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Abstract. We investigate a new diffuse-interface model that describes creeping two-phase flows (i.e., flows
exhibiting a low Reynolds number), especially flows that permeate a porous medium. The system of equa-
tions consists of a Brinkman equation for the volume averaged velocity field and a convective Cahn–Hilliard
equation with dynamic boundary conditions for the phase field, which describes the location of the two
fluids within the domain. The dynamic boundary conditions are incorporated to model the interaction of the
fluids with the wall of the container more precisely. In particular, they allow for a dynamic evolution of the
contact angle between the interface separating the fluids and the boundary, and for a convection-induced
motion of the corresponding contact line. For our model, we first prove the existence of global-in-time weak
solutions in the case where regular potentials are used in the Cahn–Hilliard subsystem. In this case, we can
further show the uniqueness of the weak solution under suitable additional assumptions. We further prove
the existence of weak solutions in the case of singular potentials. Therefore, we regularize such singular
potentials by a Moreau–Yosida approximation, such that the results for regular potentials can be applied,
and eventually pass to the limit in this approximation scheme.
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1. Introduction

The mathematical study of two-phase flows is an important topic in many areas of
applied science such as engineering, chemistry and biology. To predict the motion of
two fluids, it is crucial to understand how the interface between these fluids evolves. To
provide a mathematical description of this interface, two fundamental methods have
been developed: the sharp-interface approach and the diffuse-interface approach. In
the former, the interface is represented as a hypersurface evolving in the surrounding
domain. The occurring quantities (e.g., the velocity fields) are then described by a free
boundary problem. In the latter, the fluids are represented by a phase field function
which is expected to attain values close to 1 in the region where the first fluid is
present, and close to −1 in the region where the second fluid is located. However,
unlike in sharp-interface models, this phase field does not jump between the values
1 and −1, but exhibits a continuous transition between these values in a thin tubular
neighborhood around the boundary between the fluids. This tubular neighborhood is
referred to as the diffuse interface and its thickness is proportional to a small parameter
ε > 0. For a comparison of sharp-interface methods and diffuse-interface methods,
we refer to [6,34,45,70]. We point out that, even though the sharp-interface and the
diffuse-interface approach are conceptually different, they can, in general, be related
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by the sharp-interface limit in which a parameter related to the thickness of the diffuse
interface is sent to zero.

In the context of diffuse-interface models, such models in which the phase field is
described by a Cahn–Hilliard-type equation have become particularly popular. One of
the most widely usedmodels for describing the motion of two viscous, incompressible
fluids with matched (constant) densities is the Model H. It was first proposed in [58]
andwas later rigorously derived in [55]. The PDE system consists of an incompressible
Navier–Stokes equation coupled with a convective Cahn–Hilliard equation. In terms
of mathematical analysis, the Model H was investigated quite extensively, see, e.g., in
[2,13,40,52]. Further generalizations of this model can be found in [14,33,39,45,56,
65,74,75].

One drawback of the Model H is that it can merely be used to describe the situa-
tion in which the fluids have the same individual density. To overcome this issue, a
thermodynamically consistent diffuse-interface model for incompressible two-phase
flows with possibly unmatched densities was derived in the seminal work [8]. This
model is usually referred to as the AGG model. Concerning mathematical analysis of
this model, we refer the reader to [4,5,7,9,48,49]. The connection between the AGG
model and the two-phase Navier–Stokes free boundary problem is explained in [6,8].

Even though the AGG model and the Model H subject to the classical boundary
conditions (i.e., a no-slip boundary condition for the velocity field and homogeneous
Neumann boundary conditions for the convective Cahn–Hilliard equation) are well
suited to describe the motion of the fluids in the interior of the considered domain, they
still inherit some limitations from the underlying (convective) Cahn–Hilliard system
with homogeneous Neumann boundary conditions. The main limitations are:

(L1) The homogeneousNeumann condition on the phase field enforces that the diffuse
interface always intersects the boundary at a perfect ninety degree contact angle.
Thiswill not be fulfilled inmany applications. In general, the contact anglemight
even change dynamically over the course of time.

(L2) The no-slip boundary condition on the velocity field makes the model not very
suitable to describe general moving contact line phenomena. As the trace of
the velocity field at the boundary is fixed to be identically zero, any motion of
the contact line of the diffuse interface can be caused only by diffusive but not
directly by convective effects.

(L3) The mass of the fluids in the bulk is conserved. Therefore, a transfer of material
between the bulk and the boundary (caused, e.g., by absorption processes or
chemical reactions) cannot be described.

A more detailed discussion can be found in [51].

To overcome the aforementioned restrictions (L1) and (L2), a class of dynamic
boundary conditions was derived in [71]. It involves an Allen–Cahn-type dynamic
boundary condition for the phase field coupled to a generalized Navier-slip boundary
condition for the velocity field. The Model H subject to this boundary condition was
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analyzed in [41], whereas the AGG model subject to this boundary condition was
investigated in [42].
Recently, a thermodynamically consistent generalization of the AGGmodel subject

to another class of dynamic boundary conditions was derived in [51]. Here, the bound-
ary condition consists of a convective surfaceCahn–Hilliard equation and ageneralized
Navier-slip boundary condition. Compared to the models studied in [41,42,71], the
Navier–Stokes–Cahn–Hilliard system introduced in [51] provides more regularity for
the boundary quantities, and therefore, the uniqueness of weak solutions can be estab-
lished in two space dimensions. Moreover, due to the fourth-order dynamic boundary
condition of Cahn–Hilliard type, the model in [51] is not only capable of overcoming
the limitations (L1) and (L2) but also (L3).
In the present paper, we particularly want to consider the situation of creeping flows

meaning that the Reynolds number

Re = uL

ν

associated with the fluids is very small (Re � 1). This occurs if the flow speed u
and/or the characteristic length L of the flow are small compared to the kinematic
viscosity ν. In this situation, it is not necessary to describe the time evolution of the
velocity field by the full Navier–Stokes equation. Since advective inertial forces are
small compared to viscous forces, the material derivative can be neglected. This leads
to the Stokes equation. If a creeping flow through a porous medium is to be considered,
an additional term accounting for the permeability needs to be included. The velocity
field is then usually determined by Darcy’s law or the Brinkman equation. For a
derivation of these velocity equations via homogenization techniques, we refer, for
instance, to [10,37,53,57,66] and the references therein.
Therefore, in this paper, we study the following Cahn–Hilliard–Brinkman system

with dynamic boundary conditions:

− div(2ν(ϕ)Dv) + λ(ϕ)v + ∇ p = μ∇ϕ in Q, (1.1a)

div(v) = 0 in Q, (1.1b)

∂tϕ + div(ϕv) − div(M�(ϕ)∇μ) = 0 in Q, (1.1c)

μ = −ε�ϕ + 1
ε
F ′(ϕ) in Q, (1.1d)

∂tψ + div
(ψv) − div
(M
(ψ)∇
θ) = 0 on�, (1.1e)

θ = −ε
�
ψ + 1
ε

G ′(ψ) + ∂nϕ on�, (1.1f)

K∂nϕ = ψ − ϕ on �, (1.1g)

M�(ϕ)∂nμ = v · n = 0 on �, (1.1h)

[2ν(ϕ)Dv n + γ (ψ)v]τ = −[ψ∇
θ ]τ on �, (1.1i)

ϕ(0) = ϕ0 in �, (1.1j)

ψ(0) = ψ0 on 
. (1.1k)
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It can be regarded as a variant of the Navier–Stokes–Cahn–Hilliard model derived
in [51], where the incompressible Navier–Stokes equation is replaced by the incom-
pressible Brinkman/Stokes Eqs. (1.1a, (1.1b)) to describe the situation of a creeping
two-phase flow. Such Cahn–Hilliard–Brinkman models for creeping two-phase flows
through porous media have applications in petroleum engineering, especially con-
cerning oil recovery from hydrocarbon reservoirs (see, e.g., [38,80]). They are also
commonly used to describe two-phasemixtures inHele–Shawcells (see, e.g., [31,50]).
Furthermore, Cahn–Hilliard–Brinkman models are used in mathematical biology, es-
pecially in the context of tumor growth (see, e.g., [35,63] and the references therein).
For derivations of Cahn–Hilliard–Brinkman-type models, we refer to [18,72,73] and
the references cited therein.
In system (1.1), � ⊂ R

d with d ∈ {2, 3} is a bounded domain with boundary

 := ∂�, T > 0 is a given final time, and for brevity, the notation Q := � × (0, T )

and � = 
 × (0, T ) is used. The vector-valued function v : Q → R
d stands for the

volume averaged velocity field associated with the fluid mixture and

Dv = 1

2

(∇v + (∇v)

)

denotes the associated symmetric gradient. For the sake of simplicity, we will usually
refrain from writing the trace operator. For instance, we will often simply write v

instead of v|
 . Nevertheless, in some instances, where confusion may arise, we will
employ the explicit notation. For any vector field w on the boundary, we will write
wτ := w − (w · n)n to denote its tangential component. The symbols ∇
 and div


denote the surface gradient and the surface divergence, respectively, and �
 stands
for the Laplace–Beltrami operator.
The functions ϕ : Q → R and μ : Q → R denote the phase field and the chemical

potential in the bulk, respectively, whereas ψ : � → R and θ : � → R represent
the phase field and the chemical potential on the boundary, respectively. Furthermore,
the parameters ε and ε
 are positive real numbers which are related to the thickness
of the diffuse interface in the bulk and on the surface, respectively. Therefore, these
constants are usually chosen to be quite small. However, as their values do not have
any impact on the mathematical analysis, we will simply fix ε = ε
 = 1 in the
subsequent sections. The phase fields ϕ and ψ are directly related by the coupling
condition (1.1g), where K is a given nonnegative constant.
From a physical point of view, the kinematic viscosity ν(ϕ) and the permeability

coefficient λ(ϕ) in the Brinkman/Stokes Eq. (1.1a) can be expressed as

ν(ϕ) = η(ϕ)

�
and λ(ϕ) = η(ϕ)

�
,

where η(ϕ) > 0 denotes the dynamic viscosity, and the constants � > 0 and � > 0
stand for the porosity and the intrinsic permeability of the porous medium, respec-
tively. If both ν(ϕ) and λ(ϕ) are positive, (1.1a) is the (quasi-stationary) Brinkman
equation which describes the flow through a porous medium. It is equipped with the



   85 Page 6 of 55 P. Colli et al. J. Evol. Equ.

incompressibility condition (1.1b) and the inhomogeneous Navier-slip boundary con-
dition (1.1i) in which the slip parameter γ (ψ) ≥ 0 may depend on the surface phase
field ψ . However, if the porosity � is large compared to the viscosity η(ϕ), the func-
tion λ(ϕ) is very small and can be neglected. In this case, we enter the Stokes regime,
where no porous media is considered (or the effects of the porous medium are at least
negligible). In the formal limit � → ∞ or λ(ϕ) → 0, (1.1a) degenerates to the Stokes
equation. In our analysis, we will be able to handle the Brinkman case (ν(ϕ) > 0 and
λ(ϕ) > 0) and the Stokes case (ν(ϕ) > 0 and λ(ϕ) ≡ 0) simultaneously. On the other
hand, if λ(ϕ) remains positive and the porosity � is large compared to the dynamic
viscosity η(ϕ) such that ν(ϕ) can be neglected, (1.1a) degenerates to Darcy’s law.
However, we are not able to handle this case in terms of mathematical analysis as due
to the absence of spatial derivatives of the velocity field in (1.1a), we would not obtain
enough regularity to define the trace of v on the boundary in a reasonable manner.

The functions F ′ and G ′ are the derivatives of double-well potentials F and G,
respectively. Especially in applications related to materials science, a physically rel-
evant choice for F and/or G is the logarithmic potential, which is also referred to as
the Flory–Huggins potential. It is given by

Wlog(s) = �

2

[
(1 + s) ln(1 + s) + (1 − s) ln(1 − s)

] + �c

2
(1 − s2), (1.2)

for all s ∈ (−1, 1). Here, � > 0 is the absolute temperature of the mixture, and �c is
a critical temperature such that phase separation will occur in case 0 < � < �c. The
logarithmic potential is classified as a singular potential since its derivative F ′ diverges
to ±∞ when its argument approaches ±1. It is often approximated by a polynomial
double-well potential

Wpol(s) = α

4
(s2 − 1)2 for all s ∈ (−1, 1), (1.3)

where α > 0 is a suitable constant. Another very commonly used singular potential
is the double-obstacle potential, which is given by

Wobst(s) =
{

1
2 (1 − s2) if |s| ≤ 1,

+∞ else.
(1.4)

In the case K = 0, the convective bulk-surface Cahn–Hilliard subsystem (1.1c)–
(1.1h) is a special case of the one introduced in [51] since for the chemical potential
μ, a homogeneous Neumann-type boundary condition is imposed in (1.1h). This cor-
responds to the choice L = ∞ in [51]. Therefore, by system (1.1), we describe a
situation where no transfer of material between bulk and boundary occurs. However,
it is important that due to the boundary conditions (1.1e)–(1.1i), themodel (1.1) allows
for dynamic changes of the contact angle as well as for a convection-inducedmotion of
the contact line. This means that the limitations (L1) and (L2) explained above can be
overcome. It is worth mentioning that this setup of dynamic boundary conditions for
the Cahn–Hilliard equation (without coupling to a velocity equation) was originally
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derived in [64] by the energetic variational approach. This system was further investi-
gated in [24,43,59,67]. For similar works on the Cahn–Hilliard equation with Cahn–
Hilliard-type dynamic boundary conditions, we refer to [19,22,23,44,54,60,62,79].
In contrast to the model introduced in [51], the phase fields ϕ and ψ are not just

coupled by the trace relation ϕ|� = ψ on �, but by the more general Robin-type
coupling condition K∂nϕ = ψ − ϕ with K ≥ 0 (see (1.1g)). This also includes the
trace relation via the choice K = 0. The coupling condition (1.1g) was first used in
[21] for an Allen–Cahn-type dynamic boundary condition and later in [59] for a Cahn–
Hilliard-type dynamic boundary condition. In particular, it was rigorously shown in
[59] that the Dirichlet-type coupling condition ϕ|� = ψ on � can be recovered in
the asymptotic limit K → 0. From a physical point of view, the boundary condition
(1.1g) with K > 0 makes sense if the materials on the boundary may be different from
those in the bulk. For instance, this might be the case if the materials on the boundary
are transformed by chemical reactions.
An important property of the system (1.1) (for any K ≥ 0) is its thermodynamic

consistency with respect to the free energy functional

EK (ϕ, ψ) :=
∫

�

(ε

2
|∇ϕ|2 + 1

ε
F(ϕ)

)
+

∫




(ε


2
|∇
ψ |2 + 1

ε


G(ψ)
)

+ σ(K )

2

∫




(ψ − ϕ)2, (1.5)

where σ(K ) = K−1 if K > 0 and σ(K ) = 0 if K = 0. This means that sufficiently
regular solutions of (1.1) satisfy the energy dissipation law

d

dt
EK (ϕ, ψ) = −

∫

�

λ(ϕ)|v|2 −
∫

�

M�(ϕ)|∇μ|2 −
∫




M
(ψ)|∇
θ |2

− 2
∫

�

ν(ϕ)|Dv|2 −
∫




γ (ψ)|v|2,
on [0, T ], where all the terms on the right-hand side are non-positive and can be
interpreted as the dissipation rate. Compared to the model in [51], the additional term∫
�

λ(ϕ) |v|2 arises due to dissipative effects caused by the porous medium.
Asmentioned above, due to the usage of the no-mass-flux conditionM�(ϕ)∂nμ = 0

on� (see (1.1h)), we do not describe any transfer ofmaterial between bulk and surface.
This entails that the bulk mass and the surface mass are conserved separately, i.e.,
sufficiently regular solutions satisfy the mass conservation laws

1

|�|
∫

�

ϕ(t) = 1

|�|
∫

�

ϕ0 =: m0 (1.6)

1

|
|
∫




ψ(t) = 1

|
|
∫




ψ0 =: m
0 (1.7)

for all t ∈ [0, T ].
Goals and novelties of this paper. After collecting some notations, assumptions, pre-
liminaries and important tools, we introduce our main results in Sect. 2. Let us now
briefly discuss the results with the emphasis on the objectives of this work.



