Theorem 1.2, and now consider the
special case where G is of Cartan type, and ˜�G has level k ∈ Z. We denote by
XBCSS

(G, k) the crossedmodule constructed byBaez et al. at the same level. InSect. 4.1
we construct a canonical, strict homomorphism

X(˜�G) → XBCSS
(G, k), (1.1)

of crossed modules of Fréchet Lie groups. On the other hand, we consider a disjoint
commutative central extension ˜LG with a fusion product λ, and denote by XW

(˜�G, λ)

the diffeological crossed module corresponding to the diffeological 2-group of [18–
20]. Under the canonical inclusion of Fréchet manifolds into diffeological spaces, we
construct in Sect. 4.2 another, strict homomorphism

XW
(˜�G, λ) → X(˜�G).

Theorems 4.1.2 and 4.2.6 prove the following.

Theorem 1.3 The homomorphisms (1.1) and (1.1) establish weak equivalences

XW
(˜�G, λ) ∼= X(˜�G) and X(˜�G) ∼= XBCSS

(G, k).

In particular, this shows that the two earlier constructions XW
(˜�G, λ) and

XBCSS
(G, k) are canonically and strictly isomorphic, a fact that is very difficult to

observe when only looking at these two 2-groups.
Another aspect we investigate in this paper concerns the 2-groups associated to the

crossedmodules discussed above. As these two structures (2-groups and crossedmod-
ules) are canonically equivalent, our crossed module X(˜�G) determines a Fréchet Lie
2-group G(X(˜�G)), whose group of objects is PeG, and whose group of morphisms
is the semi-direct product

˜�(0,π)G �α PeG. (1.2)

The Fréchet Lie 2-group of Baez et al. has a similar structure. However, the diffe-
ological construction of the second-named author results into a Lie 2-group whose
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group of morphisms is a subgroup of˜�G, and is hence „nicer“. It turns out that the
missing ingredient to identify the semi-direct product (1.2) with a subgroup of˜�G is
a homomorphism

i : PeG −→˜�G

such that i(γ ) ∈ ˜�G lies over the thin loop corresponding to the path γ . Such a
map was called fusion factorization in [9]. Here we have the following result, see
Theorem 3.3.5.

Theorem 1.4 If G is semisimple, fusion factorizations are unique. If G is additionally
simply connected, then fusion factorizations exist.

In particular, if G is simply connected and semisimple, then every central extension
of �G carries a unique fusion factorization. The whole situation can be summarized
as follows.

Corollary 1.5 If G is simply connected and semisimple, then for every central extension
˜�G of �G, there exists a unique central crossed module X(˜�G) of Fréchet Lie groups
with underlying homomorphism

t : ˜�(0,π)G → PeG.

Moreover, there exists a unique Lie 2-group G(˜�G, i), with objects and morphisms

˜PeG[2] s ��

t
�� PeG,

where ˜PeG[2] ⊂˜�G is the subgroup over those loops that are flat at 0 and π . Finally,
X(˜�G) and G(˜�G, i) correspond to each other under the adjunction between crossed
modules and 2-groups.

Finally, we come back to the main motivation of the whole topic, the construction
of models for the string 2-group. In [5] it was proved that the geometric realization
of the Lie 2-group corresponding to the crossed module XBCSS

(G, k) is a 3-connected
cover of G, which—for G = Spin(d)—is the defining property of a string 2-group. In
Sect. 3.4 we generalize this result slightly from Lie groups of Cartan type to arbitrary
simple and simply connected Lie groups. We have the following result, see Theo-
rem 3.4.1.

Theorem 1.6 If G is simple and simply connected, and˜�G is a basic central extension,
then the geometric realization of the (canonically isomorphic) Lie 2-groupsG(X(˜�G))

and G(˜�G, i) are 3-connected covers of G. In particular, if G = Spin(d), both are
models for the string 2-group.

2 Loop groups and their central extensions

In this section we recall some relevant results about central extensions of loop groups
and path groups, and also add a couple of new results which we will use later. In
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particular, in Sect. 2.4, we discuss and investigate the relatively new notion of disjoint
commutative central extensions.

2.1 Path groups and loop groups

Throughout, let G be a connected (finite-dimensional) Lie group. We denote the iden-
tity element by e, and we denote by LG = C∞(S1, G) the smooth loop group of G.
We always identify S1 = R/2πZ. For I ⊂ S1, we write

L I G = {γ ∈ LG | γ (t) = e whenever t /∈ I }. (2.1.1)

We say that a map f : M → N between manifolds is flat at a point p ∈ M , if all
directional derivatives of f vanish at all orders at the point p.We observe, in particular,
that all elements of L(a,b)G are flat at t = a, b (unless (a, b) = (0, 2π)). We also
denote by �G ⊂ LG the subset of loops γ that are flat at t = 0 and satisfy γ (0) = e.
Analogously to the notation above, we also write

�I G = L I G ∩ �G.

We denote by PG the space of all smooth maps γ : [0, π ] → G that are flat at
their endpoints, and by PeG ⊂ PG the subset of paths γ with γ (0) = e. We then
have a short exact sequence

�(0,π)G �� PeG
ev �� G,

where the first map is the restriction of γ ∈ �(0,π)G to the interval [0, π ], and the
second map is the endpoint evaluation. For two paths γ1, γ2 with a common initial
point and a common end point, we define a loop γ1 ∪ γ2 ∈ LG by

(γ1 ∪ γ2)(t) :=
{

γ1(t) t ∈ [0, π ]
γ2(2π − t) t ∈ [π, 2π ] . (2.1.2)

We identify the fibre product PeG[2] = PeG ×G PeG with its image in LG under this
map.

For non-trivial G, all loop groups and path groups discussed above are infinite-
dimensional Lie groups, which are modeled on nuclear Fréchet spaces. Their Lie
algebras are obtained by taking the appropriate path space inside the Lie algebra g of
G.

Remark 2.1.1 The Fréchet Lie groups L I G, �G, and PeG are regular in the sense
of [14, Def. 3.12], which means that every smooth curve in their Lie algebra can
be integrated to a smooth curve in the group. This follows from the fact that such
an integral can be calculated pointwise in the loop parameter, which gives a smooth
curve in G. Then, as solutions to ordinary differential equations depend smoothly on
the initial data, these curves yield a smooth curve in the appropriate path group.
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It is a corollary of [17, Prop. 3.4.1] that if G is semisimple, there are no non-trivial
Lie group homomorphisms from LG to any abelian Lie group A, i.e., every Lie group
homomorphism ϕ : LG → A is ϕ = 1. The following generalization will be key to
the present paper.

Theorem 2.1.2 If G is a semisimple Lie group, then the Fréchet Lie group PeG does
not admit non-trivial Lie group homomorphisms to any abelian Lie group A. The same
is true for the identity components of �G and L I G, for any I ⊆ S1.

We need the following lemma.

Lemma 2.1.3 For every smooth function f : [0, a] → R that is flat at zero, there are
smooth functions g1, g2 : [0, a] → R that are also flat at zero and satisfy f (t) =
g1(t)g2(t) for all t ∈ [0, a].

For the proof of Lemma 2.1.3, we need the following observation: consider the
following property for a map f : [0, a] → R with f (0) = 0.

(	) f is smooth on (0, a] and for each n ∈ N, there exists ε > 0 such that | f (t)| ≤ tn

for each t ∈ [0, ε].
An easy exercise shows that f satisfies (	) if and only if f is smooth on [0, a] and flat
at zero.

Proof of Lemma 2.1.3 By (	) we may choose, for each n ∈ N, an εn > 0 such that
| f (t)| ≤ tn for each t ∈ [0, εn]. We choose these numbers such that the sequence
ε1, ε2, . . . is strictly decreasing and converges to zero. For each n ∈ N, we choose
smooth functions hn : [εn+1, εn] → R such that 1

2 tn ≤ hn(t) ≤ tn for all t ∈
[εn+1, εn], in such a way that the functions hn+1 and hn fit smoothly together. As
(εn)n∈N forms a null sequence, there is a smooth function h on (0, ε1] such that h
agrees with hn when restricted to [εn+1, εn]. Setting h(0) = 0, we obtain a function h
which by construction satisfies h(t) ≥ 1

2 | f (t)| for each t ∈ (0, ε1], and which satisfies
(	), hence is flat at zero. We smoothly extend h to a function defined on all of [0, a].

We now set g1(t) = f (t)/h(t)1/2, g2(t) = h(t)1/2. It is clear that the function g2
satisfies (	), and so does g1, as |g1(t)| ≤ h(t)/h(t)1/2 = h(t)1/2. Hence both g1 and
g2 are flat at zero, and we have f (t) = g1(t)g2(t), as required. �
Proof of Theorem 2.1.2 We prove the result for PeG, the proof for L I G is similar. As
G is semisimple, we have g = [g, g], that is, every element of g is linear combination
of commutators. We first show that the same is true for the Lie algebra P0g of PeG.
Let x1, . . . , xn be a vector space basis for g and choose numbers ai j

k ∈ R with

xk =
n

∑

i j=1

ai j
k [xi , x j ].

Write

X(t) =
n

∑

k=1

fk(t)xk
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ByLemma 2.1.3, there exist gk, hk ∈ P0R such that fk(t) = gk(t)hk(t), k = 1, . . . , n.
Then

X(t) =
n

∑

i jk=1

fk(t)a
i j
k [xi , x j ] =

n
∑

i jk=1

ai j
k [gk(t)xi , hk(t)x j ].

As commutators in P0g are taken pointwise, this witnesses X as a sum of commutators
in the Lie algebra P0g.

Let now ϕ : PeG → A be a Lie group homomorphism with induced Lie alge-
bra homomorphism ϕ∗ : P0g → a, where a is the Lie algebra of A. As ϕ∗ sends
commutators to commutators, it must send the commutator subspace of P0g to the
commutator subspace of a, which is zero as A (and consequently a) is abelian. How-
ever, as [P0g, P0g] = P0g, this implies that ϕ∗ is identically zero. Since PeG is regular
(see Remark 2.1.1), this implies, together with the fact that PeG is connected that ϕ

itself is trivial; see [12, Lemma 7.1]. �

2.2 Classification of central extensions of loop groups

We recall that a central extension of a (possibly infinite-dimensional, Fréchet) Lie
group H (by the group U(1)) is a sequence

1 → U(1) −→ ˜H
π−→ H → 1

of Lie groups and Lie group homomorphisms such that it is exact as a sequence of
groups, and ˜H is a principal U(1)-bundle over H . For such a central extension, we
always identify U(1) with its image in ˜H . A Lie group isomorphism f : ˜H → ˜H ′
is an isomorphism of central extensions if it is base point-preserving and trivial on
U(1) ⊂ ˜H . We denote by cExt(H) the groupoid of central extensions of H .

