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Abstract
Background: All active scientists stand on the shoulders of
giants and many other more anonymous scientists, and this
is not different in our field of psycho-neuro-endocrine im-
munology in rheumatic diseases. Too often, the modern
world of publishing forgets about the collective enterprise of
scientists. Some journals advise the authors to present only
literature from the last decade, and it has become a natural
attitude of many scientists to present only the latest pub-
lications. In order to work against this general unempirical
behavior, neuroimmunomodulation devotes the 30th an-
niversary issue to the history of medical science in psycho-
neuro-endocrine immunology. Summary: Keywords were
derived from the psycho-neuro-endocrine immunology
research field very well known to the authors (R.H.S. has
collected a list of keywords since 1994). We screened
PubMed, the Cochran Library of Medicine, Embase, Scopus
database, and the ORCID database to find relevant historical
literature. The Snowballing procedure helped find related
work. According to the historical appearance of discoveries

in the field, the order of presentation follows the subsequent
scheme: (1) the sensory nervous system, (2) the sympathetic
nervous system, (3) the vagus nerve, (4) steroid hormones
(glucocorticoids, androgens, progesterone, estrogens, and
the vitamin D hormone), (5) afferent pathways involved in
fatigue, anxiety, insomnia, and depression (includes path-
ophysiology), and (6) evolutionary medicine and energy
regulation – an umbrella theory. Key Messages: A brief
history on psycho-neuro-endocrine immunology cannot
address all relevant aspects of the field. The authors are
aware of this shortcoming. The reader must see this review
as a viewpoint through the biased eyes of the authors.
Nevertheless, the text gives an overview of the history in
psycho-neuro-endocrine immunology of rheumatic
diseases. © 2024 The Author(s).

Published by S. Karger AG, Basel

Introduction

Neuroendocrine immunology describes the influence
of neuronal pathways with neurotransmitters or endo-
crine glands with hormones on immune functions.
Originally, this portrays the efferent influence of the brain
on immune cells making use of connecting factors
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(neurotransmitters, especially steroid hormones). Now-
adays, the bidirectional aspect of the communication
between the brain and the immune system is described
with the expression psycho-neuro-endocrine immunol-
ogy, which also reflects the strong influence of the im-
mune system on brain function (with psychological/
psychiatric, neuronal and endocrine consequences).
Using this description, we briefly summarize the his-
torical development in the field of rheumatology.

Historically, neuronal pathways with the sensory
nervous system and the autonomic nervous system
(sympathetic; parasympathetic: N. Vagus) were described
before hormonal pathways came on stage, which led to
the sequence of presentation in this article.

Efferent Pathways from the Brain to the Immune
System

Hemiplegia and Chronic Inflammation
With a look on clinical cases, the concept of neuronal

regulation of inflammation is confirmed by reports of
patients with hemiplegia and chronic inflammatory
diseases, where the paralytic side is protected from in-
flammation. Cases have been reported in whom hemi-
plegia manifested long after outbreak of chronic in-
flammatory rheumatic disease or long before, leading to
protection independent of the time point of disease onset.
Table 1 demonstrates the respective historical literature.

The natural experiment of hemiplegia clearly demon-
strates the importance of the nervous system in chronic
inflammatory rheumatic diseases.

Neuronal Pathways – The Sensory Nervous System
Neurogenic Inflammation and Sensory
Neurotransmitters
Since 2000 years (Celsus and Galen), clinicians rec-

ognize redness, warmth, swelling, pain, and altered
function as immediate cardinal signs of inflammation.
Neurogenic vasodilatation reported in 1876 by Stricker
and 1901 by Bayliss [24, 25]; the inflammatory axon reflex
with reddening skin observed in the 1910s by Bruce and
by Breslauer [26–28]; the flare response reported by Lewis
around 1930 with erythema, hyperalgesia, and edema
[29]; rediscovery of the antidromic vasodilatory flare
response and dorsal root reflex by Chapman [30]; and
Kelly’s and Jancsó’s more extended concept of neurogenic
inflammation in the 1950 an 1960s [31, 32] were all
expressions of the same principle: the proinflammatory
influence of sensory nociceptive nerve fibers on acute
inflammation and on above-mentioned cardinal clinical
signs.

In these early years of scientific inquiry, the focus was
mainly on the vasodilatory aspect of inflammation and
plasma extravasation that leads to redness, warmth,
swelling, pain, and altered function. With the discovery of
substance P in 1931 by Ulf von Euler [33] and the later
correct allocation to sensory nerve fibers by Lembeck in

Table 1. Role of neuronal innervation for the development of RA and other inflammatory diseases

Situation Modulation of disease symptoms Reference

Poliomyelitis paralysis RA only on the non-paralyzed side [1]

Hemiplegia RA only on the non-paralyzed side [2–14]

Hemiplegia RA vasculitis only on the non-paralyzed side [15]

Hemiplegia Gouty arthritis only on the non-paralyzed side [16]

Hemiplegia Skin changes in pSS only on the non-paralyzed side [17]

Hemiplegia Psoriatic arthritis only on the non-paralyzed side [18]

Sensory denervation Respective finger is spared from psoriatic arthritis [19]

Brachial plexus lesion Shoulder inflammation in a PMR patient only on intact side [20]

Hemiplegia DTH skin lesions more marked on the non-paralyzed side [21]

Hemiplegia Hemochromatosis arthritis only on the non-paralyzed side [22]

Surgical removal of the first 5
sympathetic ganglia from top

Complete removal of vasospastic disease of finger and left hand and of
osteoarthritis of left hand (impressive photo)

[23]

DTH, delayed-type hypersensitivity; PMR, polymyalgia rheumatica; pSS, progressive systemic sclerosis; RA, rheumatoid arthritis.
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1953 and, particularly, by Otskua and Konishi in 1976
[34, 35], the important immunomodulating role of
substance P was found, e.g., in experimental arthritis in
1984 by Levine et al. [36]. The discovery of substance P is
nicely demonstrated elsewhere [37]. Neurotransmitters of
the sensory nervous system and propagation of inflam-
matory activation of neurons/microglia in the spinal cord
are relevant for symmetrical joint symptoms [38, 39].

Neurotransmitters/neuropeptides from sensory nerve
fibers like substance P are proinflammatory [40], and
upon activation of the sensory nerve fiber substance P is
released into the vicinity of the nerve ending (an efferent
function of sensory nerve fibers). This is the mode how
the sensory nerve fiber can have a proinflammatory effect
in the periphery.

Other neuropeptides of afferent sensory nerve fibers
and their receptors were discovered like calcitonin gene-
regulated peptide (CGRP) in 1982 [41], galanin, gluta-
mate, and others. While substance P is often described as
a prototype proinflammatory neuropeptide [40], CGRP
might have opposing anti-inflammatory but also vaso-
dilatory activities [42]. Thus, depending on the local
amount of released substance P relative to CGRP, the
tissue might undergo a proinflammatory or anti-
inflammatory reaction (in any case a vasodilatory reac-
tion with more immune cell evasion).

In synovial tissue of patients with rheumatoid arthritis
(RA), our group demonstrated a preponderance of
substance P-positive nerve fibers over CGRP-positive
nerve fibers [43]. This would render sensory nerve fi-
bers proinflammatory by a direct action of substance P on
immune cells, which supports the earlier concept of
neurogenic inflammation (vasodilation, plasma extrav-
asation, broad immune cell activation).

Sensitization, Hypersensitivity, and Early Adverse
Experiences
Another phenomenon in many inflammatory diseases

is sensitization of the sensory nervous system (nociceptive
pathways) because of peripheral, spinal, and more central
sensitization [44]. The brain controls the input arriving
through afferent sensory nerve fibers by descending
pathways, which has been first described by Sherrington in
1915 [45] and later by Melzack and Wall in 1965 [46–48].
Missing control or altered control of this input through
sensory nerve fibers and upregulation of local inflam-
matory pathways (microglia) can lead to sensitization of
nociceptive pathways leading, e.g., to hyperalgesia [49].

In parallel, nociceptive fibers can be activated/
sensitized to release more neuropeptides into the vicin-
ity of the peripheral nerve terminal [50, 51], which is an

efferent function of otherwise afferent nerves. Thus, a
hyperactive pain system can have a proinflammatory role
by releasing substance P and other neurotransmitters
locally. This is particularly true when sensory nerve fibers
start to sprout under inflammatory conditions as dem-
onstrated in RA [52, 53].

Cytokines play an important role for sensitization in
arthritic joints and the spinal cord as recognized in the
1990s [54–59]. While the role of mitogen-activated
protein kinases for sensitization is known for a while
[56, 60], recently, therapy with Janus kinase inhibitors
also showed the stimulating role of Janus kinase-signal
transducer and activator of transcription pathways for
sensitization [61]. Importantly, autoantibodies can di-
rectly induce hypersensitivity in mice [62, 63]. More
central sensitization might be observed through func-
tional magnetic resonance imaging techniques and anti-
TNF therapy rapidly ameliorates central nervous system
(CNS) sensitization [64].

The term hypersensitivity is used in pain science,
neurology (headache), dental medicine (dentine hyper-
sensitivity, temporomandibular disorder), gastroenterol-
ogy (irritable bowel syndrome), dermatology (itch, lip-
ohyperplasia dolorosa), urology (interstitial cystitis, pelvic
pain), psychiatry (autism spectrum disorders), and other
medical disciplines. In rheumatology, the word “hyper-
sensitivity” was typically linked to the hypersensitive
immune system such as in adverse reactions versus
medication, anaphylaxis, contact dermatitis, allergy, or
other acute immune reactions. Maybe the presence of the
notion of “immune hypersensitivity” slowed down the
uptake of the expression “sensory hypersensitivity” in
rheumatology. Nevertheless, rheumatologists have treated
patients with sensory hypersensitivity for a long time.

Already in 1904, William Gowers coined the expres-
sion fibrositis [65], which was correctly renamed into
fibromyalgia by Yunus et al. [66] in 1981 because the
disease was not inflammatory at all [67]. The primary
form of fibromyalgia is characterized by diffuse muscu-
loskeletal aches, pains or stiffness and accompanied by
several other symptoms such as tiredness, anxiety, sleep
problems, headache, irritable bowel syndrome, and
numbness as originally described in the paper of Yunus
et al. [66]. Hypersensitivity characterizes primary and
secondary fibromyalgia (primary = without any other
disease; secondary = with another disease, e.g., systemic
lupus erythematosus [SLE]). Again, autoantibodies might
play a role in fibromyalgia hypersensitivity that has re-
cently been put forward [68].

The idea of “primary hypersensitivity” of nociceptive
pathways led to a third form of pain description next to
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nociceptive pain (arises from actual or threatened damage
to nonneural tissue and is due to the activation of no-
ciceptors) and neuropathic pain (caused by a lesion or
disease of the somatosensory nervous system). The new
form of pain was called nociplastic pain [69, 70], and it is
characterized by “pain that arises from altered noci-
ception despite no clear evidence of actual or threatened
tissue damage causing the activation of peripheral no-
ciceptors or evidence for disease or lesion of the so-
matosensory system causing the pain” [69]. This form of
pain has much to do with altered function of pain-related
sensory pathways in the periphery and brain.

An important origin for nociplastic pain is early
traumatic experiences in childhood or adolescence
sometimes reexperienced in adulthood (double hit). It
was Freud and Breuer already in 1895, in their much-
criticized book on hysteria (German title: Studien über
Hysterie), to link earlier experiences in childhood and
adolescence with chronic pain in adulthood. The subject
of early trauma and later chronic pain has been resumed
in the 1950s by George Engel, who described among
many affected individuals a patient with chronic painful
states and arthritis after childhood abuse/neglect [71].

The first study in rheumatology was carried out in the
early 1990s on patients with fibromyalgia [72], a disease
with marked sensory hypersensitivity (see above). The
authors from McGill University in Montreal found a
strong interrelation between childhood trauma and later
chronic pain in these patients [72].

A recent book summarized clinical and pathophysi-
ological consequences of early traumatic events including
pain, sleep disorders, fatigue, psychiatric diseases, chronic
inflammation, and others using more than 1,100 refer-
ences including historical literature [73]. This book also
summarizes the links between early traumatic experience,
chronic immune activation, and autoimmunity, an as-
sociation first described in the year 1978 in the juvenile
form of arthritis [74] and in 2004 in the adult form of
arthritis [75]. Since these first papers were published,
manymore similar reports in different rheumatic diseases
confirmed this strong interrelationship (see literature in
ref. [73]).

Neuronal Pathways – The Sympathetic Nervous
System
From the Sympathetic Nervous System to
Sympathetic Neuroimmunomodulation
Already Galen, 2000 years ago, described the sym-

pathetic trunk in contrast to the vagus nerve and, in
addition, he found the superior and inferior cervical
ganglia, the semilunar (celiac) ganglia, and the rami

communicantes [76]. Jean Riolan in the early 17th
century reported that these nerve fibers have their origin
in the spinal cord and not in the vagus nerve, which was
the general belief since Galen [76]. Willis in 1664 showed
the great mesenteric plexus radiating like a sun (solar
plexus), and he gave a much better description of the
anatomy of the autonomic nervous system [76].

While the term “sympathetic” already existed since
Galen described simultaneity of functional change in one
organ and “sympathetically” in another organ (particu-
larly, during disease such as in “sympathetic ophthal-
mia”), the expression “sympathetic” was not allocated to
the above-described nervous system or the sympathetic
trunk until the appearance of J. B. Winslow, who worked
in Paris in the early 18th century. Before Winslow, the
nervous structure made up of the sympathetic trunk was
called “nervus intercostalis,” and Windslow renamed it
into “la grande sympathique” to designate it as the major
source of sympathetic outflow [76].

Xavier Bichat in 1800 introduced a physiological and
anatomical separation of two nervous systems: organic
life (autonomic nervous) versus animal life (somato-
motor). He recognized that the sympathetic trunk is a
chain of “little brains” (=ganglia) [77]. Friedrich Henle,
Benedict Stilling, Claude Bernard, and Charles-Edouard
Brown-Séquard discovered regulation of the vessel di-
ameter through sympathetic nerve fibers [77].

Claude Bernard first demonstrated higher centers of
the sympathetic nervous system (SNS) in his famous
puncturing experiment of the hypothalamus leading to
glycosuria, which was blocked by cutting splenic/
mesenteric nerves [77]. The first to distinguish SNS
and parasympathetic nervous system was Langely in 1921
[78], who also coined the expression “autonomic nervous
system.” Excellent reviews and books demonstrate more
history on the SNS [76–80].

The first hormone described was adrenaline as recently
depicted [81]. While different groups discovered
adrenaline at the transition from the 19th to the 20th
century [82–84], Ulf von Euler found the key neuro-
transmitter of sympathetic nerve fibers much later in
1940 in the Karolinska Institute [85, 86]. Noradrenaline is
the key neurotransmitter in sympathetic nerve fibers
because adrenaline – the “hormone” – does not pre-
dominate in these nerve terminals. Importantly, von
Euler also described the presence of noradrenaline in
lymphoid tissue like the spleen [85, 87], which was
confirmed for little amounts of administered radioactive
adrenaline by later studies by Axelrod et al. [88]. How-
ever, at that time, scientists thought that sympathetic
regulation in the spleen serves solely vasoregulation and
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perhaps storage of red blood cells – and nothing else. The
term sympathetic neuroimmunomodulation was
not born.

The link of the SNS to the immune system was pre-
pared by work of Tohru Ishigami in 1919 by his ex-
periments of adrenaline-regulated opsonization of tu-
bercle bacilli [89]; by Metalnikov and Chlorine by con-
ditioning the immune response in 1926 [90] (now known
to be partially related to the SNS [91]); by Andor
Szentivanyi studying the role of beta-adrenergic receptors
in anaphylactic reaction in the late 1950s [92, 93]; by
Draskoci and Jankovic [94] describing thymus involution
and suppression of immune responses after systemic
reserpine in 1964; by Charles Reed and his team studying
the suppressive effect of adrenaline on vaccination re-
sponse in 1968 (Abstract: [95]); and by Macmanus and
Whitfield [96] showing the stimulating effect of cyclic
AMP on thymocyte mitogenic responses.

However, the breakthrough work was carried out
around the year 1970 because two groups demonstrated
the influence of adrenergic agonists and antagonists on
phytohemagglutinin (PHA)-stimulated transformation
of human lymphocytes [97–99]. This is the start of
mechanistic sympathetic neuroimmunomodulation.
Hadden et al. wrote [98]:

“The demonstration in vitro that PHA-stimulated lymphocytes
are capable of adrenergic receptor response may be relevant to
in vivo immunologic reactivity to antigenic stimulation.
Lymphoid tissue contains a high concentration of norepi-
nephrine, presumably related to autonomic innervation, and
the sympathetic nervous system (alpha-adrenergic influence)
may modify lymphocyte function in vivo. Knowledge of the
mechanism of action of the catecholamines on lymphocytes
and its importance to immunologic reactivity is required before
in vivo relationships and events can be understood.”

The findings were corroborated by many studies in the
1970s that described specific adrenoceptors on the mem-
branes of leukocytes/lymphocytes and sympathetic influence
on immune function [100–110]. A further key to crack open
the enigma of sympathetic neuroimmunomodulation was
the staining of sympathetic nerve fibers by chemical tech-
niques such as with formalin (fixing and staining) known
already in the 1950s/early 1960s [111, 112] and early 1970s
using the sucrose-glyoxylic acid method [113]. Using these
techniques – not specific for noradrenaline – sympathetic
staining of lymphoid organs was fairly possible for the first
time [114–118].

Another step forward was the discovery of tyrosine
hydroxylase, the rate-limiting enzyme for adrenaline/
noradrenaline biosynthesis [119]. This enzyme also ex-
ists in sympathetic nerve fibers and sympathetic dener-

vation reduces the activity of this enzyme in the nerve
ending [120]. Tyrosine hydroxylase is transported along
the sympathetic axon outside the vesicles/granules [121]
using a slow transport system with a velocity of 1–3 mm/
day [122].

These findings allowed for specific staining of sym-
pathetic nerve fibers at a time point when respective
antibodies/antiserum against tyrosine hydroxylase were
first reported in the middle of the 1970s [123, 124]. Both
techniques – chemical and immunological – together
with the understanding of a crosstalk between immune
cells and sympathetic nerve fibers led to clear evidence of
anatomical contact sites between nerve fibers and im-
mune cells in lymphoid organs studied by David Felten
and his group [125–129], which was also supported for
peptidergic innervation [130, 131].

While (1) noradrenaline exists in sympathetic nerve
endings in the spleen, (2) since anatomical contact sites
between sympathetic nerve fibers and splenic immune
cells were demonstrated, (3) given that release of nor-
adrenaline can be stimulated from splenic nerve termi-
nals, and (4) because adrenergic receptors on immune
cells were well known, our group added to this evidence of
a real neuroimmune synapse by showing functional
crosstalk between nerve ending and immune cell (re-
viewed in [132]). Using microsuperfusion chambers
loaded with intact splenic tissue, we showed that the
action of electrically released endogenous noradrenaline
modulates macrophage cytokine secretion in the spleen,
which can be inhibited by competitive neurotransmitter
antagonists at intact anatomical locations (reviewed in
[132]). In the model of collagen type II arthritis (CIA), the
technique demonstrated that an α-adrenergic influence
on immune function comes to the fore, which has a
general proinflammatory character [133]. All informa-
tion showed that in the spleen, a functional neuroimmune
synapse exists (Table 2). Now, the time was ripe for the
study of the SNS in situations with chronic inflammatory
diseases/experimental rheumatology.

From Sympathetic Neuroimmunomodulation to Its
Role in Chronic Inflammation
In the absence of better therapeutic options, necessity

is the mother of invention. In the 1950s, some groups
experimented with epinephrine injections in patients
with arthritis in order to stimulate the adrenal cortex
(i.e., glucocorticoids) but the anti-inflammatory success
of this hormone therapy in low doses was marginal
compared to glucocorticoids per se [143]. Others tested
therapeutic removal of sympathetic lumbar ganglia in
patients with RA and osteoarthritis in order to treat
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painful states in hip and knee joints [23, 144], but this
heroic treatment did not stand the test of time.

In the 1970s, Dick et al. [145] found a decreased α-
adrenergic vasoconstrictor tone during 133Xenon perfu-
sion of the knee joint in patients with RA as compared to
controls and osteoarthritis. This indicated that inflam-
mation impedes the normal α-adrenergic vasoconstrictor
tone – a typical vasodilatory response during inflam-
mation in different tissues. This phenomenon was ob-
served by several other groups and, thus, stood the test of
time (e.g. [146–148]).

The first authors that markedly added to the knowledge
of the sympathetic influence on experimental arthritis were
the group around Jon Levine and Allan Basbaum in San
Francisco after they had published their seminal paper on
proinflammatory substance P effects in arthritis [36, 149].
Although their clinical paper on guanethidine therapy in
RA has never been repeated in larger groups of patients
[150], it shows the conviction towards the proin-
flammatory effect of the SNS. A publication of the same
group in the year 1988 stated that the SNS exerts its
proinflammatory effects on adjuvant arthritis through the
β2-adrenergic receptor while α1/2-adrenergic pathways
were not influential [151]. The same group later corrected
this statement because an α2-adrenergic suppressive effect
on adjuvant arthritis was observed [152]. In the late 1990s,
the San Francisco group switched to other possible me-
diating factors like bradykinin and the vagus nerve.

At approximately the same time, the Rochester group
around David Felten, Dianne Lorton, and Denise Bel-
linger started studies on adjuvant arthritis showing that
denervation of the sympathetic influence at local lymph
nodes enhanced severity of arthritic changes. They
summarized their findings as follows [153]: “These
modulatory effects are distinctly different from the effects
of sympathetic nerve fibers in the joints themselves (AU:
considering the data of Levine et al.).” This was cor-
roborated by the same group in 1996 and 1999 [154, 155].

From the studies of Levine et al. [36, 149] and Lorton
et al. [153–155], one recognizes two important locations
of influence: (1) the local influence in the synovial tissue
(β2-adrenergic effects support inflammation in the form
of vasodilation and plasma extravasation) versus (2) the
local influence in draining lymph nodes and spleen (β2-
adrenergic effects inhibit inflammation/specific immune
responses).

The increasing understanding of the immune system
that started with the discovery of cellular surface markers
on immune cells (typing of cells) and secreted products
such as cytokines (typing of cells) and chemokines in the
1980s changed the understanding of pathophysiology in
different experimental models of arthritis. While the
earlier applied injections of capsaicin, zymosan, kaolin,
Freund adjuvant, carrageenan and others locally into the
joint only reflected a very acute inflammatory response
with plasma extravasation and local stimulation of innate
immune and bystander mechanisms (= a real acute
neurogenic inflammation), the auto-antigenic induction
of experimental arthritis with bovine collagen type II,
methylated bovine serum albumin and other antigens
demonstrated the full spectrum of innate and adaptive
immune reactions locally and in distant lymphoid organs.
The parallel understanding that neurotransmitters of the
SNS influence innate and adaptive pathways in very
distinct and sometimes opposing ways depending on
location and timing, led to a more complex picture of
sympathetic neuroimmunomodulation in arthritis. More
and more, it became the affair of trained immunologists.

Our group added to this complexity by demonstrating
anti- and proinflammatory effects of 6-hydroxydopamine-
induced sympathectomy in the CIA model depending on
the time point of drug application during the development
of chronic arthritis [156, 157]. An early sympathectomy
(before onset of CIA and until approximately day 20) always
protected the animals from arthritis; however, later sym-
pathectomy on day 55 in the mouse model aggravated CIA.

Table 2. Neuroimmune synapse meets the criteria for chemically mediated neurotransmission

Criteria for chemically mediated neurotransmission Literature

There is an anatomical connection between sympathetic nerve fibers and splenic immune cells [128]

The neurotransmitter is synthesized in the postganglionic nerve and stored in the nerve terminal [134, 135]

The neurotransmitter is released into the vicinity of the nerve terminal [136, 137]

Target immune cell receptors bind and recognize the neurotransmitter [138, 139]

The action of electrically released endogenous neurotransmitters is inhibited by competitive antagonists at intact
anatomical locations

[140–142]
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The differential effect of early and late sympathectomy
is probably due to the appearance of catecholamine-
producing local cells in the later phases of the disease.
While early sympathectomy destroys the proinflammatory
neuronal influence on CIA development, late sympa-
thectomy destroys anti-inflammatory catecholamine-
producing cells beneficial in CIA [158–160]. Today, we
recognize a multitude of influencing roles of the SNS on
chronic inflammation/chronic immune activation through
a variety of different pathways (summarized in Table 3). In
the following text, some arguments of Table 3 are shown in
a historical perspective.

Loss of Sympathetic Nerve Fibers in Inflamed Tissue
The local influence of sympathetic neurotransmitters

will change when sympathetic nerve fibers are reduced in
inflamed tissue because it changes local neurotransmitter
concentrations. Noradrenaline at low concentrations
binds to α-adrenoceptors, at high concentrations it binds
to, both, α- and β-adrenoceptors (it is a question of af-
finity). In the early 1990s, two groups independently
showed the loss of sympathetic nerve fibers in synovial
tissue of patients with RA using qualitative methods of
immunostaining in a small number of RA patients
[167, 168].

In extensive quantitative immunofluorescent studies
on a great number of RA patients, we corroborated the
loss of sympathetic nerve fibers in synovial tissue of RA
and other inflammatory diseases [52, 166, 169–173]. In
experimental models of arthritis, others demonstrated a
significant loss of sympathetic nerve fibers of splenic
regions distant to the entry point (hilus of the spleen)
[174]. At the entry point, the density is even higher as if
the nerve fibers accumulate there after retraction, which
was confirmed by others near the lymph nodes [175, 176].

The loss of sympathetic nerve fibers with lower con-
centrations of noradrenaline was discussed as an evo-
lutionarily positively selected process to create “zones of
permitted inflammation” [162]. Low concentrations of
noradrenaline would only activate α-adrenergic but not
β2-adrenergic receptors, which is a proinflammatory
signal helpful in wound healing and local infection [162].

Notwithstanding the general finding of lower sym-
pathetic nerve fiber density in inflamed tissue, some
authors have demonstrated increased innervation toward
distinct sites in the tissue. Increased innervation in sy-
novial tissue appeared in experimental arthritis models in
the proximity of cartilage [177, 178] and around arterial
walls in synovial tissue of RA patients and arthritic an-
imals [179, 180]. The meaning of uneven distribution of
sympathetic innervation in inflamed joints is not yet

known, but it might be due to different species, timing of
sample collection, specific regions in inflamed tissue and
divergent methods of quantification. It might also occur
as a controlled process in areas where a high sympathetic
influence through β2-adrenoceptors serves a particular
function (cartilage: support of cartilage degradation to
release energy-rich fuels [181]; around vessels: support of
β-adrenergically mediated vasodilation instead of α-
adrenergically stimulated vasoconstriction to favor im-
mune cell extravasation).

Loss of β-Adrenergic Receptors and Change of
β2-Adrenergic Signaling Pathways
The important function of β-adrenergic receptors for

inflammation, mainly the β2-adrenergic receptor, goes
back to asthma/anaphylaxis research in the 1960s by
Andor Szentivanyi [182], but still today, the β2-
adrenergic receptor is given a main role in asthma
[183]. In asthma research, the loss of adequate β2-
adrenergic signaling remains a challenge because cofac-
tors like inflammatory cytokines, growth factors, respi-
ratory viruses, and certain allergens can disturb the
function of the receptor [184]. The first indication of β2-
adrenergic receptor dysfunction in asthma goes back into
the 1980s [185] and, e.g., TNF plays an important role
because it can inhibit β-adrenergically stimulated ad-
enylyl cyclase activity in cultured airway smooth muscle
cells [186].

Since the β2-adrenergic receptor has an important
anti-inflammatory function in macrophages when
acutely challenged with lipopolysaccharide [187], a
similar loss in anti-inflammatory capacities of the β2-
adrenergic receptor in asthma can lead to deficits in anti-
inflammatory sympathetic neuroimmunomodulation,
which was confirmed in an animal model of arthri-
tis [188].

Stimulated by asthma research, Christoph Baerwald
and his student Matthias Wahle investigated this phe-
nomenon carefully, and they found clear evidence for
decreased function of the β-adrenergic receptor in leu-
kocytes from RA patients [189–193]. This was the first
evidence that this phenomenon exists in RA similar than
in asthma patients and also known for the β1-
adrenoceptor in the heart as demonstrated in aged
people [194].