   85 Page 8 of 55 P. Colli et al. J. Evol. Equ.

(I) Our first main goal is to establish the weak well-posedness to system (1.1) in the
case of regular potentials F and G for all choices K ≥ 0.
Here, the case K = 0 is the most delicate one, because then the boundary con-
ditions (1.1g) and (1.1h)1 are very difficult to combine. The reason is that the
Dirichlet-type boundary condition (1.1g) already fixes one degree of freedom in
the space of test functions, whereas the Neumann boundary condition (1.1h)1
does not. Therefore, it is not possible to directly construct a weak solution by a
Faedo–Galerkin approach.
In previous works in the literature (e.g., [43,59,60]), where the bulk-surface
Cahn–Hilliard system was considered without any velocity field, such issues of
unmatched boundary conditions could be overcome by exploiting the gradient
flow structure of the system and employing a minimizing movement scheme for
the construction of a weak solution. However, as in our case the bulk-surface
Cahn–Hilliard system is coupled to a velocity equation, the whole system is not
a gradient flow anymore, and therefore, a minimizing movement technique is
not applicable.
To overcome this issue, our strategy is to first prove the existence of weak so-
lutions to (1.1) for any K > 0. In this case, (1.1g) is a Robin-type boundary
condition, which, in contrast to the Dirichlet-type boundary condition associated
with K = 0, does not fix any degree of freedom in the space of test functions.
Therefore, it can be combined very well with the Neumann boundary condition
(1.1h)1. Having a weak solution to (1.1) for any K > 0 at hand, we can finally
prove the existence a weak solution to (1.1) with K = 0 by passing to the as-
ymptotic limit K → 0.
The existence of a weak solution to (1.1) for any K > 0 is stated in Theorem 2.6.
For the proof, we use a semi-Galerkin scheme, where only the phase fields and
the chemical potentials are discretized using a Galerkin scheme, but the corre-
sponding velocity field is obtained by directly solving the Brinkman subsystem
on the continuous level. For a Cahn–Hilliard–Brinkman model without dynamic
boundary conditions, such an approachhad alreadybeen employed in [35].Based
on this ansatz, a sequence of approximate solutions can be constructed by means
of the Cauchy–Peano theorem, and eventually, after deriving suitable uniform
bounds, we show that this sequence converges to a weak solution of (1.1) with
K > 0. A posteriori, we establish higher regularity of the phase field functions
provided that the domain is sufficiently smooth. The corresponding proof can
be found in Sect. 3.1.
In Theorem 2.7, we construct a weak solution to (1.1) in the case K = 0 by
using the result of Theorem 2.6 and passing to the limit K → 0 on the level of
weak solutions. A posteriori, as in the case K > 0, higher regularity of the phase
fields can be shown if the domain is sufficiently regular. The proof is given in
Sect. 3.2.
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(II) The second main goal is to prove the uniqueness as well as the continuous
dependence on the initial data of theweak solution to (1.1)with regular potentials
F andG in all cases K ≥ 0, provided that themobility functions and the viscosity
function are constant and the domain is sufficiently regular.
The result is stated in Theorem 2.8 and the proof is presented in Sect. 3.3. To
prove the assertion, we adapt the uniqueness proof devised in [51] for a Navier–
Stokes–Cahn–Hilliard model to our situation. We point out that the proof in [51]
only worked in two dimensions, whereas our new proof for the system (1.1)
is also valid in three dimensions. Moreover, our new proof requires a certain
bulk-surface chain rule for time derivatives that is established in Proposition A.1
in the Appendix.

(III) Our third main result is to prove the existence of a weak solution to system (1.1)
in the case of possibly singular potentials F and G for all choices K ≥ 0.
The result is stated in Theorem 2.10 and the proof is presented in Sect. 4. The
idea of the proof is to approximate the convex parts of the singular potentials F
and G by regular potentials Fε and Gε (with ε > 0) that are constructed via a
Moreau–Yosida regularization. For the approximate regular potentials, the ex-
istence of a corresponding weak solutions is already known from Theorem 2.6.
Themost technical part of the proof of Theorem 2.10 is to derive uniform bounds
on the potential terms involving F ′

ε and G
′
ε. This requires a certain condition on

the singular potentials, namely that G ′ dominates F ′ in a suitable way (cf (S2)).
Eventually, by passing to the limit ε → 0, the claim of Theorem 2.10 is estab-
lished.

2. Preliminaries and main results

2.1. Notation

Throughout themanuscript,� is a bounded domain inRd , d ∈ {2, 3}, with Lipschitz
boundary 
 := ∂� and n is the associated outward unit normal vector field. We write
|�| and |
| to denote the Lebesgue measure of � and the Hausdorff measure of 
,
respectively. For any givenBanach space X , we denote its normby ‖ · ‖X , its dual space
by X∗ and the duality pairing between X∗ and X by 〈·, ·〉X . Besides, if X is a Hilbert
space, we write (·, ·)X to denote the corresponding inner product. For every 1 ≤ p ≤
∞, k ≥ 0 and s > 0, the standard Lebesgue spaces, Sobolev–Slobodeckij spaces and
Sobolev spaces defined on � are denoted by L p(�), Wk,p(�) and Hs(�), and their
standard norms are denoted by ‖ · ‖L p(�) ‖ · ‖Wk,p(�) and ‖ · ‖Hs (�), respectively. It is
well known that the spaces H0(�) = L2(�) and Hk(�) = Wk,2(�) for all k ∈ N

can be identified, and these spaces are Hilbert spaces. The Lebesgue spaces, Sobolev–
Slobodeckij spaces and Sobolev spaces on the boundary
 are defined analogously. For
more details, we refer to [77,78]. We usually utilize bold letters to represent spaces for
vector- or matrix-valued functions. For example, we denote Lp(�) instead of writing
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L p(�;Rd) or L p(�;Rd×d), and so on. Moreover, for any Banach spaces X and Y ,
their intersection X ∩ Y is also a Banach space subject to the norm

‖v‖X∩Y := ‖v‖X + ‖v‖Y , v ∈ X ∩ Y.

As some spaces will appear very frequently, we introduce the following shortcuts:

H := L2(�), H
 := L2(
), V := H1(�), V
 := H1(
),

H := L2(�;Rd ), H
 := L2(
;Rd ), V := H1(�;Rd ), H := L2(�;Rd×d ),

Hσ,n := {
w ∈ H : div(w) = 0 in �, w|
 · n = 0 on 


}
, Vσ,n := V ∩ Hσ,n,

Vn := {
w ∈ V : w|
 · n = 0 on 


}
, Wn := {

w ∈ H2(�) : ∂nw = 0 on 

}
.

We point out that in the definition of Hσ,n, the relation div(w) = 0 in � is to be
understood in the sense of distributions. This already implies w|
 · n ∈ H−1/2(
),
and therefore, the relation w|
 · n = 0 on 
 is well defined. As Hσ,n and Vσ,n are
closed linear subspaces of the Hilbert spaces H and V, respectively, they are also
Hilbert spaces. We further introduce the bulk-surface product spaces

H := H × H
, V := V × V
,

VK :=
{
V if K > 0,

{(w, w
) ∈ V : w
 = w|
 on 
} if K = 0,

and endow them with the corresponding inner products

(
(v, v
), (w, w
)

)
H

:= (v, w)H + (v
, w
)H

for all (v, v
), (w, w
) ∈ H,

(
(v, v
), (w, w
)

)
V

:= (v, w)V + (v
, w
)V

for all (v, v
), (w, w
) ∈ V,

so that H, V and VK are Hilbert spaces. It is straightforward to check that

V∗ = V ∗ × V ∗

 ,

VK ⊂ V and V∗ ⊂ V∗
K if K = 0,

VK = V and V∗ = V∗
K if K > 0.

For any v ∈ V ∗ and v
 ∈ V ∗

 , we define the generalized mean values by

〈v〉� := 1

|�| 〈v, 1〉V , 〈v
〉
 := 1

|
| 〈v
, 1〉V
 , (2.1)

where 1 represents the constant function assuming value 1 in� and on
, respectively.
To introduce a weak formulation of (1.1), it will be useful to define the function

σ : [0, ∞) → [0, ∞), σ (r) =
{

1
r if r > 0,

0 if r = 0
(2.2)

to handle the cases K > 0 and K = 0 simultaneously.



J. Evol. Equ. Two-phase flows through porous media Page 11 of 55    85 

2.2. General assumptions

(A1) The set � ⊂ R
d with d ∈ {2, 3} is a bounded Lipschitz domain.

(A2) Themobility functionsM� : R → R andM
 : R → R are continuous, bounded
and uniformly positive. This means that there exist positive constants M1, M2,
M
,1 and M
,2 such that

0 < M1 ≤ M�(r) ≤ M2, 0 < M
,1 ≤ M
(r) ≤ M
,2 for all r ∈ R.

(A3) The viscosity function ν : R → R, the permeability function λ : R → R and the
friction parameter γ : R → R are continuous and nonnegative. There further
exist constants ν1, ν2, λ2, γ2 > 0 as well as γ1 ≥ 0 such that

0 < ν1 ≤ ν(r) ≤ ν2, 0 ≤ λ(r) ≤ λ2, 0 ≤ γ1 ≤ γ (r) ≤ γ2 for all r ∈ R.

Moreover, we assume that one of the following conditions holds:

(A3.1) It holds γ1 > 0.
(A3.2) The domain � has the following property:

{
If d = 2, � is not a circle.

If d = 3, � is not rotationally symmetric.
(2.3)

2.3. Preliminaries

In our mathematical analysis, we will need the following versions of Korn’s in-
equality.

Lemma 2.1. Suppose that (A1) holds.

(a) There exists a constant CKorn depending only on � such that

‖∇v‖H ≤ CKorn
(‖Dv‖H + ‖v‖H


)
for all v ∈ V. (2.4)

(b) If � additionally fulfills the condition (2.3), then there exists a constant C∗
Korn

depending only on � such that

‖∇v‖H ≤ C∗
Korn‖Dv‖H for all v ∈ V. (2.5)

Both (a) and (b) can be found in [3, Appendix]. In the three-dimensional case, (b)
had already been established before in [69, Theorem 3.5]. As illustrated in [3], the
two-dimensional version can be proved analogously.
Moreover, besides the standard Poincaré–Wirtinger inequality in �, we need a

Poincaré-type inequality on 
.

Lemma 2.2. Suppose that (A1) holds. Then, there exists a constant CP ≥ 0 depending
only on � such that

‖v − 〈v〉
‖H
 ≤ CP‖∇v‖H
 for all v ∈ V
. (2.6)
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This result follows directly from the bulk-surface Poincaré inequality established in
[61, Lemma A.1] (with the function in the bulk being chosen as u ≡ 0 and the
parameters being chosen as K = 2, α = β = 1).

We further recall the following result on interpolation between Sobolev spaces:

Lemma 2.3. Let U ⊂ R
m with m ∈ N be a bounded Lipschitz domain, and suppose

that θ ∈ (0, 1) and r, s0, s1 ∈ R satisfy

r = (1 − θ)s0 + θs1.

We further assume that U is of class C� with an integer � ≥ max{s0, s1}. Then, there
exist positive constants CU and C∂U depending only on U, r , s0, s1 and θ such that
the following interpolation inequalities hold:

‖ f ‖Hr (U ) ≤ CU‖ f ‖1−θ
Hs0 (U )

‖ f ‖θ
Hs1 (U ), (2.7)

‖ f ‖Hr (∂U ) ≤ C∂U‖ f ‖1−θ
Hs0 (∂U )

‖ f ‖θ
Hs1 (∂U ). (2.8)

Inequality (2.7) follows from an interpolation result shown in [77, Sect 4.3.1, Theo-
rem 1 and Remark 1], whereas (2.8) follows from an interpolation result presented in
[78, Sect 7.4.5, Remark 2].

2.4. The Cahn–Hilliard–Brinkman system with regular potentials

First, we present our mathematical results for system (1.1) in the case of regular
double-well potentials F andG. Asmentioned above,we simply set ε = ε
 = 1, as the
exact values of these interface parameters do not have any impact on the mathematical
analysis as long as they are positive.

2.4.1. Assumptions for regular potentials

(R1) The potentials F : R → [0, ∞) and G : R → [0, ∞) are continuously differ-
entiable, and there exist exponents p, q ∈ R with

p ∈
{

[2, ∞) if d = 2,

[2, 6] if d = 3,
and q ∈ [2, ∞) (2.9)

as well as constants cF ′ , cG ′ ≥ 0 such that
∣∣F ′(r)

∣∣ ≤ cF ′(1 + |r |p−1), (2.10)
∣∣G ′(r)

∣∣ ≤ cG ′(1 + |r |q−1) (2.11)

for all r ∈ R. This implies that there exist constants cF , cG ≥ 0 such that F and
G fulfill the growth conditions

F(r) ≤ cF (1 + |r |p), (2.12)

G(r) ≤ cG(1 + |r |q) (2.13)

for all r ∈ R.
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(R2) In addition to (R1), F and G are twice continuously differentiable and there
exist constants cF ′′ , cG ′′ ≥ 0 such that

∣∣F ′′(r)
∣∣ ≤ cF ′′(1 + |r |p−2), (2.14)

∣∣G ′′(r)
∣∣ ≤ cG ′′(1 + |r |q−2) (2.15)

for all r ∈ R, where p and q are the exponents introduced in (2.9).

2.4.2. Definition of weak solutions for regular potentials

Definition 2.4. Let K ≥ 0 be arbitrary. Suppose that (A1)–(A3) and (R1) are fulfilled
and let (ϕ0, ψ0) ∈ VK be any initial data. A quintuplet (v, ϕ, μ, ψ, θ) is called a weak
solution of the Cahn–Hilliard–Brinkman system (1.1) if the following conditions are
fulfilled:

(i) The functions v, ϕ, μ, ψ and θ have the regularity

v ∈ L2(0, T ;Vσ,n), v|
 ∈ L2(0, T ;H
),

(ϕ, ψ) ∈ H1(0, T ;V∗) ∩ C0([0, T ];H) ∩ L∞(0, T ;VK ),

(μ, θ) ∈ L2(0, T ;V).

(ii) The variational formulation

2
∫

�

ν(ϕ)Dv : Dw +
∫

�

λ(ϕ)v · w +
∫




γ (ψ)v · w

= −
∫

�

ϕ∇μ · w −
∫




ψ∇
θ · w,

(2.16a)

〈∂tϕ, ζ 〉V −
∫

�

ϕv · ∇ζ +
∫

�

M�(ϕ)∇μ · ∇ζ = 0, (2.16b)

〈∂tψ, ζ
〉V
 −
∫




ψv · ∇
ζ
 +
∫




M
(ψ)∇
θ · ∇
ζ
 = 0, (2.16c)
∫

�

μη +
∫




θη
 =
∫

�

∇ϕ · ∇η +
∫

�

F ′(ϕ)η +
∫




∇
ψ · ∇
η


+
∫




G ′(ψ)η
 + σ(K )

∫




(ψ − ϕ)(η
 − η)

(2.16d)

holds a.e. in [0, T ] for all w ∈ Vσ,n, ζ ∈ V , ζ
 ∈ V
 and (η, η
) ∈ VK .
(iii) The initial conditions are satisfied in the following sense:

ϕ(0) = ϕ0 a.e. in �, ψ(0) = ψ0 a.e. on 
.
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(iv) The weak energy dissipation law

EK
(
ϕ(t), ψ(t)

) + 2
∫ t

0

∫

�

ν(ϕ)|Dv|2 +
∫ t

0

∫

�

λ(ϕ)|v|2 +
∫ t

0

∫




γ (ψ)|v|2

+
∫ t

0

∫

�

M�(ϕ)|∇μ|2 +
∫ t

0

∫




M
(ψ)|∇
θ |2

≤ EK (ϕ0, ψ0) (2.17)

holds for all t ∈ [0, T ].
Remark 2.5. We point out that the pressure p does not appear in the weak formulation
(2.16a) as the test functions are chosen to be divergence-free. However, provided that
� is connected, the pressure can be reconstructed in the following way.

Suppose that (v, ϕ, μ, ψ, θ) is a weak solution in the sense of Definition 2.4. We
define

F : Wn → R, F(�) =
∫

�

2ν(ϕ)Dv : D∇� +
∫

�

λ(ϕ)v · ∇� +
∫




γ (ψ)v · ∇�

+
∫

�

ϕ∇μ · ∇� +
∫




ψ∇
θ · ∇� .

Note that in the integrals over
, we can actually replace∇� by∇
� as v and∇
θ are
tangential vector fields, i.e., their normal component is zero. In view of the regularities
in Definition 2.4(i), it is straightforward to check that F ∈ W ∗

n . Hence, according to
[1, Lemma 3.6.1], there exists a unique function p ∈ L2(�) such that

∫

�

p�� = F(�) for all � ∈ Wn. (2.18)

Let now ŵ ∈ Vn be arbitrary. As � is additionally assumed to be connected, there
exists a Leray decomposition ŵ = w + ∇� with w ∈ Vσ,n and � ∈ Wn (see, e.g.,
[15, Theorem IV.3.5.]). In particular, we thus have divŵ = div(∇�) = ��. Hence,
combining (2.16a) and (2.18), we conclude that the variational formulation

2
∫

�

ν(ϕ)Dv : Dŵ −
∫

�

pdivŵ +
∫

�

λ(ϕ)v · ŵ +
∫




γ (ψ)v · ŵ

= −
∫

�

ϕ∇μ · ŵ −
∫




ψ∇
θ · ŵ

holds for all ŵ ∈ Vn. We have thus reconstructed the pressure p ∈ L2(�).

2.4.3. Existence of a weak solution in the case K > 0

We first show the existence of a weak solution to the Cahn–Hilliard–Brinkman
system (1.1) in the case K > 0.

Theorem 2.6. Let K > 0 be arbitrary. Suppose that (A1)–(A3) and (R1) are fulfilled
and let (ϕ0, ψ0) ∈ VK be any initial data. Then, the Cahn–Hilliard–Brinkman system
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(1.1) possesses at least one weak solution (v, ϕ, μ, ψ, θ) in the sense of Definition 2.4,
which further satisfies (μ, θ) ∈ L4(0, T ;H).

Let us now assume that the domain � is of class C� with � ∈ {2, 3}. If d = 3, we
further assume p ≤ 4, and if � = 3, we further assume that (R2) holds. Then, we have
the additional regularities

(ϕ, ψ) ∈ L4(0, T ; H2(�) × H2(
)
)

in case � ∈ {2, 3}, (2.19a)

(ϕ, ψ) ∈ L2(0, T ; H3(�) × H3(
)
)

in case � = 3, (2.19b)

and Eqs. (1.1d), (1.1f) and (1.1g) are fulfilled in the strong sense, that is, almost
everywhere in Q and on �, respectively. In the case � = 3, we further have

(ϕ, ψ) ∈ C0([0, T ];V)
. (2.20)

2.4.4. The limit K → 0 and existence of a weak solution in the case K = 0

We now investigate the limit K → 0 in which the boundary condition (1.1g)
formally tends to the Dirichlet condition ψ = ϕ|
 almost everywhere on �. In the
following theorem, we send K → 0 in system (1.1) to prove the existence of a weak
solution to (1.1) in the case K = 0, and we further specify the convergence properties
of this asymptotic limit.

