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Introduction

This thesis aims to introduce quasimorphisms and explain their connection to bounded
and equivariant bounded cohomology. In particular, we extend vanishing results for cup
products and Massey triple products in (equivariant) bounded cohomology of groups
acting on graphs.

Bounded cohomology of groups arises from a complex of bounded invariant functions
(Chapter 2). In contrast to ordinary group cohomology, it is difficult to compute in
general. For example, the group cohomology of non-abelian free groups is known in
every degree. On the other hand, although bounded cohomology of non-abelian free
groups can be computed in degree up to 3, it is completely unknown in higher degrees.
It is not even known if the bounded cohomology of non-abelian free groups in degree 4
has a finite dimension or not.

A possible approach to obtain control over the cohomology groups in higher dimensions
is to look at cup products or Massey triple products of lower degree coclasses. To that
effect, we study quasimorphisms as their understanding gives rise to great knowledge of
bounded cohomology in degree 2 (Chapter 3) and consider the products with coclasses
induced by quasimorphisms.

The centrepiece of this text is Chapter 4. In this part, we give four examples of
quasimorphisms, namely Brooks, Rolli, ∆-decomposable and median quasimorphisms.
The first three of them are quasimorphisms of non-abelian free groups and the last one
is an example for quasimorphisms of groups acting on median graphs or CAT(0) cube
complexes. Furthermore, we recall existing results of triviality for cup products and
Massey triple products with coclasses induced by one of these quasimorphisms.

In the literature, one uses aligned chains in order to prove the existing vanishing results
for Brooks, Rolli and ∆-decomposable quasimorphisms [1, 13]. It is not possible to adapt
this approach in an easy way to prove the results for median quasimorphisms [3]. The
goal of Chapter 4 is the construction of a general statement about quasimorphisms and
their products that can be used not only to deduce all the existing vanishing results
but also to extend them. In particular, we obtain the following vanishing results for the
bounded cohomology of a non-abelian free group.

Corollary (Corollaries 4.3.7, 4.3.1, 4.3.2). Let F be a non-abelian free group and let
ϕ : F → R be a Brooks, Rolli, or ∆-decomposable quasimorphism. Then ϕ is a quasi-
morphism and for all n,m ∈ N and α1 ∈ Hn

b (F ;R) and α2 ∈ Hm
b (F ;R),

• the cup products [δ1ϕ̂] ∪ α1 and α1 ∪ [δ1ϕ̂] are trivial in Hn+2
b (F ;R), and

• the Massey triple product ⟨α1, [δ
1ϕ̂], α2⟩ ⊂ Hn+m+1

b (F ;R) is trivial.
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On top of that, we obtain a similar result for groups acting on median graphs that can
be applied in particular to finite dimensional CAT(0) cube complexes and to right-angled
Artin groups.

Corollary (Corollary 4.3.4). Let Γ be a discrete group acting on a restricted median
graph X. Let s be an H-segment in X and let fs be the corresponding median quasi-
morphism of Γ ↷ X. Then fs is a symmetric quasimorphism and for all n,m ∈ N and
α1 ∈ Hn

Γ,b(X;R) and α2 ∈ Hm
Γ,b(X;R) that are non-transverse to the orbit Γs,

• the cup products [δ1fs] ∪ α1 and α1 ∪ [δ1fs] are trivial in Hn+2
Γ,b (X;R), and

• the Massey triple product ⟨α1, [δ
1fs], α2⟩ ⊂ Hn+m+1

Γ,b (X;R) is trivial.

Eventually, Chapter 5 deals with the connection between median quasimorphisms of
groups acting on trees and the second bounded cohomology in degree 2. In particular,
we define a characterization for actions on a tree that yields an infinite family of median
quasimorphisms that gives rise to an infinite linearly independent family of coclasses in
the second bounded cohomology. Moreover, we produce lattices of products of automor-
phism groups of trees for which the triviality of the median quasimorphisms is equivalent
to the triviality of the second bounded cohomology. This characterization is related to
local ∞-transitivity.
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1 Preliminaries

This chapter is a quick overview over the basic tools that will be used in the thesis.
In order to keep this overview short and clear, there will not be given many proofs.
However, we always refer to literature where the omitted proof can be found.
We assume the knowledge of basic group theory as it can be found for example in [11,

Chapter 2].

1.1 Graph theory

In this section, we recall the basics of graph theory that are needed in this thesis.

Definition 1.1.1 ((undirected) graph). An (undirected) graph is a pair X = (V,E) of
disjoint sets with

E ⊂ {e ⊂ V | |e| = 2};

the elements of V are the vertices, the elements of E are the edges of X.

Definition 1.1.2 (directed graph). A directed graph is a pair X = (V,E) of disjoint
sets with

E ⊂ {(v, w) ∈ V × V | v ̸= w};

the elements of V are the vertices, the elements of E are the edges of X.

When we talk about graphs, we always mean undirected graphs.

Definition 1.1.3 (neighbour, degree). Let (V,E) be a graph. We say that two vertices
v, w ∈ V are neighbours if {v, w} ∈ E. The number of neighbours of a vertex v is the
degree of this vertex, denoted by deg(v).

Definition 1.1.4 (locally finite, regular). Let n ∈ N.

• A graph is called locally finite if every vertex has finite degree.

• A graph is called regular of degree n if every vertex has degree n.

Definition 1.1.5 (graph isomorphism). Let X = (V,E) and X ′ = (V ′, E′) be graphs.
A graph isomorphism between X and X ′ is a bijective map

f : V → V ′

7



1 Preliminaries

such that for all v, w ∈ V it is

{v, w} ∈ E ⇔ {f(v), f(w)} ∈ E′.

If such a graph isomorphism exists, then we call X and X ′ isomorphic.

Definition 1.1.6 (path, cycle, connected). Let X = (V,E) be a graph.

• Let n ∈ N ∪ {∞}. A path in X of length n is a sequence of different vertices
v0, . . . , vn ∈ V such that for all i ∈ {0, . . . , n− 1} we have {vi, vi+1} ∈ E. If n ∈ N
we say that this path connects v0 and vn.

• Let n ∈ N>2. A cycle of length n in X is a path v0, . . . , vn−1 in X such that
{vn−1, v0} ∈ E.

• The graph X is called connected if every two vertices are connected by a path.

Definition 1.1.7 (inverse path, concatenation). Let X = (V,E) be a graph. For a finite
path p = v0, . . . , vn in X we define the inverse path p of p by the sequence vn, . . . , v0.
Let q = x0, . . . , xm be another path in X with m ∈ N∪ {∞} such that vn = x0 and p, q
don’t share any other vertex. Then, we define the concatenation p ∗ q of p and q by the
sequence

p ∗ q = v0, . . . , vn, x1 . . . , xm.

Definition 1.1.8 (tree). A graph is a called a tree if it is connected and does not contain
any cycle.

Lemma 1.1.9 ([11, Proposition 3.1.10]). A graph is a tree if and only if every two
vertices are connected by exactly one path.

Theorem 1.1.10 (graph metric). Let X = (V,E) be a connected graph. Then the map

d : V × V → R≥0

(v, w) 7→ min{n ∈ N | ∃ a path in X of length n connecting v and w}

defines a metric on V , the so called graph metric on X.

From now on, we consider graphs as metric spaces equipped with the graph metric.

Definition 1.1.11 (geodesic). Let X = (V,E) be a graph and v, w ∈ V . A geodesic in
X from v to w is a path of length d(v, w) connecting v and w. We denote by [v, w] the
set of geodesics from v to w.

Remark 1.1.12. If T = (V,E) is a tree and v, w ∈ V then [v, w] consists exactly of
one geodesic, namely the unique path connecting v and w. In this case, we denote this
unique geodesic also by [v, w] with a slight abuse of notation.
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1.1 Graph theory

Cayley graph

Definition 1.1.13 (Cayley graph). Let G be a group with generating set S ⊂ G. Then
the Cayley graph of G with respect to S is the graph Cay(G,S) having

• G as its set of vertices, and

• the set {{x, xs} | x ∈ G and s ∈ (S ∪ S−1) \ {e}} as its set of edges.

Example 1.1.14. Let n ∈ N and let F be the non-abelian group freely generated by a
set S ⊂ F of n elements. Then, Cay(F, S) is a regular tree of degree 2n.

Median graphs

Definition 1.1.15 (median graph). A graph X = (V,E) is called a median graph if for
every x, y, z ∈ V there exists a unique vertex m ∈ V with

d(x, y) = d(x,m) + d(m, y),

d(x, z) = d(x,m) + d(m, z),

d(y, z) = d(y,m) + d(m, z).

In other words, the vertex m is the unique vertex that lies on a geodesic in [x, y], [x, z],
and [y, z], simultaneously.

From now on, we fix a median graph X = (V,E).

Definition 1.1.16 (halfspace, H-intervals). For an edge e ∈ E that consists of two
distinct vertices α and ω we define the map

ge : V → {α, ω}

x 7→

{
α, if d(x, α) < d(x, ω),

ω, if d(x, ω) < d(x, α),

called gate map of closest-point projection for e. (This map is well-defined since X is a
median graph.) Each of the sets g−1

e (α) and g−1
e (ω) is called a halfspace. We say that

e is dual to the halfspaces g−1
e (α) and g−1

e (ω). Note that two edges can be dual to the
same halfspace, see Figure 1.1.

We define H to be the set of halfspaces. For a halfspace h ∈ H we denote by h its
complement h := V \ h. It is clear by definition that h is also a halfspace. For two
vertices x, y ∈ V we say a halfspace h separates y from x if y ∈ h and x ∈ h and define
the H-interval [x, y]H to be the set consisting of all halfspaces separating y from x. A
geodesic x0, . . . , xn is said to cross a halfspace at time i if h separates xi+1 from xi.

Theorem 1.1.17. Let x, y ∈ V be vertices. Then d(x, y) is equal to the number of
halfspaces separating y from x. More precisely, for every halfspace h separating y from
x, every geodesic from x to y crosses h exactly once.
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1 Preliminaries

h

e

e′

Figure 1.1: The edges e and e′ are both dual to the halfspace h.

This can be seen by [8, Remark 1.7] using the connection between median graphs and
structures called CAT(0) cube complexes that is developed in [8, Theorem 1.17].

Corollary 1.1.18. Let x, y ∈ V and let m ∈ V be a vertex contained in a geodesic from
x to y. Then

[x, y]H = [x,m]H ⊔ [m, y]H.

Corollary 1.1.19. Halfspaces are convex.

Proof. Let x, y ∈ V be vertices both contained in a halfspace h and let γ = x0, . . . , xn
be a geodesic from x0 = x to xn = y. Since h and h both don’t separate y from x, we
know that the the geodesic γ does cross neither h nor h by Theorem 1.1.17. Hence, all
vertices of γ must lie in h.

Definition 1.1.20 (tightly nested, segment). Two halfspaces h1 and h2 are tightly nested
if they are distinct, if h1 ⊃ h2, and if there is no other halfspace h ∈ H such that
h1 ⊃ h ⊃ h2.

AnH-segment of length l ∈ N is a sequence (h1 ⊃ . . . ⊃ hl) of tightly nested halfspaces.
The reverse s of an H-segment s = (h1 ⊃ . . . ⊃ hl) is defined by s := (hl ⊃ . . . ⊃ h1).

We denote by X
(l)
H the set of all H-segments of length l. For x, y ∈ V we write [x, y]

(l)
H

for the set of all segments of length l whose halfspaces are contained in [x, y]H.

Example 1.1.21. Let T = (V,E) be a tree. In this special case of a median graph, we
have a one-to-one correspondence between halfspaces and oriented edges. Furthermore,
the uniqueness of paths in a tree gives rise to the fact that for l ∈ N and x, y ∈ V , there
is a one-to-one correspondence between geodesics segments of length l of the (unique)

geodesic connecting x to y and H-segments that are contained in [x, y]
(l)
H .

Definition 1.1.22 (interior). A vertex x ∈ V is said to lie in the interior of a segment
(h1 ⊃ . . . ⊃ hl) if x ∈ h1 ∪ hl.

10



1.2 Group theory

1.2 Group theory

In this section we recall group actions [11, Section 4.1], the connection between free
groups and reduced words [11, Section 3.3.1], and amenability [15, Chapters 1-2].

Group actions

Definition 1.2.1 (group action). Let G be a group and X be an object in a category C.
An action of G on X in the category C is a group homomorphism

G→ AutC(X).

In this thesis, we will mostly consider group actions on sets or on graphs.

Example 1.2.2. In the case that a group G acts on a set S via ϕ : G→ AutSet(S), we
write

g · s := ϕ(g)(s)

for g ∈ G and s ∈ S. Then, we can describe the group action by the map

G× S → S

(g, s) 7→ g · s.

Recall that for a graph X = (V,E) the set of automorphisms AutGraph(X) consists of
bijections V → V that fulfils certain properties on the level of edges. Hence, a group
action ϕ : G→ AutGraph(X) can also be described by a map

G× V → V

(g, v) 7→ g · v := ϕ(g)(v).

Example 1.2.3. Let G be a group generated by a set S. Then G acts by graph
automorphisms on Cay(G,S) via left-translation, i.e.

G→ AutGraph(Cay(G,S))

g 7→ (v 7→ gv).

Note that this map is well-defined, as for every g ∈ G the map G → G, h 7→ gh is a
bijection on the vertices of Cay(G,S) and preserves edges.

Free groups and reduced words

Definition 1.2.4 (reduced word). Let S be a set, and let (S ∪ Ŝ)∗ be the set of words
over S and formal inverses of elements of S. Let n ∈ N and let s1, . . . , sn ∈ S ∪ Ŝ. The
word s1 · · · sn is reduced if sj+1 ̸= ŝj and ŝj+1 ̸= sj holds for all j ∈ {1, . . . , n− 1}. We

write Fred(S) for the set of all reduced words in (S ∪ Ŝ)∗.

11



1 Preliminaries

We can define a group structure on Fred(S) by the concatenation of words and possibly
reducing the word at the point of concatenation [11, Proposition 3.3.5]. Then, we see
that the free group F generated by S is canonically isomorphic as a group to Fred(S).

Definition 1.2.5 (self-overlapping word). Let F be a free group and w ∈ F a non-trivial
reduced word. We call w self-overlapping if there are reduced words s, v ∈ F such that s
is non-trivial and

w = svs

is a reduced word.

Amenability

Definition 1.2.6 (topological group). A topological group is a group G equipped with
a topology such that the inversion map

G→ G

g 7→ g−1

and the composition map

G×G→ G

(g, h) 7→ gh

are continuous.

Definition 1.2.7 (locally compact). A topological space X is called locally compact if
for every x ∈ X and every open neighbourhood U of x there exists a compact neigh-
bourhood K of x that is contained in U , i.e. x ∈ K ⊂ U .

Let G be a locally compact group. We denote by B(G) the Borel algebra, i.e. the
smallest σ-algebra on G that contains all open sets. Locally compact groups have the
following important property [15, Page 2].

Theorem 1.2.8. Let G be a locally compact group. Then there exists a non-zero, posi-
tive, regular Borel measure λ on G that is G-left-invariant, i.e.

λ(gA) = λ(A)

for all g ∈ G and A ∈ B(G).

In the following, every locally compact group G is considered as a measure space
(G,B(G), λ).

Definition 1.2.9. For G a locally compact group, we denote by L∞(G,C) the set
of equivalence classes of λ-measurable, complex-valued functions ϕ that are essentially

12



1.2 Group theory

bounded, i.e.

ess supg∈G |ϕ(g)| := inf{C ≥ 0 | |ϕ(g)| ≤ C for almost all g ∈ G} <∞.

We call two functions ϕ and ψ equivalent if they are equal almost everywhere.

In particular, L∞(G,C) is a normed C-vector space with the norm of ϕ ∈ L∞(G,C)
given by

∥ϕ∥∞ := ess supg∈G |ϕ(g)|.

A locally compact group G admits an action on L∞(G,C) defined by

G× L∞(G,C) → L∞(G,C)
(g, f) 7→ (x 7→ f(g−1x)).

Definition 1.2.10 (operator norm). Let f : V → W be a linear map between normed
vector spaces. Then we define the operator norm ∥f∥ of f by

∥f∥ := inf{M ≥ 0 | ∥f(v)∥ ≤M∥v∥ for all v ∈ V }.

There is an important theorem about linear maps with finite operator norm. A proof
for this can be found in [17, Satz II.1.2].

Theorem 1.2.11. Let f : V →W be a linear map between normed vector spaces. Then
f is continuous if and only if ∥f∥ is finite.

Definition 1.2.12 (mean). Let G be a locally compact group.

• A mean on L∞(G,C) is a linear map m : L∞(G,C) → C such that ∥m∥ = 1 and
m(1) = 1, where 1 denotes the constant map with value 1.

• A mean m ∈ L∞(G,C) is called G-invariant if for all g ∈ G and f ∈ L∞(G,C) it
is

m(g · f) = m(f).

• The group G is called amenable if there exists a G-invariant mean on L∞(G,C).

Amenability fulfils the following inheritance properties. The corresponding proofs can
be found in [15, Proposition 1.12, Proposition 1,13].

Theorem 1.2.13. Let G be a locally compact group.

• If G is amenable then every closed subgroup of G is amenable.

• If H is a closed normal subgroup of G, then G is amenable if and only if both H
and G/H are amenable.

13



1 Preliminaries

The second inheritance property can be generalized to all closed subgroups as follows.

Theorem 1.2.14. Let G be a locally compact group and H ⊂ G a closed subgroup. If
H is amenable and there is a finite G-invariant measure on G/H, then G is amenable.

Proof. Let µ be a G-invariant measure on G/H with µ(G/H) = 1. This can be obtained
by rescaling the finite measure on G/H. SinceH is amenable, there exists anH-invariant
mean mH on L∞(H,C). We define for f ∈ L∞(G,C) the map

ϕf : G/H → R
gH 7→ mH(x 7→ f(gx)).

First, note that this map is well-defined as we compute for g ∈ G, h ∈ H and x ∈ H

f(gh · x) = (g−1 · f)(h · x) = (h−1 · (g−1 · f))(x).

Hence, we have

mH(x 7→ f(ghx)) = mH(h−1 · (x 7→ f(gx))) = mH(x 7→ f(gx))

by H-invariance of mH .

As we consider Borel algebras, continuous maps are measurable. Hence, the following
three maps are measurable:

G −→ L∞(G,C)
g 7−→ g−1 · f,

L∞(G,C) |H−→ L∞(H,C)
φ 7−→ φ|H ,

and

L∞(H,C) mH−→ C
ψ 7−→ mH(ψ).

Their concatenation is a measurable map from G to C sending an element g ∈ G to
ϕf (gH). As the projection G → G/H is an open map, we can deduce that ϕf is
measurable. Knowing this, we are able to define a G-invariant mean on L∞(G,C) via

m : L∞(G,C) → C

f 7→
∫
G/H

ϕf (gH)dµ(gH).

14



1.2 Group theory

At first, we observe that mG is G-invariant, as we compute for g′ ∈ G and f ∈ L∞(G,C)

m(g′ · f) =
∫
G/H

ϕg′·f (gH)dµ(gH)

=

∫
G/H

mH(x 7→ (g′ · f)(gx))dµ(gH)

=

∫
G/H

mH(x 7→ f(g′−1gx))dµ(gH)

=

∫
G/H

ϕf (g
′−1gH)dµ(gH)

=

∫
G/H

ϕf (gH)dµ(gH),

where the last equation follows from the G-invariance of µ. Furthermore, m is linear as
mH and the integral are linear and

m(1) =

∫
G/H

ϕ1(gH)dµ(gH)

=

∫
G/H

mH(1)dµ(gH)

=

∫
G/H

1dµ(gH)

= µ(G/H) = 1.

Finally, we check that the operator norm of m equals 1. For this, let f ∈ L∞(G,C). We
compute

|m(f)| =

∣∣∣∣∣
∫
G/H

ϕf (gH)dµ(gH)

∣∣∣∣∣ ≤
∫
G/H

|ϕf (gH)|dµ(gH)

=

∫
G/H

|mH(x 7→ f(gx))|dµ(gH)

≤
∫
G/H

∥(x 7→ f(gx))∥∞dµ(gG)

≤
∫
G/H

∥f∥∞dµ(gH)

= ∥f∥∞.

This equation shows ∥m∥ ≤ 1. Together with m(1) = 1 we conclude ∥m∥ = 1. Hence,
G is amenable.

Example 1.2.15. • Abelian locally compact groups are amenable [15, Proposi-
tion 0.15].
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1 Preliminaries

• An example for a group that is not amenable is the (discrete) non-abelian free
group of rank 2 elements ([15, Example 0.6]).

1.3 Cohomology

In the following, let Γ be a discrete group.

Definition 1.3.1 (group ring). We denote by R[Γ] the group ring associated to R and Γ,
i.e. the abelian group

⊕
ΓR together with a multiplication defined by∑

g∈Γ
agg

∑
g∈Γ

bgg

 =
∑
g∈Γ

(∑
h∈Γ

aghbh−1

)
g

Note that R[Γ] forms a ring as its name suggests.

Definition 1.3.2 (invariant). Let V be an R[Γ]-module. Then we denote by V Γ the
submodule of Γ-invariant elements of V , i.e.

V Γ := {v ∈ V | g · v = v for all g ∈ Γ}.

Example 1.3.3. For n ∈ N>0 we consider the abelian group Map(Γn,R) where the group
structure is given by pointwise addition. We have a group action of Γ on Map(Γn,R) by
defining g · f for g ∈ Γ and f : Γn → R by

g · f : Γn → R
(x1, . . . , xn) 7→ f(g−1x1, . . . , g

−1xn).

This gives rise to an R[Γ]-module structure on Map(Γn,R). For f ∈ Map(Γn,R) we
define

∥f∥∞ = sup{|f(x)| | x ∈ Γ}

and say that f is bounded if ∥f∥∞ <∞. We consider the set

ℓ∞(Γn,R) := {f : Γn → R | ∥f∥∞ <∞}

Since the Γ action on Map(Γn,R) preserves boundedness, we obtain that ℓ∞(Γn,R) is
an R[Γ]-submodule of Map(Γn,R).