Given two central extension ˜H and ˜H ′, their tensor product ˜H ⊗ ˜H ′ (as U(1)-
principal bundles) has a group structure turning it into another central extension. This
defines a symmetric monoidal structure on cExt(H). Given a central extension ˜H , the
dual circle bundle ˜H∗ has an obvious group structure turning it into a central extension
that is inverse to ˜H with respect to the tensor product. Hence, the set h0(cExt(H)) of
isomorphism classes in cExt(H) is a group.

We discuss the classification of central extensions ˜H for a given (Fréchet) Lie group
H . Choosing a linear section of the Lie algebra homomorphism˜h → h induced by
the projection ˜H → H gives an identification ˜h ∼= h ⊕ R, under which the bracket
attains the form

[(X , λ), (Y , μ)] = ([X , Y ], ω(X , Y )),

for a continuous Lie algebra 2-cocycle ω on h. The cocycles corresponding to two
different choices of splittings differ by a coboundary; hence, there is a well-defined
class in the continuous Lie algebra cohomology group H2

c (h, R) defined by the central
extension ˜H . This establishes a group homomorphism
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h0(cExt(H)) −→ H2
c (h, R). (2.2.1)

This homomorphism is neither injective or surjective in general. However, if H is
simply connected, then (2.2.1) is injective [14, Thm. 7.12] and its image is the subgroup
represented by cocycles ω whose group of periods

Perω :=
{

∫

Z
ω

∣

∣

∣ Z a smooth 2-cycle on H
}

⊆ R

is contained in 2πZ. Here ω denotes the left invariant 2-form on H determined by ω

[13].
In general, if H satisfies π1(H) = 0 but is not necessarily connected, we obtain a

functor

cExt(π0(H)) → cExt(H),

given by pullback of central extensions along the group homomorphism H → π0(H).
On isomorphism classes, this gives a sequence

h0(cExt(π0(H))) −→ h0(cExt(H)) −→ H2
c (h, R), (2.2.2)

which is exact in the middle if π1(H) = 0. Indeed, if ˜H is a central extension with
vanishing cohomology class, then its restriction to the identity component H0 ⊂ H
still has vanishing cohomology class. But over H0 themap (2.2.1) is injective, showing
the restriction of ˜H to H0 must be trivial. But this implies that H̃ comes from a central
extension of π0(H).

Example 2.2.1 For connected and simply connected groups H (where the map (2.2.1)
is injective), there is an explicit description of the central extension corresponding to a
2-cocycle ω on h with Perω ⊂ 2πZ, see [17, §4.4]. Let ω be the left invariant 2-form
on H determined by ω. For a loop γ ∈ �H , we define

C(γ ) := exp

(

i
∫

ĥ
ω

)

,

where h : [0, 1] → �H is a smooth null homotopy of γ and ĥ : [0, 1]×S1 → H is the
corresponding surface in H (such a null homotopy exists as H is simply connected).
By the assumption on ω, the integral of ω over any closed surface lies in 2πZ, which
implies that C(γ ) is independent of the choice of h. One then defines

˜H = Pe H × U(1)
/∼,

where (γ1, z1) ∼ (γ2, z2) if γ1(π) = γ2(π) and C(γ1 ∪ γ2) = z2/z1. The bundle
projection π : ˜H → H is given by (γ, z) �→ γ (π) and the group product is

[γ1, z1] · [γ2, z2] = [(constγ1(π) · γ2) ∗ γ1, z1z2],
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where ∗ denotes concatenation of paths. This gives a central extension whose image
under the map (2.2.1) is the cocycle ω (Propositions 4.4.2 & 4.5.6 of [17]).

In the following we consider central extensions of the loop groups LG and �G of
a connected Lie group G. As πk(�G) = πk+1(G) and

πk(LG) = πk(�G) ⊕ πk(G) = πk+1(G) ⊕ πk(G), (2.2.3)

it follows that LG and �G are connected if and only if G is simply connected.
Moreover, since π2(G) = 0 for any (finite-dimensional) Lie group G, it follows that
alwaysπ1(�G) = 0whileπ1(LG) = π1(G). Thus, if G is simply connected, then the
map (2.2.1) is injective, hence any central extension of H = LG or�G is determined
by its corresponding Lie algebra cocycle ω.

Lemma 2.2.2 If G is semisimple, then every 2-cocycle on Lg and �g is cohomologous
to a cocycle of the form

ω(X , Y ) =
∫

S1
b(X(t), Y ′(t))dt (2.2.4)

for a G-invariant symmetric bilinear form b on g.

Proof It is well known that every G-invariant 2-cocycle is of the form (2.2.4), see
e.g., [17, Prop. 4.2.4]. For not necessarily G-invariant 2-cocycles, the result follows
from the general results of [16]; see in particular Example 7.2. There, cocycles are
decomposed as f1 + f2, which are necessarily uncoupled in the authors terminology,
as g is semisimple. It is not hard to figure out that f2 is necessarily a coboundary and
f1 gives a cocycle of the form (2.2.4). �
Remark 2.2.3 If G is compact, simply connected and simple, then there is an isomor-
phism H2

c (Lg, R) ∼= H2
c (�g, R) ∼= H3(G, R) that sends the subgroup of classes

defining a central extension of LG, i.e., the image of (2.2.1), onto the subgroup
H3(G, Z).

Remark 2.2.4 Consider the central extension ˜LG constructed in Example 2.2.1 from
a 2-cocycle ω on Lg. If ω is of the form (2.2.4) for a bilinear form b on g, then ˜LG
can be equivalently described as follows. The elements of ˜LG can be represented by
pairs (σ, z), where σ : D2 → G is a smooth map and where (σ1, z1) ∼ (σ2, z2) if
and only if

z2
z1

= exp

(

2π i
∫



ν

)

.

Here  : D3 → G is a map whose restriction |∂ D3 is given by σ1 and σ2 on
its two hemispheres, and ν is the left invariant 3-form on G associated to the Lie
algebra cocycle ν(x, y, z) = b([x, y], z) on g. The group structure is realized with the
Mickelsson product, see Theorem 6.4.1 of [2] and [11]. The projection ˜LG → LG
is given by sending (σ, z) �→ σ |∂ D2 , identifying ∂ D2 = S1. This description is
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equivalent to the one of (2.2.4) as the transgression of ν is cohomologous to ω/2π ,
see [17, Prop. 4.4.4].

2.3 Restrictions of central extensions

In the following, we assume—as before—that G is a connected (finite-dimensional)
Lie group.

Lemma 2.3.1 If G is semisimple, then the automorphism group of a central extension of
LG, �G, L I G or �I G, for I ⊆ S1, is canonically isomorphic to Hom(π1(G),U(1)).
In particular, if G is semisimple and simply connected, then the categories cExt(LG),
cExt(�G) and cExt(L I G) have only trivial automorphism groups.

Proof We prove the result for LG, the proof for �G and L I G is similar. By (2.2.3),
we have π0(LG) = π1(G), hence any group homomorphism ϕ : π1(G) → U(1)
gives rise to an automorphism f of ˜LG by setting f (�) = ϕ([π(�)])�.

Conversely, let f be an automorphism of a central extension ˜LG. We define a map
ϕ : LG → ˜LG by

ϕ(γ ) = f (γ̃ )γ̃ −1,

where γ̃ ∈ ˜LG is any lift of γ . We observe that ϕ is well-defined and satisfies
f (�) = ϕ(π(�))� for all � ∈ ˜LG. ϕ is smooth, since π : ˜LG → LG has smooth
local sections. Then, since f is base-point preserving, we have

π(ϕ(γ )) = π( f (γ̃ ))π(γ̃ )−1 = γ γ −1 = conste,

hence ϕ(γ ) ∈ U(1) ⊂ ˜LG. The resulting map ϕ : LG → U(1) is a group homomor-
phism, as

ϕ(γ η) = f (γ̃ ) f (η̃)η̃−1γ̃ −1 = f (γ̃ )ϕ(η)γ̃ −1 = f (γ̃ )γ̃ −1ϕ(η) = ϕ(γ )ϕ(η),

where we used that U(1) ⊂ ˜LG is central. If G is semisimple, Theorem 2.1.2 shows
that ϕ is trivial on the identity component (LG)0. This implies that ϕ factors through
π0(LG) = π1(G). �

For our construction of 2-group extensions, central extensions of �G will be rel-
evant. On the other hand, central extensions of LG frequently occur in practice.
Therefore, we shall study the relation between the two types of central extensions.
Clearly, restriction from LG to �G provides a functor

cExt(LG) −→ cExt(�G). (2.3.1)

Lemma 2.3.2 If G is semisimple and simply connected, then the functor (2.3.1) is an
equivalence.
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Proof By Lemma 2.3.1, we only have to check that the functor is a bijection on
isomorphism classes. To this end, consider the commutative diagram

h0(cExt(LG)) ��

��

h0(cExt(�G)

��

H2
c (Lg, R) �� H2

c (�g, R).

(2.3.2)

where the top horizontal map is induced by the functor (2.3.1), the bottom horizontal
map is pullback along the Lie algebra homomorphism �g → Lg and the vertical
maps are the canonical map (2.2.2) for H = �G and H = LG, respectively. That G
is simply connected implies that both vertical maps are injective. On the other hand,
as G is semisimple, Lemma 2.2.2 implies that the bottom map is an isomorphism (as
both consist of classes determined by cocycles of the specific form (2.2.4), which gives
the same classification). We conclude that the top horizontal map must be injective.

On the other hand, given a central extension ˜�G of �G, one can construct a
central extension ˜LG of LG such that ˜LG|�G = ˜�G in the following way. As G
is semisimple, we may assume that˜�G is classified by a cocycle ω of the specific
form (2.2.4). Because G is simply-connected, the AdG -invariance of ω integrates to
a G-action on˜�G lifting the conjugation action on �G. Identifying LG = �G � G,
defining ˜LG :=˜�G � G gives the claimed central extension. �
Example 2.3.3 If G is not simply connected, the conclusion of Lemma 2.3.2 is gen-
erally false. Namely, if ˜G is a finite cover of G (these are defined by elements
of Hom(π1(G),U(1))), then pullback of ˜G along the evaluation homomorphism
LG → G yields a central extension of LG which is trivial when restricted to �G.