Theorem 2.7. Suppose that (A1)–(A3) and (R1) are fulfilled and let (ϕ0, ψ0) ∈ V0

be any initial data. Let (Kn)n∈N be a sequence of positive real numbers such that
Kn → 0 as n → ∞. For any n ∈ N, let (vKn , ϕKn , μKn , ψKn , θKn ) denote any weak
solution corresponding to Kn > 0 in the sense of Definition 2.4. Then, there exists a
quintuplet of functions (v0, ϕ0, μ0, ψ0, θ0) with ϕ0|
 = ψ0 a.e. on � such that for
any s ∈ [0, 1),

vKn → v0 weakly in L2(0, T ;Vσ,n), (2.21a)

vKn |
 → v0|
 weakly in L2(0, T ;H
), (2.21b)

ϕKn → ϕ0 weakly-∗in L∞(0, T ; V ),weakly in H1(0, T ; V ∗),
strongly in C0([0, T ]; Hs(�)), and a.e. in Q, (2.21c)

ψKn → ψ0 weakly-∗ in L∞(0, T ; V
), weakly inH1(0, T ; V ∗

 ),

strongly in C0([0, T ]; Hs(
)), and a.e. on �,

(2.21d)

μKn → μ0 weakly in L2(0, T ; V ), (2.21e)

θKn → θ0 weakly in L2(0, T ; V
), (2.21f)

ϕKn |
 − ψKn → 0 strongly in L∞(0, T ; H
), and a.e. on �, (2.21g)

asn → ∞alonganon-relabeled subsequence.Moreover, the limit (v0, ϕ0, μ0, ψ0, θ0)

is a weak solution of the Cahn–Hilliard–Brinkman model (1.1) in the sense of Defini-
tion 2.4 with K = 0.
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Let us now assume that the domain � is of class C� with � ∈ {2, 3}. If d = 3, we
further assume p ≤ 4, and if � = 3, we further assume that (R2) holds. Then, we have
the additional regularities

(ϕ0, ψ0) ∈ L2(0, T ; H2(�) × H2(
)
)

in case � ∈ {2, 3}, (2.22a)

(ϕ0, ψ0) ∈ L2(0, T ; H3(�) × H3(
)
)

in case � = 3, (2.22b)

and Eqs. (1.1d) and (1.1f) are fulfilled in the strong sense. Moreover, in the case � = 3,
we further have

(ϕ0, ψ0) ∈ C0([0, T ];V0
) ∩ L4(0, T ; H2(�) × H2(
)

)
, (2.23)

(μ0, θ0) ∈ L4(0, T ;H)
. (2.24)

2.4.5. Stability and uniqueness of the weak solution in the general case K ≥ 0

In the case of regular potentials, constant mobilities and a constant viscosity, we
are able to prove the uniqueness of the weak solutions established in Theorem 2.6
provided that the following assumption on the potentials F and G holds.

(R*) The potentials F : R → [0, ∞) and G : R → [0, ∞) are three times continu-
ously differentiable, and there exist exponents p, q ∈ R with

p ∈
{

[3, ∞) if d = 2,

[3, 4] if d = 3,
and q ∈ [3, ∞), (2.25)

as well as constants cF (3) , cG(3) ≥ 0 such that the third-order derivatives satisfy
∣
∣∣F (3)(r)

∣
∣∣ ≤ cF (3) (1 + |r |p−3), (2.26)

∣∣∣G(3)(r)
∣∣∣ ≤ cG(3) (1 + |r |q−3) (2.27)

for all r ∈ R.

We point out that (R*) implies (R1) and (R2) with p and q being chosen as in (2.25).

Theorem 2.8. Suppose that (A1) and (R*) are fulfilled with � being of class C3, and
let K ≥ 0 be arbitrary. In addition to (A2) and (A3), we further assume that γ and
λ are Lipschitz continuous and that the functions ν, M� and M
 reduce to positive
constants denoted by the same symbols. For any i ∈ {1, 2}, let (ϕ0,i , ψ0,i ) ∈ VK be
any pair of initial data, and let (vi , ϕi , μi , ψi , θi ) be a corresponding weak solution
in the sense of Definition 2.4.

Then, the stability estimate

‖v1 − v2‖L2(0,T ;V) + ‖ϕ1 − ϕ2‖L∞(0,T ;V )

+ ‖μ1 − μ2‖L2(0,T ;V ) + ‖ψ1 − ψ2‖L∞(0,T ;V
)

+ ‖θ1 − θ2‖L2(0,T ;V
) ≤ CS
( ∥∥ϕ0,1 − ϕ0,2

∥∥
V + ∥∥ψ0,1 − ψ0,2

∥∥
V


)
(2.28)
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holds for a constant CS ≥ 0 depending only on K , �, T , the initial data and the
constants introduced in (A1)–(A3) and (R∗). In particular, choosing (ϕ0,1, ψ0,1) =
(ϕ0,2, ψ0,2), this entails the uniqueness of the corresponding weak solution.

2.5. The Cahn–Hilliard–Brinkman system with singular potentials

Wenowconsider the system (1.1) for a general class of singular potentials. For those,
we manage to establish just existence of weak solutions due to the lower regularity at
disposal. Recall that ε = ε
 = 1 as mentioned above.

2.5.1. Assumptions for singular potentials

For the potentials F and G, we now make the following assumptions.

(S1) The potentials F and G can be decomposed as F = β̂ + π̂ and G = β̂
 + π̂
 .
Here, β̂, β̂
 : R → [0, ∞] are lower semicontinuous and convex functions with
β̂(0) = 0 and β̂
(0) = 0. For brevity, we define

β := ∂β̂ and β
 := ∂β̂
,

where ∂ indicates the subdifferential of the respective function. Moreover, we
suppose that π̂ , π̂
 ∈ C1(R) with Lipschitz continuous derivatives π := π̂ ′ and
π
 := π̂ ′


 .
We point out that β and β
 are maximal monotone graphs in R × R whose
effective domains are denoted by D(β) and D(β
), respectively. In particular,
as 0 is a minimum point of both β̂ and β̂
 , it turns out that 0 ∈ β(0) and
0 ∈ β
(0). Finally, we denote by β◦ the minimal section of the graph β, which
is defined as

β◦(r) :=
{
r∗ ∈ R : ∣∣r∗∣∣ = min

s∈β(r)
|s|

}
for all r ∈ D(β)

(see, e.g., [16]). The same definition applies to β◦

 for β
 .

(S2) We also assume the growth condition

lim
r→+∞

β̂(r)

|r |2 = +∞ . (2.29)

Moreover, we demand D(β
) ⊆ D(β) and postulate that the boundary graph
dominates the bulk graph in the following sense:

∃ κ1, κ2 > 0 : |β◦(r)| ≤ κ1|β◦

(r)| + κ2 for every r ∈ D(β
). (2.30)

Here, β◦ and β◦

 are the minimal sections introduced in (S1).

Note that all the examples of potentials given in (1.2)–(1.4) fulfill the assumptions
(S1) and (S2), provided that the boundary potential dominates the one in the bulk as
demanded in (2.30). In particular, the only scenario where a singular and a regular
potential may coexist is the case in which the boundary potential is the singular one.
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This assumption has first been made in [17] and was used afterward in several con-
tributions in the literature, see, e.g., [19,20,22–24,26–30]. However, in some other
works such as [46,47] different compatibility conditions were assumed.

2.5.2. Definition of weak solutions for singular potentials

Definition 2.9. Let K ≥ 0 be arbitrary. Suppose that (A1)–(A3), (S1) and (S2) are
fulfilled and let (ϕ0, ψ0) ∈ VK be any initial data satisfying

β̂(ϕ0) ∈ L1(�), m0 := 〈ϕ0〉� ∈ int(D(β)), (2.31a)

β̂
(ψ0) ∈ L1(
), m
0 := 〈ψ0〉
 ∈ int(D(β
)). (2.31b)

Then, (v, ϕ, ξ, μ, ψ, ξ
, θ) is called a weak solution of the Cahn–Hilliard–Brinkman
system (1.1) if the following conditions are fulfilled:

(i) The functions v, ϕ, ξ , μ, ψ , ξ
 and θ have the regularity

v ∈ L2(0, T ;Vσ,n), v|
 ∈ L2(0, T ;H
),

(ϕ, ψ) ∈ H1(0, T ;V∗) ∩ C0([0, T ];H) ∩ L∞(0, T ;VK ),

(ξ, ξ
) ∈ L2(0, T ;H),

(μ, θ) ∈ L2(0, T ;V).

(ii) The variational formulation

2
∫

�

ν(ϕ)Dv : Dw +
∫

�

λ(ϕ)v · w +
∫




γ (ψ)v · w

= −
∫

�

ϕ∇μ · w −
∫




ψ∇
θ · w,

(2.32a)

〈∂tϕ, ζ 〉V −
∫

�

ϕv · ∇ζ +
∫

�

M�(ϕ)∇μ · ∇ζ = 0, (2.32b)

〈∂tψ, ζ
〉V
 −
∫




ψv · ∇
ζ
 +
∫




M
(ψ)∇
θ · ∇
ζ
 = 0, (2.32c)
∫

�

μη +
∫




θη
 =
∫

�

∇ϕ · ∇η +
∫

�

ξη +
∫

�

π(ϕ)η +
∫




∇
ψ · ∇
η


+
∫




ξ
η
 +
∫




π
(ψ)η
 + σ(K )

∫




(ψ − ϕ)(η
 − η)

(2.32d)

holds a.e. in [0, T ] for all w ∈ Vσ,n, ζ ∈ V , ζ
 ∈ V
 and (η, η
) ∈ VK , where

ξ ∈ β(ϕ) a.e. in Q, ξ
 ∈ β
(ψ) a.e. on �.

(iii) The initial conditions are satisfied in the following sense:

ϕ(0) = ϕ0 a.e. in �, ψ(0) = ψ0 a.e. on 
.
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(iv) The weak energy dissipation law

EK
(
ϕ(t), ψ(t)

) + 2
∫ t

0

∫

�

ν(ϕ)|Dv|2 +
∫ t

0

∫

�

λ(ϕ)|v|2 +
∫ t

0

∫




γ (ψ)|v|2

+
∫ t

0

∫

�

M�(ϕ)|∇μ|2 +
∫ t

0

∫




M
(ψ)|∇
θ |2

≤ EK (ϕ0, ψ0)

holds for all t ∈ [0, T ].

Notice that, if � is connected, the pressure p can be reconstructed from (2.32a) by
proceeding as in Remark 2.5.

2.5.3. Existence of a weak solution

Theorem 2.10. Let K ≥ 0 be arbitrary. Suppose that (A1)–(A3) and (S1)–(S2) are
fulfilled. Let (ϕ0, ψ0) ∈ VK denote any initial data satisfying (2.31). In the case K = 0,
let the domain � be of class C2. Then, the Cahn–Hilliard–Brinkman system (1.1)
admits at least one weak solution (v, ϕ, ξ, μ, ψ, ξ
, θ) in the sense of Definition 2.9.
In all cases, if the domain � is at least of class C2, it holds that

ϕ ∈ L2(0, T ; H2(�)), ψ ∈ L2(0, T ; H2(
)) (2.33)

and the equations

μ = −�ϕ + ξ + π(ϕ) in Q, (2.34)

θ = −�
ψ + ξ
 + π
(ψ) + ∂nϕ on �, (2.35)

K∂nϕ = ϕ − ψ on � (2.36)

are fulfilled in the strong sense.

3. Analysis of the Cahn–Hilliard–Brinkman system with regular potentials

3.1. Existence of weak solutions in the case K > 0

Proof of Theorem 2.6. We intend to construct a weak solution to system (1.1) by
discretizing the weak formulation (2.16) by means of a Faedo–Galerkin scheme. In
this proof, the letter C will denote generic positive constants that may depend on K ,
�, T , the initial data and the constants introduced in (A1)–(A3), and may change
their value from line to line. Recall that, as K is assumed to be positive here, we have
σ(K ) = 1

K . �
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3.1.1. Construction of local-in-time approximate solutions

It is well known that the Poisson–Neumann eigenvalue problem

−�u = λ�u in �, ∂nu = 0 on 
 (3.1)

possesses countably many eigenvalues and a corresponding sequence {ui }i∈N ⊂ V
of H -normalized eigenfunctions which form an orthonormal basis of H and an or-
thogonal Schauder basis of V . Similarly, invoking the spectral theorem for compact
self-adjoint operators, it follows that the eigenvalue problem

−�
v = λ
v on 
 (3.2)

for the Laplace–Beltrami operator possesses countably many eigenvalues and a cor-
responding sequence {vi }i∈N ⊂ V
 of H
-normalized eigenfunctions which form an
orthonormal basis of H
 and an orthogonal Schauder basis of V
 . For any k ∈ N, we
now define the finite-dimensional subspaces

Vk := span{ui : 1 ≤ i ≤ k} ⊂ V,

V
,k := span{v j : 1 ≤ j ≤ k} ⊂ V
,

Vk := span{(ui , v j ) : 1 ≤ i, j ≤ k} ⊂ V.

We point out that, due to the above considerations, the inclusions
⋃

k∈N
Vk ⊆ V,

⋃

k∈N
V
,k ⊆ V
,

⋃

k∈N
Vk ⊆ V

are dense. In order to construct a sequence of approximate solutions, we use a semi-
Galerkin approach. Thismeans that only the quantities ϕ,ψ ,μ and θ are approximated
by aGalerkin scheme, and the approximate velocity field is obtained bydirectly solving
the corresponding Brinkman subsystem. This approach has already been employed in
[35] for a Cahn–Hilliard–Brinkman model without dynamic boundary conditions and
a no-friction boundary condition for the velocity equation. Compared to the present
paper, some of the steps are carried out in [35] in more detail, so we recommend it as
a reference work.
To construct a sequence of approximate solutions, we now make the ansatz

ϕk(x, t) =
k∑

i=1

aki (t)ui (x), ψk(x, t) =
k∑

i=1

bki (t)vi (x),

μk(x, t) =
k∑

i=1

cki (t)ui (x), θk(x, t) =
k∑

i=1

dki (t)vi (x)

(3.3)

for every k ∈ N, where the coefficients ak := (ak1, . . . , akk )

, bk := (bk1, . . . , bkk )


,
ck := (ck1, . . . , ckk )


, dk := (dk1 , . . . , dkk )
 are still to be determined.
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Let now k ∈ N and t ∈ [0, T ] be arbitrary. For any choice of ak , bk , ck and dk , and
(ϕk, ψk, μk, θk) as defined in (3.3), we consider the bilinear form

Bk,t : Vσ,n × Vσ,n → R,

(v,w) �→ 2
∫

�

ν
(
ϕk(t)

)
Dv : Dw +

∫

�

λ
(
ϕk(t)

)
v · w +

∫




γ
(
ψk(t)

)
v · w,

(3.4)

which is related to the weak formulation of the Brinkman equation with Navier-slip
boundary condition. It is obvious that Bk,t is symmetric, and in view of (A3), it is
easy to see that Bk,t is continuous. We further recall that every v ∈ Vσ,n satisfies
div(v) = 0 a.e. in �, and v · n = 0 a.e. on 
. Now, if (A3.1) holds, we use Korn’s
inequality (Lemma 2.1(a)) to deduce

Bk,t (v, v) ≥ 2ν1

∫

�
Dv : Dv + γ1

∫



|v|2 ≥ min{2ν1, γ1}

( ‖Dv‖2
H

+ ‖v‖2H


) ≥ C ‖v‖2V
(3.5)

for all v ∈ Vσ,n. On the other hand, if (A3.2) holds, we use Korn’s inequality
(Lemma 2.1(b)) to conclude

Bk,t (v, v) ≥ 2ν1

∫

�

Dv : Dv ≥ C ‖v‖2V (3.6)

for all v ∈ Vσ,n. This means that the bilinear formBk,t is coercive inVσ,n. Hence, the
Lax–Milgram lemma implies that there exists a unique function vk(t) ∈ Vσ,n solving

Bk,t
(
vk(t),w

) = −
∫

�

ϕk(t)∇μk(t) · w −
∫




ψk(t)∇
θk(t) · w (3.7)

for all w ∈ Vσ,n. As t ∈ [0, T ] was arbitrary, this defines a function vk : [0, T ] →
Vσ,n. We point out that by construction, vk depends continuously on the coefficients
ak , bk , ck and dk .
We now want to adjust the coefficient vectors ak , bk , ck and dk such that the

discretized weak formulation

2
∫

�

ν(ϕk)Dvk : Dw +
∫

�

λ(ϕk)vk · w +
∫




γ (ψk)vk · w

= −
∫

�

ϕk∇μk · w −
∫




ψk∇
θk · w, (3.8a)

〈∂tϕk, ζ 〉V −
∫

�

ϕkvk · ∇ζ +
∫

�

M�(ϕk)∇μk · ∇ζ = 0, (3.8b)

〈∂tψk, ζ
〉V
 −
∫




ψkvk · ∇
ζ
 +
∫




M
(ψk)∇
θk · ∇
ζ
 = 0, (3.8c)
∫

�

μkη +
∫




θkη
 =
∫

�

∇ϕk · ∇η +
∫

�

F ′(ϕk)η +
∫




∇
ψk · ∇
η


+
∫




G ′(ψk)η
 + 1

K

∫




(ψk − ϕk)(η
 − η) (3.8d)
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for all test functions w ∈ Vσ,n, ζ ∈ Vk , ζ
 ∈ V
,k and (η, η
) ∈ Vk , and the initial
conditions

ϕk(0) = ϕ0,k := PVk (ϕ0) and ψk(0) = ψ0,k := PV
,k (ψ0) (3.9)

are fulfilled. With the symbol PVk we denote the H -orthogonal projection of V onto
Vk , whereas PV
,k denotes the H
-orthogonal projection of V
 onto V
,k .
Choosing ζ = u j in (3.8b) and ζ
 = v j in (3.8c) for j = 1, . . . , k, we infer that

(ak,bk)
 is determined by a system of 2k nonlinear ordinary differential equations
subject to the initial conditions

[ak]i (0) = aki (0) = (ϕ0, ui )H and [bk]i (0) = bki (0) = (ψ0, vi )H


for all i ∈ {1, . . . , k}. In particular, since the functions M� and M
 are continuous
and vk depends continuously on the coefficients ak , bk , ck and dk , the same holds for
the right-hand side of this ODE system. Moreover, choosing (η, η
) = (u j , 0) and
(η, η
) = (0, v j ) for j = 1, . . . , k in (3.8d), respectively, we find that the coefficients
ck and dk are explicitly given by 2k algebraic equations whose right-hand side depends
continuously on ak and bk . This allows us to replace ck and dk in the right-hand side
of the aforementioned ODE system to obtain a closed ODE system for the vector-
valued function (ak,bk)
 whose right-hand side depends continuously on (ak,bk)
.
Consequently, the Cauchy–Peano theorem implies the existence of at least one local-
in-time solution

(ak,bk)
 : [0, T ∗
k ) ∩ [0, T ] → R

2k

to the corresponding initial value problem. Here, we take T ∗
k > 0 as large as possible

meaning that [0, T ∗
k ) ∩ [0, T ] is the right-maximal time interval of this solution. We

can now reconstruct

(ck,dk)
 : [0, T ∗
k ) ∩ [0, T ] → R

2k

by the aforementioned system of 2k algebraic equations. Without loss of generality,
we now assume T ∗

k ≤ T to simplify the notation. Recalling the ansatz (3.3) as well as
the construction of vk , we obtain an approximate solution (vk, ϕk, μk, ψk, θk) with

vk ∈ C0([0, T ∗
k );Vσ,n), (ϕk , ψk) ∈ C1([0, T ∗

k );V), and (μk , θk) ∈ C0([0, T ∗
k );V),

which fulfills the discretized weak formulation (3.8) on the time interval [0, T ∗
k ).