Definition 1.3.4 (cochain complex, cochain, cocycle, coboundary). A cochain complex
is a sequence

0
δ−1

−→ C0 δ0−→ C1 δ1−→ C2 δ2−→ . . .

where Cn is an R[Γ]-module and δn : Cn → Cn+1 is an R[Γ]-linear map with δn+1◦δn = 0
for all n ∈ N. We define δ−1 to be the trivial map. We call δ∗ = (δn)n∈N the simplicial
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1.3 Cohomology

coboundary operator and denote this cochain complex also by (C∗, δ∗) or just by C∗

when it is clear which coboundary operator is used.
Let ζ ∈ Cn for some n ∈ N. Then we call ζ an n-cochain or cochain. If ζ ∈ ker(δn)

we call it n-cocycle or cocycle. If ζ ∈ im(δn−1) we call it n-coboundary or coboundary.

Definition 1.3.5 (homomorphism of cochains). Let (C∗, δ∗C) and (D∗, δ∗D) be two cochain
complexes. A homomorphism of cochain complexes from C∗ to D∗ is a family of maps
ϕ∗ = (ϕn)n∈N where for all n ∈ N

• ϕn : Cn → Dn is an R[Γ]-linear map, and

• ϕn+1 ◦ δnC = δnD ◦ ϕn.

Definition 1.3.6 (cohomology). Let (C∗, δ∗) be a cochain complex. Then we define the
n-th cohomology for n ∈ N of this cochain complex by

Hn(C∗) :=
ker(δn : Cn → Cn+1)

im(δn−1 : Cn−1 → Cn)

and call the elements of Hn(C∗) coclasses. We write H∗(C∗) := (Hn(C∗))n∈N.
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2 Bounded Cohomology

In this chapter we define bounded cohomology of groups and equivariant bounded coho-
mology of group actions. This chapter is meant as a recollection of the definitions and
important statements. We do not prove everything in detail but refer to the correspond-
ing literature for the missing details.

2.1 Bounded cohomology of groups

At first, we define (bounded) cohomology of discrete groups. We follow Frigerio [7,
Sections 1.1 and 1.4].

Let Γ be a discrete group. We construct a cochain complex of R[Γ]-modules as fol-
lows. For n ∈ N we consider the R[Γ]-module Map(Γn+1,R) and define the coboundary
operator δn : Map(Γn+1,R) → Map(Γn+2,R) by

δnf(x0, . . . , xn+1) =
n+1∑
i=0

(−1)if(x0, . . . , x̂i, . . . , xn+1)

for f ∈ Map(Γn+1,R). Then, (Map(Γ∗+1,R), δ∗) is a cochain complex of R[Γ]-modules
called the homogeneous complex for Γ and R. One can check via a direct computation
that δ∗ fulfils the properties of a coboundary operator.

In particular, δn is a map of R[Γ] modules for all n ∈ N and hence commutes with the
Γ-action. This means it sends Γ-invariant cochains to Γ-invariant cochains.

For this reason, it is possible to consider the subcomplex C∗(Γ;R) = Map(Γ∗+1,R)Γ
of the homogeneous complex consisting only of Γ-invariant cochains equipped with the
restricted coboundary operator, also denoted by δ∗.

Then, the group cohomology of Γ with coefficients in R is then defined by

H∗(Γ;R) := H∗(C∗(Γ;R)).

An example for groups, where it is possible to compute the group cohomology in every
degree are non-abelian free groups. In particular, the following statement holds true due
to [12, Corollary 1.6.23].

Example 2.1.1. Let F be a non-abelian free group. Then, for all k ≥ 2, we have
Hk(F ;R) = 0.

In order to define the bounded cohomology of Γ, we consider the bounded subcomplex
of C∗(Γ;R). More precisely, as δ∗ preserves boundedness, we obtain a complex consisting
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of R[Γ]-modules Cn
b (Γ;R) := ℓ∞(Γn+1,R)Γ ⊂ Cn(Γ;R) for n ∈ N and the coboundary

operator given by δ∗.

We define the bounded cohomology of Γ with real coefficients by

H∗
b (Γ;R) := H∗(C∗

b (Γ;R)).

Theorem 2.1.2 ([7, Corollary 6.7]). The map

H2
b (Γ;R) → R

α 7→ inf{∥ζ∥∞ | ζ ∈ C2
b (Γ;R) is a cocycle with [ζ] = α}

defines a norm on H2
b (Γ;R). In particular, H2

b (Γ;R) is a Banach space, i.e. a complete
normed R-vector space.

Since every cocycle in Cn
b (Γ;R) is also a cocycle in Cn(Γ;R) we obtain a canonical

comparison map between bounded cohomology and ordinary group cohomology.

Definition 2.1.3 (comparison map). The inclusion ι : ℓ∞(Γ∗+1,R) → Map((Γ∗+1,R)
from the bounded complex to the ordinary homogeneous complex induces a map

comp∗Γ : H
∗
b (Γ;R) → H∗(Γ;R)

from bounded cohomology to ordinary cohomology called the comparison map. For
n ∈ N, we denote the kernel of compnΓ by EHn

b (Γ;R).

The study of the kernel of the comparison map is important for the understanding
of bounded cohomology. There is a relation between the kernel EH2

b (Γ;R) of the com-
parison map in degree two and quasimorphisms. This relation is discussed in Chapter 3
and gives an important insight in the bounded cohomology of a non-abelian group of
degree 2 as we can see in the following example.

Example 2.1.4. Let F be a non-abelian free group. For k ≥ 2 we have

Hk
b (F ;R) = EHk

b (Γ;R)

since Hk
b (F ;R) = 0 by Example 2.1.1.

Next, we introduce the cup product and the Massey triple product in bounded coho-
mology. It is a way of generating higher dimensional coclasses out of lower dimensional
ones.

We define the cup product on cochains of dimension p, q ∈ N by

∪ : Cp
b (Γ;R)⊗R C

q
b (Γ;R) → Cp+q

b (Γ;R)
f ⊗ g 7→ f ∪ g : ((γ0, . . . , γp+q) 7→ f(γ0, . . . , γp) · g(γp, . . . , γp+q))

The cup product is associative and for p, q ∈ N and cochains f ∈ Cp
b (Γ;R) and
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2.2 Equivariant bounded cohomology

g ∈ Cq
b (Γ;R) we have

δp+q(f ∪ g) = δpf ∪ g + (−1)pf ∪ δqg.

Hence, the following definition of the cup product on bounded cohomology is well-
defined.

Definition 2.1.5 (cup product). We define the cup product on coclasses of dimension
p, q ∈ N by

∪ : Hp
b (Γ;R)⊗R H

q
b (Γ;R) → Hp+q

b (Γ;R)
[f ]⊗ [g] 7→ [f ∪ g].

Another operation in the bounded cohomology is the Massey triple product, first de-
fined as an operation in singular cohomology. The definition can be adapted to bounded
cohomology as follows.

Definition 2.1.6 (Massey triple product). Let p, q, k ∈ N be integers and α1 ∈ Hp
b (Γ;R),

α2 ∈ Hq
b (Γ;R), α ∈ Hk

b (Γ;R). If the cup products α1 ∪ α and α ∪ α2 are trivial then

the Massey triple product ⟨α1, α, α2⟩ exists and it is a subset of Hp+q+k−1
b (Γ;R) whose

elements are determined as follows.

A coclass ζ ∈ Hp+q+k−1
b (Γ;R) is an element of the Massey triple product ⟨α1, α, α2⟩

if and only if there exists ω1 ∈ Cp
b (Γ;R), ω2 ∈ Cq

b (Γ;R), and ω ∈ Ck
b (Γ;R) that are

representatives of α1, α2, and α, respectively, and β1 ∈ Cp+k−1
b (Γ;R), β2 ∈ Cq+k−1

b (Γ;R)
with δβ1 = ω1 ∪ ω and δβ2 = ω ∪ ω2 such that

ζ = (−1)k[(−1)pω1 ∪ β2 − β1 ∪ ω2].

The Massey triple product is said to be trivial if it contains the trivial coclass.

Remark 2.1.7. The cochain (−1)pω1 ∪ β2 − β1 ∪ ω2 of the above definition is indeed a
cocycle, as we compute

δ((−1)pω1 ∪ β2 − β1 ∪ ω2) = (−1)pδ(ω1 ∪ β2) + δ(β1 ∪ ω2)

= ω1 ∪ δβ2 − δβ1 ∪ ω2

= ω1 ∪ ω ∪ ω2 − ω1 ∪ ω ∪ ω2 = 0.

2.2 Equivariant bounded cohomology

Let Γ be a discrete group acting on a set S.

We define a group action of Γ on the set

ℓ∞(Sn+1,R) := {f : Sn+1 → R | ∥f∥∞ <∞}
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2 Bounded Cohomology

via

(g · f)(s0, . . . , sn) = f(g−1 · s0, . . . , g−1 · sn)

for g ∈ Γ and f ∈ ℓ∞(Sn+1,R).
As in the definition of (bounded) group cohomology, we consider only Γ-invariant

bounded maps. This means, we consider the cochain complex

C∗
Γ,b(S;R) := ℓ∞(S∗+1,R)Γ

equipped with the coboundary operator δ∗ that is given in dimension n ∈ N by

δnf(s0, . . . , sn+1) =

n+1∑
i=0

(−1)if(s0, . . . , ŝi, . . . , sn+1)

for f ∈ Cn
Γ,b(S;R) and s0, . . . , sn+1 ∈ S.

We define the Γ-equivariant bounded cohomology of S (with real coefficients) by

H∗
Γ,b(S;R) := H∗(C∗

Γ,b(S;R)).

Equivariant bounded cohomology of Γ ↷ S allows conclusions on the bounded coho-
mology of Γ via the following map.

Let s ∈ S and

os : Γ → S

g 7→ gs

be the orbit map of s. This map induces a Γ-equivariant homomorphism of cochain
complexes

o∗s : C
∗
Γ,b(S;R) → C∗

b (Γ;R)

that is defined by

ons (f)(x0, . . . , xn) = f(x0s, . . . , xns)

for f ∈ Cn
Γ,b(S;R) and x0, . . . , xn ∈ Γ.

Hence, we obtain an induced map o∗s : H
∗
Γ,b(S;R) → H∗

b (Γ;R) in bounded cohomology.
This map is an isomorphism in the following case.

Theorem 2.2.1 ([7, Theorem 4.23]). Suppose the stabilizer of every element of S is
amenable. Then,

o∗s : H
∗
Γ,b(S;R) → H∗

b (Γ;R)

is an isomorphism of cochain complexes for all s ∈ S.

22



2.2 Equivariant bounded cohomology

An important application of this theorem will be the case of a non-abelian free group
acting on one of its Cayley graphs.

Corollary 2.2.2. Let F be a non-abelian free group with (not necessarily free) generating
set P ⊂ F . Then, for all x ∈ F the orbit map

o∗x : H
∗
F,b(Cay(F,P);R) → H∗

b (F ;R)

is an isomorphism.

Proof. By Theorem 2.2.1 it suffices to show that the stabilizer of every vertex is amenable.
But, for vertices s of Cay(F,P) and g ∈ F we have gs = s if and only if g is the neu-
tral element. Hence, the stabilizer of every vertex is amenable, since it is the trivial
group.

In the same way as in bounded group cohomology, we can define the cup product and
the Massey triple product in equivariant bounded cohomology.

Definition 2.2.3 (cup product). Let Γ ↷ S be a group action. We define the cup
product in equivariant bounded cohomology of dimension p and q ∈ N by

∪ : Cp
Γ,b(S;R)⊗R C

q
Γ,b(S;R) → Cp+q

Γ,b (S;R)

f ⊗ g 7→ f ∪ g : ((s0, . . . , sp+q) 7→ f(s0, . . . , sp) · g(sp, . . . , sp+q))

∪ : Hp
Γ,b(S;R)⊗R H

q
Γ,b(S;R) → Hp+q

Γ,b (S;R)

[f ]⊗ [g] 7→ [f ∪ g].

The cup product on coclasses is well-defined due to similar arguments as for coclasses
in bounded group cohomology. Likewise, we obtain the following equation regarding the
coboundary operator: For f ∈ Cp

Γ,b(Γ;R) and g ∈ Cq
Γ,b(Γ;R) we have

δp+q(f ∪ g) = δpf ∪ g + (−1)pf ∪ δqg.

Remark 2.2.4. An interesting connection between the cup product in bounded and
equivariant bounded cohomology is the compatibility with the orbit map o∗s for s ∈ S,
i.e. for f ∈ Hp

Γ,b(S;R), g ∈ Hq
Γ,b(S;R) we have

op+q
s (f ∪ g) = ops(f) ∪ oqs(g).

Definition 2.2.5 (Massey triple product). Let Γ ↷ S be a group action. Let p, q, k ∈ N
and α1 ∈ Hp

Γ,b(S;R), α2 ∈ Hq
Γ,b(S;R), α ∈ Hk

Γ,b(S;R). If the cup products α1 ∪ α and
α ∪ α2 are trivial then the Massey triple product ⟨α1, α, α2⟩ exists and it is a subset of

Hp+q+k−1
Γ,b (S;R) whose elements are determined as follows.

A coclass ζ ∈ Hp+q+k−1
Γ,b (S;R) is an element of the Massey triple product ⟨α1, α, α2⟩

if and only if there exists ω1 ∈ Cp
Γ,b(S;R), ω2 ∈ Cq

Γ,b(S;R), and ω ∈ Ck
Γ,b(S;R) that are
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2 Bounded Cohomology

representatives of α1, α2, and α, respectively, and β1 ∈ Cp+k−1
Γ,b (S;R), β2 ∈ Cq+k−1

Γ,b (S;R)
with δβ1 = ω1 ∪ ω and δβ2 = ω ∪ ω2 such that

ζ = (−1)k[(−1)pω1 ∪ β2 − β1 ∪ ω2].

The Massey triple product is said to be trivial if it contains the trivial element.

Theorem 2.2.6. Let Γ ↷ S be a group action. The orbit map o∗s for s ∈ S is compatible
with the Massey triple product in bounded and equivariant bounded cohomology. More
precisely, for p, q, k ∈ N and α1 ∈ Hp

Γ,b(S;R), α2 ∈ Hq
Γ,b(S;R), α ∈ Hk

Γ,b(S;R), we have

op+q+k
s (⟨α1, α, α2⟩) ⊂ ⟨ops(α1), o

k
s(α), o

q
s(α2)⟩.

Proof. Let ω1 ∈ Cp
Γ,b(S;R), ω2 ∈ Cq

Γ,b(S;R), and ω ∈ Ck
Γ,b(S;R) be representatives of

α1, α2, and α, respectively, and β1 ∈ Cp+k−1
Γ,b (S;R), β2 ∈ Cq+k+1

Γ,b (S;R) with

δβ1 = ω1 ∪ ω and δβ2 = ω ∪ ω2.

We consider the element

ζ := (−1)k[(−1)pω1 ∪ β2 − β1 ∪ ω2]

of the Massey triple product ⟨α1, α, α2⟩. By the compatibility of the cup product with
the orbit map os, we have

op+q+k−1
s (ζ) = (−1)k[(−1)pops(ω1) ∪ oq+k−1

s (β2)− op+k−1
s β1 ∪ oqsω2].

Taking a look at the appearing coclasses, we see that ops(ω1), o
q
s(ω2), and ops(ω) are

representatives for the coclasses ops(α1), o
q
s(α2), and o

k
s(α), respectively, and it is

δop+k−1
s (β1) = op+k

s (δβ1) = op+k
s (ω1 ∪ ω) = ops(ω1) ∪ oks(ω).

As we obtain a similar equation for β2 we conclude

op+q+k−1
s (ζ) ∈ ⟨ops(α1), o

k
s(α), o

q
s(α2)⟩.

.
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3 Quasimorphisms

This chapter is dedicated to quasimorphisms and their connection to bounded cohomol-
ogy. We first introduce quasimorphisms of groups and take a closer look at homogeneous
quasimorphisms and their induced coclasses. Moreover, we also define quasimorphisms
of group actions and describe their connection to quasimorphisms of groups.

3.1 Quasimorphisms of groups

In this section we introduce quasimorphisms of groups and their potential for the com-
putation of bounded cohomology in degree 2. We follow Frigerio [7, Sections 2.3, 2.4].
For this, let Γ be a discrete group.

Definition 3.1.1 (quasimorphism). A map f : Γ → R is a quasimorphism (of Γ) if

D(f) := sup
g,h∈Γ

|f(g) + f(h)− f(gh)| <∞.

We call D(f) the defect of f . The space of quasimorphisms has a canonical structure of
an R-module, and it is denoted by QM(Γ).

Example 3.1.2 (trivial quasimorphisms). Trivial examples for quasimorphisms are
group homomorphisms, whose defect is 0, and bounded functions, whose defect is bounded
by triple the bound of the function. A quasimorphism is called trivial if it is a sum of
a homomorphism and a bounded function. Note that a non-zero group homomorphism
cannot be bounded. Hence, Hom(Γ;R) ∩ ℓ∞(Γ;R) = {0}. We denote by

QM0(Γ) := Hom(Γ;R)⊕ ℓ∞(Γ;R)

the space of trivial quasimorphisms.

More examples for quasimorphisms will be given in Section 4.1.

3.1.1 Homogeneous quasimorphisms

An interesting class of quasimorphisms of groups are homogeneous quasimorphisms.
We show that every quasimorphism has bounded distance to a unique homogeneous
quasimorphism.

Definition 3.1.3. A quasimorphism f : Γ → R is homogeneous if f(gn) = n · f(g) for
every g ∈ Γ, n ∈ Z. The space of homogeneous quasimorphisms is a submodule of
QM(Γ,R) and is denoted by QMh(Γ,R).

25



3 Quasimorphisms

Theorem 3.1.4. Let f ∈ QM(Γ,R) be a quasimorphism. Then, there exists a unique
element f ∈ QMh(Γ,R) that has finite distance from f . Moreover, we have

∥f − f∥∞ ≤ D(f) and D(f) ≤ 4D(f).

Proof. For the uniqueness, let f, f̃ ∈ QMh(Γ,R) be homogeneous quasimorphisms with
∥f − f∥∞ ≤ D(f) and ∥f − f̃∥∞ ≤ D(f). By the triangle inequality, we have

∥f̃ − f∥∞ = ∥f̃ − f + f − f∥∞
≤ ∥f̃ − f∥∞ + ∥f − f∥∞
≤ 2D(f).

Hence, for all g ∈ Γ and all n ∈ N>0, we compute

|f̃(g)− f(g)| = | 1
n
· (nf̃(g)− nf(g))|

=
1

n
· |(f̃(gn)− f(gn))|

≤ 1

n
· ∥f̃ − f∥∞

≤ 2

n
D(f).

As lim
n→∞

2
nD(f) = 0, this shows f̃(g)− f(g) = 0. Finally, we have f̃ = f .

For the existence, we show that for g ∈ Γ the sequence (f(g
n)

n )n>0 is a Cauchy sequence
in R. Knowing this, we can define

f : F → R

g 7→ lim
n→∞

f(gn)

n

and show that this map fulfils the required properties of a homogeneous quasimorphism.
First, we prove that for all n,m ∈ N>0 the inequality

|f(gmn)− nf(gm)| ≤ (n− 1)D(f)

holds. For this, we choose m ∈ N>0 arbitrarily and use induction to show the statement
for all n ∈ N>0. In the base case for n = 1, we compute

|f(gmn)− nf(gm)| = |f(gm)− f(gm)| = 0 = (n− 1)D(f).

Now assume that for n ∈ N>0 the inequality |f(gmn) − nf(gm)| ≤ (n − 1)D(f) holds.
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3.1 Quasimorphisms of groups

Then

|f(gm(n+1))− (n+ 1)f(gm)| = |f(gnmgm)− f(gnm)− f(gm) + f(gnm)− nf(gm)|
≤ |f(gnmgm)− f(gnm)− f(gm)|+ |f(gnm)− nf(gm)|
(∗)
≤ D(f) + (n− 1)D(f) = nD(f)

using the definition of the defect of a quasimorphism and the induction hypothesis in
step (∗). With these inequalities, we are able to prove that the sequence (f(g

n)
n )n>0 is

Cauchy as we choose for ϵ ∈ R>0 an integer N ∈ N>0 large enough such that

ϵ >
2

N
D(f).

We then obtain for all n,m ≥ N the inequality∣∣∣∣f(gn)n
− f(gm)

m

∣∣∣∣ = 1

mn
|mf(gn)− nf(gm)|

≤ 1

mn

(
|mf(gn)− f(gnm)|+ |f(gnm)− nf(gm)|

)
≤ 1

mn

(
(m− 1)D(f) + (n− 1)D(f)

)
≤
(
1

n
+

1

m

)
D(f)

≤ 2

N
D(f) < ϵ

and conclude that the sequence is a Cauchy sequence. Thus, the map

f : F → R

g 7→ f(gn)

n

is well defined. Its distance from f is at most D(f) since for all g ∈ Γ we have

∣∣f(g)− f(g)
∣∣ = ∣∣∣∣ limn→∞

(
f(gn)

n
− f(g)

)∣∣∣∣
= lim

n→∞

1

n

∣∣(f(gn)− nf(g))
∣∣ ≤ lim

n→∞

n− 1

n
D(f)

= D(f).

It is a quasimorphism with defect smaller or equal to 4D(f), since for all g, h ∈ Γ, we
compute∣∣f(g) +f(h)− f(gh)

∣∣
≤
∣∣f(g)− f(g)

∣∣+ ∣∣f(h)− f(h)
∣∣+ ∣∣−f(gh) + f(gh)

∣∣+ ∣∣f(g) + f(h)− f(gh)
∣∣

≤ 4D(f).
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As the last step of this proof we need to show that the constructed quasimorphism f is
homogeneous. For this, let g ∈ Γ and m ∈ N>0. Then

f(gm) = lim
n→∞

f((gm)n)

n
= lim

n→∞

f(gmn)

n

= m · lim
n→∞

f(gmn)

mn
= mf(g).

