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a b s t r a c t 

Objectives: Piperacillin (PIP)/tazobactam is a frequently prescribed antibiotic; however, over- or underdos- 

ing may contribute to toxicity, therapeutic failure, and development of antimicrobial resistance. An exter- 

nal evaluation of 24 published PIP-models demonstrated that model-informed precision dosing (MIPD) 

can enhance target attainment. Employing various candidate models, this study aimed to assess the pre- 

dictive performance of different MIPD-approaches comparing (i) a single-model approach, (ii) a model 

selection algorithm (MSA) and (iii) a model averaging algorithm (MAA). 

Methods: Precision, accuracy and expected target attainment, considering either initial (B1) or initial and 

secondary (B2) therapeutic drug monitoring (TDM)-samples per patient, were assessed in a multicentre 

dataset (561 patients, 11 German centres, 3654 TDM-samples). 

Results: The results demonstrated a slight superiority in predictive performance using MAA in B1, re- 

gardless of the candidate models, compared to MSA and the best single models (MAA, MSA, best single 

models: inaccuracy ±3%, ±10%, ±8%; imprecision: < 25%, < 31%, < 28%; expected target attainment > 77%, 

> 71%, > 73%). The inclusion of a second TDM-sample notably improved precision and target attainment 

for all MIPD-approaches, particularly within the context of MSA and most of the single models. The ex- 

pected target attainment is maximized (up to > 90%) when the TDM-sample is integrated within 24 h. 

Conclusions: In conclusion, MAA streamlines MIPD by reducing the risk of selecting an inappropriate 

model for specific patients. Therefore, MIPD of PIP using MAA implicates further optimisation of antibiotic 

exposure in critically ill patients, by improving predictive performance with only one sample available for 

Bayesian forecasting, safety, and usability in clinical practice. 

© 2024 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

The broad-spectrum antibiotic piperacillin (PIP) is prescribed in 

9% of all intensive care units (ICU) in Germany [ 1 ]. However, stan-

ard doses resulted in sub- and supratherapeutic concentrations in 

ritically ill patients [ 2 ]. Underdosing may lead to therapeutic fail- 

re and development of resistant bacteria, while overdosing is as- 

ociated with potential toxicity [ 3–5 ]. Hence, the international Sur- 
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iving Sepsis Campaign guidelines recommend the use of thera- 

eutic drug monitoring (TDM) and/or software tools to optimise 

herapy [ 6 ]. 

Most software tools employed population pharmacokinetics 

PopPK)-models to individualise the dose for each patient, which 

s called model-informed precision dosing (MIPD). Before applying 

IPD, an external evaluation based on independent clinical data is 

ssential to assess which PopPK-models might be useful for dos- 

ng decisions in critically ill patients [ 7–9 ]. Usually, PopPK-models 

ere developed to characterise the pharmacokinetics of specific 

opulations (e.g. liver transplant patients), which implies that the 

pplicability to a broader group of patients may not be given. 
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Fig. 1. Workflow from single-model approach to a multi-model approach. Single-model approach: Estimation of PopPK-model profiles for each patient using Bayesian fore- 

casting from first TDM-sample ( = black point) to future TDM-samples ( = red point), each model is evaluated separately. Quantification of the model fit: For each patient 

the fractional individual weight of the model fit based on the first sample is calculated using a predefined weighting scheme (e.g., WOFV or SSE ). Multi-model approach: The 

algorithm (i) either selects the best fitting model for each patient ( = maximum WOFV/SSE ) → model selection algorithm (MSA) or (ii) calculates a new prediction based on 

the individual weights of the models = ∑ n 
1 (WOFV , SSE · cpred ) → model averaging algorithm (MAA). PopPK: Population pharmacokinetic; W: calculated fractional weight; SSE: 

sum of squares error; OFV: objective function value; c: concentration; pred: predicted; n: set of models; i: individual patient; TDM: therapeutic drug monitoring. 

m

b

g

f

f

r

r

a

a

a

w

d

e

t

e  

e

i

(

p

e

i

o

(

2

2

t

t

i

a

2

s

e

t

t

s

o

s

d

w

(  

m

a

W

W

W

O

o

n

a

v

w

p

i

(

2

a

i

t

h

a

t

s

e

w

w

p

(

(  

 

(

 