3.1.2. Uniform estimates

Let now Tk ∈ (0, T ∗
k ) be arbitrary. We derive suitable estimates for the approximate

solutions (vk, ϕk, μk, ψk, θk) that are uniform in k and Tk . These estimates will allow
us to extend the approximate solutions onto the whole interval [0, T ] and to extract
suitable convergent subsequences.
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First estimate
We first test (3.8a) by vk , (3.8b) by μk , (3.8c) by θk and (3.8d) by −(∂tϕk, ∂tψk).

We then add these equations and integrate the resulting equation with respect to time
from 0 to an arbitrary t ∈ [0, Tk]. We obtain

EK
(
ϕk(t), ψk(t)

)+2
∫ t

0

∫

�

ν(ϕk) |Dvk |2+
∫ t

0

∫

�

λ(ϕk) |vk |2+
∫ t

0

∫




γ (ψk) |vk |2

+
∫ t

0

∫

�

M�(ϕk) |∇μk |2 +
∫ t

0

∫




M
(ψk) |∇
θk |2 ≤ EK (ϕ0,k, ψ0,k) (3.10)

for every t ∈ [0, Tk]. Due to (3.9) and the assumptions on the initial data, we have

∥
∥ϕ0,k

∥
∥
V ≤ C ‖ϕ0‖V ≤ C and

∥
∥ψ0,k

∥
∥
V


≤ C ‖ψ0‖V

≤ C. (3.11)

In view of the growth conditions from (R1), this directly implies

∥∥F
(
ϕ0,k

)∥∥
L1(�)

≤ C,
∥∥G

(
ψ0,k

)∥∥
L1(
)

≤ C, and thus, EK (ϕ0,k, ψ0,k) ≤ C.

(3.12)

Hence, using the conditions in (A2) and (A3), a straightforward computation yields

√
2ν1 ‖Dvk‖L2(0,Tk ;H) + √

γ1 ‖vk‖L2(0,Tk ;H
) + ‖∇ϕk‖L∞(0,Tk ;H) + ‖∇
ψk‖L∞(0,Tk ;H
)

+ ‖∇μk‖L2(0,Tk ;H) + ‖∇
θk‖L2(0,Tk ;H
) ≤ C. (3.13)

Invoking Korn’s inequality (see Lemma 2.1), we directly infer

‖vk‖L2(0,Tk ;Vσ,n) ≤ C. (3.14)

Next, taking ζ = 1
|�| in (3.8b), and ζ
 = 1

|
| in (3.8c), we infer

〈ϕk(t)〉� = 〈ϕk,0〉�, 〈ψk(t)〉
 = 〈ψk,0〉
 for all t ∈ [0, Tk].
Hence, in view of (3.11) and (3.13), we use the Poincaré–Wirtinger inequality in �

and Poincaré’s inequality on 
 (see Lemma 2.2) to conclude

‖ϕk‖L∞(0,Tk ;V ) + ‖ψk‖L∞(0,Tk ;V
) ≤ C. (3.15)

Second estimate
Let now ζ ∈ L2(0, Tk; V ) and ζ
 ∈ L2(0, Tk; V
) be arbitrary test functions.

Testing (3.8b) with ζ := PVk (ζ ) and exploiting (3.13)–(3.15) along with Sobolev’s
embeddings, we obtain

∣
∣∣∣

∫ Tk

0
〈∂tϕk, ζ 〉V

∣
∣∣∣ =

∣
∣∣∣

∫ Tk

0
〈∂tϕk, ζ 〉V

∣
∣∣∣

=
∣
∣∣∣

∫ Tk

0

∫

�

ϕkvk · ∇ζ −
∫ Tk

0

∫

�

M�(ϕk)∇μk · ∇ζ

∣
∣∣∣
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≤ (‖ϕk‖L∞(0,Tk ;L6(�)) ‖vk‖L2(0,Tk ;L3(�)) + M2 ‖∇μk‖L2(0,Tk ;H)

) ∥∥ζ
∥∥
L2(0,Tk ;V )

≤ C ‖ζ‖L2(0,Tk ;V ) . (3.16)

Hence, taking the supremum over all ζ ∈ L2(0, Tk; V ) with ‖ζ‖L2(0,Tk ;V ) ≤ 1, we
deduce

‖∂tϕk‖L2(0,Tk ;V ∗) ≤ C. (3.17)

Proceeding similarly and testing (3.8c) with ζ
 := PV
,k (ζ
), we obtain the estimate

∣∣∣∣

∫ Tk

0
〈∂tψk, ζ
〉V


∣∣∣∣

≤
(
C ‖ψk‖L∞(0,Tk ;V
) ‖vk‖L2(0,Tk ;Vσ,n) + M
,2 ‖∇
θk‖L2(0,Tk ;H
)

) ∥∥ζ


∥∥
L2(0,Tk ;V
)

≤ C ‖ζ
‖L2(0,Tk ;V
) . (3.18)

Taking the supremum over all ζ
 ∈ L2(0, Tk; V
) with ‖ζ
‖L2(0,Tk ;V
) ≤ 1, we
conclude

‖∂tψk‖L2(0,Tk ;V ∗

 ) ≤ C. (3.19)

Third estimate
Next, we want to derive uniform bounds on μk in L4(0, Tk; H) ∩ L2(0, Tk; V )

and on θk in L4(0, Tk; H
)∩ L2(0, Tk; V
). Therefore, we choose arbitrary functions
η ∈ L1(0, Tk; V ) and η
 ∈ L1(0, Tk; V
) and we set η := PVk (η) and η
 :=
PV
,k (η
). Testing (3.8d) by (η, η
), recalling the growth conditions from (R1) as well
as the uniform bounds (3.13) and (3.14), we use Hölder’s inequality and Sobolev’s
embedding theorem to derive the estimate

∣∣∣∣

∫ Tk

0
〈(μk, θk), (η, η
)〉V

∣∣∣∣ =
∣∣∣∣

∫ Tk

0
〈(μk, θk), (η, η
)〉V

∣∣∣∣

≤
∫ Tk

0

[
‖∇ϕk‖H ‖∇η‖H + ∥∥F ′(ϕk)

∥∥
L6/5(�)

‖η‖L6(�) + ‖∇
ψk‖H

‖∇
η
‖H


+ ∥∥G ′(ψk)
∥∥
H


‖η
‖H

+ 1

K ‖ψk − ϕk‖H

‖η
 − η‖H


]

≤ C(1 + ‖ϕk‖p−1
L∞(0,Tk ;V )

+ ‖ψk‖q−1
L∞(0,Tk ;V
)

) ‖(η, η
)‖L1(0,Tk ;V)

in [0, Tk]. Taking the supremum over all (η, η
) ∈ L1(0, Tk;V) with
‖(η, η
)‖L1(0,Tk ;V) ≤ 1, and using (3.15), we infer

‖(μk, θk)‖L∞(0,Tk ;V∗) ≤ C. (3.20)

We further have

‖(μk, θk)‖2H = 〈(μk, θk), (μk, θk)〉V
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≤ C ‖(μk, θk)‖V∗
( ‖(μk, θk)‖H + ‖(∇μk, ∇
θk)‖H×H


)

≤ 1

2
‖(μk, θk)‖2H + C ‖(μk, θk)‖V∗ ‖(∇μk, ∇
θk)‖H×H


+ C ‖(μk, θk)‖2V∗ .

Hence, squaring and integrating this estimate with respect to time, we use (3.13) and
(3.20) to conclude

‖(μk, θk)‖L4(0,Tk ;H) ≤ C. (3.21)

In particular, we thus have

‖μk‖L2(0,Tk ;V ) + ‖θk‖L2(0,Tk ;V
) ≤ C. (3.22)

Overall estimate
Combining (3.13)–(3.15), (3.17), (3.19), (3.21) and (3.22), we obtain the overall

uniform estimate

‖vk‖L2(0,Tk ;Vσ,n)∩L2(0,Tk ;H
) + ‖ϕk‖H1(0,Tk ;V ∗)∩L∞(0,Tk ;V )

+ ‖ψk‖H1(0,Tk ;V ∗

 )∩L∞(0,Tk ;V
)

+ ‖μk‖L4(0,Tk ;H)∩L2(0,Tk ;V ) + ‖θk‖L4(0,Tk ;H
)∩L2(0,Tk ;V
) ≤ C. (3.23)

3.1.3. Extension of the approximate solution onto the whole time interval [0, T ]

In Step 1, we constructed the coefficients (ak,bk)
 as a solution of a nonlinear
system of ODEs existing on its right-maximal time interval [0, T ∗

k ) ∩ [0, T ]. We now
assume that T ∗

k ≤ T . By the definition of the approximate solutions given in (3.3) and
the uniform bound (3.23), we infer that for any Tk ∈ [0, T ∗

k ), all t ∈ [0, Tk], and all
i ∈ {1, . . . , k},

|aki (t)| + |bki (t)| = ∣∣ (ϕk(t), ui )H
∣∣ + ∣∣ (ψk(t), vi )H


∣∣

≤ ‖ϕk‖L∞(0,Tk ;H) + ‖ψk‖L∞(0,Tk ;H
) ≤ C.

This means that the solution (ak,bk)
 is bounded on the time interval [0, T ∗
k ) by a

constant that is independent of Tk and k. Hence, according to classical ODE theory,
the solution can thus be extended beyond the time T ∗

k . However, as the solution was
assumed to be right-maximal, this is a contradiction. We thus have T ∗

k > T , which
directly implies [0, T ∗

k ) ∩ [0, T ] = [0, T ]. This means that the solution (ak,bk)

of the ODE system actually exists on the whole time interval [0, T ]. As the coeffi-
cients ck and dk can be reconstructed from ak and bk by the corresponding system
of algebraic equations, they also exist on the whole time interval [0, T ]. Recalling
(3.3) and the construction of vk , this directly entails that the approximate solution
(vk, ϕk, μk, ψk, θk) actually exists in [0, T ]. Hence, choosing Tk = T in (3.23), we
eventually conclude
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‖vk‖L2(0,T ;Vσ,n)∩L2(0,T ;H
) + ‖ϕk‖H1(0,T ;V ∗)∩L∞(0,T ;V )

+ ‖ψk‖H1(0,T ;V ∗

 )∩L∞(0,T ;V
)

+ ‖μk‖L4(0,T ;H)∩L2(0,T ;V ) + ‖θk‖L4(0,T ;H
)∩L2(0,T ;V
) ≤ C. (3.24)

3.1.4. Convergence to a weak solution as k → ∞

Considering the uniform estimate (3.24), we use the Banach–Alaoglu theorem and
the Aubin–Lions–Simon lemma to infer that there exist functions v, ϕ, μ, ψ and θ

such that for any s ∈ [0, 1),
vk → v weakly in L2(0, T ;Vσ,n), (3.25a)

vk |
 → v|
 weakly in L2(0, T ;H
), (3.25b)

ϕk → ϕ weakly-∗ in L∞(0, T ; V ),weakly in H1(0, T ; V ∗),
strongly in C0([0, T ]; Hs(�)), and a.e. in Q, (3.25c)

ψk → ψ weakly-∗in L∞(0, T ; V
),weakly in H1(0, T ; V ∗

 ),

strongly in C0([0, T ]; Hs(
)), and a.e. on �, (3.25d)

μk → μ weakly in L2(0, T ; V ) ∩ L4(0, T ; H), (3.25e)

θk → θ weakly in L2(0, T ; V
) ∩ L4(0, T ; H
), (3.25f)

as k → ∞ along a non-relabeled subsequence. In particular, this shows that the
functions v, ϕ, ψ , μ and θ have the regularity demanded in Definition 2.4(i).

Due to the trace theorem, the strong convergence from (3.25c) (with s > 1
2 ) directly

yields

ϕk |
 → ϕ|
 strongly in C0([0, T ]; H
). (3.26)

Recalling the growth conditions from (R1), we further deduce from the uniform bound
(3.24) that

∥
∥F ′(ϕk)

∥
∥
L6/5(Q)

≤ C and
∥
∥G ′(ϕk)

∥
∥
L2(�)

≤ C.

Hence, there exist weakly convergent subsequences in the respective spaces. As F ′
and G ′ are continuous, we use the pointwise convergences from (3.25c) and (3.25d)
to conclude

F ′(ϕk) → F ′(ϕ) weakly in L6/5(Q) and a.e. in Q, (3.27)

G ′(ψk) → G ′(ψ) weakly in L2(�) and a.e. on � (3.28)

since the weak limit and the pointwise limit must coincide (see, e.g., [32, Proposi-
tion 9.2c]). Furthermore, it follows from the pointwise convergences in (3.25c) and
(3.25d) that, as k → ∞,

M�(ϕk) → M�(ϕ), ν(ϕk) → ν(ϕ), λ(ϕk) → λ(ϕ) a.e. in Q, (3.29)
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M
(ψk) → M
(ψ), γ (ψk) → γ (ψ) a.e. on � (3.30)

as the functions M�, M
 , ν, λ and γ are continuous. Since, due to (A2) and (A3),
these functions are also bounded, we use Lebesgue’s dominated convergence theorem
along with the weak convergences in (3.25) to infer that

ν(ϕk)Dvk → ν(ϕ)Dv weakly in L2(Q;Rd×d), (3.31)

λ(ϕk)vk → λ(ϕ)v weakly in L2(Q;Rd), (3.32)

M�(ϕk)∇μk → M�(ϕ)∇μ weakly in L2(Q;Rd), (3.33)

γ (ψk)vk → γ (ψ)v weakly in L2(�;Rd), (3.34)

M
(ψk)∇
θk → M
(ψ)∇
θ weakly in L2(�;Rd). (3.35)

Combining the convergences (3.25a)–(3.25f), (3.26)–(3.28) and (3.31)–(3.35), it is
straightforward to pass to the limit as k → ∞ in the discretized weak formulation
(3.8) to conclude that the quintuplet (v, ϕ, μ, ψ, θ) fulfills the variational formulation
(2.16) for all test functions w ∈ Vσ,n,

ζ ∈
⋃

k∈N
Vk ⊆ V, ζ
 ∈

⋃

k∈N
V
,k ⊆ V
, (η, η
) ∈

⋃

k∈N
Vk ⊆ V.

Hence, because of density, (2.16) holds true for all test functions w ∈ Vσ,n, ζ ∈ V ,
ζ
 ∈ V
 and (η, η
) ∈ V = VK . This verifies Definition 2.4(ii).
Moreover, we deduce from (3.9) that

(
ϕk(0), ψk(0)

) → (
ϕ0, ψ0

)
strongly inH

as the orthogonal projections converge strongly in H and in H
 , respectively. On the
other hand, it follows from the strong convergences in (3.25c) and (3.25d) that

(
ϕk(0), ψk(0)

) → (
ϕ(0), ψ(0)

)
strongly inH.

