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Zusammenfassung 3

Zusammenfassung

In der Allgemeinen Relativitätstheorie wird die Raumzeit des Universums als vierdimen-
sionale Lorentz-Mannigfaltigkeit beschrieben, deren metrischer Tensor die Einstein-Glei-
chungen erfüllt. Diese sind nichtlinear und somit schwer lösbar. Kleine Störungen der
Metrik können aber gut auch mithilfe der linearisierten Einsteingleichungen modelliert
werden. Dies ermöglicht zum Beispiel die Beschreibung der Ausbreitung von Gravitations-
wellen im Vakuum.

In dieser Arbeit sollen die Einsteingleichungen linearisiert und dann Existenz und Ein-
deutigkeit ihrer Lösungen für das Cauchy-Problem studiert werden. Es handelt sich
dabei im mathematischen Sinn nicht um Wellengleichungen. Aufgrund einer linearisierten
Diffeomorphismus-Invarianz besitzen sie viele “Eichlösungen”, die nicht messbar sind und
zu physikalisch ununterscheidbaren Raumzeiten führen. Das Eindeutigkeitsresultat gilt
deswegen nur “bis auf Eichung”, und um das Existenzresultat zu zeigen, muss eine Hilfs-
Wellengleichung gelöst werden.

Es ist physikalisch nicht zu erwarten, dass die Anfangsdaten oder die Lösung der Glei-
chungen glatt sind. Aus diesem Grund werden die Resultate für Tensoren mit beliebigem
reellen Sobolev-Grad gezeigt.

Summary

In General Relativity, the space-time of the universe is described as a four-dimensional
Lorentzian manifold whose metric tensor satisfies the Einstein equations. These are non-
linear and therefore hard to solve. However, small perturbations of the metric can also
be modelled using the linearised Einstein equations. This allows, for example, for the
description of the propagation of gravitational waves in the vacuum.

In this paper, the linearised Einstein equations shall be derived, and afterwards the ex-
istence and uniqueness of their solutions for the Cauchy problem shall be studied. Math-
ematically, these are not wave equations. Due to a linearised diffeomorphism invariance,
they admit many “gauge solutions”, which are not measurable and yield physically indis-
tinguishable space-times. Therefore, the uniqueness result only holds “up to gauge”, and
to prove the existence result, an auxiliary wave equation must be solved.

On physical grounds, it need not be expected that the initial data or the solutions of
the equations are smooth. For this reason, the results are shown for tensors with arbitrary
real Sobolev degree.
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1. Preliminaries

As stated in the introduction, we want to derive and study the linearised Einstein equations,
following the treatment given in the paper [1] by Lindblad Petersen. Due to the “gauge
invariance”, the resulting Cauchy problem is ill-posed for Sobolev sections. As shown in
[1], one can however obtain a well-posed Cauchy problem in suitable quotient spaces (the
spaces of “solutions modulo gauge solutions” and “initial data modulo gauge-producing
initial data” are isomorphic). The next step would then be to study the initial data
(“modulo gauge-producing initial data”) to obtain a classification of the possible solutions,
see [1], theorem 6.2. However, as stated above, here we restrict ourselves to the derivation
of the equations and the proofs of existence and uniqueness “up to gauge”. In the last
section, we will study a simple example motivated by physics.

In the following, some notation is defined that shall be assumed throughout the rest of
the text unless otherwise stated. (Some standard notation, for the sake of completeness,
is also defined in Appendix A.)

Setting 1.1. We denote by (M, g) the underlying smooth Lorentzian Einstein manifold,
where we assume M to have vanishing Einstein constant.1 The dimension of M shall be
n+ 1, where n ≥ 2. Thus the Einstein equations read as

ricg = 0.

We use subscripts or superscripts to distinguish the various objects associated with the
metric, e.g. like above we write ricg for the Ricci tensor of g, but these are dropped if they
should be clear from the context.

We assume M to be globally hyperbolic.2

Definition 1.2. 1. A hypersurface Σ ⊂ M is called a Cauchy surface, if every inex-
tensible timelike curve in M meets Σ exactly once. Here a vector V ∈ TM is called
timelike resp. spacelike if g(V, V ) < 0 resp. g(V, V ) > 0, and a submanifold N ⊂M
is called timelike resp. spacelike if all vectors tangent to it are timelike resp. spacelike.

2. By [2], there exists (due to the global hyperbolicity of M) a smooth Cauchy temporal
function t :M → R, i.e. for all τ ∈ t(M), Στ := t−1(τ) is a smooth spacelike Cauchy
hypersurface and grad(t) := (dt)♯ is timelike and past directed. Thus the metric can
be written as

g = −α2(dt⊗ dt) + g̃τ ,

where α : M → R is a positive function and g̃τ is the positive definite metric on
Στ , depending smoothly on τ ∈ t(M). This may also be regarded as a tensor on
M when composing it (implicitly) with the projection onto ((dt)♯)⊥. We abbreviate
∇t := ∇grad(t).

3. The future pointing unit normal ν to Στ is then given by ν = − 1
αgrad(t)|Στ .

4. For a subset K ⊂ M , we denote by J(K) the union of its causal past and future,
i.e. the set of all points in M that can be reached from K by timelike or spacelike
curves.

In the following definitions, we choose one of the Cauchy surfaces Στ and denote it by
Σ.

1The word “smooth” is here used for “as often differentiable as needed”.
2We do not define this term here, as we will only need the properties of M stated in the following.
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Definition 1.3. The first fundamental form on Σ shall be denoted by g̃ and the second
fundamental form by k̃.3 For the second fundamental form we use the definition

k̃(X,Y ) = g(∇Xν, Y )

for X,Y ∈ TΣ.4

Definition and Remark 1.4. 1. Let T i,jM := (TM)⊗i ⊗ (T∗M)⊗j be the bundle of
(i, j)-tensors on M (for nonnegative integers i, j). We will need to consider different
spaces of sections in this bundle (also called tensor fields resp. by abuse of nota-
tion simply tensors). Precise definitions will be given below, together with suitable
topologies.

2. We note that C∞(M, T 0,0M) = C∞(M) (the space of smooth R-valued functions
on M), C∞(M, T 1,0M) = X (M) (the space of smooth vector fields on M), and
C∞(M, T 0,1M) = Ω1(M) (the space of smooth 1-forms on M).

3. We denote the bundle of symmetric (0, 2)-tensors on M by S2M ⊂ T 0,2M (i.e. for
S ∈ T 0,2M , we have S ∈ S2M ⇔ ∀X,Y ∈TM : S(X,Y ) = S(Y,X)). We define the
symmetrization sym : T 0,2M → S2M by

sym(S)(X,Y ) =
1

2
(S(X,Y ) + S(Y,X))

for S ∈ T 0,2M , X,Y ∈ TM .

4. We introduce a short-hand notation which will be useful later: For S ∈ S2M , let

S := S − 1

2
trg(S)g

(which can also be applied pointwise to sections of S2M).

Definition 1.5. We define the divergence δg: For S ∈ C∞(M, T 0,jM), where j ≥ 1, let

δg(S) := −(trg)11(∇·S(·, · · · )),

where the first tensor slot is here the one in ∇. If {ei}0≤i≤n is a local orthonormal frame,
this means that for X1, . . . , Xj−1 ∈ TM , we have

δg(S)(X1, . . . , Xj−1) = −
n∑

i=0

ϵi(∇eiS)(ei, X1, . . . , Xj−1),

where ϵi := g(ei, ei).

Definition 1.6. The Lichnerowicz operator □g
L on smooth symmetric (0, 2)-tensor fields

shall be defined as follows: For S ∈ C∞(M,S2M), let

□g
LS := ∇∗∇S + ricg ◦ S + S ◦ ricg − 2

◦
RgS,

where
∇∗∇S := −(trg)12(∇2

·,·S(·, ·)))
3In general, we decorate tensors on Σ by tildes.
4The first fundamental form is the restriction of g to TΣ, as usual.
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is the connection-Laplace operator and
◦
RgS := (trg)14(S(Rg(·, ·)·, ·))

is the action of R on symmetric (0, 2)-tensor fields. We note that □g
L is a wave operator

(defined below). Sometimes we will also need the Laplace-Beltrami operator □g, which is
defined by

□gf = −trg(∇df).

This is a wave operator as well.

2. Topological vector spaces of sections

We will need to work with distributional sections of vector bundles, which shall be defined
in this section. The definitions are mostly quoted from [3], Sections 2.3 and 2.4, and [1],
Section 3.

Setting 2.1. We remain in Setting 1.1. Furthermore, we choose an auxiliary Riemannian
metric g on M , with associated Levi-Civita connection ∇.5 For simplicity we choose g
such that the volume elements dvolg and dvolg coincide.

Additionally, in the following, let E → M be a real vector bundle over M which is
equipped with an (auxiliary) fiberwise scalar product gE that depends smoothly on the
basepoint. One chooses a connection ∇E on E and combines it with the Levi-Civita
connection ∇ on T∗M to obtain connections on (T∗M)⊗j ⊗ E for all integers j ≥ 0, still
denoted ∇E . Furthermore the scalar products g and gE induce norms | · | on (T∗M)⊗j ⊗E
for all integers j ≥ 0. Let I = {1, . . . ,m} for m ∈ N or I = N be an index set, and for
i ∈ I, let Ki ⊂ M be compact subsets, such that Ki ⊂ int(Ki+1) for i ∈ I (in the finite
case, for m ̸= i ∈ I) and M =

⋃
i∈I Ki.

Definition 2.2 ([3], Section 2.3). The space of smooth sections in E is denoted by

C∞(M,E).

For f ∈ C∞(M,E) and j ∈ N0, the j’th covariant derivative (∇E)jf := ∇E · · · ∇E︸ ︷︷ ︸
j times

f is a

smooth section of (T∗M)⊗j ⊗ E. For K ⊂M compact, we define the seminorm

∥f∥K,m := max
j=0,...,m

max
x∈K

|(∇E)jf(x)|.

These seminorms shall define the topology of C∞(M,E), which is called the C∞-topology.

We have:

Lemma 2.3. The topology defined on C∞(M,E) defined above turns this space into a
Fréchet space, i.e. a complete topological vector space which is Hausdorff and whose topology
can also be defined using a countable family of seminorms. This topology does neither
depend on the choice of the connection ∇E, nor on the choice of the scalar products gE
and g.

The statement can be proven analogously to Theorem 1.1.5 in [4]. The countable family
of seminorms which induces the same topology is given by {∥·∥Ki,i

}i∈I .
5The purpose of this metric is to obtain e.g. a positive operator (∇E)∗∇E + id, see below. We only need

it in this section.
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Definition 2.4 ([3], Section 2.3). 1. For K ⊂M compact, we define

C∞
K (M,E) := {f ∈ C∞(M,E) | supp(f) ⊂ K} ,

the space of smooth sections in E supported in K.

2. The space of compactly supported smooth sections in E is defined as

C∞
c (M,E) :=

⋃
K⊂M

compact

C∞
K (M,E).

This is the same as
⋃

i∈I C
∞
Ki
(M,E). The topology on C∞

c (M,E) is defined to be the
strict inductive limit topology induced by the inclusions C∞

Ki
(M,E) ↪→ C∞

c (M,E),
where i ∈ I.

Remark 2.5. 1. By definition, the strict inductive limit topology on C∞
c (M,E), in-

duced by the inclusions C∞
Ki
(M,E) ↪→ C∞

c (M,E), is the finest locally convex vector
space topology that makes these inclusions continuous. As C∞

Ki
(M,E) are Fréchet

spaces for all i ∈ I, this turns C∞
c (M,E) into a so-called LF-space (see e.g. [5],

Chapter 13). This topology on C∞
c (M,E) can also be proven to be independent of

the choice of the Ki.

2. There is a continuous inclusion C∞
c (M,E) ↪→ C∞(M,E), but the topology on

C∞
c (M,E) defined above is finer than the subspace topology induced by this in-

clusion.

Definition 2.6 ([3], Section 2.4). The space of distributional sections in E is denoted

D′(M,E).

As a set, this is the set of continuous linear functionals on C∞
c (M,E∗), where E∗ is the

dual bundle of E. It is topologized by the weak* topology. The evaluation of u ∈ D′(M,E)
on ϕ ∈ C∞

c (M,E∗) is denoted u[ϕ].

Definition 2.7 ([3], Section 2.5). For f1, f2 ∈ C∞
c (M,E), we define the L2-scalar product

of f1 and f2 by

(f1, f2)L2(M,E) :=

∫
M
gE(f1, f2) dvolg,

where dvolg is the volume element of the semi-Riemannian metric g (which coincides with
dvolg). We define the L2-norm of f ∈ C∞

c (M,E) by

∥f∥L2(M,E) :=
√
(f, f)L2(M,E) =

√∫
M
gE(f, f) dvolg.

We define L2(M,E) to be the completion of C∞
c (M,E) with respect to this norm, the

space of square integrable sections in E.

Remark 2.8. 1. We have a continuous inclusion L2(M,E) ↪→ D′(M,E), defined by

f 7→
(
ϕ 7→ (f, ϕ)L2(M,E)

)
.

We consider elements in L2(M,E) as functions (which are only defined up to the
L2-equivalence relation, identifying all functions which coincide outside of a set of
measure zero). Then this can also be written as

f 7→
(
ϕ 7→

∫
M
gE(f, ϕ) dvolg

)
.
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2. Analogously to the smooth case, we could also consider for fixed K ⊂ M compact
a space L2

K(M,E) of square integrable sections in E supported in K, and a space
L2
c(M,E) of square integrable compactly supported sections.

Definition and Remark 2.9 ([3], Section 2.6.2). 1. Let K ⊂ M be compact and let
s ∈ R. Let K1 ⊂ M be compact such that K ⊂ int(K1) and the boundary of K1 is
smooth. Let K ′ := K1 ∪∂K1 K2 be the double of K1 (as a smooth manifold). This
means that we let K2 to be simply another copy of K1 and glue the two copies along
their boundary ∂K1 = ∂K2. Analogously, we double E|K1 to a bundle E′ → K ′, and
we extend the given metrics and connections onK to smooth metrics and connections
on K ′. Then we can consider elements of C∞

K (M,E) also as elements of C∞(K ′, E′)
(extending them by zero to K2).

The operator (∇E)∗∇E + id : C∞(K ′, E′) → C∞(K ′, E′) is positive and essentially
self-adjoint with respect to the L2(K ′, E′)-scalar product, hence its closure is a pos-
itive self-adjoint extension. (Here (∇E)∗ is the formal adjoint of ∇E : L2(K ′, E′) ⊃
C∞(K ′, E′) → C∞(K ′,T∗K ′ ⊗ E′) ⊂ L2(K ′,T∗K ′ ⊗ E′), where the scalar product
on L2(K ′,T∗K ′⊗E′) is induced from the Riemannian metric on TK ′ and the scalar
product on E′. See the next section for the definition of the formal adjoint.)

The square root of this extension shall be denoted D. Then we define the s’th Sobolev
norm of f ∈ C∞

K (M,E) by

∥f∥Hs
K(M,E) := ∥Dsf∥L2(K′,E′).

The space of sections of Sobolev regularity s supported in K shall be defined to be
the completion of C∞

K (M,E) with respect to this norm and denoted by Hs
K(M,E).

It does not depend on the choices of K1 and the scalar products and connections
on K ′ (i.e. neither on the choice of the extensions from K1 to K ′ nor on the scalar
products and connections on K1 themselves). We note H0

K(M,E) = L2
K(M,E).