[ 21 ], Kim [ 10 ]). 
We recently published a multicentre evaluation of available PIP- 

odels and identified suitable candidates for successful MIPD. The 

est-performing models based on various evaluation criteria (e.g. 

oodness-of-fit-plots, statistical analysis) were the Kim-model [ 10 ] 

or the entire dataset, the Klastrup-model [ 11 ] for continuous in- 

usion, and the Udy-model [ 12 ] for intermittent infusion, all de- 

ived from ICU-patient data [ 13 ]. Furthermore, subgroup analyses 

evealed that different models are beneficial for distinct situations 

nd patient groups. As a consequence, the user is expected to be 

ware of the diversity of models and their preferred application, 

nd to manually select the most appropriate model in each case, 

hich hinders clinical applicability. This challenge could be ad- 

ressed by employing a multi-model approach, as different mod- 

ls can be used simultaneously for predictions. The theory behind 

wo existing multi-model approaches originally published by Uster 

t al. [ 14 ] is (i) to automatically select the best available model for

ach patient (model selection algorithm, MSA) or (ii) to calculate 

ndividual predictions based on a combination of PopPK-models 

model averaging algorithm, MAA). 

The objective of this analysis was to compare the predictive 

erformance of a single-model approach with MSA and MAA by 

xamining two clinical Bayesian scenarios: First, including only the 

nitial TDM-sample per patient into the prediction (B1), and sec- 

nd, considering the first two measured TDM-samples per patient 

B2). 

. Material and methods 

.1. Clinical data and candidate models 

The external dataset included 561 patients from 11 study cen- 

res with 3654 TDM-samples. A detailed overview of the pa- 

ients´characteristics as well as an overview of the 24 previously 

dentified PopPK-models was published by Greppmair et al. [ 13 ] 

nd is available in the Supplements S1. 

.2. The principle of multi-model approaches 

The multi-model approach can be utilised if at least one TDM- 

ample is available. Predictions are calculated using multiple mod- 

ls integrated into the software, eliminating the need for the user 

o make a unique model selection. 

The initial step in both multi-model approaches involves quan- 

ifying the model’s prediction based on the included TDM- 

ample(s), i.e. a weighting scheme is applied to assess the quality 

f fit between the predicted concentration(s) (cpred ) and the mea- 

ured TDM-concentration(s) (cobs ). Uster et al. [ 14 ] proposed two 

ifferent weighting schemes, the objective function value (OFV), 
2

hich is a goodness-of-fit criterion for evaluating PopPK-models 

 Eq. 1 ), and the sum of squares error (SSE), which is a mathe-

atical criterion for quantifying the dispersion of observed values 

round predicted values ( Eq. 2 ) [ 14 ]. 

SS Emodel 
= e( −0 . 5 · SS Emodel ) 

∑ n 
1 e( −0 . 5 · SS Emodel ) 

= e−0 . 5 · ∑ 

( cobs , j − cpred , j ) 
2 

∑ n 
1 e−0 . 5 · ∑ 

( cobs , j − cpred , j ) 
2 

(1) 

OF Vmodel 
= LLmodel ∑ n 

1 LLmodel 

= e( −0 . 5 · OF Vmodel ) 

∑ n 
1 e

( −0 . 5 · OF Vmodel ) 
(2) 

 : calculated fractional weight ; SSE : sum of squares error ;
FV : objective function value ; c : concentration ;
bs : observed / measured ; pred : predicted ; LL : Likelihood ;
 

: set of models ; j : observation 

In a second step, depending on the multi-model approach, the 

lgorithm either selects the most appropriate model for the indi- 

idual patient based on this weighting scheme (select the model 

ith the highest value in the weighting scheme = MSA) or com- 

utes new predictions by weighting the model predictions accord- 

ng to one of the aforementioned weighting schemes ( = MAA) 

 Figure 1 ). 

.3. Weighting schemes 

Based on the first TDM-sample, the model fit according to SSE 

nd OFV was calculated for all selected models. Then, the fractional 

ndividual weight of each model and its impact on model selec- 

ion/averaging were investigated. This was achieved by quantifying 

ow often each model was selected by the algorithm (MSA) for 

ll patients. The individual fractional weights for an individual pa- 

ient (MAA) were calculated and the impact of SSE and OFV on 

tatistical criteria in predictive performance were assessed. Influ- 

ntial models were defined as models with a fractional individual 

eight > 0.001. In the present analysis, three preselection-scenarios 

ere compared to evaluate the robustness of the multi-model ap- 

roaches across different candidate models: 

1) All models (excluding the Asín-Prieto - model [ 15 ] were consid- 

ered for MSA/MAA algorithms (Supplements S2)). 