Hence, due to the uniqueness of the limit, this verifies Definition 2.4(iii).
We still need to establish the weak energy dissipation law. Therefore, let ρ ∈

C∞([0, T ]) be an arbitrary nonnegative test function. Employing the convergences
(3.25c) and (3.25d), the weak lower semicontinuity of the mappings

L2(0, T ; V ) � ζ �→
∫ T

0
‖∇ζ(t)‖2H ρ(t),

L2(0, T ; V
) � ξ �→
∫ T

0
‖∇
ξ(t)‖2H


ρ(t),

as well as Fatou’s lemma, we deduce

∫ T

0
EK

(
ϕ(t), ψ(t)

)
ρ(t) ≤ lim inf

k→∞

∫ T

0
EK

(
ϕk(t), ψk(t)

)
ρ(t). (3.36)
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Proceeding similarly as above, we derive the convergences

√
ν(ϕk)Dvk → √

ν(ϕ)Dv weakly in L2(Q;Rd×d), (3.37)
√

λ(ϕk) vk → √
λ(ϕ) v weakly in L2(Q;Rd), (3.38)

√
M�(ϕk) ∇μk → √

M�(ϕ) ∇μ weakly in L2(Q;Rd), (3.39)
√

γ (ψk) vk → √
γ (ψ) v weakly in L2(�;Rd), (3.40)

√
M
(ψk) ∇
θk → √

M
(ψ) ∇
θ weakly in L2(�;Rd). (3.41)

Hence, employing (3.10), (3.36) and weak lower semicontinuity, we eventually obtain

∫ T

0
EK

(
ϕ(t), ψ(t)

)
ρ(t)

+
∫ T

0

∫

�

[
2ν(ϕ) |Dv|2 ρ(t) + λ(ϕ) |v|2 ρ(t) + M�(ϕ) |∇μ|2 ρ(t)

]

+
∫ T

0

∫




[
γ (ψ) |v|2 ρ(t) + M
(ψ) |∇
θ |2 ρ(t)

]

≤ lim inf
k→∞

{ ∫ T

0
EK

(
ϕk(t), ψk(t)

)
ρ(t)

+
∫ T

0

∫

�

[
2ν(ϕk) |Dvk |2 ρ(t) + λ(ϕk) |vk |2 ρ(t) + M�(ϕk) |∇μk |2 ρ(t)

]

+
∫ T

0

∫




[
γ (ψk) |vk |2 ρ(t) + M
(ψk) |∇
θk |2 ρ(t)

]}

≤ lim
k→∞

∫ T

0
EK

(
ϕ0,k, ψ0,k

)
ρ(t) =

∫ T

0
EK

(
ϕ0, ψ0

)
ρ(t).

Here, invoking the growth conditions from (R1), the equality in the last line follows by
means of Lebesgue’s general convergence theorem (see [11, Section 3.25]) since the
orthogonal projections in (3.9) converge strongly in V and in V
 , respectively. As the
nonnegative test function ρ was arbitrary, this proves that the weak energy dissipation
law stated in (2.17) holds for almost all t ∈ [0, T ]. As the time integral in this inequality
is continuous with respect to t and since the mapping t �→ EK

(
ϕ(t), ψ(t)

)
is lower

semicontinuous, we conclude that (2.17) actually holds true for all t ∈ [0, T ]. This
means that Definition 2.4(iv) is verified.

We have thus shown that the quintuplet (v, ϕ, μ, ψ, θ) is a weak solution in the
sense of Definition 2.4.

3.1.5. Additional regularity for the phase fields

It remains to prove the additional regularities. Without loss of generality, we merely
consider the case d = 3 as the case d = 2 can be handled analogously but is even easier
due to the better Sobolev embeddings in two dimensions. We deduce from (2.16d)
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written for the solution (v, ϕ, μ, ψ, θ) that there exists a null setN ⊂ [0, T ] such that
∫

�

∇ϕ(t) · ∇η +
∫




∇
ψ(t) · ∇
η
 + 1

K

∫




(
ψ(t) − ϕ(t)

)
(η
 − η)

=
∫

�

(
μ(t) − F ′(ϕ(t)

))
η +

∫




(
θ(t) − G ′(ψ(t)

))
η
 (3.42)

holds for all t ∈ [0, T ]\N and all test functions (η, η
) ∈ V0.
Let now t ∈ [0, T ]\N be arbitrary. We infer from (3.42) that the pair

(
ϕ(t), ψ(t)

)

is a weak solution of the bulk-surface elliptic problem

−�ϕ(t) = f (t) in �, (3.43a)

−�
ψ(t) + ∂nϕ(t) = g(t) on 
, (3.43b)

K∂nϕ(t) = ψ(t) − ϕ(t) on 
, (3.43c)

where

f (t) := μ(t) − F ′(ϕ(t)
)

and g(t) := θ(t) − G ′(ψ(t)
)
.

For the definition of a weak solution to such bulk-surface elliptic problems, we refer
to [61, Definition 3.1].
Let us first consider the case � = 2. As we assumed that the growth conditions

in (R1) are fulfilled with p ≤ 4, we have

∥∥F ′(ϕ(t)
)∥∥

H ≤ C + C ‖ϕ‖3L6(�)
≤ C, (3.44)

∥∥G ′(ψ(t)
)∥∥

H

≤ C + C ‖ψ‖q−1

L2(q−1)(
)
≤ C. (3.45)

Hence, applying regularity theory for elliptic problems with bulk-surface coupling
(see [61, Theorem 3.3]), we find that

(
ϕ(t), ψ(t)

) ∈ H2(�) × H2(
) with

‖ϕ(t)‖2H2(�)
+ ‖ψ(t)‖2H2(
)

≤ C ‖ f (t)‖2H + C ‖g(t)‖2H


≤ C + C ‖μ(t)‖2H + C ‖θ(t)‖2H

.

Since μ ∈ L4(0, T ; H) and θ ∈ L4(0, T ; H
), this proves (2.19a).
We now consider the case � = 3. Recalling that the growth conditions in (R1) are

fulfilled with p ≤ 4, we use (3.53) to derive the estimates

∥∥F ′′(ϕ(t)
)∇ϕ(t)

∥∥
H ≤ C ‖∇ϕ(t)‖H + C

∥∥∥|ϕ(t)|2 ∇ϕ(t)
∥∥∥
H

≤ C + C ‖ϕ(t)‖2L6(�)
‖∇ϕ(t)‖L6(�)

≤ C + C ‖ϕ(t)‖H2(�)
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and

∥
∥G ′′(ψ(t)

)∇
ψ(t)
∥
∥
H


≤ C ‖∇ψ(t)‖H

+ C

∥∥
∥|ψ(t)|q−2 ∇ψ(t)

∥∥
∥
H


≤ C + C ‖ψ(t)‖q−2
L2(q−2) ‖∇ψ(t)‖L4(
)

≤ C + C ‖ψ(t)‖H2(
) .

In combination with (3.44) and (3.45), these estimates directly imply

∥
∥F ′(ϕ(t)

)∥∥
V ≤ C + C ‖ϕ(t)‖H2(�) ,

∥
∥G ′(ψ(t)

)∥∥
V


≤ C + C ‖ψ(t)‖H2(
) .

Now, applying regularity theory for elliptic problems with bulk-surface coupling (see
[61, Theorem 3.3]), we infer

‖ϕ(t)‖2H3(�)
+ ‖ψ(t)‖2H3(
)

≤ C ‖ f (t)‖2V + C ‖g(t)‖2V


≤ C + C ‖μ(t)‖2V + C ‖θ(t)‖2V

+ C ‖ϕ(t)‖2H2(�)

+ C ‖ψ(t)‖2H2(
)
.

Recalling μ ∈ L2(0, T ; V ), θ ∈ L2(0, T ; V
) and that (2.19a) with � = 2 is al-
ready verified, this proves (2.19b). By means of Proposition A.1(b), we directly infer
(ϕ, ψ) ∈ C0([0, T ];V0), which proves (2.20).

This means that all assertions are verified, and thus, the proof is complete.
�

3.2. The limit K → 0 and existence of a weak solution in the case K = 0

Proof of Theorem 2.7. In this proof, the letterC will denote generic positive constants
that may depend on �, T , the initial data and the constants introduced in (A1)–(A3),
but not on Kn or n. Such constants may also change their value from line to line.
First of all, as the initial data were prescribed as (ϕ0, ψ0) ∈ V0, they satisfy the

Dirichlet-type coupling condition ϕ0|
 = ψ0 a.e. on 
. In view of the definition of
the energy functional in (1.5), this means that the Kn-depending term in the energy
EKn (ϕ0, ψ0) vanishes. It thus holds

EKn (ϕ0, ψ0) = E0(ϕ0, ψ0) ≤ C for all n ∈ N. (3.46)

According to Definition 2.4(iv), the solutions (vKn , ϕKn , μKn , ψKn , θKn ) satisfy the
weak energy dissipation law. By the definition of EKn , we have

EKn

(
ϕKn (t), ψKn (t)

) + 2
∫ t

0

∫

�

ν(ϕKn )|DvKn |2 +
∫ t

0

∫

�

λ(ϕKn )|vKn |2

+
∫ t

0

∫




γ (ψKn )|vKn |2 +
∫ t

0

∫

�

M�(ϕKn )|∇μKn |2 +
∫ t

0

∫




M
(ψKn )|∇
θKn |2

≤ EKn (ϕ0, ψ0) ≤ C
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for all t ∈ [0, T ] and all n ∈ N. In particular, recalling that the potentials F and G are
nonnegative, this directly yields

∥∥∥ϕKn − ψKn

∥∥∥
2

H


≤ CKn for all t ∈ [0, T ] and all n ∈ N. (3.47)

Testing (2.16b) and (2.16c) written for (vKn , ϕKn , μKn , ψKn , θKn ) by the constant
functions 1

|�| and
1

|
| , respectively, we infer

〈ϕKn (t)〉� = 〈ϕ0〉� and 〈ψKn (t)〉
 = 〈ψ0〉

for all t ∈ [0, T ] and all n ∈ N. Hence, proceeding similarly as in the proof of
Theorem 2.6 (Sect. 3.1.2, First and Second estimates), we derive the uniform bound

∥∥
∥vKn

∥∥
∥
L2(0,T ;Vσ,n)∩L2(0,T ;H
)

+
∥∥
∥∇μKn

∥∥
∥
L2(0,T ;H)

+
∥∥
∥∇
θKn

∥∥
∥
L2(0,T ;H
)

+
∥∥∥ϕKn

∥∥∥
H1(0,T ;V ∗)∩L∞(0,T ;V )

+
∥∥∥ψKn

∥∥∥
H1(0,T ;V ∗


 )∩L∞(0,T ;V
)
≤ C. (3.48)

We now test (2.16d) written for (vKn , ϕKn , μKn , ψKn , θKn ) by (η, 0), where η ∈
C∞
c (�) is an arbitrary test function. Using (3.48) along with Hölder’s inequality, we

infer that
∣∣∣
∣

∫

�

μKnη

∣∣∣
∣ ≤

∥∥
∥ϕKn

∥∥
∥
V

‖η‖V +
∥∥
∥F ′(ϕKn )

∥∥
∥
L6/5(�)

‖η‖L6(�) ≤ C ‖η‖V . (3.49)

Fixing a function η ∈ C∞
c (�) with 〈η〉� �= 0, we deduce

∥∥
∥μKn

∥∥
∥
H

≤ C
(
1 +

∥∥
∥∇μKn

∥∥
∥
H

)

by means of a generalized Poincaré inequality (see, e.g., [36, Lemma B.63]). Hence,
in combination with (3.49), we conclude

∥∥∥μKn

∥∥∥
L2(0,T ;V )

≤ C. (3.50)

In order to derive an analogous estimate for θKn , we first choose η ≡ 1 and η
 ≡ 0 in
(2.16d). Employing (3.48), we obtain

∣∣∣
∣
1

Kn

∫




(ψKn − ϕKn )

∣∣∣
∣ ≤

∥∥
∥μKn

∥∥
∥
L1(�)

+
∥∥
∥F ′(ϕKn )

∥∥
∥
L1(�)

≤ C
∥∥
∥μKn

∥∥
∥
H

+ C.

(3.51)

Let us now take η ≡ 0 and η
 ≡ 1 in (2.16d). Using (3.48) and (3.51), we deduce
∣
∣∣∣

∫




θKn

∣
∣∣∣ ≤

∥
∥∥G ′(ψKn )

∥
∥∥
L1(
)

+
∣
∣∣∣
1

Kn

∫




(ψKn − ϕKn )

∣
∣∣∣ ≤ C

∥
∥∥μKn

∥
∥∥
H

+ C.

Employing Poincaré’s inequality on 
 (see Lemma 2.2), we thus infer
∥
∥∥θKn

∥
∥∥
H


≤ C
∥
∥∥∇
θKn

∥
∥∥
H


+ C
∥
∥∥μKn

∥
∥∥
H

+ C.
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Squaring and integrating this estimate with respect to time over [0, T ], we eventually
conclude

∥∥∥θKn

∥∥∥
L2(0,T ;H
)

≤ C. (3.52)

In summary, combining (3.48), (3.50) and (3.52), we have thus shown
∥∥
∥vKn

∥∥
∥
L2(0,T ;Vσ,n)∩L2(0,T ;H
)

+
∥∥
∥μKn

∥∥
∥
L2(0,T ;V )

+
∥∥
∥θKn

∥∥
∥
L2(0,T ;V
)

+
∥∥∥ϕKn

∥∥∥
H1(0,T ;V ∗)∩L∞(0,T ;V )

+
∥∥∥ψKn

∥∥∥
H1(0,T ;V ∗


 )∩L∞(0,T ;V
)
≤ C. (3.53)

As in Sect. 3.1.4,we deduce the existence of functions (v0, ϕ0, μ0, ψ0, θ0) such that
the convergences (2.21a)–(2.21f) hold along a non-relabeled subsequence. Moreover,
the estimate (3.47) directly implies (2.21g), and thus, all convergences in (2.21) are
established. In particular, due to the trace theorem, we also have

ϕKn |
 − ψKn → ϕ0|
 − ψ0 strongly in C0([0, T ]; H
). (3.54)

In combination with (3.47), this proves that ϕ0|
 = ψ0 a.e. on� due to uniqueness of
the limit. Proceeding further as in Sect. 3.1.4, we eventually show that the quintuplet
(v0, ϕ0, μ0, ψ0, θ0) is a weak solution of the Cahn–Hilliard–Brinkman system (1.1)
in the sense of Definition 2.4.

It remains to verify the additional regularity assertions. Therefore, we proceed sim-
ilarly as in Sect. 3.1.5. Without loss of generality, we merely consider the case d = 3.
The case d = 2 can be handled analogously but is even easier as the Sobolev em-
beddings in two dimensions are better. We infer from (2.16d) written for the solution
(v0, ϕ0, μ0, ψ0, θ0) and K = 0 that there exists a null set N ⊂ [0, T ] such that

∫

�

∇ϕ0(t) · ∇η +
∫




∇
ψ0(t) · ∇
η


=
∫

�

(
μ0(t) − F ′(ϕ0(t)

))
η +

∫




(
θ0(t) − G ′(ψ0(t)

))
η
 (3.55)

for all t ∈ [0, T ]\N and all test functions (η, η
) ∈ V0.
Let now t ∈ [0, T ]\N be arbitrary. We infer from (3.55) that the pair

(
ϕ0(t), ψ0(t)

)

is a weak solution of the bulk-surface elliptic problem

−�ϕ0(t) = f (t) in �, (3.56a)

−�
ψ0(t) + ∂nϕ
0(t) = g(t) on 
, (3.56b)

ϕ0(t)|
 = ψ0(t) on 
, (3.56c)

where

f (t) := μ0(t) − F ′(ϕ0(t)
)

and g(t) := θ0(t) − G ′(ψ0(t)
)
.
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Let us first consider the case � = 2. Proceeding exactly as in Sect. 3.1.5, we deduce
that

(
ϕ0(t), ψ0(t)

) ∈ H2(�) × H2(
) with

∥∥∥ϕ0(t)
∥∥∥
2

H2(�)
+

∥∥∥ψ0(t)
∥∥∥
2

H2(
)
≤ C

∥∥∥ f 0(t)
∥∥∥
2

H
+ C

∥∥∥g0(t)
∥∥∥
2

H


≤ C + C
∥∥∥μ0(t)

∥∥∥
2

H
+ C

∥∥∥θ0(t)
∥∥∥
2

H


thanks to regularity theory for elliptic problems with bulk-surface coupling (see [61,
Theorem 3.3]). Since μ0 ∈ L2(0, T ; H) and θ0 ∈ L2(0, T ; H
), this proves (2.22a).

We now consider the case � = 3. Proceeding analogously as in Sect. 3.1.5, we infer

∥∥∥ϕ0(t)
∥∥∥
2

H3(�)
+

∥∥∥ψ0(t)
∥∥∥
2

H3(
)
≤ C

∥∥∥ f 0(t)
∥∥∥
2

V
+ C

∥∥∥g0(t)
∥∥∥
2

V


≤ C + C
∥∥∥μ0(t)

∥∥∥
2

V
+ C

∥∥∥θ0(t)
∥∥∥
2

V


+ C
∥∥∥ϕ0(t)

∥∥∥
2

H2(�)
+ C

∥∥∥ψ0(t)
∥∥∥
2

H2(
)

bymeans of regularity theory for elliptic problemswith bulk-surface coupling (see [61,
Theorem 3.3]). Recalling μ0 ∈ L2(0, T ; V ), θ0 ∈ L2(0, T ; V
) and that (2.22a) with
� = 2 is already verified, this proves (2.22b). With the help of Proposition A.1(b),
we directly infer (ϕ0, ψ0) ∈ C0([0, T ];V0). Moreover, via interpolation between
L∞(0, T ;V0) and L2(0, T ; H3(�) × H3(
)) (cf. Lemma 2.3), we further get

(ϕ0, ψ0) ∈ L4(0, T ; H2(�) × H2(
)).

Thismeans that (2.23) is established. Eventually, a simple comparison argument based
on (2.16d) yields (2.24).
This means that all assertions are verified, and thus, the proof is complete. �

3.3. Uniqueness of the weak solution for regular potentials

In this subsection, we are going to prove Theorem 2.8 for regular potentials and
K ≥ 0. To prove the theorem, we use some ideas devised in [51].