Not many studies worked on β-adrenergic receptor
signaling in inflamed tissue of patients with rheumatic
diseases such as RA. One study demonstrated an obvious
decrease of G protein-coupled receptor kinase 2 (GRK2)
but not of GRK 5 in material from RA patients [195]. The
disease of adjuvant-induced arthritis led to a decrease of
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GRK2, GRK3, and GRK6 in splenocytes and mesenteric
lymph node cells [196]. This differential regulation of the
GRKs leads to activation of the noncanonical β-
adrenoceptor signaling pathways with proinflammatory
effects through mitogen-activated protein kinases [197].

In 2013, Lorton and Bellinger showed defects in β2-
adrenergic receptor signaling with reduced cyclic AMP
induction in splenocytes of adjuvant arthritic rats [198].
In 2015, we corroborated the idea/the finding of a
malfunctioning β2-adrenergic receptor in mixed synovial
cells of patients with RA by observing a GαS-to-Gαi
signaling switch [199]. Inhibitors of GRK2 might reverse
this switch [200]. All these studies, clearly point to defects
of the canonical β2-adrenergic receptor signaling, leading

to proinflammatory consequences. Thus, loss of sym-
pathetic nerve fibers plus changes in β2-adrenergic sig-
naling are strong proinflammatory signals.

High Sympathetic Activity in Inflammation
In the early 1980s, Sato et al. [201] demonstrated the

first mechanistic link between inflammation and a
heightened sympathetic activity to the heart. These au-
thors studied the influence of pain on the activity of the
sympathetic inferior cardiac nerve. They observed a clear
increase of the firing rate of these sympathetic nerve fibers
upon stimulating pain in joints, skin, and muscles. When
the authors acutely provoked joint inflammation by in-
jection of kaolin and carrageenan, the firing rate markedly

Table 3. Factors that determine the pro- or anti-inflammatory effect of the SNS [161–163]

Factors involved

The immune stimulus and the associated immune response to a particular disease is important. After all, not all types of diseases
are always associated with the same immune reaction under the same disease name. For example, there are at least two types of
rheumatoid arthritis, one started by B cells (rituximab leads to remission) and the other by T cells (T helper type 1 or T helper type
17, abatacept leads to remission). The result is always joint inflammation. Since sympathetic neurotransmitters have different
effects on these different cell types, it can sometimes lead to stimulation and sometimes to inhibition. Nothing is fixed because
the relevant cell type can change over the course of a disease. This is not only the case in RA but also with other autoimmune
diseases

Migration of immune cells in the early phase of inflammation is promoted by the sympathetic nervous system. The sympathetic
nervous system promotes migration and egress of leukocytes from secondary lymphoid organs affecting the development of
arthritis [164]

The systemic energy provided is important for immune reactions. The sympathetic nervous system provides energy-rich
substrates such as glucose and free fatty acids to the activated immune system [165]

The additional cell types involved in addition to the immune cells are important because they react differently to sympathetic
neurotransmitters (e.g., vascular endothelial or smooth muscle cell vs. epithelial cell.)

Switching on and off the sympathetic nervous system in relation to the triggering of the chronic immune reaction is important
(vaccination/immunization). In the acute phase, the sympathetic nervous system is proinflammatory, and in the chronic phase, it
can be anti-inflammatory (catecholamine-producing cells) [160]

The possible function of other neurotransmitters of the sympathetic nerve ending, such as neuropeptide Y, which has its own
effect on immune cells and other cells. With long-term stimulation of the sympathetic nerve fiber, the nerve ending becomes
depleted of neuropeptide Y, and then this influence is lost. This can be the case, for example, during a strong sympathetic
response. This reduces the effect via β-adrenergic receptors (co-transmission is lost)

Glucocorticoids and catecholamines support each other’s role in inhibiting the immune process at high concentrations.
Sympathetic neurotransmitters have stronger anti-inflammatory effects when glucocorticoids are simultaneously present [166].
The cooperation of the two hormones/neurotransmitters is important

The concentration and type of sympathetic neurotransmitter (low concentrations act via α-adrenergic receptors that is often
proinflammatory, and high concentrations act via β-adrenergic receptors that is often anti-inflammatory)

The variability of the presence of sympathetic nerve fibers in the tissue (low density, effect via proinflammatory α-adrenergic
receptors; high density, effect via β-adrenergic receptors) (see subchapter)

The variability of the presence of adrenergic receptors on the surface of involved cells, especially immune cells (i.e., whether
there are many or few α- or β-adrenergic receptors) (see subchapter)

The variability of signal transduction from the adrenergic receptor into the respective cell. This can vary greatly, leading to anti-
and proinflammatory effects (see subchapter)
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rose and this surmounted the normal pain response [201,
202]. Others corroborated the inflammation-induced
increase in sympathetic activity in the adjuvant arthri-
tis model [203]. Pain and inflammation stimulate the SNS
because under both conditions the body requires high
amounts of energy-rich fuels [204].

Today, we observe a high sympathetic activity in
different chronic inflammatory diseases [205–213]. This
circumstance certainly adds to the increased frequency of
cardiovascular diseases in patients with chronic inflam-
mation [214–216]. A higher sympathetic activity is also
related to energy provision to the immune system [165],
water retention, and volume overload in patients with
rheumatic diseases [217, 218].

Neuronal Pathways – The Vagus Nerve
For the first time, Galen described the vagus nerve [77].

The role of the vagus nerve as a possible inhibitor of the
SNS was demonstrated in 1846 by arresting the heartbeat
after electrical vagus nerve stimulation (Ernst Heinrich
Weber and Eduard Weber from Leipzig, cited in [77]).
Pflüger, Bidder, and the Webers showed the influence of
the vagus nerve on the intestine [77].

Chemical neurotransmission of neuronal impulses was
studied by Dixon in 1907 (muscarine effects), Lehmann
found choline in 1907, and Loewi found acetylcholine as
the vagus neurotransmitter in 1921 [77]. Furthermore,
John Langely [78] distinguished sympathetic and para-
sympathetic nervous system and created the expression
“autonomic nervous system.” Langley recognized the
antagonism between sympathetic and parasympathetic
systems.

While the role of the SNS in neuroimmunomodulation
has been studied for more than a century [219], inves-
tigation of the vagus nerve as a significant factor of
neuroimmunomodulation appeared late in the 20th
century. Some groups recognized the proinflammatory
effects of vagus manipulation or electrical vagus nerve
stimulation for neurogenic inflammation in the rat tra-
chea [220–226]. Mediastinal vagotomy inhibits neuro-
genic inflammation in the rat bronchial tree [221, 227]. In
the field of pulmonary research, the phenomenon of
vagally induced neurogenic inflammation is widely
known (we can call it textbook knowledge).

At the beginning of the 1990s, two groups indepen-
dently discovered vagus-mediated sickness behavior in-
cluding hyperthermia stimulated by injection of proin-
flammatory substances into the peritoneal cavity
[228–230]. A possible crosstalk of vagus nerve fibers and
mast cells was demonstrated in intestinal mucosa
[130, 231].

A first indication of a vagally mediated inhibition of
inflammation was shown in the model of colitis with
trinitrobezenesulfonic acid in rats, and the authors
concluded that vagal nerve fibers have a protective role
[232], later supported by others [233]. This was chal-
lenged by others in the dextran sodium sulfate colitis
because the SNS – not the vagus nerve – had the major
anti-inflammatory role [170, 234, 235].

Kevin Tracey’s group then produced several publica-
tions at the beginning of the 2000s that showed the anti-
inflammatory influence of electrical vagus nerve stimu-
lation on systemic inflammation, particularly TNF se-
cretion, which was mediated through the alpha7 nic-
otinergic acetylcholine receptor (α7nAChR) [236–239].
Interestingly, the spleen is an important relay station
relevant for these vagally mediated effects [240, 241].

According to Tracey’s group, sympathetic nerve fibers
to the spleen should be responsible for anti-inflammatory
vagal effects mediated in the spleen through
acetylcholine-producing cells [242], but others criticized
this unilateral interpretation because of the fundamental
role of sympathetic nerve fibers to the spleen and the
absence of cholinergic nerve fibers [243–246]. In addi-
tion, data in humans with vagus nerve stimulation or
vagotomy did not fit to the concept of vagal anti-
inflammation in the early years of inquiry [247–252],
which might depend on the fact that investigated subjects
did not suffer from a chronic inflammatory disease.
Subsequent studies in patients with chronic inflammatory
diseases provided a new picture (next paragraphs).

After several reviews of Kevin Tracey and his group,
many researchers of chronic inflammation took up the
idea of the anti-inflammatory vagus nerve influence. The
theory also entered the field of rheumatic diseases. Soon,
it was shown that an agonist to the α7nAChR had anti-
inflammatory influence in synovial cells of patients with
RA and in the CIA model [253–256]. In addition, vagus
nerve stimulation in the rat CIA model showed some
anti-inflammatory activities [257], supported in zymosan
arthritis in rats through vagal and central nervous
pathways that activate (!) the SNS [258, 259]. This opened
the question whether, or not, the vagus stimulation exerts
anti-inflammatory effects through retrograde central
processing and augmentation of downstream sympa-
thetic influences. This question is still unanswered.

With vagus nerve stimulation in humans, researchers
obtained mixed results with positive anti-inflammatory
effects in Crohn’s disease, RA, and psoriatic arthritis
[260–265] but negative results in other studies in rheu-
matic diseases, which might depend on stimulation
techniques [266, 267]. All studies in patients were carried
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out in an uncontrolled fashion, which still inhibit the
authors of this review from drawing firm conclusions due
to well-known placebo effects.

Hormonal Pathways
Although many different hormones have been studied

in rheumatic diseases, this brief history can only cover the
most important ones. We focus on glucocorticoids, an-
drogens, progesterone, estrogens, and the Vitamin D
hormone.

Glucocorticoids
Philip Showalter Hench (1896–1965) was an American

rheumatologist. Together with his colleague Edward C
Kendall and the Swiss chemist Tadeus Reichstein, he was
awarded the Nobel Prize for Medicine in the year 1950 for
the discoveries on glucocorticoid hormones and their
favorable effects in RA.

Already in the late 1920s, Hench observed the fa-
vorable effects of jaundice in a patient with RA. At the
time, this was a great surprise because RA remission was a
medical curiosity. Between 1929 and 1934, he collected
data of 16 patients with RA who developed jaundice that
ameliorated the crippling disease [268]. Today, we know
that in the bile, some biliary acids with the typical steroid
hormone structure can have anti-inflammatory activities
[269]. However, many therapeutic approaches with bile
or compounds thereof – Hench expected to discover the
healing “substance X” in the bile – were not successful.

At the same time, he observed the ameliorating effect
of pregnancy in women with RA, and he speculated on a
“common denominator substance X” favorable in
jaundice and pregnancy [270]. He wrote: “It does not
seem illogical to suppose that the agents responsible for
both these phenomena are closely related, perhaps
identical, and if the agent is a chemical substance, it
would appear that it is neither bilirubin nor a strictly
female sex hormone.”

During the hunt for “substance X,” Philip Hench also
recognized that other inflammatory diseases like psoriasis
arthritis, asthma, hay fever, Addison’s disease, and even
migraine were sometimes relieved during pregnancy and/
or jaundice. “Substance X was unspecific and bisexual.”

In the early 1940s, he started a collaborationwith Edward
Kendall “in a laboratory (atMayoClinic) a few yards away.”
Edward Kendall and colleagues – biochemists – already
isolated several adrenal steroid hormones in the late 1930s
[271], but administration of them to humans lasted years
because the substances were difficult to isolate from extracts.
In the year 1948, in a collaboration of Edward Kendall and
the American company of Merck and Co., Inc., enough

compound E (cortisone) was available to treat a woman
“badly crippled with RA” [272]. More patients followed with
highly favorable results because the biologically inactive
cortisone is reactivated to active cortisol.

The similar effects of adrenocorticotropic hormone
were linked to the adrenocorticotropic hormone-induced
secretion of adrenal glucocorticoids. This was the
breakthrough! In Switzerland, concurrently, Tadeus
Reichstein also discovered the different adrenal
hormones.

Today, we well know that therapeutic glucocorticoids
ameliorate inflammation in autoimmune diseases and
other inflammatory diseases [273]. The anti-inflammatory
effects of glucocorticoids stood the test of time. However,
we also know that glucocorticoids must be administered at
low doses up to a maximum of 5 mg prednisolone per day
to induce a sufficient effect [274] and to prevent severe side
effects [275–277]. Administration according to circadian
rhythms with a nightly increase of low-dose glucocorti-
coids at 2:00 a.m. has shown several beneficial effects
[278–280].

Although low doses of glucocorticoids below 5 mg
prednisolone/day seem to be relatively safe, the subject is
still strongly debated due to adverse events [281]. In a
world of biological and targeted synthetic disease-
modifying antirheumatic drugs, rheumatologists try to
avoid the use of glucocorticoids over longer periods. The
consensus accepted by almost all rheumatologists is to use
the lowest dose for the shortest time possible to deliver the
required benefit [281].

The known inadequate secretion of the hypothalamic-
pituitary-adrenal axis in patients with chronic inflam-
matory diseases has been extensively described earlier
[282, 283]. This discrepancy of lowered glucocorticoid
availability and action on one side and increased in-
flammation on the other side has been called “dispro-
portion principle” [284].

Androgens
Testosterone and other androgens were discovered in

the early 1930s by two groups from the Netherlands [285]
and Germany [286]. For the work on the discovery of sex
hormones, Adolf Butenandt and Leopold Ruzicka re-
ceived the Nobel Prize in the year 1939.

The first study on 17-ketosteroids (e.g., androstenedione,
dehydroepiandrosterone [DHEA]) in ankylosing spondy-
litis and RA dates back to the year 1947 [287]. However, the
authors of this early report did not seemarked differences in
urine concentrations of 17-ketosteroids compared to con-
trols. Already 3 years later, however, in 1950, the lower
excretion of 17-ketosteroids was demonstrated in RA
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patients [288], which was confirmed in many later inves-
tigations in the 1980s [289–293].

After the impressive success of therapy with gluco-
corticoids by Hench and colleagues [272] (see above),
some researchers used other steroid hormones like tes-
tosterone in the treatment of RA [143, 294, 295]. In the
study by Ishmael et al. [294] in patients with RA, it was
reported that intramuscular testosterone propionate led
to decided improvement in 65% of patients within 24 h,
but this was challenged by Guest et al. [143]. Several little
uncontrolled therapy studies with testosterone were re-
ported between 1950 and 1970, but results were mixed.
Later, animal studies using androgens showed favorable
effects in different animal models of SLE and arthritis
[296–300].

In 1991, in an open-labeled study on testosterone
undecanoate in male patients with RA, one of us (M.C.)
demonstrated the anti-inflammatory effects as a signifi-
cant reduction in IgM rheumatoid factor concentration,
lower number of affected joints and decreased daily in-
take of NSAIDs [301]. In a double-blind placebo-
controlled study in RA patients, the group of Bijlsma
et al. [302] showed that testosterone had several beneficial
effects [303]. Similarly, in SLE, androgens such as DHEA
were tested with some positive effects on disease activity
and bone quality [304–308], which was recently sys-
tematically summarized [309]. These studies stimulated
some rheumatologists until this day to use androgens
such as DHEA in an off-label therapy.

Already in the 1950s, conversion studies with pre-
cursor androgens were reported in vivo in an RA patient
and guinea pigs and in vitro in perfused liver [310]. Since
androgens can give rise to estrogen production by the
aromatase complex, the question of conversion of an-
drogens to other hormones was important. Using original
synovial material from RA patients, it was demonstrated
that androgens are increasingly converted to estrogens in
patients with RA [311]. Nevertheless, some androgens
like androstenedione and testosterone even inhibited
androgen-to-estrogen conversion in mixed RA synovial
cells and stimulated the production of more potent 5α-
reduced androgens [312]. Thus, testosterone may still be
an interesting treatment option in patients with RA with
generally low levels of this hormone, particularly in men.
Several anti-autoimmune effects of androgens on diverse
immune cells were recently summarized [313]. Androgen
and estrogen receptors were discovered in synovial tissue
and cells of RA patients in the early 1990s [314, 315], later
confirmed by others [316].

The important role of proinflammatory cytokines in
inhibiting androgen production was confirmed during

biological disease-modifying therapy because, e.g., toci-
lizumab (inhibits IL-6 receptor) increased serum levels of
the potent precursor androstenedione, also observed
relative to cortisol and 17-hydroxyprogesterone [317],
and anti-TNF therapy increased the precursor DHEA
sulfate [318]. The loss of systemic androgens in chronic
inflammatory diseases was interpreted as a mechanism of
energy distribution to an activated immune system by the
breakdown of glycogenic amino acids in skeletal muscles
with the consequence of sarcopenia [165].

Progesterone
Similarly stimulated by Hench’s publication in 1949,

progesterone was used in several very small studies in RA
around 1950, but this therapy was not successful
[319–321]. Guest et al. [143] used the progesterone
precursor pregnenolone and in combinations with tes-
tosterone showed some beneficial effects in open studies.
A group from Chile, in the 1980s, reported on some
beneficial effects of intra-articular progesterone injections
in RA patients [322].

In studies in experimental arthritis, progesterone alone
had no effect on the clinical course of the disease
[323–325]. When progesterone was given together with
17β-estradiol, the favorable effect was stronger than with
the estrogen alone [324], which was challenged by others
[325]. In an inflammation-induced cartilage degradation
model, progesterone treatment had no beneficial effects
in vivo, but it blocked IL-1-induced cartilage degradation
in vitro [326]. Others confirmed the beneficial effect of
progesterone in a model of destructive cartilage invasion
by activated synovial fibroblasts in vitro [327], which
serve as an RA model.

Progesterone treatment showed positive effects in the
lupus model of New Zealand rats [328]. The favorable
anti-inflammatory role of progesterone in vitro has been
reviewed [329].

Estrogens – The Women-to-Men Preponderance in
Chronic Inflammation
Due to the strong women-to-men preponderance in

many chronic inflammatory diseases, estrogens were in
the focus from the start of their discovery in the 1930s
with the assumption that they could have rheumatic
disease-stimulating effects. From the late 1940s – after the
publication on glucocorticoids by Hench et al.
[272] – some groups treated patients with chronic in-
flammatory diseases using estrogens. Most studies were
carried out in small numbers of patients without ran-
domization or placebo control. Some even tried to treat
SLE with strong estrogens like diethylstilbestrol [330], a
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substance that was banned in the USA in 1971 due to
severe side effects. Soon, it was clear that estrogens are not
an adequate therapy for chronic rheumatic diseases.

The discussions on unfavorable effects of oral con-
traceptives in chronic inflammatory rheumatic diseases
started in the 1960s, particularly in the direction of SLE. It
was summarized in a publication by Chapel and Burns in
1971 [331]. They recommended to prevent treating SLE
women with oral contraceptives. This was the situation
with the early generation of oral contraceptives where
estrogen and progesterone doses were relatively high.
Particularly, thromboembolic events were in the focus of
considerations. Case reports in this direction appeared all
the time during the late 1960s until 1980.

The first studies on the risk of increased susceptibility
to chronic rheumatic diseases in normal women taking
oral contraceptives appeared at around the same time
[332]. The authors concluded that “results obtained fail to
demonstrate that normal women using oral contraceptives
are at a greater risk of developing rheumatic symptoms or
serological changes than a similar group of non-users.”
After many studies into this subject [333–335], today, we
know that in SLE, no influence of oral contraceptives
exists in mild disease, whereas a higher risk of flares and
complications are present in patients with anti-
phospholipid antibodies or preceding thrombosis. In RA,
modern oral contraceptives might even be protective, and
they certainly do not exacerbate the disease (summarized
in [313]).

In 1977, Kunkel’s group in New York established an
interesting link between estrogens and autoimmune
diseases because they related the estrogen excess and
androgen deficit in Klinefelter’s syndrome to the sus-
ceptibility of SLE [336]. Later reports confirmed this
association in SLE and other diseases [337–339].
Somewhat later Bob Lahita of the same group found high
urinary 16α-hydroxylated estrogens [340], which have
strong immunostimulating and proliferative effects later
confirmed by others [341, 342]. The role of sex hor-
mones in SLE was reviewed for the first time in
1981 [298].

In the same period, early studies in New Zealand lupus
mice found an influence of sex hormones on disease
outcome, and estrogen antagonists and androgens were
demonstrated to be favorable in this model [297, 343].
However, estrogen antagonist therapy with tamoxifen
failed in SLE patients in 1984 [344]. In models of RA like
the CIA model, however, estrogen therapy had beneficial
effects because incidence and severity of the disease were
suppressed presented by Rikard Holmdahl and Hans
Carlsten from Sweden [324, 345, 346].

The success of estrogens in RA models prompted the
first therapy with modern estrogens in a small group of
RA patients carried out by Hans Bijlsma’s group [302].
The authors reported some beneficial effects, which were
later challenged by other investigators [347]. However,
the beneficial influence of estrogens on bone density was
confirmed in RA patients [348].

More andmore discussions appeared around the use of
hormone replacement therapy in postmenopausal
women. After a multitude of epidemiological studies
carried out between 1990 and 2020, we can summarize
that the risk of developing SLE is somewhat increased and
that there is a higher incidence of mild to moderate flares
in SLE. In RA patients, hormone replacement therapy is
protective (summarized in [313]).

At around 1990, the clear difference of sex hormone
influence in diseases such as SLE (estrogens aggravate) in
contrast to RA (estrogens can suppress) was state of the
art. However, within the same diseased animal, estrogens
sometimes exacerbated and sometimes ameliorated
typical manifestations of autoimmunity [349]. The di-
chotomous effect was a mainstay of scientific discovery
because it explained the diverse effects of sex hormones
within the same animal/disease/patient.

While some author groups spoke for the beneficial
effects of estrogens in RA/experimental arthritis others
argued strongly against it. We recall a NeuroEndocrine
Immune Study Group meeting at the beginning of the
2000s of the American College of Rheumatology during
which the two groups were present. Understanding the
dichotomous effects of estrogens on different basic im-
mune functions can help explain the contrasting situation
[350]. In the years between 1980 and 2005, many
stimulating effects of estrogens on B-cell function were
discovered (e.g., antibody production by a Japanese group
in the early 1980s [351]). During the same years, many
inhibitory effects of estrogens on T cell and macrophage
function were similarly reported (summarized in [350]).

Today, we know that one and the same disease like RA
can be triggered by a prevailing influence of B cells
(rituximab leads to remission) or – in contrast in another
patient – by a prevailing influence of T cells (abatacept
leads to remission). Even within an animal model two
contrasting estrogen-sensitive pathophysiologies can
exist [349]. This is similar to many chronic inflammatory
diseases where either rituximab or abatacept leads to
remission. From a clinical standpoint, whether the B cell
or the T cell is dominant does not play a role because the
disease has very similar clinical manifestations. Thus, the
old B-cell and T-cell schools of disease pathophysiology
were both correct, and who was correct simply depended
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on the prevailing immune mechanism in the affected
patient.

It was hypothesized that B-cell diseases and T-cell
diseases exist under the same clinically observable en-
tity (summarized in [350]). If this is the case, estrogens
with their stimulating effect on B cells would exacerbate
B-cell diseases, whereas it is opposite for the T-cell
disease/macrophage disease. The theory includes the
following standpoint: when diseases during reproductive
years are more frequent in women than men, they are
estrogen-stimulated B-cell diseases. While this theory can
unify the opposite standpoints, it has not yet led to a
clinical characterization of subgroups of hormone-
dominant immune pathophysiologies that can be used
to treat patients.

In general, women are more affected by these dis-
eases than men. We called it the women-to-men pre-
ponderance [352]. Why does it happen in the first
place? Estrogens serve a fantastic immune supporting
role, which is relevant during the reproductive years,
during which women are at a higher risk to develop
infectious diseases than men are (during cohabitation,
pregnancy, postpartum, breastfeeding). At the expense
of a higher risk of autoimmune diseases, estrogens
protect women during episodes with a higher danger of
infections.

Vitamin D Hormone
Rickets, the English disease, or scientifically correctly

rachitis is a condition of weak or even soft bones ap-
pearing in young children leading, e.g., to bowed legs,
stunted growth, bone pain, and other skeletal abnor-
malities. In an article of 2018, it is described that rickets
was a widespread phenomenon 2000 years ago in Roman
times [353]. Francis Glisson (1597–1677) described the
condition in much detail using strong expression like “. . .
the whole bony system . . . flexible like wax that is rather
liquid, so that the flabby and toneless legs scarcely sustain
the weight of the superimposed body, so that the tibiae
yield to the weight of the fabric pressing down on them
from above and become bent. . .” [354].

Usually, we link the problem of rickets to Victorian
England because it was widespread at that time. Thus, it is
not surprising that English scientists were strong in this
special field of inquiry. In 1906, F. Gowland Hopkins
postulated a dietary factor highly important to overcome
rickets [355]. In 1919, Edward Mellanby produced a
model of rachitis by feeding young dogs with a low-fat
diet, and he diagnosed the disease radiologically. In ad-
dition, he successfully treated the condition with cod-liver
oil [356], which was later confirmed by Harriette Chick

and colleagues in rachitic children at the University
Kinderklinik in Vienna [357].

McCollum et al. [358] at Johns Hopkins University,
Baltimore, took a great step toward discovering the
mediator of these effects. They found that there exists a
fourth substance next to the already known vitamin A, B,
and C, in fat preparations or cod-liver oil, which they
called vitamin D (the fourth letter in the alphabet). In the
next years, seminal papers of Hess/Weinstock, Steenbock,
Windaus/Hess, and Rosenheim/Webster more and more
drew nearer to the molecular structure of vitamin D
[359–363]. All teams in London, Göttingen, and New
York worked together “according to a friendly arrange-
ment” [364]. Finally, the structure of the important
provitamin was discovered simultaneously by Windaus/
Hess in Göttingen/New York and Rosenheim/Webster in
London [362, 365].

To summarize the discovery of vitamin D, it remains
surprising that only Adolf Windaus received the Nobel
Prize in Chemistry in 1928 “for the services rendered
through his research into the constitution of the sterols and
their connection with the vitamins” declared on the official
site of the Nobel Prize homepage (https://www.nobelprize.
org/prizes/chemistry/1928/summary/). A share of the
prize betweenWindaus, Hess, and Rosenheim would have
beenmore appropriate when the subject of the price would
have been vitamin D alone.

In the late 1960s and early 1970s, the first evidence
appeared indicative of a vitamin D receptor (VDR)
[366–368]. The receptor had a generalized tissue distri-
bution beyond the classical target organs of the intestine
(calcium uptake), bone (calcium incorporation), and
kidneys (calcium reabsorption) [369]. In 1983, a 1,25-
dihydroxyvitamin D3 receptor macromolecule was de-
tected in peripheral mononuclear leukocytes and T and B
lymphocytes from normal humans [370]. The gene for
the VDR has been discovered in the later 1980s [371,
372]. Interestingly, over the past 3 decades Haussler, Pike
and colleagues have demonstrated that 1,25-(OH)2 vi-
tamin D3 works through a VDR-mediated mechanism
that involves many coactivators and repressors or directly
interact with and regulate hundreds of genes in the entire
body (partly by epigenetic mechanisms) [373].

Clinical and translational studies finally showed the
major effects of vitamin D3 that include bone meta-
bolism, protection against bacterial and viral infections
and immune system modulation [374, 375]. Late at the
beginning of the XXI century, several findings indicated a
complex interplay between viral infections and vitamin
D, including the induction of an antiviral state, functional
immunoregulatory features, interaction with cellular and
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viral factors, induction of autophagy and apoptosis, and
genetic and epigenetic alterations [376]. The most recent
evidences for the antiviral effects of vitamin D were
shown from 2020 onwards in the context of the SARS-
Cov-2 infection (COVID-19) and the effects of low vi-
tamin D serum levels on COVID-19 severity [377].

Another set of extra-endocrine effects exerted by vi-
tamin D3 concerned its immunoregulatory activities, first
shown in 1981 with vitamin D-induced in vitro differ-
entiation of mouse myeloid leukemia cells and vitamin
D3 metabolism-dependent phagocytic functions of
macrophages [378, 379]. In 1984, the combination of the
presence of the VDR in human T lymphocytes and the
effect of vitamin D3 (1,25-dihydroxyvitamin D3) in in-
hibiting the growth-promoting interleukin-2 produced
by human T lymphocytes activated in vitro represented
the first evidence of vitamin D3 as an immunoregulatory
hormone [380].