Definition 3.1.5 (homogenization). For f ∈ QM(Γ,R) we call the unique homogeneous
quasimorphism f ∈ QMh(Γ,R) that has bounded distance from f the homogenization
of f .

Corollary 3.1.6. We have QM(Γ) = QMh(Γ)⊕ ℓ∞(Γ;R).

Proof. The existence of the homogenization shows QM(Γ) = QMh(Γ) + ℓ∞(Γ;R). The
uniqueness of the homogenization concludes the directness of the sum.

3.1.2 Quasimorphisms of groups and bounded cohomology

Next we want to study the connection between quasimorphisms of groups and bounded
group cohomology. We will see that quasimorphisms and in particular homogeneous
quasimorphisms allow us to understand better the bounded group cohomology in de-
gree 2.

Every quasimorphism defines a Γ-invariant (not necessarily bounded) cochain via the
map

·̂ : QM(Γ,R) → C1(Γ,R)

f 7→
(
f̂ : (x, y) 7→ f

(
x−1y

))
.

In particular, this map is R-linear and it is injective, because one can reconstruct f via
f(x) = f̂(e, x).
We take a closer look at δ1f̂ for an arbitrary quasimorphism f ∈ QM(Γ). This map

is bounded by D(f) as we can estimate for x, y, z ∈ Γ

|δ1f̂(x, y, z)| = |f̂(y, z)− f̂(x, z) + f̂(x, y)|
= |f(y−1z)− f(x−1z) + f(x−1y)| ≤ D(f)

since x−1z = x−1y · y−1z. This shows δ1f̂ ∈ C2
b (Γ,R). Further, it is a cocycle in

C2
b (Γ,R), as δ2δ1f̂ = 0 by the definition of the homogeneous complex. We then obtain

a well-defined R-linear map

Φ: QM(Γ) → H2
b (Γ,R)

f 7→ [δ1f̂ ].
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On the other hand, we define the R-linear map

·̃ : C1(Γ;R) → Map(Γ;R)
φ 7→ φ̃ : (x 7→ φ(e, x)).

By definition, this map restricts to a map C1
b (Γ;R) → ℓ∞(Γ;R). Furthermore, it is

injective, since we can reconstruct φ ∈ C1(Γ;R) via φ(x, y) = φ̃(x−1y) for all x, y ∈ Γ
using the Γ-invariance of φ.

The concatenation ·̃ ◦ ·̂ is the identity on QM(Γ), which can be seen by a short
comparison of the definitions.

An interesting observation for φ ∈ C1(Γ;R) is the equation D(φ̃) = ∥δ1φ∥∞, which
also follows from the Γ-invariance of φ. This will be very useful in the proof of the
following theorem.

Theorem 3.1.7. Let Γ be a group. Then the sequence of R[Γ]-modules

0 → QM0(Γ)
incl
↪−→ QM(Γ)

Φ−→ H2
b (Γ;R)

comp2Γ−→ H2(Γ;R)

is exact. In particular, it is

EH2
b (Γ;R) ∼= QM(Γ)/QM0(Γ)

∼= QMh(Γ)/Hom(Γ;R).

Proof. By definition, the inclusion QM0(Γ)
incl
↪−→ QM(Γ) is injective. We want to show

im(incl) = ker(Φ). For f ∈ Hom(Γ;R) we know that δ1f̂ is bounded by D(f) = 0.
Hence, δ1f̂ = 0. Also, for f ∈ ℓ∞(Γ;R), the map f̂ is bounded and hence δ1f̂ is
a coboundary in C2

b (Γ;R). These two observations show that for all f ∈ QM0(Γ),

the coclass [δ1f̂ ] ∈ H2
b (Γ;R) is trivial and im(incl) ⊂ ker(Φ). On the other hand, let

f ∈ QM(Γ) such that [δ1f̂ ] = 0 in H2
b (Γ;R). Then there exists φ ∈ C1

b (Γ;R) such

that δ1f̂ = δ1φ. The map φ̃ is bounded, since φ is bounded, and
˜̂
f − φ is a group

homomorphism, as D(
˜̂
f − φ) = ∥δ1(f̂ − φ)∥∞ = 0. This shows

f =
˜̂
f − φ̃+ φ̃ =

˜̂
f − φ+ φ̃ ∈ QM0(Γ).

The last thing missing for the sequence to be exact is the equation im(Φ) = ker(comp2Γ).

The relation im(Φ) ⊂ ker(comp2Γ) follows directly from the fact that f̂ ∈ C1(Γ,R) for
f ∈ QM(Γ,R). On the other hand, let φ ∈ C2

b (Γ;R) be a cocycle such that [φ] = 0

in H2(Γ;R). Then there exists ψ ∈ C1(Γ;R) with φ = δ1ψ. Since the defect D(ψ̃) =
∥δ1ψ∥∞ < ∞ is finite, we know that ψ̃ is a quasimorphism with [φ] = [δ1ψ] = Φ(ψ̃)

because we have the equation δ1ψ = δ1
̂̃
ψ by comparing the definitions of ·̃ and ·̂.

Using the exactness of the sequence, we are now able to describe EH2
b (Γ;R) as

EH2
b (Γ;R) = ker(comp2Γ)

∼= QM(Γ)/QM0(Γ)
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where the isometry is induced by Φ. By Example 3.1.2 and Corollary 3.1.6 we know

EH2
b (Γ;R) ∼= QM(Γ)/QM0(Γ)

∼= QMh(Γ)/Hom(Γ;R).

Corollary 3.1.8. Let f ∈ QMh(Γ) be a homogeneous quasimorphism. Then δ1f̂ repre-
sents the trivial coclass in H2

b (Γ;R) if and only if f is a group homomorphism.

Proof. We know

ker(Φ) = QM0(Γ) = Hom(Γ;R)⊕ ℓ∞(Γ;R).

This means any unbounded map in ker(Φ) is at finite distance to a group homomorphism.

Let f ∈ QMh(Γ) be a homogeneous quasimorphisms with Φ(f) = [δ1f̂ ] = 0. If f is
zero-map, then f is a group homomorphism. So assume f is non-zero. Then there exists
g ∈ Γ such that f(g) ̸= 0. This implies that f is unbounded as we have f(gn) = nf(g) for
all n ∈ N. In particular, we have that f is at finite distance to a group homomorphism.
But since group homomorphisms are homogeneous quasimorphisms, we conclude with
the uniqueness of the homogenization, that f has to be a group homomorphism.

On the other hand, if a homogeneous quasimorphism f is a group homomorphism,
then f ∈ ker(Φ) which means [δ1f̂ ] = 0.

3.2 Quasimorphisms of group actions

In this section we introduce quasimorphisms of group actions and how they interact
- similar to quasimorphisms of groups - with equivariant bounded cohomology of de-
gree 2. Furthermore, we examine how to construct quasimorphisms of groups out of
quasimorphisms of group actions using orbit maps.

In the following, let Γ be a discrete group and let Γ ↷ S be a group action of Γ on a
set S.

Definition 3.2.1 (quasimorphism of group action). A quasimorphism of Γ ↷ S is a
map f : S×S → R that is Γ-invariant with respect to the diagonal action of Γ on S×S
and has finite defect

D(f) := ∥δ1f∥∞ = sup
x,y,z∈S

|f(y, z)− f(x, z) + f(x, y)|.

We denote by QM(Γ ↷ S) the set of all quasimorphisms of Γ ↷ S.

Since the defect D(f) = ∥δ1f∥∞ of a quasimorphism of Γ ↷ S is finite, we know that
δ1f is a cocycle in C2

Γ,b(S;R). Furthermore, the orbit map gives a connection between
the coclasses defined by quasimorphisms of Γ ↷ S and of Γ, see the following theorem.
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3.2 Quasimorphisms of group actions

Theorem 3.2.2. Let f : S×S → R be a quasimorphism of Γ ↷ S and let s ∈ S. Then,
the pullback of f under the orbit map os, i.e. the map

fs : Γ → R
g 7→ f(s, gs)

is a quasimorphism of Γ with δ1f̂s = o2s(δ
1f).

Proof. Let g, h ∈ Γ. Then

|fs(g) + fs(h)− fs(gh)| = |f(s, gs) + f(s, hs)− f(s, ghs)|
= |f(s, gs) + f(gs, ghs)− f(s, ghs)|
= |δ1f(s, gs, ghs)| ≤ D(f).

This allows us to estimate D(fs) ≤ D(f) and hence fs is a quasimorphism.
Furthermore, we compute for x0, x1, x2 ∈ Γ

δ1f̂s(x0, x1, x2) = f̂s(x1, x2)− f̂s(x0, x2) + f̂s(x0, x1)

= fs(x
−1
1 x2)− fs(x

−1
0 x2) + fs(x

−1
0 x1)

= f(s, x−1
1 x2s)− f(s, x−1

0 x2s) + f(s, x−1
0 x1s)

= f(x1s, x2s)− f(x0s, x2s) + f(x0s, x1s)

= o2s(δ
1f)(x0, x1, x2).
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4 Examples of quasimorphisms and
triviality results

In the following we give three examples for quasimorphisms of non-abelian free groups,
namely Brooks, Rolli, and ∆-decomposable quasimorphisms and one example for quasi-
morphisms of groups acting on median graphs. Furthermore, we collect results of trivi-
ality for cup products and Massey triple products with coclasses induced by one of these
quasimorphisms.

The existing triviality results for Brooks, Rolli, and ∆-decomposable quasimorphisms
were proven by Amontova and Bucher [1] and Marasco [13] using aligned chains. It is
currently unknown how aligned chains can be adapted to the setting of group actions on
median graphs. The goal of this chapter is to obtain a general statement of triviality for
products with certain quasimorphisms that is adaptable simultaneously to each of the
four examples we give. This chapter is ordered in the following way. We first formulate
the statement in Section 4.2. Then, we show in Section 4.3 how we can use it to prove
vanishing results for examples of quasi-morphisms. Finally, in Section 4.4 we focus on
the proof of the general statement.

4.1 Examples

In this section we give examples for quasimorphisms both of groups and of group actions.
Furthermore, we give an overview of vanishing results for cup products and Massey triple
products with coclasses induced by those quasimorphisms.

4.1.1 Brooks quasimorphisms

As a first point we introduce Brooks quasimorphisms. They are named after the mathe-
matician Robert Brooks, who mentioned them first in a paper about bounded cohomol-
ogy [2]. They are the first example of an infinite family of quasimorphisms that give rise
to infinitely many linearly independent coclasses in the bounded cohomology of degree 2
of a non-abelian free group.

Definition 4.1.1 (Brooks quasimorphism). Let F be a non-abelian free group and let S
be a free generating set of F . Let w be a non-empty reduced word over S ∪ S−1. Note
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that w ̸= w−1, since w is a non-trivial element of F . We define

χw : F → {−1, 0,+1}

g 7→


1, if g = w,

−1, if g = w−1,

0, otherwise.

Let l be the length of the word w. The Brooks quasimorphism on w is defined as the
function

ϕw : F → R

g 7→
m−l+1∑
j=1

χw(xj · · ·xj+l−1)

where g = x1 · · ·xm as a reduced word over S ∪ S−1. In other words, the Brooks
quasimorphism ϕw(g) counts the number of occurrences of the word w in g minus the
number of occurrences of the word w−1 in g.

We use the convention that the sum over the empty set is equal to 0. This occurs
when the length of g is smaller than the length of w.

The following is known about Brooks quasimorphisms.

Theorem 4.1.2 ([1, Theorem A]). Let F be a non-abelian free group freely generated
by S and let w ∈ F be non-trivial. Then the Brooks quasimorphism fw is a quasimor-
phism and for all α ∈ Hn

b (F ;R) the cup product

[δ1f̂w] ∪ α ∈ Hn+2
b (F ;R)

is trivial.

4.1.2 Rolli quasimorphisms

Another family of quasimorphisms that proves that the second bounded cohomology of
a non-abelian group is infinite dimensional is the family of Rolli quasimorphisms. They
were first introduced by the mathematician Pascal Rolli.

In the following, let F be a non-abelian free group freely generated by the finite set
S = {s1, . . . , sn}. We define the set of bounded alternating maps from Z to R by

ℓ∞alt(Z,R) := {f : Z → R | ∥f∥∞ <∞ and f(m) = f(−m) for all m ∈ Z}.

Definition 4.1.3 (Rolli quasimorphism). Let λ1, . . . , λn ∈ ℓ∞alt(Z,R). Similarly to the
fact that each element of F can be uniquely written as a reduced word, every x ∈ F can
be uniquely written as a factorization x = sm0

n0
· · · smk

nk
, where all exponents mj ∈ Z\{0}
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are non-zero integers and for all j ∈ {0, . . . , k − 1} we have nj ̸= nj+1. We call the map

ϕ : F → R

x 7→
k∑

j=0

λnj (mj),

a Rolli quasimorphism.

In the following, we give the idea how one can prove that H2
b (F ;R) is infinite dimen-

sional using Rolli quasimorphisms. For this, one considers a simplified version of the
Rolli quasimorphisms, namely the ones where λ1, . . . , λn ∈ ℓ∞alt(Z,R) are chosen to be
the same map denoted by λ. We call the associated Rolli quasimorphism ϕλ and obtain
a linear map

ℓ∞alt(Z,R) → H2
b (F ;R)

λ 7→ [δ1ϕ̂λ].

Rolli [16, Proposition 2.2] proves that this map is injective, and hence, the family of Rolli
quasimorphisms induces an infinite linearly independent family of coclasses in H2

b (F ;R).
The following vanishing result is known for cup products with coclasses given by Rolli

quasimorphisms.

Theorem 4.1.4 ([1, Theorem A]). Let ϕ : F → R be a Rolli quasimorphism. Then ϕ is
a quasimorphism and for all α ∈ Hn

b (F ;R) the cup product

[δ1ϕ̂] ∪ α ∈ Hn+2
b (F ;R)

is trivial.

4.1.3 ∆-decomposable quasimorphisms

The mathematician Heuer introduced the notion of ∆-decomposable quasimorphisms.
For this, we first define ∆-decompositions and then ∆-decomposable quasimorphism as
it is done by Heuer [9] and by Amontova and Bucher [1].

In the following, let F be a non-abelian free group with S a free generating set of F .

Notation 4.1.5 (Sequences). Let A ⊂ F be a symmetric subset, i.e. if a ∈ A, then
also a−1 ∈ A. We denote by A∗ the set of finite sequences in A including the empty
sequence,

A∗ = {(a1, . . . , an) | n ∈ N and ∀i ∈ {1, . . . , n} : ai ∈ A}

For s = (a1, . . . , an) ∈ A∗ we define n to be the length of s and we denote by s−1

the sequence (a−1
n , . . . , a−1

1 ). Note that s−1 is again an element of A∗ because of the
symmetry assumption on A. For t = (b1, . . . , bm) ∈ A∗ we define the common sequence
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of s and t to be the empty sequence if a1 ̸= b1 and otherwise to be the sequence
(a1, . . . , ar) where r is the largest integer with r ≤ min{m,n} such that aj = bj for all
j ≤ r. Moreover, we define s · t := (a1, . . . , an, b1, . . . , bm) to be the concatenation of s
and t.

Definition 4.1.6 (∆-decomposition). Let P ⊂ F be a symmetric subset, called pieces
of F , such that the neutral element of F does not lie in P. A ∆-decomposition of F into
the pieces P is a map ∆: F → P∗ assigning to every g ∈ F a sequence (g1, . . . , gn) ∈ P∗

such that for all g ∈ F and ∆(g) = (g1, . . . , gk)

(i) the reduced expression of g in the letters S ∪ S−1 is given by the concatenation of
the words g1, . . . , gk, i.e. the word g1 · · · gk is already a reduced word,

(ii) the sequence ∆(g−1) is given by ∆(g)−1 in the sense of Notation 4.1.5, and

(iii) for all 1 ≤ i ≤ j ≤ n we have ∆(gi · · · gj) = (gi, . . . , gj).

Furthermore, we demand the existence of a constant R ∈ N with the following property:

(iv) For all g, h ∈ F let

• c1 ∈ P∗ be such that c−1
1 is the common sequence of ∆(g) and ∆(gh),

• c2 ∈ P∗ be such that c−1
2 is the common sequence of ∆(g−1) and ∆(h),

• c3 ∈ P∗ be such that c−1
3 is the common sequence of ∆(h−1) and ∆((gh)−1).

Let r1, r2, r3 ∈ P∗ be the unique sequences such that

∆(g) = c−1
1 · r1 · c2,

∆(h) = c−1
2 · r2 · c3,

∆((gh)−1) = c−1
3 · r3 · c1.

Then the length or r1, r2, r3 is bounded by R.

For the pair (g, h), we call c1, c2, c3 the c-part of the ∆-triangle of (g, h) and r1, r2, r3
the r-part of the ∆-triangle of (g, h).

Definition 4.1.7 (∆-decomposable quasimorphism). Let P ⊂ F be a symmetric subset
not containing the neutral element. Let ∆: F → P∗ be a ∆-decomposition of F into
pieces P and let λ ∈ ℓ∞alt(P,R) be a alternating bounded map on P, i.e. λ(p−1) = −λ(p)
for all p ∈ P. Then the map

ϕλ,∆ : F → R

g 7→
n∑

i=0

λ(gi),

with ∆(g) = (g1, . . . , gn) is called a ∆-decomposable quasimorphism.
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Figure 4.1: ∆-decomposition

Next, we give some examples of ∆-decomposable quasimorphisms.

Example 4.1.8 (trivial decomposition). Let F be freely generated by a finite set S and
let Ptriv = S ∪ S−1. Every element x ∈ F can be uniquely written as a reduced word
s1 · · · sn with letters si ∈ S ∪ S−1. We define ∆triv : F → Ptriv by sending an element
x ∈ F to the sequence (s1, . . . , sn) ∈ P∗

triv determined by its reduced expression. This is
indeed a ∆-decomposition and in this case every ∆triv-decomposable quasimorphism is
a group homomorphism.

Example 4.1.9 (Brooks quasimorphism). Let w ∈ F be a non self-overlapping word.
Then every word x ∈ F can be written as a reduced word of the form

x = u1w
ϵ1u2w

ϵ2 · · ·ukwϵkuk+1,

where ui ∈ F are possibly empty such that w and w−1 are no subwords of ui for all
i ∈ {1, . . . , k+1} and ϵi = ±1 for all i ∈ {1, . . . , k}. One can show that this expression is
unique due to the assumption that w is non self-overlapping. We consider the symmetric
subset

Pw := {x ∈ F | x non-trivial and contains neither w nor w−1 as subword} ∪ {w,w−1}

of F and define the ∆-decomposition

∆w : F → P∗
w

x 7→ (u1, w
ϵ1 , u2, w

ϵ2 , . . . , uk, w
ϵk , uk+1)

for x, ui and ϵi described as above. The ∆-decomposable quasimorphism associated to
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this decomposition and to the alternating map

λ : Pw → R

x 7→


1, if x = w,

−1, if x = w−1,

0, otherwise,

coincides with the Brooks quasimorphism ϕw.

Example 4.1.10 (Rolli quasimorphism). Every Rolli quasimorphism is ∆-decomposable.
In order to see this, let F be a free group freely generated by the set S = {s1, . . . , sn}
and let λ1, . . . , λn ∈ ℓ∞alt(Z,R). We consider the Rolli quasimorphism ϕRolli that sends a

factorization sm0
n0

· · · smk
nk

to
∑k

i=0 λni(mi).
To write this as a ∆-decomposable quasimorphism, we choose the pieces

PR :=
{
sm | s ∈ S and m ∈ Z \ {0}

}
and consider the decomposition

∆R : F → PR

x 7→ (sm0
n0
, . . . , smk

nk
),

where x has the factorization sm0
n0

· · · smk
nk

. We define λ : PR → R by

λ : PR → R
smi 7→ λi(m)

for i ∈ {1, . . . , n} and m ∈ N>0. By construction, we obtain ϕRolli = ϕλR,∆R
.

The following is known for ∆-decomposable quasimorphisms ([1],[13]).

Theorem 4.1.11. Let ϕ : F → R be a ∆-decomposable quasimorphism. Then ϕ is a
quasimorphism and for all α1 ∈ Hn

b (F ;R) and α2 ∈ Hm
b (F ;R) ,

• the cup products [δ1ϕ̂] ∪ α1 and α1 ∪ [δ1ϕ̂] are trivial in Hn+2
b (F ;R), and

• the Massey triple product ⟨α1, [δ
1ϕ̂], α2⟩ ⊂ Hn+m+1

b (F ;R) is trivial.

4.1.4 Median quasimorphisms

In the following part, we introduce median quasimorphisms. Initially, they were defined
by Monod and Shalom [14] as a quasimorphism of a group Γ that acts on a tree. This
definition was generalized by Brück, Fournier-Facio and Löh [3]. They defined median
quasimorphisms of a group acting on a CAT(0) cube complex. A CAT(0) cube complex
is shortly said a glueing of unit cubes that is simply connected and fulfils a certain
condition on the links of its vertices. For more details, see [8]. The most important
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property of CAT(0) cube complexes in our context is that its vertices and edges form a
median graph and vice versa, every median graph defines a CAT(0) cube complex ( [8,
Theorem 1.17]).
In this thesis, the median graph viewpoint comes more natural as we prove a general

vanishing result for groups acting on graphs that can be adapted to all the given examples
of quasimorphisms (Section 4.4). For this reason, we slightly modify the definition of
median quasimorphisms that is given by Brück, Fournier-Facio and Löh [3].
We fix the following setup for this section: Let X = (V,E) be a median graph. We

equip V with the graph metric denoted by d.
Let Γ be a discrete group acting on X by graph automorphisms. Since graph automor-

phisms preserve the metric, every element g ∈ Γ induces a bijection on the halfspaces H
by defining g · h = {g · x | x ∈ h} for h ∈ H. Moreover, for two halfspaces h1, h2 the
following holds: It is h1 ⊃ h2 if and only if gh1 ⊃ gh2 for g ∈ Γ. Hence, the action of Γ

on X induces an action of Γ on the set X
(l)
H of all H-segments of length l. For s ∈ X

(l)
H

we call the elements of the orbit Γs translates of s.