2) Only the best models (models of Kim [ 10 ], Roberts-DM [ 16 ],

Udy [ 12 ], Tamme [ 17 ], Klastrup [ 11 ]) identified in a previous

study [ 13 ], were included. 

3) Five different models were selected, consisting of two with 

strong bias, two with moderate bias (one instance of positive 

bias and one instance of negative bias), and one model without 

bias (model of Chen [ 18 ], Bue [ 19 ], Sukarnjanaset [ 20 ], Hahn
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.4. Predictive performance 

The predictive performance of the three preselection-scenarios 

as assessed and compared by evaluating two steps: (i) only the 

rst measured TDM-sample per patient was included to predict all 

uture concentrations (Bayesian 1 = B1, 3093 predicted concentra- 

ions), and (ii) the first two TDM-samples per patient were utilised 

or Bayesian predictions (Bayesian 2 = B2, 2532 predicted concen- 

rations). 

.5. Statistical criteria 

The median prediction error (MPE) for accuracy and median ab- 

olute prediction error (MAPE) for precision were calculated for all 

ingle models and the multi-model approaches. Additionally, the 

pread of the data was determined using the interquartile range 

IQR) of the prediction errors (PE). The 95% confidence interval (CI) 

f PE was calculated to investigate significant differences in model 

redictions. 

Based on the assumption that the true PIP-concentration (either 

bserved or predicted concentration) is uncertain, a modified ver- 

ion of the Sheiner and Beal formula was employed [ 13 , 22–24 ]: 

Eij = cpred , i , j − cobs , i , j 

(cpred , i , j + cobs , i , j ) / 2 

(3) 

PE [ %] = median 

({
PE1 , 1 , . . . , PEi , j 

})
· 100 (4) 

APE [ %] = median 

({ | PE1 , 1 | , | . . . | , | PEi , j 

∣∣}) · 100 (5) 

E : prediction error ; MPE : median prediction error ;
APE : median absolute prediction error c : concentration ;

bs : observed ; pred : predicted ; i : individual patient ;
 

: observation 

.6. Clinical criteria 

Since there is no clearly defined target range for PIP, percent- 

ge of TDM-samples within ±20%, ±30%, ±40%, ±50%-PE ranges 

p20, p30, p40, p50, respectively) were employed for evaluation. 

he expected target attainment corresponds to p50 and was calcu- 

ated based on an exemplary target concentration of 64 mg/L (4x 

he epidemiological cutoff (ECOFF) for Pseudomonas aeruginosa ac- 

ording to the European Committee on Antimicrobial Susceptibility 

esting (EUCAST)) and an absolute target range of 32 mg/L to 96 

g/L (2-6x ECOFF) [ 6 , 25 , 26 ]. 

.7. Time after TDM 

TDM-samples were grouped and analysed depending on the 

ime after the integration of TDM-data (TaTDM) (24h, 48h, 72h, 

6h, > 120h (binned: ±12h, respectively)). This analysis was con- 

ucted using data from study 1 and 2 (continuous infusion) only, 

omprising a total of 489 patients with 1306/817 predicted TDM- 

amples for B1/B2 respectively. In these studies, TDM-samples 

ere collected over observation periods that exceeded 7 d, which 

as not the case in the other datasets. 

.8. Software 

The models were previously encoded and the predictions were 

xecuted within NONMEM®7.4 utilising Perl Speaks NONMEM®

nd Pirana Version 2.9.9. All numerical and graphical analyses were 

erformed using R®4.2.3/R Studio® 2023.03.0. 
3

. Results 

.1. Weighting schemes 

Several differences were observed when comparing the two dif- 

erent weighting schemes SSE and OFV with overall advantages for 

tilising OFV. When evaluating model fit using SSE, few models re- 

eived considerably higher weighting compared to the use of OFV. 