2. We define for s ∈ R the space of sections of Sobolev regularity s with compact support
in E by

Hs
c (M,E) :=

⋃
K⊂M

compact

Hs
K(M,E),

where for K ⊂ L compact subsets of M and s ∈ R, the inclusion C∞
K (M,E) ↪→

C∞
L (M,E) induces an inclusionHs

K(M,E) ↪→ Hs
L(M,E). Analogously to the smooth

case, this is the same as
⋃

i∈I H
s
Ki
(M,E) and shall carry the strict inductive limit

topology induced by the inclusions Hs
Ki
(M,E) ↪→ Hs

c (M,E). The resulting topology
is again independent of the choice of the Ki.

Remark 2.10. 1. For r > s ∈ R, there exist continuous inclusions Hr
K(M,E) ↪→

Hs
K(M,E) and Hr

c (M,E) ↪→ Hs
c (M,E).

2. Here we only considered the compactly supported case, analogously we could define
spaces of possibly non-compactly supported Sobolev sections Hs(M,E). (However,
these depend on the choices of gE and ∇E if M is not compact. For Hs

K(M,E),
where K ⊂M is compact, and for Hs

c (M,E), this is not the case, see definition and
remark 2.11 below. We will only use Hs(M,E) in the case that M is compact, when
it equals Hs

c (M,E) anyways.)
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3. We note that the spaces Hs
K(M,E) (for K ⊂ M compact, for s ∈ R) embed con-

tinuously into D′(M,E): The pairing C∞
K (M,E) × C∞

c (M,E∗) → R, (f, ϕ) 7→∫
M ϕ(f) dvolg extends uniquely to a bicontinuous pairing Hs

K(M,E)×C∞
c (M,E∗) →

R.6 Using this, every f ∈ Hs
K(M,E) defines a continuous functional on C∞

c (M,E∗)
similar to the L2-case, yielding continuous embeddings Hs

K(M,E) ↪→ D′(M,E) and
Hs

c (M,E) ↪→ D′(M,E).

The preceding remark allows for the definition of local Sobolev spaces:

Definition and Remark 2.11 ([3], Section 2.6.4). 1. The space of sections with local
Sobolev regularity s ∈ R in E is defined by

Hs
loc(M,E) :=

{
f ∈ D′(M,E) |χf ∈ Hs

c (M,E) for allχ ∈ C∞
c (M,R)

}
.

For χ ∈ C∞
c (M,R), the map

f 7→ ∥χf∥Hs(supp(χ),E|supp(χ))

defines a seminorm on Hs
loc(M,E). The family of such seminorms is used to define a

topology on Hs
loc(M,E). By considering cutoff functions (χj)j∈N such that the sets

{χj ≡ 1} exhaust M , we note that the same topology can also be defined using a
countable family of seminorms. This turns Hs

loc(M,E) into a Fréchet space.

2. We define
H∞

loc(M,E) :=
⋂
s∈R

Hs
loc(M,E) = C∞(M,E)

(the last equality by the Sobolev embedding theorem).

3. Similarly to lemma 2.3, one can show that the topologies on Hs
K(M,E) (where K ⊂

M is compact), Hs
c (M,E), Hs

loc and H∞
loc(M,E) are independent of the auxiliary

metrics g and gE and the connection ∇E (since on compact subsets of M , one can
6To prove this, it needs to be verified that if (fn)n∈N ⊂ C∞

K (M,E) is a Cauchy sequence with respect to
the Hs

K(M,E)-norm and ϕ ∈ C∞
c (M,E∗), then

(∫
M

ϕ(fn) dvolg
)
n∈N is a Cauchy sequence in R. This

is done as follows: There exists u ∈ C∞
c (M,E) such that ϕ(p)(v(p)) = gE(u(p), v(p)) for all p ∈ M ,

v ∈ C∞
K (M,E). Let K̃ := K ∪ supp(ϕ). We calculate, where D̃, K̃′, Ẽ′ are constructed as D,K′, E′ in

definition and remark 2.9, but with K̃ instead of K,∣∣∣∣∫
M

ϕ(fn) dvolg −
∫
M

ϕ(fm) dvolg

∣∣∣∣ = ∣∣∣∣∫
K̃

gE(u, D̃
−s

D̃
s
fn − D̃

−s
D̃

s
fm) dvolg

∣∣∣∣
= |(u, D̃−s

D̃
s
fn − D̃

−s
D̃

s
fm)L2(K̃′,Ẽ′)|

= |((D̃−s
)∗u, D̃

s
fn − D̃

s
fm)L2(K̃′,Ẽ′)|

≤
∥∥∥(D̃−s

)∗u
∥∥∥
L2(K̃′,Ẽ′)

∥∥∥D̃s
fn − D̃

s
fm

∥∥∥
L2(K̃′,Ẽ′)

→ 0

for n,m → ∞. Here in the second-to-last step, we used the Cauchy-Schwarz inequality, and the last
expression converges to 0 for n,m → ∞ because (D̃

s
fn)n∈N is a Cauchy sequence in L2(K̃′, Ẽ′) (by

continuity of the embedding Hs
K(M,E) ↪→ Hs

K̃
(M,E) and the definition of the norm on the latter

space), and
∥∥∥(D̃−s

)∗u
∥∥∥
L2(K̃′,Ẽ′)

< ∞.

(Here (D̃
−s

)∗ is the Hilbert space adjoint of the unbounded pseudodifferential operator D̃
−s

; the
theory of such operators is e.g. described in [6], chapter III.3. Since D̃

−s
is constructed using only

real functions it follows from the functional calculus that it is actually the same as (D̃
−s

)∗. Since u ∈
C∞(K̃, E|K̃) ⊂ H−s

K̃
(M,E), therefore by definition (D̃

−s
)∗u ∈ L2(K̃′, Ẽ′), i.e.

∥∥∥(D̃−s
)∗u

∥∥∥
L2(K̃′,Ẽ′)

<

∞.)
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estimate the Sobolev norms resulting from different choices against each other). In
particular, when we later consider subbundles of tensor bundles, we will not specify
this data any more. Instead we will usually work with the semi-Riemannian metric
g and the Levi-Civita connection ∇.

As we want to study wave equations, it will be natural to consider sections whose dif-
ferentiability properties in the time direction are different than the ones in the spatial
directions. For this, we define time-dependent function spaces, adapted to the Cauchy
temporal function t :M → R.

Definition 2.12 ([3], Section 2.7, [1], Chapter 3). For s ∈ R, observe that the family
{Hs

loc(Στ , E|Στ )}τ∈t(M) is a bundle of Fréchet spaces over the interval t(M) ⊂ R. The
space of m-times continuously differentiable sections of this bundle is denoted by

Cm(t(M), Hs
loc(Σ·, E|Σ·)),

which is a Fréchet space when endowed with a topology induced by the Cm-seminorms on
compact intervals in t(M). We define the space of sections of finite energy of infinite order
in E by

CHs
loc(M,E, t) :=

∞⋂
j=0

Cj
(
t(M), Hs−j

loc (Σ·, E|Σ·)
)
.

These intersections carry an induced Fréchet topology.

The spaces CHs
loc(M,E, t) will be the natural spaces to work with when solving the

linearised Einstein equations. We note that they depend on the time function. It can be
shown (as in [3], Corollary 18) that the solutions to the linearised Einstein equations will
not do so.

As final remarks of this section, it shall be noted how some standard tensor operations
can be defined for distributional tensors.

Remark 2.13. 1. If X ∈ D′(M,TM) and Y ∈ C∞(M,TM), then the distribution
g(X,Y ) is defined as follows: For ϕ ∈ C∞

c (M,R) (where R is the trivial bundle with
fiber R), we let

g(X,Y )[ϕ] := X[ϕg(·, Y )]

(which is well-defined as ϕg(·, Y ) is compactly supported and smooth). By density
of the smooth sections in the distributional sections, this extends to a bicontinuous
and symmetric mapping g : D′(M,TM)×D′(M,TM) → D′(M,R).

2. Similarly, we can insert vector fields in distributional tensors: If S ∈ D′(M, T 0,2M),
X,Y ∈ C∞

c (M,TM), ϕ ∈ C∞
c (M,R), then we define

S(X,Y )[ϕ] := S[ϕ(X ⊗ Y )].

3. Furthermore, for S ∈ D′(M, T 0,2M), T ∈ C∞
c (M, T 0,2M) and ϕ ∈ C∞

c (M,R), we
let

g(S, T )[ϕ] := S[ϕg(·, T )]

which again extends also in the second slot to distributional sections. In particular,
we can define the trace of S by

trg(S) := g(S, g).
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3. Differential operators

Setting 3.1. We remain in Setting 1.1. Furthermore, in the following, let E → M and
F →M be real vector bundles over M , with nondegenerate bilinear forms gE , gF which are
here (contrarily to Setting 2.1) not required to be scalar products. These do in general not
induce a norm any more, but the nondegenerate bilinear forms (·, ·)L2(M,E) and (·, ·)L2(M,F )

remain defined.

Definition 3.2 ([6], Definition 1.1, [7], Appendices E, F). 1. A (linear) differential op-
erator P : C∞(M,E) → C∞(M,F ) of order k ∈ N0 is an R-linear map such that for
every point in M , there exists a neighbourhood U with local coordinates (x0, . . . , xn)
and local trivializations E|U ∼= U × Rp, F |U ∼= U × Rq (for p, q ∈ N) in which it can
be written in the form

P =
∑
|α|≤k

Aα(x)
∂|α|

∂xα
,

where each Aα is a (q × p)-matrix and Aα ̸= 0 for some α with |α| = k.

2. The formal adjoint operator P ∗ : C∞(M,F ) → C∞(M,E) of P is the unique linear
differential operator which satisfies

(Pf1, f2)L2(M,F ) = (f1, P
∗f2)L2(M,E)

for all f1 ∈ C∞(M,E), f2 ∈ C∞(M,F ) with supp(f1) ∩ supp(f2) compact. (An
explicit form of P ∗ can be derived by iterated partial integration and an application
of Stokes’ resp. Gauß’ theorem. Note that this depends on the metrics g, gE and gF
by definition of the L2-scalar products.)

3. The (principal) symbol σξ(P ;x) : Ex → Fx of P at x ∈ M , where ξ ∈ T∗M , and
Ex, Fx are the fibers of E,F over x, is a linear map defined as follows: For z ∈ Ex,
let u ∈ C∞(M,E) with u(x) = z. Let furthermore ϕ ∈ C∞(M) with ϕ(x) = 0,
dϕ(x) = ξ and then set

σξ(P ;x)z :=
1

k!
P (ϕku)|x.

This definition is independent of the choices of u and ϕ.

Remark 3.3. 1. Using the formal adjoint, one can define weak derivatives and extend
any differential operators also to distributional sections. Namely for f1 ∈ D′(M,E)
and a differential operator P , one defines Pf1 ∈ D′(M,F ) to be the unique distribu-
tion satisfying the equation from the definition of P ∗ above (i.e. (Pf1, f2)L2(M,F ) =

(f1, P
∗f2)L2(M,E)) for all f2 ∈ C∞

c (M,F ). (If P = ∇E for a connection ∇E on
E, then the so-defined Pf1 is often called the weak derivative of f1.) We obtain a
continuous map P : D′(M,E) → D′(M,F ).

2. Furthermore, this construction is compatible with the Sobolev spaces, i.e. if P has
order k, then for all s ∈ R and K ⊂ M compact, the maps P : Hs

loc(M,E) →
Hs−k

loc (M,F ), P : Hs
K(M,E) → Hs−k

K (M,F ) and P : Hs
c (M,E) → Hs−k

c (M,F )
defined by the formula above are well-defined and continuous. Analogous statements
hold for the finite energy sections.7

7Every distribution is infinitely often differentiable in the weak sense defined above. The actual “smooth-
ness” of distributional sections is, by the Sobolev embedding theorem, expressed by the Sobolev degree.
(Note that every compactly supported distribution is, by a standard result, of some Sobolev regularity
s ∈ R.)
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Example 3.4. One calculates that δ : C∞(M, T i,jM) → C∞(M, T i,j−1M) is the formal
adjoint of ∇ : C∞(M, T i,j−1M) → C∞(M, T i,jM).8 On the other hand, δ , when restricted
to the smooth sections of S2M , can also be seen as the formal adjoint of the symmetrized
covariant derivative sym ◦ ∇ : C∞(M, T 0,1M) → C∞(M, S2M).

An important class of differential operators are the wave operators.

Definition 3.5 ([1], Definition A.6). A linear differential operator P : D′(M,E) →
D′(M,E) is called a wave operator if in local coordinates, it takes the form

P = −
n∑

i,j=0

gij
∂2

∂xi∂xj
+ lower order terms,

where gij are the coefficients of the semi-Riemannian metric on M (in the considered local
coordinate system). Equivalently, the principal symbol of P is given by this metric, i.e.

σξ(P ;x)z = ((−gijξiξj)z)|x

for all x ∈M , ξ ∈ T∗M , z ∈ Ex.

As already stated, Dric is not a wave operator (it does indeed describe the propagation
of gravitational waves, but it cannot be a wave operator due to the gauge solutions).
However, in the proofs of existence and uniqueness of the solutions to the linearised Einstein
equations, in many places “auxiliary” linear wave equations will be crucial. For these, an
existence and uniqueness theorem is known:

Theorem 3.6 ([1], Theorem A.7). Let s ∈ R ∪ {∞} and let P be a wave operator. Let
(u0, u1, f) ∈ Hs

loc(Σ, E|Σ)⊕Hs−1
loc (Σ, E|Σ)⊕ CHs−1

loc (M,E, t). Then there is a unique u ∈
CHs

loc(M,E, t) such that

Pu =f,

u|Σ =u0,

∇νu|Σ =u1.

Moreover, we have finite speed of propagation, i.e.

supp(u) ⊂ J (supp(u0) ∪ supp(u1) ∪K)

for any subset K ⊂M such that supp(f) ⊂ J(K).

This theorem can be proven using standard techniques from the theory of partial dif-
ferential equations. In [8], a similar one is proven using Riesz distributions in the smooth
case. In [3], it is extended by approximation arguments to the distributional, but spatially
compactly supported case. For the general theorem stated above, one needs to argue by
finite speed of propagation to translate the proofs given there.

Furthermore, as a technical aid, we will need some elliptic differential operators.

Definition 3.7 ([7], Appendix G). A linear differential operator P : D′(M,E) → D′(M,F )
is called an elliptic operator if at every x ∈M and ξ ∈ T∗M , its principal symbol σξ(P ;x) :
Ex → Fx is an isomorphism. It is called an overdetermined resp. underdetermined elliptic
operator, if for every x ∈M, ξ ∈ T∗M , the principal symbol σξ(P ;x) : Ex → Fx is injective
resp. surjective.

8The connection-Laplace operator ∇∗∇ can now also be seen as the composition of ∇∗ = δ and ∇, which
gives the same resulting formula (as desired).
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We will need elliptic operators (of first order) to show the regularity of certain functions.
Here the following theorem is crucial:

Theorem 3.8 (cf. [9], Theorem 1.2.A, [6], Theorem III.5.2). Assume M to be compact.
Let P : D′(M,E) → D′(M,F ), defined locally by the formula in definition 3.2, be a linear
elliptic operator of order k, and assume that Aα ∈ C∞(M,Rq×p) for all α. Let u ∈
Hs(M,E) satisfy (almost everywhere) in M in the distributional sense the equation Pu =
f , where f ∈ Hs(M,F ) for s ∈ R. Then

u ∈ Hs+k(M,E).