If I � (0, 2π), we can further restrict a central extension of�G along the inclusion
�I G ⊂ �G, which gives functors

cExt(�G) −→ cExt(�I G). (2.3.3)

Lemma 2.3.4 If G is semisimple, then the functor (2.3.3) is an equivalence whenever
I � (0, 2π) is connected and non-empty.

Proof We show that the functor is fully faithful. To this end, since we are dealing with
groupoids, it suffices to show that (2.3.3) induces an isomorphism of automorphism
groups. Let f be an automorphism of a central extension˜�G of �G, inducing an
isomorphism f I of the restricted central extension ˜�I G. As G is semisimple, we
obtain from (the proof of) Lemma 2.3.1 that f (�) = ϕ([π(�)])� for some group
homomorphism ϕ : π1(G) → U(1). Now if f I is trivial, we have � = f I (�) =
ϕ([π(�)])� for all � ∈ ˜�I G, so ϕ([π(�)]) = 1. But this implies that ϕ (hence f )
is trivial, as any element of π1(G) can be represented by a loop in �I G. This shows
that the induced map on automorphism groups is injective.

Similarly, if f I is any automorphism of ˜�I G, then f I (�) = ϕ([π(�)])� for some
ϕ : π0(�I G) → U(1). But π0(�I G) = π0(�G) = π1(G), so f (�) = ϕ([π(�)])�
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is an extension of f I to an automorphism of˜�G. This shows that the induced map on
automorphism groups is surjective, so the functor is fully faithful.

It remains to show that the functor is essentially surjective. Observe that �I G =
�I ◦ G, where I ◦ is the interior of I , hence we may assume that I is open. Since
I is connected, there exists a diffeomorphism ϕ : I → (0, 2π), which we may
choose ϕ to be affine-linear. Pre-composition with ϕ induces a group isomorphism
ϕ∗ : �G → �I G, which gives rise to an equivalence cExt(�I G) → cExt(�G).
Since G is semisimple, any central extension ˜�G of �G can be represented by a
cocycle of the form (2.2.4). It follows that any central extension of�I G is represented
by a cocycle of the form

ϕ∗ω(X , Y ) =
∫ 2π

0
b
(

(ϕ∗ X)(t), (ϕ∗Y )′(t)
)

dt

=
∫ 2π

0
b
(

X(ϕ(t)), Y ′(ϕ(t))ϕ′(t)
)

dt

=
∫

I
b
(

X(t), Y ′(t)
)

dt .

But this is just the restriction of the cocycle ω.
This shows that if ˜�I G is a central extension of �I G, then there exists a central

extension˜�G ′ of �G whose restriction ˜�I G ′ to �I G is classified by the same Lie
algebra cocycle. Since π1(�G) = π2(G) = 0, the sequence (2.2.2) is exact in the
middle, and so ˜�I G ′ and ˜�I G differ by a central extension of π0(�G) = π1(G). But
since the inclusion �I G → �G induces an isomorphism on π0, we can modify˜�G ′
to achieve ˜�I G ′ ∼= ˜�I G. Hence, the functor (2.3.3) is essentially surjective. �

Example 2.3.5 Without the assumption of semisimplicity, Lemma 2.3.4 is false in
general: Example 2.4.7 provides an example of a non-trivial central extension of �G
such that the restriction to a suitable �I G is trivial.

2.4 Disjoint commutativity

Let G be a finite-dimensional, connected Lie group. It turns out that to construct
a 2-group from central extensions of the loop group LG, it is important that these
central extensions satisfy a certain extra property, disjoint commutativity, which was
first studied systematically in [20, §3.3].

Definition 2.4.1 (Disjoint commutativity) A central extension ˜LG of LG is called
disjoint commutative if for all I , J ⊂ S1 with I ∩ J = ∅ the subgroups ˜L I G and ˜L J G
of ˜LG commute.

The following lemma is crucial. Recall that a bihomomorphism b on a group K
is called skew if b(g, h) = b(h, g)−1. Moreover, by an interval, we mean an open,
nonempty and connected proper subset I ⊂ S1.
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Lemma 2.4.2 Let˜LG be a central extension of LG, and suppose that G is semisimple.
Then, there exists a unique bihomomorphism

b : π1(G) × π1(G) −→ U(1) (2.4.1)

such that, for disjoint intervals I , J ⊂ S1 and all γ ∈ L I G, η ∈ L J G, we have

b([γ ], [η]) = γ̃ η̃γ̃ −1η̃−1

where γ̃ and η̃ are arbitrary lifts of γ , η to˜LG. Moreover, b is skew.

Proof For � ∈ ˜L I G, � ∈ ˜L J G, we have π(�−1���−1) = conste, hence the
commutator �−1���−1 is contained in U(1) ⊂ ˜LG. Observe that this commutator
only depends on π(�) and π(�), as replacing � = z� and � = w�, z, w ∈ U(1),
leads to the same result. Hence we obtain a map

BI J : L I G × L J G −→ U(1), (γ, η) �−→ γ̃ η̃γ̃ −1η̃−1. (2.4.2)

where γ̃ and η̃ are arbitrary lifts of γ , η to the central extension. BI J is smooth as ˜LG
admits smooth local sections. We calculate

BI J (γ1, η)BI J (γ2, η) = (γ̃1η̃γ̃ −1
1 η̃−1)(γ̃2η̃γ̃ −1

2 η̃−1)

= γ̃1(γ̃2η̃γ̃ −1
2 η̃−1)η̃γ̃ −1

1 η̃−1

= (γ̃1γ̃2)η̃(γ̃1γ̃2)
−1η̃−1

= BI J (γ1γ2, η)

and

BI J (γ, η1)BI J (γ, η2) = (γ̃ η̃1γ̃
−1η̃−1

1 )(γ̃ η̃2γ̃
−1η̃−1

2 )

= γ̃ η̃1γ̃
−1(γ̃ η̃2γ̃

−1η̃−1
2 )η̃−1

1

= γ̃ (η̃1η̃2)γ̃
−1(η̃1η̃2)

−1

= BI J (γ, η1η2),

using that BI J takes values in the center of ˜LG. Hence, BI J is a bihomomorphism.
Since G is semisimple, Theorem 2.1.2 implies that BI J must be constant on the

connected components of L I G and L J G. It follows that there exists a unique biho-
momorphism

B0
I J : π0(L I G) × π0(L J G) −→ U(1) with B0

I J ([γ ], [η]) = BI J (γ, η).

Since I and J are intervals, then the inclusion L I G → �G is a homotopy equiv-
alence, hence induces an isomorphism π0(L I G) ∼= π0(�G) = π1(G). We conclude
that in this case, there exists a unique bihomomorphism bI J on π1(G) such that

B0
I J ([γ ], [η]) = bI J ([γ ], [η]).
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whenever γ ∈ L I G and η ∈ L J G. Another way to say this is that, given an interval
I ⊂ S1, each element of π1(G) has a representative γ supported in L I G, and two
such representatives of the same element of π1(G) are already homotopic in L I G. We
now show that all these bihomomorphism bI J is independent of the choice of I and
J .

(a). First observe that if I ′ ⊆ I and J ′ ⊆ J , then BI ′ J ′ is the restriction of BI J to
L I ′ G × L J ′ G.

(b). Suppose now that I , J and I ′, J ′ are two pairs of disjoint intervals of S1 with
the property that I ∩ I ′ and J ∩ J ′ are non-empty. Then, using (a), we see that
for γ ∈ L I∩I ′ G, η ∈ L J∩J ′ G, we have

bI ′ J ′([γ ], [η]) = BI ′ J ′(γ, η) = BI∩I ′,J∩J ′(γ, η) = BI J (γ, η) = bI J ([γ ], [η]).

Hence bI J = bI ′ J ′ .
(c). Next we show that bI J = bJ I . Choose s ∈ I and t ∈ J and let K , L ⊂ S1 be

the two disjoint intervals such that ∂K = ∂L = {s, t}.

s

t

K

L

By construction, all the intersections I ∩ K , K ∩ J , J ∩ L , L ∩ I are non-empty.
Therefore, by (b), bI J = bK L = bJ I .

(d). Now let I , J and I ′, J ′ be two arbitrary pairs of disjoint intervals of S1. Choose
pairwise distinct points s ∈ I , t ∈ J , s′ ∈ I ′, t ′ ∈ J ′. There are two different
possible basic configurations for s, s′, t, t ′, as depicted below.

s

s′

t

t ′

s′

s

t

t ′

In the first configuration, we can choose disjoint intervals K , L ⊂ S1 such that
s, s′ ∈ K and t, t ′ ∈ L . Then, by construction, K has non-empty intersectionwith
both I and I ′ and L has non-empty intersectionwith both J and J ′. Consequently,
by (b), we obtain bI J = bK L = bI ′ J ′ . In the second configuration, we can choose
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disjoint intervals K , L ⊂ S1 such that s, t ′ ∈ K and t, s′ ∈ L . Then K has non-
empty intersection with both I and J ′ and L has non-empty intersection with
both J and I ′. Therefore, by (b) and (c), bI J = bK L = bJ ′ I ′ = bI ′ J ′ .

We conclude that the bihomomorphism bI J is independent of the choice of disjoint
intervals I , J ⊂ S1. We write b for this bihomomorphism on π1(G).

It follows from the definition of the bihomomorphisms BI J that

bI J (g, h) = bJ I (h, g)−1, g, h ∈ π1(G)

for any pair of disjoint intervals I , J ⊂ S1. Since b = bI J = bJ I , this shows that the
bihomomorphism b is skew. �
Theorem 2.4.3 A central extension ˜LG of the loop group LG of a semisimple Lie
group G is disjoint commutative if and only if the bihomomorphism b of Lemma 2.4.2
vanishes.

Corollary 2.4.4 If G is simply connected and semisimple, then all central extensions
of LG are disjoint commutative.