Definition 4.1.12 (median quasimorphism). Let l ∈ N and s ∈ X
(l)
H be an H-segment.

We define the median quasimorphism fs for s by

fs : V × V → R

(x, y) 7→
(
number of translates of s in [x, y]

(l)
H

)
−
(
number of translates of s in [y, x]

(l)
H

)
.

It follows from the definition that fs is Γ-invariant. Furthermore, fs = 0 if Γs = Γs.

Remark 4.1.13. Let s ∈ X
(l)
H be an H-segment of length l ∈ N with Γs ̸= Γs. Then fs

is given by the map

fs : V × V → R

(x, y) 7→
∑

t∈[x,y](l)H

ϵs(t),

where ϵs is defined as

ϵs : X
(l)
H → {−1, 0, 1}

t 7→


1, if Γt = Γs,

−1, if Γt = Γs,

0, otherwise.

It is not true that every median quasimorphism is indeed a quasimorphism as Brück,
Fournier-Facio and Löh constructed a counterexample, see [3, Example 3.7].
However, if the median graph fulfils the following finiteness condition it is known that

every median quasimorphism has indeed finite defect.
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Definition 4.1.14 (restricted). We say the median graph X is restricted if for every
l ∈ N there exists a constant c ∈ N such that for all x, y ∈ V and m ∈ V that lies on a
geodesic from x to y it is∣∣∣{t ∈ [x, y]

(l)
H | t contains m in the interior}

∣∣∣ ≤ c.

Theorem 4.1.15. Let X be a restricted median graph and s ∈ X
(l)
H be an H-segment

of X. Then the median quasimorphism fs has bounded defect
∣∣δ1fs∣∣ and is a quasimor-

phism of Γ ↷ X.

Remark 4.1.16. The definition of restricted median quasimorphism is quite unhandy.

Taking a look at the version of Brück, Fournier-Facio and Löh [3, Proposition 3.10], one
notices that they formulate the statement for finite dimensional CAT(0) cube complexes.
This can be translated to the viewpoint of median graphs by the condition that there is
a uniform bound c such that for two vertices x and y there are at most c edges adjacent
to y that belong to a geodesic from x to y, see [3, Lemma 3.3].

Although this condition seems more practical, we cannot use it in this thesis as there is
a gap in the arguments of Brück, Fournier-Facio and Löh. In particular, they concluded
in [3, Lemma 3.9] that the median graph corresponding to a finite dimensional cube
complex is restricted. Unfortunately, the arguments in the proof of this lemma are not
correct. They state for a finite-dimensional CAT(0) cube complex that if m lies in the
interior of tightly nested halfspaces h1 ⊃ h2 then m is part of an edge that is dual to h1.
But this is not true, see Figure 4.2 for a counterexample.

h1h2

m

Figure 4.2: The vertex m is not contained in an edge dual to h1.

It remains as an open problem whether [3, Lemma 3.9] is true and consequently it is
unclear if median quasimorphisms of groups acting on finite-dimensional CAT(0) cube
complexes have finite defect.

Trees are examples of restricted median graphs as they are uniquely geodesic and
H-segments correspond to geodesics. In this case, we define median quasimorphisms
associated to geodesics.

Definition 4.1.17 (median quasimorphisms, tree case). Let Γ be a group acting on a
tree T = (V,E) and let γ be a geodesic in T . Then the median quasimorphism fγ for γ

40



4.1 Examples

is defined by

fγ : V × V → R
(x, y) 7→

(
number of translates of γ contained in [x, y]

)
−
(
number of translates of γ contained in [y, x]

)
.

Note that the median quasimorphism fγ coincides with the median quasimorphism fs,
where s denotes the H-segment that corresponds to γ.

Remark 4.1.18. Let Γ act on a tree T = (V,E) and let v, w ∈ V . For l ∈ N we denote
by Jv, wK(l) the set of subgeodesics of length l of [v, w] and we denote by E(l) the set of
geodesics of length l in T .

Now let γ be a geodesic in T of length l ∈ N. If Γγ = Γγ, then fγ = 0. If not, we
define

ϵγ : E(l) → {−1, 0, 1}

β 7→


1, if Γβ = Γγ,

−1, if Γβ = Γγ,

0, otherwise.

We can compute fγ by

fγ(x, y) =
∑

β∈Jx,yK(l)
ϵγ(β)

for x, y ∈ V .

The pullbacks of median quasimorphisms of Γ acting on a tree correspond to the
median quasimorphism as considered by Monod and Shalom [14]. They will play an im-
portant part in the last Chapter 5 as we will develop connections between the triviality
of the second bounded cohomology of Γ and the triviality of these quasimorphisms of Γ.

In the following, we present the triviality result for cup products with classes repre-
sented by median quasimorphisms that was developed in [3].

Assume that X is a restricted median quasimorphism. At first, we want to point
out that the cup product with a coclass induced by a median quasimorphism is not
always trivial, as Brück, Fournier-Facio and Löh constructed a counterexample [11,
Example 3.13]. Besides the construction of this counterexample, they proved that the
cup product is trivial when combining a coclass induced by a median quasimorphism
with so called non-transverse coclasses. First, we introduce non-transverse coclasses and
then we revise the triviality result.

Definition 4.1.19 (heads, tails). Let x = (h1 ⊃ . . . ⊃ hl) ∈ X
(l)
H . We say that α ∈ V

is a head of s if α ∈ h1 and there exists an edge dual to h1 that has α as one of its
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4 Examples of quasimorphisms and triviality results

endpoints. We say that ω ∈ V is a tail of s if ω ∈ hl and there exists an edge dual to hl
that has ω as one of its endpoints.

We let α(s) denote the set of heads of s and we let ω(s) denote the set of tails of s.

Definition 4.1.20 (non-transverse). Let s ∈ X
(l)
H and ζ ∈ Cn

Γ,b(X;R). We say that ζ
and s are non-transverse if for all x1, . . . , xn ∈ V the value of ζ(α, x1, . . . , xn) is inde-
pendent of the choice of head α ∈ α(s) and the value of ζ(ω, x1, . . . , xn) is independent
of the choice of tail ω ∈ ω(s).

We say that ζ and a set S ⊂ X
(l)
H are non-transverse if ζ and s are non-transverse for

all s ∈ S.

We define a coclass α ∈ Hn
Γ,b(X;R) to be non-transverse to Γs if it admits a repre-

sentative ζ that is non-transverse to Γs.

Remark 4.1.21. Let s ∈ X
(l)
H and ζ ∈ Cn

Γ,b(X;R). By definition, we have α(s) = ω(s)
and ω(s) = α(s). Hence, ζ and Γs are non-transverse if and only if ζ and Γs are
non-transverse.

Theorem 4.1.22 ([3, Theorem 3.17]). Let s ∈ X
(l)
H be an H-segment in X, and let fs be

the corresponding median quasimorphism of Γ ↷ X. Then, for every n ∈ N and coclass
α ∈ Hn

Γ,b(X;R) that is non-transverse to the orbit Γs, the cup product

[δ1fs] ∪ α ∈ Hn+2
Γ,b (X;R)

is trivial.

One can deduce a triviality result for the cup product of two coclasses induced by
median quasimorphisms. For this, we introduce the notion of non-transverse halfspaces.

Definition 4.1.23 ((non)-transverse halfspaces). Two halfspaces h1 and h2 are called
transverse if each of the four intersections

h1 ∩ h2, h1 ∩ h2,
h1 ∩ h2, h1 ∩ h2

is non-empty. We then write h1 ⋔ h2. We say that two sets H1, H2 of halfspaces are
non-transverse if h1 and h2 are non-transverse for each h1 ∈ H1 and each h2 ∈ H2.

Corollary 4.1.24 ([3, Theorem 3.19]). Let s = (h1 ⊃ . . . ⊃ hl) and r = (k1 ⊃ . . . ⊃ kp)
be H-segments in X. Suppose that each of the four pairs

Γh1,Γk1; Γh1,Γkp;

Γhl,Γk1; Γhl,Γkp;

is non-transverse. Then δ1fr and Γs are non-transverse. In particular,

[δ1fs] ∪ [δ1fr] = 0.
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Right-angled Artin groups

Right-angled Artin groups are highly connected with CAT(0) cube complexes and thus
with median graphs. This section is meant as a short outlook how we can apply the
results for median graphs to right-angled Artin group. For this reason, we only focus
on the ideas rather than the precise details. However, the details can be found in [3,
Section 5]. Note that we assume here that the underlying median graphs of CAT(0)
cube complexes are restricted. We refer to Remark 4.1.16 to see the doubts on this
assumption.

Definition 4.1.25 (right-angled Artin group). Let G = (V,E) be a graph. The cor-
responding right-angled Artin group (RAAG) Γ := A(G) is the group defined by the
presentation

⟨V | {v−1w−1vw = 1 | {v, w} ∈ E}⟩.

In the following, let G be a graph and Γ = A(G) be the corresponding RAAG. There
is a cube complex S(G) associated to Γ, called the Salvetti complex. Furthermore,
the universal covering S̃(G) of S(G) is a finite dimensional CAT(0) cube complex on
which Γ acts freely and cocompactly with an induced action on the underlying median
graph denoted by X = (V,E). For the details, we refer to Charney [5, Section 3.6].
Each edge e ∈ E has a label λ(e) which is a vertex of G. That label is preserved by

the Γ-action on X and induces a well-defined label λ(h) = λ(e) for h a halfspace dual
to e.

The following result is known about non-transversality in the case of RAAG’s.

Lemma 4.1.26 ([3, Corollary 5.2]). Let l, n ∈ N and let s = (h1 ⊃ . . . ⊃ hl) ∈ X
(l)
H . If

λ(h1) and λ(hl) are isolated vertices of G, i.e. deg(λ(h1)) = 0 = deg(λ(hl)), then every
ζ ∈ Cn

Γ,b(X;R) is non-transverse to Γs.

A direct consequence of this lemma and Theorem 4.1.22 is the following triviality
result for the cup product.

Corollary 4.1.27. Let l, n ∈ N and let s = (h1 ⊃ . . . ⊃ hl) ∈ X
(l)
H . If λ(h1) and λ(hl)

are isolated vertices of G, i.e. deg(λ(h1)) = deg(λ(hl)) = 0, then for all α ∈ Cn
Γ,b(X;R)

it is

[δ1fs] ∪ α = 0.

We also can adapt the triviality result for two coclasses induced by median quasimor-
phism to this setup.

Corollary 4.1.28 ([3, Corollary 5.4]). Let s = (h1 ⊃ . . . ⊃ hl) and r = (k1 ⊃ . . . ⊃ kp)
be two H-segments of X. Suppose that each of the four pairs of vertices

λ(h1), λ(k1); λ(h1), λ(kp);

λ(hl), λ(k1); λ(hl), λ(kp);
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4 Examples of quasimorphisms and triviality results

is not connected by an edge in G. Then [δ1fs] ∪ [δ1fr] = 0.

The idea of the proof is to show that r and s fulfil the assumptions of Corollary 4.1.24
from which we obtain the triviality result for two coclasses given by median quasimor-
phisms.

4.2 Main Theorem on triviality

The goal of this section is to construct certain quasimorphisms of groups acting on
graphs and achieve triviality results for the cup product and the Massey triple product
such that we obtain a general proof for the results for Brooks, Rolli, ∆-decomposable
and median quasimorphisms.

Preliminary definitions

Let Γ be a discrete group acting on a graph X = (V,E). Furthermore, let l ∈ N>0. We
denote by Eor the set

Eor :=
{
(α, ω) ∈ V 2 | {α, ω} ∈ E

}
.

For e = (α, ω) ∈ Eor an oriented edge, we denote by e the corresponding oriented edge of
opposite orientation, i.e. e := (ω, α). Moreover, for a = (e1, . . . , el) ∈ (Eor)l, we define
a := (el, . . . , e1).

Definition 4.2.1. For l ∈ N, x, y ∈ V and p = x0, . . . , xn a path connecting x and y we
denote for i ∈ {0, . . . , n− 1} by ei = (xi, xi+1) the oriented edge given by the vertices xi
and xi+1. We then define

p(l) :=
{
(ei1 , . . . , eil) ∈ (Eor)l | 0 ≤ i1 < i2 < . . . < il ≤ n− 1

}
.

In other words, p(l) consists of all l-tuples of oriented edges that appear on p in this
given order.
For an element a = (ei1 , . . . , eil) ∈ p(l) we define

α(a) := xi1 and ω(a) := xil+1.

We say a vertex m of the path p is contained in a if α(a) ̸= m ̸= ω(a) and if the vertices
α(a), m, ω(a) are passed by p in this order.

Definition 4.2.2 (quasi-median property). For x, y ∈ V , let P (x, y) ̸= ∅ be a set of
finite paths from x to y. The family (P (x, y))x,y∈V is said to fulfil the quasi-median
property, if the following holds:

There exist R ∈ N such that for all x, y, z ∈ V there exist

• a triple (mx,my,mz) ∈ V 3, and

• paths pxy ∈ P (x, y), pyz ∈ P (y, z), and pxz ∈ P (x, z)

44



4.2 Main Theorem on triviality

with

pxy = sx ∗ r1 ∗ sy,
pyz = sy ∗ r2 ∗ sz,
pxz = sx ∗ r3 ∗ sz

for suitable paths sx ∈ P (x,m1), sy ∈ P (y,my), sz ∈ P (z,mz) and r1 ∈ P (m1,m2),
r2 ∈ P (m2,m3), r3 ∈ P (m1,m3) such that r1, r2, and r3 have length at most R.

x z

y

r3

r 1

r
2

sx sz

sy

pxz

p x
y

p
y
z

Figure 4.3: Quasi-median property

Example 4.2.3. By definition of median graphs, the sets of geodesics P (x, y) = [x, y]
for vertices x, y form a family that fulfils the quasi-median property. In particular,
the constant R can be chosen to be 0. This holds true in particular for trees and
will be helpful for the triviality results concerning Brooks quasimorphisms and median
quasimorphisms.

Example 4.2.4. For ∆-decomposable quasimorphisms we will not consider actions
on trees or median graphs. In this case, it is useful to look at the action of a non-
abelian free group F on its Cayley graph Cay(F,P) for P the pieces associated to
the ∆-decomposition. This is a good choice for a generating set of F because the ∆-
decomposition for x−1y with x, y ∈ F gives rise to a path in Cay(F,P), namely for
∆(x−1y) = (g1, . . . , gk) we obtain the path

x, xg1, xg1g2, . . . , xg1 · · · gk.

in Cay(F,P) from x to y. If we choose P (x, y) to contain only this path, then the family
of these sets fulfils the quasi-median property by definition of ∆-decompositions. The
constant R can be chosen to be the same as the constant bounding the r-part of the
∆-triangles.
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Setup and statement

Let Γ be a discrete group acting on a graph X = (V,E). For x, y ∈ V , let P (x, y) ̸= ∅
be a set of finite paths from x to y such that the family P = (P (x, y))x,y∈V fulfils the
quasi-median property and

• is compatible with the Γ-action, i.e. for all x, y ∈ V and g ∈ Γ it is

g · P (x, y) = P (gx, gy),

• is compatible with inversion, i.e. for all x, y ∈ V it is P (x, y) = P (y, x),

• is compatible with taking subpaths, i.e. for all x, y ∈ V and all p ∈ P (x, y), every
subpath p′ of p is contained in P (x′, y′) where x′ is the starting point of p′ and y′

its endpoint.

Furthermore, we fix l ∈ N>0 and a map λ : (Eor)l → R with the following properties:

1. It is Γ-invariant with respect to the diagonal action of Γ on (Eor)l.

2. It is inversely, i.e. for all a ∈ (Eor)l, we have λ(a) = −λ(a).

3. It is bounded, i.e. ∥λ∥∞ <∞.

4. It admits for all x, y ∈ V and for all p, q ∈ P (x, y) a bijection φ : p(l) → q(l) with
λ|p(l) = λ|q(l) ◦ φ.

p(l) R

q(l)

λ|p(l)

φ
λ|q(l)

For all vertices x, y ∈ V and paths p, q ∈ P (x, y) we fix such a bijection φp,q.

5. It fulfils the following finiteness condition: There exists a constant c ∈ N such that
for all x, y ∈ V , for all p ∈ P (x, y), and for all vertices m on p it is∣∣∣{a ∈ p(l) | m is contained in a

}
∩ supp(λ)

∣∣∣ ≤ c.

Recalling the vanishing results for cup products with coclasses induced by median
quasimorphisms, we see that we need to reduce the second factor of the cup products to
a certain family of coclasses. Concretely, we need to adapt the notion of non-transversal
cochains from the bounded cohomology of groups acting on median graphs to our setup.
The following definition will do the job.
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4.3 Application

Definition 4.2.5 (well-behaved). A cochain ζ ∈ Cn
Γ,b(X;R) is said to be well-behaved

if for all vertices x, y ∈ V and for all paths p, q ∈ P (x, y) with a ∈ p(l) ∩ supp(λ) it is

ζ(α(a), x1, . . . , xn) = ζ(α(φp,q(a)), x1, . . . , xn), and

ζ(ω(a), x1, . . . , xn) = ζ(ω(φp,q(a)), x1, . . . , xn)

for any choice of x1, . . . , xn ∈ V .
A coclass α ∈ Hn

Γ,b(X;R) is said to be well-behaved if it admits a well-behaved repre-
sentative.

Main Theorem 4.2.6. Having this setup for X, P , and λ the following holds:

1. The map

f : V × V → R

(x, y) 7→
∑
a∈p(l)

λ(a),

with p ∈ P (x, y), is a well-defined, antisymmetric quasimorphism of Γ ↷ X.

2. Let α ∈ Hn
Γ,b(X;R) be well-behaved. Then the cup products [δ1f ]∪α and α∪ [δ1f ]

are trivial in Hn+2
Γ,b (X;R).

3. Let α1 ∈ Hn
Γ,b(X;R) and α2 ∈ Hm

Γ,b(X;R) both be well-behaved. Then, the Massey

triple product ⟨α1, [δ
1f ], α2⟩ is trivial in Hn+m+1

Γ,b (X;R).

4.3 Application

In this chapter, we observe how the Main Theorem 4.2.6 can be adapted to the four ex-
amples of quasimorphisms we gave in Section 4.1. We distinguish two cases, one for Rolli
and ∆-decomposable quasimorphisms and one for Brooks and median quasimorphisms.

4.3.1 ∆-decomposable and Rolli quasimorphisms

We obtain the following result for Rolli-quasimorphisms.

Corollary 4.3.1. Let F be a non-abelian free group and ϕ : F → R be a Rolli quasi-
morphism. Then ϕ is a quasimorphism and for all n,m ∈ N and α1 ∈ Hn

b (F ;R) and
α2 ∈ Hm

b (F ;R),

• the cup products [δ1ϕ̂] ∪ α1 and α1 ∪ [δ1ϕ̂] are trivial in Hn+2
b (F ;R), and

• the Massey triple product ⟨α1, [δ
1ϕ̂], α2⟩ ⊂ Hn+m+1

b (F ;R) is trivial.

As every Rolli quasimorphism is ∆-decomposable (Example 4.1.10), this corollary is
a special case of the following.
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Corollary 4.3.2. Let F be a non-abelian free group and ϕ : F → R be a ∆-decomposable
quasimorphism Then ϕ is a quasimorphism and for all n,m ∈ N and α1 ∈ Hn

b (F ;R)
and α2 ∈ Hm

b (F ;R),

• the cup products [δ1ϕ̂] ∪ α1 and α1 ∪ [δ1ϕ̂] are trivial in Hn+2
b (F ;R), and

• the Massey triple product ⟨α1, [δ
1ϕ̂], α2⟩ ⊂ Hn+m+1

b (F ;R) is trivial.

In order to apply Main Theorem 4.2.6 to ∆-decomposable quasimorphisms, we need
the following lemma.

Lemma 4.3.3. Let F be a non-abelian free group, P ⊂ F a symmetric subset not
containing the neutral element and ∆: F → P∗ a ∆-decomposition. Let λ ∈ ℓ∞alt(P,R).
The map

fλ,∆ : F × F → R
(x, y) 7→ ϕλ,∆(x

−1y)

is a symmetric quasimorphism of F ↷ Cay(F,P) and for all integers n,m ∈ N and
coclasses α1 ∈ Hn

F,b(Cay(F,P);R) and α2 ∈ Hm
F,b(Cay(F,P);R),

• the cup products [δ1fλ,∆]∪α1 and α1 ∪ [δ1fλ,∆] are trivial in Hn+2
F,b (Cay(F,P);R),

and

• the Massey triple product ⟨α1, [δ
1fλ,∆], α2⟩ ⊂ Hn+m+1

F,b (Cay(F,P);R) is trivial.

Proof. At first, we consider in Cay(F,P) the family P = (P (x, y))x,y∈F of sets of paths,
where for x, y ∈ F the set P (x, y) contains only the path from x to y determined by
the ∆-decomposition of x−1y. By Example 4.2.4 the family P fulfils the quasi-median
property and by the definition of a ∆-decomposition it is clear that P is compatible
with inversion and with taking subpaths. Furthermore, the family P is compatible with
the F -action, since we have for x, y ∈ F the equality x−1y = (gx)−1(gy) and therefore,
∆(gx−1gy) = ∆(x−1y).

The next step of the proof is to choose l ∈ N and a map λ′ : (Eor)l → R such that
Cay(F,P), P and λ′ are as in the setup of Subsection 4.2.

For this, let l = 1 and consider

λ′ : Eor → R
(x, y) 7→ λ(x−1y).

This map is well-defined as for (x, y) ∈ Eor we have x−1y ∈ P and thus, the term
λ(x−1y) is defined. Furthermore, the map is F -invariant, inversely and bounded, since λ
is alternating and bounded.