Furthermore, the Hs+k(M,E)-norm of u can be estimated by

∥u∥Hs+k(M,E) ≤ C∥f∥Hs(M,F ) + C ′∥u∥Hs(M,E),

where C,C ′ are constants independent of u and f .

The first part of the theorem (i.e. u ∈ Hs+k(M,E)) follows e.g. from the more general
Theorem 1.2.A in [9]. A proof of the second part (the norm estimate) can e.g. be found
in [6], Theorem III.5.2. Both proofs use so-called parametrices.

Remark 3.9. 1. We note as a corollary that there is a similar statement for local
Sobolev spaces over possibly noncompact manifolds and the corresponding seminorms
on them.

2. If P is an overdetermined elliptic operator, then P ∗P is elliptic. Noting that if u solves
Pu = f , then u solves also P ∗Pu = P ∗f , we can conclude from the elliptic regularity
theorem above an analogous statement for overdetermined elliptic operators.9

4. Linearisation of the Einstein and Constraint equations

Setting 4.1. We remain in Settings 1.1, 2.1 and 3.1 (now with concrete bundles instead
of the placeholders E and F ). We start out with the (non-linear) Einstein equation of
the vacuum with vanishing cosmological constant for globally hyperbolic spacetimes of
dimension at least 3 ([1], Section 4.1):

ricg = 0. (4.1)

These can be derived using the formulas from this section by a variational principle from
the Einstein-Hilbert functional ([10], Section 5):

SM =

∫
M

scalg dvolg.

Einstein metrics turn out to be extremal points of this functional.
The induced first and second fundamental forms on Σ need to satisfy the Constraint

equations ([1], Section 4.2):

Φ1(g̃, k̃) :=scalg̃ − g̃(k̃, k̃) + (trg̃k̃)
2 = 0, (4.2)

Φ2(g̃, k̃) :=− δg̃(k̃)− d(trg̃k̃) = 0. (4.3)

The first equation here is often called the energy constraint, the second one the momentum
constraint. See e.g. [11] for more elaboration.

9In the estimate, we get then at first the Hs−k(M,E)-norm of P ∗f instead of the Hs(M,F )-norm of f ,
but the former is bounded by a multiple of the latter as P ∗ : Hs(M,F ) → Hs−k(M,E) is continuous.
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Definition and Remark 4.2. For h ∈ C∞
c (M, S2M) and sufficiently small t ∈ R, g + th

is again a semi-Riemannian metric on M . The differential of the Riemannian curvature
tensor on (M, g) in the direction of h is then defined by

DRg(h) := lim
t→0

1

t
(Rg+th − Rg).

This means that for all X,Y, Z ∈ TM , we have

DRg(h)(X,Y, Z) = lim
t→0

1

t
(Rg+th(X,Y )Z − Rg(X,Y )Z) =

d

dt

∣∣∣∣
t=0

Rg+th(X,Y )Z.

This is again a (1, 3)-tensor. (Instead of t 7→ g + th, also any other curve t 7→ γ(t), where
γ(0) = g, d

dt |t=0γ(t) = h, could have been used. This is a Gâteaux differential, where
one considers R· as a map from Hm+2

loc (M, S2M) to Hm
loc(M, T 1,3M) for some m ≥ 0.

Existence of the differential follows then from the local formula for Rg, see [7], 1.173. We
simply calculate the pointwise limit, recognizing that this must then also be the limit with
respect to the Sobolev seminorms, since this is unique.) Analogously D(g−1)(h), Dricg(h),
Dscalg(h), D∇g(h) and Dδg(h) shall be defined.10

We have:

Proposition 4.3 (cf. [10], Proposition 5.1, and the proof of [7], Proposition 1.184). Let
h ∈ C∞

c (M, S2M). The differentials of R, ric, scal, ∇, and δ at g, in the direction of h,
are determined by the formulas

1. Levi-Civita connection

g(D∇g(h)(X,Y ), Z) =
1

2
((∇g

Xh)(Y,Z) + (∇g
Y h)(X,Z)− (∇g

Zh)(X,Y )) , (4.4)

2. Divergence on 1-forms

Dδg(h)(α) = g(h,∇gα)− g

(
α, δg(h) +

1

2
d(trgh)

)
, (4.5)

3. Riemann curvature tensor11

DRg(h)(X,Y )Z = (∇g
X(D∇g(h)))(Y, Z)− (∇g

Y (D∇g(h)))(X,Z), (4.6)

4. Ricci tensor

Dricg(h) =
1

2
□g

Lh− (sym ◦ ∇g)(δgh)− 1

2
∇gd(trgh), (4.7)

which can also be written as

Dricg(h) =
1

2

(
□g

Lh− L(δg(h))♯g
)
, (4.8)

10For D∇g(h), we note that ∇g+th −∇g is the difference of two connections on M , hence a (1, 2)-tensor.
Therefore, D∇g(h) will be a (1, 2)-tensor as well, where the limit is taken with respect to a Sobolev
norm just as for DRg(h), Dricg(h) and Dscalg(h).

The notation D(g−1)(h) is actually slightly inconsistent to improve readability.
11Some of the brackets will be omitted if they should be clear from the context.
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5. scalar curvature

Dscalg(h) = □g(trgh) + δg(δgh)− g(ricg, h) (4.9)

for all X,Y, Z ∈ TM , α ∈ Ω1(M).

A proof is given in Appendix B.
Equation (4.8) motivates the following definition.

Definition 4.4 ([1], Definition 4.3). The linearised Ricci curvature Dric : D′(M, T 0,2M) →
D′(M, T 0,2M) is defined by

Dric(h) :=
1

2

(
□Lh− L(δg(h))♯g

)
(4.10)

for all h ∈ D′(M, T 0,2M). If h ∈ D′(M, T 0,2M) satisfies Dric(h) = 0, it is said to satisfy
the linearised Einstein equations (of the vacuum with vanishing cosmological constant).

Remark 4.5. 1. We note that the Lie derivative can be defined also for distributions,
using the formula (A.1).

2. It shall be emphasized that Dric is not a wave operator. (This follows e.g. from the
existence of the “gauge solutions” proven below.)

3. We omit the dependency of Dric on g in the notation for brevity.

Analogously, we have to linearise the Constraint equations.

Proposition and Definition 4.6 ([1], Definition 4.6). Let (g̃, k̃), (h̃, m̃) ∈ D′(Σ, T 0,2Σ)×
D′(Σ, T 0,2Σ). We define

DΦ(h̃, m̃) :=

(
DΦ1(h̃, m̃)

DΦ2(h̃, m̃)

)
(4.11)

with

DΦ1(h̃, m̃) :=− δg̃(−δg̃h̃+ dtrg̃h̃)− g̃(ricg̃, h̃)

+ 2g̃(k̃ ◦ k̃ − (trg̃k̃)k̃, h̃)− 2g̃(k̃, m̃− (trg̃m̃)g̃), (4.12)

DΦ2(h̃, m̃)(X) :=− g̃(h̃, ∇̃·k̃(·, X)) + g̃

(
k̃(·, X), δg̃(h̃− 1

2
(trg̃h̃)g̃)

)
− 1

2
g̃(k̃, ∇̃X h̃) + d(g̃(k̃, h̃))(X)− δg̃(m̃− (trg̃m̃)g̃)(X) (4.13)

for all X ∈ TΣ. Here ∇̃ := ∇g̃ denotes the induced Levi-Civita connection on Σ (which
is compatible with g̃) and the metric composition k̃ ◦ k̃ is done using g̃. We say that
the tuple (h̃, m̃) satisfies the linearised Constraint equations, linearised around (g̃, k̃), if
DΦ(h̃, m̃) = 0.

If (g̃, k̃), (h̃, m̃) are smooth and (h̃, m̃) is compactly supported, then

DΦ1(h̃, m̃) =
d

dt

∣∣∣∣
t=0

Φ1(g̃ + th̃, k̃ + tm̃), (4.14)

DΦ2(h̃, m̃) =
d

dt

∣∣∣∣
t=0

Φ2(g̃ + th̃, k̃ + tm̃) (4.15)

with Φ1,Φ2 defined in equations (4.2), (4.3).
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Only equations (4.14), (4.15) require a proof. This can be found in Appendix B.
We consider now the first and second fundamental form (g̃, k̃) on Σ which are induced

by the metric g. If g changes infinitesimally (but the embedding of Σ into M remains the
same), these will also change infinitesimally. We recall

g̃(X,Y ) = g(X,Y ), k̃(X,Y ) = g(∇Xν, Y )

for all X,Y ∈ TΣ.

Proposition and Definition 4.7 ([1], Definition 4.7). Let h ∈ D′(M, S2M). We define
(Dg̃(h), Dk̃(h)) ∈ D′(Σ,S2Σ)×D′(Σ, S2Σ) by

Dg̃(h)(X,Y ) :=h(X,Y ), (4.16)

Dk̃(h)(X,Y ) :=− 1

2
h(ν, ν)k̃(X,Y )− 1

2
∇Xh(ν, Y )− 1

2
∇Y h(ν,X) +

1

2
∇νh(X,Y ) (4.17)

for X,Y ∈ TΣ. We call Dg̃(h) and Dk̃(h) the linearised first and second fundamental
forms induced by h.

If h ∈ C∞
c (M, S2M) and we consider g̃, k̃ as maps from C∞(M,S2M) to C∞(Σ,S2Σ)

which assign to g the first and second fundamental form on Σ resulting from g (and the
embedding of Σ in M), we have

Dg̃(h) =
d

dt

∣∣∣∣
t=0

g̃(g + th), (4.18)

Dk̃(h) =
d

dt

∣∣∣∣
t=0

k̃(g + th). (4.19)

Only equations (4.18), (4.19) require a proof, which is again done in Appendix B.
We recall that the first and second fundamental form g̃ and k̃ on Σ must satisfy the

equations ([11], equations (16), (17))

2ricg(ν, ν) + trg(ricg) =Φ1(g̃, k̃),

ricg(ν, ·) =Φ2(g̃, k̃).

We can linearise this equation around g in the direction of h. Using ricg = 0 and
the previous calculations, we obtain for h ∈ C∞

c (M,S2M) and Dg̃(h), Dk̃(h) defined by
equations (4.16), (4.17):12

2(Dric(h))(ν, ν) + trg(Dric(h)) = DΦ1(Dg̃(h),Dk̃(h)), (4.20)

Dric(h)(ν, ·) = DΦ2(Dg̃(h),Dk̃(h)). (4.21)

In particular, if Dric(h) = 0 (i.e. h satisfies the linearised Einstein equations), then the
induced initial data (Dg̃(h),Dk̃(h)) must satisfy DΦ(Dg̃(h),Dk̃(h)) = 0. The existence
theorem proven later may be seen as the converse statement.

We conclude this section with the “gauge invariance” of the linearised Einstein equations,
which explains their large kernel and the fact that they are not uniquely solvable. We will
later also only prove a uniqueness result “up to gauge”.

Lemma 4.8 ([1], Lemma 4.5). Let V ∈ D′(M,TM). Then LV g solves the linearised
Einstein equations, i.e. Dric(LV g) = 0.
12Note that we have product rules for the differentiation in the direction of h, similar to eq. B.1. Also, by

definition of the differential, we have a chain rule.
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Proof. As the smooth sections in TM lie dense in the distributional sections and the map
Dric ◦ (L·g) : D′(M,TM) → D′(M, S2M) is continuous, it suffices to prove the claim
for smooth V . So assume V to be smooth; let then φt be its flow. By definition of the
differential of ricg, we have

Dric(LV g) = lim
t→0

1

t
(ricφ∗

t (g)
− ricg),

since φ∗
0(g) = g, d

dt

∣∣
t=0

φ∗
t (g) = LV g.

However, we have
ricφ∗

t (g)
= φ∗

t (ricg) = φ∗
t (0) = 0 = ricg

by assumption on g. Hence Dric(LV g) = lim
t→0

0
t = 0.

5. Existence of solutions

We remain in the situation of the previous sections. Recalling again that the linearised
Einstein equations are not wave equations, the existence of a solution can not directly
be concluded. However, we can search for solutions of □Lh = 0. For such a linear wave
equation, an existence theorem is known (theorem 3.6). We will show that for suitable
initial conditions, the solution of □Lh = 0 also satisfies δg(h) = 0, thus it will solve
Dric(h) = 0 as well.

As a first step, we need to translate the condition on h to induce a given first and
fundamental form on the Cauchy surface Σ into conditions on h|Σ and ∇νh|Σ, i.e. initial
conditions for a linear wave equation. Furthermore, we show that δg(h) vanishes at least
on Σ if these initial conditions are chosen suitably.

Lemma 5.1 ([1], Lemma 5.1). For s ∈ R, let (h̃, m̃) ∈ Hs
loc(Σ,S

2Σ) × Hs−1
loc (Σ, S2Σ).

Assume that for h ∈ CHs
loc(M,S2M, t), its restriction to S2M |Σ satisfies13

h(X,Y ) = h̃(X,Y ), ∇νh(X,Y ) = 2m̃(X,Y )− (h̃ ◦ k̃ + k̃ ◦ h̃)(X,Y ),

h(ν,X) = 0, ∇νh(ν,X) = −δg̃
(
h̃− 1

2(trg̃h̃)g̃
)
(X),

h(ν, ν) = 0, ∇νh(ν, ν) = −2trg̃m̃,

for all X,Y ∈ TΣ (where the composition is defined using g̃ instead of g). Then h̃, m̃ are
the first and second linearised fundamental forms induced by h,14 and

δg(h)|Σ = 0.

A proof can be found in Appendix B.
We are now able to formulate and prove the existence theorem.

Theorem 5.2 ([1], Theorem 5.2). Let s ∈ R∪{∞} and assume that (h̃, m̃) ∈ Hs
loc(Σ,S

2Σ)×
Hs−1

loc (Σ,S2Σ) satisfies
DΦ(h̃, m̃) = 0.

Then there exists a unique
h ∈ CHs

loc(M,S2M, t),

13Note that this restriction is an element of Hs
loc(Σ,S

2M |Σ) by definition of CHs
loc(M,S2M, t). In partic-

ular, we do not need to define a trace operator here, as we would have to do for Sobolev sections.
14Spelled out, this means h̃ = Dg̃(h), m̃ = Dk̃(h).
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Figure 1: Situation in theorem 5.2, in flat Minkowski space

inducing (h̃, m̃) as linearised first and second fundamental forms, such that h|Σ and ∇νh|Σ
are as in Lemma 5.1 and

□Lh =0,

δg(h) =0.

In particular,
Dric(h) = 0.

Moreover,
supp(h) ⊂ J

(
supp(h̃) ∪ supp(m̃)

)
.

The situation of the theorem is sketched in figure 1, where M is taken to be flat, two-
dimensional Minkowski space.

Remark 5.3 ([1], Remark 5.3). We note that an arbitrary solution to the linearised Ein-
stein equations inducing the given linearised first and second fundamental forms need not
have finite speed of propagation, only the specific one considered here. Any gauge solution
with arbitrary support could be added to it without changing the induced linearised first
and second fundamental forms, while changing the support of the solution.

In the proof, we will need two lemmas.

Lemma 5.4 ([1], Lemma 5.5). If h ∈ D′(M, S2M), then

δg
(
Dric(h)− 1

2
trg(Dric(h))g

)
= 0. (5.1)

Proof. We recall the contracted second Bianchi identity: For any Lorentzian metric ĝ on
M , we have

δĝ
(
ricĝ −

1

2
trĝ(ricĝ)ĝ

)
= 0.