As for the role of vitamin D in rheumatology, until
November 2023 almost 6,000 publications (PubMed)
have investigated it, reporting progressive achievements
in basic and clinical research regarding the role of vitamin
D3 in immune-mediated and autoimmune pathological
conditions [381, 382]. From a practical point of view, data
have confirmed that keeping serum 25(OH)D concen-
trations above 50 ng/mL (125 nmol/L) all year long re-
duces the risk for community outbreaks of infections,
sepsis, and autoimmune disorders [383].

Afferent Pathways from the Immune System to the
Brain

The Clinical Problem
Several autoimmune disease can directly affect the

CNS such as multiple sclerosis, Guillain-Barré syndrome,
neuromyelitis optica, autoimmune hypophysitis, and
some others. A peripheral immune cell is usually the
stimulator of the local autoimmune problem in the brain.
Other autoimmune disease such as neuropsychiatric SLE
can severely affect the CNS through brain-reactive au-
toantibodies and CNS vasculitis leading even to overt
psychosis [384]. These diseases/phenomena are not in-
cluded in our presentation.

Although separation of organic CNS diseases based on
central immune reactions of aggressive peripheral im-
mune cells in contrast to “functional disorders” based on
peripheral inflammation is difficult, we focused here on
the latter bystander disease sequelae like fatigue, anxiety,
insomnia, and depression. The observation of fatigue,
anxiety, insomnia, and depression in patients with

chronic inflammatory diseases goes back into the 1930s
and even before (summarized in [385, 386]). In the 1960s
and 1970s, smaller studies correctly identified anxiety and
depression in patients with RA [387–391] or SLE [386].
However, clinicians did not know the epidemiologic
dimension of these sequelae for many years.

This markedly changed with the introduction of health
scoring systems that also included questions towards
anxiety and depression like the “Arthritis Impact Mea-
surement Scales (AIMS)” in 1980 [392, 393], the
“Stanford Health Assessment Questionnaire Functional
Disability Index (HAQ)” [394], or the “short-form health
survey (SF-36)” [395]. From 1990 onwards, with the use
of scoring systems, many epidemiological studies clearly
confirmed the frequent presence of fatigue, anxiety, in-
somnia, and depression [396–402]. Anxiety, insomnia,
and depression were linked to disease activity and pain
[403–405].

Similarly, fatigue was not a clinical manifestation that
would have been recognized until the middle of the 1980s
[406–408]. Neurasthenia as it was called in much earlier
times – from the 19th century onwards – had a strong
negative connotation (e.g., [409]). Many rheumatologists
recognized fatigue in the context of fibromyalgia, a dis-
ease that was not palpable for the typical physician in the
1980s/1990s or before. Modern systematic reviews and
meta-analyses demonstrated a prevalence for fatigue in
chronic rheumatic diseases in the range of 40–60%
(healthy population 9–20%) and a prevalence for de-
pression in the range of 10–20% (healthy population:
2–4%). Nowadays, the clinical problem is obvious.

Pathophysiology
Benjamin Hart was the first to have described sickness

behavior in animals [410, 411]. Key characteristics are
lethargy, sleepiness and depression, anorexia and less
thirst, weight loss, reduced grooming and bodily activity,
and he recognized that “it is a highly organized behavioral
strategy . . . at times critical to the survival of an indi-
vidual” [411]. He also mentions that the sickness re-
sponse saves energy for making fever and installing an
adequate immune reaction. He hypothesized that IL-1 is
the essential central and peripheral cytokine in these very
acute responses [411].

IL-1 was the cytokine of interest in finding an im-
portant sensory role of afferent vagus nerve fibers in 1994.
Two groups independently discovered vagus-mediated
sickness behavior including fever responses elicited by
injection of proinflammatory substances into the peri-
toneal cavity [228–230, 412]. The group of Robert
Dantzer and Rosemarie Bluthé focused on IL-1 in their
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mechanistic studies of sickness behavior [413, 414]. The
endogenous IL-1 receptor antagonist blocked IL-1 me-
diated effects in the CNS [415] (10,437). IL-1 also dis-
turbed sexual behavior in rats injected with IL-1, and this
disturbance was aggravated by parallel administration of
TNF [416]. This latter phenomenon clearly points to the
redundancy of cytokines in stimulating sickness behavior.

At the beginning of the 2000s, the link between cy-
tokines and depression was more and more established.
One study in human subjects was groundbreaking be-
cause the group of Andy Miller from Atlanta, GA, USA,
showed that interferon alpha therapy in 40 melanoma
patients led to severe depression, particularly, in those
patients on parallel placebo therapy in contrast to parallel
paroxetine [417]. The interferons entered the stage of
sickness behavior.

In rheumatology, anti-TNF therapy was just approved
for the treatment of patients with RA [418]. In 2004, in RA
patients, the reduction of fatigue by anti-TNF strategies
was first described in a progress report [419], and this was
supported by a report on IL-1 receptor antagonist (ana-
kinra) [420, 421]. The first clear indication of a highly
beneficial effect on fatigue of biologic disease-modifying
antirheumatic therapy was given in a study in psoriasis
patients in 2006 [422] and in RA in the same year [423].
Soon other similar studies followed to confirm these fa-
vorable effects in other chronic inflammatory diseases.

We recently summarized the pathophysiologic un-
derpinnings of cytokine-induced fatigue making use of
many basic research studies (historical literature in this
reference [424]). Robert Dantzer, in a review article of
2008, described the pathways from high inflammatory
load to fatigue, anxiety, and finally major depression as a
continuum with the end result of “decompensation of the
mechanisms that regulate sickness behavior” [425]. Here,
decompensation means breakdown of physiological
mechanisms, unfortunately, leading to pathology. Recall
that sickness behavior is an evolutionary positively se-
lected physiological strategy of the body to preserve
energy stores for the activated immune system [165]. An
important aspect in decompensationmight be adverse life
events experienced in childhood and adolescence as
described above [73].

Evolutionary Medicine and Energy Regulation – An
Umbrella Theory

Evolutionary medicine is a relatively new approach in
psycho-neuro-endocrine immunology in rheumatic dis-
eases that started in the later 2000s. This is not totally

correct because aspects like sickness behavior (see above)
have been seen through the lens of evolutionary medicine
already in the late 1980s [411].

Combining evolutionary medicine with bodily energy
regulation, however, results in a strong umbrella theory
that can teach us much about the clinical manifestations
of chronic inflammatory diseases [165, 204, 426–432].
The model will not be repeated here in detail due to space
constraints. In short, the theory says that physiological
responses of the immune system and the brain – the two
dominant selfish organ systems – were positively selected
during evolution for transient, non-life-eliminating in-
flammatory episodes like infection or wound healing. In
chronic inflammatory diseases, our body uses the same
basically physiological responses for a too long time.

Suffice it to say that disease sequelae like fatigue,
anxiety, depression, insomnia, anorexia, malnutrition,
volume overload due to increased water retention, ca-
chexia, cachectic obesity, insulin resistance and hyper-
insulinemia, dyslipidemia, inadequate secretion of cor-
tisol relative to inflammation, loss of androgens and
higher conversion of androgens to estrogens, hypo-
gonadism, local adipose tissue in inflamed regions, high
sympathetic activity, hypertension, loss of local sympa-
thetic nerve fibers, decreased parasympathetic activity,
sprouting of sensory nerve fibers and sensory sensitiza-
tion, inflammation-related anemia, and inflammation-
related osteopenia can be explained using the theory.
Considering evolved energy trade-offs helps us under-
stand how an energy imbalance can lead to these disease
sequelae [165, 204, 426–432].

Some Thoughts at the End

A brief history on psycho-neuro-endocrine immu-
nology in the field of rheumatology unfortunately cannot
address all relevant aspects of one specific field, and the
authors are very aware of this shortcoming. Therefore, the
reader must see this review as a viewpoint through the
biased eyes of the authors. We apologize that we missed
several publications that have paved the way to psycho-
neuro-endocrine immunology of rheumatic diseases. In
addition, including publications for an article like this one
must necessarily stop at a certain time point, which in our
situation is somewhere around the late 2000 years (but
some papers were also included from the 2010s). We
know that important articles have appeared thereafter.

For example, former critics now recognize dysfunction
of the hypothalamic-pituitary adrenal axis as a relatively
normal thing in patients with RA (the disproportion
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principle was explained in subchapter 3.5 Hormonal
Pathways – Glucocorticoids). They base the new un-
derstanding on the hyporesponsiveness of the adrenal
gland and on tissue glucocorticoid resistance [433].
Adrenal androgen deficiency became a well-known fact in
clinical medicine, and many clinicians treat their patients
with androgens off-label when serum levels of testos-
terone are low (but big studies do not exist). We have not
reported on prolactin whose proinflammatory role for
chronic inflammatory diseases was described early [434].
Similarly, no report was given on the role of vasoactive
intestinal peptide, an important neuropeptide with anti-
inflammatory activities [435, 436].

The hypogonadal situation in men and women with
decreased ovarian reserve was not part of our presen-
tation, although many studies since 2010 demonstrated
this phenomenon. Investigations on thyroid abnormali-
ties are still in a state of infancy although the low T3
syndrome is often present in our patients. Natriuretic
hormones were not discussed, although we know that
serum levels are often elevated indicating sympathetic
activity, cardiac involvement, or volume overload due to
water retention. We omitted mentioning the role of
corticotropin-releasing hormone, melatonin, and α-MSH
in chronic inflammation.

Finally, the literature on fatigue, anxiety, depression,
and insomnia became innumerable since the year 2010.

Most of it has not been reported here because the general
pathophysiologic ideas were known before. Importantly,
with the focus on fatigue, clinicians started to understand
the broad ideas of psycho-neuro-endocrine immunology
that entered practical rheumatology today.

When we look into the future, we still wish to see more
therapies, which emanate from the field of psycho-neuro-
endocrine immunology. The pharmaceutical companies
addressed some of the ideas, but developments into this
direction are still scarce.

Conflict of Interest Statement

The authors declare that they do not have any conflicts of
interest related to the contents of the work.

Funding Sources

There was no specific funding for this work.

Author Contributions

R.H.S. created tables and wrote the draft version of the
manuscript. M.C. discussed and corrected the text and drafted the
part on vitamin D hormone.

References

1 Glick EN. Asymmetrical rheumatoid arthritis
after poliomyelitis. Br Med J. 1967;3(5556):
26–8. https://doi.org/10.1136/bmj.3.5556.26

2 Jacqueline F. A case of evolutive poly-
arthritis with localisation controlateral to a
hemiplegia. Rev Rhum Mal Osteoartic.
1953;20:323–4.

3 Thompson M, Bywaters EGL. Unilateral
rheumatoid arthritis following hemiplegia.
Ann Rheum Dis. 1962;21(4):370–7. https://
doi.org/10.1136/ard.21.4.370

4 Bland JH, Eddy WM. Hemiplegia and
rheumatoid hemiarthritis. Arthritis Rheum.
1968;11(1):72–80. https://doi.org/10.1002/
art.1780110110

5 Garwolinska H. Effect of hemiplegia on the
course of rheumatoid arthritis. Reumato-
logia. 1972;10(3):259–61.

6 Velayos EE, Cohen BS. The effect of stroke
on well-established rheumatoid arthritis.
Md State Med J. 1972;21(3):38–42.

7 Yaghmai I, Rooholamini SM, Faunce HF.
Unilateral rheumatoid arthritis: protective
effect of neurologic deficits. AJR Am J
Roentgenol. 1977;128(2):299–301. https://
doi.org/10.2214/ajr.128.2.299

8 Smith RD. Effect of hemiparesis on rheu-
matoid arthritis. Arthritis Rheum. 1979;
22(12):1419–20. https://doi.org/10.1002/art.
1780221225

9 Carcassi A, Boschi S, Tundo G, Macri P.
Unilateral rheumatoid arthritis. Minerva
Med. 1981;72(15):951–6.

10 Ueno Y, Sawada K, Imura H. Protective
effect of neural lesion on rheumatoid ar-
thritis. Arthritis Rheum. 1983;26(1):118.
https://doi.org/10.1002/art.1780260124

11 Hamilton S. Unilateral rheumatoid arthritis
in hemiplegia. J Can Assoc Radiol. 1983;
34(1):49–50.

12 Nakamura K, Akizuki M, Kimura A, Chino
N. A case of polyarthritis developed on the
non-paralytic side in a hemiplegic patient.
Ryumachi. 1994;34(3):656–61.

13 Lapadula G, Iannone F, Zuccaro C, Covelli M,
Grattagliano V, Pipitone V. Recovery of ero-
sive rheumatoid arthritis after human im-
munodeficiency virus-1 infection and hemi-
plegia. J Rheumatol. 1997;24(4):747–51.

14 Keyszer G, Langer T, Kornhuber M, Taute
B, Horneff G. Neurovascular mechanisms as
a possible cause of remission of rheumatoid

arthritis in hemiparetic limbs. Ann Rheum
Dis. 2004;63(10):1349–51. https://doi.org/
10.1136/ard.2003.016410

15 DolanAL. Asymmetric rheumatoid vasculitis in
a hemiplegic patient. Ann Rheum Dis. 1995;
54(6):532. https://doi.org/10.1136/ard.54.6.532

16 Glynn JJ, Clayton ML. Sparing effect of
hemiplegia on tophaceous gout. Ann
Rheum Dis. 1976;35(6):534–5. https://doi.
org/10.1136/ard.35.6.534

17 Sethi S, Sequeira W. Sparing effect of
hemiplegia on scleroderma. Ann Rheum
Dis. 1990;49(12):999–1000. https://doi.org/
10.1136/ard.49.12.999

18 Veale D, Farrell M, Fitzgerald O. Mechanism of
joint sparing in a patientwith unilateral psoriatic
arthritis and a longstanding hemiplegia. Br J
Rheumatol. 1993;32(5):413–6. https://doi.org/
10.1093/rheumatology/32.5.413

19 Kane D, Lockhart JC, Balint PV, Mann C,
Ferrell WR, McInnes IB. Protective effect of
sensory denervation in inflammatory ar-
thritis (evidence of regulatory neuro-
immune pathways in the arthritic joint).
Ann Rheum Dis. 2005;64(2):325–7. https://
doi.org/10.1136/ard.2004.022277

198 Neuroimmunomodulation 2024;31:183–210
DOI: 10.1159/000540959

Straub and Cutolo

D
ow

nloaded from
 http://karger.com

/nim
/article-pdf/31/1/183/4282492/000540959.pdf by U

niversitätsbibliothek R
egensburg user on 30 Septem

ber 2024

https://doi.org/10.1136/bmj.3.5556.26
https://doi.org/10.1136/ard.21.4.370
https://doi.org/10.1136/ard.21.4.370
https://doi.org/10.1002/art.1780110110
https://doi.org/10.1002/art.1780110110
https://doi.org/10.2214/ajr.128.2.299
https://doi.org/10.2214/ajr.128.2.299
https://doi.org/10.1002/art.1780221225
https://doi.org/10.1002/art.1780221225
https://doi.org/10.1002/art.1780260124
https://doi.org/10.1136/ard.2003.016410
https://doi.org/10.1136/ard.2003.016410
https://doi.org/10.1136/ard.54.6.532
https://doi.org/10.1136/ard.35.6.534
https://doi.org/10.1136/ard.35.6.534
https://doi.org/10.1136/ard.49.12.999
https://doi.org/10.1136/ard.49.12.999
https://doi.org/10.1093/rheumatology/32.5.413
https://doi.org/10.1093/rheumatology/32.5.413
https://doi.org/10.1136/ard.2004.022277
https://doi.org/10.1136/ard.2004.022277
https://doi.org/10.1159/000540959


20 Bordin G, Atzeni F, Bettazzi L, Beyene NB,
Carrabba M, Sarzi-Puttini P. Unilateral
polymyalgia rheumatica with controlateral
sympathetic dystrophy syndrome. A case of
asymmetrical involvement due to pre-
existing peripheral palsy. Rheumatology.
2006;45(12):1578–80. https://doi.org/10.
1093/rheumatology/kel334

21 Tarkowski E, Naver H, Wallin BG, Blom-
strand C, Tarkowski A. Lateralization of
T-lymphocyte responses in patients with
stroke. Effect of sympathetic dysfunction?
Stroke. 1995;26(1):57–62. https://doi.org/10.
1161/01.str.26.1.57

22 Lee JC, Salonen DC, Inman RD. Unilateral
hemochromatosis arthropathy on a neuro-
genic basis. J Rheumatol. 1997;24(12):
2476–8.

23 Lilly GD. Effect of sympathectomy on de-
velopment of chronic osteoarthritis: case
report. Ann Surg. 1966;163(6):856–8. https://
doi.org/10.1097/00000658-196606000-00006

24 Stricker S. Untersuchungen über die Ge-
fäßwurzel des Ischiadicus. Ber Akad Wiss
Wien. 1876;3:173–85.

25 Bayliss WM. On the origin from the spinal
cord of the vaso-dilator fibres of the hind-
limb, and on the nature of these fibres.
J Physiol. 1901;26(3–4):173–209. https://
doi.org/10.1113/jphysiol.1901.sp000831

26 Bruce AN. Über die Beziehung der sen-
siblen Nervenendigungen zum En-
tzündungsvorgang. Arch Exp Pathol
Pharmakol. 1910;63:424–33.

27 Bruce AN. Vasodilator axon-reflexes. Q J
Exp Physiol. 1913;6(4):339–54. https://doi.
org/10.1113/expphysiol.1913.sp000144

28 Breslauer F. Die Pathogenese des trophi-
schen Gewebeschadens nach der Nerven-
verletzung. Chir Deut Z. 1919;150(1–2):
50–81. https://doi.org/10.1007/bf02796922

29 Lewis T. Experiments relating to cutaneous
hyperalgesia and its spread through somatic
nerves. Clin Sci. 1936;2:373–423.

30 Chapman LF, Ramos A, Goodell H, Wolff
HG. Neurokinin - a polypeptide formed
during neuronal activity in man. Observa-
tions on the axon reflex and antidromic
dorsal root stimulation. Trans Am Neurol
Assoc. 1960;85:42–5.

31 Kelly M. The neurogenic factor in rheu-
matic inflammation. Med J Aust. 1951;
1(24):859–64. https://doi.org/10.5694/j.
1326-5377.1951.tb88497.x

32 Jancso N, Jancso-Gabor A, Szolcsanyi J. Di-
rect evidence for neurogenic inflammation
and its prevention by denervation and by
pretreatment with capsaicin. Br J Pharmacol
Chemother. 1967;31(1):138–51. https://doi.
org/10.1111/j.1476-5381.1967.tb01984.x

33 V Euler US, Gaddum JH. An unidentified
depressor substance in certain tissue ex-
tracts. J Physiol. 1931;72(1):74–87. https://
doi.org/10.1113/jphysiol.1931.sp002763

34 Lembeck F. Central transmission of afferent
impulses. III. Incidence and significance of
the substance P in the dorsal roots of the

spinal cord. Naunyn Schmiedebergs Arch
Exp Pathol Pharmakol. 1953;219(3):
197–213.

35 Otsuka M, Konishi S. Release of substance
P-like immunoreactivity from isolated spi-
nal cord of newborn rat. Nature. 1976;
264(5581):83–4. https://doi.org/10.1038/
264083a0

36 Levine JD, Clark R, Devor M, Helms C,
Moskowitz MA, Basbaum AI. Intraneuronal
substance P contributes to the severity of
experimental arthritis. Science. 1984;
226(4674):547–9. https://doi.org/10.1126/
science.6208609

37 Harrison S, Geppetti P. Substance p. Int J
Biochem Cell Biol. 2001;33(6):555–76.
https://doi.org/10.1016/s1357-2725(01)
00031-0

38 Kidd BL, Mapp PI, Gibson SJ, Polak JM,
O’Higgins F, Buckland-Wright JC, et al. A
neurogenic mechanism for symmetrical
arthritis. Lancet. 1989;2(8672):1128–30.
https://doi.org/10.1016/s0140-6736(89)
91491-8

39 Mapp PI, Terenghi G, Walsh DA, Chen ST,
Cruwys SC, Garrett N, et al. Monoarthritis in
the rat knee induces bilateral and time-
dependent changes in substance P and cal-
citonin gene-related peptide immunoreac-
tivity in the spinal cord. Neuroscience. 1993;
57(4):1091–6. https://doi.org/10.1016/0306-
4522(93)90051-g

40 Suvas S. Role of substance P neuropeptide in
inflammation, wound healing, and tissue
homeostasis. J Immunol. 2017;199(5):
1543–52. https://doi.org/10.4049/jimmunol.
1601751

41 Amara SG, Jonas V, Rosenfeld MG, Ong ES,
Evans RM. Alternative RNA processing in
calcitonin gene expression generates
mRNAs encoding different polypeptide
products. Nature. 1982;298(5871):240–4.
https://doi.org/10.1038/298240a0

42 Holzmann B. Modulation of immune re-
sponses by the neuropeptide CGRP. Amino
acids. 2013;45:1–7. https://doi.org/10.1007/
s00726-011-1161-2

43 Dirmeier M, Capellino S, Schubert T, Angele
P, Anders S, Straub RH. Lower density of
synovial nerve fibres positive for calcitonin
gene-related peptide relative to substance P in
rheumatoid arthritis but not in osteoarthritis.
Rheumatology. 2008;47(1):36–40. https://doi.
org/10.1093/rheumatology/kem301

44 MeeusM, Vervisch S, De Clerck LS,Moorkens
G, Hans G, Nijs J. Central sensitization in
patients with rheumatoid arthritis: a systematic
literature review. Semin Arthritis Rheum.
2012;41(4):556–67. https://doi.org/10.1016/j.
semarthrit.2011.08.001

45 Sherrington CS, Sowton SC. Observations
on reflex responses to single break-shocks.
J Physiol. 1915;49(5):331–48. https://doi.
org/10.1113/jphysiol.1915.sp001713

46 Melzack R, Wall PD. Pain mechanisms: a new
theory. Science. 1965;150(3699):971–9. https://
doi.org/10.1126/science.150.3699.971

47 BrownAG. Effects of descending impulses on
transmission through the spinocervical tract.
J Physiol. 1971;219(1):103–25. https://doi.
org/10.1113/jphysiol.1971.sp009652

48 WillisWD Jr. Anatomy and physiology of
descending control of nociceptive responses of
dorsal horn neurons: comprehensive review.
Prog Brain Res. 1988;77:1–29. https://doi.org/
10.1016/s0079-6123(08)62776-4

49 Schaible HG, König C, Ebersberger A.
Spinal pain processing in arthritis: neuron
and glia (inter)actions. J Neurochem. 2023.
https://doi.org/10.1111/jnc.15742

50 Sluka KA, Westlund KN. An experimental
arthritis model in rats: the effects of NMDA
and non-NMDA antagonists on aspartate
and glutamate release in the dorsal horn.
Neurosci Lett. 1993;149(1):99–102. https://
doi.org/10.1016/0304-3940(93)90357-q

51 Rees H, Sluka KA, Westlund KN, Willis WD.
Do dorsal root reflexes augment peripheral
inflammation? Neuroreport. 1994;5(7):821–4.
https://doi.org/10.1097/00001756-199403000-
00021

52 Weidler C, Holzer C, Harbuz M, Hofbauer
R, Angele P, Schölmerich J, et al. Low
density of sympathetic nerve fibres and
increased density of brain derived neuro-
trophic factor positive cells in RA synovium.
Ann Rheum Dis. 2005;64(1):13–20. https://
doi.org/10.1136/ard.2003.016154

53 Ossyssek B, Anders S, Grifka J, Straub RH.
Surgical synovectomy decreases density of
sensory nerve fibers in synovial tissue of
non-inflamed controls and rheumatoid ar-
thritis patients. J Orthop Res. 2011;29(2):
297–302. https://doi.org/10.1002/jor.21233

54 Bao L, Zhu Y, Elhassan AM, Wu Q, Xiao B,
Zhu J, et al. Adjuvant-induced arthritis: IL-1
beta, IL-6 and TNF-alpha are up-regulated in
the spinal cord. Neuroreport. 2001;12(18):
3905–8. https://doi.org/10.1097/00001756-
200112210-00010

55 Watkins LR, Maier SF. Beyond neurons:
evidence that immune and glial cells con-
tribute to pathological pain states. Physiol
Rev. 2002;82(4):981–1011. https://doi.org/
10.1152/physrev.00011.2002

56 Boyle DL, Jones TL, Hammaker D, Svensson
CI, Rosengren S, Albani S, et al. Regulation of
peripheral inflammation by spinal p38 MAP
kinase in rats. PLoS Med. 2006;3(9):e338.
https://doi.org/10.1371/journal.pmed.0030338

57 Boettger MK, Weber K, Grossmann D,
Gajda M, Bauer R, Bar KJ, et al. Spinal
tumor necrosis factor alpha neutralization
reduces peripheral inflammation and hy-
peralgesia and suppresses autonomic re-
sponses in experimental arthritis: a role for
spinal tumor necrosis factor alpha during
induction and maintenance of peripheral
inflammation. Arthritis Rheum. 2010;62(5):
1308–18. https://doi.org/10.1002/art.27380

58 Schaible HG. Nociceptive neurons detect cy-
tokines in arthritis. Arthritis Res Ther. 2014;
16(5):470. https://doi.org/10.1186/s13075-014-
0470-8

History of Neuroendocrine Immune
Mechanisms

Neuroimmunomodulation 2024;31:183–210
DOI: 10.1159/000540959

199

D
ow

nloaded from
 http://karger.com

/nim
/article-pdf/31/1/183/4282492/000540959.pdf by U

niversitätsbibliothek R
egensburg user on 30 Septem

ber 2024

https://doi.org/10.1093/rheumatology/kel334
https://doi.org/10.1093/rheumatology/kel334
https://doi.org/10.1161/01.str.26.1.57
https://doi.org/10.1161/01.str.26.1.57
https://doi.org/10.1097/00000658-196606000-00006
https://doi.org/10.1097/00000658-196606000-00006
https://doi.org/10.1113/jphysiol.1901.sp000831
https://doi.org/10.1113/jphysiol.1901.sp000831
https://doi.org/10.1113/expphysiol.1913.sp000144
https://doi.org/10.1113/expphysiol.1913.sp000144
https://doi.org/10.1007/bf02796922
https://doi.org/10.5694/j.1326-5377.1951.tb88497.x
https://doi.org/10.5694/j.1326-5377.1951.tb88497.x
https://doi.org/10.1111/j.1476-5381.1967.tb01984.x
https://doi.org/10.1111/j.1476-5381.1967.tb01984.x
https://doi.org/10.1113/jphysiol.1931.sp002763
https://doi.org/10.1113/jphysiol.1931.sp002763
https://doi.org/10.1038/264083a0
https://doi.org/10.1038/264083a0
https://doi.org/10.1126/science.6208609
https://doi.org/10.1126/science.6208609
https://doi.org/10.1016/s1357-2725(01)00031-0
https://doi.org/10.1016/s1357-2725(01)00031-0
https://doi.org/10.1016/s0140-6736(89)91491-8
https://doi.org/10.1016/s0140-6736(89)91491-8
https://doi.org/10.1016/0306-4522(93)90051-g
https://doi.org/10.1016/0306-4522(93)90051-g
https://doi.org/10.4049/jimmunol.1601751
https://doi.org/10.4049/jimmunol.1601751
https://doi.org/10.1038/298240a0
https://doi.org/10.1007/s00726-011-1161-2
https://doi.org/10.1007/s00726-011-1161-2
https://doi.org/10.1093/rheumatology/kem301
https://doi.org/10.1093/rheumatology/kem301
https://doi.org/10.1016/j.semarthrit.2011.08.001
https://doi.org/10.1016/j.semarthrit.2011.08.001
https://doi.org/10.1113/jphysiol.1915.sp001713
https://doi.org/10.1113/jphysiol.1915.sp001713
https://doi.org/10.1126/science.150.3699.971
https://doi.org/10.1126/science.150.3699.971
https://doi.org/10.1113/jphysiol.1971.sp009652
https://doi.org/10.1113/jphysiol.1971.sp009652
https://doi.org/10.1016/s0079-6123(08)62776-4
https://doi.org/10.1016/s0079-6123(08)62776-4
https://doi.org/10.1111/jnc.15742
https://doi.org/10.1016/0304-3940(93)90357-q
https://doi.org/10.1016/0304-3940(93)90357-q
https://doi.org/10.1097/00001756-199403000-00021
https://doi.org/10.1097/00001756-199403000-00021
https://doi.org/10.1136/ard.2003.016154
https://doi.org/10.1136/ard.2003.016154
https://doi.org/10.1002/jor.21233
https://doi.org/10.1097/00001756-200112210-00010
https://doi.org/10.1097/00001756-200112210-00010
https://doi.org/10.1152/physrev.00011.2002
https://doi.org/10.1152/physrev.00011.2002
https://doi.org/10.1371/journal.pmed.0030338
https://doi.org/10.1002/art.27380
https://doi.org/10.1186/s13075-014-0470-8
https://doi.org/10.1186/s13075-014-0470-8
https://doi.org/10.1159/000540959