Since for x, y ∈ F the set P (x, y) consists only of one element, we choose for the
unique path p ∈ P (x, y) the bijection φp,p = id|p(1) and have λ′|p(1) = λ′|p(1) ◦ id|p(1) .
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It remains to prove the finiteness condition, i.e. we need to show there exists a constant
c ∈ N such that for all x, y ∈ V , for all p ∈ P (x, y) and for all vertices m of p∣∣∣{a ∈ p(1) | m is contained in a

}
∩ supp(λ)

∣∣∣ ≤ c.

For this, we choose c = 0. Then, for x, y ∈ V and the unique map p ∈ P (x, y) every
element of p(1) is just an oriented edge of p which has no interior. Therefore, we count
for all vertices m of p∣∣∣{a ∈ p(1) | m is contained in a

}
∩ supp(λ)

∣∣∣ = 0.

For x, y ∈ F with ∆-decomposition ∆(x−1y) = (g1, . . . , gk) we compute

fλ,∆(x, y) = ϕλ,∆
(
x−1y

)
=

k∑
i=0

λ(gi) =
∑

a∈p(1)
λ′(a)

for p the unique path in P (x, y). As we are in the setup of Subsection 4.2, we conclude
with Main Theorem 4.2.6 that fλ,∆ is a symmetric quasimorphism.

In order to obtain the statements for the cup product and the Massey triple product,
we first observe that in our case every coclass ζ ∈ Hn

Γ,b(X;R) with n ∈ N is well-behaved
since for all x, y ∈ F the set P (x, y) consists only of one path. Now, Main Theorem 4.2.6
does the job.

Eventually, we are able to prove the vanishing results for ∆-decomposable quasimor-
phisms.

Proof of Corollary 4.3.2. Let P ⊂ F be a symmetric subset, ∆: F → P∗ a decom-
position and λ ∈ ℓ∞alt(P,R). We want to prove the corollary for the ∆-decomposable
quasimorphism ϕλ,∆. At first, we observe for x ∈ F

ϕλ,∆(x) = fλ,∆(e, x) = fλ,∆,e(x).

Using Theorem 3.2.2 and Lemma 4.3.3, we deduce that ϕλ,∆ = fλ,∆,e is a quasimorphism
as it is the pullback of the quasimorphism fλ,∆ under the orbit map oe.

Furthermore, since the orbit map o2e : H
2
F,b(Cay(F,P);R) → H2

b (F ;R) is an isomor-
phism by Corollary 2.2.2 with

o2e
([
δ1fλ,∆,e

])
=
[
δ1ϕ̂λ,∆

]
and the cup product and the Massey triple product are compatible with o∗e (Remark 2.2.4
and Theorem 2.2.6) we obtain the vanishing results for the cup product and the Massey
triple product using the triviality results we proved in Lemma 4.3.3.
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4.3.2 Median quasimorphisms and Brooks quasimorphisms

The following results for median quasimorphisms are consequences of Main Theorem 4.2.6.

Corollary 4.3.4. Let Γ be a discrete group acting on a restricted median graph X.
Let s be an H-segment in X, and let fs be the corresponding median quasimorphism of
Γ ↷ X. Then fs is a symmetric quasimorphism and for all n,m ∈ N and coclasses
α1 ∈ Hn

Γ,b(X;R) and α2 ∈ Hm
Γ,b(X;R) that are non-transverse to the orbit Γs,

• the cup products [δ1fs] ∪ α1 and α1 ∪ [δ1fs] are trivial in Hn+2
Γ,b (X;R), and

• the Massey triple product ⟨α1, [δ
1fs], α2⟩ ⊂ Hn+m+1

Γ,b (X;R) is trivial.

The following two statements can be deduced directly from the results for median
quasimorphisms, the first of them generalizing Corollary 4.1.24 about cup products of
two coclasses induced by median quasimorphisms. Afterwards we prove Corollary 4.3.4
about median quasimorphisms.

Corollary 4.3.5. Let Γ be a discrete group acting on a restricted median graph X. Let
s = (h1 ⊃ . . . ⊃ hl), r = (k1 ⊃ . . . ⊃ kp) and t = (b1 ⊃ . . . ⊃ bq) be H-segments in X.
Suppose each of the four pairs

Γh1,Γk1; Γh1,Γkp;

Γhl,Γk1; Γhl,Γkp;

and each of the four pairs

Γh1,Γb1; Γh1,Γbq;

Γhl,Γb1; Γhl,Γbq;

is non-transverse. Then,

• the cup product [δ1fr] ∪ [δ1fs] ∈ H4
Γ,b(X;R) is trivial, and

• the Massey triple product ⟨[δ1fr], [δ1fs], [δ1ft]⟩ ⊂ H5
Γ,b(X;R) is trivial.

Proof. Brück, Fournier-Facio and Löh [3, Theorem 3.19] proved that in this case fr and
Γs as well as ft and Γs are non-transverse. We conclude with Corollary 4.3.4.

Corollary 4.3.6. Let Γ be a discrete group acting on a tree T and let γ be a geodesic
in T . Then, for all n,m ∈ N and α1 ∈ Hn

Γ,b(T ;R) and α2 ∈ Hm
Γ,b(T ;R),

• the cup products [δ1fγ ] ∪ α1 and α1 ∪ [δ1fγ ] are trivial in Hn+2
Γ,b (T ;R), and

• the Massey triple product ⟨α1, [δ
1fγ ], α2⟩ ⊂ Hn+m+1

Γ,b (T ;R) is trivial.

Proof. This follows from the fact that for all n ≥ 1 and ζ ∈ Cn
Γ,b(T ;R) and for all H-

segments s of T we have that ζ non-transverse to Γs [3, Section 4]. Hence, we may apply
Corollary 4.3.4.
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Furthermore, we can deduce triviality of cup products and Massey triple products
with coclasses induced by Brooks quasimorphisms.

Corollary 4.3.7. Let F be a non-abelian free group and ϕ : F → R be a Brooks quasi-
morphism. Then ϕ is a quasimorphism and for all n,m ∈ N and α1 ∈ Hn

b (F ;R) and
α2 ∈ Hm

b (F ;R),

• the cup products [δ1ϕ̂] ∪ α1 and α1 ∪ [δ1ϕ̂] are trivial in Hn+2
b (F ;R), and

• the Massey triple product ⟨α1, [δ
1ϕ̂], α2⟩ ⊂ Hn+m−1

b (F ;R) is trivial.

Proof. Let S ⊂ F be a free generating set and w = x1 · · ·xl ∈ F a non-trivial word.
Then, F acts on the tree T = Cay(F, S) by left-translation. The word w gives rise to a
geodesic

γ = e, x1, x1x2, . . . , x1 · · ·xl

in Cay(F, S). We consider the quasimorphism fγ,e, the pullback of the median quasi-
morphism fγ for γ under the orbit map oe, and compute for g = g1 · · · gn ∈ F

fγ,e(g) =
∑

β∈Je,gK(l)
ϵγ(β) =

n−l+1∑
j=1

χw(gj · · · gj+l−1) = ϕw(g).

Hence, we have fγ,e = ϕw. As fγ is a quasimorphism of F ↷ Cay(F, S) by Corollary 4.3.6
and as the pullback preserves quasimorphisms (Theorem 3.2.2) we deduce that ϕw is a
quasimorphism of F .

By Corollary 4.3.6, we know that for all α1 ∈ Hn
Γ,b(F ;R) and α2 ∈ Hm

Γ,b(F ;R) the cup
products

[δ1fγ ] ∪ α1, and α1 ∪ [δ1fγ ]

as well as the Massey triple product

⟨α1, [δ
1fγ ], α2⟩

are trivial. Since the orbit map o2e : H
2
F,b(Cay(F,P);R) → H2

b (F ;R) is an isomorphism
by Corollary 2.2.2 with

o2e([δ
1fγ,e]) = [δ1ϕ̂w]

and the cup product and the Massey triple product are compatible with o∗e by Re-
mark 2.2.4 and Theorem 2.2.6, we obtain the vanishing results for the cup product and
the Massey triple product.

Finally, we prove Corollary 4.3.4 about median quasimorphisms of groups acting on
restricted median graphs.
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Proof of Corollary 4.3.4. Let X = (V,E) be the restricted median graph of the as-
sumptions of Corollary 4.3.4. We fix the following notation: For an oriented edge
e = (α(e), ω(e)) ∈ Eor we denote by he the halfspace defined by the (undirected) edge
{α(e), ω(e)} containing ω(e).

For x, y ∈ V we define P (x, y) to be the set of all geodesics from x to y. Since X
is a median graph, the family P = (P (x, y))x,y∈V fulfils the quasi-median property. As
Γ-translates, inverses and sub-paths of geodesics are again geodesics, it is clear that P
is compatible with the Γ-action, inversion and taking sub-paths.

Let s ∈ X
(l)
H be an H-segment. If Γs = Γs, then fs = 0 is a quasimorphism and the

triviality results follow easily. On the other hand, if Γs ̸= Γs, we define

λ : (Eor)l → R

(e1, . . . , el) 7→


1, if Γ(he1 , . . . , hel) = Γs,

−1, if Γ(he1 , . . . , hel) = Γs,

0, otherwise.

Note: Since Γ acts transitive on X
(l)
H we know

supp(λ) ⊂
{
(e1, . . . , el) ∈ (Eor)l | (he1 ⊃ . . . ⊃ hel) ∈ X

(l)
H

}
=: (Eor)lH.

We quickly check

• λ is Γ-invariant, since for g ∈ Γ and (e1, . . . , el) ∈ (Eor)l we have

Γ · (hge1 , . . . , hgel) = Γ · (ghe1 , . . . , ghel) = Γ · (he1 , . . . , hel),

• λ is inversely by definition,

• ∥λ∥∞ ≤ 1 is finite.

In order to be in the setup of Section 4.2, we need to verify that λ admits for all
x, y ∈ V and for all p, q ∈ P (x, y) a bijection φ : p(l) → q(l) with λ|p(l) = λ|q(l) ◦ φ. This

technical part of the proof uses the connection between (Eor)lH and X
(l)
H .

Recall we denoted by (Eor)lH the set

(Eor)lH =
{
(e1, . . . , el) ∈ (Eor)l | (he1 ⊃ . . . ⊃ hel) ∈ X

(l)
H

}
.

For x, y ∈ V and p ∈ P (x, y) a geodesic from x to y we consider the map

Ψp : p
(l) ∩ (Eor)lH → [x, y]

(l)
H

(e1, . . . , el) 7→ (he1 ⊃ . . . ⊃ hel).

It is not instantly clear that this map is well-defined. More precisely, we need to check

that the image indeed lies in [x, y]
(l)
H . At first, we have im(Ψp) ⊂ X

(l)
H by the definition
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of (Eor)lH. On the other hand, for (e1, . . . , el) ∈ p(l) we obtain for i ∈ {1, . . . , l} and
ei = (αi, ωi) the equalities

d(x, ωi) = d(x, αi) + 1, and

d(y, ωi) = d(y, αi)− 1.

Hence, hei separates y from x, which yields Ψp(e1, . . . , el) ∈ [x, y]
(l)
H . On top of that,

Ψp is injective since the geodesic p from x to y crosses a halfspace of [x, y]
(l)
H exactly

once, see Theorem 1.1.17. We can also show that Ψp is surjective. For this, choose an

arbitrary element (h1, . . . , hl) ∈ [x, y]
(l)
H . We know for i ∈ {1, . . . , l} that p crosses hi

exactly once. Hence, we find ei ∈ p(1) with hei = hi. The problem now is that it is not
clear that (e1, . . . , el) ∈ p(l) because we do not know yet that the edges occur in this
order in p. To show this, let i ∈ {1, . . . , l− 1} and ei = (αi, ωi), ei+1 = (αi+1, ωi+1). We
have

d(ωi+1, αi) = d(ωi+1, ωi)± 1.

If d(ωi+1, αi) = d(ωi+1, ωi) + 1, then ωi+1 ∈ hi. Since hi+1 is convex and contains y this
means ei and ei+1 appear on the geodesic p in this order and we are done. Conversely,
if d(ωi+1, αi) = d(ωi+1, ωi) − 1, then ωi ∈ hi. This contradicts hi+1 ⊂ hi and is not
possible. We conclude that e1, . . . , el appear in p in this order and Ψp is surjective.

For p, q ∈ P (x, y) we obtain now a bijection

Ψ−1
q ◦Ψp : p

(l) ∩ (Eor)lH → q(l) ∩ (Eor)lH.

Since
∣∣p(l)∣∣ = ∣∣q(l)∣∣ <∞ as p and q geodesics from x to y of the same (finite) length, we

can expand Ψ−1
q ◦Ψp to a bijection

φp,q : p
(l) → q(l).

We need to check λ|p(l) = λ| q(l) ◦ φp,q. For this, let a ∈ p(l). If a /∈ supp(λ) we know by

the construction of φp,q that λ(a) = 0 = λ(φp,q(a)). If a ∈ supp(λ) ⊂ p(l) ∩ (Eor)lH then

λ(a) = ϵs(Ψp(a)) = ϵs((Ψq ◦Ψ−1
q ) ◦Ψp(a))

= ϵs(Ψq ◦ φp,q(a)) = λ(φp,q(a)).

The last property of λ that we need to check in order to obtain the setup of Section 4.2
is the finiteness condition. We need to show the existence of a constant c ∈ N such that
for all x, y ∈ V , for all p ∈ P (x, y) and for all vertices m in p we have∣∣∣{a ∈ p(l) | m is contained in a

}
∩ supp(λ)

∣∣∣ ≤ c.

Here, we need the assumption that X is restricted. Note for x, y ∈ V , p ∈ P (x, y) and
vertices m on p it is m contained in some a ∈ p(l) ∩ (Eor)lH if and only if m lies in the
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4 Examples of quasimorphisms and triviality results

interior of Ψp(a). Hence, λ fulfils the finiteness condition if there exists a constant c ∈ N
such that for all x, y ∈ V , for all p ∈ P (x, y) and for all vertices m of p we have∣∣∣{t ∈ [x, y]

(l)
H | m lies in the interior of t

}∣∣∣ ≤ c.

Such a constant c exists by the definition of restricted median graphs.

Since we are now in the setup of Main Theorem 4.2.6, we conclude that

fs : V
2 → R

(x, y) 7→
∑

t∈[x,y](l)H

ϵs(t) =
∑
a∈p(l)

λ(a),

with p ∈ P (x, y), is a symmetric quasimorphism.

To conclude the triviality results for the cup product and Massey triple product with
the median quasimorphisms fs it suffices to show that every coclass α ∈ Hn

Γ,b(X;R)
that is non-transverse to the orbit Γs admits a representative ζ ∈ Cn

Γ,b(X;R) that is
well-behaved.

For this, let α ∈ Hn
Γ,b(X;R) be non-transverse to the orbit Γs. Then, it admits a

representative ζ ∈ Cn
Γ,b(X;R) that is non-transverse to Γs. Let x, y ∈ V , p, q ∈ P (x, y)

and x1, . . . , xn ∈ V . First, we observe that for a ∈ p(l) ∩ supp(λ) and c := φp,q(a) the
segments Ψp(a) and Ψq(c) coincide and hence

• α(a) and α(φp,q(a)) are both heads of the H-segment Ψp(a),

• ω(a) and ω(φp,q(a)) are both tails of the H-segment Ψp(a).

Furthermore, since a ∈ supp(λ) we have (he1 ⊃ . . . ⊃ hel) ∈ Γs ∪ Γs and conclude

ζ(α(a), x1, . . . , xn) = ζ(α(φp,q(a)), x1, . . . , xn)

using that ζ is non-transverse to Γs. This shows that ζ is well-behaved and thus, the
triviality results follow from Main Theorem 4.2.6.

Right-angled Artin groups

These generalized results for median quasimorphisms are adaptable to right-angled Artin
groups as we will see in the following.

In particular, we obtain two results generalizing Corollaries 4.1.27 and 4.1.28. Let G
be a graph and Γ := A(G) the corresponding RAAG. We denote by X the median
graph that underlies the universal covering of the Salvetti complex of Γ and consider the
induced action of Γ on X.

Corollary 4.3.8. Let l ∈ N and let s = (h1 ⊃ . . . ⊃ hl) ∈ X
(l)
H . If λ(h1) and λ(hl)

are isolated vertices of G, i.e. deg(λ(h1)) = 0 = deg(λ(hl)), then for n,m ∈ N and
α1 ∈ Hn

Γ,b(X;R) and α2 ∈ Hm
Γ,b(X;R),
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4.4 Proof of the Main Theorem

• the cup products [δ1fs] ∪ α1 and α1 ∪ [δ1fs] are trivial in Hn+2
Γ,b (X;R), and

• the Massey triple product ⟨α1, [δ
1fs], α2⟩ ⊂ Hn+m+1

Γ,b (X;R) is trivial.

Proof. By Lemma 4.1.26 we know that α1 and Γs as well as α2 and Γs are non-transverse.
We conclude with Corollary 4.3.4.

Corollary 4.3.9. Let s = (h1 ⊃ . . . ⊃ hl), r = (k1 ⊃ . . . ⊃ kp) and t = (b1 ⊃ . . . ⊃ bq)
be H-spaces in X. Suppose each of the four pairs of vertices

λ(h1), λ(k1); λ(h1), λ(kp);

λ(hl), λ(k1); λ(hl), λ(kp);

and each of the four pairs of vertices

λ(h1), λ(b1); λ(h1), λ(bq);

λ(hl), λ(b1); λ(hl), λ(bq);

is not connected by an edge in G. Then,

• the cup product [δ1fr] ∪ [δ1fs] ∈ H4
Γ,b(X;R) is trivial, and

• the Massey triple product ⟨[δ1fr], [δ1fs], [δ1ft]⟩ ⊂ H5
Γ,b(X;R) is trivial.

Proof. The H-segments fulfil the assumptions of Corollary 4.3.5, as one can see in [3,
Corollary 5.4]. We then conclude the triviality results.

4.4 Proof of the Main Theorem

In order to prove boundedness of maps in all three parts of Main Theorem 4.2.6, we will
make use of the following lemma several times.

Lemma 4.4.1. Assume we are in the Setup of Main Theorem 4.2.6 and let τ : (Eor)l → R
be a map such that

• τ(a) = τ(a) for all a ∈ (Eor)l, and

• for all vertices x, y ∈ V and all paths p, q ∈ P (x, y) it is τ(a) = τ(φp,q(a)) for
a ∈ p(l).

Then, for all x, y, z ∈ V and for all p1 ∈ P (x, y), p2 ∈ P (y, z) and p3 ∈ P (x, z) we have∣∣∣∣∣∣∣
∑
a∈p(l)1

λ(a)τ(a) +
∑
a∈p(l)2

λ(a)τ(a)−
∑
a∈p(l)3

λ(a)τ(a)

∣∣∣∣∣∣∣ ≤ 3 · (R+ 1)c∥λ∥∞∥τ∥∞,

where R is the constant given by the quasi-median property of (P (x, y))x,y∈V and c is
the constant given by the finiteness condition (Property 5) of λ.
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4 Examples of quasimorphisms and triviality results

Proof. Let x, y, z ∈ V . Furthermore, choose pxy, pyz, pxz and sx, sy, sz, r1, r2, r3 as in
Definition 4.2.2 of the quasi-median property, i.e.

pxy = sx ∗ r1 ∗ sy,
pyz = sy ∗ r2 ∗ sz,
pxz = sx ∗ r3 ∗ sz,

and the length of r1, r2, and r3 is bounded by R.

x z

y

r3

r 1

r
2

sx sz

sy

pxz

p x
y

p
y
z

Figure 4.4: Quasi-median property

The second property of τ implies
∑

a∈p(l)1

λ(a)τ(a) =
∑

a∈p(l)xy
λ(a)τ(a) and similar

results for the other two summands. This allows us to use the partition of the paths pxy,
pyz, and pxz that is given by the quasi-median property.

In particular, both s
(l)
x and sy

(l) are distinct subsets of p
(l)
xy which implies∑

a∈p(l)1

λ(a)τ(a) =
∑
a∈p(l)xy

λ(a)τ(a)

=
∑
a∈s(l)x

λ(a)τ(a) +
∑

a∈sy(l)

λ(a)τ(a) +
∑

a∈p(l)xy\(s
(l)
x ∪sy(l))

λ(a)τ(a)

=
∑
a∈s(l)x

λ(a)τ(a)−
∑
a∈s(l)y

λ(a)τ(a) +
∑

a∈p(l)xy\(s
(l)
x ∪sy(l))

λ(a)τ(a).

We obtain similar equations for p2 and p3, namely∑
a∈p(l)2

λ(a)τ(a) =
∑
a∈s(l)y

λ(a)τ(a)−
∑
a∈s(l)z

λ(a)τ(a) +
∑

a∈p(l)yz\(s
(l)
y ∪sz(l))

λ(a)τ(a),
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4.4 Proof of the Main Theorem

and ∑
a∈p(l)3

λ(a)τ(a) =
∑
a∈s(l)x

λ(a)τ(a)−
∑
a∈s(l)z

λ(a)τ(a) +
∑

a∈p(l)xy\(s
(l)
x ∪sz(l))

λ(a)τ(a).