A linearisation of this equation around g, using ricĝ = 0, proves the lemma for smooth h.
Since the smooth sections are dense in D′(M,S2M) and Dric is continuous, this proves the
equation for general h.

Lemma 5.5. Let (N, ĝ) be a semi-Riemannian manifold with Levi-Civita connection ∇̂.
Then

δĝ
(
LV ĝ −

1

2
trĝ(LV ĝ)ĝ

)
= δĝ(∇̂V ♭)− ricĝ(V, ·) (5.2)

for all V ∈ D′(N,TN).
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The proof is again given in Appendix B.

Proof of Theorem 5.2. Consider the Cauchy problem

□Lh = 0,

where h|Σ and ∇νh|Σ shall satisfy the conditions of Lemma 5.1. We note (h|Σ,∇νh|Σ) ∈
Hs

loc(Σ, S
2M |Σ) × Hs−1

loc (Σ,S2M |Σ). By Theorem 3.6, there exists a unique solution h ∈
CHs

loc(M,S2M, t) to this Cauchy problem. Furthermore, this solution satisfies supp(h) ⊂
J
(
supp(h̃) ∪ supp(m̃)

)
(by the same theorem).

It remains to show δgh = 0 to prove the theorem. This will be done by showing that
δgh solves a linear wave equation with vanishing initial conditions, and then apply the
uniqueness part of Theorem 3.6.

We have δgh ∈ CHs−1
loc (M,T∗M, t) (since h ∈ CHs

loc(M,S2M, t)). The lemmas 5.4 and
5.5 imply together with □Lh = 0 and ricg = 0 that

0 =δg
(
Dric(h)− 1

2
trg(Dric(h))g)

)
=
1

2
δg
(
−L(δg(h))♯g +

1

2
trg

(
L(δg(h))♯g

)
g

)
=− 1

2
δg(∇(δg(h))). (5.3)

Now we want to show ∇ν(δ
g(h))|Σ = 0. In the following, we calculate on Σ (but sup-

press this in the notation). Because of the linearized Constraint equations and the initial
conditions from Lemma 5.1, we deduce

0 = DΦ1(h̃, m̃) =trg(Dric(h)) + 2Dric(h)(ν, ν)

=
1

2

(
trg(−L(δg(h))♯g)− 2L(δg(h))♯g(ν, ν)

)
(5.4)

The trace can be evaluated pointwise, using a local geodesic frame {ei}1≤i≤n on TΣ which
is extended by ν to a local geodesic frame on TM .15 We note that for X,Y sections of TΣ
with vanishing covariant derivative, we have

−L(δg(h))♯g(X,Y ) =− g(∇X(δg(h))♯, Y )− g(X,∇Y (δ
g(h))♯)

=− ∂X(g((δg(h))♯, Y ))− ∂Y (X, g((δ
g(h))♯))

=− ∂X((δg(h))(Y ))− ∂Y ((δ
g(h))(X)).

In particular, we recognize that this vanishes for X = Y = ei, as δg(h) is identically zero on
Σ. Thus in eq. (5.4), the trace term simplifies to L(δg(h))♯g(ν, ν) (where the sign vanished
because of g(ν, ν) = −1). We obtain

0 = −1

2
L(δg(h))♯

(ν, ν) =
1

2

(
∂ν((δ

g(h))(ν)) + ∂ν((δ
g(h))(ν))

)
=(∇ν(δ

g(h)))(ν) (5.5)

15Recall that this means that the orthonormal sections {ei}1≤i≤n are chosen to have vanishing covariant
derivative at some given point p ∈ M . Actually we need to replace ν by some vector field which
coincides only at p with ν, but has vanishing covariant derivative there. The calculation below is true
only at p, but the resulting tensor equations must be true regardless of the particular choices made,
and at every point on Σ.
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(recalling that we can assume ∇νν = 0 for the last equation, as these are tensor equations).
Furthermore we have, again using eq. (5.4), and that δg(h) vanishes on Σ:

0 = DΦ2(h̃, m̃)(X) = Dric(h)(ν,X) = −1

2
L(δg(h))♯(ν,X)

= −1

2
∂ν((δ

g(h))(X))− 1

2
∂X((δg(h))(ν)) =

1

2
(∇ν(δ

g(h)))(X). (5.6)

We summarize the results of the previous calculations: Equation (5.3) implies that
δg(h) ∈ CHs−1

loc (M,T∗M, t) satisfies

δg(∇(δg(h))) = 0.

From the equations (5.5), (5.6), we deduce

∇ν(δ
g(h))|Σ = 0.

Furthermore, in Lemma 5.1, we have shown

δg(h)|Σ = 0.

As δg ◦ ∇ is a wave operator, the uniqueness part of Theorem 3.6 thus applies to yield
δg(h) = 0 (as 0 certainly also satisfies these initial conditions). This finishes the proof of
the theorem.

6. Uniqueness up to gauge

In the situation of the previous sections, having now solved the linearised Einstein equa-
tions, we continue by showing a uniqueness result “up to gauge”. This means that we will
show that a solution inducing vanishing linearized first and second fundamental forms, can
be written as a suitable Lie derivative of the metric.

Theorem 6.1 ([1], Theorem 5.7). Let s ∈ R ∪ {∞}. Assume that h ∈ CHs
loc(M,S2M, t)

satisfies
Dric(h) = 0

and that the induced first and second linearized fundamental forms vanish. Then there
exists a vector field V ∈ CHs+1

loc (M,TM, t) such that

h = LV g.

If supp(h) ⊂ J(K) for some compact K ⊂ Σ, then we can choose V such that supp(V ) ⊂
J(K).

Proof. We define V as the solution of a suitable wave equation. We know that δg(h) ∈
CHs−1

loc (M,T∗M, t). Thus the Cauchy problem

δg(∇V ) = (δg(h))♯,

V |Σ = 0,

∇νV |Σ =
1

2
h(ν, ν)ν + h(ν, ·)♯ (6.1)

admits a unique solution V ∈ CHs
loc(M,TM, t) by theorem 3.6, since δg ◦ ∇ is a wave

operator. This also satisfies supp(V ) ⊂ J(K) if supp(h) ⊂ J(K) for some compact K ⊂ Σ.
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By Lemma 5.5, using the Ricci-flatness of M and the defining properties of V we have

δg(LV g) = δg(∇V ♭) = δg(h) (6.2)

(where we used that ♭ commutes with δg). Hence (using Dric(h) = 0 and Dric(LV g) = 0,
the latter by Lemma 4.8), we obtain

0 =2Dric(h− LV g)

=□L(h− LV g)− L(δg(h−LV g))♯g = □L(h− LV g). (6.3)

We now want to apply the uniqueness part of Theorem 3.6 to the wave operator □L to
deduce that h− LV g = 0. This will be implied by (6.3) if we can show

(h− LV g)|Σ = 0, (6.4)
∇ν(h− LV g)|Σ = 0. (6.5)

Note also that we know LV g ∈ CHs−1
loc (M,S2M, t) since V ∈ CHs

loc(M,TM, t), so we have
h − LV g ∈ CHs−1

loc (M, S2M, t) and the uniqueness theorem for linear wave equations can
indeed be applied. We show first eq. (6.4). By the properties of V given in (6.1), and
Dg̃(h) = 0 (by the assumption on h), we get for all X,Y ∈ TΣ:

h(X,Y ) = Dg̃(h)(X,Y ) = 0 = g(∇XV, Y ) + g(∇Y V,X) = LV g(X,Y ).

(Here we used ∇XV = ∇Y V = 0, since X,Y ∈ TΣ and V |Σ = 0.) Also

h(X, ν) = g(∇νV,X) = g(∇νV,X) + g(∇XV, ν) = LV g(ν,X),

and
h(ν, ν) = 2g(∇νV, ν) = LV g(ν, ν)

(recall g(ν, ν) = −1 for the calculation of the last equation). These three calculations show
(6.4). We continue by showing eq. (6.5). Since Dk̃(h) = 0, we get for X,Y ∈ TΣ, using
its defining formula (4.17):

∇νh(X,Y ) = h(ν, ν)k̃(X,Y ) +∇Xh(ν, Y ) +∇Y h(ν,X). (6.6)

On the other hand, we have ∇Xν ∈ TΣ, since

g(∇Xν, ν) =
1

2
∂Xg(ν, ν) = 0. (6.7)

We can extendX to a vector field on Σ, which then commutes with ν. Then ∇νX = ∇Xν−
[X, ν] = ∇Xν ∈ TΣ. Therefore, the second covariant derivatives of V in the directions of
ν and X can be written simply as compositions of first covariant derivatives, ∇ν(∇XV ) =
∇2

ν,XV , ∇X(∇νV ) = ∇2
X,νV , since V |Σ = 0 (thus ∇∇XνV = 0 as ∇Xν ∈ TΣ, etc.).

Furthermore (∇Xh)(ν, Y ) = ∂Xh(ν, Y )−h(ν,∇XY ) by the product rule for tensors (since
h|Σ(∇Xν, Y ) = Dg̃(h)(∇Xν, Y ) = 0 as ∇Xν, Y ∈ TΣ). Analogous statements can be
made for Y . Thus, using the defining properties (6.1) of V , we can calculate

∇νLV g(X,Y ) =g(∇2
ν,XV, Y ) + g(∇2

ν,Y V,X)

=g(∇2
X,νV, Y ) + g(∇2

Y,νV,X) + R(ν,X, V, Y ) + R(ν, Y, V,X)

=∂Xg(∇νV, Y )− g(∇νV,∇XY ) + ∂Y g(∇νV,X)− g(∇νV,∇YX)

=∂Xh(ν, Y )− h(ν,∇XY )− 1

2
h(ν, ν)g(ν,∇XY )

+ ∂Y h(ν,X)− h(ν,∇YX)− 1

2
h(ν, ν)g(ν,∇YX)

=∇Xh(ν, Y ) +∇Y h(ν,X) + h(ν, ν)k̃(X,Y ). (6.8)
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(In the last step, we also used g(ν,∇XY ) = ∂Xg(ν, Y )−g(∇Xν, Y ) = −k̃(X,Y ) by defini-
tion of k̃ and since g(ν, Y ) identically vanishes, and analogously g(ν,∇YX) = −k̃(X,Y ).)
A comparision of (6.6) and (6.8) yields

∇ν(h− LV g)(X,Y ) = 0 (6.9)

for X,Y ∈ TΣ. It remains to show ∇ν(h− LV g)(ν, ·) = 0. Eq. (6.2) is equivalent to16

δg(LV g)(W ) +
1

2
∂W trg(LV g) = δg(h)(W ) +

1

2
∂W trg(h) (6.10)

for all W ∈ TM . Now eq. (6.4) already implies that trg(LV g)|Σ = trg(h)|Σ. Thus for
X ∈ TΣ, we have ∂Xtrg(LV g) = ∂Xtrg(h) and the above equation then yields

δg(LV g)(X) = δg(h)(X).

If we evaluate the divergence using a local orthonormal frame {ei}1≤i≤n on TΣ, extended
by ν to a local orthonormal frame on TM |Σ, we note that LV g|Σ(ei, X) = h|Σ(ei, X) =
Dg̃(h)(ei, X) = 0 (the first equation again by (6.4), the third one by assumption on h).
Thus the equation above implies −(∇ν(LV g))(ν,X) = −(∇νh)(ν,X), so

∇ν(h− LV g)(ν,X) = 0. (6.11)

Finally, to calculate ∇ν(h − LV g)|Σ(ν, ν), we use again eq. (6.10), now with W =
ν. Commuting covariant derivatives with metric traces (where the partial derivative on
functions is just the same as the covariant derivative), and using (6.4) and (6.9) to simplify
the divergence and the trace, this yields (on Σ):

0 =δg(LV g)(ν)− δg(h)(ν)

=δg(LV g − h)(ν) +
1

2
∂ν(trg(LV g)− trg(h))

=δg(LV g − h)(ν) +
1

2
trg(∇ν(LV g − h))

=∇ν(LV g − h)(ν, ν)− 1

2
∇ν(LV g − h)(ν, ν)

=
1

2
∇ν(LV g − h)(ν, ν).

Thus ∇ν(h−LV g)(ν, ν) = 0. Together with eq. (6.9) and eq. (6.11), this implies eq. (6.5).
As already stated, the uniqueness part of 3.6 now shows that h = LV g. This concludes

the proof of uniqueness “up to gauge”. The regularity of V is shown in the following
lemma.

Lemma 6.2 ([1], Lemma 5.8). Let V ∈ CHs
loc(M,TM, t) with LV g ∈ CHs

loc(M,S2M, t).
Then V ∈ CHs+1

loc (M,TM, t).

Proof. The proof is based on elliptic regularity theory. Let j ∈ N0. We have

∇j
t,...,tV ∈ C0(t(M), Hs−j

loc (Σ·,TM |Σ·))

and need to show that ∇j
t,...,tV ∈ C0(t(M), Hs−j+1

loc (Σ·,TM |Σ·)).
Let τ ∈ t(M). The projection of vectors onto their parallel and normal components to

Σ induces a split TM |Στ
∼= R⊕TΣτ . Write ∇j

t,...,tV |Στ = (∇j
t,...,tV )⊥|Στ ντ +(∇j

t,...,tV )∥|Στ

16Cf. eq. (B.33).
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with (∇j
t,...,tV )∥|Στ ∈ Hs−j

loc (Στ ,TΣτ ), (∇j
t,...,tV )⊥|Στ ∈ Hs−j

loc (Στ ,R). We show that
τ 7→ (∇j

t,...,tV )∥|Στ and τ 7→ (∇j
t,...,tV )⊥|Στ are two continuous sections of the bundles

(Hs−j+1
loc (Στ ,TΣτ ))τ∈t(M) and (Hs−j+1

loc (Στ ,R))τ∈t(M), which then proves the lemma.17

By commuting derivatives, we note that

L∇j
t,...,tV

g(X,Y ) =g(∇X(∇j
t,...,tV ), Y ) + g(∇Y (∇j

t,...,tV ), X)

=(∇t)
jLV g(X,Y ) + Pj(V )(X,Y )

for X,Y ∈ C∞(M,TM), where Pj is some differential operator of order j. By assumption
on V , this shows that

L∇j
t,...,tV

g ∈ CHs−j
loc (M,S2M, t). (6.12)

The induced first and second fundamental forms on Στ shall be denoted g̃τ and k̃τ . For
X,Y ∈ TΣ, W ∈ CHs−j(M,TM, t), we have by definition

(LW g)|Στ (X,Y ) = g|Στ (∇XW,Y ) + g|Στ (X,∇YW ). (6.13)

The first term here is equal to

g|Στ (∇XW,Y ) =g|Στ

(
(∇XW

∥)|Στ + (∂XW
⊥)|Στ ντ +W⊥|Στ∇Xν, Y

)
=g̃τ (∇̃X(W ∥|Στ ), Y ) +W⊥|Στ g(∇Xν, Y )

=g̃τ (∇̃X(W ∥|Στ ), Y ) +W⊥|Στ k̃τ (X,Y ),

where in the second-to last equation, the second term vanished because Y ∈ TΣ, and for
the same reason we could replace g|Στ with g̃τ and ∇ with ∇̃ := ∇g̃ in the first term.
Analogously, the second term in (6.13) equals

g|Στ (X,∇YW ) = g̃τ (X, ∇̃Y (W
∥|Στ )) +W⊥|Στ k̃τ (X,Y ).