Proof of Theorem 2.4.3 It is clear that b is trivial when ˜LG is disjoint commutative. If
b is trivial, then the bihomomorphisms B0

I J (and consequently the BI J ) for disjoint
intervals I , J are trivial as well, so that ˜LG is disjoint commutative for intervals.

It remains to treat the case of general disjoint subsets I , J ⊂ S1. Observe that
L I G = L I ◦ G, where I ◦ is the interior of I , hence we can assume throughout that
I , J ⊆ S1 are open. Suppose now that I = I1 � I2 � · · · is a disjoint union of possibly
infinitely many intervals. Then L I1�···�In G ∼= L I1G × · · · × L In G for each n ∈ N.
Moreover, the union

∞
⋃

n=1

L I1�···�In G ⊂ L I G

is dense. This implies that the group of connected components of L I G is the direct
sum

π0(L I G) =
∞

⊕

k=1

π0(L Ik G).

We therefore obtain that if J = J1 � J2 � · · · ⊂ S1 is another such subset, then the
bihomomorphism B0

I J is determined by the bihomomorphisms B0
Ik Jl

, j, k ∈ N, which
vanish by assumption. �

Let ˜LG be a central extension of LG. AnyU(1)-valued group 2-cocycle κ onπ1(G)

can be used to modify the group product of ˜LG according to the formula

�	� = κ([π(�)], [π(�)]) · ��. (2.4.3)
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We assume throughout that κ is normalized, in the sense that κ(g, e) = κ(e, g) =
κ(e, e) = 1. This is equivalent to requiring that the unit elements for the two products
coincide. Normalization is no serious restriction as every cocycle is cohomologous
to a normalized one. Moreover, if κ = dρ for some U(1)-valued 1-cocycle, then the
central extension ˜LG with the modified product (2.4.3) is isomorphic to the original
central extension.

Lemma 2.4.5 Let G be a semisimple Lie group and let b be the obstruction biho-
momorphism of Lemma 2.4.2 for a central extension ˜LG. Then, the obstruction
bihomomorphism b′ for the central extension with the modified product (2.4.3) is
given by

b′(g, h) = b(g, h) · skewκ(g, h)−1,

where

skewκ(g, h) := κ(g, h)κ(h, g)−1

is the skew of κ .

It is well-known that the skew of a 2-cocycle on an abelian group is always a
bihomomorphism; notice here that π1(G) is abelian as G is a Lie group.

Proof Let � ∈ L I G and � ∈ L J G for I = (0, π) and J = (π, 2π), and let
g = [π(�)], h = [π(�)] ∈ π1(G). The inverses of � and � with respect to the
modified product (2.4.3) are

�	−1 = κ(g, g−1)−1�−1, �	−1 = κ(h, h−1)−1�−1.

Then, using that π1(G) is abelian,

b′(g, h) = B ′
I J (π(�), π(�))

= �	�	�	−1	�	−1

= κ(g, g−1)−1κ(h, h−1)−1�	�	�−1	�−1

= κ(g, g−1)−1κ(h, h−1)−1κ(g, h)κ(gh, g−1) κ(ghg−1, h−1)
︸ ︷︷ ︸

=κ(h,h−1)

���−1�−1

= κ(g, g−1)−1κ(g, h)κ(gh, g−1)b(g, h)

Since κ is a group cocycle, we have

κ(gh, g−1) = κ(hg, g−1) = κ(h, g)−1κ(h, 1)κ(g, g−1) = κ(h, g)−1κ(g, g−1),

as κ is assumed to be normalized. Plugging this into the previous formula yields the
desired result. �
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Example 2.4.6 The above results provide many examples of central extensions of LG
for non-simply connectedLie groupsG that are not disjoint commutative. For example,
suppose we have ξ ∈ U(1) and p, q ∈ Z such that ξ p = ξq = 1. Then, the group
2-cocycle κ on Z/pZ × Z/qZ given by

κ((k1, k2), (l1, l2)) = ξ k1l2 ,

has non-trivial skew. For example, with the choices ξ = −1 and p = q = 2, the
trivial central extension of L(SO(m) × SO(n)) (m, n ≥ 3) modified by the cocycle κ

provides a central extension that is not disjoint commutative.

Example 2.4.7 Things change completely upon leaving the realm of semisimple Lie
groups. An example of a non-disjoint commutative central extension in the case that
G has trivial fundamental group is the following. Consider G = R

+ and let ˜LG be
the central extension corresponding to the group cocycle

κ(γ, η) = exp(i log γ (s) · log η(t)),

for s, t ∈ S1 fixed. Since LR

+ is abelian, the bihomomorphism BI J from (2.4.2) is
the restriction of a bihomomorphism B defined on all of LG, which is just the skew
of κ . This is non-zero whenever s �= t .

Example 2.4.8 A further example of a central extension of LU(1) that is not disjoint
commutative is given as Example 4.12 in [20].

Example 2.4.9 ConsiderG = SO(d) ford ≥ 5. Then the group of isomorphismclasses
of central extensions of LSO(d) is isomorphic toZ×Z2, where the first factor is called
the level and the second factor comes from central extensions of SO(d) (compare
Lemma 4.8 of [10]). Since π1(SO(d)) = Z2 and H2(Z2,U(1)) = 0, there are no
non-trivial product modifications by group cocycles. It turns out that the obstruction
bihomomorphism of the generator of h0(cExt(LSO(d))) is the U(1)-valued skew
bihomomorphism

b(k1, k2) = (−1)k1k2 (2.4.4)

onZ2. Hence, a central extension of LSO(d) is disjoint commutative if and only if it is
of even level. Of course, by Corollary 2.4.4, all central extensions of LSO(d) become
disjoint commutative when pulled back along LSpin(d) → LSO(d).

Recall that a bihomomorphismb on an abelian group K isalternating ifb(g, g) = 1.
Any alternating bihomomorphism is skew, but the converse is not always true in the
presence of 2-torsion in the target. By definition, the skew of a group cocycle is always
alternating.Moreover, an easy calculation shows that the skew of a coboundary is zero.
Hence we obtain a well-defined group homomorphism

H2(K ,U(1)) −→ Alt2(K ,U(1)) (2.4.5)
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from the second group cohomology of K to the group of alternating bihomomorphisms
on K . It is a fact that this group homomorphism is always surjective [15, Proposition
3.3].

Given a non-disjoint commutative central extension ˜LG, one may ask whether
we can modify the product by a group cocycle κ such that ˜LG becomes disjoint
commutative. To investigate this question, consider the map that assigns to a central
extension the obstruction bihomomorphism from Lemma 2.4.2. By Lemma 2.4.5 and
the surjectivity of (2.4.5), this map descends to a group homomorphism

h0
(

cExt(LG)
)

H2(π1(G),U(1))
−→ Skew2(π1(G),U(1))

Alt2(π1(G),U(1))
, (2.4.6)

where Skew2(π1(G),U(1)) denotes the group of skew bihomomorphisms on π1(G)

and H2(π1(G),U(1)) acts on the set of isomorphism classes of central extensions
by modifying the product according to (2.4.3). Combining Theorem 2.4.3 with the
surjectivity of (2.4.5), we obtain the following result.

Theorem 2.4.10 Let G be a semisimple Lie group. A central extension˜LG of LG can
be modified by a group 2-cocycle κ ∈ H2(π1(G),U(1)) to become disjoint commu-
tative if and only if the image of˜LG under (2.4.6) is zero.

It is easy to see that the quotient on the right hand side of (2.4.6) is isomorphic to
π1(G) ⊗Z Z2. Thus, we obtain the following result.

Corollary 2.4.11 Let G be a semisimple Lie group such that π1(G) has no 2-torsion.
Then, any central extension of LG can be modified by a group 2-cocycle to become
disjoint commutative.

In case of Example 2.4.9 the image of the basic central extension of LSO(d) under
(2.4.6) is the non-alternating, non-zero skew bihomomorphism (2.4.4). Hence, this
central extension cannot be modified by a group cocycle to become disjoint commu-
tative.

Remark 2.4.12 In the case of G = SO(d) any element on the right hand side of (2.4.6)
is realized by a central extension of LSO(d). In other words, the homomorphism
(2.4.6) is surjective. We do not know whether it is surjective for any semisimple Lie
group G.

3 Lie 2-groups from loop group extensions

This section contains the main result of the present article, namely, the construction
of Lie 2-groups from loop group extensions. In Sect. 3.1 we recall the relevant facts
about crossed modules and Lie 2-groups, and Sect. 3.2 contains the main construction.
Section 3.3 concerns the notion of a fusion factorization that allows one to give our Lie
2-groups a more convenient form. In Sect. 3.4 we show that our Lie 2-groups deliver
3-connected covering groups, in particular, models for the string 2-group.
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3.1 Strict Lie 2-groups and crossedmodules

We recall that a strict Lie 2-group is a groupoid � = (�0, �1, s, t, i, ◦, inv) whose set
�0 of objects and whose set�1 of morphisms are (possibly Fréchet) Lie groups, whose
source and target map s, t : �1 → �0, composition ◦ : �1×t,s �1 → �1, identity map
i : �0 → �1, and inversion (with respect to composition) inv : �1 → �1 are all smooth
group homomorphisms.We note that if�1 and�0 are finite-dimensional, then the fibre
product�1×t,s �1 exists since s and t are surjective Lie group homomorphisms, hence
submersions; in the infinite-dimensional setting, the existence of the fibre product is
a further assumption that we need to impose. We also note that the group

π1(�) := ker(s) ∩ ker(t) ⊆ �1

is abelian.
When constructing strict Lie 2-groups it is worthwhile to notice that composition

and inversion are already determined by the remaining structure. Indeed, it is straight-
forward to see that

x ◦ y = x i(s(x))−1y = x i(t(y))−1y, (3.1.1)

for composable morphisms x, y ∈ �1, i.e., morphisms such that s(x) = t(y). It
follows from this that the inverse of a morphism x ∈ �1 with respect to composition
satisfies

inv(x) = i(s(x))x−1i(t(x)). (3.1.2)

Moreover, in a strict Lie 2-group the subgroups ker(s) and ker(t) of �1 commute: let
x ∈ ker(s), y ∈ ker(t), and let e ∈ �0 be the unit element. Then

yx = (e ◦ y)(x ◦ e) = (e · x) ◦ (y · e) = x ◦ y = x i(s(x))−1y = xy. (3.1.3)

We have the following converse of these three observations.