Proof of Theorem 2.8. In this proof, the letterC will denote generic positive constants
that may depend on �, T , the initial data and the constants introduced in (A1)–(A3).
Such constants may also change their value from line to line. We first introduce the
following notation for the differences of the solution components:

v := v1 − v2, ϕ := ϕ1 − ϕ2, μ := μ1 − μ2, ψ := ψ1 − ψ2, θ := θ1 − θ2.

Recall that M, M
 and ν are assumed to be constant. We thus infer that the quintuplet
(v, ϕ, μ, ψ, θ) satisfies the variational formulation

2ν
∫

�

Dv : Dw +
∫

�

(λ(ϕ1) − λ(ϕ2))v1 · w

+
∫

�

λ(ϕ2)v · w +
∫




(γ (ψ1) − γ (ψ2))v1 · w +
∫




γ (ψ2)v · w
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= −
∫

�

(ϕ∇μ1 + ϕ2∇μ) · w −
∫




(ψ∇
θ1 + ψ2∇
θ) · w, (3.57a)

〈∂tϕ, ζ 〉V −
∫

�

(ϕv1 + ϕ2v) · ∇ζ + M
∫

�

∇μ · ∇ζ = 0, (3.57b)

〈∂tψ, ζ
〉V
 −
∫




(ψv1 + ψ2v) · ∇
ζ
 + M


∫




∇
θ · ∇
ζ
 = 0 (3.57c)

almost everywhere in (0, T ) for all test functions w ∈ Vσ,n, ζ ∈ V and ζ
 ∈ V
 , and
the equations

μ = −�ϕ + F ′(ϕ1) − F ′(ϕ2) in Q, (3.58)

θ = −�
ψ + G ′(ψ1) − G ′(ψ2) + ∂nϕ on � (3.59)

are fulfilled in the strong sense due the higher regularities established in Theorem 2.6
and Theorem 2.7.

We now test (3.57a) by v, (3.57b) by ϕ +μ, (3.57c) by ψ + θ , and add the resulting
equations. After some cancelations and rearrangements, we obtain

2ν ‖Dv‖2
H

+
∫

�

λ(ϕ2)|v|2 +
∫




γ (ψ2)|v|2 + 〈∂tϕ, ϕ + μ〉V
+ M ‖∇μ‖2H + 〈∂tψ, ψ + θ〉V
 + M
 ‖∇
θ‖2H


= −
∫

�

(λ(ϕ1) − λ(ϕ2))v1 · v −
∫




(γ (ψ1) − γ (ψ2))v1 · v

−
∫

�

ϕ∇μ1 · v −
∫




ψ∇
θ1 · v

+
∫

�

(ϕv1 + ϕ2v) · ∇ϕ +
∫

�

ϕv1 · ∇μ

+
∫




(ψv1 + ψ2v) · ∇
ψ +
∫




ψv1 · ∇
θ

− M
∫

�

∇μ · ∇ϕ − M


∫




∇
θ · ∇
ψ =:
10∑

i=1

Ii . (3.60)

We point out that, as a consequence of Theorem 2.6 and Theorem 2.7, it holds that
(ϕi , ψi ) ∈ L2(0, T ; (H3(�) × H3(
)) ∩ VK ), i = 1, 2. Next, by using (3.58) and
(3.59), alongwith the chain rule formula in PropositionA.1,we observe that the duality
terms on the left-hand side can be reformulated as

〈∂tϕ, ϕ + μ〉V + 〈∂tψ, ψ + θ〉V


= 1

2

d

dt

(
‖ϕ‖2H + ‖ψ‖2H


)
+ 〈(∂tϕ, ∂tψ),

( − �ϕ, −�
ψ + ∂nϕ
)〉V

+ 〈∂tϕ, F ′(ϕ1) − F ′(ϕ2)〉V + 〈∂tψ,G ′(ψ1) − G ′(ψ2)〉V


= 1

2

d

dt

(
‖ϕ‖2V + ‖ψ‖2V


+ σ(K ) ‖ψ − ϕ‖2H


)
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+ 〈∂tϕ, F ′(ϕ1) − F ′(ϕ2)〉V + 〈∂tψ,G ′(ψ1) − G ′(ψ2)〉V
 . (3.61)

Using (A2) and (A3) as well as (3.61), we deduce from (3.60) that

1

2

d

dt

(
‖ϕ‖2V + ‖ψ‖2V


+ σ(K ) ‖ψ − ϕ‖2H


)

+ 2ν ‖Dv‖2
H

+ λ1 ‖v‖2H + γ1 ‖v‖2H

+ M ‖∇μ‖2H + M
 ‖∇
θ‖2H


≤ −〈∂tϕ, F ′(ϕ1) − F ′(ϕ2)〉V − 〈∂tψ,G ′(ψ1) − G ′(ψ2)〉V
 +
10∑

i=1

Ii .

We now intend to control the terms Ii , i = 1, . . . , 10, by means of Hölder’s inequality,
Young’s inequality, the Lipschitz continuity of λ and γ , and integration by parts along
with Sobolev’s embeddings and the trace theorem. For a positive δ yet to be chosen,
we derive the following estimates:

I1 ≤ C ‖ϕ‖L4(�) ‖v1‖L4(�) ‖v‖H ≤ δ ‖v‖2H + Cδ ‖v1‖2V ‖ϕ‖2V ,

I2 ≤ C ‖ψ‖L4(
) ‖v1‖L4(
) ‖v‖H

≤ δ ‖v‖2V + Cδ ‖v1‖2V ‖ψ‖2V


,

I3 + I4 =
∫

�

μ1∇ϕ · v −
∫




ψ∇
θ1 · v
≤ ‖μ1‖L4(�) ‖∇ϕ‖H ‖v‖L4(�) + ‖ψ‖L4(
) ‖∇
θ1‖H


‖v‖L4(
)

≤ C ‖μ1‖V ‖ϕ‖V ‖v‖V + C ‖θ1‖V

‖ψ‖V


‖v‖V
≤ 2δ ‖v‖2V + Cδ ‖μ1‖2V ‖ϕ‖2V + Cδ ‖θ1‖2V


‖ψ‖2V

,

I5 + I6 ≤ (‖ϕ‖L4(�) ‖v1‖L4(�) + ‖ϕ2‖L4(�) ‖v‖L4(�)) ‖∇ϕ‖H
+ ‖ϕ‖L4(�) ‖v1‖L4(�) ‖∇μ‖H

≤ M

4
‖∇μ‖2H + δ ‖v‖2V + (C ‖v1‖V + C ‖v1‖2V + Cδ ‖ϕ2‖2V ) ‖ϕ‖2V ,

I7 + I8 ≤ (‖ψ‖L4(
) ‖v1‖L4(
) + ‖ψ2‖L4(
) ‖v‖L4(
)) ‖∇
ψ‖H


+ ‖ψ‖L4(
) ‖v1‖L4(
) ‖∇
θ‖H


≤ M


4
‖∇
θ‖2H


+ δ ‖v‖2V + (C ‖v1‖V + C ‖v1‖2V + Cδ ‖ψ2‖2V

) ‖ψ‖2V


,

I9 + I10 ≤ M

4
‖∇μ‖2H + M


4
‖∇
θ‖2H


+ C ‖∇ϕ‖2H + C ‖∇
ψ‖2H

.

Furthermore, the terms in the last line of (3.61) can be estimated by
∣
∣〈∂tϕ, F ′(ϕ1) − F ′(ϕ2)〉V

∣
∣ + ∣

∣〈∂tψ,G ′(ψ1) − G ′(ψ2)〉V


∣
∣

≤ ‖∂tϕ‖V ∗
∥∥F ′(ϕ1) − F ′(ϕ2)

∥∥
V + ‖∂tψ‖V ∗




∥∥G ′(ψ1) − G ′(ψ2)
∥∥
V


. (3.62)

By means of a comparison argument in (3.57b), we obtain

‖∂tϕ‖V ∗ = sup
‖ζ‖V ≤1

|〈∂tϕ, ζ 〉V |

≤ C(‖ϕ‖L4(�) ‖v1‖L4(�) + ‖ϕ2‖L4(�) ‖v‖L4(�) + ‖∇μ‖H)
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≤ C(‖ϕ‖V ‖v1‖V + ‖ϕ2‖V ‖v‖V + ‖∇μ‖H).

Similarly, using (3.57c), we derive the estimate

‖∂tψ‖V ∗



= sup
‖ζ
‖V


≤1
|〈∂tψ, ζ
〉V
 |

≤ C(‖ψ‖V

‖v1‖V + ‖ψ2‖V


‖v‖V + ‖∇
θ‖H

).

By employing equation (3.57b) as well as (R∗), we can bound the norm on the right-
hand side of (3.62) as follows:

∥∥F ′(ϕ1) − F ′(ϕ2)
∥∥2
V = ∥∥F ′(ϕ1) − F ′(ϕ2)

∥∥2
H + ∥∥F ′′(ϕ1)∇ϕ1 − F ′′(ϕ2)∇ϕ2

∥∥2
H

=
∫

�

|F ′(ϕ1) − F ′(ϕ2)|2 +
∫

�

|F ′′(ϕ1)∇ϕ|2 +
∫

�

|F ′′(ϕ1) − F ′′(ϕ2)|2|∇ϕ2|2

≤
∫

�

∣∣∣
∫ 1

0
F ′′(sϕ1 + (1 − s)ϕ2

)
ds

∣∣∣
2
ϕ2 + C(‖ϕ1‖2(p−2)

L∞(�) + 1) ‖∇ϕ‖2H

+
∫

�

∣∣
∣
∫ 1

0
F (3)(sϕ1 + (1 − s)ϕ2

)
ds

∣∣
∣
2
ϕ2 |∇ϕ2|2

≤ C(‖ϕ1‖2(p−2)
L3(p−2)(�)

+ ‖ϕ2‖2(p−2)
L3(p−2)(�)

+ 1) ‖ϕ‖2V + C(‖ϕ1‖2(p−2)
L∞(�) + 1) ‖ϕ‖2V

+ C(‖ϕ1‖2(p−3)
L12(p−3)(�)

+ ‖ϕ2‖2(p−3)
L12(p−3)(�)

+ 1) ‖ϕ2‖2W 1,4(�)
‖ϕ‖2V . (3.63)

We now recall the restrictions on p and q demanded in (2.25). In particular, we have
p ≤ 4 if d = 3. In the case d = 2, we assume, without loss of generality, that
p ≥ 5. Using Agmon’s inequality as well as interpolation between Sobolev spaces
(see Lemma 2.3), we derive the estimates

‖ϕ1‖2(p−2)
L∞(�)

≤ C ‖ϕ1‖2(p−2)
Hs (�)

≤ C ‖ϕ1‖2p−8
H1(�)

‖ϕ1‖4H2(�)
≤ C ‖ϕ1‖4H2(�)

for d = 2,

‖ϕ1‖2(p−2)
L∞(�)

≤ C ‖ϕ1‖(p−2)
H1(�)

‖ϕ1‖(p−2)
H2(�)

≤ C ‖ϕ1‖4H2(�)
for d = 3,

‖ϕ2‖2W 1,4(�)
≤ C ‖ϕ2‖

1
2
H1(�)

‖ϕ2‖
3
2
H2(�)

≤ C ‖ϕ2‖
3
2
H2(�)

for d = 2, 3,

where, in the first inequality, s = 2p
2(p−2) ∈ (1, 2). We thus infer from (3.63) that

∥
∥F ′(ϕ1) − F ′(ϕ2)

∥
∥2
V ≤ C� ‖ϕ‖2V

with a the time-dependent function � that is given by

� := (1 + ‖ϕ1‖4H2(�)
) + (

1 + ‖ϕ2‖
3
2
H2(�)

) ∑

i=1,2

(
1 + ‖ϕi‖2(p−2)

L3(p−2)(�)
+ ‖ϕi‖2(p−3)

L12(p−3)(�)

)
.

From (2.19a) and (2.23), we know that ϕ2 ∈ L4(0, T ; H2(�)).
In the case d = 2, we simply have

ϕi ∈ L∞(0, T ; L3(p−2)(�)) ∩ L∞(0, T ; L12(p−3)(�)), i = 1, 2,
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due to the Sobolev embedding H1(�)↪→Lr (�) for all r ∈ (1, ∞).
In the case d = 3, we use interpolation between Sobolev spaces (Lemma 2.3) along

with the continuous embedding H (4+ρ)/ρ(�)↪→L6ρ/(ρ−8)(�) to derive the estimate

∫ T

0
‖u(t)‖ρ

L6ρ/(ρ−8)(�)
≤ C

∫ T

0
‖u(t)‖ρ

H (4+ρ)/ρ(�)
≤ C

∫ T

0
‖u(t)‖2H3(�)

‖u(t)‖ρ−2
H1(�)

≤ C‖u‖2L2(0,T ;H3(�))
‖u‖ρ−2

L∞(0,T ;H1(�))

for any ρ > 8 and any function u ∈ L∞(0, T ; H1(�)) ∩ L2(0, T ; H3(�)). This
proves the continuous embedding

L∞(0, T ; H1(�)) ∩ L2(0, T ; H3(�))↪→Lρ(0, T ; L 6ρ
ρ−8 (�)) for any ρ > 8.

(3.64)

Since ϕi ∈ L∞(0, T ; H1(�)) ∩ L2(0, T ; H3(�)), i = 1, 2, we infer

ϕi ∈ L16(0, T ; L12(�)), i = 1, 2,

by choosing ρ = 16 in (3.64).
In summary, by means of Hölder’s inequality, we conclude

t �→ �(t) ∈ L1(0, T ) for d = 2, 3.

Arguing in a similar fashion, and recalling (2.27) as well as the regularity in Theo-
rem 2.6, we find that

∥∥G ′(ψ1) − G ′(ψ2)
∥∥2
V


≤ (‖ψ1‖2(q−2)
V


+ ‖ψ2‖2(q−2)
V


+ 1) ‖ψ‖2V

+ C(‖ψ1‖2(q−2)

L∞(
) + 1) ‖ψ‖2V


+ C
(
1 + ‖ψ1‖2(q−3)

V

+ ‖ψ2‖2(q−3)

V


) ‖ψ2‖2H2(
)
‖ψ‖2V


≤ C(‖ψ1‖2(q−2)
L∞(
) + ‖ψ2‖2H2(
)

+ 1) ‖ψ‖2V

.

In view of (2.25), we assume, without loss of generality, that q ≥ 5. Recalling that
the boundary 
 is a (d − 1)-dimensional submanifold of Rd with d ∈ {2, 3}, we have
Hs(
)↪→L∞(
) for every s > 1. Hence, via interpolation between Sobolev spaces
(see Lemma 2.3) we obtain the estimate

‖ψ1‖2(q−2)
L∞(
) ≤ C ‖ψ1‖2(q−2)

Hs (
) ≤ C ‖ψ1‖2q−8
V


‖ψ1‖4H2(
)
≤ C ‖ψ1‖4H2(
)

,

where s = 2q
2(q−2) ∈ (1, 2). We thus conclude that

∥∥G ′(ψ1) − G ′(ψ2)
∥∥2
V


≤ C� ‖ψ‖2V


with a time-dependent function � that is given by

t �→ �(t) := C(1 + ‖ψ1(t)‖4H2(
)
+ ‖ψ2(t)‖2H2(
)

) ∈ L1(0, T ).
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Therefore, upon collecting the above computations, the integral in (3.62) can be
estimated with the help of Young’ inequality as

− 〈∂tϕ, F ′(ϕ1) − F ′(ϕ2)〉V − 〈∂tψ,G ′(ψ1) − G ′(ψ2)〉V


≤ C ‖∂tϕ‖V ∗
∥
∥F ′(ϕ1) − F ′(ϕ2)

∥
∥
V + C ‖∂tψ‖V ∗




∥
∥G ′(ψ1) − G ′(ψ2)

∥
∥
V


≤ δ(‖∂tϕ‖2V ∗ + ‖∂tψ‖2V ∗


) + Cδ(

∥∥F ′(ϕ1) − F ′(ϕ2)
∥∥2
V + ∥∥G ′(ψ1) − G ′(ψ2)

∥∥2
V


)

≤ δC(‖∇μ‖2H + ‖∇
θ‖2H

) + δC ‖ϕ2‖2L∞(0,T ;V ) ‖v‖2V + Cδ(‖v1‖2V + �) ‖ϕ‖2V

+ δC ‖ψ2‖2L∞(0,T ;V
) ‖v‖2V + Cδ(‖v1‖2V + �) ‖ψ‖2V


for a constant δ > 0 yet to be chosen. Finally, we adjust δ ∈ (0, 1) in such a way that

δ max
{
4,C,C ‖ϕ2‖2L∞(0,T ;V ) ,C ‖ψ2‖2L∞(0,T ;V
)

}
≤ 1

4
min

{
M, M
,C!(ν, γ1)

}
.

Here, the constant C!(ν, γ1) results from Korn’s inequality (see Lemma 2.1) and is
chosen such that 2ν ‖Dv‖2

H
+ γ1 ‖v‖2H


≥ C!(ν, γ1) ‖v‖2V. Thus, we integrate over
time and employ Gronwall’s lemma to deduce that

‖v1 − v2‖L2(0,T ;V) + ‖ϕ1 − ϕ2‖L∞(0,T ;V ) + ‖∇μ1 − ∇μ2‖L2(0,T ;H)

+ ‖ψ1 − ψ2‖L∞(0,T ;V
) + ‖∇
θ1 − ∇
θ2‖L2(0,T ;H
)

≤ C(
∥∥ϕ0,1 − ϕ0,2

∥∥
V + ∥∥ψ0,1 − ψ0,2

∥∥
V


).