Thus

(LW g)|Στ (X,Y ) =g̃τ (∇̃X(W ∥|Στ ), Y ) + g̃τ (X, ∇̃Y (W
∥|Στ )) + 2W⊥|Στ k̃τ (X,Y )

=LW ∥|Στ
g̃τ (X,Y ) + 2W⊥|Στ k̃τ (X,Y ) (6.14)

(where in the last equation, we could use the fact that for vectors tangential to Σ and
tensors on Σ, we may also define the Lie derivative using ∇̃).

If we now use eq. (6.12) in eq. (6.14) with W := ∇j
t,...,tV , we observe that(

τ 7→ L
(∇j

t,...,t)
∥|Στ

g̃τ

)
∈ CHs−j

loc (M,S2Σ·, t) ⊂ C0(t(M), Hs−j
loc (Σ·, S

2Σ·)).

This holds since the left-hand side and the second term on the right-hand side of eq. (6.14)
have the needed regularity, hence also the first term on the right-hand side must have this
regularity.

Now
W 7→ LW g̃τ

is a linear differential operator from TΣτ to S2Στ of injective principal symbol. Thus by
elliptic regularity theory, we conclude (cf. Remark 3.9)

(∇j
t,...,tV )∥ ∈ C0(t(M), Hs−j+1

loc (Σ·,TΣ·)) (6.15)

17Note that the assumption means that these are already continuous sections of the corresponding Hs−j
loc -

bundles.
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for all integers j ≥ 0. (In passing we note that the elliptic theory does not only yield
that (∇j

t,...,tV )∥(τ) ∈ Hs−j+1
loc (Στ ,TΣτ ) for all τ ∈ t(M), but also the elliptic estimates

for all seminorms defining the topology of Hs−j+1
loc (Στ ,TΣτ ), which depend continuously

on τ ∈ t(M). Using this, one recognizes that (∇j
t,...,tV )∥ is even a continuous section of

(Hs−j+1
loc (Στ ,TΣτ ))τ∈t(M).)
We recall ντ = − 1

αgrad(t), thus (∇j
t,...,tV )⊥ = g(∇j

t,...,tV,
1
αgrad(t)). For X ∈ TΣτ , we

have, using that X and ∇X( 1αgrad(t)) are parallel to Στ :18

d((∇j
t,...,tV )⊥)(X) =∂X(g(∇j

t,...,tV,
1

α
grad(t)))

=
1

α
g(∇X(∇j

t,...,tV ), grad(t)) + g((∇j
t,...,tV )∥,∇X(

1

α
grad(t)))

=
1

α
L∇j

t,...,tV
g(X, grad(t))− 1

α
g(∇t(∇j

t,...,tV ), X)

+ g((∇j
t,...,tV )∥,∇X(

1

α
grad(t))). (6.16)

The first term here lies in C0(t(M), Hs−j
loc (Σ·,R) by eq. (6.12) (as CHs−j

loc (M,S2M, t)

⊂ C0(t(M), Hs−j
loc (Σ·,S

2M |Σ·))). The last one does so by eq. (6.15). For the second one,
we note that although V might not be (j+1)-times continuously differentiable in the time
direction, this term actually only contains derivatives of V up to order j, as X is parallel
to Στ (so the highest-order derivatives drop out). Thus we obtain d((∇j

t,...,tV )⊥)(X) ∈
C0(t(M), Hs−j

loc (Σ·,R). As X ∈ TΣτ was arbitrary, this implies

d|TΣτ ((∇
j
t,...,tV )⊥) ∈ C0(t(M), Hs−j

loc (Σ·,T
∗Σ·)).

As d|TΣτ is a first-order linear differential operator mapping functions on Στ onto one-
forms, whose principal symbol is injective, we can conclude again, by Remark 3.9, that
(∇j

t,...,tV )⊥ ∈ C0(t(M), Hs+1−j
loc (Σ·,R)) for all integers j ≥ 0. Assembling this together

with (6.15), it follows that

∇j
t,...,t ∈ C0(t(M), Hs+1−j

loc (Σ·,TM |Σ·)

for all integers j ≥ 0. This is equivalent to V ∈ CHs+1
loc (M,TM, t).

7. Example: Plane waves in Minkowski space

In this last section, we want to show a simple example motivated by physics. The treatment
is based on [12], Kapitel 32.

Setting 7.1. We consider Minkowski space (M, g), where M := R4, g := −dx0 ⊗ dx0 +
dx1 ⊗ dx1 + dx2 ⊗ dx2 + dx3 ⊗ dx3 in cartesian coordinates x := id. In the following, all
components are considered with respect to cartesian coordinates, and we adopt the usual
physics notation and summation convention. The greek indices shall run from 0 to 3.

Let h ∈ C∞(M,S2M). By adding a suitable (physically irrelevant) gauge solution,
we can assume that δgh = 0: As in the proof of Theorem 6.1, using an auxiliary wave
equation, one can show that for any h ∈ C∞(M,S2M), there exists V ∈ C∞(M,TM) such
that δg(h− LV g) = 0. By replacing h with h− LV g, we can thus assume δgh = 0.
18For the latter one, recall eq. (6.7).
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In the following, we assume h to take on the particularly simple form of a plane wave,
i.e. there exist 0 ̸= p ∈ R4 ∼= TxM , 0 ̸= A ∈

⊙2(R4) ∼=
⊙2(TxM) (for all x ∈ M , where⊙2(V ) denotes the symmetric (0, 2)-tensor product of the vector space V with itself)19

such that
hµν(x) := Re(Aµνe

ipαxα
)

(where pαxα := g(p, x) = −p0x0+p1x1+p2x2+p3x3 under the isomorphism TxM ∼= R4 ∼=
M for x ∈M).20

Abbreviate ∂µ := ∂
∂xµ , ∂µ := gµν∂ν for µ = 0, 1, 2, 3. As Minkowski space is flat, we

have □L = ∂µ∂
µ = ∂20 − ∂21 − ∂22 − ∂23 . Then

(Dric(h))µν =
1

2
□Lhµν

=
1

2
Re(Aµνe

ipαxα
(−(p0)2 + (p1)2 + (p2)2 + (p3)2))

=
1

2
Re(Aµνpβp

βeipαx
α
).

In particular, Dric(h) = 0 holds if and only if pβpβ = 0. Thus p must be a lightlike
vector; plane gravitational waves indeed propagate with the speed of light.21.

The condition δgh = 0 is (using again the flatness of Minkowski space) equivalent to

0 = (δgh)µ = −∂νhνµ = −∂νRe
(
Aνµe

ipαxα − 1

2
Aβ

βgνµe
ipαxα

)
= −Re

(
ipνAνµe

ipαxα − 1

2
ipνAβ

βgνµe
ipαxα

)
for µ = 0, 1, 2, 3. We conclude

pνAνµ − 1

2
pνAβ

βgνµ = 0. (7.1)

A priori, it could have been assumed that A consisted of 10 independent numbers (degrees
of freedom), since a symmetric (0, 2)-tensor on R4 has 10 independent components. The
constraints (7.1) impose four conditions and reduce these to 6.
19The letter x is used for points and for the chart, but there should not be a risk of confusion.
20Note that the concept of a plane wave on an arbitrary manifold is not well-defined, since it depends

on charts via the isomorphisms R4 ∼= TxM and
⊙2(R4) ∼=

⊙2(TxM) for x ∈ M . The definition
of the plane wave above and the underlying physical concept imply that the components of p and A
are constant with respect to a given chart. In Minkowski space, we can however use a preferred class
of charts to define the plane waves, namely those where the metric takes on the usual diagonal form
diag(−1, 1, 1, 1). They can all be related by global Lorentz transformations, so in particular if a vector
resp. tensor field has constant components in one of them, it has constant components in all of them.

The relevance of this example is justified by the Fourier transform; many physically realistic waves can
be written as superpositions of such plane waves. However note that some, also physically imaginable,
solutions to the linearised Einstein equations might be not square-integrable, such that the Fourier
transform is not well-defined. Also they might be so irregular that the interpretation of the Fourier
transform as a decomposition into plane waves is not possible.

Also we first had to impose the “gauge condition” δgh = 0 and afterwards wrote down the plane-wave
ansatz. Hence we can not even claim that all plane-wave solutions to the linearised Einstein equations
can by addition of a gauge solution brought into a plane-wave form with δgh = 0. (The addition of
the gauge solution LV g might spoil the plane-wave form, as there is no reason why LV g should be a
plane wave. On the other hand, one could try to interpret this as first imposing the gauge condition
on an arbitrary solution and afterwards doing a Fourier transformation, i.e. decomposition into plane
waves. The addition of the gauge solution might however make the second step impossible, if the gauge
solution is not decaying at infinity fast enough or is too irregular.)

Here the plane waves just serve as an example.
21Until now, we only knew that they could not propagate faster
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By eventually performing a Lorentz transformation, we can assume pµ = p for µ = 0, 3
and pµ = 0 for µ = 1, 2, where 0 ̸= p ∈ R. Then the equations (7.1) read explicitly

pA00 + pA30 −
1

2
p(A00 −A11 −A22 −A33) = 0,

pA01 + pA31 = 0,

pA02 + pA32 = 0,

pA03 + pA33 +
1

2
p(A00 −A11 −A22 −A33) = 0.

Thus we can write all 16 components of Aµν in terms of the six independent variables
A00, A11, A12, A13, A23, A33. Namely,

A01 = −A31, A02 = −A32, A03 = −A33 +A00

2
, A22 = −A11

(and the rest is determined by symmetry). Furthermore, some of the remaining degrees of
freedom are unphysical, as we have some residual gauge freedom even after imposing the
condition δgh = 0:

Let v ∈ C4. The vector field V β(x) := Re(vβeipαx
α
) satisfies

(LV g)µν = (∂µV
β)gβν + (∂νV

β)gµβ = Re
(
ivβpµgβνe

ipαxα
+ ivβpνgµβe

ipαxα
)
. (7.2)

Also we calculate, using Lemma 5.5, ricg = 0 and pγpγ = 0:

(δgLV g)β = (δg(∇V ♭))β = (∂20 − ∂21 − ∂22 − ∂23)Re(vβe
ipαxα

) = Re(pγp
γvβe

ipαxα
) = 0

for β = 0, 1, 2, 3. Thus if h satisfies δgh = 0, also δg(h − LV g) = 0. This shows that we
can replace the plane wave h with the plane wave h− LV g, where V is as above, without
spoiling the divergence condition. They are physically equivalent.

The calculation (7.2) shows that this replacement of h by h − LV g corresponds to the
replacement

Aµν → Aµν − ivβpµgβν − ivβpνgµβ.

Since p0 = p3 = p, p1 = p2 = 0, this corresponds to the replacements

A00 → A00 − 2iv0p,

A11 → A11,

A12 → A12,

A13 → A13 − iv1p,

A23 → A23 − iv2p,

A33 → A33 − 2iv3p

(note p0 = −p0, g00 = −1). Therefore, we can reduce the number of degrees of freedom
from six to two physically relevant ones. Namely, choosing v0 := A00

2ip , v1 := A13
ip , v2 := A23

ip ,
v3 := A33

2ip , we can arrange that the amplitude (still denoted Aµν) takes on the form

Aµν =


0 0 0 0
0 A11 A12 0
0 A12 −A11 0
0 0 0 0

 .
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There are two independent parameters, corresponding to two different polarization states.
There is no gauge transformation which can reduce the number of degrees of freedom
further. Furthermore, the gravitational wave is transverse (i.e. divergence-free, which
follows from δgh = 0 and h = h here) and trace-free. Such a tensor is also called TT-
tensor.

Without being able to go into depth here, it shall be noted that the structure of the plane
wave amplitude found above has direct physical consequences. For example, it implies that
hypothetical quanta of gravitational waves (gravitons) need to have spin 2 (due to their
transformation behavior under rotation, cf. [12], Kapitel 32). For further study, the reader
should consult the extensive physics literature.
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Conclusion and Outlook

In the preceding work, we have been able to study infinitesimal deformations of Ein-
stein metrics on Lorentzian manifolds. The linearised Einstein equations were derived and
solved. Given initial conditions on a Cauchy surface satisfying the linearised Constraint
equations, it was shown that there exists a solution inducing this initial data. The Cauchy
problem for the linearised Einstein equations in the spaces of Sobolev sections is neverthe-
less not well-posed: The solution is only unique “up to gauge”, as proven as well in this
work.

A further study of the Cauchy problem can be found in [1]. There it has been shown
that the uniqueness “up to gauge” can be used to derive a well-posed Cauchy problem in
suitable quotient spaces. Furthermore, it is interesting to study further the spaces of the
initial data (modulo “gauge producing initial data”), as this allows for a classification of
the possible waves as well. This is done as well in the reference given above, but only in
the case of vanishing scalar curvature. A classification result for the general case is yet to
prove, but it will probably be complex.

The interest for Einstein metrics and their infinitesimal deformations can be justified by
pure mathematics and they can be studied by mathematicians for its own sake. However,
in particular the Lorentzian case is highly relevant for the physical reality, the world we
live in. This was hinted at in the preceding example, but the actual problems to be solved
in physics are far more complex.

However, in any case the linearised Einstein equations are only an approximation to
reality. The real problem is non-linear and has been studied for decades. Abstract results
are also known in this case, but the study of these is hard. It may be hoped that a better
knowledge of the linearised Einstein equations can also help to understand the non-linear
ones.

For the working physicist, the abstract results derived here are “obvious”. Nevertheless,
in a certain sense they deepen the understanding of our world as it is.
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A. Basic definitions of differential geometry and some formulas

For the sake of completeness, we record here some definitions used in the text, to be
applied in Setting 1.1. Most of them are standard, but nevertheless they differ in some of
the literature.

Definition A.1. For α = (α1, . . . , αn) ∈ Nn
0 , where n ∈ N0, we write |α| := α1 + · · ·+αn,

and ∂|α|

∂xα :=
∏n

i=1

(
∂
∂xi

)αi (where
(

∂
∂xi

)0
:= id for i = 1, . . . , n).

Definition A.2. 1. The canonical volume form on M is denoted dvolg.

2. For the curvature tensor we use the definition

R(X,Y )Z = ∇2
X,Y Z −∇2

Y,XZ

for all X,Y, Z ∈ TM .22 Here

∇2
X,Y Z := ∇X(∇Y Z)−∇∇XY Z

is the second covariant derivative.

Definition and Remark A.3. 1. A (generalized) orthonormal basis {ei}0≤i≤m−1 of
some m-dimensional vector space with a scalar product ⟨·, ·⟩ shall be vectors such
that ⟨ei, ej⟩ = ϵiδij for all 0 ≤ i, j ≤ m−1 and numbers ϵi ∈ {±1} (for 0 ≤ i ≤ m−1).
(These equations serve as a definition of the numbers ϵi.)

2. For any p ∈ M , there exists a neighbourhood U of p and sections {ei}0≤i≤n of TU
such that these form a orthonormal basis with respect to g|q at each q ∈ U (a local
orthonormal frame). Local orthonormal frames on Σ will be denoted by {ei}1≤i≤n

instead of {ei}0≤i≤n−1.