Lemma 3.1.1 Suppose �0 and �1 are Lie groups and s, t : �1 → �0 and i : �0 → �1
are smooth group homomorphisms such that:

(a). s ◦ i = id�0 = t ◦ i .
(b). ker(s) and ker(t) are commuting Lie subgroups.

Then, together with the composition defined by (3.1.1) and the inversion defined in
(3.1.2), this structure constitutes a strict Lie 2-group.

Proof First of all we prove that the fibre product �1 ×t,s �1 exists in the category of
Fréchet Lie groups. We consider U := ker(s) × ker(s) × �0 equipped with the maps
f , g : U → �1 defined by f (x, y, z) := xi(z) and g(x, y, z) := yi(t(x)z). Then we
have

(s ◦ g)(x, y, z) = s(yi(t(x)z)) = t(x)z = t(xi(z)) = (t ◦ f )(x, y, z).
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By (b) we see that U is a Fréchet manifold, and the maps f and g are clearly smooth.
Moreover,we turnU into aFréchet Lie group, and f and g into grouphomomorphisms,
by declaring

(x1, y1, z1) · (x2, y2, z2) := (x1i(z1)x2i(z1)
−1, y1x1i(z1)y2i(z1)

−1x−1
1 , z1z2).

Now we assume that

W

f̃

��

g̃

��

U

f
��

g
�� �1

t
��

�1 s
�� �0

is a commutative diagram in the category of Fréchet Lie groups. We define

h : W → U ; h(w) := (w1i(s(w1))
−1, w2i(s(w2))

−1, s(w1))

wherew1 := f̃ (w) andw2 := g̃(w). This is a smooth group homomorphism such that
g ◦ h = g̃ and f ◦ h = f̃ . It is straightforward to check that this map is unique with
this property. This shows that U is the required fibre product; in particular, it exists. It
is then easy to see that the composition defined by (3.1.1) is smooth and that—using
(a)—turns � into a Fréchet Lie groupoid.

The commutativity in condition (b) is used in order to show that composition is a
group homomorphism: Let x1, x2, y1, y2 ∈ �1 with s(x1) = t(y1), s(x2) = t(y2).
Observe that x2 i(s(x2)) ∈ ker(s) and i(t(y1))−1y1 ∈ ker(t). Therefore, we can
calculate

x1x2 ◦ y1y2 = x1x2 i(t(y1y2))
−1y1y2

= x1x2 i(t(y2))
−1i(t(y1))

−1y1y2

= x1x2 i(s(x2))
−1i(t(y1))

−1y1y2

= x1i(t(y1))
−1y1x2 i(s(x2))

−1y2
= (x1 ◦ y1) · (x2 ◦ y2),

where in the second last step, we used (b). �
Another way to present (Fréchet) Lie 2-groups is in terms of crossed modules of

(Fréchet) Lie groups. Recall that a crossed module X of Fréchet Lie groups consists of
a pair of Fréchet Lie groups G and H together with a smooth group homomorphism
t : H → G and crossed module action ofG on H , i.e., a smoothmapα : G×H → H ,
such that α is an action of G on H by group homomorphisms, and

t(αg(h)) = gt(h)g−1 and αt(h)(k) = hkh−1 (3.1.4)
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hold for all g ∈ G and h, k ∈ H , where αg(h) := α(g, h). The first property means
that t is G-equivariant for the G-action α on H and the conjugation action of G on
itself. The second property is called the Peiffer identity. A nice review of the history
of the notion of a crossed module can be found in [7].

Observe that for a crossedmodule X , the Peiffer identity imply that A := ker(t) lies
in the center of H and, in particular, is abelian. By G-equivariance of t , the G-action
α restricts to an action on A. The crossed module is called central if this action of G
on A is trivial.

There is an adjoint equivalence

X : Lie-2-Grp ��
X-Mod : G�� (3.1.5)

between the category Lie-2-Grp of Fréchet Lie 2-groups and the category X-Mod
of crossed modules of Fréchet Lie groups, when both are equipped with the obvious
notion of strict morphisms. For plain crossed modules of sets, this is the Brown-
Spencer theorem [3], which has been generalized to crossed modules ambient to
another category by Janelidze [8]; here we use it in the Fréchet Lie group setting.
Explicitly, the equivalence 3.1.5 is given by:

G(H , G, t, α) :=
⎛

⎜

⎝

�1 := H �α G

�0 := G

s(h, g) :=g

t(h, g) :=t(h)g

i(g) :=(e, g)

⎞

⎟

⎠

X (�, s, t, i) :=

⎛

⎜

⎜

⎜

⎝

H := ker(s) ⊆ �1

G := �0

t := (t : �1 → �0)| ker(s)
αg(h) := i(g)h i(g)−1

⎞

⎟

⎟

⎟

⎠

The above description of G uses Lemma 3.1.1, which applies here since the Lie sub-
groups ker(s) = {(h, 1) | h ∈ H} ∼= H and ker(t) = {(h−1, t(h)) | h ∈ H} ∼= H
commute. It is worthwhile to look at the unit and counit maps

ε : XG ⇒ idX-Mod η : idLie-2-Grp ⇒ GX

of the adjunction (3.1.5). While the formula for the unit ε is obvious, the counit η is
given at a Lie 2-group � by the strict Lie 2-group isomorphism

η� =
(

�1 → ker(s) �α �0, h �→ (h i(s(h))−1, s(h))

�0 → �0, g �→ g

)

.

Example 3.1.2 Given any abelian Lie group A, setting �0 = {e}, �1 = A (and trivial
s, t, i) give a strict Lie 2-group denoted by B A. The corresponding crossed module is
A → {e}, with the (necessarily trivial) action. Observe that A is forced to be abelian
by the requirement of Lemma 3.1.1 (b).
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Example 3.1.3 Any Lie group G can be viewed as a strict Lie 2-group, denoted Gdis,
by setting �0 = �1 = G and s = t = i = idG . The corresponding crossed module is
{e} → G.

3.2 Crossedmodules from loop group extensions

Let again G be a connected (finite-dimensional) Lie group and let

1 → U(1) →˜�G
π→ �G → 1

be a Fréchet central extension of the based loop group�G. We will now describe how
to use this central extension to produce a crossed module of Fréchet Lie groups. For
a Lie subgroup H ⊂ �G, we write

˜H := H ×�G ˜�G

for the pullback of˜�G to H , and address an element (h,�) ∈ ˜H by just �.
We identify PeG[2] with a subgroup of �G using the injective map ∪ : PeG[2] →

�G, and hence consider, in the above notation, the pullback

˜PeG[2] = PeG[2] ×�G ˜�G.

To begin with, we have canonical maps

˜PeG[2] s ��

t
�� PeG ,

s(�) = γ2,

t(�) = γ1,
whenever π(�) = γ1 ∪ γ2. (3.2.1)

We note that

ker(s) = ˜�(0,π)G. (3.2.2)

As for any central extension, the conjugation action of˜�G on itself descends to
a smooth action of �G. This action is trivial on U(1) ⊂ ˜�G and restricts to the
subgroups ˜�I G, for any subset I ⊆ S1. Pulling back along the “diagonal” group
homomorphism

PeG → PeG[2] ∪→ �G,

where ∪ is defined in (2.1.2), we obtain an action of PeG on˜�G. The restriction of
this action to ˜�(0,π)G will be denoted by α, and will be called the canonical action
associated to˜�G. Explicitly, it is given by

α : PeG × ˜�(0,π)G −→ ˜�(0,π)G, αγ (�) = ˜γ ∪ γ · � · (˜γ ∪ γ )−1,

(3.2.3)
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where ˜γ ∪ γ is any lift of γ ∪γ to˜�G. As the choice of lift is unique up to an element
in the center of˜�G, the right hand side of (3.2.3) is independent of the choice of lift.

Remark 3.2.1 We emphasize that the construction of the canonical action α is much
simpler than the construction in [5, Lemma 24] and, in particular, that it does not
depend on any additional data or a particular model for the central extension (compare
also [17, Prop. 4.3.2]). That the canonical action coincides with the action from [5,
Lemma 24] will be discussed in detail in Sect. 4.1.

The map t intertwines the canonical action α with the conjugation action of PeG
on itself,

t(αγ (�)) = γ · t(�) · γ −1.

However, the canonical action α does not generally satisfy the Peiffer identity

αt(�)(�) = � · � · �−1. (3.2.4)

Instead, we have the following lemma.

Lemma 3.2.2 If the central extension˜�G is disjoint commutative, then the canonical
action α of (3.2.3) satisfies the Peiffer identity.

Proof Let �,� ∈ ker(s) = ˜�(0,π)G and write γ = t(�). Then

αt(�)(�) = ˜γ ∪ γ · � · ˜γ ∪ γ −1

= (˜γ ∪ γ · �−1) · (���−1) · (� · ˜γ ∪ γ −1).

The middle term is contained in ker(s) = ˜�(0,π)G, while the outer terms are con-
tained in ker(t) = ˜�(π,2π)G. Hence, by disjoint commutativity, these terms commute,
leading to the desired result. �

Finally, we observe that the canonical action α is trivial on the central subgroup
U(1) ⊂ ˜�(0,π)G. Thus, we obtain the following result.

Theorem 3.2.3 If˜�G is a disjoint commutative central extension of �G, then the Lie
group homomorphism t : ˜�(0,π)G → PeG and the canonical action α of (3.2.3) form
a central crossed module of Fréchet Lie groups, denoted by X(˜�G).

Nextwe study the question ofwhether there are other options for the crossedmodule
action α.

Theorem 3.2.4 Let G be a semisimple Lie group and let˜�G be a disjoint commutative
central extension of �G. Let moreover α′ be an action of PeG on ˜�(0,π)G turning

t : ˜�(0,π)G → PeG

into a central crossed module. Then α′ coincides with the canonical action α of (3.2.3).
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Proof For γ ∈ PeG and η ∈ �(0,π)G, we define a map κγ : �(0,π)G → ˜�(0,π)G by

κγ (η) := α′
γ (η̃)αγ (η̃)−1, (3.2.5)

where η̃ is any lift of η. This is well-defined, as any two lifts of η differ only by an
element z ∈ U(1) and both actions are central, so α′

γ (z) = z = αγ (z). It is moreover
smooth as˜�G possesses smooth local sections. As both α′ and α intertwine t with the
conjugation action of PeG on�(0,π)G, we have t(κγ (η)) = conste for all γ ∈ PeG,
η ∈ �(0,π)G, hence κγ takes values in U(1). Moreover, κγ is a group homomorphism:

κγ (t(�)t(�)) = α′
γ (��)αγ (��)−1

= α′
γ (�) α′

γ (�)αγ (�)−1

︸ ︷︷ ︸

∈U(1)

αγ (�)−1

= α′
γ (�)αγ (�)−1α′

γ (�)αγ (�)−1

= κγ (t(�))κγ (t(�)).