his implies that in case of MAA, these particular models exert a 

ominant influence on predictions owing to the weighting within 

he averaging process (e.g. MSA_SSEall models : 2 influential models 

s. MSA_OFVall models : 17 influential models). When employing SSE 

or model selection, only one model emerged as the preferred. In 

ontrast, the use of OFV led to a more balanced selection of mod- 

ls, taking into account a broader spectrum of model performances 

e.g. MSA_SSEall models , the Udy-model was selected in 530/561 pa- 

ients vs. MSA_OFVall models the Udy-model was selected in 149/561 

atients). In terms of predictive performance, there was no signif- 

cant difference in precision observed between the utilisation of 

SE or OFV (95% CI were overlapping). In the MAAall models , OFV 

xhibited a slight advantage (MPEOFV/SSE 0.39/4.24%; MAPEOFV/SSE 

3.3/23.7%), whereas in the MSA, SSE performed slightly bet- 

er (MPEOFV/SSE 10.0/-2.16%; MAPEOFV/SSE 30.6/27.9%). However, the 

redictive performance of MSA using SSE was comparable to that 

f the Udy-model, which was selected most frequently. Subse- 

uently, for all further analyses, OFV was employed as weighting 

cheme (for further illustration see Supplements S2). 

.2. Predictive performance 

.2.1. Statistical criteria 

The predictive performance of single models varied more 

idely compared to MSA and MAA (single models/ MSA/ MAA, B1: 

PE -77.3-72.3%/ -4.54-10.0%/ -1.60-3.19%, MAPE 26.2-77.7%/ 28.4- 

0.6%/ 23.3-24.5%, B2: MPE -55.8-65.3%/ 3.69-8.0%/ 3.70-5.61%, 

APE 23.7-67.2%/ 22.3-25.0%/ 22.6-23.4%). Overall, MAA demon- 

trated significantly greater precision compared to MSA and most 

ingle models for B1, as evidenced by the non-overlapping 95% 

onfidence intervals. Only the models by Udy et al. [ 12 ] and Fil-

âtre et al. [ 27 ] exhibited similar precision, with a MAPE of less 

han 27.0%. Although the 95% confidence intervals for MPE over- 

apped substantially, MAAall models was the only approach where 

he 95% confidence interval of MPE included 0. Furthermore, MAA 

ll models exhibited significantly greater precision than all other ap- 

roaches (B1_MAA MPE: 0.39%; MAPE: 23.3% (95% CI: 22.1-24.3%)). 

ntegrating the second sample improved precision in most single 

odels and MSA, resulting in comparable precision between MAA 

nd MSA, as well as for half of the 24 single models. Only the best

ingle model by Kim et al. showed no bias for B2 (95% CI for MPE

ncluded 0) ( Table 1 , Fig. 2 , Supplements S3). 

.2.2. Clinical criteria 

When using the MAAall models , the integration of a single sample 

MAAall models B1) led to as many samples within the error mar- 

in (p20-p50) as the best single model when including two sam- 

les (e.g. p30 B1: MAAall models vs. B2: Kim 59.5% vs. 59.6%, re- 

pectively). This corresponded to an absolute improvement of up 

o 6.3% more predicted concentrations falling within the calculated 

rror margin for B1 compared to Kim-model [ 10 ] (B1: MAAall models 

s. Kim p20: + 6.3%, p30: + 4.9%; p40: + 2.7% p50: + 1.9% samples

ithin the error margin Supplements S4). 

.2.3. Time after TDM 

Overall, the precision and accuracy of all approaches were bet- 

er when the sampling of the integrated sample(s) occurred no 



L.M. Schatz, S. Greppmair, A.K. Kunzelmann et al. International Journal of Antimicrobial Agents 64 (2024) 107305

Table 1 

Predictive performance of the best single models vs. the different scenarios of the multi- 

model approaches. 

Model/Scenario MPE (95% CI) [%] MAPE (95% CI) [%] p30 [%] p50 [%] 