3. We call a vector field X synchronous at p if (∇X)|p = 0. We note that for any
p ∈ M , there even exists a local orthonormal frame in a neighbourhood of p which
is synchronous at p; such a frame is called a local geodesic frame.23

Definition and Remark A.4. 1. Viewing elements of C∞(M, T i,jM) as C∞(M)-mul-
tilinear maps from (TM)j to (TM)⊗i, we define their trace (resp. contraction): For
S ∈ C∞(M, T i,jM) with i, j ≥ 1 and 0 ≤ k ≤ i, 0 ≤ l ≤ j we define with respect to
local coordinates (x0, . . . , xn), for all vectors X1, . . . , Xj−1 ∈ TM :

(trlkS)(X1, . . . , Xj−1) =

n∑
a=0

dxa(S(X1, . . . ,
∂

∂xa
, . . . , Xj−1)),

where the vector fields ∂
∂xa are inserted at the k’th position and the dual basis

elements dxa are paired with the l’th tensor factor. This defines an element of
C∞(M, T i−1,j−1M) which does not depend on the choice of coordinates. It could
just as well have been defined using a local orthonormal frame {ea}0≤a≤n and its
(algebraic) dual frame {e∗a}0≤a≤n.24 Furthermore the trace commutes with covariant
differentiation.

22Here and often else, X,Y, Z ∈ TM are interpreted as vectors over some given point; as R is a tensor,
R(X,Y )Z is well-defined if X,Y, Z are all vectors corresponding to the same basepoint. This shall be
implied in such a statement. Analogously, in the next formula we implicitly assume Z to be a vector
field on M .

23These can be defined by parallel transport of an orthonormal basis of TpM along geodesics in a normal
neighbourhood of p.

24The dual frame is characterised by e∗a(eb) = δab for 0 ≤ a, b ≤ n.
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2. We can also define a metric trace (resp. contraction) for (i, j)-tensors, where we
contract two covector slots: For S ∈ C∞(M, T i,jM) with j ≥ 2 and 0 ≤ k < l ≤ j,
we define, using an orthonormal frame, for vectors X1, . . . , Xj−2 ∈ TM :

((trg)klS)(X1, . . . , Xj−2) =

n∑
a=0

ϵaS(X1, . . . , ea, . . . , ea, . . . , Xj−2),

where the vector fields ea are inserted at the k’th and l’th position. This defines an
element of C∞(M, T i,j−2M) which does not depend on the choice of orthonormal
frame ([13], Lemma 1.2.5); also trg commutes with covariant differentiation like the
other trace. When they are clear from the context, the indices k, l will be omitted
when writing both kinds of traces.

Definition and Remark A.5. 1. The metric g can be extended to 1-forms (i.e. (0, 1)-
tensor fields) and (0, 2)-tensor fields: If α, β ∈ Ω1(M), we define, using a local
orthonormal frame {ei}0≤i≤n:

g(α, β) :=
n∑

i=0

ϵiα(ei)β(ei).

If S, T ∈ C∞(M, T 0,2M), we define

g(S, T ) :=
n∑

i,j=0

ϵiϵjS(ei, ej)T (ei, ej).

(These definitions are independent of the choice of frame.)

2. We define the “musical isomorphisms”

♭k : T i,j → T i−1,j+1, ♭k := trkj+1 ◦ (· ⊗ g)

(for 1 ≤ k ≤ i, where i ≥ 1 is assumed) and

♯k : T i,j → T i+1,j−1, ♯k := tri+1
k ◦ (· ⊗ g−1)

(for 1 ≤ k ≤ j, where j ≥ 1 is assumed). When applied point-wise, these commute
with covariant differentiation as the traces do, and g and g−1 are parallel. By defi-
nition, ♭i is the inverse of ♯j , wherever this statement is well-defined. We also write
ω♯ := ♯1(ω) for one-forms ω and V ♭ := ♭1(V ) for vector fields V .

3. For S ∈ C∞(M, T i,jM), T ∈ C∞(M, T k,lM) with j, k ≥ 1, we define the composition

C∞(M, T i+k−1,j+l−1M) ∋ S ◦ T := tri+1
j (S ⊗ T ),

i.e. one contracts the last covector slot of S with the first vector slot of T . Sometimes
also two (0, 2)-tensors will have to be composed: For S, T ∈ C∞(M, T 0,2M), we
define S ◦ T ∈ C∞(M, T 0,2M) by

(S ◦ T )(X,Y ) := g(S(X, ·), T (Y, ·)) =
n∑

i=0

ϵiS(X, ei)T (Y, ei) = trg(S(X, ·), T (Y, ·))

for X,Y ∈ TM .25

25Consequently, a more appropriate symbol would actually be ◦g as it depends on g via the orthonormal
frame.
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4. We note that
(trg)klS = tr1ktr

2
l (g

−1 ⊗ S).

Here the traces shall be applied from the right to the left, and g−1 is the inverse of
g, where g is interpreted as a map from TM to T∗M .26 If S is a (2, 0)-tensor field,
one can also write trgS = tr(g−1 ◦ S).

5. Also we have for smooth (0, 2)-tensor fields S and T :

g(S, T ) = tr(g−1 ◦ S ◦ g−1 ◦ T )

and
S ◦ T = S ◦ g−1 ◦ T

(where the composition on the left-hand side is the metric-dependent one while the
one on the right-hand side is metric-independent).

Definition and Remark A.6. The Lie derivative is denoted L, as usual. We recall that
L commutes with contractions as well, and the definitions of L and ∇ on functions (simply
the partial derivative), and that both derivatives satisfy a product rule for tensor fields.
Noting that inserting a vector field X on the k’th position into a (i, j)-tensor S (where
1 ≤ k ≤ j) is equal to the contraction ci+1

k (S ⊗ X), we obtain the product rules for the
covariant differentiation and Lie derivatives of (0, j)-tensors: For X1, . . . , Xj vector fields
on M , we have

∂X(S(X1, . . . , Xj)) = (LXS)(X1, . . . , Xj) +

j∑
l=1

S(X1, . . . ,LXXl, . . . , Xj),

∂X(S(X1, . . . , Xj)) = (∇XS)(X1, . . . , Xj) +

j∑
l=1

S(X1, . . . ,∇XXl, . . . , Xj)

(where X ∈ X (M) in the former and X ∈ TM in the latter equation). In particular, using
the torsion-freeness and a product rule (for g) for the Levi-Civita connection, we obtain
for vector fields X,Y, Z on M :

(LXg)(Y,Z) = ∂X(g(Y,Z))− g(∇XY −∇YX,Z)− g(Y,∇XZ −∇ZX) =

= g(∇YX,Z) + g(Y,∇XZ). (A.1)

Note that this formula defines LXg also for distributional X.

These definitions here were stated for M only, but if needed, analogous definitions for
other manifolds will be used.

B. Calculations

This appendix is devoted to the proof of the various computations used in the main body
of the text. Much of the treatment follows [13] and [10], which are based on [7].

26Thus g−1 is a (2, 0)-tensor field such that g ◦g−1 = idT∗M and g−1 ◦g = idTM ; using a local orthonormal
frame {ei}0≤i≤n one can write g−1 =

∑n
i=0 ϵiei ⊗ ei.
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Proof of Proposition 4.3, 1. We abbreviate gt for g+ th and ∇t for ∇g+th (wherever this is
well-defined); then ∇g = ∇0. In the following we choose some p ∈M and only calculate at
this point, but this is often suppressed in the notation. Recalling that D∇g(h) is a tensor27,
we note that for vector fieldsX,Y, Z onM , the value of g(D∇g(h)(X,Y ), Z)|p only depends
on the values of X,Y, Z at p. Thus we can assume that X,Y, Z are synchronous at p (with
respect to ∇0). By torsion-freeness of ∇0 this implies that the commutators of X,Y and
Z also vanish at p.

The Koszul formula yields

2gt(∇t
XY,Z) =∂X(gt(Y,Z)) + ∂Y (gt(X,Z))− ∂Z(gt(X,Y ))

− gt(X, [Y, Z]) + gt(Y, [Z,X]) + gt(Z, [X,Y ])

for all t where this is a well-defined statement. The second line vanishes as the commutators
of X,Y, Z are zero. Thus we obtain, inserting gt = g + th, g0 = g and subtracting the two
resulting formulas,

2(g + th)(∇t
XY, Z)− 2g(∇0

XY, Z)

=∂X((g + th)(Y,Z))− ∂X(g(Y, Z)) + ∂Y ((g + th)(X,Z))

− ∂Y (g(X,Z))− ∂Z((g + th)(X,Y )) + ∂Z(g(X,Y ))

=t (∂X(h(Y,Z)) + ∂Y (h(X,Z))− ∂Z(h(X,Y ))) .

However on the left-hand side of this equation, the second term actually is zero due to
synchronousness. Therefore,

(g + th)(∇t
XY,Z) =

1

2
t (∂X(h(Y, Z)) + ∂Y (h(X,Z))− ∂Z(h(X,Y )))

and upon differentiating, we obtain(
d

dt

∣∣∣∣
t=0

g(∇t
XY, Z)

)
+

(
d

dt

∣∣∣∣
t=0

th(∇t
XY,Z)

)
=

1

2
(∂X(h(Y,Z)) + ∂Y (h(X,Z))− ∂Z(h(X,Y ))) .

Here on the left-hand side, the first term equals g(D∇g(h)(X,Y ), Z) by definition of ∇t

and since differentiation with respect to t commutes with g. We note that, since h is a
tensor and the vector fields are all synchronous at p, the right-hand side can be rewritten
as

1

2
(∂X(h(Y,Z)) + ∂Y (h(X,Z))− ∂Z(h(X,Y )))

=
1

2
((∇Xh)(Y,Z) + (∇Y h)(X,Z)− (∇Zh)(X,Y )) .

28 So

g(D∇g(h)(X,Y ), Z) +
d

dt

∣∣∣∣
t=0

th(∇t
XY,Z)

=
1

2
((∇Xh)(Y,Z) + (∇Y h)(X,Z)− (∇Zh)(X,Y )) .

27See the notes above the statement of Proposition 4.3.
28This follows since h(∇XY,Z) = h(Y,∇XZ) = h(∇Y X,Z) = h(X,∇Y Z) = h(∇ZX,Y ) = h(X,∇ZY ) =

0. In the end we need to have a tensor equation to make the formula valid; otherwise the assumption
of synchronous vector fields would have been invalid.
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To prove the claimed equation (4.4), it only remains to show that the second term on the
left-hand side of the above equation vanishes. This follows from

d

dt

∣∣∣∣
t=0

th(∇t
XY,Z) = lim

t→0

1

t
th(∇t

XY, Z) = lim
t→0

h(∇t
XY,Z) = h(∇0

XY,Z) = 0,

as taking the limit with respect to t commutes with h, and Y is synchronous at p (with
respect to ∇0 = ∇).

For the proof of part 2., we first show an auxiliary lemma.

Lemma B.1 (cf. [10], Lemma 5.4). For h ∈ C∞(M,S2M) and r ∈ C∞(M, T 0,2M), we
have

d

dt

∣∣∣∣
t=0

trg+th(r) = −g(h, r).

Proof. At first we note that ϕ : I → C∞(M, T 1,1M), t 7→ (g + th)−1 ◦ (g + th) (where
I ⊂ R is a sufficiently small interval) is the composition of the map ψ : I × I →
C∞(M, T 1,1M), (t1, t2) 7→ (g + t1h)

−1 ◦ (g + t2h) with the diagonal map ∆ : I → I × I,
t 7→ (t, t). Thus the chain rule yields

d

dt

∣∣∣∣
t=0

ϕ(t) =
(
d∆(0)ψ

)( d

dt

∣∣∣∣
t=0

∆

)
=
(

d
dt1

∣∣∣
t1=0

(g + t1h)
−1 ◦ g, d

dt2

∣∣∣
t2=0

g−1 ◦ (g + t2h)
)(1

1

)
=

d

dt1
(g + t1h)

−1

∣∣∣∣
t1=0

◦ g + d

dt2

∣∣∣∣
t2=0

g−1 ◦ (g + t2h)

=(D(g−1)(h)) ◦ g + g−1 ◦ h. (B.1)

This can be seen as a product rule for differentiation with respect to t. However, by
definition ϕ is a constant function (taking as value the (1, 1)-tensor corresponding to the
identity map on TM). Hence the left-hand side of eq. (B.1) is zero, implying that

D(g−1)(h) = −g−1 ◦ h ◦ g−1 (B.2)

and therefore

d

dt

∣∣∣∣
t=0

trg+th(r) =
d

dt

∣∣∣∣
t=0

tr((g + th)−1 ◦ r)

=tr((D(g−1)(h)) ◦ r) = −tr(g−1 ◦ h ◦ g−1 ◦ r)
=− g(h, r),

where it was used that the limit t→ 0 commutes with the metric-independent trace.

Proof of Proposition 4.3, 2. We recall δg(α) = −trg(∇·α(·)) for α ∈ Ω1(M). In Lemma
B.1 we found

d

dt

∣∣∣∣
t=0

trg+th(∇·α(·)) = −g(h,∇·α(·)).

Thus we get
Dδg(h)(α) = − (−g(h,∇·α(·)) + trg(D∇g(h)(α))) (B.3)

by a product rule which can be proven as eq. (B.1).
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We use now a generalized orthonormal frame {ei}0≤i≤n to evaluate the metric trace. By
eq. (4.4), we have for all X,Y ∈ TM (as D∇g(h)(X,Y ) =

∑n
j=0 ϵjg(D∇g(h)(X,Y ), ej)ej):

D∇g(h)(X,Y ) =
n∑

j=0

1

2
ϵj
(
(∇Xh)(Y, ej) + (∇Y h)(X, ej)− (∇ejh)(X,Y )

)
ej . (B.4)

By the product rule and since ∇ commutes with traces, we have

∂X(α(Y )) =∇X(tr11(α⊗ Y ))

=tr11((∇Xα)⊗ Y ) + tr11(α⊗ (∇XY ))

=(∇Xα)(Y ) + α(∇XY ).

As the partial derivatives are unchanged when changing the metric, we deduce from this

0 =
d

dt

∣∣∣∣
t=0

(∇g+th
Y α)(X) + α(∇g+th

XY ) = (D∇g(h)(α))(X,Y ) + α(D∇g(h)(X,Y )).

Thus

(D∇g(h)(α))(X,Y ) =− α(D∇g(h)(X,Y ))

=− α

 n∑
j=0

1

2
ϵj
(
(∇Xh)(Y, ej) + (∇Y h)(X, ej)− (∇ejh)(X,Y )

)
ej

 .

If we use the same generalized orthonormal frame {ei}0≤i≤n to evaluate the metric trace,
we get

−trg(D∇g(h)(α)) =α

 n∑
i,j=0

1

2
ϵiϵj

(
(∇eih)(ei, ej) + (∇eih)(ei, ej)− (∇ejh)(ei, ei)

)
ej


=

n∑
i,j=0

1

2
ϵiϵjα(ej)

(
2(∇eih)(ei, ej)− (∇ejh)(ei, ei)

)
=−

n∑
j=0

1

2
ϵjα(ej)(2(δ

g(h))(ej) +∇ej (trgh))

=− g (α, δg(h))− 1

2
g (α, d(trgh)) . (B.5)

(We note
∑n

i=0 ϵi(∇ejh)(ei, ei) = ∇ej (trgh) = ∂ej (trgh) = d(trgh)(ei), since ∇ej commutes
with metric traces, and the covariant derivative for a function equals the partial derivative.)
Equations (B.3) and (B.5) together yield (4.5).