59 Cao Y, Fan D, Yin Y. Pain mechanism in
rheumatoid arthritis: from cytokines to
central sensitization. Mediators Inflamm.
2020;2020:2076328. https://doi.org/10.1155/
2020/2076328

60 Svensson CI, Hua XY, Protter AA, Po-
well HC, Yaksh TL. Spinal p38 MAP
kinase is necessary for NMDA-induced
spinal PGE(2) release and thermal hy-
peralgesia. Neuroreport. 2003;14(8):
1153–7. https://doi.org/10.1097/00001756-
200306110-00010

61 Sarzi-Puttini P, Zen M, Arru F, Giorgi V,
Choy EA. Reprint of “Residual pain in
rheumatoid arthritis: is it a real prob-
lem?” Autoimmun Rev. 2024;23(1):
103516. https://doi.org/10.1016/j.autrev.
2024.103516

62 Bas DB, Su J, Sandor K, Agalave NM,
Lundberg J, Codeluppi S, et al. Collagen
antibody-induced arthritis evokes persistent
pain with spinal glial involvement and
transient prostaglandin dependency. Ar-
thritis Rheum. 2012;64(12):3886–96.
https://doi.org/10.1002/art.37686

63 Dawes JM, Weir GA, Middleton SJ, Patel R,
Chisholm KI, Pettingill P, et al. Immune or
genetic-mediated disruption of CASPR2
causes pain hypersensitivity due to en-
hanced primary afferent excitability. Neu-
ron. 2018;97(4):806–22.e10. https://doi.org/
10.1016/j.neuron.2018.01.033

64 Hess A, Axmann R, Rech J, Finzel S, Heindl C,
Kreitz S, et al. Blockade of TNF-α rapidly inhibits
pain responses in the central nervous system.
Proc Natl Acad Sci U S A. 2011;108(9):3731–6.
https://doi.org/10.1073/pnas.1011774108

65 Gowers WR. A lecture on lumbago: its
lessons and analogues: delivered at the na-
tional hospital for the paralysed and epi-
leptic. Br Med J. 1904;1(2246):117–21.
https://doi.org/10.1136/bmj.1.2246.117

66 Yunus M, Masi AT, Calabro JJ, Miller KA,
Feigenbaum SL. Primary fibromyalgia (fi-
brositis): clinical study of 50 patients with
matched normal controls. Semin Arthritis
Rheum. 1981;11(1):151–71. https://doi.org/
10.1016/0049-0172(81)90096-2

67 Wallace DJ. The fibromyalgia syndrome.
Ann Med. 1997;29(1):9–21. https://doi.org/
10.3109/07853899708998739

68 Goebel A, Krock E, Gentry C, Israel MR,
Jurczak A, Urbina CM, et al. Passive transfer
of fibromyalgia symptoms from patients to
mice. J Clin Invest. 2021;131(13):e144201.
https://doi.org/10.1172/JCI144201

69 Kosek E, Cohen M, Baron R, Gebhart GF,
Mico JA, Rice ASC, et al. Do we need a third
mechanistic descriptor for chronic pain
states? Pain. 2016;157(7):1382–6. https://doi.
org/10.1097/j.pain.0000000000000507

70 Fitzcharles MA, Cohen SP, Clauw DJ, Lit-
tlejohn G, Usui C, Häuser W. Nociplastic
pain: towards an understanding of prevalent
pain conditions. Lancet. 2021;397(10289):
2098–110. https://doi.org/10.1016/S0140-
6736(21)00392-5

71 Engel GL. Psychogenic pain and pain-prone
patient. Am J Med. 1959;26(6):899–918.
https://doi.org/10.1016/0002-9343(59)90212-8

72 Boisset-Pioro MH, Esdaile JM, Fitzcharles
MA. Sexual and physical abuse in women
with fibromyalgia syndrome. Arthritis
Rheum. 1995;38(2):235–41. https://doi.org/
10.1002/art.1780380212

73 Straub RH. Early trauma as the origin of
chronic inflammation - a psychoneur-
oimmunological perspective. Heidelberg:
Springer; 2023.

74 Henoch MJ, Batson JW, Baum J. Psychoso-
cial factors in juvenile rheumatoid arthritis.
Arthritis Rheum. 1978;21(2):229–33. https://
doi.org/10.1002/art.1780210209

75 Kopec JA, Sayre EC. Traumatic experiences
in childhood and the risk of arthritis: a
prospective cohort study. Can J Public
Health. 2004;95:361–5. https://doi.org/10.
1007/BF03405147

76 Oakes PC, Fisahn C, Iwanaga J, DiLorenzo D,
Oskouian RJ, Tubbs RS. A history of the au-
tonomic nervous system: part I: from Galen to
Bichat. Childs Nerv Syst. 2016;32(12):2303–8.
https://doi.org/10.1007/s00381-016-3246-4

77 Ackerknecht EH. The history of the discovery
of the vegatative (autonomic) nervous sys-
tem. Med Hist. 1974;18:1–8. https://doi.org/
10.1017/s0025727300019189

78 Langely JN. The autonomic nervous system.
Cambridge: W. Heffer and Sons, Ltd; 1921.

79 White JC, Smithwick RH, Simeone FA The
autonomic nervous system; anatomy,
physiology, and surgical application. Lon-
don: Macmillan Surgical Monographs; 1952.

80 Oakes PC, Fisahn C, Iwanaga J, DiLorenzo
D, Oskouian RJ, Tubbs RS. A history of the
autonomic nervous system: part II: from
Reil to the modern era. Childs Nerv Syst.
2016;32(12):2309–15. https://doi.org/10.
1007/s00381-016-3247-3

81 Rao Y. The first hormone: adrenaline. Trends
Endocrinol Metab. 2019;30(6):331–4. https://
doi.org/10.1016/j.tem.2019.03.005

82 Oliver G, Schäfer EA. The physiological
effects of extracts of the suprarenal capsules.
J Physiol. 1895;18(3):230–76. https://doi.
org/10.1113/jphysiol.1895.sp000564

83 Abel J. On epinephrine, the active constituent
of the suprarenal capsule and its compounds.
Proc Am Physiol Soc. 1898(3–4):3–5.

84 Takamine J. Adrenalin, the active prin-
ciple of the suprarenal glands, and its
mode of preparation. Am J Pharm. 1901;
73:523–31.

85 Von Euler US. A substance with sympathin E
properties in spleen extracts. Nature. 1946;
157:369. https://doi.org/10.1038/157369b0

86 Von Euler US. Sympathin in adrenergic
nerve fibres. J Physiol. 1946;105:26.

87 Von Euler US, Purkhold A. Effect of sym-
pathetic denervation on the noradrenaline
and adrenaline content of the spleen, kidney,
and salivary glands in the sheep. Acta Physiol
Scand. 1951;24(2–3):212–7. https://doi.org/
10.1111/j.1748-1716.1951.tb00839.x

88 Axelrod J, Weil-Malherbe H, Tomchick R.
The physiological disposition of H3-
epinephrine and its metabolite meta-
nephrine. J Pharmacol Exp Ther. 1959;127:
251–6.

89 Ishigami T. The influence of psychic acts on
the progress of pulmonary tuberculosis. Am
Rev Tuberc. 1919;2:470–84.

90 Metalnikov S, Chorine V. Role des reflexes
conditionnels dans l’immunite. Ann Inst
Pasteur. 1926;40:893–900.

91 Exton MS, von Hörsten S, Schult M, Vöge
J, Strubel T, Donath S, et al. Behaviorally
conditioned immunosuppression using
cyclosporine A: central nervous system
reduces IL-2 production via splenic in-
nervation. J Neuroimmunol. 1998;
88(1–2):182–91. https://doi.org/10.1016/
s0165-5728(98)00122-2

92 Szentivanyi A, Filipp G. Anaphylaxis and
the nervous system. II. Ann Allergy. 1958;
16(2):143–51.

93 Szentivanyi A, Szekely J. Anaphylaxis and
the nervous system. IV. Ann Allergy. 1958;
16(4):389–92.

94 Draskoci M, Jankovic BD. Involution of the
thymus and suppression of immune re-
sponses in rats treated with reserpine. Na-
ture. 1964;202:408–9. https://doi.org/10.
1038/202408a0

95 Benner MH, Enta T, Lockey S Jr, Makino S,
Reed CE. The immunosuppressive effect of
epinephrine and the adjuvant effect of
beta-adrenergic blockade. J Allergy.
1968;41.

96 Macmanus JP, Whitfield JF. Stimulation of
DNA synthesis and mitotic activity of thymic
lymphocytes by cyclic adenosine 3’5’-
monophosphate. Exp Cell Res. 1969;58(1):
188–91. https://doi.org/10.1016/0014-4827(69)
90135-9

97 Smith JW, Steiner AL, Newberry WM Jr,
Parker CW. Cyclic nucleotide inhibition of
lymphocyte transformation. Clin Res. 1969;
17:549. (abstract).

98 Hadden JW, Hadden EM, Middleton E Jr.
Lymphocyte blast transformation.
I. Demonstration of adrenergic receptors
in human peripheral lymphocytes. Cell
Immunol. 1970;1(6):583–95. https://doi.
org/10.1016/0008-8749(70)90024-9

99 Hadden JW, Hadden EM, Middleton E Jr,
Good RA. Lymphocyte blast transforma-
tion. II. The mechanism of action of alpha
adrenergic receptor effects. Int Arch Al-
lergy Appl Immunol. 1971;40(4–5):
526–39.

100 Bourne HR, Melmon KL. Adenyl cyclase in
human leukocytes: evidence for activation
by separate beta adrenergic and prosta-
glandin receptors. J Pharmacol Exp Ther.
1971;178:1–7.

101 Sokol WN, Beall GN. Leukocytic epi-
nephrine receptors of normal and asth-
matic individuals. J Allergy Clin Im-
munol. 1975;55(5):310–24. https://doi.
org/10.1016/0091-6749(75)90003-2

200 Neuroimmunomodulation 2024;31:183–210
DOI: 10.1159/000540959

Straub and Cutolo

D
ow

nloaded from
 http://karger.com

/nim
/article-pdf/31/1/183/4282492/000540959.pdf by U

niversitätsbibliothek R
egensburg user on 30 Septem

ber 2024

https://doi.org/10.1155/2020/2076328
https://doi.org/10.1155/2020/2076328
https://doi.org/10.1097/00001756-200306110-00010
https://doi.org/10.1097/00001756-200306110-00010
https://doi.org/10.1016/j.autrev.2024.103516
https://doi.org/10.1016/j.autrev.2024.103516
https://doi.org/10.1002/art.37686
https://doi.org/10.1016/j.neuron.2018.01.033
https://doi.org/10.1016/j.neuron.2018.01.033
https://doi.org/10.1073/pnas.1011774108
https://doi.org/10.1136/bmj.1.2246.117
https://doi.org/10.1016/0049-0172(81)90096-2
https://doi.org/10.1016/0049-0172(81)90096-2
https://doi.org/10.3109/07853899708998739
https://doi.org/10.3109/07853899708998739
https://doi.org/10.1172/JCI144201
https://doi.org/10.1097/j.pain.0000000000000507
https://doi.org/10.1097/j.pain.0000000000000507
https://doi.org/10.1016/S0140-6736(21)00392-5
https://doi.org/10.1016/S0140-6736(21)00392-5
https://doi.org/10.1016/0002-9343(59)90212-8
https://doi.org/10.1002/art.1780380212
https://doi.org/10.1002/art.1780380212
https://doi.org/10.1002/art.1780210209
https://doi.org/10.1002/art.1780210209
https://doi.org/10.1007/BF03405147
https://doi.org/10.1007/BF03405147
https://doi.org/10.1007/s00381-016-3246-4
https://doi.org/10.1017/s0025727300019189
https://doi.org/10.1017/s0025727300019189
https://doi.org/10.1007/s00381-016-3247-3
https://doi.org/10.1007/s00381-016-3247-3
https://doi.org/10.1016/j.tem.2019.03.005
https://doi.org/10.1016/j.tem.2019.03.005
https://doi.org/10.1113/jphysiol.1895.sp000564
https://doi.org/10.1113/jphysiol.1895.sp000564
https://doi.org/10.1038/157369b0
https://doi.org/10.1111/j.1748-1716.1951.tb00839.x
https://doi.org/10.1111/j.1748-1716.1951.tb00839.x
https://doi.org/10.1016/s0165-5728(98)00122-2
https://doi.org/10.1016/s0165-5728(98)00122-2
https://doi.org/10.1038/202408a0
https://doi.org/10.1038/202408a0
https://doi.org/10.1016/0014-4827(69)90135-9
https://doi.org/10.1016/0014-4827(69)90135-9
https://doi.org/10.1016/0008-8749(70)90024-9
https://doi.org/10.1016/0008-8749(70)90024-9
https://doi.org/10.1016/0091-6749(75)90003-2
https://doi.org/10.1016/0091-6749(75)90003-2
https://doi.org/10.1159/000540959


102 Coffey RG, Hadden EM, Hadden JW.
Norepinephrine stimulation of lympho-
cyte ATPase by an alpha adrenergic re-
ceptor mechanism. Endocr Res Commun.
1975;2:179–98. https://doi.org/10.1080/
07435807509053848

103 Grieco MH, Siegel I, Goel Z. Modulation
of human T lymphocyte rosette formation
by autonomic agonists and cyclic nucle-
otides. J Allergy Clin Immunol. 1976;58(1
PT. 2):149–59. https://doi.org/10.1016/
0091-6749(76)90150-0

104 Williams LT, Snyderman R, Lefkowitz RJ.
Identification of beta-adrenergic receptors
in human lymphocytes by (-) (3H) alpre-
nolol binding. J Clin Invest. 1976;57(1):
149–55. https://doi.org/10.1172/JCI108254

105 Conolly ME, Greenacre JK. The beta-
adrenoceptor of the human lymphocyte
and human lung parenchyma. Br J Phar-
macol. 1977;59(1):17–23. https://doi.org/10.
1111/j.1476-5381.1977.tb06971.x

106 Dunne JV, Peters CJ, Moore TL, Vaughan
JH. Differential effects of propranolol on
lymphocyte rosette formation and response
to plant mitogens. Arthritis Rheum. 1978;
21(7):767–73. https://doi.org/10.1002/art.
1780210705

107 Besedovsky HO, del Rey A, Sorkin E, Da
Prada M, Keller HH. Immunoregulation
mediated by the sympathetic nervous
system. Cell Immunol. 1979;48(2):
346–55. https://doi.org/10.1016/0008-
8749(79)90129-1

108 del Rey A, Besedovsky HO, Sorkin E, Da
Prada M, Arrenbrecht S. Immunoregu-
lation mediated by the sympathetic ner-
vous system, II. Cell Immunol. 1981;
63(2):329–34. https://doi.org/10.1016/
0008-8749(81)90012-5

109 del Rey A, Besedovsky HO, Sorkin E, Da
Prada M, Bondiolotti GP. Sympathetic im-
munoregulation: difference between high-
and low-responder animals. Am J Physiol.
1982;242(1):R30–3. https://doi.org/10.1152/
ajpregu.1982.242.1.R30

110 Besedovsky H, del Rey A, Sorkin E, Da Prada
M, Burri R, Honegger C. The immune re-
sponse evokes changes in brain noradrenergic
neurons. Science. 1983;221(4610):564–6.
https://doi.org/10.1126/science.6867729

111 Falck B, Torp A. A fluorescence method for
histochemical demonstration of noradren-
alin in the adrenal medulla. Med Exp Int J
Exp Med. 1961;5(6):429–32. https://doi.org/
10.1159/000135115

112 Hillarp NA, Hökfelt B. Evidence of adren-
aline and noradrenaline in separate adrenal
medullary cells. Acta Physiol Scand. 1953;
30(1):55–68. https://doi.org/10.1111/j.1748-
1716.1954.tb01074.x

113 Lindvall O, Björklund A, Hökfelt T, Ljung-
dahl A. Application of the glyoxylic acid
method to vibratome sections for the im-
proved visualization of central catecholamine
neurons. Histochemie. 1973;35(1):31–8.
https://doi.org/10.1007/BF00303662

114 Dahlstroem AB, Zetterstroem BE. Nor-
adrenaline stores in nerve terminals of the
spleen: changes during hemorrhagic shock.
Science. 1965;147(3665):1583–5. https://doi.
org/10.1126/science.147.3665.1583

115 Hamberger B, Malmfors T, Stjärne L.
Noradrenaline uptake and fluorescence
histochemistry in bovine splenic nerves.
Acta Physiol Scand. 1971;82(1):107–14.
https://doi.org/10.1111/j.1748-1716.1971.
tb04947.x

116 Sergeeva VE. Histotopography of catechol-
amines in the mammalian thymus. Bull Exp
Biol Med. 1974;77(4):456–8. https://doi.org/
10.1007/BF00798115

117 Giron LT Jr, Crutcher KA, Davis JN. Lymph
nodes: a possible site for sympathetic neu-
ronal regulation of immune responses. Ann
Neurol. 1980;8:520–5. https://doi.org/10.
1002/ana.410080509

118 Felten DL, Overhage JM, Felten SY,
Schmedtje JF. Noradrenergic sympathetic
innervation of lymphoid tissue in the rabbit
appendix: further evidence for a link be-
tween the nervous and immune systems.
Brain Res Bull. 1981;7(5):595–612. https://
doi.org/10.1016/0361-9230(81)90010-1

119 Nagatsu T, Levitt M, Udenfriend S. Ty-
rosine hydroxylase. J Biol Chem. 1964;
239(9):2910–7. https://doi.org/10.1016/
s0021-9258(18)93832-9

120 Axelrod J, Kopin IJ. The uptake, storage,
release and metabolism of noradrenaline in
sympathetic nerves. Prog Brain Res. 1969;
31:21–32. https://doi.org/10.1016/S0079-
6123(08)63224-0

121 Laduron P, Belpaire F. Evidence for an
extragranular localization of tyrosine hy-
droxylase. Nature. 1968;217(5134):1155–6.
https://doi.org/10.1038/2171155a0

122 Kopin IJ, Silberstein SD. Axons of sympa-
thetic neurons; transport of enzymes in vivo
and properties of axonal sprouts in vitro.
Pharmacol Rev. 1972;24(2):245–54.

123 Joh TH, Geghman C, Reis D. Immuno-
chemical demonstration of increased ac-
cumulation of tyrosine hydroxylase pro-
tein in sympathetic ganglia and adrenal
medulla elicited by reserpine. Proc Natl
Acad Sci U S A. 1973;70(10):2767–71.
https://doi.org/10.1073/pnas.70.10.2767

124 Pickel VM, Joh TH, Field PM, Becker CG,
Reis DJ. Cellular localization of tyrosine
hydroxylase by immunohistochemistry.
J Histochem Cytochem. 1975;23:1–12.
https://doi.org/10.1177/23.1.234988

125 Jesseph JM, Felten DL. Noradrenergic in-
nervation of the Gut-Associated Lymphoid
Tissues (GALT) in the rabbit [abstract].
Anat Rec. 1984;208:81A–A.

126 Felten DL, Felten SY, Carlson SL, Ol-
schowka JA, Livnat S. Noradrenergic and
peptidergic innervation of lymphoid tissue.
J Immunol. 1985;135(2):755s–65s. https://
doi.org/10.4049/jimmunol.135.2.755

127 Felten DL, Felten SY, Bellinger DL, Carlson SL,
Ackerman KD, Madden KS, et al. Noradren-

ergic sympathetic neural interactions with the
immune system: structure and function. Im-
munol Rev. 1987;100:225–60. https://doi.org/
10.1111/j.1600-065x.1987.tb00534.x

128 Felten SY, Olschowka J. Noradrenergic
sympathetic innervation of the spleen: II.
Tyrosine Hydroxylase (TH)-positive nerve
terminals form synapticlike contacts on
lymphocytes in the splenic white pulp.
J Neurosci Res. 1987;18(1):37–48. https://
doi.org/10.1002/jnr.490180108

129 Lorton D, Hewitt D, Bellinger DL, Felten SY,
Felten DL. Noradrenergic reinnervation of
the rat spleen following chemical sympa-
thectomy with 6-hydroxydopamine: pattern
and time course of reinnervation. Brain Be-
hav Immun. 1990;4(3):198–222. https://doi.
org/10.1016/0889-1591(90)90023-j

130 Stead RH, Tomioka M, Quinonez G, Simon
GT, Felten SY, Bienenstock J. Intestinal
mucosal mast cells in normal and
nematode-infected rat intestines are in in-
timate contact with peptidergic nerves. Proc
Natl Acad Sci U S A. 1987;84:2975–9.
https://doi.org/10.1073/pnas.84.9.2975

131 Weihe E, Nohr D, Michel S, Muller S, Zentel
HJ, Fink T, et al. Molecular anatomy of the
neuro-immune connection. Int J Neurosci.
1991;59(1–3):1–23. https://doi.org/10.3109/
00207459108985446

132 Straub RH. Complexity of the bi-directional
neuroimmune junction in the spleen.
Trends Pharmacol Sci. 2004;25(12):640–6.
https://doi.org/10.1016/j.tips.2004.10.007

133 Straub RH, Dufner B, Rauch L. Proin-
flammatory α-adrenergic neuronal regu-
lation of splenic IFN-γ, IL-6, and TGF-β of
mice from day 15 onwards in arthritis.
Neuroimmunomodulation. 2020;27(1):
58–68. https://doi.org/10.1159/000508109

134 von Euler US, Hillarp NA. Evidence for the
presence of noradrenaline in submicro-
scopic structures of adrenergic axons. Na-
ture. 1956;177(4497):44–5. https://doi.org/
10.1038/177044b0

135 Lundberg JM, Rudehill A, Sollevi A, Fried G,
Wallin G. Co-release of neuropeptide Y and
noradrenaline from pig spleen in vivo: im-
portance of subcellular storage, nerve im-
pulse frequency and pattern, feedback reg-
ulation and resupply by axonal transport.
Neuroscience. 1989;28(2):475–86. https://
doi.org/10.1016/0306-4522(89)90193-0

136 Bognar IT, Albrecht SA, Farasaty M,
Schmitt E, Seidel G, Fuder H. Effects of
human recombinant interleukins on
stimulation-evoked noradrenaline overflow
from the rat perfused spleen. Naunyn
Schmiedebergs Arch Pharmacol. 1994;
349(5):497–502. https://doi.org/10.1007/
BF00169139

137 Straub RH, Lang B, Falk W, Schölmerich J,
Singer EA. In vitro superfusionmethod for the
investigation of nerve-immune cell interaction
in murine spleen. J Neuroimmunol. 1995;
61(1):53–60. https://doi.org/10.1016/0165-
5728(95)00073-b

History of Neuroendocrine Immune
Mechanisms

Neuroimmunomodulation 2024;31:183–210
DOI: 10.1159/000540959

201

D
ow

nloaded from
 http://karger.com

/nim
/article-pdf/31/1/183/4282492/000540959.pdf by U

niversitätsbibliothek R
egensburg user on 30 Septem

ber 2024

https://doi.org/10.1080/07435807509053848
https://doi.org/10.1080/07435807509053848
https://doi.org/10.1016/0091-6749(76)90150-0
https://doi.org/10.1016/0091-6749(76)90150-0
https://doi.org/10.1172/JCI108254
https://doi.org/10.1111/j.1476-5381.1977.tb06971.x
https://doi.org/10.1111/j.1476-5381.1977.tb06971.x
https://doi.org/10.1002/art.1780210705
https://doi.org/10.1002/art.1780210705
https://doi.org/10.1016/0008-8749(79)90129-1
https://doi.org/10.1016/0008-8749(79)90129-1
https://doi.org/10.1016/0008-8749(81)90012-5
https://doi.org/10.1016/0008-8749(81)90012-5
https://doi.org/10.1152/ajpregu.1982.242.1.R30
https://doi.org/10.1152/ajpregu.1982.242.1.R30
https://doi.org/10.1126/science.6867729
https://doi.org/10.1159/000135115
https://doi.org/10.1159/000135115
https://doi.org/10.1111/j.1748-1716.1954.tb01074.x
https://doi.org/10.1111/j.1748-1716.1954.tb01074.x
https://doi.org/10.1007/BF00303662
https://doi.org/10.1126/science.147.3665.1583
https://doi.org/10.1126/science.147.3665.1583
https://doi.org/10.1111/j.1748-1716.1971.tb04947.x
https://doi.org/10.1111/j.1748-1716.1971.tb04947.x
https://doi.org/10.1007/BF00798115
https://doi.org/10.1007/BF00798115
https://doi.org/10.1002/ana.410080509
https://doi.org/10.1002/ana.410080509
https://doi.org/10.1016/0361-9230(81)90010-1
https://doi.org/10.1016/0361-9230(81)90010-1
https://doi.org/10.1016/s0021-9258(18)93832-9
https://doi.org/10.1016/s0021-9258(18)93832-9
https://doi.org/10.1016/S0079-6123(08)63224-0
https://doi.org/10.1016/S0079-6123(08)63224-0
https://doi.org/10.1038/2171155a0
https://doi.org/10.1073/pnas.70.10.2767
https://doi.org/10.1177/23.1.234988
https://doi.org/10.4049/jimmunol.135.2.755
https://doi.org/10.4049/jimmunol.135.2.755
https://doi.org/10.1111/j.1600-065x.1987.tb00534.x
https://doi.org/10.1111/j.1600-065x.1987.tb00534.x
https://doi.org/10.1002/jnr.490180108
https://doi.org/10.1002/jnr.490180108
https://doi.org/10.1016/0889-1591(90)90023-j
https://doi.org/10.1016/0889-1591(90)90023-j
https://doi.org/10.1073/pnas.84.9.2975
https://doi.org/10.3109/00207459108985446
https://doi.org/10.3109/00207459108985446
https://doi.org/10.1016/j.tips.2004.10.007
https://doi.org/10.1159/000508109
https://doi.org/10.1038/177044b0
https://doi.org/10.1038/177044b0
https://doi.org/10.1016/0306-4522(89)90193-0
https://doi.org/10.1016/0306-4522(89)90193-0
https://doi.org/10.1007/BF00169139
https://doi.org/10.1007/BF00169139
https://doi.org/10.1016/0165-5728(95)00073-b
https://doi.org/10.1016/0165-5728(95)00073-b
https://doi.org/10.1159/000540959


138 Carr DJ. Neuroendocrine peptide receptors
on cells of the immune system. Chem Im-
munol. 1992;52:84–105. https://doi.org/10.
1159/000319386

139 Sanders VM, Kasprowicz DJ, Kohm AP,
Swanson MA. Neurotransmitter receptors
on lymphocytes and other lymphoid cells.
In: Ader R, Felten DL, Cohen N, editors.
Psychneuroimmunology. San Diego: Aca-
demic Press; 2001. p. 161–96.