Finally, by a comparison argument in (3.58) and (3.59), we infer that (μ, θ) is bounded
in L2(0, T ;H) by the same right-hand side as the above inequality. This leads to (2.28),
and thus, the proof is complete. �

4. Analysis of the Cahn–Hilliard–Brinkman system with singular potentials

We are now dealing with the proof of the existence of weak solutions for singular
potentials. Our strategy is to approximate the convex parts of the singular potentials F
and G satisfying (S1) and (S2) by means of a Moreau–Yosida regularization. In this
way, the approximate potentials are regular and exhibit quadratic growth and we can
thus use Theorems 2.6 and 2.7 to obtain suitable approximate solutions.We then derive
uniform estimates with respect to the approximation parameter and eventually pass to
the limit. In the forthcoming analysis, the splitting F ′ = β + π and G ′ = β
 + π


from (S1) will be adopted.

4.1. Yosida regularizations

As mentioned, we rely on a Yosida regularization acting on the graphs β and β
 .
For any ε ∈ (0, 1), we approximate the maximal monotone graphs β and β
 by

βε(r) := 1

ε

(
r − (

I + εβ
)−1

(r)
)
, β
,ε(r) := 1

ε

(
r − (

I + εβ


)−1
(r)

)
, r ∈ R.
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It is well known that βε and β
,ε are single-valued and can be interpreted as monotone
functions βε : R → R and β
,ε : R → R. Moreover, the condition in (2.30) implies
that

∣∣βε(r)
∣∣ ≤ κ1

∣∣β
,ε(r)
∣∣ + κ2 for all r ∈ R and all ε ∈ (0, 1) (4.1)

(see, e.g., [20, Appendix]), where κ1 and κ2 are the constants introduced in (2.30).
Next, we define Fε := β̂ε + π̂ , Gε := β̂
,ε + π̂
, where

β̂ε(r) :=
∫ r

0
βε(s) ds, β̂
,ε(r) :=

∫ r

0
β
,ε(s) ds, r ∈ R

are actually the Moreau–Yosida regularizations of the singular parts β̂ and β̂
 of the
potentials F and G. Now, it is well known that for every r ∈ R,

0 ≤ β̂ε(r) ≤ β̂(r) ∀ε ∈ (0, 1), β̂ε(r) ↗ β̂(r) monotonically as ε → 0,
(4.2a)

|βε(r)| ≤ |β◦(r)| ∀ε ∈ (0, 1), βε(r) → β◦(r) as ε → 0. (4.2b)

Analogous properties hold for β
,ε. Moreover, owing to the growth condition (2.29),
β̂ε fulfills the following growth condition:

For every M > 0 there exist CM > 0 and εM ∈ (0, 1) such that

β̂ε(r) ≥ M r2 − CM for every r ∈ R and every ε ∈ (0, εM ) .
(4.3)

This property is checked in detail in the paper [25, beginning of Section 3]. Obviously,
as a consequence, a similar condition holds for β̂
,ε since (4.1) entails that

β̂ε(r) ≤ κ1β̂
,ε(r) + κ2|r | for every r ∈ R, ε ∈ (0, 1), (4.4)

thanks to βε(0) = β
,ε(0) = 0 and since β̂ε and β̂
,ε have the same sign. Due to their
construction by the Yosida approximation, βε and β
,ε are Lipschitz continuous and
have at most linear growth. Hence, β̂ε and β̂
,ε have at most quadratic growth.
In the following, we assume that ε ∈ (0, ε1), where ε1 is given by (4.3) withM = 1.

Then, (4.3) with M = 1 and (4.4) along with the (at most) quadratic growth of π̂ and
π̂
 (cf. (S1)) imply that both Fε andGε are bounded from below by negative constants
independent of ε ∈ (0, ε1). We can thus assume, without loss of generality, that Fε

and Gε are nonnegative. (Otherwise, we add the modulus of their lower bounds to π̂

or π̂
 , respectively.) In summary, this entails that the approximate potentials Fε and
Gε satisfy assumption (R1) with p = q = 2.
Now, the approximating system we aim to solve consists of (2.32a)–(2.32d) with

β = βε and β
 = β
,ε. The regularity of the approximate potentials, in particular,
implies that the inclusions ξε ∈ βε(ϕε) a.e. in Q and ξ
,ε ∈ β
,ε(ψε) a.e. on � turn
into the identities ξε = βε(ϕε) a.e. in Q and ξ
,ε = β
,ε(ψε) a.e. on �, respectively.
Therefore, as an immediate consequence of Theorems 2.6 and 2.7, we obtain the

following existence result.
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Corollary 4.1. Let K ≥ 0, suppose that (A1)–(A3) hold, and let (ϕ0, ψ0) ∈ VK be
arbitrary initial data. Then, for every ε ∈ (0, 1), the approximate problem described
above admits at least a weak solution (vε, ϕε, με, ψε, θε) in the sense of Definition 2.4
with

ξε := βε(ϕε) ∈ L∞(0, T ; V ),

ξ
,ε := β
,ε(ψε) ∈ L∞(0, T ; V
).

Moreover, if the domain � is of class C2, it additionally holds

(ϕε, ψε) ∈ L2(0, T ; H2(�) × H2(
)
)
,

and equations (2.34)–(2.36) are fulfilled in the strong sense by ϕε, ξε,με,ψε, ξ
,ε and
θε.

4.2. Uniform estimates

This section is devoted to derive estimates, uniform with respect to ε, on the ap-
proximate solutions (vε, ϕε, ξε, με, ψε, ξ
,ε, θε). Those will be a key point to obtain
suitable convergence properties that allow us to pass to the limit as ε → 0 later on. In
the following, the letter C will denote generic positive constants that may depend on
�, T , the initial data and the constants introduced in (A1)–(A3), but not on ε. These
constants may also change their value from line to line.
First estimate
To begin with, we test (2.16b) by 1

|�| and (2.16c) by 1
|
| to infer that mass conser-

vation for both ϕε and ψε holds as claimed in (1.6)–(1.7). Recalling (2.1) and (2.31),
we have

〈ϕε(t)〉� = 〈ϕ0〉� = m0, 〈ψε(t)〉
 = 〈ψ0〉
 =: m
0 for all t ∈ [0, T ]. (4.5)

This property is intrinsically independent of ε.
We now consider the weak energy dissipation law, already proved in the cases of

regular potentials, to (vε, ϕε, με, ψε, θε), which reads as

1

2
‖∇ϕε(t)‖2H +

∫

�

Fε(ϕε(t)) + 1

2
‖∇
ψε(t)‖2H


+
∫




Gε(ψε(t)) + σ(K )

2
‖(ψε − ϕε)(t)‖2H


+ 2
∫ t

0

∫

�

ν(ϕε)|Dvε|2 +
∫ t

0

∫

�

λ(ϕε)|vε|2 +
∫ t

0

∫




γ (ψε)|vε|2

+
∫ t

0

∫

�

M�(ϕε)|∇με|2 +
∫ t

0

∫




M
(ψε)|∇
θε|2

≤ 1

2
‖∇ϕ0‖2H +

∫

�

Fε(ϕ0) + 1

2
‖∇
ψ0‖2H


+
∫




Gε(ψ0) + σ(K )

2
‖ψ0 − ϕ0‖2H


(4.6)
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for all t ∈ [0, T ]. Now, recalling that Fε and Gε satisfy assumption (R1) with p =
q = 2, we observe that

1

2
‖∇ϕ0‖2H +

∫

�

Fε(ϕ0) + 1

2
‖∇
ψ0‖2H


+
∫




Gε(ψ0) + σ(K )

2
‖ψ0 − ϕ0‖2H


≤ C

(4.7)

since (ϕ0, ψ0) ∈ VK satisfies (2.31) and (4.2a) holds. At this point, we recall that the
potentials Fε and Gε were assumed (without loss of generality) to be nonnegative.
Hence, in view of (A2) and (A3) and thanks to (4.5) and the Poincaré–Wirtinger
inequality in � and Poincaré’s inequality on 
 (see Lemma 2.2), it is not difficult to
infer that

‖ϕε‖L∞(0,T ;V ) + ‖Fε(ϕε)‖L∞(0,T ;L1(�)) + ‖ψε‖L∞(0,T ;V
) + ‖Gε(ψε)‖L∞(0,T ;L1(
))

+ ‖vε‖L2(0,T ;V)∩L2(0,T ;H
) + ‖∇με‖L2(0,T ;H) + ‖∇
θε‖L2(0,T ;H
) ≤ C. (4.8)

Second estimate
We proceed as in the derivation of (3.17) and (3.19) in the proof of Theorem 2.6.

Indeed, let us take an arbitrary test function ζ ∈ L2(0, T ; V ) in (2.16b), then integrate
over time and use Hölder’s inequality to obtain that

∣∣∣
∫ T

0
〈∂tϕε, ζ 〉V

∣∣∣ ≤ C
∫ T

0
(‖ϕε‖L6(�) ‖vε‖L3(�) + M2 ‖∇με‖H) ‖∇ζ‖H

≤ C
(‖ϕε‖L∞(0,T ;V ) ‖vε‖L2(0,T ;V) + ‖∇με‖L2(0,T ;H)

) ‖ζ‖L2(0,T ;V )

≤ C ‖ζ‖L2(0,T ;V ) .

Taking the supremum over all ζ ∈ L2(0, T ; V ) with ‖ζ‖L2(0,T ;V ) ≤ 1, we infer

‖∂tϕε‖L2(0,T ;V ∗) ≤ C. (4.9)

The same argument, acting on Eq. (2.16c), leads us to infer as well that

‖∂tψε‖L2(0,T ;V ∗

 ) ≤ C. (4.10)

Third estimate
To handle the cases K > 0 and K = 0 simultaneously, we introduce the following

notation:

α(K ) :=
{
0 if K > 0,

1 if K = 0.
(4.11)

We now test (2.16d) by the pair

(η, η
) =
{

(ϕε − m0, ψε − m0) if K = 0,

(ϕε − m0, ψε − m
0) if K > 0,
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which clearly belongs to VK . After some rearrangements, as well as adding and sub-
tracting the constant m
0 multiple times in the case K = 0, we deduce

‖∇ϕε‖2H +
∫

�

βε(ϕε)(ϕε − m0) + ‖∇
ψε‖2H

+

∫




β
,ε(ψε)(ψε − m
0)

=
∫

�

(με − 〈με〉�)(ϕε − m0) +
∫




(θε − 〈θε〉
)(ψε − m
0)

+ σ(K )

∫




(ψε − ϕε)
(
ϕε − ψε − (m0 − m
0)

)

−
∫

�

π(ϕε)(ϕε − m0) −
∫




π
(ψε)(ψε − m
0)

+ α(K )

∫




(G ′
ε(ψε) − θε)(m0 − m
0). (4.12)

Note that the subtracted mean values 〈με〉� and 〈θε〉
 in the first two summands on
the right-hand side of (4.12) do not change the values of these integrals since, due to
(4.5), we have 〈ϕε − m0〉� = 0 and 〈ψε − m
0〉
 = 0.

Todealwith the termson the left-hand side of (4.12),we recall that due to assumption
(2.31), m0 and m
0 lie in the interior of the domains D(β) and D(β
), respectively.
We can thus exploit a useful property (see, e.g., [68, Appendix, Prop. A.1] and/or the
detailed proof given in [46, p. 908]), namely there exist positive constants c1, c2 and
a nonnegative constant c3 such that

c1 ‖βε(ϕε)‖L1(�) + c2
∥∥β
,ε(ψε)

∥∥
L1(
)

− c3

≤
∫

�

βε(ϕε)(ϕε − m0) +
∫




β
,ε(ψε)(ψε − m
0). (4.13)

For the integrals in the second line of (4.12), we employHölder’s inequality alongwith
thePoincaré–Wirtinger inequality in� andPoincaré’s inequality on
 (seeLemma2.2)
to obtain that

∫

�

(με − 〈με〉�)(ϕε − m0) +
∫




(θε − 〈θε〉
)(ψε − m
0)

≤ C
(
‖∇με‖H ‖∇ϕε‖H + ‖∇
θε‖H


‖∇
ψε‖H


)
. (4.14)

Moreover, integrals in the third and the fourth line of (4.12) can be bounded by virtue
of estimate (4.8) as well as the Lipschitz continuity of π and π
 , so that

σ(K )

∫




(ψε − ϕε)
(
ϕε − ψε − (m0 − m
0)

)

−
∫

�

π(ϕε)(ϕε − m0) −
∫




π
(ψε)(ψε − m
0) ≤ C
(‖ϕε‖2H + ‖ψε‖2H


+ 1
)
.

It remains to estimate the integral in the last line of (4.12), which is only present in the
case K = 0. Recall that if K = 0, we assumed � to be of class C2. Hence, we know
from Corollary 4.1 that (ϕε, ψε) ∈ L2

(
0, T ; H2(�)× H2(
)

)
, and that the equations

με = −�ϕε + F ′
ε(ϕε) a.e. in Q, (4.15)
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θε = −�
ψε − G ′
ε(ψε) + ∂nϕε a.e. on � (4.16)

hold in the strong sense. Then, with the help of (4.16) and a simple integration by
parts, it is not difficult to conclude that

α(K )

∫




(G ′
ε(ψε) − θε)(m0 − m
0)

= −α(K )

∫




∂nϕε(m0 − m
0) ≤ C α(K ) ‖∂nϕε‖H

. (4.17)

In the following, we write �ε to denote generic nonnegative functions

t �→ �ε(t) ∈ L2(0, T ) with ‖�ε‖L2(0,T ) ≤ C for all ε > 0 (4.18)

i.e., the L2-norm is bounded uniformly in ε. Here, “generic” means that the explicit
definition of the function �ε may vary throughout this proof.

All in all, collecting the inequalities (4.12)–(4.14) and (4.17), we conclude that

‖βε(ϕε(t))‖L1(�) + ∥
∥β
,ε(ψε(t))

∥
∥
L1(
)

≤ �ε(t) + C α(K ) ‖∂nϕε(t)‖H

(4.19)

for almost all t ∈ (0, T ). Having shown (4.19), now we aim to prove additional L2-
bounds for the terms βε(ϕε) and β
,ε(ψε). For that, we take advantage of the growth
condition (4.1), which follows from (2.30) in (S2). However, the related analysis has
to be performed differently for the cases K > 0 and K = 0.
Further estimate in the case K > 0

As α(K ) = 0 in this case, (4.19) yields

‖βε(ϕε)‖L2(0,T ;L1(�)) + ∥
∥β
,ε(ψε)

∥
∥
L2(0,T ;L1(
))

≤ C. (4.20)

Of course, thanks to (4.8) we also have

‖π(ϕε)‖L2(0,T ;L1(�)) + ‖π
(ψε)‖L2(0,T ;L1(
)) ≤ C

since π and π
 are Lipschitz continuous. In combination with (4.20), this entails

∥∥F ′
ε(ϕε)

∥∥
L2(0,T ;L1(�))

+ ∥∥G ′
ε(ψε)

∥∥
L2(0,T ;L1(
))

≤ C.

Consequently, by testing (2.16d) first by (1, 0) and then by (0, 1), one easily realizes
that

‖〈με〉�‖L2(0,T ) + ‖〈θε〉
‖L2(0,T ) ≤ C, (4.21)

whence, using (4.8), the Poincaré–Wirtinger inequality in� and Poincaré’s inequality
on 
 (see Lemma 2.2), we infer that

‖με‖L2(0,T ;V ) + ‖θε‖L2(0,T ;V
) ≤ C. (4.22)
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Next, recalling that σ(K ) = 1
K , we test (2.16d) by (0, β
,ε(ψε)) obtaining

∥∥β
,ε(ψε)
∥∥2
H


+
∫




β ′

,ε(ψε)|∇
ψε|2

=
∫




(θε − π
(ψε))β
,ε(ψε) − 1

K

∫




(ψε − ϕε)β
,ε(ψε).

Observe now that the second term on the left-hand side is nonnegative due to the
monotonicity of β
,ε. For the terms on the right-hand side, we use Hölder’s inequality,
Young’s inequality and the trace theorem to infer that

∫




(θε − π
(ψε))β
,ε(ψε) − 1

K

∫




(ψε − ϕε)β
,ε(ψε).

≤ 1

2

∥∥β
,ε(ψε)
∥∥2
H


+ C
(‖θε‖2H


+ ‖ψε‖2H

+ ‖ϕε‖2V + 1

)
.

Hence, rearranging the terms and integrating over time we conclude that
∥∥β
,ε(ψε)

∥∥
L2(0,T ;H
)

≤ C. (4.23)

Next, proceeding similarly, we test (2.16d) by (βε(ϕε), 0). This leads us to

‖βε(ϕε)‖2H +
∫

�

β ′
ε(ϕε)|∇ϕε|2 =

∫

�

(με − π(ϕε))βε(ϕε) + 1

K

∫




(ψε − ϕε)βε(ϕε).

Again, the second term on the left-hand side is nonnegative owing to (S1), whereas
the first term on the right can be easily controlled by Young’s inequality as

∫

�

(με − π(ϕε))βε(ϕε) ≤ 1

2
‖βε(ϕ)‖2H + C

(‖με‖2H + ‖ϕε‖2H + 1
)
.

Besides,we handle the last termby combining themonotonicity ofβε with the property
in (4.1). Namely, it holds that

1

K

∫




(ψε − ϕε)βε(ϕε)

= − 1

K

∫




(ϕε − ψε)(βε(ϕε) − βε(ψε)) + 1

K

∫




(ψε − ϕε)βε(ψε)

≤ 1

K

∫




|ψε − ϕε| |βε(ψε)|

≤ κ1

K

∫




(|ψε| + |ϕε|)|β
,ε(ψε)| + κ2

K

∫




(|ψε| + |ϕε|)

≤ ∥∥β
,ε(ψε)
∥∥2
H


+ C
(‖ψε‖2H


+ ‖ϕε‖2V + 1
)
.