Proof of Proposition 4.3, 3. As in 1. we choose p ∈ M and assume X,Y, Z to be vector
fields synchronous at p (which is valid as DRg(h) is a tensor). We have

(DRg(h))(X,Y, Z) =
d

dt

∣∣∣∣
t=0

∇t
X(∇t

Y Z)−∇t
Y (∇t

XZ)−∇t
[X,Y ]Z. (B.6)

Arguments as in the proof of eq. (B.1) yield product rules for the first and the second term
in eq. (B.6). We obtain

(DRg(h))(X,Y, Z) =(D∇g(h))(X,∇Y Z) +∇X((D∇g(h))(Y,Z))

− (D∇g(h))(Y,∇XZ)−∇Y ((D∇g(h))(X,Z))− (D∇g(h))([X,Y ], Z)

=∇X((D∇g(h))(Y,Z))−∇Y ((D∇g(h))(X,Z))
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by synchronousness of X and Y at p. As X,Y, Z are synchronous at p, similar arguments
to the ones made in the proof of 1., using the product rule for ∇, show that the right-hand
side coincides (at p) with

(∇X(D∇g(h)))(Y, Z)− (∇Y (D∇g(h)))(X,Z).

This proves equation (4.6) (since both sides are tensorial).

To continue with the proof of Proposition 4.3, we need three auxiliary calculations, which
are done in the following lemmata.

Lemma B.2 ([10], Lemma 5.2). Let h be a symmetric (0, 2)-tensor field, and let {ei}0≤i≤n

be a locally defined generalized orthonormal frame. Then for any X ∈ TM ,

n∑
i=0

ϵih(∇Xei, ei) = 0.

Proof. We write ∇Xei =
∑n

j=1 αjiej . Differentiation of the orthogonality relation yields

0 = ∂X(g(ei, ek)) =g(∇Xei, ek) + g(ei,∇Xek)

=
n∑

j=0

(αjiϵjδjk + αjkϵjδji)

=αkiϵk + αikϵi.

Consequently

n∑
i=0

ϵih(∇Xei, ei) =
n∑

i,k=0

ϵih(αkiek, ei)

=
1

2

n∑
i,k=0

(ϵiαki + ϵkαik)h(ek, ei)

=
1

2

n∑
i,k=0

ϵiϵk (αkiϵk + αikϵi)︸ ︷︷ ︸
=0

h(ek, ei)

=0.

In the second equality, it has been used that the sum is symmetric under exchange of the
indices i and k.

Corollary B.3 ([10], Corollary 5.3). Let h be a symmetric (0, 2)-tensor field. Then
◦
Rh is

also a symmetric (0, 2)-tensor.

Proof. Let {ei}0≤i≤n be a local orthonormal frame and let X,Y ∈ TM . By definition,

(
◦
Rh)(X,Y ) =

n∑
i=0

ϵih(R(ei, X)Y, ei).

Because of the Bianchi identity, this is equal to

−
n∑

i=0

ϵih(R(Y, ei)X, ei)−
n∑

i=0

ϵih(R(X,Y )ei, ei).
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Due to antisymmetry of R in its first two arguments, the first sum equals (
◦
Rh)(Y,X).

Thus to prove the corollary, we need to show that the second sum is zero. We calculate
n∑

i=0

ϵih(R(X,Y )ei, ei) =

n∑
i=0

ϵi
(
h(∇X(∇Y ei), ei)− h(∇Y (∇Xei), ei)− h(∇[X,Y ]ei, ei)

)
=

n∑
i=0

ϵi (∂X(h(∇Y ei, ei))− (∇Xh)(∇Y ei, ei)− h(∇Xei,∇Y ei)

− ∂Y (h(∇Xei, ei)) + (∇Y h)(∇Xei, ei)

+h(∇Y ei,∇Xei)− h(∇[X,Y ]ei, ei)
)
.

The third and the sixth term in the bracket add up to zero. For the other terms, we apply
the previous lemma to the symmetric (0, 2)-tensors h, ∇Xh and ∇Y h to show that the
whole sum becomes zero. This concludes the proof.

Lemma B.4. We define the Riemannian curvature tensor on (0, 2)-tensor fields by

R(X,Y )h = ∇2
X,Y h−∇2

Y,Xh

for all h ∈ C∞(M, T 0,2M), X,Y ∈ TM . Then for all A,B, V,W ∈ TM , we have

(R(A,B)h)(V,W ) = −h(R(A,B)V,W )− h(V,R(A,B)W ). (B.7)

Proof. The map R(·, ·)h(·, ·) is tensorial in all of its slots since already the tensor derivatives
are tensorial in all of their slots. The same holds for the right-hand side of the claimed
equation. Thus it suffices to prove it at a point p ∈ M , where it can be assumed that
A,B, V,W are synchronous at p. We have (where the traces are applied from the right to
the left)

(R(A,B)h)(V,W ) =tr11tr
2
2((R(A,B)h(·, ·))⊗ V ⊗W )

=tr11tr
2
2((∇2

A,Bh)⊗ V ⊗W )− tr11tr
2
2((∇2

B,Ah)⊗ V ⊗W ). (B.8)

A twofold application of the product rule yields

∇2
A,B(h⊗ V ⊗W ) =(∇2

A,Bh)⊗ V ⊗W + (∇Ah)⊗ (∇B(V ⊗W ))

+ (∇Bh)⊗ (∇A(V ⊗W )) + h⊗ (∇2
A,B(V ⊗W )).

After again applying the product rule in the second and the third term, they are recognized
to be zero at p by synchronousness of V,W there. Using this, and an analogous equation
with the roles of A and B interchanged, in eq. (B.8), we obtain

(R(A,B)h)(V,W ) =tr11tr
2
2(∇2

A,B(h⊗ V ⊗W ))− tr11tr
2
2(h⊗ (∇2

A,B(V ⊗W )))

− tr11tr
2
2(∇2

B,A(h⊗ V ⊗W )) + tr11tr
2
2(h⊗ (∇2

B,A(V ⊗W ))). (B.9)

As ∇2
A,B commutes with contractions, the first term here equals

∇2
A,B(tr

1
1tr

2
2(h⊗ V ⊗W )) = ∇2

A,B(h(V,W )).

However, we have h(V,W ) ∈ C∞(M), hence these covariant derivatives are partial deriva-
tives and this term equals ∂A(∂B(h(V,W ))). Analogously, the third term in eq. (B.9) is
equal to −∂B(∂A(h(V,W ))). Thus the first and the third term in eq. (B.9) add up to

∂A(∂B(h(V,W )))− ∂B(∂A(h(V,W ))) = ∂[A,B](h(V,W )) = 0
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at p, since A,B are synchronous there.
We note ∇2

A,B(V ⊗W ) = (∇2
A,BV )⊗W + (∇AV )⊗ (∇BW ) + (∇BV )⊗ (∇AW ) + V ⊗

(∇2
A,BW ), where the second and the third summand are zero at p. Therefore, eq. (B.9)

can at p also be rewritten as

(R(A,B)h)(V,W ) =− tr11tr
2
2(h⊗ (∇2

A,BV )⊗W )− tr11tr
2
2(h⊗ V ⊗ (∇2

A,BW ))

+ tr11tr
2
2(h⊗ (∇2

B,AV )⊗W ) + tr11tr
2
2(h⊗ V ⊗ (∇2

B,AW ))

=− h(∇2
A,BV,W )− h(V,∇2

A,BW ) + h(∇2
B,AV,W ) + h(V,∇2

B,AW )

=− h(R(A,B)V,W )− h(V,R(A,B)W ).

Proof of Proposition 4.3, 4. We recall that taking the trace of a linear map does not depend
on the metric, hence it commutes with differentiation with respect to t. For X,Y ∈
TM , we obtain, using eq. (4.6) (where we note that taking the trace tr11 of (X,Y, Z) 7→
(∇Y D∇g(h))(X,Z) is the same as taking the trace tr12 of (Y,X,Z) 7→ (∇Y D∇g(h))(X,Z),
which is (∇·D∇g(h))(·, ·) by definition):

(Dricg(h))(X,Y ) =(D(tr11Rg)(h))(X,Y )

=(tr11(DRg(h)))(X,Y )

=
(
tr11(∇·D∇g(h)(·, ·))− tr12(∇·D∇g(h)(·, ·))

)
(X,Y ).

We use now a local generalized orthonormal frame {ei}0≤i≤n to evaluate the traces, where
we note e∗i = ϵig(·, ei). Thus

(Dricg(h))(X,Y ) =

n∑
i=0

e∗i ((∇·D∇g(h)(·, ·))(ei, X, Y ))− e∗i ((∇·D∇g(h)(·, ·))(X, ei, Y ))

=
n∑

i=0

ϵi (g((∇·D∇g(h)(·, ·)), ·)(ei, X, Y, ei)

−g((∇·D∇g(h)(·, ·)), ·)(X, ei, Y, ei)) .

Now by the product rule for ∇, using that ∇ commutes with contractions (up to index
shifts) and g is parallel, we get

g((∇·D∇g(h)(·, ·)), ·) =tr14((∇D∇g(h))⊗ g)

=∇(tr13(D∇g(h)⊗ g))− tr14((D∇g(h))⊗ (∇g))
=∇(tr13(D∇g(h)⊗ g)) = ∇(Cgh)

where Cgh := tr13(D∇g(h)⊗ g), or in other words Cgh(X,Y, Z) = g(D∇g(h)(X,Y ), Z) for
all X,Y, Z ∈ TM where this is is a syntactically valid statement. Thus we can rewrite

(Dricg(h))(X,Y ) =

n∑
i=0

ϵi ((∇(Cgh))(ei, X, Y, ei)− (∇(Cgh))(X, ei, Y, ei))

=
n∑

i=0

ϵi ((∇ei(Cgh))(X,Y, ei)− (∇X(Cgh))(ei, Y, ei)) . (B.10)
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In the following, as the equation to be proved is a tensor equation, we can choose p ∈M ,
assume X,Y and the ei to be synchronous at p and calculate only at p. Using part 1., i.e.
eq. (4.4), the second summand in eq. (B.10) is then readily calculated to be

−
n∑

i=0

ϵi(∇X(Cgh))(ei, Y, ei) =−
n∑

i=0

ϵi∂X((Cgh)(ei, Y, ei))

=− 1

2

n∑
i=0

ϵi∂X ((∇eih)(Y, ei) + (∇Y h)(ei, ei)− (∇eih)(ei, Y ))

=− 1

2
∂X

(
n∑

i=0

ϵi∂Y (h(ei, ei))

)

=− 1

2
∂X∂Y (trgh)

=− 1

2
(∇d(trgh))(X,Y ). (B.11)

(We used the synchronousness in the first and in the last step; in the third step we used
that ∇eih is a symmetric tensor to cancel the first with the last term in the bracket.)

In the first term of (B.10), we again apply eq. (4.4) and obtain

n∑
i=0

ϵi(∇ei(Cgh))(X,Y, ei)

=
1

2

n∑
i=0

ϵi
(
(∇2

ei,Xh)(Y, ei) + (∇2
ei,Y h)(X, ei)− (∇2

ei,eih)(X,Y )
)
. (B.12)

In the first summands in eq. (B.12), we commute the covariant derivatives using the
Riemannian curvature tensor on (0, 2)-tensor fields. This yields

1

2

n∑
i=0

ϵi(∇2
ei,Xh)(Y, ei) =

1

2

n∑
i=0

ϵi
(
(∇2

X,eih)(Y, ei) + (R(ei, X)h)(Y, ei)
)

=
1

2

n∑
i=0

ϵi
(
(∇2

X,eih)(Y, ei)− h(R(ei, X)Y, ei)− h(Y,R(ei, X)ei)
)

(B.13)

by Lemma B.4.
On the other hand we calculate

1

2
(ricg ◦ h)(X,Y ) =

1

2

n∑
i,j=1

ϵiϵjg(R(ej , ei)X, ej)h(Y, ei)

=
1

2

n∑
i,j=1

ϵiϵjg(R(X, ej)ej , ei)h(Y, ei) =
1

2

n∑
j=1

ϵjh(Y,R(X, ej)ej), (B.14)

which we use, together with the antisymmetry of R in its first two arguments, in eq. (B.13)
to deduce

1

2

n∑
i=0

ϵi(∇2
ei,Xh)(Y, ei) = −1

2
(
◦
Rh)(X,Y ) +

1

2
(ricg ◦ h)(X,Y ) +

1

2

n∑
i=0

ϵi(∇2
X,eih)(Y, ei).

(B.15)
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Similarly we deal with the second summands in eq. (B.12) and obtain

1

2

n∑
i=0

ϵi(∇2
ei,Y h)(X, ei) = −1

2
(
◦
Rh)(Y,X) +

1

2
(ricg ◦ h)(Y,X) +

1

2

n∑
i=0

ϵi(∇2
Y,eih)(X, ei).

By Corollary B.3,
◦
Rh is a symmetric tensor. Also we note (ricg◦h)(Y,X) = (h◦ricg)(X,Y ).

Thus this can be rewritten as

1

2

n∑
i=0

ϵi(∇2
ei,Y h)(X, ei) = −1

2
(
◦
Rh)(Y,X) +

1

2
(h ◦ ricg)(X,Y ) +

1

2

n∑
i=0

ϵi(∇2
Y,eih)(X, ei).

(B.16)
The third summands in eq. (B.12) are recognized to add up to half of the connection

Laplacian ∇∗∇h of h, applied to X and Y . Using this and equations (B.11), (B.12),
(B.15), (B.16) in (B.10), we obtain

Dricg(h)(X,Y ) =− 1

2
(∇d(trgh))(X,Y )

+
1

2

(
∇∗∇h+ ricg ◦ h+ h ◦ ricg − 2

◦
Rh

)
(X,Y )

+
1

2

n∑
i=0

ϵi
(
(∇2

X,eih)(Y, ei) + (∇2
Y,eih)(X, ei)

)
. (B.17)

By definition

δgh = −
n∑

i=0

ϵi(∇eih)(ei, ·),

which leads to

((sym ◦ ∇)(δgh))(X,Y ) = −1

2

n∑
i=0

ϵi
(
(∇2

X,eih)(ei, Y ) + (∇2
Y,eih)(ei, X)

)
.

That is, by symmetry of h, up to a sign the last term in eq. (B.17). As the second term
of eq. (B.17) is one half of the Lichnerowicz operator, we obtain in total

Dricg(h) =
1

2
□Lh− ((sym ◦ ∇)(δgh))− 1

2
(∇d(trgh)).

This proves equation 4.7.

The proof of equation 4.8 requires another auxiliary lemma.

Lemma B.5. Let ω ∈ Ω1(M). Then

Lω♯g = 2(sym ◦ ∇)(ω). (B.18)

Proof. Let V,W ∈ TM . Then

(Lω♯g)(V,W ) =g(∇V ω
♯,W ) + g(V,∇Wω

♯)

=∂V (g(ω
♯,W ))− g(ω♯,∇VW ) + ∂W (g(V, ω♯))− g(∇WV, ω

♯)

=∂V (ω(W ))− ω(∇VW ) + ∂W (ω(V ))− ω(∇WV )

=(∇V ω)(W ) + (∇Wω)(V )

=2(sym ◦ ∇)(ω)(V,W ).
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Proof of Proposition 4.3, 4., continued. We recall h := h − 1
2trg(h)g. By Lemma B.5, we

have

1

2
L(δg(h))♯g =(sym ◦ ∇)(δg(h))

=(sym ◦ ∇)(δg(h))− 1

2
(sym ◦ ∇)(−(trg)11∇·(trg(h)g(·, ·))

=(sym ◦ ∇)(δg(h)) +
1

2
(sym ◦ ∇)((trg)11∇·(trg(h))⊗ g(·, ·))

+
1

2
(sym ◦ ∇)((trg)11(trg(h))⊗ (∇·g)(·, ·))

=(sym ◦ ∇)(δg(h)) +
1

2
(sym ◦ ∇)((trg)11∂·(trg(h))⊗ g(·, ·))

=(sym ◦ ∇)(δg(h)) +
1

2
(sym ◦ ∇)(∂·(trg(h)))

=(sym ◦ ∇)(δg(h)) +
1

2
(sym ◦ ∇)(d(trg(h))). (B.19)

(We also used ∇g = 0 and ∇ = ∂ on C∞(M).) We note that for vector fields V,W
synchronous at some p ∈M , we have at p:

1

2
(sym ◦ ∇)(d(trgh))(V,W ) =

1

4
(∂V (∂W (trgh)) + ∂W (∂V (trgh)))

=
1

2
∂V (∂W (trgh))−

1

4
∂[V,W ](trgh)

=
1

2
∂V (∂W (trgh))

=
1

2
(∇d(trgh))(V,W ).