140 Straub RH, Dorner M, Riedel J, Kubitza M,
VanRooijenN, Lang B, et al. Tonic neurogenic
inhibition of interleukin-6 secretion from
murine spleen caused by opioidergic trans-
mission. Am J Physiol. 1998;274(4):
R997–1003. https://doi.org/10.1152/ajpregu.
1998.274.4.R997

141 Straub RH, Herrmann M, Frauenholz T,
Berkmiller G, Lang B, Schölmerich J, et al.
Neuroimmune control of interleukin-6 se-
cretion in the murine spleen. Differential
-adrenergic effects of electrically released en-
dogenous norepinephrine under various en-
dotoxin conditions. J Neuroimmunol. 1996;
71(1–2):37–43. https://doi.org/10.1016/s0165-
5728(96)00126-9

142 Straub RH, Herrmann M, Berkmiller G,
Frauenholz T, Lang B, Schölmerich J, et al.
Neuronal regulation of interleukin 6 se-
cretion in murine spleen: adrenergic and
opioidergic control. J Neurochem. 1997;
68(4):1633–9. https://doi.org/10.1046/j.
1471-4159.1997.68041633.x

143 Guest CM, Kammerer WH, Cecil RL, Ber-
son SA. Epinephrine, pregnenolone and
testosterone in the treatment of rheumatoid
arthritis. J Am Med Assoc. 1950;143(4):
338–44. https://doi.org/10.1001/jama.1950.
02910390010003

144 Herfort RA. Extended sympathectomy in
the treatment of chronic arthritis. J Am
Geriatr Soc. 1957;5(11):904–15. https://doi.
org/10.1111/j.1532-5415.1957.tb00490.x

145 Dick WC, Jubb R, Buchanan WW, Wil-
liamson J, Whaley K, Porter BB. Studies
on the sympathetic control of normal and
diseased synovial blood vessels: the effect
of alpha and beta receptor stimulation
and inhibition, monitored by the 133xe-
non clearance technique. Clin Sci. 1971;
40(2):197–209. https://doi.org/10.1042/
cs0400197

146 Lam FY, Ferrell WR. Acute inflamma-
tion in the rat knee joint attenuates
sympathetic vasoconstriction but en-
hances neuropeptide-mediated vasodi-
latation assessed by laser Doppler per-
fusion imaging. Neuroscience. 1993;
52(2):443–9. https://doi.org/10.1016/
0306-4522(93)90170-k

147 Jolliffe VA, Anand P, Kidd BL. Assessment
of cutaneous sensory and autonomic axon
reflexes in rheumatoid arthritis. Ann Rheum
Dis. 1995;54(4):251–5. https://doi.org/10.
1136/ard.54.4.251

148 McDougall JJ. Abrogation of alpha-
adrenergic vasoactivity in chronically in-

flamed rat knee joints. Am J Physiol Regul
Integr Comp Physiol. 2001;281(3):R821–7.
https://doi.org/10.1152/ajpregu.2001.281.3.
R821

149 Levine JD, Moskowitz MA, Basbaum AI.
The contribution of neurogenic inflam-
mation in experimental arthritis.
J Immunol. 1985;135(2):843s–7s. https://
doi.org/10.4049/jimmunol.135.2.843

150 Levine JD, Fye K, Heller P, Basbaum AI,
Whiting-O’Keefe Q. Clinical response to
regional intravenous guanethidine in pa-
tients with rheumatoid arthritis.
J Rheumatol. 1986;13(6):1040–3.

151 Levine JD, Coderre TJ, Helms C, Basbaum
AI. Beta 2-adrenergic mechanisms in ex-
perimental arthritis. Proc Natl Acad Sci U S
A. 1988;85(12):4553–6. https://doi.org/10.
1073/pnas.85.12.4553

152 Coderre TJ, Basbaum AI, Helms C,
Levine JD. High-dose epinephrine acts at
alpha 2-adrenoceptors to suppress ex-
perimental arthritis. Brain Res. 1991;
544(2):325–8. https://doi.org/10.1016/
0006-8993(91)90073-5

153 Felten DL, Felten SY, Bellinger DL, Lorton
D. Noradrenergic and peptidergic innerva-
tion of secondary lymphoid organs: role in
experimental rheumatoid arthritis. Eur J
Clin Invest. 1992;22(Suppl 1):37–41.

154 Lorton D, Bellinger D, Duclos M, Felten SY,
Felten DL. Application of 6-hydroxydopamine
into the fatpads surrounding the draining lymph
nodes exacerbates adjuvant-induced arthritis.
J Neuroimmunol. 1996;64(2):103–13. https://
doi.org/10.1016/0165-5728(95)00150-6

155 Lorton D, Lubahn C, Klein N, Schaller J,
Bellinger DL. Dual role for noradrenergic
innervation of lymphoid tissue and arthritic
joints in adjuvant-induced arthritis. Brain
Behav Immun. 1999;13(4):315–34. https://
doi.org/10.1006/brbi.1999.0564

156 Härle P, Mobius D, Carr DJ, Schölmerich J,
Straub RH. An opposing time-dependent
immune-modulating effect of the sympa-
thetic nervous system conferred by altering
the cytokine profile in the local lymph nodes
and spleen of mice with type II collagen-
induced arthritis. Arthritis Rheum. 2005;
52(4):1305–13. https://doi.org/10.1002/art.
20987

157 Härle P, Pongratz G, Albrecht J, Tarner IH,
Straub RH. An early sympathetic nervous
system influence exacerbates collagen-
induced arthritis via CD4+CD25+ cells.
Arthritis Rheum. 2008;58(8):2347–55.
https://doi.org/10.1002/art.23628

158 Capellino S, Cosentino M, Wolff C, Schmidt
M, Grifka J, Straub RH. Catecholamine-
producing cells in the synovial tissue dur-
ing arthritis: modulation of sympathetic
neurotransmitters as new therapeutic target.
Ann Rheum Dis. 2010;69(10):1853–60.
https://doi.org/10.1136/ard.2009.119701

159 Capellino S, Weber K, Gelder M, Härle P,
Straub RH. First appearance and location of
catecholaminergic cells during experimental

arthritis and elimination by chemical sym-
pathectomy. Arthritis Rheum. 2012;64(4):
1110–8. https://doi.org/10.1002/art.33431

160 Jenei-Lanzl Z, Capellino S, Kees F, Fleck M,
Lowin T, Straub RH. Anti-inflammatory
effects of cell-based therapy with tyrosine
hydroxylase-positive catecholaminergic
cells in experimental arthritis. Ann Rheum
Dis. 2015;74(2):444–51. https://doi.org/10.
1136/annrheumdis-2013-203925

161 Pongratz G, Straub RH. Role of peripheral
nerve fibres in acute and chronic inflam-
mation in arthritis. Nat Rev Rheumatol.
2013;9(2):117–26. https://doi.org/10.1038/
nrrheum.2012.181

162 Pongratz G, Straub RH. The sympathetic
nervous response in inflammation. Arthritis
Res Ther. 2014;16(6):504. https://doi.org/10.
1186/s13075-014-0504-2

163 Schaible HG, Straub RH. Function of the
sympathetic supply in acute and chronic
experimental joint inflammation. Auton
Neurosci. 2014;182:55–64. https://doi.org/
10.1016/j.autneu.2013.12.004

164 Klatt S, Stangl H, Kunath J, Lowin T, Pongratz
G, Straub RH. Peripheral elimination of the
sympathetic nervous system stimulates im-
munocyte retention in lymph nodes and
ameliorates collagen type II arthritis. Brain
Behav Immun. 2016;54:201–10. https://doi.
org/10.1016/j.bbi.2016.02.006

165 Straub RH, Cutolo M, Buttgereit F, Pon-
gratz G. Energy regulation and
neuroendocrine-immune control in
chronic inflammatory diseases. J Intern
Med. 2010;267(6):543–60. https://doi.org/
10.1111/j.1365-2796.2010.02218.x

166 Straub RH, Günzler C, Miller LE, Cutolo M,
Schölmerich J, Schill S. Anti-inflammatory
cooperativity of corticosteroids and nor-
epinephrine in rheumatoid arthritis synovial
tissue in vivo and in vitro. FASEB J. 2002;
16(9):993–1000. https://doi.org/10.1096/fj.
02-0085com

167 Pereira da Silva JA, Carmo-Fonseca M.
Peptide containing nerves in human syno-
vium: immunohistochemical evidence for
decreased innervation in rheumatoid ar-
thritis. J Rheumatol. 1990;17(12):1592–9.

168 Mapp PI, Walsh DA, Garrett NE, Kidd BL,
Cruwys SC, Polak JM, et al. Effect of three
animal models of inflammation on nerve
fibres in the synovium. Ann Rheum Dis.
1994;53(4):240–6. https://doi.org/10.1136/
ard.53.4.240

169 Miller LE, Jüsten HP, Schölmerich J, Straub
RH. The loss of sympathetic nerve fibers in the
synovial tissue of patients with rheumatoid
arthritis is accompanied by increased norepi-
nephrine release from synovial macrophages.
FASEB J. 2000;14(13):2097–107. https://doi.
org/10.1096/fj.99-1082com

170 Straub RH,Grum F, StrauchUG, Capellino S,
Bataille F, Bleich A, et al. Anti-inflammatory
role of sympathetic nerves in chronic intes-
tinal inflammation. Gut. 2008;57(7):911–21.
https://doi.org/10.1136/gut.2007.125401

202 Neuroimmunomodulation 2024;31:183–210
DOI: 10.1159/000540959

Straub and Cutolo

D
ow

nloaded from
 http://karger.com

/nim
/article-pdf/31/1/183/4282492/000540959.pdf by U

niversitätsbibliothek R
egensburg user on 30 Septem

ber 2024

https://doi.org/10.1159/000319386
https://doi.org/10.1159/000319386
https://doi.org/10.1152/ajpregu.1998.274.4.R997
https://doi.org/10.1152/ajpregu.1998.274.4.R997
https://doi.org/10.1016/s0165-5728(96)00126-9
https://doi.org/10.1016/s0165-5728(96)00126-9
https://doi.org/10.1046/j.1471-4159.1997.68041633.x
https://doi.org/10.1046/j.1471-4159.1997.68041633.x
https://doi.org/10.1001/jama.1950.02910390010003
https://doi.org/10.1001/jama.1950.02910390010003
https://doi.org/10.1111/j.1532-5415.1957.tb00490.x
https://doi.org/10.1111/j.1532-5415.1957.tb00490.x
https://doi.org/10.1042/cs0400197
https://doi.org/10.1042/cs0400197
https://doi.org/10.1016/0306-4522(93)90170-k
https://doi.org/10.1016/0306-4522(93)90170-k
https://doi.org/10.1136/ard.54.4.251
https://doi.org/10.1136/ard.54.4.251
https://doi.org/10.1152/ajpregu.2001.281.3.R821
https://doi.org/10.1152/ajpregu.2001.281.3.R821
https://doi.org/10.4049/jimmunol.135.2.843
https://doi.org/10.4049/jimmunol.135.2.843
https://doi.org/10.1073/pnas.85.12.4553
https://doi.org/10.1073/pnas.85.12.4553
https://doi.org/10.1016/0006-8993(91)90073-5
https://doi.org/10.1016/0006-8993(91)90073-5
https://doi.org/10.1016/0165-5728(95)00150-6
https://doi.org/10.1016/0165-5728(95)00150-6
https://doi.org/10.1006/brbi.1999.0564
https://doi.org/10.1006/brbi.1999.0564
https://doi.org/10.1002/art.20987
https://doi.org/10.1002/art.20987
https://doi.org/10.1002/art.23628
https://doi.org/10.1136/ard.2009.119701
https://doi.org/10.1002/art.33431
https://doi.org/10.1136/annrheumdis-2013-203925
https://doi.org/10.1136/annrheumdis-2013-203925
https://doi.org/10.1038/nrrheum.2012.181
https://doi.org/10.1038/nrrheum.2012.181
https://doi.org/10.1186/s13075-014-0504-2
https://doi.org/10.1186/s13075-014-0504-2
https://doi.org/10.1016/j.autneu.2013.12.004
https://doi.org/10.1016/j.autneu.2013.12.004
https://doi.org/10.1016/j.bbi.2016.02.006
https://doi.org/10.1016/j.bbi.2016.02.006
https://doi.org/10.1111/j.1365-2796.2010.02218.x
https://doi.org/10.1111/j.1365-2796.2010.02218.x
https://doi.org/10.1096/fj.02-0085com
https://doi.org/10.1096/fj.02-0085com
https://doi.org/10.1136/ard.53.4.240
https://doi.org/10.1136/ard.53.4.240
https://doi.org/10.1096/fj.99-1082com
https://doi.org/10.1096/fj.99-1082com
https://doi.org/10.1136/gut.2007.125401
https://doi.org/10.1159/000540959


171 Koeck FX, Bobrik V, Fassold A, Grifka J,
Kessler S, Straub RH. Marked loss of sym-
pathetic nerve fibers in chronic Charcot foot
of diabetic origin compared to ankle joint
osteoarthritis. J Orthop Res. 2009;27(6):
736–41. https://doi.org/10.1002/jor.20807

172 Haas S, Capellino S, Phan NQ, Bohm M,
Luger TA, Straub RH, et al. Low density of
sympathetic nerve fibers relative to sub-
stance P-positive nerve fibers in lesional skin
of chronic pruritus and prurigo nodularis.
J Dermatol Sci. 2010;58(3):193–7. https://
doi.org/10.1016/j.jdermsci.2010.03.020

173 Ferrero S, Haas S, Remorgida V, Camerini G,
Fulcheri E, Ragni N, et al. Loss of sympathetic
nerve fibers in intestinal endometriosis. Fertil
Steril. 2010;94(7):2817–9. https://doi.org/10.
1016/j.fertnstert.2010.06.069

174 Lorton D, Lubahn C, Sweeney S, Major A,
Lindquist CA, Schaller J, et al. Differences in
the injury/sprouting response of splenic
noradrenergic nerves in Lewis rats with
adjuvant-induced arthritis compared with
rats treated with 6-hydroxydopamine. Brain
Behav Immun. 2009;23(2):276–85. https://
doi.org/10.1016/j.bbi.2008.10.004

175 Straub RH, Lowin T, Klatt S, Wolff C, Rauch
L. Increased density of sympathetic nerve
fibers in metabolically activated fat tissue
surrounding human synovium and mouse
lymph nodes in arthritis. Arthritis Rheum.
2011;63(11):3234–42. https://doi.org/10.
1002/art.30516

176 Dietrich P, Moleda L, Kees F, Müller M,
Straub RH, Hellerbrand C, et al. Dysbalance
in sympathetic neurotransmitter release and
action in cirrhotic rats: impact of exogenous
neuropeptide Y. J Hepatol. 2013;58(2):
254–61. https://doi.org/10.1016/j.jhep.2012.
09.027

177 Ghilardi JR, Freeman KT, Jimenez-An-
drade JM, Coughlin K, Kaczmarska MJ,
Castaneda-Corral G, et al. Neuroplasticity
of sensory and sympathetic nerve fibers in
the painful arthritic joint. Arthritis Rheum.
2012;64(7):2223–32. https://doi.org/10.
1002/art.34385

178 Jimenez-Andrade JM, Mantyh PW. Sensory
and sympathetic nerve fibers undergo
sprouting and neuroma formation in the
painful arthritic joint of geriatric mice.
Arthritis Res Ther. 2012;14(3):R101. https://
doi.org/10.1186/ar3826

179 Widenfalk B. Sympathetic innervation of
normal and rheumatoid synovial tissue.
Scand J Plast ReConstr Surg Hand Surg.
1991;25(1):31–3. https://doi.org/10.3109/
02844319109034920

180 Wu P, Li W, Lv R, Cheng X, Lian F, Cai W,
et al. Hyperactive lateral habenula mediates
the comorbidity between rheumatoid ar-
thritis and depression-like behaviors. Brain
Behav Immun. 2024;117:412–27. https://
doi.org/10.1016/j.bbi.2024.02.006

181 Jenei-Lanzl Z, Grässel S, Pongratz G, Kees F,
Miosge N, Angele P, et al. Norepinephrine
inhibition of mesenchymal stem cell and

chondrogenic progenitor cell chondro-
genesis and acceleration of chondrogenic
hypertrophy. Arthritis Rheumatol. 2014;
66(9):2472–81. https://doi.org/10.1002/art.
38695

182 Szentivanyi A. The beta adrenergic theory of
the atopic abnormality in bronchial asthma.
J Allergy. 1968;42(4):203–32. https://doi.
org/10.1016/s0021-8707(68)90117-2

183 Camoretti-Mercado B, Lockey RF. The β-
adrenergic theory of bronchial asthma:
50 years later. J Allergy Clin Immunol. 2019;
144(5):1166–8. https://doi.org/10.1016/j.
jaci.2019.07.010

184 Amrani Y, Bradding P. β2-Adrenoceptor
function in asthma. Adv Immunol. 2017;
136:1–28. https://doi.org/10.1016/bs.ai.
2017.06.003

185 Barnes PJ, Dollery CT, MacDermot J. In-
creased pulmonary alpha-adrenergic and
reduced beta-adrenergic receptors in exper-
imental asthma. Nature. 1980;285(5766):
569–71. https://doi.org/10.1038/285569a0

186 Emala CW, Kuhl J, Hungerford CL, Hirshman
CA. TNF-alpha inhibits isoproterenol-
stimulated adenylyl cyclase activity in cul-
tured airway smooth muscle cells. Am J
Physiol. 1997;272(4 Pt 1):L644–50. https://doi.
org/10.1152/ajplung.1997.272.4.L644

187 Spengler RN, Chensue SW, Giacherio DA,
Blenk N, Kunkel SL. Endogenous norepi-
nephrine regulates tumor necrosis factor-alpha
production from macrophages in vitro.
J Immunol. 1994;152(6):3024–31. https://doi.
org/10.4049/jimmunol.152.6.3024

188 Malfait AM, Malik AS, Marinova-Muta-
fchieva L, Butler DM, Maini RN, Feldmann
M. The β2-adrenergic agonist salbutamol
is a potent suppressor of established
collagen-induced arthritis: mechanisms of
action. J Immunol. 1999;162(10):6278–83.
https://doi.org/10.4049/jimmunol.162.10.
6278

189 Baerwald C, Graefe C, von Wichert P,
Krause A. Decreased density of beta-
adrenergic receptors on peripheral blood
mononuclear cells in patients with rheu-
matoid arthritis. J Rheumatol. 1992;19(2):
204–10.

190 Baerwald CG, Laufenberg M, Specht T, von
Wichert P, Burmester GR, Krause A. Im-
paired sympathetic influence on the immune
response in patients with rheumatoid ar-
thritis due to lymphocyte subset-specific
modulation of beta 2-adrenergic receptors.
Br J Rheumatol. 1997;36(12):1262–9. https://
doi.org/10.1093/rheumatology/36.12.1262

191 Baerwald CG, Wahle M, Ulrichs T, Jonas D,
von Bierbrauer A, von Wichert P, et al. Re-
duced catecholamine response of lymphocytes
from patients with rheumatoid arthritis. Im-
munobiology. 1999;200(1):77–91. https://doi.
org/10.1016/s0171-2985(99)80034-5

192 Wahle M, Kolker S, Krause A, Burmester
GR, Baerwald CG. Impaired catechol-
aminergic signalling of B lymphocytes in
patients with chronic rheumatic diseases.

Ann Rheum Dis. 2001;60(5):505–10.
https://doi.org/10.1136/ard.60.5.505

193 Wahle M, Hanefeld G, Brunn S, Straub RH,
Wagner U, Krause A, et al. Failure of cat-
echolamines to shift T-cell cytokine re-
sponses toward a Th2 profile in patients
with rheumatoid arthritis. Arthritis Res
Ther. 2006;8(5):R138. https://doi.org/10.
1186/ar2028

194 Howlett LA, Lancaster MK. Reduced cardiac
response to the adrenergic system is a key
limiting factor for physical capacity in old
age. Exp Gerontol. 2021;150:111339. https://
doi.org/10.1016/j.exger.2021.111339

195 Lombardi MS, Kavelaars A, Schedlowski
M, Bijlsma JW, Okihara KL, Van de Pol
M, et al. Decreased expression and activity
of G-protein-coupled receptor kinases in
peripheral blood mononuclear cells of
patients with rheumatoid arthritis. FASEB
J. 1999;13(6):715–25. https://doi.org/10.
1096/fasebj.13.6.715

196 Lombardi MS, Kavelaars A, Cobelens PM,
Schmidt RE, Schedlowski M, Heijnen CJ.
Adjuvant arthritis induces down-regulation
of G protein-coupled receptor kinases in the
immune system. J Immunol. 2001;166(3):
1635–40. https://doi.org/10.4049/jimmunol.
166.3.1635

197 Lorton D, Bellinger DL. Molecular
mechanisms underlying β-adrenergic
receptor-mediated cross-talk between
sympathetic neurons and immune cells.
Int J Mol Sci. 2015;16(3):5635–65. https://
doi.org/10.3390/ijms16035635

198 Lorton D, Bellinger DL, Schaller JA, Shew-
maker E, Osredkar T, Lubahn C. Altered
sympathetic-to-immune cell signaling via
beta(2)-adrenergic receptors in adjuvant ar-
thritis. Clin Dev Immunol. 2013;2013:764395.
https://doi.org/10.1155/2013/764395

199 Jenei-Lanzl Z, Zwingenberg J, Lowin T,
Anders S, Straub RH. Proinflammatory re-
ceptor switch from Gαs to Gαi signaling by
β-arrestin-mediated PDE4 recruitment in
mixed RA synovial cells. Brain Behav Im-
mun. 2015;50:266–74. https://doi.org/10.
1016/j.bbi.2015.07.020

200 Ge M, Wu L, He F, Tai Y, Fang R, Han D,
et al. CP-25 inhibits the hyperactivation of
rheumatic synoviocytes by suppressing
the switch in G(αs)-G(αi) coupling to the
β(2)-adrenergic receptor. Cell Commun
Signal. 2023;21(1):346. https://doi.org/10.
1186/s12964-023-01358-z

201 Sato Y, Schaible HG, Schmidt RF. Reac-
tions of cardiac postganglionic sympa-
thetic neurons to movements of normal
and inflamed knee joints. J Auton Nerv
Syst. 1985;12:1–13. https://doi.org/10.
1016/0165-1838(85)90036-0

202 Sato A, Sato Y, Schmidt RF. Catecholamine
secretion and adrenal nerve activity in response
to movements of normal and inflamed knee
joints in cats. J Physiol. 1986;375(611–24):
611–24. https://doi.org/10.1113/jphysiol.1986.
sp016136

History of Neuroendocrine Immune
Mechanisms

Neuroimmunomodulation 2024;31:183–210
DOI: 10.1159/000540959

203

D
ow

nloaded from
 http://karger.com

/nim
/article-pdf/31/1/183/4282492/000540959.pdf by U

niversitätsbibliothek R
egensburg user on 30 Septem

ber 2024

https://doi.org/10.1002/jor.20807
https://doi.org/10.1016/j.jdermsci.2010.03.020
https://doi.org/10.1016/j.jdermsci.2010.03.020
https://doi.org/10.1016/j.fertnstert.2010.06.069
https://doi.org/10.1016/j.fertnstert.2010.06.069
https://doi.org/10.1016/j.bbi.2008.10.004
https://doi.org/10.1016/j.bbi.2008.10.004
https://doi.org/10.1002/art.30516
https://doi.org/10.1002/art.30516
https://doi.org/10.1016/j.jhep.2012.09.027
https://doi.org/10.1016/j.jhep.2012.09.027
https://doi.org/10.1002/art.34385
https://doi.org/10.1002/art.34385
https://doi.org/10.1186/ar3826
https://doi.org/10.1186/ar3826
https://doi.org/10.3109/02844319109034920
https://doi.org/10.3109/02844319109034920
https://doi.org/10.1016/j.bbi.2024.02.006
https://doi.org/10.1016/j.bbi.2024.02.006
https://doi.org/10.1002/art.38695
https://doi.org/10.1002/art.38695
https://doi.org/10.1016/s0021-8707(68)90117-2
https://doi.org/10.1016/s0021-8707(68)90117-2
https://doi.org/10.1016/j.jaci.2019.07.010
https://doi.org/10.1016/j.jaci.2019.07.010
https://doi.org/10.1016/bs.ai.2017.06.003
https://doi.org/10.1016/bs.ai.2017.06.003
https://doi.org/10.1038/285569a0
https://doi.org/10.1152/ajplung.1997.272.4.L644
https://doi.org/10.1152/ajplung.1997.272.4.L644
https://doi.org/10.4049/jimmunol.152.6.3024
https://doi.org/10.4049/jimmunol.152.6.3024
https://doi.org/10.4049/jimmunol.162.10.6278
https://doi.org/10.4049/jimmunol.162.10.6278
https://doi.org/10.1093/rheumatology/36.12.1262
https://doi.org/10.1093/rheumatology/36.12.1262
https://doi.org/10.1016/s0171-2985(99)80034-5
https://doi.org/10.1016/s0171-2985(99)80034-5
https://doi.org/10.1136/ard.60.5.505
https://doi.org/10.1186/ar2028
https://doi.org/10.1186/ar2028
https://doi.org/10.1016/j.exger.2021.111339
https://doi.org/10.1016/j.exger.2021.111339
https://doi.org/10.1096/fasebj.13.6.715
https://doi.org/10.1096/fasebj.13.6.715
https://doi.org/10.4049/jimmunol.166.3.1635
https://doi.org/10.4049/jimmunol.166.3.1635
https://doi.org/10.3390/ijms16035635
https://doi.org/10.3390/ijms16035635
https://doi.org/10.1155/2013/764395
https://doi.org/10.1016/j.bbi.2015.07.020
https://doi.org/10.1016/j.bbi.2015.07.020
https://doi.org/10.1186/s12964-023-01358-z
https://doi.org/10.1186/s12964-023-01358-z
https://doi.org/10.1016/0165-1838(85)90036-0
https://doi.org/10.1016/0165-1838(85)90036-0
https://doi.org/10.1113/jphysiol.1986.sp016136
https://doi.org/10.1113/jphysiol.1986.sp016136
https://doi.org/10.1159/000540959


203 Tanaka H, Ueta Y, Yamashita U, Kannan H,
Yamashita H. Biphasic changes in behav-
ioral, endocrine, and sympathetic systems in
adjuvant arthritis in Lewis rats. Brain Res
Bull. 1996;39(1):33–7. https://doi.org/10.
1016/0361-9230(95)02037-3

204 Straub RH. The brain and immune system
prompt energy shortage in chronic inflam-
mation and ageing. Nat Rev Rheumatol.
2017;13(12):743–51. https://doi.org/10.1038/
nrrheum.2017.172

205 Leden I, Eriksson A, Lilja B, Sturfelt G,
Sundkvist G. Autonomic nerve function in
rheumatoid arthritis of varying severity.
Scand J Rheumatol. 1983;12(2):166–70.
https://doi.org/10.3109/03009748309102905

206 Perry F, Heller PH, Kamiya J, Levine JD.
Altered autonomic function in patients with
arthritis or with chronic myofascial pain.
Pain. 1989;39(1):77–84. https://doi.org/10.
1016/0304-3959(89)90177-2

207 Kuis W, de Jong-de Vos van Steenwijk-
Sinnema CG, Kavelaars A, Prakken B,
Helders PJ, Heijnen CJ. The autonomic
nervous system and the immune system in
juvenile rheumatoid arthritis. Brain Behav
Immun. 1996;10(4):387–98. https://doi.org/
10.1006/brbi.1996.0034

208 Toussirot E, Bahjaoui-Bouhaddi M, Poncet
JC, Cappelle S, Henriet MT, Wendling D,
et al. Abnormal autonomic cardiovascular
control in ankylosing spondylitis. Ann
Rheum Dis. 1999;58(8):481–7. https://doi.
org/10.1136/ard.58.8.481

209 Barendregt PJ, Tulen JH, van den Meiracker
AH, Markusse HM. Spectral analysis of
heart rate and blood pressure variability in
primary Sjogren’s syndrome. Ann Rheum
Dis. 2002;61(3):232–6. https://doi.org/10.
1136/ard.61.3.232

210 Dekkers JC, Geenen R, Godaert GL, Bijlsma
JW, van Doornen LJ. Elevated sympathetic
nervous system activity in patients with
recently diagnosed rheumatoid arthritis
with active disease. Clin Exp Rheumatol.
2004;22(1):63–70.