Bayesian 1 

Kim -5.85 (-7.72 – -3.88) 27.3 (26.1 – 28.3) 54.6 77.6 

Klastrup -7.71 (-9.49 – 5.99) 28.0 (26.7 – 29.0) 53.2 73.5 

Udy -3.61 (-5.01 – -1.81) 26.2 (25.0 – 27.5) 55.0 75.2 

MSAall models 10.0 (8.13 – 11.8) 30.6 (28.9 – 32.2) 49.4 71.0 

MSAbest models -4.54 (-6.11 – -2.98) 28.4 (27.2 – 29.5) 52.6 75.1 

MSAdiff. models 2.30 (0.804 – 4.42) 28.4 (27.3 – 29.9) 52.1 74.6 

MAAall models 0.39 (-1.05 – 1.68) 23.3 (22.1 – 24.3) 59.5 79.5 

MAAbest models -1.60 (-3.23 – -0.316) 24.5 (23.3 – 26.0) 57.9 77.4 

MAAdiff. models 3.19 (1.25 – 4.78) 24.5 (23.0 – 25.8) 58.0 78.6 

Bayesian 2 

Kim -0.92 (-2.78 – 0.987) 23.7 (22.5 – 24.9) 59.6 80.6 

Klastrup 6.65 (4.63 – 8.70) 28.4 (27.1 – 30.0) 52.0 73.9 

Udy 7.50 (6.03 – 9.09) 23.8 (22.5 – 25.1) 58.5 76.3 

MSAall models 8.0 (6.17 – 9.32) 24.9 (23.8 – 26.1) 57.1 77.2 

MSAbest models 3.69 (1.84 – 5.1) 22.3 (21.3 – 23.7) 61.4 80.3 

MSAdiff. models 4.32 (2.3 – 6.07) 25.0 (24.0 – 26.1) 57.9 78.8 

MAAall models 5.61 (4.14 – 7.42) 23.4 (22.3 – 24.5) 60.3 79.9 

MAAbest models 3.70 (2.12 – 5.47) 22.6 (21.7 – 23.8) 61.6 79.4 

MAAdiff. models 3.85 (2.36 – 5.44) 23.1 (22.2 – 24.2) 60.4 79.9 

Abbreviations: MPE: median prediction error; MAPE: median absolute prediction error; CI: 

confidence interval; p30/p50: percentage of TDM-samples within ±30%, ±50%-prediction 

error-ranges for the complete dataset; MSA: model selection algorithm; MAA: model aver- 

aging algorithm; all: all models; best: best models; diff.: different models. 

Fig. 2. Prediction error (PE) of the predicted versus the observed piperacillin concentrations of the best models in the single-model approach and the three preselection- 

scenarios of the model selection algorithm (MSA) or model averaging algorithm (MAA). Bayesian 1 (B1): Prediction of concentrations integrating the first TDM-sample per 

patient; Bayesian 2 (B2): Prediction of concentrations integrating the first and second TDM-samples per patient; selected models for MSA/MAA: all: all models; best: best 

models; diff.: different models. TDM: therapeutic drug monitoring. Red dashed lines represent a PE of -50%, -30%, 0%, 30%, 50%. 
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onger than 24 h ago. The most pronounced difference in pre- 

ictive performance, with multi-model approach superiority, was 

bserved when integrating one TDM-sample within 24h TaTDM 

median MPE/MAPE: single-model approach vs. multi-model ap- 

roach -6.79/ 22.0% vs. -1.82/ 17.7%, respectively) (Supplements S5 

nd S6). A time dependence in expected target attainment (p50) 

as also evident in all approaches with an expected target at- 

ainment of over 80% up to > 90% for TDM-samples within 24h 

aTDM using a multi-model approach or one of the best single 

odels ( Table 2 , Figure 3 ). The expected target attainment across 

ll scenarios, in best single-models and multi-model approaches, 

eclined from 24h to 48h TaTDM ranging between -6% to -10% for 

1. Despite this decrease, the expected target attainment remained 
4

onsistently above 70% over the course of > 120h TaTDM (Supple- 

ents S7). 

. Discussion 

The standard dosage of PIP leads to adequate drug concentra- 

ions in less than one-fifth of patients with sepsis [ 2 ]. The previ-

usly published external evaluation of 24 PopPK models by Grepp- 

air et al. in 2023 demonstrated that MIPD is a promising ap- 

roach for individualising PIP dosing in critically ill patients and 

ay result in an increased target attainment [ 13 ]. This study advo- 

ates MIPD using MAA to facilitate clinical implementation, while 
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Table 2 

Predictive performance of the best single models vs. the different scenarios of the multi- 

model approaches within 24 h after the last integrated TDM sample. 