Representative for all three cases, we take a closer look at the set p
(l)
xy \ (s(l)x ∪ sy(l)). We

consider two cases. The first case is l = 1. Then, the set p
(1)
xy \ (s

(1)
x ∪ sy(1)) coincides

with r
(1)
1 , the set of edges of r1. Hence, it consists of less than R elements. This constant

is smaller than (R + 1)c and the statement is true in this case. On the other side, we
consider l ≥ 2. Then,

p(l)xy \ (s(l)x ∪ sy(l)) =
{
a ∈ p(l)xy | ∃m ∈ r1 ∩ V such that m is contained in a

}
=

⋃
m∈r1∩V

{
a ∈ p(l)xy | m is contained in a

}
,

which means that∣∣∣(p(l)xy \ (s(l)x ∪ sy(l))
)
∩ supp(λ)

∣∣∣ ≤ |r1 ∩ V | · c ≤ (R+ 1) · c (4.1)

as r1 contains a maximum of (R + 1) vertices. We obtain the same inequalities by
changing the roles of x, y, and z. This allows us to compute∣∣∣∣∣∣∣

∑
a∈p(l)1

λ(a)τ(a) +
∑
a∈p(l)2

λ(a)τ(a)−
∑
a∈p(l)3

λ(a)τ(a)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∑

a∈p(l)xy\(s
(l)
x ∪sy(l))

λ(a)τ(a) +
∑

a∈p(l)yz\(s
(l)
y ∪sz(l))

λ(a)τ(a)−
∑

a∈p(l)xy\(s
(l)
x ∪sz(l))

λ(a)τ(a)

∣∣∣∣∣∣∣
≤ 3(R+ 1) · c · ∥λ∥∞∥τ∥∞

using the triangle inequality.

Proof of Main Theorem 4.2.6, Part 1

The map

f : V × V → R

(x, y) 7→
∑
a∈p(l)

λ(a),

is well-defined by Property 4 of λ. Moreover, f is antisymmetric, since we have a bijection
p(l) → p(l) and λ is inversely. Now, we check that f is a quasimorphism, i.e. we show
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that it is Γ-invariant and has finite defect. For the Γ-invariance, let x, y ∈ V and g ∈ Γ.
We choose a path p ∈ P (x, y) and observe that g · p ∈ P (gx, gy) and that we have a
bijection

p(l) → (g · p)(l)

(e1, . . . , el) 7→ (g · e1, . . . , g · el).

By the Γ-invariance of λ we compute

f(x, y) =
∑
a∈p(l)

λ(a) =
∑
a∈p(l)

λ(g · a) =
∑

a∈(g·p)(l)
λ(a) = f(g · x, g · y).

In order to show that f has finite defect, we use Lemma 4.4.1 with τ := 1 the constant
map at 1 and obtain for vertices x, y, z ∈ V and paths p1 ∈ P (x, y), p2 ∈ P (y, z), and
p3 ∈ P (x, z) the inequality

|f(y, z)− f(x, z) + f(x, y)| =

∣∣∣∣∣∣∣
∑
a∈p(l)2

λ(a)−
∑
a∈p(l)3

λ(a) +
∑
a∈p(l)1

λ(a)

∣∣∣∣∣∣∣
≤ 3(R+ 1) · c · ∥λ∥∞.

This bound is independent of x, y, and z, which means that D(f) is finite and f is a
quasimorphism of Γ ↷ X.

Proof of Main Theorem 4.2.6, Part 2

Let ζ ∈ Cn
Γ,b(X;R) be well-behaved. We recall this means for all vertices x, y ∈ V and

for all paths p, q ∈ P (x, y) with a fixed bijection φp,q : p
(l) → q(l) as in Property 4 of λ

we have for all x1, . . . , xn ∈ V and a ∈ p(l) ∩ supp(λ) the equalities

ζ(α(a), x1, . . . , xn) = ζ(α(φp,q(a)), x1, . . . , xn), and

ζ(ω(a), x1, . . . , xn) = ζ(ω(φp,q(a)), x1, . . . , xn).

We want to find a Γ-invariant map η : V n+1 → R such that

β := f ∪ ζ + δnη

is bounded and therefore an element of Cn+1
Γ,b (X;R). Then δn+1β = δ1f ∪ ζ lies in the

image of δn+1 and the cup product [δ1f ] ∪ [ζ] is trivial.

We define

ζ̃ : (Eor)l × V n → R

(a, x1, . . . , xn) 7→
1

2

(
ζ(α(a), x1, . . . , xn) + ζ(ω(a), x1, . . . , xn)

)
.

58



4.4 Proof of the Main Theorem

Because ζ is well-behaved we know that for vertices x, y ∈ V , paths p, q ∈ P (x, y), and
a ∈ p(l) ∩ supp(λ) we have for all x1, . . . , xn ∈ V

ζ̃(a, x1, . . . , xn) = ζ̃(φp,q(a), x1, . . . , xn).

For this reason, we obtain a well-defined map

η : V n+1 → R

(x0, . . . , xn) 7→
∑
a∈p(l)

λ(a)ζ̃(a, x1, . . . , xn)

with p ∈ P (x0, x1). Well-defined means in this case that it does not depend on the
choice of p ∈ P (x0, x1).

At first, we observe that η is Γ-invariant. For this, let x0, . . . , xn ∈ V , g ∈ Γ and
p ∈ P (x0, x1). We compute using the Γ-invariance of λ and ζ

η(gx0, . . . , gxn) =
∑

a∈(g·p)(l)
λ(a) · ζ̃(a, gx1, . . . , gxn)

=
∑
a∈p(l)

λ(ga) · ζ̃(ga, gx1, . . . , gxn)

=
∑
a∈p(l)

λ(a) · ζ̃(a, x1, . . . , xn).

Now we want to show that β := f ∪ ζ + δnη is bounded. Let x0, . . . , xn+1 ∈ V .
We choose p01 ∈ P (x0, x1), p02 ∈ P (x0, x2) and p12 ∈ P (x1, x2). Our goal is to apply
Lemma 4.4.1 for τ := ζ̃( · , x2, . . . , xn+1). This is possible, as the equation

τ(a) = ζ̃(a, x2, . . . , xn+1) = ζ̃(a, x2, . . . , xn+1) = τ(a)

holds for all a ∈ (Eor)(l) because α(a) = ω(a) and vice versa, and for vertices x, y ∈ V and
paths p, q ∈ P (x, y) we have for φp,q the fixed bijection p(l) → q(l) with λ|p(l) = λ|q(l) ◦φp,q

τ(φp,q(a)) = ζ̃(φp,q(a), x2, . . . , xn+1)

= ζ̃(a, x2, . . . , xn+1)

= τ(a)

as ζ is well-behaved. We also stress that t = ζ̃ is bounded by ∥ζ∥∞ <∞.

We recall the cocycle condition for ζ that gives for every a ∈ p
(l)
01 and x ∈ {α(a), ω(a)}

the equation

ζ(x, x2, . . . , xn+1) = ζ(x1, . . . , xn+1) +
n+1∑
i=2

(−1)iζ(x, x1, . . . , x̂i, . . . , xn+1)
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and hence, by definition of ζ̃ we obtain

ζ̃(a, x2, . . . , xn+1) = ζ(x1, . . . , xn+1) +
n+1∑
i=2

(−1)iζ̃(a, x1, . . . , x̂i, . . . , xn+1). (4.2)

Knowing this, we compute

β(x0, . . . , xn+1) = f(x0, x1)ζ(x1, . . . , xn+1) +
n+1∑
i=0

(−1)iη(x0, . . . , x̂i, . . . , xn+1)

=
∑
a∈p(l)01

λ(a)ζ(x1, . . . , xn+1) +

n+1∑
i=2

(−1)iη(x0, x1, x2 . . . , x̂i, . . . , xn+1)

+ η(x1, . . . , xn+1)− η(x0, x2, . . . , xn+1)

=
∑
a∈p(l)01

λ(a)

(
ζ(x1, . . . , xn+1) +

n+1∑
i=2

(−1)iζ̃(a, x1, x2 . . . , x̂i, . . . , xn+1)

)

+ η(x1, . . . , xn+1)− η(x0, x2, . . . , xn+1)

=
∑
a∈p(l)01

λ(a)ζ̃(a, x2, . . . , xn+1)

+
∑
a∈p(l)12

λ(a)ζ̃(a, x2, . . . , xn+1)−
∑
a∈p(l)02

λ(a)ζ̃(a, x2, . . . , xn+1)

=
∑
a∈p(l)01

λ(a)τ(a) +
∑
a∈p(l)12

λ(a)τ(a)−
∑
a∈p(l)02

λ(a)τ(a).

We conclude with Lemma 4.4.1 that β is bounded by 3 · (R + 1) · c · ∥λ∥∞∥τ∥∞. This
bound is finite, as ∥τ∥∞ <∞ is finite.

So far, we have shown that the cup product [δ1f ] ∪ α is trivial for any α ∈ Cn
Γ,b(X;R)

that is well-behaved. Part 2 of the Main Theorem 4.2.6 also states that the cup product
α ∪ [δ1f ] is trivial. The computation works in a similar way.

We again want to find a Γ-equivariant map ϑ : V n+1 → R such that the cochain

β′ := ζ ∪ f − δnϑ

is bounded as then δn+1(−1)nβ′ = ζ ∪ δ1f lies in the image of δn+1 and thus the cup
product [ζ] ∪ [δ1f ] is trivial.
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We define

ϑ : V n+1 → R

(x0, . . . , xn) 7→
∑
a∈p(l)

λ(a)ζ̃(a, x0, . . . , xn−1)

where p ∈ P (xn−1, xn). Just as the map η before, this map is well-defined and Γ-invariant
since ζ is well-behaved.

Let x0, . . . , xn+1 ∈ V . Similar to the proof of boundedness of η we want to apply
Lemma 4.4.1 to τ := ζ̃( · , x0, . . . , xn−1). This is possible, as τ defined in this way fulfils
the assumptions of Lemma 4.4.1 similar to the previous case. The finiteness is then a
consequence of the fact that τ is bounded by ∥ζ∥∞ <∞.

In order to be able to apply Lemma 4.4.1, we need the cocycle condition of ζ. In
particular, we use for all x ∈ V

(−1)nζ(x, x0, . . . , xn−1) = ζ(x0, . . . , xn)−
n−1∑
i=0

(−1)iζ(x, x0, . . . , x̂i, . . . xn−1, xn).

that implies the following equation for all a ∈ p
(l)
n,n+1

(−1)nζ̃(a, x0, . . . , xn−1) = ζ(x0, . . . , xn)−
n−1∑
i=0

(−1)iζ̃(a, x0, . . . , x̂i, . . . xn−1, xn). (4.3)

We choose paths pn,n+1 ∈ P (xn, xn+1), pxn−1,xn ∈ P (xn−1, xn), and pn−1,n+1 ∈ P (xn−1, xn+1)
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and compute for β′ = ζ ∪ f − δnϑ

β′(x0, . . . , xn) = ζ(x0, . . . , xn+1)f(xn, xn+1)−
n+1∑
i=0

(−1)iϑ(x0, . . . , x̂i, . . . , xn+1)

=
∑

a∈p(l)n,n+1

λ(a)ζ(x0, . . . , xn)−
n−1∑
i=0

(−1)iϑ(x0, . . . , x̂i, . . . , xn−1, xn, xn+1)

− (−1)nϑ(x0, . . . , xn−1, xn+1) + (−1)nϑ(x0, . . . , xn)

=
∑

a∈p(l)n,n+1

λ(a)

(
ζ(x0, . . . , xn)−

n−1∑
i=0

(−1)iζ̃(a, x1, x2 . . . , x̂i, . . . , xn+1)

)

− (−1)nϑ(x0, . . . , xn−1, xn+1) + (−1)nϑ(x0, . . . , xn)

=
∑

a∈p(l)n,n+1

(−1)nλ(a)ζ̃(a, x0, . . . , xn−1)

−
∑

a∈p(l)n−1,n+1

(−1)nλ(a)ζ̃(a, x0, . . . , xn−1)

+
∑

a∈p(l)n−1,n

(−1)nλ(a)ζ̃(a, x0, . . . , xn−1)

= (−1)n

 ∑
a∈p(l)n,n+1

λ(a)τ(a)−
∑

a∈p(l)n−1,n+1

λ(a)τ(a) +
∑

a∈p(l)n−1,n

λ(a)τ(a)

 .

Eventually, Lemma 4.4.1 allows us to conclude that β′ is bounded.

Proof of Main Theorem 4.2.6, Part 3

Let ζ1 ∈ Cn
Γ,b(X;R) and ζ2 ∈ Cm

Γ,b(X;R) both be well-behaved. We want to show that

the Massey triple product ⟨[ζ1], [δ1f ], [ζ2]⟩ is trivial.
Recall, for

ϑ : V n+1 → R

(x0, . . . , xn) 7→
∑
a∈p(l)

λ(a)ζ̃1(a, x0, . . . , xn−1)

with p(l) ∈ P (xn−1, xn) and β1 := (−1)n(ζ1 ∪ f − δnϑ) we have

δn+1β1 = ζ1 ∪ δ1f.
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On the other hand, for

η : V m+1 → R

(x0, . . . , xm) 7→
∑
a∈p(l)

λ(a)ζ̃2(a, x1, . . . , xm)

with p(l) ∈ P (x0, x1) and β2 := f ∪ ζ2 + δmη we have

δm+1β2 = δ1f ∪ ζ2.

This was done in the proof of Part 2 of Main Theorem 4.2.6.

Now

[(−1)nζ1 ∪ β2 − β1 ∪ ζ2] ∈ ⟨[ζ1], [δ1f ], [ζ2]⟩

by definition of the Massey triple product and we will show in the following that this
element is trivial.

At first, we observe

(−1)nζ1 ∪ β2 − β1 ∪ ζ2 = (−1)nζ1 ∪ (f ∪ ζ2 + δmη)− (−1)n(ζ1 ∪ f − δnϑ) ∪ ζ2
= (−1)nζ1 ∪ δmη + (−1)nδnϑ ∪ ζ2
= δn+m(ζ1 ∪ η + (−1)nϑ ∪ ζ2). (4.4)

The procedure is now as follows: We want to find a Γ-invariant map κ : V n+m → R
such that

β := ζ1 ∪ η + (−1)nϑ ∪ ζ2 − δn+m−1κ

is bounded. Then we have

δn+mβ = δn+m(ζ1 ∪ η + (−1)nϑ ∪ ζ2 − δn+m−1κ)

= δn+m(ζ1 ∪ η + (−1)nϑ ∪ ζ2)
= (−1)nζ1 ∪ β2 − β1 ∪ ζ2

using that δn+m−1κ is a coboundary and Equation 4.4. This implies that the Massey
triple product ⟨[ζ1], [δ1f ], [ζ2]⟩ as it contains the trivial coclass 0 = [(−1)nζ1∪β2−β1∪ζ2].

We consider

κ : V n+m → R

(x1, . . . , xn+m) 7→
∑
a∈p(l)

λ(a)ζ̃1(a, x1, . . . , xn)ζ̃2(a, xn+1, . . . , xn+m)

with p ∈ P (xn, xn+1). This map does not depend on the choice of p ∈ P (xn, xn+1)
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since ζ1 and ζ2 are well-behaved. Hence, κ is a well-defined map. Furthermore, it is
Γ-invariant, as λ, ζ1 and ζ2 are Γ-invariant. In the following, let

β := ζ1 ∪ η + (−1)nϑ ∪ ζ2 − δn+m−1κ.

To show the boundedness of β, let x0, . . . , xn+m ∈ V and pn−1,n ∈ P (xn−1, xn),
pn−1,n+1 ∈ P (xn−1, xn+1), and pn,n+1 ∈ P (xn, xn+1). Our goal is to apply Lemma 4.4.1
for

τ := ζ̃1( · , x0, . . . , xn−1) · ζ̃2( · , xn+1, . . . , xn+m).

We checked in the proof of Part 2 that the maps ζ̃1( · , x0, . . . , xn−1) and ζ̃2( · , xn+1, . . . , xn+m)
fulfil the assumptions of Lemma 4.4.1. It is then an easy conclusion that τ does so, too.
We also note that τ is bounded by ∥ζ1∥∞ · ∥ζ2∥∞ <∞.

We compute

β(x0, . . . , xn+m) = ζ1(x0, . . . , xn)η(xn, . . . , xn+m) + (−1)nϑ(x0, . . . , xn)ζ2(xn, . . . , xn+m)

−
n+m∑
i=0

(−1)iκ(x0, . . . , x̂i, . . . , xn+m)

= ζ1(x0, . . . , xn)η(xn, . . . , xn+m) + (−1)nϑ(x0, . . . , xn)ζ2(xn, . . . , xn+m)

−
n−1∑
i=0

(−1)i
∑

a∈p(l)n,n+1

λ(a)ζ̃1(a, x0, . . . , x̂i, . . . , xn−1, xn)ζ̃2(a, xn+1, . . . , xn+m)

− (−1)n
∑

a∈p(l)n−1,n+1

λ(a)ζ̃1(a, x0, . . . , xn−1)ζ̃2(a, xn+1, . . . , xn+m)

−
n+m∑
i=n+1

(−1)i
∑

a∈p(l)n−1,n

λ(a)ζ̃1(a, x0, . . . , xn−1)ζ̃2(a, xn, xn+1, . . . , x̂i, . . . , xn+m)

At first, we look at the blue part of the equation. To tidy up the equation, we define

for a ∈ p
(l)
n,n+1

ca := λ(a)ζ̃2(a, xn+1, . . . , xn+m).
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Then,

ζ1(x0, . . . , xn)η(xn, . . . , xn+m)

−
n−1∑
i=0

(−1)i
∑

a∈p(l)n,n+1

λ(a)ζ̃1(a, x0, . . . , x̂i, . . . , xn−1, xn)ζ̃2(a, xn+1, . . . , xn+m)

=
∑

a∈p(l)n,n+1

ζ1(x0, . . . , xn)λ(a)ζ̃2(a, xn+1, . . . , xn+m)

−
∑

a∈p(l)n,n+1

n−1∑
i=0

(−1)icaζ̃1(a, x0, . . . , x̂i, . . . , xn−1, xn)

=
∑

a∈p(l)n,n+1

ca

(
ζ1(x0, . . . , xn)−

n−1∑
i=0

(−1)iζ̃1(a, x0, . . . , x̂i, . . . , xn−1, xn)

)
.

As we have done it in Equation 4.3, we obtain due to the cocycle condition on ζ1

(−1)nζ̃1(a, x0, . . . , xn−1) = ζ1(x0, . . . , xn)−
n−1∑
i=0

(−1)iζ̃1(a, x0, . . . , x̂i, . . . , xn−1, xn).

Applying this, we have

ζ1(x0, . . . , xn)η(xn, . . . , xn+m)

−
n−1∑
i=0

(−1)i
∑

a∈p(l)n,n+1

λ(a)ζ̃1(a, x0, . . . , x̂i, . . . , xn−1, xn)ζ̃2(a, xn+1, . . . , xn+m)

=
∑

a∈p(l)n,n+1

ca(−1)nζ̃1(a, x0, . . . , xn−1)

= (−1)n
∑

a∈p(l)n,n+1

λ(a)ζ̃1(a, x0, . . . , xn−1)ζ̃2(a, xn+1, . . . , xn+m).

Similar things can be done for the pink part of the equation. For this, we define for
a ∈ pn−1,n the constant

da := λ(a)ζ̃1(a, x0, . . . , xn−1)
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and compute

(−1)nϑ(x0, . . . , xn)ζ2(xn, . . . , xn+m)

−
n+m∑
i=n+1

(−1)i
∑

a∈p(l)n−1,n

λ(a)ζ̃1(a, x0, . . . , xn−1)ζ̃2(a, xn, xn+1, . . . , x̂i, . . . , xn+m)

=
∑

a∈p(l)n−1,n

(−1)nλ(a)ζ̃1(a, x0, . . . , xn−1)ζ2(xn, . . . , xn+m)

−
∑

a∈p(l)n−1,n

(−1)n
m∑
i=1

da(−1)iζ̃2(a, xn, xn+1, . . . , x̂n+i, . . . , xn+m)

=
∑

a∈p(l)n−1,n

(−1)nda

(
ζ2(xn, . . . , xn+m)−

m∑
i=1

(−1)iζ̃2(a, xn, xn+1, . . . , x̂n+i, . . . , xn+m)

)
.

As well as in Equation 4.2 the cocycle condition of ζ2 allows the equation

ζ̃2(a, xn+1, . . . , xn+m) = ζ2(xn, . . . , xn+m)−
m∑
i=1

(−1)iζ̃2(a, xn, xn+1, . . . , x̂n+i, . . . , xn+m).

Hence, we conclude

(−1)nϑ(x0, . . . , xn)ζ2(xn, . . . , xn+m)

−
n+m∑
i=n+1

(−1)i
∑

a∈p(l)n−1,n

λ(a)ζ̃1(a, x0, . . . , xn−1)ζ̃2(a, xn, xn+1, . . . , x̂i, . . . , xn+m)

=
∑

a∈p(l)n−1,n

(−1)ndaζ̃2(a, xn+1, . . . , xn+m)

= (−1)n
∑

a∈p(l)n−1,n

λ(a)ζ̃1(a, x0, . . . , xn−1)ζ̃2(a, xn+1, . . . , xn+m).
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Now we just need to put all together and obtain

β(x0, . . . , xn+m)

= (−1)n
∑

a∈p(l)n,n+1

λ(a)ζ̃1(a, x0, . . . , xn−1)ζ̃2(a, xn+1, . . . , xn+m)

− (−1)n
∑

a∈p(l)n−1,n+1

λ(a)ζ̃1(a, x0, . . . , xn−1)ζ̃2(a, xn+1, . . . , xn+m)

+ (−1)n
∑

a∈p(l)n−1,n

λ(a)ζ̃1(a, x0, . . . , xn−1)ζ̃2(a, xn+1, . . . , xn+m)

= (−1)n

 ∑
a∈p(l)n,n+1

λ(a)τ(a)−
∑

a∈p(l)n−1,n+1

λ(a)τ(a) +
∑

a∈p(l)n−1,n

λ(a)τ(a)

 .

Finally, we apply Lemma 4.4.1 and conclude that β is bounded since τ is bounded.
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In this section we look at pullbacks of median quasimorphisms of groups acting on trees.
After presenting the preliminary definitions and properties of trees and their automor-
phism groups in Section 5.1, we give a characterization for actions on trees that gives rise
to an infinite family of non-trivial median quasimorphisms (Section 5.2). We work out
the proof of this characterization in Section 5.3. Lastly, we formulate a consequence of
this characterization. It states in particular that for cocompact lattices of a products of
automorphism groups of regular trees the triviality of the second bounded cohomology is
equivalent to the triviality of the median quasimorphism. We follow the paper of Iozzi,
Pagliantini and Sisto [10].