Hence, with the help of (4.23), this shows the corresponding estimate

‖βε(ϕε)‖L2(0,T ;H) ≤ C. (4.24)

Further estimate in the case K = 0
Recall that, as K = 0, it now holds that σ(K ) = 0, α(K ) = 1 and ϕε|
 = ψε

a.e. on �, along with (4.15) and (4.16). Here, in our argumentation, we follow in parts
the procedure devised in [24].
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Multiplying (4.15) by 1/|�| and integrating over �, we find that

|〈με〉�| ≤ C ‖∂nϕε‖H

+ 1

|�|
(‖βε(ϕε)‖L1(�) + ‖π(ϕε)‖L1(�)

)
. (4.25)

Similarly, multiplying (4.16) by 1/|
| and integrating over 
, we infer that

|〈θε〉
| ≤ C ‖∂nϕε‖H

+ 1

|
|
(∥∥β
,ε(ψε)

∥∥
L1(
)

+ ‖π
(ψε)‖L1(
)

)
. (4.26)

Then, combining (4.25) and (4.26), on account of the estimates (4.8) and (4.19) along
with the Lipschitz continuity of π and π
 , we deduce that

|〈με〉�| + |〈θε〉
| ≤ C
(
�ε + ‖∂nϕε‖H


)
. (4.27)

Combining (4.6) and (4.7), we obtain the estimate

‖∇με‖H + ‖∇
θε‖H

≤ �ε.

Hence, with the help of the Poincaré–Wirtinger inequality in � and Poincaré’s in-
equality on 
 (see Lemma 2.2), we arrive at

‖με(t)‖V + ‖θε(t)‖V

≤ C

(
�ε(t) + ‖∂nϕε(t)‖H


)
(4.28)

for almost all t ∈ (0, T ). Now, we multiply (4.15) by βε(ϕε) and integrate by parts.
This yields

‖βε(ϕε)‖2H +
∫

�

β ′
ε(ϕε)|∇ϕε|2

=
∫

�

(με − π(ϕε))βε(ϕε) +
∫




∂nϕεβε(ϕε).

≤ 1

2

∫

�

|με − π(ϕε))|2 + 1

2
‖βε(ϕε)‖2H +

∫




∂nϕεβε(ϕε). (4.29)

Similarly, multiplying (4.16) by −β
,ε(ψε), it is straightforward to deduce that

∥∥β
,ε(ψε)
∥∥2
H


+
∫




β ′

,ε(ψε)|∇
ψε|2

=
∫




(θε − π
(ψε))β
,ε(ψε) −
∫




∂nϕεβ
,ε(ψε)

≤
∫

�

|θε − π
(ψε)|2 + 1

4

∥∥β
,ε(ψε)
∥∥2
H


−
∫




∂nϕεβ
,ε(ψε). (4.30)

Recalling (4.1), we observe that
∣
∣∣∣

∫




∂nϕεβε(ϕε) −
∫




∂nϕεβ
,ε(ψε)

∣
∣∣∣

≤ ‖∂nϕε‖H


∥∥(κ1 + 1)|β
,ε(ψε)| + κ2
∥∥
H
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≤ 1

4

∥∥β
,ε(ψε)
∥∥2
H


+ C
(‖∂nϕε‖2H


+ 1
)
.

Hence, adding (4.29) and (4.30), and using (4.8) as well as (4.28), we conclude that

‖βε(ϕε(t))‖H + ∥∥β
,ε(ψε(t))
∥∥
H


≤ C
(
�ε(t) + ‖∂nϕε(t)‖H


)
(4.31)

for almost all t ∈ (0, T ). Now, recalling again (4.15) and (4.16), we observe that ϕε

solves the following bulk-surface elliptic problem:

−�ϕε = με − βε(ϕε) − π(ϕε) in �,

−�
ψε + ∂nϕε = θε − β
,ε(ψε) − π
(ψε) on 
,

ϕε|
 = ψε on 


a.e. in (0, T ). Due to (4.8), (4.28), (4.31) and the Lipschitz continuity of π and π
 ,
it is clear that the right-hand sides in the above system belong to L2(�) and L2(
),
respectively. Hence, applying regularity theory for elliptic problems with bulk-surface
coupling (see [61, Theorem 3.3]), we deduce that the estimate

‖ϕε‖H2(�) + ‖ψε‖H2(
)

≤ C
(
‖με − βε(ϕε) − π(ϕε)‖H + ∥∥θε − β
,ε(ψε) + ψε − πγ (ψε)

∥∥
H


)

holds a.e. in (0, T ). Now, in view of (4.8), (4.28), (4.31) we can completely control
the above right-hand side and infer that

‖ϕε(t)‖H2(�) + ‖ψε(t)‖H2(
) ≤ C
(
�ε(t) + ‖∂nϕε(t)‖H


)
(4.32)

for almost all t ∈ (0, T ). On this basis, at this point we can use the standard trace
theorem for the normal derivative concluding that for some fixed 3/2 < s < 2 there
is a positive constant Cs such that

‖∂nϕε(t)‖H

≤ Cs ‖ϕε(t)‖Hs (�)

for almost all t ∈ (0, T ). Hence, as H2(�) ⊂ Hs(�) ⊂ V with compact embeddings,
we infer from (4.32) by means of the Ehrling lemma that

‖ϕε(t)‖H2(�) + ‖ψε(t)‖H2(
) + ‖∂nϕε(t)‖H


≤ C
(
�ε(t) + Cs ‖ϕε(t)‖Hs (�)

) + Cs ‖ϕε(t)‖Hs (�)

≤ δ ‖ϕε(t)‖H2(�) + C �ε(t) + Cδ−1 ‖ϕε(t)‖V , (4.33)

for all t ∈ (0, T ) and any δ ∈ (0, 1). Eventually, from (4.8) (4.33), it follows that

‖ϕε‖L2(0,T ;H2(�)) + ‖ψε‖L2(0,T ;H2(
)) + ‖∂nϕε‖L2(0,T ;H
) ≤ C, (4.34)

and consequently, recalling (4.28) and (4.31), we also have

‖με‖L2(0,T ;V ) + ‖θε‖L2(0,T ;V
)

+ ‖βε(ϕε(t))‖L2(0,T ;H) + ∥
∥β
,ε(ψε)

∥
∥
L2(0,T ;H
)

≤ C. (4.35)
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4.3. Passage to the limit and conclusion of the proof

The final step consists in passing to the limit as ε is sent to zero. As the line of
argument resembles the one presented in Sect. 3.1.4, we proceed rather quickly just
pointing out the main points and differences.
Owing to the above uniform estimates and to standard compactness results, we

obtain that there exist a subsequence of ε and a seven-tuple of limits

(v∗, ϕ∗, ξ∗, μ∗, ψ∗, ξ∗

, θ∗)

such that, as ε → 0,

vε → v∗ weakly in L2(0, T ;Vσ,n),

strongly in C0([0, T ]; Hs(�)), and a.e. in Q,

vε|
 → v∗|
 weakly in L2(0, T ;H
),

strongly in C0([0, T ]; Hs(
)), and a.e. on �,

ϕε → ϕ∗ weakly-∗in L∞(0, T ; V ),weakly in H1(0, T ; V ∗),
strongly in C0([0, T ]; Hs(�)), and a.e. in Q,

ψε → ψ∗ weakly-∗in L∞(0, T ; V
),weakly in H1(0, T ; V ∗

 ),

strongly in C0([0, T ]; Hs(
)), and a.e. on �,

βε(ϕε) → ξ∗ weakly in L2(0, T ; H),

β
,ε(ψε) → ξ∗

 weakly in L2(0, T ; H
),

με → μ∗ weakly in L2(0, T ; V ),

θε → θ∗ weakly in L2(0, T ; V
),

for all s ∈ [0, 1). In the case K = 0, we further infer from (4.34) the convergences

ϕε → ϕ∗ weakly in L2(0, T ; H2(�)),

ψε → ψ∗ weakly in L2(0, T ; H2(
)).

Repeating the arguments employed in Sect. 3.1.4, we can easily show that the above
weak and strong convergences suffice to pass to the limit in the variational formulation
(2.32a)–(2.32d) written for β = βε and β
 = β
,ε. Furthermore, the inclusions

ξ∗ ∈ β(ϕ∗) a.e. in Q and ξ∗

 ∈ β
(ψ∗) a.e. on �

follow directly from the maximality of the monotone operators β and β
 , and the facts
that

lim
ε→0

∫ T

0

∫

�

βε(ϕε)ϕε =
∫ T

0

∫

�

ξ∗ϕ∗, lim
ε→0

∫ T

0

∫




β
,ε(ψε)ψε =
∫ T

0

∫




ξ∗

ψ∗
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(see, e.g., [12, Prop. 1.1, p. 42]). Due to the aforementioned strong convergences
of ϕε and ψε, it is straightforward to check that condition (iii) of Definition 2.9 is
fulfilled. Moreover, condition (iv) of Definition 2.9 can be established by proceeding
analogously as in Sect. 3.1.4.

Finally, if the domain is of class C2, we need to establish the higher regularity
properties of the phase fields ϕ∗ and ψ∗. In the case K = 0, this directly follows
from the above convergences. In the case K > 0, these properties can be proved as in
Sect. 3.1.5 by taking advantage of the regularities L2(0, T ; H) for ξ and L2(0, T ; H
)

for ξ
 . This concludes the proof of Theorem 2.10.
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Appendix: Some calculus for bulk–surface function spaces

Proposition A.1. Let T > 0 and K ≥ 0 be arbitrary.

(a) Let (u, v) ∈ L2(0, T ;VK ) and suppose that the weak time derivative satisfies
(∂t u, ∂tv) ∈ L2(0, T ;V∗

K ). Then, the continuity property (u, v) ∈ C0([0, T ];H)

holds, the mapping

t �→ ‖(u, v)(t)‖2H = ‖u(t)‖2H + ‖v(t)‖2H


is absolutely continuous in [0, T ], and the chain rule formula

d

dt

[
‖u(t)‖2H + ‖v(t)‖2H


]
= 2

〈
(∂t u, ∂tv)(t), (u, v)(t)

〉
VK

(A.1)

holds for almost all t ∈ [0, T ].
(b) Let (u, v) ∈ L2

(
0, T ; H3(�) × H3(
)

)
with K∂nu = v − u a.e. on �, and

suppose that theirweak timederivative satisfies (∂t u, ∂tv) ∈ L2(0, T ;V∗). Then,
the continuity property (u, v) ∈ C0([0, T ];VK ) holds, the mapping

t �→ ‖∇u(t)‖2H + ‖∇
v(t)‖2H

+ σ(K ) ‖v(t) − u(t)‖2H


is absolutely continuous in [0, T ], and the chain rule formula

d

dt

[
‖∇u(t)‖2H + ‖∇
v(t)‖2H


+ σ(K ) ‖v(t) − u(t)‖2H


]

= 2
〈
(∂t u, ∂tv)(t), (−�u, −�
v + ∂nu)(t)

〉
V

(A.2)

holds for almost all t ∈ [0, T ].
Proof. Proof of (a). Since VK and H are separable Hilbert spaces with compact em-
bedding VK ↪→H and continuous embedding H↪→V∗

K , the assertion follows directly
from the Lions–Magenes lemma (see, e.g., [76, Chapter III, Lemma 1.2]).
Proof of (b).Wefirst fixu andv as arbitrary representatives of their respective equiva-

lence class. Recall that due to (a), we have u ∈ C0([0, T ]; H) and v ∈ C0([0, T ]; H
).
We can thus extend the functions u and v onto [−T, 0] by defining u(t) and v(t) by
reflection for all t < 0.

Let ρ ∈ C∞
c (R) be a nonnegative function with suppρ ⊂ (0, 1) and ‖ρ‖L1(R) = 1.

For any k ∈ N, we set

ρk(s) := kρ(ks) for all s ∈ R.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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For any Banach space X and any function f ∈ L2(−1, T ; X), we define

fk(t) := (ρk ∗ f )(t) =
∫ t

t− 1
k

ρk(t − s) f (s) ds

for all t ∈ [0, T ] and all k ∈ N. By this construction, we have fk ∈ C∞([0, T ]; X)

with fk → f strongly in L2(0, T ; X) as k → ∞.
For any k ∈ N, we now choose X = H3(�) to define uk and X = H3(
) to define

vk as described above.By this construction, it holds ∂t uk = (∂t u)k and ∂t∇uk = ∇∂t uk
a.e. in Q as well as ∂tvk = (∂tv)k and ∂t∇
vk = ∇
∂tvk a.e. on � for all k ∈ N.
Moreover, as k → ∞, we have

uk → u strongly in L2(0, T ; H3(�)), (A.3)

vk → v strongly in L2(0, T ; H3(
)), (A.4)

(uk, vk) → (u, v) strongly in L2(0, T ;VK ), (A.5)

(∂t uk, ∂tvk) → (∂t u, ∂tv) strongly in L2(0, T ;V∗). (A.6)

In the following, the letter C will denote generic positive constants that are inde-
pendent of k and may change their value from line to line. Now, for any k ∈ N, we
derive the identity

d

dt

[
‖∇uk‖2H + ‖∇
vk‖2H


+ σ(K ) ‖vk − uk‖2H


]

= 2
〈
(∂t uk, ∂tvk), (−�uk, −�
vk + ∂nuk)

〉
V

(A.7)

in [0, T ] by differentiating under the integral sign, applying integration by parts and
employing the relation

σ(K )(vk − uk) =
{
0 if K = 0,

∂nuk if K > 0,
a.e. on �.

Let now j, k ∈ N be arbitrary. Proceeding as above, we calculate

d

dt

[ ∥∥∇u j − ∇uk
∥∥2
H + ∥∥∇
v j − ∇
vk

∥∥2
H


+ σ(K )
∥∥(v j − vk) − (u j − uk)

∥∥2
H


]

= 2
〈(

∂t (u j − uk), ∂t (v j − vk)
)
,
( − �(u j − uk), −�
(v j − vk) + ∂n(u j − uk)

)〉
V

≤ C
( ∥∥(

∂t (u j − uk), ∂t (v j − vk)
)∥∥2

V∗ + ∥∥u j − uk
∥∥2
H3(�)

+ ∥∥v j − vk
∥∥2
H3(
)

)

(A.8)

in [0, T ]. Here, we have used the embedding H3(�)↪→H2(
) resulting from the trace
theorem, which yields

∥∥∂n(u j − uk)
∥∥
V


≤ ∥∥u j − uk
∥∥
H2(
)

≤ C
∥∥u j − uk

∥∥
H3(�)

.
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Let now s, t ∈ [0, T ] be arbitrary with s ≤ t . We then integrate inequality (A.8) with
respect to time from s to t . This yields
∥∥(∇u j − ∇uk)(t)

∥∥2
H + ∥∥(∇
v j − ∇
vk)(t)

∥∥2
H


+ σ(K )
∥∥(v j (t) − vk(t)) − (u j (t) − uk(t))

∥∥2
H


≤ ∥∥(∇u j − ∇uk)(s)
∥∥2
H + ∥∥(∇
v j − ∇
vk)(s)

∥∥2
H


+ σ(K )
∥∥(v j (s) − vk(s)) − (u j (s) − uk(s))

∥∥2
H


+ C
∫ t

s

∥∥(
∂t (u j − uk), ∂t (v j − vk)

)∥∥2
V∗ + ∥∥u j − uk

∥∥2
H3(�)

+ ∥∥v j − vk
∥∥2
H3(
)

.

(A.9)

Since (uk, vk) → (u, v) strongly in L2
(
0, T ; (H3(�) × H3(
))

)
, we can fix s ∈

[0, t] such that (uk, vk)(s) → (u, v)(s) strongly in H3(�) × H3(
). Recalling the
convergences (A.3)–(A.6), we thus infer that the right-hand side in (A.9) tends to zero
as j, k → ∞. Consequently, (∇uk)k∈N is a Cauchy sequence in C0([0, T ];H) and
(∇vk)k∈N is a Cauchy sequence in C0([0, T ];H
). We thus conclude

∇uk → ∇u strongly in C0([0, T ];H), (A.10)

∇
vk → ∇
u strongly in C0([0, T ];H
) (A.11)

as k → ∞. Together with (a), this proves

(u, v) ∈ C0([0, T ];VK ).

Let now s, t ∈ [0, T ] be arbitrary. Without loss of generality, we assume s ≤ t .
Integrating (A.7) with respect to time from s to t , we obtain

‖∇uk(t)‖2H + ‖∇
vk(t)‖2H

+ σ(K ) ‖vk(t) − uk(t)‖2H


= ‖∇uk(s)‖2H + ‖∇
vk(s)‖2H

+ σ(K ) ‖vk(s) − uk(s)‖2H


+ 2
∫ t

s

〈
(∂t uk, ∂tvk), (−�uk, −�
vk + ∂nuk)

〉
V

.

Invoking the convergences (A.3)–(A.6), (A.10) and (A.11),wepass to the limit k → ∞
in this identity. This yields

‖∇u(t)‖2H + ‖∇
v(t)‖2H

+ σ(K ) ‖v(t) − u(t)‖2H


= ‖∇u(s)‖2H + ‖∇
v(s)‖2H

+ σ(K ) ‖v(s) − u(s)‖2H


+ 2
∫ t

s

〈(
∂t u, ∂tv

)
,
( − �u, −�
v + ∂nu

)〉
V

.

As the integrand of the integral on the right-hand side belongs to L1(0, T ), we con-
clude that the mapping t �→ ‖∇u(t)‖2H + ‖∇
v(t)‖2H


+ σ(K ) ‖v(t) − u(t)‖2H

is

absolutely continuous in [0, T ]. It is thus differentiable almost everywhere in [0, T ]
and its derivative satisfies the formula (A.2). This verifies (b), and thus, the proof is
complete. �
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