Model/Scenario MPE (95% CI) [%] MAPE (95% CI) [%] p30 [%] p50 [%] 

Bayesian 1 

Kim -6.57 (-10.6–2.58) 21.4 (18.0-24.2) 64.0 87.3 

Klastrup -5.07 (-8.18–2.29) 16.5 (14.1-18.4) 73.6 88.0 

Udy 3.08 (-1.17-6.46) 17.4 (15.0-20.0) 71.2 86.3 

MSAall models -1.21 (-4.91-1.91) 18.3 (15.7-22.0) 70.2 88.7 

MSAbest models -1.24 (-3.77-2.98) 17.1 (15.0-21.4) 71.2 87.7 

MSAdiff. models -3.04 (-8.35-1.89) 20.7 (17.8-23.4) 69.5 88.0 

MAAall models -2.70 (-5.53-0.087) 15.5 (13.3-18.5) 72.9 89.0 

MAAbest models -0.17 (-2.94-2.58) 15.7 (14.0-19.1) 73.3 89.0 

MAAdiff. models -2.40 (-5.57–0.106) 19.0 (15.4-21.4) 70.9 89.7 

Bayesian 2 

Kim 1.49 (-4.72-7.57) 19.7 (17.0-24.6) 68.2 91.1 

Klastrup 1.72 (-2.78-8.44) 19.2 (15.3-22.9) 67.8 90.2 

Udy 12.6 (7.86-17.8) 22.3 (18.2-26.5) 61.2 83.6 

MSAall models 8.83 (4.45-12.8) 20.7 (17.0-24.0) 65.0 87.4 

MSAbest models 7.85 (1.80-12.4) 21.1 (19.0-23.4) 66.4 88.8 

MSAdiff. models 6.94 (-0.15-10.8) 20.0 (17.0-23.7) 67.8 89.7 

MAAall models 6.95 (0.29-11.4) 20.2 (17.5-23.4) 68.2 87.9 

MAAbest models 7.29 (3.07-11.6) 20.1 (17.2-23.4) 66.8 87.9 

MAAdiff. models 3.24 (-0.41-9.57) 19.7 (17.0-22.5) 66.8 88.3 

Abbreviations: TaTDM: Time after therapeutic drug monitoring; MPE: median prediction 

error; MAPE: median absolute prediction error; CI: confidence interval; p30/p50: per- 

centage of TDM-samples within ±30%, ±50%-prediction error-ranges within 24h TaTDM; 

MSA: model selection algorithm; MAA: model averaging algorithm; all: all models; best: 

best models; diff. different models. 

Fig. 3. Expected target attainment (p50) [%] versus time interval [h] since the last integrated therapeutic drug monitoring (TDM) concentration for Bayesian forecasting of 

the best single model and the best scenario of the model selection algorithm (MSA) or model averaging algorithm (MAA). Bayesian 1 (B1): Prediction of concentrations 

integrating the first TDM sample per patient; Bayesian 2 (B2): Prediction of concentrations integrating the first and second TDM samples per patient; selected models for 

MSA/MAA: all: all models; best: best models. TDM: therapeutic drug monitoring. 
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aintaining predictive performance and expected target attain- 

ent. 

Our evaluation of the multi-model approaches MAA and MSA 

ncluded the determination of an optimal weighting scheme, the 

dentification of appropriate candidate models, and will immi- 

ently be integrated into the open-access software platform TD- 

x® for practical application [ 28 ]. 

Overall, the OFV yielded a more appropriate weighting scheme 

ompared to SSE, even though the results regarding predictive per- 

ormance were comparable. The model fit assessment in SSE re- 

ies solely on the absolute discrepancy between predicted and ob- 

erved concentrations. Therefore, the selection of the most proba- 

le individual parameters with a small residual error is primarily 

riven by the concentration and hardly influenced by the model. 

onsequently, models with an extremely small residual errors, 

uch as Udy et al. [ 12 ], were favoured in the MSA without a partic-

lar emphasis on improving future predictions compared to other 

odels due to overfitting. Utilising the MSA when a single model 

redominantly prevails is not substantively justifiable and bene- 

cial in multi-model approaches, yielding comparable predictive 

erformance compared to Udy et al. [ 12 ]. 