At first, we recall Remark 4.1.18, where we described the construction of median quasi-
morphism of a group Γ acting on a tree T = (V,E).

For l ∈ N and s a geodesic of length l in T , the median quasimorphism fs for s is the
zero-map if Γs = Γs. Otherwise, we have

fs(x, y) =
∑

β∈Jx,yK(n)

ϵs(β)

for x, y ∈ V , where the map ϵs is defined as

ϵs : E(l) → {−1, 0, 1}

β 7→


1, if Γβ = Γs,

−1, if Γβ = Γs,

0, otherwise.

As mentioned, we only look at pullbacks of such quasimorphisms under the orbit
map for some v ∈ V . Therefore, we call these pullbacks for simplicity just median
quasimorphisms and no confusion will arise.

5.1 Preliminaries on trees

Definition 5.1.1 ((bi)-infinite chains, ends). Let T = (V,E) be a tree. We call a
geodesic γ : N → V or γ : Z → V an infinite or bi-infinite chain, respectively. We define
an equivalence relation on the set of infinite chains by

γ1 ∼ γ2 : ⇔ γ1(N) ∩ γ2(N) is infinite.
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We define the set of ends δT of T , also called the boundary of T , to be the set of
equivalence classes of infinite chains.

Remark 5.1.2. The relation on the set of infinite chains is indeed an equivalence relation
since T is a tree and hence two infinite chains γ1 and γ2 have an infinite intersection if
and only if there exist n,m ∈ N such that for all k ∈ N it is γ1(n+ k) = γ2(m+ k).

Remark 5.1.3 (group action on ends). Let T be a tree with a non-empty set of ends.
Let Γ be a group acting on T . Then Γ also acts on the boundary of T via

Γ× δT → δT

(g, [γ]) 7→ [n 7→ g · γ(n)].

Lemma 5.1.4. Every non-empty locally finite tree with infinitely many vertices has a
non-empty set of ends.

Proof. Let T = (V,E) be a non-empty locally finite tree with infinitely many vertices.
Let v ∈ V . We want to construct an infinite chain γ : N → V . Note that a map γ : N → V
is a geodesic if for all n ∈ N we have γ(n) ̸= γ(n+ 2) and {γ(n), γ(n+ 1)} ∈ E.

We define for x ∈ V with d(v, x) = 1 the number

µv(x) := |{y ∈ V | the unique path from v to y crosses x}|

and obtain the equality

∞ = |V | = |{v}|+
∑

x∈V, d(v,x)=1

µv(x) = 1 +
∑

x∈V, d(v,x)=1

µv(x).

Hence, there is at least one neighbour x of v with µv(x) = ∞ as v has only finitely many
neighbours by the local finiteness of T .

We define now an infinite chain γ inductively as follows. For n = 0, we set γ(0) := v.
For n = 1 choose a neighbour x of v with µv(x) = ∞ and define γ(1) = x. Assume
for some n > 0 we have defined γ(i) for all i ≤ n such that µγ(n−1)(γ(n)) = ∞. Since
γ(n) has only finitely many neighbours, this means we can find a neighbour y with
y ̸= γ(n − 1) and µγ(n)(y) = ∞. We define γ(n + 1) := y. This inductively defines an
infinite chain γ : N → V in T . Hence, we have δT ̸= ∅.

Example 5.1.5. Let T = (V,E) be a tree such that every vertex has degree at least 2.
Then T has at most 2 ends as one can fix a vertex v and construct two different infinite
chains by the two neighbours of v. Furthermore, if every vertex has degree at least 3
then T has infinitely many ends.

Definition 5.1.6 (topology on trees with ends). Let T = (V,E) be a tree. For e ∈ E and
x ∈ e a vertex of e we define by Te,x = (Ve,x, Ee,x) the subtree of T whose vertex set Ve,x
is the halfspace defined by e containing x and the set of edges Ee,x := {e ∈ E | e ⊂ Ve,x}
being all edges in E that consists of two vertices of Ve,x.
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We equip V ∪ δT with the topology given as follows. Every vertex v ∈ V is open and
for ζ ∈ δT we have a basis of open neighbourhoods given by sets of the form Ve,x∪ δTe,x,
where e ∈ E is an edge and x ∈ e such that ζ ∈ δTe,x.

When we speak of δT as a topological space we always refer the subspace topology on
δT ⊂ V ∪ δT .

Definition 5.1.7 (convex hull). Let T = (V,E) be a locally finite tree and F ⊂ δT
be a closed subset containing at least two elements. Then, we call the subgraph of T
consisting exactly of all bi-infinite chains connecting two elements of F the convex hull
of F .

Lemma 5.1.8. Let T = (V,E) be a locally finite tree and F ⊂ δT be a closed subset
containing at least 2 elements. Then, the convex hull of F is a subtree of T whose
boundary with F .

Proof. Let T ′ = (V ′, E′) denote the convex hull of F , i.e. the graph consisting exactly
of all bi-infinite chains connecting elements of F . Since T ′ is a subgraph of T , it is clear
that it contains no cycles. Hence, for T ′ being a tree we only need to show that T ′ is
connected. To do this, let x, y ∈ T ′. We want to find a bi-infinite chain γ connecting
two points of F that crosses both x and y. For this, we choose two bi-infinite chains
γ1, γ2 connecting two points in F with γ1(0) = x and γ2(0) = y. Let s := [x, y] be the
geodesic in T from x to y. Then at least one of the two branches (γ1)|Z≥0

and (γ1)|Z≤0

of γ1 intersects with s only in the point x, say without loss of generality this holds for
(γ1)|Z≤0

. The same holds for (γ2)|Z≥0
and (γ2)|Z≤0

, say without loss of generality that
(γ2)|Z≥0

intersects with s only in y. We consider the map

γ : Z → T

z 7→


γ1(z), if z ≤ 0,

s(z), if 0 < z < n,

γ2(z − n), if z ≥ n.

Since the tree paths that are concatenated to obtain γ do not overlap, γ is indeed
a geodesic and a bi-infinite chain connecting two points in F . Hence, the geodesic
connecting x and y is contained in T ′.

In order to compute the set of ends of T ′ we see F ⊂ δT ′ by definition of T ′. On the
other hand, let ζ /∈ F . Since F is closed in δT we find an edge e ∈ E and a vertex x ∈ e
such that ζ ∈ δTe,x and δTe,x ∩ F = ∅. Hence, a bi-infinite path connecting elements of
F cannot cross vertices of Te,x and δT ′ does not contain an infinite chain representing ζ.
This means δT ′ ⊂ F . All in all, we obtain δT ′ = F .

Definition 5.1.9 (semiregular tree). A tree T = (V,E) is called semiregular if the
automorphism group Aut(Γ) acts transitively on the set of edges E but not necessarily
transitively on the set of vertices V .

Definition 5.1.10 (minimal action). The action of a group Γ on a tree T is called
minimal if there is no non-empty Γ-invariant proper subtree.
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In the following, we define a topology on the automorphism group of regular trees in
order to talk about closed subsets.

Definition 5.1.11 (topology on Aut(T )). Let T be a regular tree of degree at least 2.
For g ∈ Aut(T ) and a finite subset F ⊂ V , we define

UF (g) := {h ∈ Aut(T ) | h(x) = g(x) for all x ∈ F}.

We equip the set of graph automorphisms Aut(T ) on T with the topology that is defined
by having sets of the form UF (g) as a basis of open neighbourhoods of g ∈ Aut(T ).

We use the following theorems without proof.

Theorem 5.1.12 ([6, Lemma 8.2]). Let T be a regular tree of degree greater than 2.
Then T contains a free group of rank 2 as a discrete subset.

Theorem 5.1.13 ([6, Chapter 1, Part 8]). Let T be a regular tree of degree greater
than 2 and ζ ∈ δT . Then the stabilizer of ζ, i.e. the set

StabAut(T )(ζ) = {f ∈ Aut(T ) | f · ζ = ζ}

is an amenable subgroup of Aut(T ).

Next, we introduce local ∞-transitivity for subgroups of Aut(T ).

Definition 5.1.14 (local ∞-transitivity). A subgroup of the automorphism group Γ of
a locally finite tree is locally ∞-transitive if for all vertices v ∈ V and for all integers
n ∈ N the stabiliser StabΓ(v) acts transitively on the n-sphere centred at v.

Lemma 5.1.15. Let T = (V,E) be a regular tree of degree at least 2 and let H ⊂ Aut(T )
be a closed subgroup. Then, for a vertex v ∈ V the following are equivalent:

1. StabH(v) acts transitively on all spheres of finite radius centred at v.

2. StabH(v) acts transitively on δT .

In particular, H is locally ∞-transitive if and only if for all v ∈ V the stabilizer StabH(v)
acts transitively on δT .

Proof. The last part of the lemma follows directly from the definition of local ∞-
transitivity.
For the main part, suppose for v ∈ V that StabH(v) acts transitively on δT . Let

n ∈ N and w1, w2 ∈ V that both have distance n to v. As every vertex in T has degree
at least 2, we can find two infinite chains γ1 and γ2 both starting at v with γ1(n) = w1

and γ2(n) = w2. As StabH(v) acts transitively on δT , there exists g ∈ StabH(v) such
that g ·γ1 and γ2 define the same end. As these two infinite chains have the same starting
point, this means g · γ1 = γ2 and hence, g · w1 = w2.
On the other hand, assume that StabH(v) acts transitively on all spheres of finite

radius centred at v for some v ∈ V . Let ζ1, ζ2 ∈ δT be two ends of T represented by the
infinite chains γ1, γ2 respectively, both starting at v.
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5.2 Main statement

For n ∈ N, choose hn ∈ StabH(v) such that hn · γ1(n) = γ2(n). This exists, as
StabH(v) acts transitively on the n-sphere around v. By the uniqueness of geodesics
in T this means in particular

(hn · γ1)|{0,...,n} = (γ2)|{0,...,n}.

If {hn | n ∈ N} is finite, then for one n0 ∈ N we know that hn0 · γ1 = γ2. If the set
is infinite, then we constructed an infinite subset of the compact set StabAut(T )(v), [6,
Chapter 1, Part 4]. Hence, there exists a limit point h of this infinite set in StabAut(T )(v).
For this limit point h, we also know that it lies in H as H is closed. This means
h ∈ StabH(v). Furthermore, as h is a limit point of the automorphisms hn, we know
that h · γ1 = γ2. This shows h · α = β and we conclude that StabH(v) acts transitively
on δT .

We end this section with an additional definition.

Definition 5.1.16. Let G be a locally compact topological group. A cocompact lattice
in G is a discrete subgroup Γ of G such that the quotient space G/X is compact with
respect to the quotient topology.

5.2 Main statement

In the following, we consider a discrete group Γ and a group action of Γ on a tree
T = (V,E). Furthermore, we fix a base vertex v ∈ V .

We then have the following theorem, which yields meaningful consequences on the
second bounded cohomology of Γ.

Theorem 5.2.1 ([10, Theorem 1]). Suppose that Γ acts minimally on the tree T and
that every vertex of T has degree greater than 2. Then, one of the following holds

1. Γ fixes a point in the boundary δT of T ,

2. T is semiregular and for every vertex x ∈ V and for every n ∈ N the group Γ acts
transitively on the set of geodesics of length n starting at a vertex in Γx,

3. There exists an infinite family (sn)n∈N of geodesics such that ([δ1f̂sn,v])n∈N is an
infinite family of linearly independent coclasses in H2

b (Γ;R).

We take a closer look at the different cases. In particular, we obtain the following.

Lemma 5.2.2. Suppose we are in the setup of Theorem 5.2.1. If Case 3 holds, then
dim(H2

b (Γ;R)) = ∞.

Furthermore, Case 2 has a big influence on median quasimorphisms.

Lemma 5.2.3. Suppose we are in the setup of Theorem 5.2.1. If Case 2 holds, then
every median quasimorphism is trivial.
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5 Median quasimorphisms on trees

Proof. To show this, let s be a geodesic in T = (V,E) and x ∈ V . We consider the
median quasimorphism fs,x. Since for every n ∈ N the action of Γ on the set of geodesics
of length n starting at a vertex of Γx is transitive, there is for every g ∈ Γ an element
h ∈ Γ with [x, gx] = h · [gx, x]. This induces a bijection

Jx, gxK(n) → Jgx, xK(n),
β 7→ h · β.

Hence, we compute for g ∈ Γ

fs(x, gx) =
∑

β∈Jx,gxK(n)

ϵs(β)

=
∑

β∈Jgx,xK(n)

ϵs(h
−1β)

=
∑

β∈Jgx,xK(n)

ϵs(β)

= fs(gx, x),

where the second to last equality holds true due to the definition of ϵs. This shows
that fs is symmetric. As we know by Corollary 4.3.4 that fs is also anti-symmetric, we
conclude fs = 0 and thus, fs,x = 0.

About mutual exclusiveness

Despite the version of Iozzi, Pagliantini and Sisto [10], we stated the theorem without
mutual exclusiveness. This is due to the problem that there is an inaccuracy in the
corresponding abstract [10, Section 2.2]. What holds true is that Cases 1 and 2 cannot
simultaneously occur. To see this, suppose we are in Case 1 . Choose x ∈ V and let γ be
the infinite chain starting at x representing the fixed point in the boundary. We consider
the geodesic s = [x, γ(1)] of length 2. Then, every translate of s lies on the infinite chain
representing the fixed point. In particular, for all g ∈ StabΓ(x) it is g ·γ(1) = γ(1). This
contradicts Case 2 as x has more than one neighbour.

Furthermore, by Lemma 5.2.3 we know that Cases 2 and 3 cannot simultaneously
occur.

However, it is not clear whether Cases 1 and 3 exclude themselves or not. In the
corresponding abstract by Iozzi, Pagliantini and Sisto [10, Section 2.2] it is stated that
in Case 1 every median quasimorphism is bounded. If this was true, then every coclass
corresponding to a median quasimorphism would be trivial and hence, Case 3 cannot
hold.

But there is an example of a group acting minimally on a tree that has a fixed point
in the boundary and an unbounded median quasimorphisms that is also not a group
homomorphism. This would produce a non-trivial coclass in the second bounded coho-
mology.
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5.2 Main statement

Having this counterexample, we see that the arguments of Iozzi, Pagliantini and Sisto
cannot hold true. Nevertheless, this example does not give an evidence that Cases 1
and 3 can simultaneously occur. The connection between the two Cases remains as an
open problem.

In the last part of this passage we present the example that contradicts the arguments
given in [10, Section 2.2].

We consider the free group F freely generated by the set S = {a, b} and the corre-
sponding Cayley graph Cay(F, S) = (V,E) that is a regular tree of degree 4, see [11,
Theorem 3.3.1].

As F is freely generated by S a group action of F on Cay(F, S) is determined by
defining the action of a and b on Cay(F, S). Visually explained, multiplication with a
moves everything one level up and multiplication with b rotates the left, lower and right
branches of the origin e, see Figure 5.1.

b·

a·

Figure 5.1: Group action of F on Cay(F, S)

Formally, this can be described as follows. We consider the group isomorphism

φ : F → F

a 7→ b

b 7→ a−1.

Note: This isomorphism defines a clockwise rotation of the branches of the origin. We
define the group action of F on Cay(F, S) by

a · w = aw

b · w =


w, if w starts with a,

φ(w), if w starts with b or a−1,

φ2(w), otherwise.
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5 Median quasimorphisms on trees

for w ∈ F a reduced word.
One can check that this is indeed a minimal group action. Furthermore, it fixes the

point in the boundary defined by the infinite chain

γ : N → V

n 7→ an.

To obtain an unbounded median quasimorphism that is not a group homomorphism,
consider the geodesic s = [e, a2]. Since s is part of the infinite chain γ defining the
fixed point in the boundary, we know that any translate of s lies on an infinite chain
defining this fixed point. This means, F · s ̸= F · s and fs,e(a

n) = n − 1 for all n ∈ N.
In particular, fs,e is unbounded. Furthermore, the median quasimorphism fs,e is not a
group homomorphism, as fs,e(a) = 0 but fs,e(a

2) = 1.

5.3 Proof of the statement

We assume that the assumptions of Theorem 5.2.1 are fulfilled and Cases 1 and 2 do
not hold. In order to find a family of geodesics (sn)n∈N such that ([δ1f̂sn,v])n∈N is a
linearly independent family in H2

b (Γ;R), we define a Γ-equivariant labelling on geodesics
connecting two points of Γv, i.e. a word in the alphabet {a, b, c} with some additional
properties.
We then show that we have a family of geodesics with complicated enough labellings

such that two of them overlap only in short subgeodesics in relation to their lengths.
This family of geodesics allows us to construct geodesics (sn)n∈N such that ([δ1f̂sn,v])n∈N
is linearly independent.

5.3.1 The labelling

In the following, we will be mostly interested in geodesics connecting vertices of Γv and
the number of translates of v the geodesic crosses. For this, we introduce the following
definition.

Definition 5.3.1 (orbit length, o(n)-geodesic, o-edge, o-vertex). The orbit-length or
shorter o-length of a geodesic γ is the number of vertices in the orbit Γv crossed by γ
minus 1. We denote the o-length of γ by |γ|o.
An o(n)-geodesic is a geodesic of orbit length n connecting two vertices of Γv. If we

do not need to emphasize the length we use the notation o-geodesic. An o(1)-geodesic is
also called o-edge and an o-vertex is a vertex in the orbit Γv.

In order to define a Γ-invariant labelling on the o-geodesics we need a positive integer k
and a Γ-invariant assignment of a letter from {a, b, c} to each o(k)-geodesics, i.e. two
o(k)-geodesics that lie in the same orbit are labelled by the same letter.
Then, we define a labelling on the o-geodesics via the following: Every o-geodesic of

orbit length smaller than k has the empty word as label and for an o-geodesic of o-length
greater than k we assign a word in {a, b, c} via the following procedure. Let γ be an
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5.3 Proof of the statement

o(L)-geodesic with L > k. For i ∈ {1, . . . , L−k+1} we denote by γi the o(k)-subgeodesic
of γ starting at the i-th o-vertex of γ. Then, the label of γ is defined to be the word
having the label of γi as i-th letter. Note that in this case, the label consists of L−k+1
letters.

As the labelling of the o(k)-geodesics is Γ-invariant, the induced labelling on all o-
geodesics is also Γ-invariant.

Definition 5.3.2 (good word). A word in the letters {a, b, c} is called good, if it is the
concatenation of words of the form abN for N ≥ 2.

We use that if we are not in Case 1 or 2 we can find a positive integer k and an
assignment of a letter from {a, b, c} to each orbit of o(k)-geodesics such that every good
word can be realized as the label of some o-geodesic, and

• either we assign the label a, b respectively, to a unique orbit of o-geodesics, or

• the inverse of any element labelled a is not in an orbit labelled b.

We skip the technical construction of such a labelling and proceed with the proof of
Theorem 5.2.1 using the existence of such a label. The details for the construction can
be found in [10, Section 2.6].

5.3.2 The choice of geodesics

From now on, we suppose that we are not in Case 1 or 2 of Theorem 5.2.1. Furthermore,
we fix an integer k and a Γ-invariant assignment of a letter of {a, b, c} to each o(k)-
geodesic such that the induced labelling on the o-geodesic fulfils the properties described
above.

In the following, we take a closer look at good words and look at some lemmas that
help us to prove Theorem 5.2.1.

We use the following notation: If w is a word in {a, b, c}, then we denote by w the
word we obtain by reading w from right to left.

The following two lemmas are quite technical. We will construct good words and
geodesics labelled with these words such that their overlap is bounded. This will play an
important role in the definition of the geodesics sn that give rise to a linearly independent
family (δ1f̂sn,v).

Lemma 5.3.3. There exists a family of words (wn,i)n∈N,i∈{1,2,3} in the alphabet {a, b}
such that

• for every n ∈ N and every i ∈ {1, 2, 3} the word wn,i has length at least 20n and is
good, i.e. it is the concatenation of words of the form abN for N ≥ 2.

• for each integer l there exists n0(l) such that for all n,m ≥ n0(l) and for all
i, j ∈ {1, 2, 3}
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5 Median quasimorphisms on trees

– The words wn,i and wm,j share a subword of length at least

min{|wn,i|+ l − 1, |wm,j |+ l − 1}
10

− l

if and only if n = m and i = j.

– wn,i doesn’t share a common subword of length at least

min{|wn,i|+ l − 1, |wm,j |+ l − 1}
10

− l

with wm,j.

Proof. In order to construct such words, we define for n ∈ N and i ∈ {1, 2, 3} the positive
integers vn,i := 100 · (3n+ i) and set

wn,i := abvn,iabvn,i+1 · · · abvn,i+99.

By definition of the vn,i, if there are n,m ∈ N and i, j ∈ {1, 2, 3} such that in both words
wn,i and wm,j the same exponent of b appears, then n = m and i = j.

For l ∈ N we choose n0(l) = l. Then, for all n ≥ n0(l) and i ∈ {1, 2, 3} we know

|wn,i| = 100 + 100vn,i +
99∑
k=1

k > 5000 + 100vn,i

and we estimate

|wn,i|+ l − 1

10
− l > 500 + 10vn,i −

9l + 1

10
> 500 + 10vn,i − l > 500 + 9vn,i.

A subword of wn,i with length at least
|wn,i|+l−1

10 − l has to contain a subword of the
form abvn,i+zabvn,i+z+1 for some z ∈ {1, . . . , 99}. Together with the uniqueness of the
exponent, this concludes the proof.

We fix such a family (wn,i)n∈N,i∈{1,2,3} of good words up to the end of this subsection
and remind us that we chose the labelling in such a way that every good word can be
realized as the label of some o-geodesic. This allows us to bound the length of common
subgeodesics of two geodesics labelled as such good words, as we see in the following.

Definition 5.3.4. We say a geodesic γ is labelled w−1 for w a word in {a, b, c} if γ−1 is
labelled by w.