211 Härle P, Straub RH, Wiest R, Mayer A,
Schölmerich J, Atzeni F, et al. Increase of
sympathetic outflow measured by neuro-
peptide Y and decrease of the hypothalamic-
pituitary-adrenal axis tone in patients with
systemic lupus erythematosus and rheu-
matoid arthritis: another example of un-
coupling of response systems. Ann Rheum
Dis. 2006;65(1):51–6. https://doi.org/10.
1136/ard.2005.038059

212 Straub RH, Herfarth H, Falk W, Andus T,
Schölmerich J. Uncoupling of the sympa-
thetic nervous system and the
hypothalamic-pituitary-adrenal axis in in-
flammatory bowel disease? J Neuroimmunol.
2002;126(1–2):116–25. https://doi.org/10.
1016/s0165-5728(02)00047-4

213 Adlan AM, Paton JF, Lip GY, Kitas GD, Fisher
JP. Increased sympathetic nerve activity and
reduced cardiac baroreflex sensitivity in

rheumatoid arthritis. J Physiol. 2017;595(3):
967–81. https://doi.org/10.1113/JP272944

214 SnowMH, Mikuls TR. Rheumatoid arthritis
and cardiovascular disease: the role of sys-
temic inflammation and evolving strategies
of prevention. Curr Opin Rheumatol. 2005;
17(3):234–41. https://doi.org/10.1097/01.
bor.0000159924.97019.25

215 Liao KP, Solomon DH. Mechanistic
insights into the link between inflam-
mation and cardiovascular disease:
rheumatoid arthritis as a human model
of inflammation. Circ Cardiovasc Im-
aging. 2014;7(4):575–7. https://doi.org/
10.1161/CIRCIMAGING.114.002235

216 Mehta PK, Levit RD, Wood MJ, Aggarwal
N, O’Donoghue ML, Lim SS, et al. Chronic
rheumatologic disorders and cardiovascular
disease risk in women. Am Heart J. 2023;27:
100267. https://doi.org/10.1016/j.ahjo.2023.
100267

217 Straub RH, Ehrenstein B, Gunther F, Rauch L,
Trendafilova N, Boschiero D, et al. Increased
extracellular water measured by bioimpedance
and by increased serum levels of atrial natri-
uretic peptide in RA patients-signs of volume
overload. Clin Rheumatol. 2017;36(5):1041–51.
https://doi.org/10.1007/s10067-016-3286-x

218 Günther F, Ehrenstein B, Hartung W, Bo-
schiero D, Fleck M, Straub RH. Increased
extracellular water measured by bio-
impedance analysis and increased serum
levels of atrial natriuretic peptide in poly-
myalgia rheumatica patients: signs of volume
overload. Z Rheumatol. 2021;80(2):140–8.
https://doi.org/10.1007/s00393-020-00845-9

219 Meltzer SJ, Meltzer C. On a difference in the
influence upon inflammation between the
section of the sympathetic nerve and the
removal of the sympathetic ganglion. J Med
Res. 1903;10(1):135–41.

220 Lundberg JM, Saria A, Brodin E, Rosell S,
Folkers K. A substance P antagonist in-
hibits vagally induced increase in vascular
permeability and bronchial smooth muscle
contraction in the Guinea pig. Proc Natl
Acad Sci U S A. 1983;80:1120–4. https://
doi.org/10.1073/pnas.80.4.1120

221 Saria A, Martling CR, Dalsgaard CJ,
Lundberg JM. Evidence for substance
P-immunoreactive spinal afferents that
mediate bronchoconstriction. Acta Physiol
Scand. 1985;125(3):407–14. https://doi.org/
10.1111/j.1748-1716.1985.tb07736.x

222 McDonald DM. Respiratory tract infections
increase susceptibility to neurogenic in-
flammation in the rat trachea. Am Rev
Respir Dis. 1988;137(6):1432–40. https://
doi.org/10.1164/ajrccm/137.6.1432

223 McDonald DM, Mitchell RA, Gabella G,
Haskell A. Neurogenic inflammation in
the rat trachea. II. Identity and distribu-
tion of nerves mediating the increase in
vascular permeability. J Neurocytol. 1988;
17(5):605–28. https://doi.org/10.1007/
BF01260989

224 Kowalski ML, Didier A, Kaliner MA.
Neurogenic inflammation in the airways.
I. Neurogenic stimulation induces plasma
protein extravasation into the rat airway
lumen. Am Rev Respir Dis. 1989;140(1):
101–9. https://doi.org/10.1164/ajrccm/140.
1.101

225 Norris AA, Leeson ME, Jackson DM, Hol-
royde MC. Modulation of neurogenic in-
flammation in rat trachea. Pulm Pharmacol.
1990;3:180–4. https://doi.org/10.1016/0952-
0600(90)90014-a

226 Belvisi MG, Barnes PJ, Rogers DF. Neurogenic
inflammation in the airways: characterisation
of electrical parameters for vagus nerve stim-
ulation in the Guinea pig. J Neurosci Methods.
1990;32(2):159–67. https://doi.org/10.1016/
0165-0270(90)90173-d

227 Huang HT. Unilateral cervical vagotomy
decreases the magnitude of neurogenic in-
flammation induced by capsaicin in the
ipsilateral bronchial tree of rats. Anat Em-
bryol. 1993;188(4):363–70. https://doi.org/
10.1007/BF00185945

228 Bluthe RM, Walter V, Parnet P, Laye S,
Lestage J, Verrier D, et al. Lipopolysaccha-
ride induces sickness behaviour in rats by a
vagal mediated mechanism. C R Acad Sci
III. 1994;317(6):499–503.

229 Watkins LR, Goehler LE, Relton JK,
Tartaglia N, Silbert L, Martin D, et al.
Blockade of interleukin-1 induced hy-
perthermia by subdiaphragmatic vagot-
omy: evidence for vagal mediation of
immune-brain communication. Neurosci
Lett. 1995;183(1–2):27–31. https://doi.
org/10.1016/0304-3940(94)11105-r

230 Konsman JP, Luheshi GN, Bluthé RM,
Dantzer R. The vagus nerve mediates be-
havioural depression, but not fever, in re-
sponse to peripheral immune signals; a
functional anatomical analysis. Eur J Neu-
rosci. 2000;12:4434–46. https://doi.org/10.
1046/j.0953-816x.2000.01319.x

231 Williams RM, Berthoud HR, Stead RH.
Vagal afferent nerve fibres contact mast cells
in rat small intestinal mucosa. Neuro-
immunomodulation. 1997;4(5–6):266–70.
https://doi.org/10.1159/000097346

232 Mazelin L, Theodorou V, More J, Fioramonti
J, Bueno L. Protective role of vagal afferents in
experimentally-induced colitis in rats.
J Auton Nerv Syst. 1998;73(1):38–45. https://
doi.org/10.1016/s0165-1838(98)00113-1

233 Ghia JE, Blennerhassett P, Collins SM.
Vagus nerve integrity and experimental
colitis. Am J Physiol Gastrointest Liver
Physiol. 2007;293(3):G560–7. https://doi.
org/10.1152/ajpgi.00098.2007

234 Willemze RA, Welting O, van Hamersveld
HP, Meijer SL, Folgering JHA, Darwinkel
H, et al. Neuronal control of experimental
colitis occurs via sympathetic intestinal
innervation. Neurogastroenterol Motil.
2018;30(3). https://doi.org/10.1111/nmo.
13163

204 Neuroimmunomodulation 2024;31:183–210
DOI: 10.1159/000540959

Straub and Cutolo

D
ow

nloaded from
 http://karger.com

/nim
/article-pdf/31/1/183/4282492/000540959.pdf by U

niversitätsbibliothek R
egensburg user on 30 Septem

ber 2024

https://doi.org/10.1016/0361-9230(95)02037-3
https://doi.org/10.1016/0361-9230(95)02037-3
https://doi.org/10.1038/nrrheum.2017.172
https://doi.org/10.1038/nrrheum.2017.172
https://doi.org/10.3109/03009748309102905
https://doi.org/10.1016/0304-3959(89)90177-2
https://doi.org/10.1016/0304-3959(89)90177-2
https://doi.org/10.1006/brbi.1996.0034
https://doi.org/10.1006/brbi.1996.0034
https://doi.org/10.1136/ard.58.8.481
https://doi.org/10.1136/ard.58.8.481
https://doi.org/10.1136/ard.61.3.232
https://doi.org/10.1136/ard.61.3.232
https://doi.org/10.1136/ard.2005.038059
https://doi.org/10.1136/ard.2005.038059
https://doi.org/10.1016/s0165-5728(02)00047-4
https://doi.org/10.1016/s0165-5728(02)00047-4
https://doi.org/10.1113/JP272944
https://doi.org/10.1097/01.bor.0000159924.97019.25
https://doi.org/10.1097/01.bor.0000159924.97019.25
https://doi.org/10.1161/CIRCIMAGING.114.002235
https://doi.org/10.1161/CIRCIMAGING.114.002235
https://doi.org/10.1016/j.ahjo.2023.100267
https://doi.org/10.1016/j.ahjo.2023.100267
https://doi.org/10.1007/s10067-016-3286-x
https://doi.org/10.1007/s00393-020-00845-9
https://doi.org/10.1073/pnas.80.4.1120
https://doi.org/10.1073/pnas.80.4.1120
https://doi.org/10.1111/j.1748-1716.1985.tb07736.x
https://doi.org/10.1111/j.1748-1716.1985.tb07736.x
https://doi.org/10.1164/ajrccm/137.6.1432
https://doi.org/10.1164/ajrccm/137.6.1432
https://doi.org/10.1007/BF01260989
https://doi.org/10.1007/BF01260989
https://doi.org/10.1164/ajrccm/140.1.101
https://doi.org/10.1164/ajrccm/140.1.101
https://doi.org/10.1016/0952-0600(90)90014-a
https://doi.org/10.1016/0952-0600(90)90014-a
https://doi.org/10.1016/0165-0270(90)90173-d
https://doi.org/10.1016/0165-0270(90)90173-d
https://doi.org/10.1007/BF00185945
https://doi.org/10.1007/BF00185945
https://doi.org/10.1016/0304-3940(94)11105-r
https://doi.org/10.1016/0304-3940(94)11105-r
https://doi.org/10.1046/j.0953-816x.2000.01319.x
https://doi.org/10.1046/j.0953-816x.2000.01319.x
https://doi.org/10.1159/000097346
https://doi.org/10.1016/s0165-1838(98)00113-1
https://doi.org/10.1016/s0165-1838(98)00113-1
https://doi.org/10.1152/ajpgi.00098.2007
https://doi.org/10.1152/ajpgi.00098.2007
https://doi.org/10.1111/nmo.13163
https://doi.org/10.1111/nmo.13163
https://doi.org/10.1159/000540959


235 Brinkman DJ, Simon T, Ten Hove AS,
Zafeiropoulou K, Welting O, van Ha-
mersveld PHP, et al. Electrical stimulation
of the splenic nerve bundle ameliorates
dextran sulfate sodium-induced colitis in
mice. J Neuroinflammation. 2022;19(1):
155. https://doi.org/10.1186/s12974-022-
02504-z

236 Borovikova LV, Ivanova S, Zhang M, Yang
H, Botchkina GI, Watkins LR, et al. Vagus
nerve stimulation attenuates the systemic
inflammatory response to endotoxin. Na-
ture. 2000;405(6785):458–62. https://doi.
org/10.1038/35013070

237 Bernik TR, Friedman SG, Ochani M, DiR-
aimo R, Ulloa L, Yang H, et al. Pharmaco-
logical stimulation of the cholinergic antiin-
flammatory pathway. J Exp Med. 2002;
195(6):781–8. https://doi.org/10.1084/jem.
20011714

238 Wang H, Yu M, Ochani M, Amella CA,
Tanovic M, Susarla S, et al. Nicotinic ace-
tylcholine receptor alpha7 subunit is an
essential regulator of inflammation. Nature.
2003;421(6921):384–8. https://doi.org/10.
1038/nature01339

239 Saeed RW, Varma S, Peng-Nemeroff T,
Sherry B, Balakhaneh D, Huston J, et al.
Cholinergic stimulation blocks endothelial
cell activation and leukocyte recruitment
during inflammation. J Exp Med. 2005;
201(7):1113–23. https://doi.org/10.1084/
jem.20040463

240 Huston JM, Ochani M, Rosas-Ballina M,
Liao H, Ochani K, Pavlov VA, et al. Sple-
nectomy inactivates the cholinergic antiin-
flammatory pathway during lethal endo-
toxemia and polymicrobial sepsis. J Exp
Med. 2006;203(7):1623–8. https://doi.org/
10.1084/jem.20052362

241 Rosas-Ballina M, Ochani M, Parrish WR,
Ochani K, Harris YT, Huston JM, et al.
Splenic nerve is required for cholinergic
antiinflammatory pathway control of TNF
in endotoxemia. Proc Natl Acad Sci U S A.
2008;105(31):11008–13. https://doi.org/10.
1073/pnas.0803237105

242 Rosas-Ballina M, Olofsson PS, Ochani M,
Valdes-Ferrer SI, Levine YA, Reardon C,
et al. Acetylcholine-synthesizing T cells re-
lay neural signals in a vagus nerve circuit.
Science. 2011;334(6052):98–101. https://doi.
org/10.1126/science.1209985

243 Bratton BO,Martelli D,McKinleyMJ, Trevaks
D, Anderson CR, McAllen RM. Neural reg-
ulation of inflammation: no neural connection
from the vagus to splenic sympathetic neu-
rons. Exp Physiol. 2012;97(11):1180–5. https://
doi.org/10.1113/expphysiol.2011.061531

244 Martelli D, McKinley MJ, McAllen RM. The
cholinergic anti-inflammatory pathway: a
critical review. Auton Neurosci. 2014;182:
65–9. https://doi.org/10.1016/j.autneu.2013.
12.007

245 Martelli D, Yao ST, McKinley MJ, McAllen
RM. Reflex control of inflammation by
sympathetic nerves, not the vagus. J Physiol.

2014;592(7):1677–86. https://doi.org/10.
1113/jphysiol.2013.268573

246 Komegae EN, Farmer DGS, Brooks VL,
McKinley MJ, McAllen RM, Martelli D.
Vagal afferent activation suppresses sys-
temic inflammation via the splanchnic anti-
inflammatory pathway. Brain Behav Im-
mun. 2018;73:441–9. https://doi.org/10.
1016/j.bbi.2018.06.005

247 Heider TR, Koruda MJ, Farrell TM,
Behrns KE. Acute vagotomy does not
augment the systemic inflammatory re-
sponse in patients with peptic ulcer dis-
ease. Am Surg. 2004;70(4):342–6. https://
doi.org/10.1177/000313480407000415

248 Corcoran C, Connor TJ, O’Keane V,
Garland MR. The effects of vagus nerve
stimulation on pro- and anti-inflammatory
cytokines in humans: a preliminary report.
Neuroimmunomodulation. 2005;12(5):
307–9. https://doi.org/10.1159/000087109

249 Barone L, Colicchio G, Policicchio D, Di
Clemente F, Di Monaco A, Meglio M, et al.
Effect of vagal nerve stimulation on systemic
inflammation and cardiac autonomic func-
tion in patients with refractory epilepsy.
Neuroimmunomodulation. 2007;14:331–6.
https://doi.org/10.1159/000127360

250 Fujita T, Yanaga K. Clinical influence of va-
gotomy on postoperative acute phase re-
sponse. Langenbecks Arch Surg. 2007;392(2):
127–30. https://doi.org/10.1007/s00423-006-
0099-4

251 MajoieHJ, RijkersK, BerfeloMW,Hulsman JA,
Myint A, Schwarz M, et al. Vagus nerve
stimulation in refractory epilepsy: effects onpro-
and anti-inflammatory cytokines in peripheral
blood. Neuroimmunomodulation. 2011;18(1):
52–6. https://doi.org/10.1159/000315530

252 Aalbers MW, Klinkenberg S, Rijkers K, Ver-
schuure P, Kessels A, Aldenkamp A, et al. The
effects of vagus nerve stimulation on pro- and
anti-inflammatory cytokines in children with
refractory epilepsy: an exploratory study.
Neuroimmunomodulation. 2012;19(6):352–8.
https://doi.org/10.1159/000341402

253 Waldburger JM, Boyle DL, Pavlov VA,
Tracey KJ, Firestein GS. Acetylcholine
regulation of synoviocyte cytokine expres-
sion by the alpha7 nicotinic receptor. Ar-
thritis Rheum. 2008;58(11):3439–49.
https://doi.org/10.1002/art.23987

254 van Maanen MA, Lebre MC, van der Poll T,
Larosa GJ, Elbaum D, Vervoordeldonk MJ,
et al. Stimulation of nicotinic acetylcholine
receptors attenuates collagen-induced ar-
thritis in mice. Arthritis Rheum. 2009;60(1):
114–22. https://doi.org/10.1002/art.24177

255 Li T, Zuo X, Zhou Y, Wang Y, Zhuang H,
Zhang L, et al. The vagus nerve and nicotinic
receptors involve inhibition of HMGB1 re-
lease and early pro-inflammatory cytokines
function in collagen-induced arthritis. J Clin
Immunol. 2010;30(2):213–20. https://doi.
org/10.1007/s10875-009-9346-0

256 van Maanen MA, Stoof SP, Larosa GJ,
Vervoordeldonk MJ, Tak PP. Role of the

cholinergic nervous system in rheumatoid
arthritis: aggravation of arthritis in nicotinic
acetylcholine receptor α7 subunit gene
knockout mice. Ann Rheum Dis. 2010;
69(9):1717–23. https://doi.org/10.1136/ard.
2009.118554

257 Levine YA, Koopman FA, Faltys M, Car-
avaca A, Bendele A, Zitnik R, et al. Neu-
rostimulation of the cholinergic anti-
inflammatory pathway ameliorates disease
in rat collagen-induced arthritis. PLoS One.
2014;9(8):e104530. https://doi.org/10.1371/
journal.pone.0104530

258 Bassi GS, Dias DPM, Franchin M, Talbot J,
Reis DG, Menezes GB, et al. Modulation of
experimental arthritis by vagal sensory and
central brain stimulation. Brain Behav Im-
mun. 2017;64:330–43. https://doi.org/10.
1016/j.bbi.2017.04.003

259 Bassi GS, Ulloa L, Santos VR, Del Vecchio F,
Delfino-Pereira P, Rodrigues GJ, et al.
Cortical stimulation in conscious rats con-
trols joint inflammation. Prog Neuro-
Psychopharmacol Biol Psychiatry. 2018;
84(Pt A):201–13. https://doi.org/10.1016/j.
pnpbp.2018.02.013

260 Bonaz B, Sinniger V,HoffmannD, Clarençon
D, Mathieu N, Dantzer C, et al. Chronic
vagus nerve stimulation in Crohn’s disease: a
6-month follow-up pilot study. Neuro-
gastroenterol Motil. 2016;28(6):948–53.
https://doi.org/10.1111/nmo.12792

261 Koopman FA, Chavan SS, Miljko S, Grazio
S, Sokolovic S, Schuurman PR, et al. Vagus
nerve stimulation inhibits cytokine pro-
duction and attenuates disease severity in
rheumatoid arthritis. Proc Natl Acad Sci U S
A. 2016;113(29):8284–9. https://doi.org/10.
1073/pnas.1605635113

262 Brock C, Brock B, Aziz Q, Møller HJ,
Pfeiffer Jensen M, Drewes AM, et al.
Transcutaneous cervical vagal nerve stim-
ulation modulates cardiac vagal tone and
tumor necrosis factor-alpha. Neuro-
gastroenterol Motil. 2017;29(5). https://doi.
org/10.1111/nmo.12999

263 Brock C, Rasmussen SE, Drewes AM, Møller
HJ, Brock B, Deleuran B, et al. Vagal nerve
stimulation-modulation of the anti-
inflammatory response and clinical outcome
in psoriatic arthritis or ankylosing spondylitis.
Mediators Inflamm. 2021;2021:9933532.
https://doi.org/10.1155/2021/9933532

264 Marsal S, Corominas H, de Agustín JJ, Pérez-
García C, López-Lasanta M, Borrell H, et al.
Non-invasive vagus nerve stimulation for
rheumatoid arthritis: a proof-of-concept study.
Lancet Rheumatol. 2021;3(4):e262–9. https://
doi.org/10.1016/S2665-9913(20)30425-2

265 Drewes AM, Brock C, Rasmussen SE,Møller
HJ, Brock B, Deleuran BW, et al. Short-term
transcutaneous non-invasive vagus nerve
stimulation may reduce disease activity and
pro-inflammatory cytokines in rheumatoid
arthritis: results of a pilot study. Scand J
Rheumatol. 2021;50(1):20–7. https://doi.
org/10.1080/03009742.2020.1764617

History of Neuroendocrine Immune
Mechanisms

Neuroimmunomodulation 2024;31:183–210
DOI: 10.1159/000540959

205

D
ow

nloaded from
 http://karger.com

/nim
/article-pdf/31/1/183/4282492/000540959.pdf by U

niversitätsbibliothek R
egensburg user on 30 Septem

ber 2024

https://doi.org/10.1186/s12974-022-02504-z
https://doi.org/10.1186/s12974-022-02504-z
https://doi.org/10.1038/35013070
https://doi.org/10.1038/35013070
https://doi.org/10.1084/jem.20011714
https://doi.org/10.1084/jem.20011714
https://doi.org/10.1038/nature01339
https://doi.org/10.1038/nature01339
https://doi.org/10.1084/jem.20040463
https://doi.org/10.1084/jem.20040463
https://doi.org/10.1084/jem.20052362
https://doi.org/10.1084/jem.20052362
https://doi.org/10.1073/pnas.0803237105
https://doi.org/10.1073/pnas.0803237105
https://doi.org/10.1126/science.1209985
https://doi.org/10.1126/science.1209985
https://doi.org/10.1113/expphysiol.2011.061531
https://doi.org/10.1113/expphysiol.2011.061531
https://doi.org/10.1016/j.autneu.2013.12.007
https://doi.org/10.1016/j.autneu.2013.12.007
https://doi.org/10.1113/jphysiol.2013.268573
https://doi.org/10.1113/jphysiol.2013.268573
https://doi.org/10.1016/j.bbi.2018.06.005
https://doi.org/10.1016/j.bbi.2018.06.005
https://doi.org/10.1177/000313480407000415
https://doi.org/10.1177/000313480407000415
https://doi.org/10.1159/000087109
https://doi.org/10.1159/000127360
https://doi.org/10.1007/s00423-006-0099-4
https://doi.org/10.1007/s00423-006-0099-4
https://doi.org/10.1159/000315530
https://doi.org/10.1159/000341402
https://doi.org/10.1002/art.23987
https://doi.org/10.1002/art.24177
https://doi.org/10.1007/s10875-009-9346-0
https://doi.org/10.1007/s10875-009-9346-0
https://doi.org/10.1136/ard.2009.118554
https://doi.org/10.1136/ard.2009.118554
https://doi.org/10.1371/journal.pone.0104530
https://doi.org/10.1371/journal.pone.0104530
https://doi.org/10.1016/j.bbi.2017.04.003
https://doi.org/10.1016/j.bbi.2017.04.003
https://doi.org/10.1016/j.pnpbp.2018.02.013
https://doi.org/10.1016/j.pnpbp.2018.02.013
https://doi.org/10.1111/nmo.12792
https://doi.org/10.1073/pnas.1605635113
https://doi.org/10.1073/pnas.1605635113
https://doi.org/10.1111/nmo.12999
https://doi.org/10.1111/nmo.12999
https://doi.org/10.1155/2021/9933532
https://doi.org/10.1016/S2665-9913(20)30425-2
https://doi.org/10.1016/S2665-9913(20)30425-2
https://doi.org/10.1080/03009742.2020.1764617
https://doi.org/10.1080/03009742.2020.1764617
https://doi.org/10.1159/000540959


266 Venborg J, Wegeberg AM, Kristensen S,
Brock B, Brock C, Pfeiffer-Jensen M. The
effect of transcutaneous vagus nerve stim-
ulation in patients with polymyalgia rheu-
matica. Pharmaceuticals. 2021;14(11):1166.
https://doi.org/10.3390/ph14111166

267 Baker MC, Kavanagh S, Cohen S, Matsumoto
AK, Dikranian A, Tesser J, et al. A ran-
domized, double-blind, sham-controlled,
clinical trial of auricular vagus nerve stimu-
lation for the treatment of active rheumatoid
arthritis. Arthritis Rheumatol. 2023;75(12):
2107–15. https://doi.org/10.1002/art.42637

268 Hench PS. The analgesic effect of hepatitis
and jaundice in chronic arthritis, fibrositis,
and sciatic pain. Ann Intern Med. 1934;7:
1278–94.

269 Poupon R. Ursodeoxycholic acid and
bile-acid mimetics as therapeutic agents
for cholestatic liver diseases: an overview
of their mechanisms of action. Clin Res
Hepatol Gastroenterol. 2012;36(Suppl
1):S3–12. https://doi.org/10.1016/S2210-
7401(12)70015-3

270 Hench PS. The ameliorating effect of
pregnancy on chronic atrophic (infectious,
rheumatoid) arthritis, fibrositis, and inter-
mittent hydrarthrosis. Proc Staff Meetings
Mayo Clinic. 1938;13:161–7.

271 Mason HL, Hoehn WM, Kendal EC.
Chemical studies of the suprarenal cortex:
IV. Structures of compounds C, D, E, F,
AND G. J Biol Chem. 1938;124:459–74.

272 Hench PS, Kendall EC, Slocumb CH, Polley
HF. The effect of a hormone of the adrenal
cortex (17-hydroxy-11-dehydrocorticoster-
one: compound E) and of pituitary adre-
nocortical hormone in arthritis: preliminary
report. Ann Rheum Dis. 1949;8(2):97–104.
https://doi.org/10.1136/ard.8.2.97

273 Buttgereit F, Burmester GR, Straub RH,
Seibel MJ, Zhou H. Exogenous and en-
dogenous glucocorticoids in rheumatic
diseases. Arthritis Rheum. 2011;63:1–9.
https://doi.org/10.1002/art.30070

274 Kirwan JR, Bijlsma JW, Boers M, Shea BJ.
Effects of glucocorticoids on radiological
progression in rheumatoid arthritis.
Cochrane Database Syst Rev. 2007;
2007(1):CD006356. https://doi.org/10.
1002/14651858.CD006356

275 Pincus T, Sokka T, Cutolo M. The past versus
the present, 1980-2004: reduction of mean
initial low-dose, long-term glucocorticoid
therapy in rheumatoid arthritis from 10.3 to
3.6 mg/day, concomitant with early metho-
trexate, with long-term effectiveness and
safety of less than 5 mg/day. Neuro-
immunomodulation. 2015;22(1–2):89–103.
https://doi.org/10.1159/000362735

276 Hwang YG, Saag K. The safety of low-dose
glucocorticoids in rheumatic diseases: re-
sults from observational studies. Neuro-
immunomodulation. 2015;22(1–2):72–82.
https://doi.org/10.1159/000362727

277 Santiago T, da Silva JA. Safety of gluco-
corticoids in rheumatoid arthritis: evidence

from recent clinical trials. Neuro-
immunomodulation. 2015;22(1–2):57–65.
https://doi.org/10.1159/000362726

278 Buttgereit F, Doering G, Schaeffler A, Witte
S, Sierakowski S, Gromnica-Ihle E, et al.
Efficacy of modified-release versus stan-
dard prednisone to reduce duration of
morning stiffness of the joints in rheu-
matoid arthritis (CAPRA-1): a double-
blind, randomised controlled trial. Lan-
cet. 2008;371(9608):205–14. https://doi.
org/10.1016/S0140-6736(08)60132-4

279 Buttgereit F, Mehta D, Kirwan J, Szechinski J,
Boers M, Alten RE, et al. Low-dose prednisone
chronotherapy for rheumatoid arthritis: a
randomised clinical trial (CAPRA-2). Ann
Rheum Dis. 2013;72(2):204–10. https://doi.
org/10.1136/annrheumdis-2011-201067

280 Cutolo M, Iaccarino L, Doria A, Govoni M,
Sulli A, Marcassa C. Efficacy of the switch to
modified-release prednisone in rheumatoid
arthritis patients treated with standard
glucocorticoids. Clin Exp Rheumatol. 2013;
31(4):498–505.

281 Buttgereit F. Getting better at quantifying
the toxicity of glucocorticoids. Lancet
Rheumatol. 2023;5(7):e368–e370. https://
doi.org/10.1016/S2665-9913(23)00159-5

282 Masi AT, Chrousos GP, Bornstein SR.
Enigmas of adrenal androgen and gluco-
corticoid dissociation in premenopausal
onset rheumatoid arthritis. J Rheumatol.
1999;26(2):247–50.

283 Straub RH, Bijlsma JW, Masi A, Cutolo M.
Role of neuroendocrine and neuroimmune
mechanisms in chronic inflammatory rheu-
matic diseases-The 10-year update. Semin
Arthritis Rheum. 2013;43(3):392–404. https://
doi.org/10.1016/j.semarthrit.2013.04.008

284 Straub RH, Buttgereit F, Cutolo M. Alter-
ations of the hypothalamic-pituitary-adre-
nal axis in systemic immune diseases: a role
for misguided energy regulation. Clin Exp
Rheumatol. 2011;29(5 Suppl 68):S23-31.