In MAA the fractional individual weight becomes very small 

ue to the squaring operation and exponential function. Conse- 

uently, certain models had minimal influence on the analysis 

hen using MAA. Hence, when the SSE was employed as the eval- 

ation criterion, neither MAA nor MSA confers any discernible ad- 

antage. Conversely, when the OFV was employed, it incorporates 

ot only absolute discrepancy between predicted and observed 

oncentrations but also prior information into the evaluation of 

odel fit. This resulted in the selection of diverse models within 

SA, and the quantification of the impact of various models on 

redictions within MAA became more measurable. The use of OFV 

s a weighting scheme was also recommended as the most suitable 

y Uster et al. [ 14 ] investigating MIPD in vancomycin and by Kan-

asiripitak et al. [ 29 ] investigating MIPD during infliximab therapy 

n adults. However the SSE proved superior in the MIPD analysis of 

nfliximab in children, which can be attributed either to the model 

tructure or the lower target values [ 30 ]. 

Besides the weighting scheme, another challenge posed by a 

ulti-model approach is the selection of candidate models. Par- 

icularly in the case of MAA, no significant differences in predic- 

ive performance were observed between the scenarios tested. This 

mplies that this approach is highly robust concerning the selec- 

ion of candidate models. In neither of the previously published 

ulti-model publications by Uster et al. [ 14 ], Kantasiripitak et al. 

 29 ] Kantasiripitak et al. [ 30 ] three different preselection-scenarios 

ere tested and compared to the single-model approach. In the 

tudy by Uster et al. [ 14 ], six candidate models were selected with

ifferent model populations, and in both studies by Kantasiripi- 

ak et al. [ 29 , 30 ], all models were selected as candidate models.

antasiripitak et al. [ 29 ] also evaluated the predictive performance 

ith 4 best model candidates. Furthermore, Uster et al. [ 14 ] and 

antasiripitak et al. [ 29 ] studies confirmed that reducing the num- 

er of candidate models had only a minor impact on predictive 

erformance. In summary, all of these studies have concluded that 

he multi-model approach, especially MAA, provided a clear advan- 

age. Our study, comprising 561 patients and over 3600 samples, is, 

o our knowledge, the most comprehensive investigation to evalu- 

te the multi-model approach and confirmed these results. 

In our evaluation, the most notable disparity between the ap- 

roaches was apparent in B1. MAA yielded predictive performance 

lightly superior to the best-performing single model, which also 

ligns with the three above-mentioned multi-model approach- 

ublications [ 14 , 29 , 30 ]. Even when including more TDM-samples, 

he predictive performance of the multi-model approach, MAA in 

articular, was generally more consistent and comparable or even 
6

uperior to the single-model approach. It is noteworthy that the 

omparison to the best-performing is based on the best-case sce- 

ario in the single-model approach. The disparities in predictive 

erformance among single models were considerably more pro- 

ounced than those observed among the preselection-scenarios 

ithin the multi-model approaches. Therefore, the selection of 

andidate models and a comprehensive external evaluation with 

ubgroup analyses is of higher importance in the single-model ap- 

roach compared to MAA or MSA. 

Including a second TDM-sample enhanced predictive perfor- 

ance for B2 in most models using the single-model approach 

ince it allows a more precise quantification of the variability in an 

ndividual patient. However, the MAA performed well even with a 

ingle sample, surpassing both MSA and single- model approaches. 

his can be explained by the approach itself. MSA operates on an 

all-or-nothing" principle. After a model is selected, its prediction 

s used exclusively, with no further influence from other models 

n predictive performance. In contrast, MAA does not adhere to 

his principle, as predictions are calculated proportionally through 

 weighting scheme. In MAA a high weighting carries significant 

nfluence on the prediction, yet it does not lead to a distinct model 

hoice. By calculating model predictions based on the weighting 

cheme, the aim is to achieve an optimal forecast. This assumption 

as supported by the results of MAA for B1. 

However, with the inclusion of a second sample, this advantage 

n predictions was no longer evident. The second sample increased 

he probability of selecting the most appropriate model in the con- 

ext of MSA. In contrast, during the MAA, the influence of predic- 

ions from inappropriate models may prevail. 

Since different patient subgroups benefit from manual model 

election to achieve the most reliable and efficient dosing rec- 

mmendations, different candidate models were implemented into 

he software tool TDMx® [ 13 ]. The decision-making process in 

linical routines is made by health-care professionals and becomes 

specially challenging when a patient aligns with multiple model 

opulations, such as continuous administration of PIP and conti- 

ous kidney replacement therapy. Inappropriate model selection 

ay lead to inaccurate dosage calculations. Conversely, MSA and 

AA significantly mitigates this probability in clinical use. Addi- 

ionally, it cannot be ruled out that the multi-model approach may 

onfer a particular advantage, especially for highly specific patient 

rofiles, as the model selection or model averaging provides more 

exibility for adaptation. 