Lemma 5.3.5. Let n,m ≥ n0(k) and i, j ∈ {1, 2, 3}. Furthermore, let γ1, γ2 be o-
geodesics labelled by wϵ1

n,i and wϵ2
m,j, respectively, for ϵ1, ϵ2 ∈ {1,−1}. If γ1 and γ2

share a common o-subgeodesic of o-length at least min{|γ1|o,|γ2|o}
10 − 1, then ϵ1 = ϵ2 and

i = j, n = m.
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5.3 Proof of the statement

Proof. In order to make clear the connection to Lemma 5.3.3 above, we make use of the
equation

|γ1|o = |wn,i|+ k − 1

for the orbit length of γ1. The same holds for the orbit length of γ2.

Suppose that γ1 and γ2 share a common subgeodesic of o-length

L ≥ min{|γ1|o, |γ2|o}
10

− 1.

In order to obtain conclusions on subwords of wn,i and wm,j we need to check that the
o-length L is greater than k as in this case the two words then need to share a common
subword of length L−k+1. This follows from the assumption on wn,i and wm,j to have
length at least 20n, 20m, respectively. Then

L ≥ min{|wn,i|+ k − 1, |wm,j |+ k − 1}
10

− 1 ≥ min{20n, 20m}
10

− 1 ≥ 2k − 1 ≥ k.

If ϵ1 = ϵ2, then the existence of such a long common subgeodesic implies that wn,i

and wm,j share a subword of length at least(
min{|γ1|o, |γ2|o}

10
− 1

)
− k + 1 =

min{|wn,i|+ k − 1, |wm,j |+ k − 1}
10

− k.

This allows us to conclude m = n and i = j by Theorem 5.2.1.

To finish the proof, we need to show if ϵ1 ̸= ϵ2 then γ1 and γ2 cannot share such
a long subgeodesic. To do this, we suppose ϵ1 = 1 and ϵ2 = −1. This means γ−1

2 is
labelled wm,j . We want to show that the label of γ2 cannot share a subword with wn,i

of length at least
min{|wn,i|+k−1,|wm,j |+k−1}

10 − k as this means they cannot share such a
long subgeodesic.

Firstly, we consider the case where γ2 is labelled wm,j . Then, by Lemma 5.3.3 the
words wn,i and wm,j do not share a long enough subword.

If γ2 is not labelled wm,j , then there exists an o(k)-subgeodesic of γ−1
2 labelled a or b

such that its inverse is labelled b or a, respectively. By the assumption on our labelling,
we know that in this case the label a and the label b are assigned to a unique orbit of
o(k)-geodesics. Hence, the label of γ2 is obtained by reading wm,j from right to left and
replacing a with b and b with a, which means it is the concatenation of words aNb with
N ≥ 2. It is clear that wn,i and the label of γ2 cannot share such a long subword.

Definition 5.3.6 ((long) wn,i-subgeodesic). Let n ∈ N, i ∈ {1, 2, 3} and γ be an o-
geodesic labelled wn,i. An o-subgeodesic of γ is called wn,i-subgeodesic. It is called long,
if its o-length is at least (|wn,i|+ k − 1)/2.

Definition 5.3.7 (almost concatenation). Let γ1 and γ2 be two o-geodesics. If the
endpoint of γ1 and the starting point of γ2 coincide or can be connected by an o-edge,
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5 Median quasimorphisms on trees

then the concatenation of γ1, the o-edge (if necessary), and γ2 is an o-geodesic. It is
called the almost concatenation of γ1 and γ2.

In the next lemma, we show the existence of a family (sn)n∈N of o-geodesics with some
interesting properties. This family will be the one we use for the proof of Theorem 5.2.1.

Lemma 5.3.8. Let n ∈ N. Then there exist gn,1, gn,2, gn,3 ∈ Γ and an o-geodesic sn
obtained by almost concatenating a long wn,3-subgeodesic and a long wn,1-subgeodesic
such that the following holds for each positive integer N .

1. The o-geodesic from v to (gn,1, gn,3)
Nv is the almost concatenation of a long wn,1-

subgeodesic, N − 1 translates of sn and a long wn,3-subgeodesic.

2. The o-geodesic from v to (gn,1gn,2)
Nv, respectively (g−1

n,2gn,3)
Nv, is obtained al-

ternately almost concatenating long wn,1-subgeodesics and long wn,2-subgeodesics,
respectively long w−1

n,2-subgeodesics and long wn,3-subgeodesics.

Proof. We choose for n ∈ N and i ∈ {1, 2, 3} the elements gn,i in such a way that the
o-geodesic from v to gn,iv is labelled wn,i. Let N ∈ N. We only prove Statement 1 of
the lemma, the second one works in a similar way.
Let γ1 be the longest o-subgeodesic of [v, gn,1v] that does not overlap with [g−1

n,3v, v]
and [gn,1v, gn,1gn,3v]. Note, that γ1 is a long wn,1-subgeodesic since we can bound the
overlap by Lemma 5.3.5. In the same way we choose γ3 to be the longest o-subgeodesic
of [v, gn,3v] that does not overlap with [g−1

n,1v, v] and [gn,3v, gn,3gn,1v]. Similar to γ1, we
see that γ3 is a long wn,3-subgeodesic. Then, we define sn to be the almost concatenation
of gn,1γ3 and gn,1gn,3γ1 that has to exist by the construction of the two o-geodesics.
Furthermore, let γ′3 be the o-subgeodesic of [(gn,1gn,3)

N−1gn,1v, gn,1gn,3v] that almost
concatenates with (gn,1gn,3)

N−1sn and let γ′1 be the longest o-subgeodesic of [v, gn,1v]
that almost concatenates with sn. The almost concatenations exist by definition of sn.
Then, one can show that the almost concatenation of

γ′1, (gn,1gn,3)
1sn, . . . , (gn,1gn,3)

N−1sn, γ
′
3

is the geodesic [v, (gn,1, gn,3)
Nv] see Figure 5.2.

In order to prove Theorem 5.2.1 we use the following lemma about linearly indepen-
dence of coclasses in the second bounded cohomology.

Lemma 5.3.9. Let (fn)n∈N be a family of non-trivial quasimorphisms on a discrete
group G. Suppose that there exists a family of elements (ηn, hn)n∈N of G such that for
all positive integers z,m, n we have

fn(η
z
m) = fn(h

z
m) = 0

and

fn((ηmhm)z)

{
= 0, if n ̸= m,

≥ z − 1, if n = m.
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v gn1v

gn1gn3v

gn1gn,3gn1v

(gn,1, gn,3)
2v

wn,1

wn,3

sn

Figure 5.2: The geodesic [v, (gn,1, gn,3)
2v]

Then (δ1f̂n)n∈N is a linearly independent family in H2
b (G;R).

Proof. For every n ∈ N we consider the homogenization fn of fn, which is in particular
of finite distance of fn and hence, defines the same coclass in H2

b (Γ;R) (Theorem 3.1.4).
By looking at the construction of the homogenization in the proof of Theorem 3.1.4,

which precisely constructs it pointwise by fn(x) = lim
k→∞

fn(xk)
k for all n ∈ N and x ∈ G,

we obtain for positive integers m,n the equations

fn(ηm) = fn(hm) = 0

and

fn(ηmhm)

{
= 0, if n ̸= m,

≥ lim
k→∞

k−1
k = 1, if n = m.

With help of these equations, we prove the linear independence of the coclasses associated
to the quasimorphisms fn. For this, let I ⊂ N be a finite subset and let (λi)i∈I be a
family of scalars in R such that

0 =
∑
i∈I

λi

[
δ1f̂i

]
=
∑
i∈I

λi

[
δ1f̂i

]
in H2

b (G;R). Since δ1 and ·̂ are R-linear maps, this is equivalent to

0 =

[
δ1

(∑̂
i∈I

λifi

)]
.

Thus, the homogeneous quasimorphism
∑

i∈I λifi needs to be a group homomorphism
by Theorem 3.1.7. This condition has a great influence on the λi’s, as we can compute
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for an arbitrary j ∈ I

λjfj(ηjhj) =
∑
i∈I

λifi(ηjhj) =
∑
i∈I

λifi(ηj) +
∑
i∈I

λifi(hj) = 0.

As fj(ηjhj) ̸= 0 we conclude λj = 0 which proves the linear independence of the finite
family (fn)n∈I . As the finite set I ⊂ N was chosen arbitrarily, we can conclude that the
family (fn)n∈N is linearly independent.

Proof of Theorem 5.2.1. We are still supposing that Cases 1 and 2 of Theorem 5.2.1
do not hold. Let the family (gn,i)n∈N,i∈{1,2,3} of Γ and the family (sn)n∈N be as in
Lemma 5.3.8. We show that we can apply Lemma 5.3.9 to

fn = fsn+n0(k)
,v,

ηn = gn+n0(k),1 · gn+n0(k),2, and

hn = g−1
n+n0(k),2

· gn+n0(k),3

for n ∈ N. Let n ≥ n0(k) and z be positive integers. Let m ≥ n0(k), i ̸= j ∈ {1, 2, 3}
and ϵ1, ϵ2 ∈ {1,−1} such that a translate of sn is contained in the geodesic joining v and
(gϵ1m,ig

ϵ2
m,j)

zv. We show this is only possible for n = m, {i, j} = {1, 3} and ϵ1 = ϵ2 = 1.
By construction of sn as the almost concatenation of a long wn,1-subgeodesic γ1 and a
long wn,3-subgeodesic γ3 we know that γ1 and γ3 are contained in the geodesic from v
to (gϵ1m,ig

ϵ2
m,j)

zv. We now distinguish different cases for γ1. In case 1, the geodesic γ1
contains a long wϵ1

m,i-subgeodesic. By Lemma 5.3.5 this implies m = n, i = 1 and ϵ1 = 1.
In Case 2, the geodesic γ1 contains a long wϵ2

m,j-subgeodesic. Similarly to Case 1 we
obtain m = n, i = 1 and ϵ1 = 1. If we are in neither of the previous cases, then

• γ1 is contained in an almost concatenation of a long wϵ1
m,i-subgeodesic and a long

wϵ2
m,j-subgeodesic, or

• γ1 is contained in an almost concatenation of a long wϵ2
m,j-subgeodesic and a long

wϵ1
m,i-subgeodesic.

In both cases, one half of γ1, or more precisely a wn,1-subgeodesic of γ1 of o-length at least
(|wn,1|+k−1)/4−1 is contained in a long wϵ1

m,i-subgeodesic or a long wϵ2
m,j-subgeodesic.

By Lemma 5.3.5 this can only be true if m = n and i = 1, ϵ1 = 1 or j = 1, ϵ2 = 1,
respectively. We obtain similar results for γ3, which proves the claim.

By Lemma 5.3.8 we know that at least z − 1 translates of sn are contained in the
geodesic joining v and (gn,1gn,3)

zv. Thus, we conclude for all m, z ∈ N

fsn,v((gm,1gm,2)
z) = fsn,v((g

−1
m,2gm,3)

z) = 0, and

fsn,v((gm,1gm3)
z)

{
= 0, if n ̸= m,

≥ z − 1, if n = m.
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We apply Lemma 5.3.9 and obtain that the family ([δ1 ̂fsn+n0(k)
,v])n∈N is linearly inde-

pendent in H2
b (Γ;R).

5.4 Consequences

In this section, we want to prove the following corollary of Theorem 5.2.1.

Corollary 5.4.1. For i ∈ {1, . . . , k}, let Ti be a regular tree of finite degree greater
than 2. Let Γ ⊂

∏k
i=1Aut(Ti) be a co-compact lattice. We denote by prj :

∏k
i=1Aut(Ti) →

Aut(Tj) the projection maps for j ∈ {1, . . . , k}. Then, the following are equivalent:

1. For every i ∈ {1, . . . , k} the closure Hi := pri(Γ) is locally ∞-transitive.

2. H2
b (Γ;R) = 0.

3. Any coclass induced by a median quasimorphism Γ → R is trivial.

We need some preliminary lemmas to be able to prove Corollary 5.4.1.

Lemma 5.4.2. Let T = (V,E) be a locally finite tree such that each vertex has degree at
least 2. Let Λ ⊂ Aut(T ) be a subgroup. If there exists a Λ-invariant subset S ⊂ V and
for all n ∈ N a vertex vn ∈ V with d(S, vn) ≥ n, then the set of orbits Λ \ V is infinite.

Proof. Let S ⊂ V be a Λ-invariant subset and (vn)n∈N a family of vertices such that for
all n ∈ N it is d(S, vn) ≥ n. By the Λ-invariance of S we deduce for all λ ∈ Λ

d(S, λvn) = d(λS, λvn) = d(S, vn) ≥ n.

This means, we can find an increasing sequence (kn)n∈N of positive integers and a se-
quence (wn)n∈N of vertices of T such that for all λ ∈ Λ we have

d(S,wn) = d(S, λwn) = kn.

By the Λ-invariance of the distance of the vertices wn to S, we see that (Λ · wn)n∈N is
an infinite family of disjoint Λ-orbits in V .

Lemma 5.4.3. Let T = (V,E) be a locally finite tree such that each vertex has degree
at least 2. Let Λ ⊂ Aut(T ) be a subgroup such that the set of orbits Λ \ V is finite and
there is no fixed point in the boundary δT . Then Λ acts minimally on T .

Proof. We show at first that Λ does not fix a proper closed subset of δT . Assume for a
contradiction that F ⊂ δT is a non-empty proper closed subset that is fixed by Λ. By
assumption, F contains at least 2 ends. We denote by T ′ = (V ′, E′) the convex hull
of T . Since T ′ is the subtree of T consisting exactly of the bi-infinite chains connecting
two points in F , we deduce that T ′ is Λ-invariant. Recall from Lemma 5.1.8 that we
have δT ′ = F . This means in particular T ̸= T ′ and we can find an edge e ∈ E that
is not contained in T ′. Let x ∈ E such that T ′ ∩ Te,x = ∅. As up to x all vertices of
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Te,x have degree at least 2 by assumption, we find for all n ∈ N a vertex vn ∈ Te,x with
d(x, vn) = n. Since T ′ does not lie in the connected component Te,x we compute for all
n ∈ N

d(T ′, vn) ≥ d(x, vn) = n.

By Lemma 5.4.2, this means that Λ \ V is infinite and we obtain a contradiction to the
assumption.

The considerations above show, that there is no non-empty proper closed subset of
δT that is fixed by Λ. We want to use this to prove the minimality of Λ ↷ T . For
this, let T ′ = (V ′, E′) be a Λ-invariant non-empty proper subtree of T . At first we show
that T ′ has infinitely many vertices. As T ′ is non-empty we can choose a vertex v of T .
By the Λ-invariance of T ′, we have Λv ⊂ V ′. Now it suffices to prove that Λv consists
of infinitely many vertices. In order to do this, suppose for a contradiction that Λv is a
finite set. Then, we can find for all n ∈ N a vertex vn ∈ V with d(Λv, vn) ≥ n by the local
finiteness of T . As Λv clearly is a Λ-invariant subset of T we can apply Lemma 5.4.2 and
obtain that Λ \ V is infinite. This contradicts the assumption. Thus, Λv and thereby
also V ′ is infinite. By Lemma 5.1.4, the boundary δT ′ is non-empty. Furthermore, δT ′

is a Λ-invariant subset of δT by the Λ-invariance of T ′. We show that δT ′ ⊂ δT is a
proper closed subset. For the properness, let e = {α(e), ω(e)} ∈ E be a vertex of T that
is not contained in T ′. This exists, since T ′ ̸= T . Without loss of generality, we assume
T ′ ⊂ Te,α(e). Then, δTe,ω(e) ⊂ δT \ δT ′ is non-empty. For δT ′ ⊂ δT to be closed, we
show that δT \ δT ′ is open in δT . Let ξ ∈ δT \ δT ′ and γ : N → V be an infinite chain
connecting a vertex v ∈ V ′ with ξ. Then, there exists an n ∈ N>0 such that γ(n) /∈ V ′

and therefore e := {γ(n − 1), γ(n)} /∈ E′. This means T ′ ⊂ Te,γ(n−1) and hence, ξ is
contained in the open subset δTe,γ(n) ⊂ δT \ δT ′. Now δT ′ is a non-empty proper closed
subset of δT that is Λ-invariant. But this is not possible by the first part of the proof
and we conclude that no proper subtree of T is fixed by Λ.

Lemma 5.4.4. Let G be a locally compact group and H be a subgroup. Then G/H is
compact if and only if there exists a compact subset K ⊂ G with G = K ·H.

Proof. We denote by π : G→ G/H the canonical quotient map. If there exists a compact
subset K ⊂ G with G = K ·H, then G/H = π(K) is compact as π is continuous and
π|K is surjective.

On the other hand, suppose that G/H is compact. For every x ∈ G/H we choose a
representative yx ∈ G. Since G is locally compact, there is an open neighbourhood Ux

of yx and a compact subset Kx ⊂ G with

yx ∈ Ux ⊂ Kx.

Then, π(Ux) is an open neighbourhood of x in G/H as π−1(π(Ux)) =
⋃

h∈H h · Ux is a
union of open subsets of G. As G/H is compact, we find finitely many x1, . . . , xn ∈ G/H
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5.4 Consequences

such that

G/H =
⋃

x∈G/H

π(Ux) = π(
n⋃

i=1

Uxi).

Then K :=
⋃n

i=1Kxi is compact as a finite union of compact subsets with

G =

(
n⋃

i=1

Uxi

)
·H ⊂

(
n⋃

i=1

Kxi

)
·H = K ·H.

Now we are able to prove Corollary 5.4.1.

Proof of Corollary 5.4.1. For i ∈ {1, . . . , k}, let Ti be a regular tree of finite degree
greater than 2. Let G :=

∏k
i=1Aut(Ti) and Γ ⊂ G be a cocompact lattice. We denote

by prj : G→ Aut(Tj) the projection maps.

Suppose we are in Case 1, i.e. for every i ∈ {1, . . . , k} the closure Hi = pri(Γ) is
locally ∞-transitive. By Lemma 5.1.15 this means that Hi acts transitively on δTi. Us-
ing [4, Corollary 26] we conclude H2

b (Γ;R) = 0.

The implication from Case 2 to Case 3 is clear.

For the last implication from Case 3 to Case 1, we make use of Theorem 5.2.1. At
first, we observe for i ∈ {1, . . . , k} that we obtain a group action of Γ on Aut(Ti) in-
duced by the left-translation action of Γ on G. Furthermore, for Hi = pri(Γ) we obtain
a well-defined continuous and surjective map

G/Γ → Aut(Ti)/Hi,

hence, Aut(Ti)/Hi is compact.
Now we consider a non-zero, positive, regular, Aut(Ti)-left invariant Borel measure λ

on G that exists according to Theorem 1.2.8. For this measure, we have 0 < λ(K) <∞
for K ⊂ Aut(Ti) compact. As Aut(Ti)/Hi is compact, there exists by Lemma 5.4.4 a
compact subset K of Aut(Ti), whose projection π(K) to the quotient space coincides
with Aut(Ti)/Hi. The finiteness of λ(K) then induces a finite Aut(Ti)-invariant measure
on Aut(Ti)/Hi.
As Aut(Ti) contains a free group of rank 2 as discrete subgroup (Theorem 5.1.12)

and Aut(Ti) is a Hausdorff topological group, this means that this free group is a closed
subgroup of Aut(Ti). In particular, it is a closed subgroup that is not amenable. By the
inheritance properties of amenability (Theorem 1.2.13) we conclude that Aut(Ti) is not
amenable.
If the closed subgroup Hi of Aut(Ti) would fix a point ζ in the boundary δTi, then

Hi ⊂ StabAut(T )(ζ) would be a closed subgroup of the stabilizer of ζ, which is amenable
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by Theorem 5.1.13. By the inheritance properties of amenability, this implies that Hi is
amenable, too. In this case, we obtain a closed amenable subgroup Hi of Aut(Ti) such
that Aut(Ti)/Hi admits a finite Aut(Ti)-invariant measure. By Theorem 1.2.14, Aut(Ti)
has to be amenable, which is a contradiction to the previous paragraph. We conclude
that Aut(Ti) does not fix a point in the boundary δTi.

Let V denote the vertex set of Aut(Ti). The next step of the proof is to show that the
group action of Hi on V has only finitely many orbits. To see this, we choose at first a
compact subset K of Aut(Ti) such that Aut(Ti) = K ·Hi. This exists by Lemma 5.4.4
as Aut(Ti)/Hi is compact. We consider

K ′ := K−1 ⊂ Aut(Ti),

which is also a compact subset of the topological group Aut(Ti). We then have

Aut(Ti) = Hi ·K ′.

We choose v ∈ V and take a look at the canonical map

φ : K ′ → K ′ · v
f 7→ f(v).

This map is continuous, as K ′ · v ⊂ V is discrete and for every x ∈ K ′ · v we can find
fx ∈ K ′ with fx(v) = x and hence,

φ−1(x) = {f ∈ K ′ | f(v) = x = fx(v)} = U{v}(fx) ∩K ′

is open in K ′ by the definition of the topology on AutTi. As K ′ is compact and φ
surjective, we obtain thatK ′·v is a compact subset of the discrete set V and consequently
it is finite. Furthermore, K ′ · v contains at least one representative for each orbit of
Hi ↷ V because it is

Hi · (K ′ · v) = (Hi ·K ′) · v = Aut(Ti) · v = V.

Hence, Hi \V is finite and we are able to apply Lemma 5.4.3 and obtain that the action
Hi ↷ Ti is minimal. With this, we verified that the assumptions of Theorem 5.2.1 are
satisfied. Furthermore, as Hi does not fix a point in the boundary of Ti and as every co-
class represented by a median quasimorphism is zero, we are in Case 2 of Theorem 5.2.1,
which means that for every vertex x ∈ V and every n ∈ N the group Hi acts transitively
on the set of geodesics of length n starting at a vertex in Γx. In particular, this means
for every x ∈ V that Hi acts transitively on all finite spheres centred at x. We conclude
that Hi is locally ∞-transitive.
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