285 David K, Dingemanse E, Freud J, Laqueur E.
Über krystallinisches männliches Hormon
aus Hoden (Testosteron), wirksamer als aus
Harn oder aus Cholesterin bereitetes An-
drosteron. Biol Chem. 1935;233(5–6):
281–3. https://doi.org/10.1515/bchm2.1935.
233.5-6.281

286 Butenandt A, Hanisch G. Über Testosteron.
Umwandlung des Dehydro-androsterons in
Androstendiol und Testosteron; ein Weg
zur Darstellung des Testosterons aus Cho-
lesterin. Biol Chem. 1935;237(1–3):89–97.
https://doi.org/10.1515/bchm2.1935.237.1-
3.89

287 Davison RA, Koets P, Kuzell WC. Excretion
of 17-ketosteroids in ankylosing spondy-
larthritis and in rheumatoid arthritis; a
preliminary report. J Clin Endocrinol
Metab. 1947;7(3):201–4. https://doi.org/10.
1210/jcem-7-3-201

288 Howard RP, Venning EH, Fisk GH. Rheu-
matoid arthritis. II. Studies of adrenocortical
and hypophyseal function and the effects

thereon of testosterone and pregnenolone
therapy. Can Med Assoc J. 1950;63(4):
340–2.

289 Feher GK, Feher T, Zahumenszky Z. Study
on the inactivationmechanism of androgens
in rheumatoid arthritis: excretory rate of
free and conjugated 17-ketosteroids. En-
dokrinologie. 1979;73(2):167–72.

290 Jungers P, Nahoul K, Pelissier C, Dougados
M, Tron F, Bach JF. Low plasma androgens
in women with active or quiescent systemic
lupus erythematosus. Arthritis Rheum.
1982;25(4):454–7. https://doi.org/10.1002/
art.1780250415

291 Masi AT, Josipovic DB, Jefferson WE. Low
adrenal androgenic-anabolic steroids in
women with Rheumatoid Arthritis (RA):
gas-liquid chromatographic studies of RA
patients and matched normal control
women indicating decreased 11-deoxy-17-
ketosteroid excretion. Semin Arthritis
Rheum. 1984;14:1–23. https://doi.org/10.
1016/0049-0172(84)90005-2

292 Lahita RG, Bradlow HL, Ginzler E, Pang S,
New M. Low plasma androgens in women
with systemic lupus erythematosus. Ar-
thritis Rheum. 1987;30(3):241–8. https://
doi.org/10.1002/art.1780300301

293 CutoloM, Balleari E, GiustiM,MonachesiM,
Accardo S. Sex hormone status of male pa-
tients with rheumatoid arthritis: evidence of
low serum concentrations of testosterone at
baseline and after human chorionic gonad-
otropin stimulation. Arthritis Rheum. 1988;
31(10):1314–7. https://doi.org/10.1002/art.
1780311015

294 Ishmael WK, Hellbaum A, Kuhn JF, Duffy
M. The effects of certain steroid compounds
on various manifestations of rheumatoid
arthritis. J Okla State Med Assoc. 1949;
42(10):434–7.

295 Devis R, van Goidsenhiven F, Lemmens P,
Lederer J, Demuylder C. Arthritis rheu-
matoid therapy with testosterone propio-
nate. Ann Endocrinol. 1950;11(6):637–43.

296 Steinberg AD, Melez KA, Raveche ES,
Reeves JP, Boegel WA, Smathers PA, et al.
Approach to the study of the role of sex
hormones in autoimmunity. Arthritis
Rheum. 1979;22(11):1170–6. https://doi.
org/10.1002/art.1780221103

297 Melez KA, Boegel WA, Steinberg AD.
Therapeutic studies in New Zealand mice.
VII. Successful androgen treatment of NZB/
NZW F1 females of different ages. Arthritis
Rheum. 1980;23(1):41–7. https://doi.org/10.
1002/art.1780230108

298 Talal N. Sex steroid hormones and systemic
lupus erythematosus. Arthritis Rheum.
1981;24(8):1054–6. https://doi.org/10.1002/
art.1780240811

299 da Silva JA, Larbre JP, Spector TD, Perry LA,
Scott DL, Willoughby DA. Protective effect
of androgens against inflammation induced
cartilage degradation in male rodents. Ann
Rheum Dis. 1993;52(4):285–91. https://doi.
org/10.1136/ard.52.4.285

206 Neuroimmunomodulation 2024;31:183–210
DOI: 10.1159/000540959

Straub and Cutolo

D
ow

nloaded from
 http://karger.com

/nim
/article-pdf/31/1/183/4282492/000540959.pdf by U

niversitätsbibliothek R
egensburg user on 30 Septem

ber 2024

https://doi.org/10.3390/ph14111166
https://doi.org/10.1002/art.42637
https://doi.org/10.1016/S2210-7401(12)70015-3
https://doi.org/10.1016/S2210-7401(12)70015-3
https://doi.org/10.1136/ard.8.2.97
https://doi.org/10.1002/art.30070
https://doi.org/10.1002/14651858.CD006356
https://doi.org/10.1002/14651858.CD006356
https://doi.org/10.1159/000362735
https://doi.org/10.1159/000362727
https://doi.org/10.1159/000362726
https://doi.org/10.1016/S0140-6736(08)60132-4
https://doi.org/10.1016/S0140-6736(08)60132-4
https://doi.org/10.1136/annrheumdis-2011-201067
https://doi.org/10.1136/annrheumdis-2011-201067
https://doi.org/10.1016/S2665-9913(23)00159-5
https://doi.org/10.1016/S2665-9913(23)00159-5
https://doi.org/10.1016/j.semarthrit.2013.04.008
https://doi.org/10.1016/j.semarthrit.2013.04.008
https://doi.org/10.1515/bchm2.1935.233.5-6.281
https://doi.org/10.1515/bchm2.1935.233.5-6.281
https://doi.org/10.1515/bchm2.1935.237.1-3.89
https://doi.org/10.1515/bchm2.1935.237.1-3.89
https://doi.org/10.1210/jcem-7-3-201
https://doi.org/10.1210/jcem-7-3-201
https://doi.org/10.1002/art.1780250415
https://doi.org/10.1002/art.1780250415
https://doi.org/10.1016/0049-0172(84)90005-2
https://doi.org/10.1016/0049-0172(84)90005-2
https://doi.org/10.1002/art.1780300301
https://doi.org/10.1002/art.1780300301
https://doi.org/10.1002/art.1780311015
https://doi.org/10.1002/art.1780311015
https://doi.org/10.1002/art.1780221103
https://doi.org/10.1002/art.1780221103
https://doi.org/10.1002/art.1780230108
https://doi.org/10.1002/art.1780230108
https://doi.org/10.1002/art.1780240811
https://doi.org/10.1002/art.1780240811
https://doi.org/10.1136/ard.52.4.285
https://doi.org/10.1136/ard.52.4.285
https://doi.org/10.1159/000540959


300 da Silva JA, Larbre JP, Seed MP, Cutolo M,
Villaggio B, Scott DL, et al. Sex differences in
inflammation induced cartilage damage in
rodents. The influence of sex steroids.
J Rheumatol. 1994;21(2):330–7.

301 Cutolo M, Balleari E, Giusti M, Intra E,
Accardo S. Androgen replacement therapy
in male patients with rheumatoid arthritis.
Arthritis Rheum. 1991;34:1–5. https://doi.
org/10.1002/art.1780340102

302 Bijlsma JW, Huber-Bruning O, Thijssen JH.
Effect of oestrogen treatment on clinical and
laboratory manifestations of rheumatoid ar-
thritis. Ann Rheum Dis. 1987;46(10):777–9.
https://doi.org/10.1136/ard.46.10.777

303 Booji A, Biewenga-Booji CM, Huber-
Bruning O, Cornelis C, Jacobs JW, Bijlsma
JW. Androgens as adjuvant treatment in
postmenopausal female patients with
rheumatoid arthritis. Ann Rheum Dis. 1996;
55(11):811–5. https://doi.org/10.1136/ard.
55.11.811

304 van Vollenhoven RF, Engleman EG, McGuire
JL. An open study of dehydroepiandrosterone
in systemic lupus erythematosus. Arthritis
Rheum. 1994;37(9):1305–10. https://doi.org/
10.1002/art.1780370906

305 van Vollenhoven RF, Engleman EG,
McGuire JL. Dehydroepiandrosterone in
systemic lupus erythematosus. Results of a
double-blind, placebo-controlled, random-
ized clinical trial. Arthritis Rheum. 1995;
38(12):1826–31. https://doi.org/10.1002/art.
1780381216

306 van Vollenhoven RF, Morabito LM, Eng-
leman EG, McGuire JL. Treatment of sys-
temic lupus erythematosus with dehy-
droepiandrosterone: 50 patients treated up
to 12 months. J Rheumatol. 1998;25(2):
285–9.

307 Petri MA, Lahita RG, van Vollenhoven RF,
Merrill JT, Schiff M, Ginzler EM, et al. Ef-
fects of prasterone on corticosteroid re-
quirements of women with systemic lupus
erythematosus: a double-blind, randomized,
placebo-controlled trial. Arthritis Rheum.
2002;46(7):1820–9. https://doi.org/10.1002/
art.10364

308 Petri MA, Mease PJ, Merrill JT, Lahita RG,
Iannini MJ, Yocum DE, et al. Effects of
prasterone on disease activity and symp-
toms in women with active systemic lupus
erythematosus. Arthritis Rheum. 2004;
50(9):2858–68. https://doi.org/10.1002/art.
20427

309 Skare TL, Hauz E, de Carvalho JF. Dehy-
droepiandrosterone (DHEA) supplementation
in rheumatic diseases: a systematic review.
Mediterr J Rheumatol. 2023;34(3):292–301.
https://doi.org/10.31138/mjr.20230825.dd

310 Ungar F, Miller AM, Dorfman RI. Meta-
bolism of dehydroepiandrosterone and Δ5-
ANDROSTENE-3β, 17β-DIOL. J Biol
Chem. 1954;206(2):597–605. https://doi.
org/10.1016/s0021-9258(19)50827-4

311 Castagnetta LA, Carruba G, Granata OM,
Stefano R, Miele M, Schmidt M, et al. In-

creased estrogen formation and estrogen to
androgen ratio in the synovial fluid of pa-
tients with rheumatoid arthritis. J Rheumatol.
2003;30(12):2597–605.

312 Schmidt M, Weidler C, Naumann H, An-
ders S, Schölmerich J, Straub RH. Androgen
conversion in osteoarthritis and rheumatoid
arthritis synoviocytes - androstenedione
and testosterone inhibit estrogen formation
and favor production of more potent
5alpha-reduced androgens. Arthritis Res
Ther. 2005;7(5):R938–48. https://doi.org/10.
1186/ar1769

313 Cutolo M, Straub RH. Sex steroids and au-
toimmune rheumatic diseases: state of the art.
Nat Rev Rheumatol. 2020;16(11):628–44.
https://doi.org/10.1038/s41584-020-0503-4

314 Cutolo M, Accardo S, Villaggio B, Clerico P,
Indiveri F, Carruba G, et al. Evidence for the
presence of androgen receptors in the sy-
novial tissue of rheumatoid arthritis patients
and healthy controls. Arthritis Rheum. 1992;
35(9):1007–15. https://doi.org/10.1002/art.
1780350905

315 Cutolo M, Accardo S, Villaggio B, Clerico P,
Bagnasco M, Coviello DA, et al. Presence of
estrogen-binding sites on macrophage-like
synoviocytes and CD8+, CD29+, CD45RO+ T
lymphocytes in normal and rheumatoid syno-
vium. Arthritis Rheum. 1993;36(8):1087–97.
https://doi.org/10.1002/art.1780360809

316 van der Goes MC, Straub RH, Wenting MJ,
Capellino S, Jacobs JW, Jahangier ZN, et al.
Intra-articular glucocorticoid injections
decrease the number of steroid hormone
receptor positive cells in synovial tissue of
patients with persistent knee arthritis. Ann
Rheum Dis. 2012;71(9):1552–8. https://doi.
org/10.1136/annrheumdis-2011-201019

317 Straub RH, Härle P, Yamana S, Matsuda T,
Takasugi K, Kishimoto T, et al. Anti-in-
terleukin-6 receptor antibody therapy favors
adrenal androgen secretion in patients with
rheumatoid arthritis: a randomized, double-
blind, placebo-controlled study. Arthritis
Rheum. 2006;54(6):1778–85. https://doi.
org/10.1002/art.21826

318 Ernestam S, Hafstrom I, Werner S, Carl-
strom K, Tengstrand B. Increased DHEAS
levels in patients with rheumatoid arthritis
after treatment with tumor necrosis factor
antagonists: evidence for improved adrenal
function. J Rheumatol. 2007;34(7):1451–8.

319 Alexander WR, Duthie JJ. Progesterone in
the treatment of rheumatoid arthritis; a
clinical trial in five cases. Lancet. 1950;
1(6599):297. https://doi.org/10.1016/s0140-
6736(50)92000-9

320 Kyle LH, Crain DC. The clinical and met-
abolic effects of progesterone and anhy-
drohydroxyprogesterone in rheumatoid
arthritis. Ann Intern Med. 1950;32(5):
878–88. https://doi.org/10.7326/0003-4819-
32-5-878

321 Kling DH. Treatment of rheumatoid ar-
thritis with progesterone and pregnenolone.
Ann West Med Surg. 1950;4(8):378–82.

322 Cuchacovich M, Tchernitchin A, Gatica H,
Wurgaft R, Valenzuela C, Cornejo E. In-
traarticular progesterone: effects of a local
treatment for rheumatoid arthritis.
J Rheumatol. 1988;15(4):561–5.

323 Toivanen P, Määttä K, Suolanen R, Tyk-
kyläinen R. Effect of estrone and proges-
terone on adjuvant arthritis in rats. Med
Pharmacol Exp Int J Exp Med. 1967;17(1):
33–42. https://doi.org/10.1159/000137052

324 Jansson L, Holmdahl R. Oestrogen induced
suppression of collagen arthritis. IV: pro-
gesterone alone does not affect the course of
arthritis but enhances the oestrogen-
mediated therapeutic effect. J Reprod Im-
munol. 1989;15(2):141–50. https://doi.org/
10.1016/0165-0378(89)90033-8

325 Ganesan K, Balachandran C, Manohar BM,
Puvanakrishnan R. Comparative studies on
the interplay of testosterone, estrogen and
progesterone in collagen induced arthritis in
rats. Bone. 2008;43(4):758–65. https://doi.
org/10.1016/j.bone.2008.05.025

326 da Silva JA, Colville-Nash P, Spector TD,
Scott DL, Willoughby DA. Inflammation-
induced cartilage degradation in female
rodents. Protective role of sex hormones.
Arthritis Rheum. 1993;36(7):1007–13.
https://doi.org/10.1002/art.1780360719

327 Khalkhali-Ellis Z, Seftor EA, Nieva DRC,
Handa RJ, Price RH Jr, Kirschmann DA,
et al. Estrogen and progesterone regulation
of human fibroblast-like synoviocyte func-
tion in vitro: implications in rheumatoid
arthritis. J Rheumatol. 2000;27(7):1622–31.

328 Hughes GC, Martin D, Zhang K, Hudkins KL,
Alpers CE, Clark EA, et al. Decrease in glo-
merulonephritis and Th1-associated autoanti-
body production after progesterone treatment in
NZB/NZW mice. Arthritis Rheum. 2009;60(6):
1775–84. https://doi.org/10.1002/art.24548

329 Hughes GC, Choubey D. Modulation of
autoimmune rheumatic diseases by oes-
trogen and progesterone. Nat Rev Rheu-
matol. 2014;10(12):740–51. https://doi.org/
10.1038/nrrheum.2014.144

330 De Neef JC. Treatment of disseminated
lupus erythematosus with stilbesterol. Ned
Tijdschr Geneeskd. 1958;102(5):246–8.

331 Chapel TA, Burns RE. Oral contraceptives and
exacerbation of lupus erythematosus. Am J
Obstet Gynecol. 1971;110(3):366–9. https://
doi.org/10.1016/0002-9378(71)90730-7

332 Tarzy BJ, Garcia CR, Wallach EE, Zweiman
B, Myers AR. Rheumatic disease, abnormal
serology, and oral contraceptives. Lancet.
1972;2(7776):501–3. https://doi.org/10.1016/
s0140-6736(72)91903-4

333 Buyon JP, Petri MA, Kim MY, Kalunian
KC, Grossman J, Hahn BH, et al. The
effect of combined estrogen and proges-
terone hormone replacement therapy on
disease activity in systemic lupus eryth-
ematosus: a randomized trial. Ann Intern
Med. 2005;142(12 Pt 1):953–62. https://
doi.org/10.7326/0003-4819-142-12_part_
1-200506210-00004

History of Neuroendocrine Immune
Mechanisms

Neuroimmunomodulation 2024;31:183–210
DOI: 10.1159/000540959

207

D
ow

nloaded from
 http://karger.com

/nim
/article-pdf/31/1/183/4282492/000540959.pdf by U

niversitätsbibliothek R
egensburg user on 30 Septem

ber 2024

https://doi.org/10.1002/art.1780340102
https://doi.org/10.1002/art.1780340102
https://doi.org/10.1136/ard.46.10.777
https://doi.org/10.1136/ard.55.11.811
https://doi.org/10.1136/ard.55.11.811
https://doi.org/10.1002/art.1780370906
https://doi.org/10.1002/art.1780370906
https://doi.org/10.1002/art.1780381216
https://doi.org/10.1002/art.1780381216
https://doi.org/10.1002/art.10364
https://doi.org/10.1002/art.10364
https://doi.org/10.1002/art.20427
https://doi.org/10.1002/art.20427
https://doi.org/10.31138/mjr.20230825.dd
https://doi.org/10.1016/s0021-9258(19)50827-4
https://doi.org/10.1016/s0021-9258(19)50827-4
https://doi.org/10.1186/ar1769
https://doi.org/10.1186/ar1769
https://doi.org/10.1038/s41584-020-0503-4
https://doi.org/10.1002/art.1780350905
https://doi.org/10.1002/art.1780350905
https://doi.org/10.1002/art.1780360809
https://doi.org/10.1136/annrheumdis-2011-201019
https://doi.org/10.1136/annrheumdis-2011-201019
https://doi.org/10.1002/art.21826
https://doi.org/10.1002/art.21826
https://doi.org/10.1016/s0140-6736(50)92000-9
https://doi.org/10.1016/s0140-6736(50)92000-9
https://doi.org/10.7326/0003-4819-32-5-878
https://doi.org/10.7326/0003-4819-32-5-878
https://doi.org/10.1159/000137052
https://doi.org/10.1016/0165-0378(89)90033-8
https://doi.org/10.1016/0165-0378(89)90033-8
https://doi.org/10.1016/j.bone.2008.05.025
https://doi.org/10.1016/j.bone.2008.05.025
https://doi.org/10.1002/art.1780360719
https://doi.org/10.1002/art.24548
https://doi.org/10.1038/nrrheum.2014.144
https://doi.org/10.1038/nrrheum.2014.144
https://doi.org/10.1016/0002-9378(71)90730-7
https://doi.org/10.1016/0002-9378(71)90730-7
https://doi.org/10.1016/s0140-6736(72)91903-4
https://doi.org/10.1016/s0140-6736(72)91903-4
https://doi.org/10.7326/0003-4819-142-12_part_1-200506210-00004
https://doi.org/10.7326/0003-4819-142-12_part_1-200506210-00004
https://doi.org/10.7326/0003-4819-142-12_part_1-200506210-00004
https://doi.org/10.1159/000540959


334 Rojas-Villarraga A, Torres-Gonzalez JV,
Ruiz-Sternberg AM. Safety of hormonal
replacement therapy and oral contraceptives
in systemic lupus erythematosus: a sys-
tematic review and meta-analysis. PLoS
One. 2014;9(8):e104303. https://doi.org/10.
1371/journal.pone.0104303

335 Petri M, Kim MY, Kalunian KC, Grossman
J, Hahn BH, Sammaritano LR, et al. Com-
bined oral contraceptives in women with
systemic lupus erythematosus. N Engl J
Med. 2005;353(24):2550–8. https://doi.org/
10.1056/NEJMoa051135

336 Stern R, Fishman J, Brusman H, Kunkel HG.
Systemic lupus erythematosus associated
with klinefelter’s syndrome. Arthritis
Rheum. 1977;20(1):18–22. https://doi.org/
10.1002/art.1780200103

337 Rovensky J, Imrich R, Lazurova I, Payer J.
Rheumatic diseases and Klinefelter’s syn-
drome. Ann N Y Acad Sci. 2010;1193:1–9.
https://doi.org/10.1111/j.1749-6632.2009.
05292.x

338 Seminog OO, Seminog AB, Yeates D,
Goldacre MJ. Associations between Kline-
felter’s syndrome and autoimmune diseases:
English national record linkage studies.
Autoimmunity. 2015;48(2):125–8. https://
doi.org/10.3109/08916934.2014.968918

339 Harris VM, Sharma R, Cavett J, Kurien BT,
Liu K, Koelsch KA, et al. Klinefelter’s syn-
drome (47,XXY) is in excess among men
with Sjogren’s syndrome. Clin Immunol.
2016;168:25–9. https://doi.org/10.1016/j.
clim.2016.04.002

340 Lahita RG, Bradlow HL, Kunkel HG,
Fishman J. Alterations of estrogen meta-
bolism in systemic lupus erythematosus.
Arthritis Rheum. 1979;22(11):1195–8.
https://doi.org/10.1002/art.1780221106

341 Bucala R, Lahita RG, Fishman J, Cerami A.
Increased levels of 16 alpha-hydroxyestrone-
modified proteins in pregnancy and in sys-
temic lupus erythematosus. J Clin Endocrinol
Metab. 1985;60(5):841–7. https://doi.org/10.
1210/jcem-60-5-841

342 Weidler C, Härle P, Schedel J, Schmidt M,
Schölmerich J, Straub RH. Patients with
rheumatoid arthritis and systemic lupus
erythematosus have increased renal excre-
tion of mitogenic estrogens in relation to
endogenous antiestrogens. J Rheumatol.
2004;31(3):489–94.

343 Duvic M, Steinberg AD, Klassen LW. Effect
of the anti-estrogen, Nafoxidine, on NZB/W
autoimmune disease. Arthritis Rheum.
1978;21(4):414–7. https://doi.org/10.1002/
art.1780210403

344 Sturgess AD, Evans DT, Mackay IR, Riglar
A. Effects of the oestrogen antagonist ta-
moxifen on disease indices in systemic lupus
erythematosus. J Clin Lab Immunol. 1984;
13(1):11–4.

345 Holmdahl R, Carlsten H, Jansson L,
Larsson P. Oestrogen is a potent immu-
nomodulator of murine experimental
rheumatoid disease. Br J Rheumatol. 1989;

28(Suppl 1):54–71. https://doi.org/10.
1093/rheumatology/xxviii.suppl_1.54

346 Carlsten H, Holmdahl R, Tarkowski A,
Nilsson LA. Oestradiol- and testosterone-
mediated effects on the immune system in
normal and autoimmune mice are geneti-
cally linked and inherited as dominant
traits. Immunology. 1989;68(2):209–14.

347 Hazes JM, Dijkmans BA, Vandenbroucke
JP, Cats A. Oral contraceptive treatment for
rheumatoid arthritis: an open study in 10
female patients. Br J Rheumatol. 1989;
28(Suppl 1):28–30. https://doi.org/10.1093/
rheumatology/xxviii.suppl_1.28

348 Sambrook P, Birmingham J, Champion D,
Kelly P, Kempler S, Freund J, et al. Post-
menopausal bone loss in rheumatoid ar-
thritis: effect of estrogens and androgens.
J Rheumatol. 1992;19(3):357–61.

349 Carlsten H, Nilsson N, Jonsson R, Backman
K, Holmdahl R, Tarkowski A. Estrogen
accelerates immune complex glomerulone-
phritis but ameliorates T cell-mediated
vasculitis and sialadenitis in autoimmune
MRL lpr/lpr mice. Cell Immunol. 1992;
144(1):190–202. https://doi.org/10.1016/
0008-8749(92)90236-i

350 Straub RH. The complex role of estrogens in
inflammation. Endocr Rev. 2007;28(5):
521–74. https://doi.org/10.1210/er.2007-0001

351 Mizoguchi Y, Ikemoto Y, Yamamoto S,
Morisawa S. Studies on the effects of es-
trogen on the antibody response in
asymptomatic HB virus carrier. Hep-
atogastroenterology. 1985;32(3):109–12.

352 Whitacre CC. Sex differences in autoim-
mune disease. Nat Immunol. 2001;2(9):
777–80. https://doi.org/10.1038/ni0901-777

353 Mays S, Prowse T, George M, Brickley M.
Latitude, urbanization, age, and sex as risk
factors for vitamin D deficiency disease in the
Roman Empire. Am J Phys Anthropol. 2018;
167(3):484–96. https://doi.org/10.1002/ajpa.
23646

354 Glisson F. A treatise of the rickets: being a
disease common to children. London: P.
Cole; 1651.

355 Hopkins FG. The analyst and the medical
man. Analyst. 1906;31(369):385–404.
https://doi.org/10.1039/an906310385b

356 Mellanby E. An experimental investigation
on rickets. Lancet.. 1919;196:407–12.

357 Chick H, Dalyell EJH, Hume M, Smith H,
Mackay H. The aetiology of rickets in in-
fants: prophylactic and curative observa-
tions at the Vienna University Kinderklinik.
Lancet. 1922;200(5157):7–11. https://doi.
org/10.1016/s0140-6736(01)00835-2

358 McCollum EV, Simmonds N, Becker J, Shipley
PG. Studies on experimental rickets. XXI. An
experimental demonstration of the existence of
a vitamin which promotes calcium deposition.
J Biol Chem. 1922;53(2):293–312. https://doi.
org/10.1016/s0021-9258(18)85783-0

359 Hess AF, Weinstock M. Antirachitic prop-
erties imparted to inert fluids and to green
vegetables by ultraviolet irradiation. J Biol

Chem. 1924;62(2):301–13. https://doi.org/
10.1016/s0021-9258(18)85064-5

360 Steenbock H. The induction of growth
promoting and calcifying properties in a
ration by exposure to light. Science. 1924;
60(1549):224–5. https://doi.org/10.1126/
science.60.1549.224

361 Hess AF, Weinstock M, Heelman FD. The
antirachitic value of irradiated phytosterol
and cholesterol. J Biol Chem. 1925;63:305–9.

362 Windaus A, Hess A. Sterine und anti-
rachitisches Vitamin. Nachrichten von der
Gesellschaft der Wissenschaften zu Göt-
tingen. 1926:175–84.

363 Rosenheim O, Webster TA. Further obser-
vations on the photo-chemical formation of
vitamin D. J Soc Chem Ind. 1926;45:932.

364 Wolf G. The discovery of vitamin D: the
contribution of Adolf Windaus. J Nutr.
2004;134(6):1299–302. https://doi.org/10.
1093/jn/134.6.1299

365 Rosenheim O, Webster TA. The parent sub-
stance of vitamin D. Biochem J. 1927;21(2):
389–97. https://doi.org/10.1042/bj0210389

366 Haussler MR, Myrtle JF, Norman AW. The
association of a metabolite of vitamin D3
with intestinal mucosa chromatin in vivo.
J Biol Chem. 1968;243(15):4055–64. https://
doi.org/10.1016/s0021-9258(18)93278-3

367 Tsai HC, Norman AW. Studies on cal-
ciferol metabolism. J Biol Chem. 1973;
248(17):5967–75. https://doi.org/10.1016/
s0021-9258(19)43495-9

368 Brumbaugh PF, Haussler MR. 1α,25-Dihy-
droxycholecalciferol receptors in intestine.
J Biol Chem. 1974;249(4):1251–7. https://
doi.org/10.1016/s0021-9258(19)42968-2

369 Norman AW, Roth J, Orci L. The vitamin D
endocrine system: steroid metabolism,
hormone receptors, and biological response
(calcium binding proteins). Endocr Rev.
1982;3(4):331–66. https://doi.org/10.1210/
edrv-3-4-331

370 Provvedini DM, Tsoukas CD, Deftos LJ,
Manolagas SC. 1,25-dihydroxyvitamin D3
receptors in human leukocytes. Science.
1983;221(4616):1181–3. https://doi.org/10.
1126/science.6310748

371 McDonnell DP, Mangelsdorf DJ, Pike JW,
Haussler MR, O’Malley BW. Molecular
cloning of complementary DNA encoding
the avian receptor for vitamin D. Science.
1987;235(4793):1214–7. https://doi.org/10.
1126/science.3029866

372 Baker AR, McDonnell DP, Hughes M, Crisp
TM, Mangelsdorf DJ, Haussler MR, et al.
Cloning and expression of full-length cDNA
encoding human vitamin D receptor. Proc
Natl Acad Sci U S A. 1988;85(10):3294–8.
https://doi.org/10.1073/pnas.85.10.3294

373 Haussler MR, Whitfield K, Haussler CA,
Hsieh J-C, Jurutka PW. Nuclear vitamin D
receptor: natural ligands, molecular struc-
ture–function and transcriptional control of
vital genes. In: Feldman D, Pike JW, Adams
JS, editors. Vitamin D. 3rd ed. San Diego:
Academic Press; 2011. p. 137–70.