Unfortunately, there are currently no uniform validation criteria 

or model evaluation in MIPD and a wider set of diagnostic tools 

or model qualification for MIPD may still be needed [ 31 ]. We were

ble to demonstrate that regardless of the approach, adhering to a 

aTDM of 24 h led to a significantly higher expected target attain- 

ent rate, reaching about 90%. This was likely attributed to the 

harmacokinetic variability over time observed in critically ill pa- 

ients, where clinical conditions can change rapidly. Nevertheless, 

oth statistical and clinical criteria were able to demonstrate that 

he risk for an incorrect choice in candidate models remains lower 

n the context of MAA and MSA compared to a single-model ap- 

roach and the use of a regularly updated TDM-sample is advan- 

ageous. 

MIPD/TDM is a topic that has been poorly investigated in clini- 

al trials and the results of the studies conducted so far are highly 

ontroversial. A recently published systematic review and meta- 

nalysis by Codina et al. [ 32 ] reported a decrease in mortality, al- 

eit without reaching statistical significance. This observation was 

ssociated with a higher level of target attainment. The review in- 

luded two large-scale randomised controlled trials by Hagel et al. 

 2 ] and Ewoldt et al. [ 33 ] with 254 and 388 patients, respectively.

n both studies, the superiority of individualised antibiotic therapy 

TDM- Hagel et al. [ 2 ] or MIPD- Ewoldt et al. [ 33 ]) was not ob-
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erved, however, the reported target attainment was under 60%. 

ur analysis suggests that the application of MIPD using a multi- 

odel approach may further enhance target attainment, poten- 

ially leading to outcome benefits (e.g. the Anderson-model used 

n Ewoldt et al. [ 33 ], resulted in an expected target attainment 

f 66.8% in our evaluation, compared to 79.5% achieved by the 

AAall models ). In particular, studies that employ MIPD with evalu- 

ted models and approaches in clinical settings, testing and linking 

hem to clinical outcomes, are warranted. 

Some limitations of our study should be mentioned: First, the 

xpected target attainment served as an illustration for clinical 

ractice-based assumptions. Besides, the evaluation over time was 

nly assessed on patients with continuous infusion (since only 

hese datasets including longer monitoring periods and multiple 

amples). But it is reasonable to assume that these findings also 

pply to intermittent infusion. Second, since MAA and MSA rely 

n the principle of Bayes, our results are only applicable when 

t least one TDM-sample is available. Initial model selection still 

oses a challenge demanding research in the future [ 34 ]. Further- 

ore, there is potential for additional research by assessing the ef- 

cacy of combining Bayesian model averaging with the “synthetic 

odel combination” [ 34 ]. In this process, a machine learning ap- 

roach is employed to determine the best model ensemble, even 

ithout TDM-samples, upon which the initial dosage is calculated. 

hird, even though we had a very large dataset to evaluate the 

ulti-model approaches there remained a residual risk for a bias 

n the predictive performance. Nonetheless, our results were con- 

istent with previous studies [ 14 , 29 , 30 ] and making for example,

overtuning” unlikely. Fourth, candidate models for the preselec- 

ion scenarios were chosen randomly, thereby reducing the likeli- 

ood of “overtuning”. Fifth, model averaging or selection became 

ecessary due to the absence of a perfect model, emphasising the 

alue of improved models. Additionally, developing new models 

ased on diverse datasets, covering various subgroups, and enhanc- 

ng the understanding of PIP pharmacokinetics in critically ill pa- 

ients (e.g., using Physiologically-based pharmacokinetic models) 

ould be a promising approach. 

In conclusion, the use of a MAA resulted in predictive perfor- 

ance comparable or slightly better than the best single models. 

n addition, the absence of the need for model selection when em- 

loying a TDM-sample represents a crucial advancement in the im- 

lementation of MIPD. Since the predictive performance was less 

ffected by the candidate models, the need for a comprehensive 

xternal evaluation is reduced. Therefore, our study is an important 

tep towards the clinical implementation of individualised dosing 

f PIP in critically ill patients. 
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