By Theorem 2.1.2, κγ : �(0,π)G → U(1) must be the trivial group homomorphism
for each γ ∈ PeG. Hence α′ coincides with α. �

Let X-cExt(G) be the subcategory of X-Mod consisting of those central crossed
modules (˜�(0,π)G, PeG, t, α) in which ˜�(0,π)G is a disjoint commutative central
extension of �(0,π)G, and t : ˜�(0,π)G → PeG is given as before; i.e., if � ∈
˜�(0,π)G projects to γ ∪conste, then t(�) = γ . The morphisms are crossed module
morphisms whose map PeG → PeG is the identity, and whose map ˜�(0,π)G →
˜�(0,π)G ′ is a morphism of central extensions of �(0,π)G. On the other side, we let
dc-cExt(�G) denote the full subcategory of cExt(�G) over all disjoint commutative
central extensions of �G. Theorem 3.2.3 establishes a functor

X : dc-cExt(�G) −→ X-cExt(G). (3.2.6)

In order to see this, it suffices to observe that any automorphism of a central exten-
sion˜�G provides an automorphism of the restricted central extension ˜�(0,π)G that
intertwines the action α.

Corollary 3.2.5 If G is simply connected and semisimple, the functor X is an equiva-
lence of categories, dc-cExt(�G) ∼= X-cExt(G).

Proof By Lemma 2.3.1, the assumptions on G imply that both dc-cExt(�G) and
X-cExt(G) are groupoids with trivial automorphism groups. Therefore, we only have
to show that the functor X is a bijection on isomorphism classes of objects.

If two crossed modules X(˜�G) and X(˜�G ′) are isomorphic via an isomorphism
in X-cExt(G), then this in particular implies that the restricted central extensions
˜�(0,π)G and ˜�(0,π)G ′ are isomorphic. But, by Lemma 2.3.4, this implies that˜�G
and˜�G ′ are themselves isomorphic. Hence the functor X is injective.
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Conversely, by the same Lemma 2.3.4, any central extension ˜�(0,π)G of �(0,π)G
is the restriction of a central extension˜�G of �G. From the proof of that lemma it is
clear that˜�G is disjoint commutative if ˜�(0,π)G is. �
Remark 3.2.6 The group homomorphism κγ from the proof of Theorem 3.2.4, defined
in (3.2.5), can be defined for any two central crossed module actions α and α′ for
the homomorphism t : ˜�(0,π)G → PeG, for any central extension˜�G and without
assuming thatG is semisimple. As bothα andα′ satisfy the Peiffer identity, κγ depends
on γ only through the endpoint g = γ (π).

Varying g, we obtain a map

κ : G → Hom(�(0,π)G,U(1)).

The group Hom(�(0,π)G,U(1)) carries a right action of PeG given by pre-
composition with the conjugation action on �(0,π)G, which descends to an action
of G as �(0,π)G acts trivially. One can then show that κ is a diffeological group 1-
cocycle with values in the right G-module Hom(�(0,π)G,U(1)), equipped with the
functional diffeology.

Conversely, modifying α by a general Hom(�(0,π)G,U(1))-valued diffeological
group cocycle κ onG according to formula (3.2.5) gives another crossedmodule action
of PeG on �(0,π)G, and the resulting crossed module is isomorphic in X-cExt(G) to
the previous one if and only if κ is a coboundary.

3.3 Fusion factorizations

Let˜�G be a disjoint commutative central extension of �G. In Theorem 3.2.3 we
have constructed a canonical crossed module X(˜�G) associated to˜�G. The functor
G from the adjunction 3.1.5 turns it into a strict Lie 2-group. Explicitly, this Lie 2-
group, G(X(˜�G)), has the underlying groupoid

˜�(0,π)G �α PeG
s ��

t
�� PeG,i�� (3.3.1)

where i(γ ) = (1, γ ), s(�, γ ) = γ and t(�, γ ) = t(�)γ .
However, a more natural form for a strict Lie 2-group constructed from a central

extension˜�G would be

˜PeG[2]
s ��

t
�� PeG,i�� (3.3.2)

i.e., its Lie group of morphisms is ˜PeG[2] ⊂˜�G, and the maps s and t are as in 3.2.1.
We claim that the missing ingredient to obtain such a form is the identity map i . It
can be provided by a so-called fusion factorization, see [9, Definition 5.5]. A fusion
factorization for a central extension˜�G is a Lie group homomorphism

i : PeG → ˜PeG[2] such that π(i(γ )) = γ ∪ γ. (3.3.3)
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Lemma 3.3.1 Let˜�G be a disjoint commutative central extension of �G. Then, any
fusion factorization i for˜�G provides an identity map completing 3.3.2 to a strict Lie
2-group G(˜�G, i), together with a canonical isomorphism G(˜�G, i) ∼= G(X(˜�G)).

Proof In order to show that i turns 3.3.2 into a Lie 2-group, we use Lemma 3.1.1:
The requirement that ker(s) and ker(t) commute is the assumption that˜�G is disjoint
commutative, and the property (3.3.3) implies that both t ◦ i and s ◦ i are the identity
on PeG.

In order to construct the isomorphism G(˜�G, i) ∼= G(X(˜�G)) we observe that

X(˜�G) = X (G(˜�G, i)) (3.3.4)

where on the left is the crossed module of Theorem 3.2.3 andX is the functor from the
adjunction 3.1.5. Indeed, the crossed module on the left is ˜�(0,π)G → PeG with the

canonical action given by (3.2.3), and the crossedmodule on the right is ker(s)
t→ PeG

with the action given by

αγ (�) = i(γ )� i(γ )−1. (3.3.5)

First, we recall from (3.2.2) that ker(s) = ˜�(0,π)G, and observe that the Lie group
homomorphisms to PeG coincide. Second, for γ ∈ PeG, the fusion factorization i(γ )

provides a concrete choice for a lift of γ ∪ γ , which means that the formulas (3.2.3)
and (3.3.5) coincide. This shows the equality in (3.3.4). Now, applying the functor G
to (3.3.4) and using the counit

ηG (̃�G,i) : G(˜�G, i) → GX (G(˜�G, i))

establishes the claimed isomorphism. �
Next we study existence and uniqueness of fusion factorizations.

Lemma 3.3.2 Let˜�G be a central extension of �G. If G is semisimple, there exists
at most one fusion factorization for˜�G.

Proof Let i and i ′ be two fusion factorizations. We define a map ϕ : PeG →˜�G by

ϕ(γ ) = i(γ )i ′(γ )−1.

As both i(γ ) and i ′(γ ) lie over γ ∪ γ , ϕ takes values in U(1) ⊂ ˜�G. ϕ is a group
homomorphism, because

ϕ(γ1)ϕ(γ2) = i(γ1)i
′(γ1)−1ϕ(γ2) = i(γ1)ϕ(γ2)i

′(γ1)−1 = ϕ(γ1γ2).

By Theorem 2.1.2, ϕ is trivial. Hence i = i ′. �
Remark 3.3.3 The proof above shows that in the general (not necessarily semisim-
ple) case, if a fusion factorization exists, then the Poincaré dual (PeG)∗ =
Hom(PeG,U(1)) acts freely and transitively on the set of fusion factorizations.
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We denote by σ : �G → �G the group homomorphism obtained by pullback
with the “flip” diffeomorphism t �→ −t .

Lemma 3.3.4 Let ˜�G be a central extension of �G. Suppose there exists a group
homomorphism σ̃ : ˜�G → ˜�G covering σ which is U(1)-anti-equivariant in the
sense that σ̃ (z�) = zσ̃ (�) for all z ∈ U(1) and � ∈˜�G. Then there exists a unique
fusion factorization i such that σ̃ ◦ i = i .

Proof Consider the map

w : PeG ×�G ˜�G −→ U(1), w(γ,�) = �−1σ̃ (�),

where the fibre product is taken over the diagonal map PeG → �G, γ �→ γ ∪ γ .
Since π(�) = π(σ̃ (�)) = γ ∪ γ , we have π(w(γ,�)) = conste; hence, w(γ,�)

takes values in U(1). Moreover, w is a group homomorphism:

w(γ,�)w(η,�) = w(γ,�)�−1σ̃ (�)

= �−1w(γ,�)σ̃ (�)

= �−1�−1σ̃ (�)σ̃ (�)

= w(γ η,��).

For z ∈ U(1), we have

w(γ, z�) = (z�)−1σ̃ (z�) = z2�−1σ̃ (z�) = z2w(γ,�).

Hence, if (γ,�) ∈ ker(w), then we have (γ, z�) ∈ ker(w) if and only if z2 = 1,
that is, z = ±1. We obtain that pr1 : ker(w) → PeG is a double cover. Since PeG
is contractible, this double cover is necessarily trivial. Therefore, its restriction to the
identity component ker(w)0 is an isomorphism of Lie groups pr1|ker(w)0 : ker(w)0 →
PeG. Then, i := pr2 ◦ (pr1|ker(w)0)

−1 is a fusion factorization.
Conversely, any fusion factorization i such that σ̃ ◦ i = i gives a section of pr1 :

ker(w) → PeG with i(conste) = 1. But since the fibres of ker(w) are discrete,
there is at most one such section. �
Theorem 3.3.5 Let ˜�G be a central extension of �G, where G is simply connected
and semisimple. Then, there exists a unique fusion factorization for˜�G.