208 Neuroimmunomodulation 2024;31:183–210
DOI: 10.1159/000540959

Straub and Cutolo

D
ow

nloaded from
 http://karger.com

/nim
/article-pdf/31/1/183/4282492/000540959.pdf by U

niversitätsbibliothek R
egensburg user on 30 Septem

ber 2024

https://doi.org/10.1371/journal.pone.0104303
https://doi.org/10.1371/journal.pone.0104303
https://doi.org/10.1056/NEJMoa051135
https://doi.org/10.1056/NEJMoa051135
https://doi.org/10.1002/art.1780200103
https://doi.org/10.1002/art.1780200103
https://doi.org/10.1111/j.1749-6632.2009.05292.x
https://doi.org/10.1111/j.1749-6632.2009.05292.x
https://doi.org/10.3109/08916934.2014.968918
https://doi.org/10.3109/08916934.2014.968918
https://doi.org/10.1016/j.clim.2016.04.002
https://doi.org/10.1016/j.clim.2016.04.002
https://doi.org/10.1002/art.1780221106
https://doi.org/10.1210/jcem-60-5-841
https://doi.org/10.1210/jcem-60-5-841
https://doi.org/10.1002/art.1780210403
https://doi.org/10.1002/art.1780210403
https://doi.org/10.1093/rheumatology/xxviii.suppl_1.54
https://doi.org/10.1093/rheumatology/xxviii.suppl_1.54
https://doi.org/10.1093/rheumatology/xxviii.suppl_1.28
https://doi.org/10.1093/rheumatology/xxviii.suppl_1.28
https://doi.org/10.1016/0008-8749(92)90236-i
https://doi.org/10.1016/0008-8749(92)90236-i
https://doi.org/10.1210/er.2007-0001
https://doi.org/10.1038/ni0901-777
https://doi.org/10.1002/ajpa.23646
https://doi.org/10.1002/ajpa.23646
https://doi.org/10.1039/an906310385b
https://doi.org/10.1016/s0140-6736(01)00835-2
https://doi.org/10.1016/s0140-6736(01)00835-2
https://doi.org/10.1016/s0021-9258(18)85783-0
https://doi.org/10.1016/s0021-9258(18)85783-0
https://doi.org/10.1016/s0021-9258(18)85064-5
https://doi.org/10.1016/s0021-9258(18)85064-5
https://doi.org/10.1126/science.60.1549.224
https://doi.org/10.1126/science.60.1549.224
https://doi.org/10.1093/jn/134.6.1299
https://doi.org/10.1093/jn/134.6.1299
https://doi.org/10.1042/bj0210389
https://doi.org/10.1016/s0021-9258(18)93278-3
https://doi.org/10.1016/s0021-9258(18)93278-3
https://doi.org/10.1016/s0021-9258(19)43495-9
https://doi.org/10.1016/s0021-9258(19)43495-9
https://doi.org/10.1016/s0021-9258(19)42968-2
https://doi.org/10.1016/s0021-9258(19)42968-2
https://doi.org/10.1210/edrv-3-4-331
https://doi.org/10.1210/edrv-3-4-331
https://doi.org/10.1126/science.6310748
https://doi.org/10.1126/science.6310748
https://doi.org/10.1126/science.3029866
https://doi.org/10.1126/science.3029866
https://doi.org/10.1073/pnas.85.10.3294
https://doi.org/10.1159/000540959


374 DeLuca HF, Suda T, Schnoes HK, Tanaka Y,
Holick MF. 25,26-dihydroxycholecalciferol, a
metabolite of vitamin D3 with intestinal
calcium transport activity. Biochemistry.
1970;9(24):4776–80. https://doi.org/10.1021/
bi00826a022

375 Cutolo M, Smith V, Paolino S, Gotelli E.
Involvement of the secosteroid vitamin D in
autoimmune rheumatic diseases and CO-
VID-19. Nat Rev Rheumatol. 2023;19(5):
265–87. https://doi.org/10.1038/s41584-023-
00944-2

376 Teymoori-Rad M, Shokri F, Salimi V,
Marashi SM. The interplay between vitamin
D and viral infections. Rev Med Virol. 2019;
29(2):e2032. https://doi.org/10.1002/rmv.
2032

377 Cutolo M, Paolino S, Smith V. Evidences for
a protective role of vitamin D in COVID-19.
RMD Open. 2020;6(3):e001454. https://doi.
org/10.1136/rmdopen-2020-001454

378 Abe E, Miyaura C, Sakagami H, Takeda M,
Konno K, Yamazaki T, et al. Differentiation
of mouse myeloid leukemia cells induced by
1 alpha, 25-dihydroxyvitamin D3. Proc Natl
Acad Sci U S A. 1981;78(8):4990–4. https://
doi.org/10.1073/pnas.78.8.4990

379 Bar-Shavit Z, Noff D, Edelstein S, Meyer M,
Shibolet S, Goldman R. 1,25-dihydrox-
yvitamin D3 and the regulation of macro-
phage function. Calcif Tissue Int. 1981;33:
673–6. https://doi.org/10.1007/BF02409507

380 Tsoukas CD, Provvedini DM, Manolagas SC.
1,25-dihydroxyvitamin D3: a novel immu-
noregulatory hormone. Science. 1984;
224(4656):1438–40. https://doi.org/10.1126/
science.6427926

381 Cutolo M, Plebani M, Shoenfeld Y, Adorini
L, Tincani A. Vitamin D endocrine system
and the immune response in rheumatic
diseases. Vitam Horm. 2011;86:327–51.
https://doi.org/10.1016/B978-0-12-386960-
9.00014-9

382 Cutolo M, Gotelli E. The 2023s growing
evidence confirming the relationship be-
tween vitamin D and autoimmune diseases.
Nutrients. 2023;15(22):4760. https://doi.
org/10.3390/nu15224760

383 Wimalawansa SJ. Infections and autoimmunity-
the immune system and vitamin D: a systematic
review. Nutrients. 2023;15(17):3842. https://doi.
org/10.3390/nu15173842

384 Schwartz N, Stock AD, Putterman C.
Neuropsychiatric lupus: new mechanistic
insights and future treatment directions. Nat
Rev Rheumatol. 2019;15(3):137–52. https://
doi.org/10.1038/s41584-018-0156-8

385 McCLARY AR, Meyer E, Weitzman EL.
Observations on the role of the mechanism
of depression in some patients with dis-
seminated lupus erythematosus. Psychosom
Med. 1955;17(4):311–21. https://doi.org/10.
1097/00006842-195507000-00006

386 Heine BE. Psychiatric aspects of systemic
lupus erythematosus. Acta Psychiatr Scand.
1969;45(4):307–26. https://doi.org/10.1111/
j.1600-0447.1969.tb07132.x

387 Moldofsky H, Chester WJ. Pain and mood
patterns in patients with rheumatoid ar-
thritis. A prospective study. Psychosom
Med. 1970;32(3):309–18. https://doi.org/10.
1097/00006842-197005000-00009

388 Robinson H, Kirk RF Jr, Frye RL. A psy-
chological study of rheumatoid arthritis and
selected controls. J Chronic Dis. 1971;
23(10):791–801. https://doi.org/10.1016/
0021-9681(71)90009-9

389 Zaphiropoulos G, Burry HC. Proceedings: a
study of depression in rheumatoid disease.
Ann Rheum Dis. 1973;32(6):593–5. https://
doi.org/10.1136/ard.32.6.593-b

390 Robinson ET, Hernandez LA, Dick WC,
Buchanan WW. Depression in rheumatoid
arthritis. J R Coll Gen Pract. 1977;27(180):
423–7.

391 Moos RH, Solomon GF. Minnesota multi-
phasic personality inventory response pat-
terns in patients with rheumatoid arthritis.
J Psychosom Res. 1964;8:17–28. https://doi.
org/10.1016/0022-3999(64)90018-2

392 Meenan RF, Gertman PM, Mason JH.
Measuring health status in arthritis. The
arthritis impact measurement scales. Ar-
thritis Rheum. 1980;23(2):146–52. https://
doi.org/10.1002/art.1780230203

393 Hawley DJ,Wolfe F. Anxiety and depression
in patients with rheumatoid arthritis: a
prospective study of 400 patients.
J Rheumatol. 1988;15(6):932–41.

394 Fries JF, Spitz P, Kraines RG, Holman HR.
Measurement of patient outcome in ar-
thritis. Arthritis Rheum. 1980;23(2):137–45.
https://doi.org/10.1002/art.1780230202

395 Ware JE Jr, Sherbourne CD. The MOS 36-
item Short-Form health survey (SF-36).
I. Conceptual framework and item selection.
Med Care. 1992;30(6):473–83.

396 Blalock SJ, DeVellis RF, Brown GK, Wall-
ston KA. Validity of the center for epide-
miological studies depression scale in ar-
thritis populations. Arthritis Rheum. 1989;
32(8):991–7. https://doi.org/10.1002/anr.
1780320808

397 Nicassio PM, Wallston KA. Longitudinal re-
lationships among pain, sleep problems, and
depression in rheumatoid arthritis. J Abnorm
Psychol. 1992;101(3):514–20. https://doi.org/
10.1037//0021-843x.101.3.514

398 Hawley DJ, Wolfe F. Depression is not more
common in rheumatoid arthritis: a 10-year
longitudinal study of 6,153 patients with
rheumatic disease. J Rheumatol. 1993;
20(12):2025–31.

399 DeVellis BM. The physiological impact of
arthritis: prevalence of depression. Arthritis
Care Res. 1995;8(4):284–9. https://doi.org/
10.1002/art.1790080413

400 Smarr KL, Parker JC, Kosciulek JF, Buch-
holz JL, Multon KD, Hewett JE, et al. Im-
plications of depression in rheumatoid ar-
thritis: do subtypes really matter? Arthritis
Care Res. 2000;13(1):23–32. https://doi.org/
10.1002/1529-0131(200002)13:1<23::aid-
art5>3.0.co;2-w

401 Söderlin MK, Hakala M, Nieminen P. Anxiety
and depression in a community-based rheu-
matoid arthritis population. Scand J Rheu-
matol. 2000;29(3):177–83. https://doi.org/10.
1080/030097400750002067

402 Covic T, Tyson G, Spencer D, Howe G.
Depression in rheumatoid arthritis patients:
demographic, clinical, and psychological
predictors. J Psychosom Res. 2006;60(5):
469–76. https://doi.org/10.1016/j.jpsychores.
2005.09.011

403 Smedstad LM, Vaglum P, Kvien TK,MoumT.
The relationship between self-reported pain
and sociodemographic variables, anxiety, and
depressive symptoms in rheumatoid arthritis.
J Rheumatol. 1995;22(3):514–20.

404 Smedstad LM, Vaglum P, Moum T, Kvien
TK. The relationship between psychological
distress and traditional clinical variables: a
2 year prospective study of 216 patients with
early rheumatoid arthritis. Br J Rheumatol.
1997;36(12):1304–11. https://doi.org/10.
1093/rheumatology/36.12.1304

405 Creamer P, Lethbridge-Cejku M, Costa P,
Tobin JD, Herbst JH, Hochberg MC. The
relationship of anxiety and depression with
self-reported knee pain in the community:
data from the Baltimore Longitudinal Study
of Aging. Arthritis Care Res. 1999;12(1):3–7.
https://doi.org/10.1002/1529-0131(199902)
12:1<3::aid-art2>3.0.co;2-k

406 Cardenas DD, Kutner NG. The problem
of fatigue in dialysis patients. Nephron.
1982;30(4):336–40. https://doi.org/10.
1159/000182512

407 Stoff E, Bacon MC, White PH. The effects of
fatigue, distractibility, and absenteeism on
school achievement in children with rheumatic
diseases. Arthritis Care Res. 1989;2:49–53.
https://doi.org/10.1002/anr.1790020205

408 Krupp LB, LaRocca NG, Muir-Nash J, Stein-
berg AD. The fatigue severity scale. Applica-
tion to patients with multiple sclerosis and
systemic lupus erythematosus. Arch Neurol.
1989;46(10):1121–3. https://doi.org/10.1001/
archneur.1989.00520460115022

409 Connor H. Doctors and “educational
overpressure” in nineteenth-century Britain:
a fatigue state that divided medical opinion.
Eur J Hist Med Health. 2022;80(1):3–38.
https://doi.org/10.1163/26667711-bja10026

410 Hart BL. Behavior of sick animals. Vet
Clin North Am Food Anim Pract. 1987;
3(2):383–91. https://doi.org/10.1016/s0749-
0720(15)31159-2

411 Hart BL. Biological basis of the behavior of
sick animals. Neurosci Biobehav Rev. 1988;
12(2):123–37. https://doi.org/10.1016/s0149-
7634(88)80004-6

412 Fleshner M, Goehler LE, Schwartz BA,
McGorry M, Martin D, Maier SF, et al.
Thermogenic and corticosterone responses
to intravenous cytokines (IL-1beta and
TNF-alpha) are attenuated by sub-
diaphragmatic vagotomy. J Neuroimmunol.
1998;86(2):134–41. https://doi.org/10.1016/
s0165-5728(98)00026-5

History of Neuroendocrine Immune
Mechanisms

Neuroimmunomodulation 2024;31:183–210
DOI: 10.1159/000540959

209

D
ow

nloaded from
 http://karger.com

/nim
/article-pdf/31/1/183/4282492/000540959.pdf by U

niversitätsbibliothek R
egensburg user on 30 Septem

ber 2024

https://doi.org/10.1021/bi00826a022
https://doi.org/10.1021/bi00826a022
https://doi.org/10.1038/s41584-023-00944-2
https://doi.org/10.1038/s41584-023-00944-2
https://doi.org/10.1002/rmv.2032
https://doi.org/10.1002/rmv.2032
https://doi.org/10.1136/rmdopen-2020-001454
https://doi.org/10.1136/rmdopen-2020-001454
https://doi.org/10.1073/pnas.78.8.4990
https://doi.org/10.1073/pnas.78.8.4990
https://doi.org/10.1007/BF02409507
https://doi.org/10.1126/science.6427926
https://doi.org/10.1126/science.6427926
https://doi.org/10.1016/B978-0-12-386960-9.00014-9
https://doi.org/10.1016/B978-0-12-386960-9.00014-9
https://doi.org/10.3390/nu15224760
https://doi.org/10.3390/nu15224760
https://doi.org/10.3390/nu15173842
https://doi.org/10.3390/nu15173842
https://doi.org/10.1038/s41584-018-0156-8
https://doi.org/10.1038/s41584-018-0156-8
https://doi.org/10.1097/00006842-195507000-00006
https://doi.org/10.1097/00006842-195507000-00006
https://doi.org/10.1111/j.1600-0447.1969.tb07132.x
https://doi.org/10.1111/j.1600-0447.1969.tb07132.x
https://doi.org/10.1097/00006842-197005000-00009
https://doi.org/10.1097/00006842-197005000-00009
https://doi.org/10.1016/0021-9681(71)90009-9
https://doi.org/10.1016/0021-9681(71)90009-9
https://doi.org/10.1136/ard.32.6.593-b
https://doi.org/10.1136/ard.32.6.593-b
https://doi.org/10.1016/0022-3999(64)90018-2
https://doi.org/10.1016/0022-3999(64)90018-2
https://doi.org/10.1002/art.1780230203
https://doi.org/10.1002/art.1780230203
https://doi.org/10.1002/art.1780230202
https://doi.org/10.1002/anr.1780320808
https://doi.org/10.1002/anr.1780320808
https://doi.org/10.1037//0021-843x.101.3.514
https://doi.org/10.1037//0021-843x.101.3.514
https://doi.org/10.1002/art.1790080413
https://doi.org/10.1002/art.1790080413
https://doi.org/10.1002/1529-0131(200002)13:1<23::aid-art5>3.0.co;2-w
https://doi.org/10.1002/1529-0131(200002)13:1<23::aid-art5>3.0.co;2-w
https://doi.org/10.1002/1529-0131(200002)13:1<23::aid-art5>3.0.co;2-w
https://doi.org/10.1080/030097400750002067
https://doi.org/10.1080/030097400750002067
https://doi.org/10.1016/j.jpsychores.2005.09.011
https://doi.org/10.1016/j.jpsychores.2005.09.011
https://doi.org/10.1093/rheumatology/36.12.1304
https://doi.org/10.1093/rheumatology/36.12.1304
https://doi.org/10.1002/1529-0131(199902)12:1<3::aid-art2>3.0.co;2-k
https://doi.org/10.1002/1529-0131(199902)12:1<3::aid-art2>3.0.co;2-k
https://doi.org/10.1159/000182512
https://doi.org/10.1159/000182512
https://doi.org/10.1002/anr.1790020205
https://doi.org/10.1001/archneur.1989.00520460115022
https://doi.org/10.1001/archneur.1989.00520460115022
https://doi.org/10.1163/26667711-bja10026
https://doi.org/10.1016/s0749-0720(15)31159-2
https://doi.org/10.1016/s0749-0720(15)31159-2
https://doi.org/10.1016/s0149-7634(88)80004-6
https://doi.org/10.1016/s0149-7634(88)80004-6
https://doi.org/10.1016/s0165-5728(98)00026-5
https://doi.org/10.1016/s0165-5728(98)00026-5
https://doi.org/10.1159/000540959


413 Bluthé RM, Dantzer R, Kelley KW.
Interleukin-1 mediates behavioural but not
metabolic effects of tumor necrosis factor al-
pha inmice. Eur J Pharmacol. 1991;209:281–3.
https://doi.org/10.1016/0014-2999(91)90184-r

414 Bluthé RM, Dantzer R, Kelley KW. Effects of
interleukin-1 receptor antagonist on the
behavioral effects of lipopolysaccharide in
rat. Brain Res. 1992;573(2):318–20. https://
doi.org/10.1016/0006-8993(92)90779-9

415 Kent S, Bluthe RM, Dantzer R, Hardwick AJ,
Kelley KW, Rothwell NJ, et al. Different
receptor mechanisms mediate the pyrogenic
and behavioral effects of interleukin 1. Proc
Natl Acad Sci U S A. 1992;89(19):9117–20.
https://doi.org/10.1073/pnas.89.19.9117

416 Avitsur R, Yirmiya R. Cytokines inhibit
sexual behavior in female rats: I. Synergistic
effects of tumor necrosis factor alpha and
interleukin-1. Brain Behav Immun. 1999;
13(1):14–32. https://doi.org/10.1006/brbi.
1999.0555

417 Musselman DL, Lawson DH, Gumnick JF,
Manatunga AK, Penna S, Goodkin RS, et al.
Paroxetine for the prevention of depression
induced by high-dose interferon alfa. N Engl
J Med. 2001;344(13):961–6. https://doi.org/
10.1056/NEJM200103293441303

418 Maini RN, Breedveld FC, Kalden JR, Smolen
JS, Davis D, Macfarlane JD, et al. Therapeutic
efficacy of multiple intravenous infusions of
anti-tumor necrosis factor alpha monoclonal
antibody combined with low-dose weekly
methotrexate in rheumatoid arthritis. Ar-
thritis Rheum. 1998;41(9):1552–63. https://
doi.org/10.1002/1529-0131(199809)41:9<1552::
AID-ART5>3.0.CO;2-W

419 Moreland LW. Drugs that block tumour
necrosis factor: experience in patients with
rheumatoid arthritis. Pharmacoeconomics.
2004;22(2 Suppl 1):39–53. https://doi.org/
10.2165/00019053-200422001-00005

420 Fleischmann R, Stern R, Iqbal I. Anakinra:
an inhibitor of IL-1 for the treatment of
rheumatoid arthritis. Expert Opin Biol Ther.

2004;4(8):1333–44. https://doi.org/10.1517/
14712598.4.8.1333

421 Omdal R, Gunnarsson R. The effect of
interleukin-1 blockade on fatigue in rheu-
matoid arthritis: a pilot study. Rheumatol
Int. 2005;25(6):481–4. https://doi.org/10.
1007/s00296-004-0463-z

422 Tyring S, Gottlieb A, Papp K, Gordon K,
Leonardi C, Wang A, et al. Etanercept and
clinical outcomes, fatigue, and depression in
psoriasis: double-blind placebo-controlled
randomised phase III trial. Lancet. 2006;
367(9504):29–35. https://doi.org/10.1016/
S0140-6736(05)67763-X

423 Moreland LW, Genovese MC, Sato R, Singh
A. Effect of etanercept on fatigue in patients
with recent or established rheumatoid ar-
thritis. Arthritis Rheum. 2006;55(2):287–93.
https://doi.org/10.1002/art.21838

424 Korte SM, Straub RH. Fatigue in inflam-
matory rheumatic disorders: pathophysio-
logical mechanisms. Rheumatology. 2019;
58(Suppl 5):v35–50. https://doi.org/10.
1093/rheumatology/kez413

425 Dantzer R, O’Connor JC, Freund GG,
Johnson RW, Kelley KW. From inflam-
mation to sickness and depression: when the
immune system subjugates the brain. Nat
Rev Neurosci. 2008;9(1):46–56. https://doi.
org/10.1038/nrn2297

426 Straub RH. Concepts of evolutionary
medicine and energy regulation contribute
to the etiology of systemic chronic inflam-
matory diseases. Brain Behav Immun. 2011;
25:1–5. https://doi.org/10.1016/j.bbi.2010.
08.002

427 Straub RH. Evolutionary medicine and
chronic inflammatory state: known and new
concepts in pathophysiology. J Mol Med.
2012;90(5):523–34. https://doi.org/10.1007/
s00109-012-0861-8

428 Spies CM, Straub RH, Buttgereit F. Energy
metabolism and rheumatic diseases: from cell
to organism. Arthritis Res Ther. 2012;14(3):
216–25. https://doi.org/10.1186/ar3885

429 Straub RH. Interaction of the endocrine
system with inflammation: a function of
energy and volume regulation. Arthritis Res
Ther. 2014;16(1):203–17. https://doi.org/10.
1186/ar4484

430 Straub RH. Insulin resistance, selfish brain,
and selfish immune system: an evolution-
arily positively selected program used in
chronic inflammatory diseases. Arthritis Res
Ther. 2014;16(Suppl 2):S4. https://doi.org/
10.1186/ar4688

431 Straub RH, Cutolo M, Pacifici R. Evolu-
tionary medicine and bone loss in chronic
inflammatory diseases – a theory of
inflammation-related osteopenia. Semin
Arthritis Rheum. 2015;45(2):220–8. https://
doi.org/10.1016/j.semarthrit.2015.04.014

432 Straub RH, Schradin C. Chronic inflam-
matory systemic diseases: an evolutionary
trade-off between acutely beneficial but
chronically harmful programs. Evol Med
Public Health. 2016;2016(1):37–51. https://
doi.org/10.1093/emph/eow001

433 Filippa MG, Tektonidou MG, Mantzou A,
Kaltsas GA, Chrousos GP, Sfikakis PP, et al.
Adrenocortical dysfunction in rheumatoid
arthritis: A narrative review and future di-
rections. Eur J Clin Invest. 2022;52(1):
e13635. https://doi.org/10.1111/eci.13635

434 Walker SE, Allen SH, McMurray RW. Pro-
lactin and autoimmune disease. Trends En-
docrinol Metab. 1993;4(5):147–51. https://doi.
org/10.1016/1043-2760(93)90103-L

435 Delgado M, Abad C, Martinez C, Leceta J,
Gomariz RP. Vasoactive intestinal peptide
prevents experimental arthritis by down-
regulating both autoimmune and inflammatory
components of the disease. Nat Med. 2001;7(5):
563–8. https://doi.org/10.1038/87887

436 Gonzalez-Rey E, Anderson P, Delgado M.
Emerging roles of vasoactive intestinal
peptide: a new approach for autoimmune
therapy. Ann Rheum Dis. 2007;66(Suppl 3):
iii70–6. https://doi.org/10.1136/ard.2007.
078519

210 Neuroimmunomodulation 2024;31:183–210
DOI: 10.1159/000540959

Straub and Cutolo

D
ow

nloaded from
 http://karger.com

/nim
/article-pdf/31/1/183/4282492/000540959.pdf by U

niversitätsbibliothek R
egensburg user on 30 Septem

ber 2024

https://doi.org/10.1016/0014-2999(91)90184-r
https://doi.org/10.1016/0006-8993(92)90779-9
https://doi.org/10.1016/0006-8993(92)90779-9
https://doi.org/10.1073/pnas.89.19.9117
https://doi.org/10.1006/brbi.1999.0555
https://doi.org/10.1006/brbi.1999.0555
https://doi.org/10.1056/NEJM200103293441303
https://doi.org/10.1056/NEJM200103293441303
https://doi.org/10.1002/1529-0131(199809)41:9<1552::AID-ART5>3.0.CO;2-W
https://doi.org/10.1002/1529-0131(199809)41:9<1552::AID-ART5>3.0.CO;2-W
https://doi.org/10.1002/1529-0131(199809)41:9<1552::AID-ART5>3.0.CO;2-W
https://doi.org/10.2165/00019053-200422001-00005
https://doi.org/10.2165/00019053-200422001-00005
https://doi.org/10.1517/14712598.4.8.1333
https://doi.org/10.1517/14712598.4.8.1333
https://doi.org/10.1007/s00296-004-0463-z
https://doi.org/10.1007/s00296-004-0463-z
https://doi.org/10.1016/S0140-6736(05)67763-X
https://doi.org/10.1016/S0140-6736(05)67763-X
https://doi.org/10.1002/art.21838
https://doi.org/10.1093/rheumatology/kez413
https://doi.org/10.1093/rheumatology/kez413
https://doi.org/10.1038/nrn2297
https://doi.org/10.1038/nrn2297
https://doi.org/10.1016/j.bbi.2010.08.002
https://doi.org/10.1016/j.bbi.2010.08.002
https://doi.org/10.1007/s00109-012-0861-8
https://doi.org/10.1007/s00109-012-0861-8
https://doi.org/10.1186/ar3885
https://doi.org/10.1186/ar4484
https://doi.org/10.1186/ar4484
https://doi.org/10.1186/ar4688
https://doi.org/10.1186/ar4688
https://doi.org/10.1016/j.semarthrit.2015.04.014
https://doi.org/10.1016/j.semarthrit.2015.04.014
https://doi.org/10.1093/emph/eow001
https://doi.org/10.1093/emph/eow001
https://doi.org/10.1111/eci.13635
https://doi.org/10.1016/1043-2760(93)90103-l
https://doi.org/10.1016/1043-2760(93)90103-l
https://doi.org/10.1038/87887
https://doi.org/10.1136/ard.2007.078519
https://doi.org/10.1136/ard.2007.078519
https://doi.org/10.1159/000540959

	A History of Psycho-Neuro-Endocrine Immune Interactions in Rheumatic Diseases
	Introduction
	Efferent Pathways from the Brain to the Immune System
	Hemiplegia and Chronic Inflammation
	Neuronal Pathways – The Sensory Nervous System
	Neurogenic Inflammation and Sensory Neurotransmitters
	Sensitization, Hypersensitivity, and Early Adverse Experiences

	Neuronal Pathways – The Sympathetic Nervous System
	From the Sympathetic Nervous System to Sympathetic Neuroimmunomodulation
	From Sympathetic Neuroimmunomodulation to Its Role in Chronic Inflammation
	Loss of Sympathetic Nerve Fibers in Inflamed Tissue
	Loss of β-Adrenergic Receptors and Change of β2-Adrenergic Signaling Pathways
	High Sympathetic Activity in Inflammation

	Neuronal Pathways – The Vagus Nerve
	Hormonal Pathways
	Glucocorticoids
	Androgens
	Progesterone
	Estrogens – The Women-to-Men Preponderance in Chronic Inflammation
	Vitamin D Hormone


	Afferent Pathways from the Immune System to the Brain
	The Clinical Problem
	Pathophysiology

	Evolutionary Medicine and Energy Regulation – An Umbrella Theory
	Some Thoughts at the End
	Conflict of Interest Statement
	Funding Sources
	Author Contributions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