Proof Uniqueness was shown in Lemma 3.3.2, so it remains to show existence. We
claim that our assumptions on G imply the conditions of Lemma 3.3.4. To see this,
consider the dual (inverse) central extension˜�G∗. Then σ ∗̃�G∗ is another central
extension, which comes with a canonical Lie group homomorphism

σ̃ ′ :˜�G → σ ∗̃�G∗

that covers σ and is U(1)-anti-equivariant. By our assumptions, the homomorphism
h0(cExt(�G)) −→ H2

c (Lg, R) of (2.2.1) is injective, so that central extensions are
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determined their 2-cocycles. Now, if ω is the 2-cocycle classifying ˜�G, then the
dual extension ˜�G∗ is classified by −ω. By Lemma 2.2.2 we may assume that ω

is G-equivariant, hence of the form (2.2.4). For such a cocycle ω the action of σ on
H2

c (Lg, R) replacesω by−ω, so thatσ ∗̃�G∗ is again classified byω. ByLemma2.3.1,
σ ∗̃�G∗ is, as a central extension, isomorphic to˜�G. The post-composition of this iso-
morphism with σ̃ ′ provides an anti-linear bundle map σ̃ covering σ , and Lemma 3.3.4
completes the proof. �
Remark 3.3.6 Observe that the proof of Theorem 3.3.5 actually shows that under the
assumptions of Theorem 3.3.5, there exists a map σ̃ as in Lemma 3.3.4, and the unique
fusion factorization i satisfies additionally σ̃ ◦ i = i .

3.4 Classification of the Lie 2-groups

In this section we prove that—in the case of a simple and simply connected Lie group
G and for a “basic” central extension—our canonical Lie 2-group G := G(X(˜�G))

of Sect. 3.2 becomes under geometric realization a 3-connected cover of G. For this
purpose we will use the methods developed in [4, 5].

We start by recalling some notions and basic facts about Lie 2-groups (as used,
e.g., in [5, §4.2]). A strict homomorphism between strict Lie 2-groups consists of two
Lie group homomorphisms (one between the morphism groups and one between the
object groups), which intertwine all structure maps. The strict kernel of such a strict
homomorphism is the 2-group obtained by taking the level-wise kernels. It is a Lie
2-group if both kernels are submanifolds (which is automatic in the finite-dimensional
case). A sequence

0 −→ K −→ G −→ H −→ 0

of strict Lie 2-groups and strict homomorphisms is called strictly exact if it is exact
on both object and morphism level.

Taking the nerve of a strict Lie 2-group G and forgetting the smooth structure, we
obtain a simplicial space NG, where (NG)0 = Ob(G) and whose n-th space, n ≥ 1,
is the space of n-strings of composable morphisms,

(NG)n = {(x1, . . . , xn) ∈ Mor(G)n | s(x j ) = t(x j−1), j = 2, . . . , n}.

Applying the geometric realization functor, we obtain a topological space |G|, the
geometric realization of G. Pointwise multiplication in Mor(G) endows each of the
spaces (NG)n with the structure of a topological group (in fact, a Lie group) for
which the simplicial structure maps are homomorphisms. Put differently, we have a
group object in the category of simplicial topological spaces, and since the geometric
realization functor preserves finite products, it sends group objects to group objects,
so that |G| acquires the structure of a topological group (see also Lemma 1 in [4]). Any
strict homomorphism f : G → H between two strict 2-groups induces a continuous
group homomorphism | f | between the corresponding geometric realizations, and if
f was a weak equivalence of 2-groups, then | f | is a weak homotopy equivalence. It
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is moreover a fact that geometric realization takes a short strictly exact sequence of
Lie 2-groups to an exact sequence of topological groups [5, §4.2].

We now come to the main topic of this section. Let G be a finite-dimensional,
connected, and semisimple Lie group and let˜�G be a disjoint commutative central
extension of its loop group �G. Let

G := G(X(˜�G))

be the Lie 2-group corresponding to the crossed module constructed in Sect. 3.2 and
let |G| be its geometric realization. Since two objects β1, β2 ∈ PeG are isomorphic
in G if and only if they have the same end point, G comes with a canonical strict
homomorphism

G −→ Gdis ,

to the strict Lie 2-group Gdis (see Example 3.1.3), given by end point evaluation.
Applying geometric realization and post-composing with the canonical group homo-
morphism |Gdis | → G (which is a homotopy equivalence),we obtain a homomorphism
of topological groups

|G| −→ G. (3.4.1)

We then have the following result.

Theorem 3.4.1 If G is simple, connected, and simply connected and ˜�G is a basic
central extension, then |G| is the 3-connected cover of G, via the group homomorphism
(3.4.1).

In fact, we prove the following more general statement, which immediately implies
Theorem 3.4.1. To formulate it, let ω ∈ H2

c (�g, R) be the classifying 2-cocycle for
the central extension˜�G and let ω be the corresponding left-invariant 2-form on �G.
For a smooth map f : S2 → �G, we define

ϕ( f ) := 1

2π

∫

S2
f ∗ω.

Since ω classifies a central extension of �G, it has integral periods, so ϕ takes values
inZ (see the discussion in Sect. 2.2). It is moreover easy to see that ϕ( f ) only depends
on the homotopy class of f and yields a group homomorphism ϕ : π2(�G) → Z.

Theorem 3.4.2 Let G be a connected semisimple Lie group. For k = 1 and k ≥ 4, the
group homomorphism (3.4.1) induces an isomorphism πk(G) ∼= πk(G). Moreover, we
have an exact sequence

0 −→ π3(|G|) −→ π3(G) ∼= π2(�G)
ϕ−→ Z −→ π2(|G|) −→ 0. (3.4.2)
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Proof of Theorem 3.4.1 The assumptions on G imply that H2(�G, Z) ∼= π2(�G) =
Z. That˜�G is basic means thatω is a generator of H2(�G, Z) ∼= Z. Taking f : S2 →
�G to be a generator ofπ2(�G), we obtain that f ∗ω is a generator of H2(S2, Z) ∼= Z,
so that ϕ is surjective. Hence π2(|G|) = π3(|G|) = 0. �
Proof of Theorem 3.4.2 Let G ′

dis be the strict 2-group with objects PeG, morphisms
PeG[2], and structure maps s := pr2, t := pr1, and i the diagonal map (Lemma 3.1.1).
Then, we have a factorization,

G −→ G ′
dis −→ Gdis, (3.4.3)

where the first map is the identity on objects, and thereby uniquely determined on
morphisms, while the morphism G ′

dis → Gdis is the end point evaluation, both on
objects and morphisms. It is straightforward to show that the second arrow in (3.4.3)
is a weak equivalence, so the induced group homomorphism between the geometric
realizations is a weak homotopy equivalence. By construction, the strict kernel of
the first homomorphism in (3.4.3) is the trivial group on objects and U(1) ⊂ ˜�G
on morphisms; in other words, it is the strict 2-group BU(1) (Example 3.1.2). We
therefore get a strict short exact sequence of Lie 2-groups

BU(1) −→ G −→ G ′
dis. (3.4.4)

We now use the explicit construction of the geometric realization |G|, described
in [4, Lemma 1 and §5.3]: Let G be a strict Lie 2-group and let (H ,G0, α, t) be the
corresponding crossed module. Then, there exists a weakly contractible topological
group E H containing H as a normal subgroup, together with an action of G0 on E H
extending the action of G0 on H . Moreover, H is embedded as a normal subgroup of
the semidirect product E H � G0, and we have a short exact sequence of topological
groups

H −→ E H � G0 −→ |G|,

witnessing |G| as the quotient

|G| ∼= (E H � G0)/H .

The above construction is functorial in G; hence, we may apply it to the strict short
exact sequence (3.4.4). The object group G0 is contractible in each case (being either
trivial or the path group PeG), hence the geometric realization has the homotopy type of
B H in each case. Identifying�(0,π)G ∼= �G and ˜�(0,π)G ∼=˜�G (see Lemma 2.3.4),
we obtain that under geometric realization, the strict short exact sequence (3.4.4)
corresponds to the homotopy fiber sequence

BU(1) −→ B˜�G −→ B�G.

An inspection of the construction in [4, §5.3] reveals that, as expected, this sequence is
just the one obtained from applying the classifying space functor B to the short exact
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sequence of the central extension˜�G. Since BU(1) � K (Z, 2), this shows (using the
long exact sequence of homotopy groups) that the map πk(B˜�G) → πk(B�G) is an
isomorphism for k = 1 and k ≥ 4.

It is now a general fact that for a principal U(1)-bundle U(1) → P → B, the
boundary map π2(B) → π1(U(1)) ∼= Z of the corresponding long exact sequence
of homotopy groups is the map that sends [ f ] ∈ π2(B) to the first Chern number
〈c1( f ∗ P), [S2]〉 of the bundle f ∗ P → S2. In our case, the first Chern class of˜�G is
represented by the left-invariant 2-form ω, and so the result follows. �

4 Comparison with other constructions

In this section we carry out the comparison between our constructions of Sect. 3 and
the constructions of Baez et al. and the second-named author.

4.1 The BCSS string 2-group

We start by reviewing the main construction of Baez et al. [5, Prop. 25]. We remark
that their construction is presented as if it results into as that of a Fréchet Lie 2-group,
but in fact it results into a crossed module of Fréchet Lie groups, to which then the
functor G from 3.1.5 is applied without mention. So we better describe that crossed
module directly.

Let PeGBCSS ⊂ C∞([0, 2π ], G) be the Fréchet submanifold of paths starting at e ∈
G. Note that—in contrast to our setting—there is no flatness assumption; moreover,
paths are parameterized by [0, 2π ] instead of [0, π ].We denote by�GBCSS ⊂ PeGBCSS

the Fréchet manifold of closed paths, and assume that

1 → U(1) →˜�GBCSS → �GBCSS → 1

is a central extension. A Lie group homomorphism

tBCSS :˜�GBCSS → PeGBCSS

is defined by projection and inclusion. Under certain assumptions on the central exten-
sion, including the condition that G is of Cartan type and classified by a level k ∈ Z,
a central crossed module action

α
BCSS : PeGBCSS ×˜�GBCSS →˜�GBCSS

can be defined (in a difficult way, using Lie-algebraicmethods). It will not be necessary
to review this construction here, as wewill prove below that it restricts to our canonical
action. We denote the crossed module defined this way by XBCSS

(G, k); it is precisely
the one described in [5, Prop. 25].

In the followingwewill show that XBCSS
(G, k) isweakly equivalent to our canonical

crossed module X(˜�G) from Theorem 3.2.3. In order to do so, we first have to specify
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the disjoint commutative central extension˜�G required there. We consider the maps

�(0,π)G
res �� PeG

rep
�� PeGBCSS

defined by rep(γ )(x) := γ ( 12 x), for γ ∈ PeG, x ∈ [0, 2π ], and res(η)(x) := η(x),
for η ∈ �(0,π)G and x ∈ [0, π ]. Note that rep and res are Lie group homomorphisms.
Their composition will be denoted by r := rep ◦ res. We let

˜�(0,π)G := r ∗̃�GBCSS

be the pullback central extension. By Lemma 2.3.4, this is the restriction of a central
extension˜�G, as required. Note that˜�G is disjoint commutative since G is semisim-
ple and simply connected, due to Corollary 2.4.4. We obtain—by construction—a
commutative diagram:

˜�(0,π)G

t

��

p

��

r̃ ��˜�GBCSS

tBCSS

��

��

�(0,π)G

res

��

r
�� �GBCSS

� �

��

PeG rep
�� PeGBCSS

Lemma 4.1.1 The maps r̃ and rep constitute a strict homomorphism

R : X(˜�G) −→ XBCSS
(G, k)

of crossed modules.

Proof Since the diagram is commutative, it remains to prove that the crossed module
actions are exchanged, i.e., that

α
BCSS
rep(γ )(r̃(�)) = r̃(αγ (�)) (4.1.1)

for all γ ∈ PeG and � ∈ ˜�(0,π)G. We note that

tBCSS (αBCSS
rep(γ )(r̃(�))) = rep(γ ) · tBCSS (r̃(�))) · rep(γ )−1

= rep(γ ) · rep(t(�)) · rep(γ )−1

= rep(γ · t(�) · γ −1)

= r(η(γ,�)),
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where η(γ,�) := (γ · t(�) · γ −1) ∪ conste ∈ �(0,π)G. This shows that we obtain
a well-defined element

αγ (�) := (η(γ,�), α
BCSS
rep(γ )(r̃(�))) ∈ ˜�(0,π)G.

The map αγ defined like this is a smooth, central crossed module action for t :˜�G →
PeG; moreover, by construction, it satisfies (4.1.1). Since G is semisimple, it coincides
with our canonical action by Theorem 3.2.4. �

We may thus say that our canonical action α is the restriction of the action α
BCSS

along the homomorphism R.

Theorem 4.1.2 The homomorphism R of Lemma 4.1.1 establishes a weak equivalence
of crossed modules of Fréchet Lie groups,

X(˜�G) ∼= XBCSS
(G, k).

Proof Every strict homomorphismbetween crossedmodules determines aweakhomo-
morphism, a.k.a. a butterfly, see [1, §4.5]. In the case of R, this butterfly is

˜�(0,π)G

κ

		��
���

���
���

�

t

��

˜�GBCSS



���
���

���
��

tBCSS

��

˜�GBCSS
� PeG

�����
���

���
��� j

		��
���

���
���

PeG PeGBCSS

where the group in themiddle is the semi-direct product w.r.t. the action α
BCSS induced

along rep : PeG → PeGBCSS , and the NE-SW-sequence is the corresponding split
extension. Moreover,

κ(�) := (r̃(�)−1, t(�)) and

j(�, γ ) := rep(γ ) · tBCSS (�).

By [1, §5.2], a butterfly establishes a weak equivalence if it is reversible, meaning that
its NW-SE-sequence

˜�(0,π)G
κ−→˜�GBCSS

� PeG
j−→ PeGBCSS

is also short exact. Since that sequence is always a complex (for any butterfly), it
remains to prove that it is an exact sequence of groups and a locally trivial principal
bundle.

Since r is injective, the covering map r̃ is also injective, and hence κ is injective.

In order to show the surjectivity of j , we consider γ ∈ PeG
BCSS

and choose a smooth
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map ϕ : [0, 2π ] → [0, π ] with ϕ(0) = 0 and ϕ(2π) = π that is flat at its end points.
Then, for any lift� ∈˜�GBCSS of γ ·rep(γ ◦ϕ)−1 ∈ �GBCSS , we have j(�, γ ◦ϕ) = γ ,
hence j is surjective. The fact that ϕ can be chosen to be the same for all γ ∈ PeGBCSS

and the fact that � can be chosen in a locally smooth way shows that j has local
sections, and hence is a principal bundle.

It remains to show exactness in the middle. Let (�, γ ) ∈˜�GBCSS
� PeG be in the

kernel of j , i.e., rep(γ ) · tBCSS (�) = conste. Then

(γ ∪ conste,�
−1) ∈ ˜�(0,π)G

is sent to (�, γ ) under κ . �

4.2 The diffeological string 2-group

The following construction of a diffeological 2-group is implicit in [18–20], but has
not been described explicitly. It takes as input data a fusion extension, i.e. central
extension

1 → U(1) → ˜LG → LG → 1 (4.2.1)

of Fréchet Lie groups that is equipped with a multiplicative fusion product.
In the followingwe usewithout further notice the fully faithful functor fromFréchet

manifolds to diffeological spaces in order to embed everything into that setting. We
let PeGsi be the diffeological space of paths in G with sitting instants (constant in
neighborhoods of its end points) starting at e ∈ G, and by PeG[k]

si its k-fold fibre
products along the endpoint evaluation ev : PeGsi → G. As before, we have a smooth
map ∪ : PeG[2]

si → LG. A fusion product is a bundle morphism

λ : pr∗12 ∪∗
˜LG ⊗ pr∗23 ∪∗

˜LG −→ pr∗13 ∪∗
˜LG

over PeG[2]
si that satisfies the evident associativity condition over PeG[4]

si . Moreover, it
is called multiplicative if it is a group homomorphism, see [18–20] for more details.

Remark 4.2.1 Fusion extensions may—on first view—look odd and involved, but in
fact appear very naturally. Indeed, there are at least the following three ways to obtain
a fusion extension of the loop group LG of a Lie group G:

(1) Transgression of any multiplicative bundle gerbe over G results in a fusion exten-
sion of LG; this is explained in [19, §2].

(2) The Mickelsson model produces a canonical fusion extension for any simply con-
nected Lie group G; this is explained in [20, Example 2.6].

(3) The operator-algebraic implementer model [9] produces a canonical fusion exten-
sion for LSpin(d).

We note that every fusion extension comes equipped with a fusion factorization,
uniquely characterized by the property that is neutral with respect to fusion [20, Prop.
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3.1.1]. The following result, which is nothing but a reformulation of the given condi-
tions, constructs from a fusion extension a strict diffeological 2-group.

Proposition 4.2.2 Given a fusion extension as above, the following structure yields a
central strict diffeological 2-group S(˜LG, λ):

• The diffeological group of objects is PeGsi.
• The diffeological group of morphisms is

˜�Gdflg := PeG[2]
si ×LG ˜LG,

where the fibre product is taken along the map ∪ : PeG[2]
si → LG.

• Source and target maps are s(γ1, γ2,�) := γ2 and t(γ1, γ2,�) := γ1.
• Composition is the fusion product λ of˜LG:

(γ0, γ1,�
′) ◦ (γ1, γ2,�) := (γ0, γ2, λ(�′ ⊗ �)).

• The identity morphism of γ ∈ PeGsi is (γ, γ, i(γ )), where i is the fusion factor-
ization associated to λ.

Remark 4.2.3 It is easy to check that π1S(˜LG, λ) = U(1) and π0S(˜LG, λ) ∼= G, so
that S(˜LG, λ) is a diffeological Lie 2-group extension

BU(1) −→ S(˜LG, λ) −→ Gdis.

Remark 4.2.4 As noticed in [9, §5.2] and deduced in general in Sect. 3.1, the fusion
product λ is already determined by its fusion factorization i ; moreover, the subgroups

˜�(0,π)G
dflg = ker(s) ⊂˜�Gdflg and ˜�(π,2π)G

dflg = ker(t) ⊂˜�Gdflg

commute with each other.

The goal of this section is to compare the diffeological Lie 2-group S(˜LG, λ) with
our constructions from Sect. 3, and it is best to do this on the level of crossed modules.
The diffeological crossed module X (S(˜LG, λ)) is

t : ˜�(0,π)G
dflg → PeGsi,

with the central crossed module action

αdflg : PeGsi × ˜�(0,π)G
dflg → ˜�(0,π)G

dflg

given by αdflg(γ,�) := i(γ ) · � · i(γ )−1.

Remark 4.2.5 As in Sect. 3.2, we can observe here immediately that this action does
not even depend on the fusion factorization, and hence, that the crossed module
X (S(˜LG, λ)) is completely independent of the fusion product λ. However, the con-
dition that the subgroups ˜L(0,π)G and ˜L(π,2π)G commute has to be imposed (it is
slightly weaker than disjoint commutativity).
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In order to explore the relation between the diffeological crossed module
X (S(˜LG, λ)) and our crossed module X(˜�G) from Sect. 3.2, we assume that ˜LG is a
disjoint commutative central extension of a Lie group G; then, both crossed modules
are defined. We obtain a commutative diagram

˜�(0,π)Gdflg � � ��

t

��

˜�(0,π)G

t

��

PeGsi
� � �� PeG

whose horizontal arrows are inclusions (paths with sitting instants are flat). Moreover,
we observe that the action αdflg and or canonical action α are defined in exactly the
same way. Hence, above diagram constitutes a strict homomorphism of diffeological
crossed modules

X (S(˜LG, λ)) → X(˜�G). (4.2.2)

Theorem 4.2.6 The homomorphism (4.2.2) is a weak equivalence,

X (S(˜LG, λ)) ∼= X(˜�G).

In particular, there is a canonical weak equivalences of diffeological 2-groups

S(˜LG, λ) ∼= G(X(˜�G)) ∼= G(˜�G, i).

Proof We proceed as in the proof of Theorem 4.1.2 and consider the butterfly

˜�(0,π)Gdflg

κ

����
���

���
���

��

t

��

˜�(0,π)G



���
���

���
���

�

t

��

˜�(0,π)G � PeGsi

���
���

���
���

�
j

����
���

���
���

�

PeGsi PeG,

where now κ(�) := (�−1, t(�)) and j(�, γ ) := γ t(�). We use again [1, §5.2] and
have to prove that the NW-SE-sequence is short exact. The proofs that κ is injective
and that j is surjective and has local sections go as for Theorem 4.1.2. For exactness
in the middle, we observe that an equality γ t(�) = conste implies that t(�) has
sitting instants, and hence � ∈ ˜�(0,π)Gdflg. �
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