As both sides are tensorial in V,W , this shows (sym ◦ ∇)(d(trgh)) = ∇d(trgh). Inserting
this in eq. (B.19) and comparing with eq. (4.7), we obtain eq. (4.8). This concludes the
proof of part 4. of Proposition 4.3.

Proof of Proposition 4.3, 5. We have by Lemma B.1, part 4. of the proposition and a
product rule that is proven similarly to eq. (B.1):

Dscalg(h) =
d

dt

∣∣∣∣
t=0

trg+th(ricg+th)

=

(
d

dt

∣∣∣∣
t=0

trg+th(ricg)

)
+ trg+th(Dricg(h))

=− g(h, ricg) + trg

(
1

2
□Lh− (sym ◦ ∇)(δgh)− 1

2
∇d(trgh)

)
. (B.20)

We recall □gf = −trg(∇df) for f ∈ C∞(M), so the last term here is 1
2□

g(trgh). Further-
more for any 1-form ω and X,Y ∈ TM , we have

((sym ◦ ∇)ω)(X,Y ) =
1

2
((∇ω)(X,Y ) + (∇ω)(Y,X)) ,

so, using a local orthonormal frame {ei}0≤i≤n, we get

trg((sym ◦ ∇)ω) =

n∑
i=0

ϵi(∇ω)(ei, ei) = −δgω.
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Inserting this in eq. (B.20), we get

Dscalg(h) = −g(h, ricg) +
1

2
trg(□Lh) + δg(δgh) +

1

2
□g(trgh). (B.21)

Now we want to compute trg(□Lh). We first note that

trg(
◦
Rh) =

n∑
i=0

ϵi(
◦
Rh)(ei, ei)

=
n∑

i,j=0

ϵiϵjh(R(ej , ei)ei, ei),

while we also have

trg(ricg ◦ h) =
n∑

i=0

ϵi(ricg ◦ h)(ei, ei)

=
n∑

i,k=0

ϵiϵkricg(ei, ek)h(ek, ei)

=
n∑

i,j,k=0

ϵiϵjϵkg(R(ei, ej)ej , ek))h(ek, ei)

=

n∑
i,j=0

ϵiϵjh

(
n∑

k=1

ϵkg(R(ei, ej)ej , ek)ek, ei

)

=

n∑
i,j=0

ϵiϵjh(R(ei, ej)ej , ei).

Interchanging i and j in the latter calculation and comparing it with the one above, we

obtain trg(
◦
Rh) = trg(ricg ◦ h). Using this and cyclic invariance of the trace, we also get

trg(h ◦ ricg) =trg(h ◦ g−1 ◦ ricg)
=tr(g−1 ◦ h ◦ g−1 ◦ ricg)
=tr(g−1 ◦ ricg ◦ g−1 ◦ h)

=trg(ricg ◦ h) = trg(
◦
Rh).

Together with the definition of □L, these calculations show

trg(□Lh) = trg(∇∗∇h). (B.22)

On the other hand, g−1 is parallel, so

□g(trgh) =□g(tr(g−1 ◦ h))

=−
n∑

i=0

ϵi∇2
ei,eitr(g

−1 ◦ h)

=− tr

(
g−1 ◦

(
n∑

i=0

ϵi∇2
ei,eih

))
=trg(∇∗∇h).
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Inserting eq. (B.22) in this equation shows

□g(trgh) = trg(□Lh). (B.23)

We insert eq. (B.23) in eq. (B.21) and obtain

Dscalg(h) = □g(trgh) + δg(δgh)− g(h, ricg).

Using symmetry of g on the bundle of (0, 2)-tensors, this proves eq. (4.9).

Proof of Proposition 4.6. We note that by a product rule which is proven similarly to eq.
(B.1), we have for i = 1, 2:

d

dt

∣∣∣∣
t=0

Φi(g̃ + th̃, k̃ + tm̃) =
d

dt

∣∣∣∣
t=0

Φi(g̃ + th̃, k̃) +
d

dt

∣∣∣∣
t=0

Φi(g̃, k̃ + tm̃).

Thus to prove the equations (4.14), (4.15) we need to show that the sum of the partial
derivatives of Φi with respect to g̃ in the direction of h̃ and with respect to k̃ in the direction
of m̃ is equal to DΦi (for i = 1, 2). We write D1 for the differentiation with respect to
the g̃-variable (so e.g. D1scalg̃(h̃) =

d
dt

∣∣
t=0

scalg̃+th̃, etc.) and D2 for differentiation with
respect to the k̃-variable (so e.g. D2(trg̃k̃)(m̃) = d

dt

∣∣
t=0

trg̃(k̃ + tm̃) = trg̃m̃). With this
notation, the above formula reads DΦi(h̃, m̃) = D1Φi(h̃) + D2Φi(m̃).

We start with the proof of eq. (4.14), where we recall the energy constraint equation
(4.2):

Φ1(g̃, k̃) = scalg̃ − g̃(k̃, k̃) + (trg̃k̃)
2 = 0. (4.2)

We found in Proposition 4.3 (now decorating everything with tildes, and with D1 instead
of D):

D1scalg̃(h̃) = □g̃(trg̃h̃) + δg̃(δg̃h̃)− g̃(ricg̃, h̃). (B.24)

Here we note that
□g̃(trg̃h̃) = −trg̃(∇̃d(trg̃h̃)) = −δg̃(dtrg̃h̃). (B.25)

Furthermore, we calculate, using the product rule, cyclic invariance of the trace and eq.
(B.2):

D1

(
−g̃(k̃, k̃)

)
(h̃) =D1

(
−tr(g̃−1 ◦ k̃ ◦ g̃−1 ◦ k̃)

)
(h̃)

=2tr(g̃−1 ◦ h̃ ◦ g̃−1 ◦ k̃ ◦ g̃−1 ◦ k̃)
=2g̃(k̃ ◦ g−1 ◦ k̃, h̃) = 2g̃(k̃ ◦ k̃, h̃) (B.26)

(where in the last formula, we used a metric-dependent composition instead of the metric-
independent composition in the formula before).

From Lemma B.1 and by the product rule we obtain

D1

(
(trg̃k̃)

2
)
(h̃) = −2(trg̃k̃)g̃(h̃, k̃) (B.27)

Thus, using equations (B.24), (B.25), (B.26), (B.27), we get

D1Φ1(h̃) = −δg̃(dtrg̃h̃) + δg̃(δg̃h̃)− g̃(ricg̃, h̃) + 2g̃(k̃ ◦ k̃, h̃)− 2(trg̃k̃)g̃(h̃, k̃). (B.28)
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We now compute D2Φ1(m̃). The first term in eq. (4.2) is independent of k̃, hence its
derivative with respect to k̃ is zero. For the derivative of the second term, we obtain by
the product rule and cyclic invariance of the trace:

D2

(
−g̃(k̃, k̃)

)
(m̃) =D2

(
−tr(g̃−1 ◦ k̃ ◦ g̃−1 ◦ k̃)

)
(m̃)

=− 2tr(g̃−1 ◦ k̃ ◦ g̃−1 ◦ m̃) = −2g̃(k̃, m̃).

Also we have, by the product rule and since the trace is linear:

D2

(
(trg̃(k̃))

2
)
(m̃) = 2(trg̃(k̃))(trg̃(m̃)) = 2g̃(k̃, (trg̃m̃)g̃).

Altogether
D2Φ2(m̃) = −2g̃(k̃, m̃) + 2g̃(k̃, (trg̃m̃)g̃),

which, together with (B.28) and DΦ1(h̃, m̃) = D1Φ1(h̃) + D2Φ1(m̃), yields (4.14).
We continue with the proof of eq. (4.15), recalling the momentum constraint equation

(4.3).
Φ2(g̃, k̃) := −δg̃(k̃)− d(trg̃k̃) = 0. (4.3)

Let X ∈ TΣ; without loss of generality X is extended to some vector field on Σ (still
denoted X). It suffices to compute only at one specific point and assume X to be syn-
chronous there. In proposition 4.3 it was found (again decorating everything with tildes
now and writing D1 instead of D) that

D1δ
g̃(h̃)(α) = g̃(h̃, ∇̃α)− g̃(α, δg̃h̃+

1

2
d(trg̃h̃))

for α ∈ Ω1(Σ). In particular, this also holds for α := k̃(·, X) = tr12(k̃ ⊗X).
We now use an orthonormal frame {ei}1≤i≤n to evaluate the divergence of α (where

g̃(ei, ej) = +δij as g̃ is Riemannian, hence we drop the signs ϵi). Using the product rule
and that ∇̃ commutes with contractions, we get29

δg̃α =−
n∑

i=1

tr12(∇̃ei(k̃ ⊗X))(ei)

=−
n∑

i=1

(
(∇̃ei k̃)(ei, X) + k̃(ei, ∇̃eiX)

)
=(δg̃k̃)(X)−

n∑
i=1

k̃(ei, ∇̃eiX).

Rearranging terms, we get

(δg̃k̃)(X) = δg̃α+
n∑

i=1

k̃(ei, ∇̃eiX). (B.29)

Differentiating the first term here with respect to g̃ yields by the above formula and the
definition of α:

D1(δ
g̃α)(X) = g̃(h̃, ∇̃·k̃(·, X))− g̃

(
k̃(·, X), δg̃h̃+

1

2
d(trg̃h̃)

)
. (B.30)

29Here on the left-hand side δ is the divergence of a 1-form, while on the right-hand side it is the divergence
of a (0, 2)-tensor.
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For the second term in eq. (B.29), we note that by eq. (B.4), we have

(D1∇̃(h̃))(ei, X) =
n∑

j=1

1

2

(
∇̃ei h̃(X, ej) + ∇̃X h̃(ei, ej)− ∇̃ej h̃(X, ei)

)
ej .

Thus the second term in (B.29), differentiated with respect to g̃, becomes

D1

(
n∑

i=1

k̃(ei, ∇̃eiX)

)
=

n∑
i,j=1

1

2

(
∇̃ei h̃(X, ej) + ∇̃X h̃(ei, ej)− ∇̃ej h̃(X, ei)

)
k̃(ei, ej)

=

n∑
i,j=1

1

2
∇̃X h̃(ei, ej)k̃(ei, ej) =

1

2
g̃(∇̃X h̃, k̃). (B.31)

30 We use (B.30) and (B.31) in (B.29) to deduce

(D1(δ
g̃k̃)(h̃))(X) = g̃(h̃, ∇̃·k̃(·, X))− g̃

(
k̃(·, X), δg̃h̃+

1

2
d(trg̃h̃)

)
+

1

2
g̃(∇̃X h̃, k̃). (B.32)

Let {ei}1≤i≤n be a local orthonormal frame. Let Y ∈ TΣ. We calculate, using ∇g = 0:

d(trg̃h̃)(Y ) = ∂Y (trg̃h̃) =
n∑

i=1

ϵi∂ei(trg̃h̃)g̃(ei, Y )

=
n∑

i=1

(∇ei((trg̃h̃)g̃))(ei, Y ) = −δg̃((trg̃h̃)g̃)(Y ).

Thus
d(trg̃h̃) = −δg̃((trg̃h̃)g̃). (B.33)

We now want to differentiate the second term in (4.3) with respect to g̃. We note that
d commutes with differentiation with respect to g̃ (as d does not depend on the metric).
Thus we find

D1(d(trg̃k̃))(h̃) = −d(g̃(h̃, k̃)) (B.34)

by Lemma B.1. We apply this to X and assemble this, the definition of Φ2 and equations
(B.33), (B.32) to get

(D1Φ2(h̃))(X) =− g̃(h̃, ∇̃·k̃(·, X)) + g̃

(
k̃(·, X), δg̃h̃− 1

2
δg̃((trg̃h̃)g̃)

)
− 1

2
g̃(∇̃X h̃, k̃) + d(g̃(h̃, k̃))(X). (B.35)

To calculate the derivative with respect to k̃, we note first that due to linearity of δg̃

and since δg̃ does not depend on k̃, we have

(D2(δ
g̃(k̃))(m̃))(X) = (δg̃(m̃))(X).

30Note that also the orthonormal basis vectors depend on g̃. One can rewrite
∑n

i=1 k̃(ei, ∇̃eiX) = tr(g̃−1⊗
k̃(·, ∇̃·X)) and then use eq. (B.2) to deduce that on the right-hand side of the first equality one needs
to add a term of the form −tr(g̃−1 ◦ h̃ ◦ g̃−1 ⊗ k̃(·, ∇̃·X)) = −

∑n
i,j=1 h̃(ei, ej)k̃(ei, ∇̃ejX). However

this vanishes since X is assumed to be synchronous at the considered point.
In the third equality, we used symmetry of k̃, such that upon an index renaming in the negative

summands they cancel with the first positive summands.
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Also
(D2(d(trg̃k̃))(m̃))(X) = (d(trg̃m̃))(X) = −δg̃((trg̃m̃)g̃)(X)

(using (B.33) with m̃ instead of h̃) and we obtain, summing up and applying the signs:

(D2Φ2(m̃))(X) = −(δg̃(m̃))(X) + δg̃((trg̃m̃)g̃)(X). (B.36)

We now use equations (B.35) and (B.36) in DΦ2(h̃, m̃) = D1Φ2(h̃) + D2Φ2(m̃) to deduce
(4.15).

Lemma B.6. Regarding the unit normal vector field ν to the hypersurface Σ ⊂ M as a
function of g, its derivative in the direction of h is given by

Dν(h) = −h(ν, ·)♯ − 1

2
h(ν, ν)ν.

Proof. Let X ∈ TΣ, then we have 1 = g(ν, ν) and 0 = g(ν,X). These equations are readily
differentiated to yield (together with the product rule and symmetry of g)

0 =h(ν, ν) + 2g(Dν(h), ν),

0 =h(ν,X) + g(Dν(h), X).

Let {ei}1≤i≤n be an orthonormal frame on TΣ (which satisfies g(ei, ej) = +δij by the sign
convention for g). Using this and g(ν, ν) = −1, we calculate (expanding Dν(h) in terms
of the basis vector fields {ν, e1, . . . , en} and inserting the above equations, where we insert
the vectors ei in place of X):

Dν(h) =− g(Dν(h), ν)ν +

n∑
i=1

g(Dν(h), ei)ei

=
1

2
h(ν, ν)ν −

n∑
i=1

h(ν, ei)ei

=h(ν, ν)ν −
n∑

i=1

h(ν, ei)ei −
1

2
h(ν, ν)ν

=− h(ν, ·)♯ − 1

2
h(ν, ν)ν.

Proof of Proposition 4.7. Equation (4.18) follows directly from the definition. We prove
equation (4.19).

By the product rule for the Levi-Civita connection and g(ν, Y ) = 0 for all Y ∈ TΣ, we
have k̃(X,Y ) = g(∇Xν, Y ) = −g(ν,∇XY ). We differentiate this in the direction of h and
apply a product rule to obtain

Dk̃(h)(X,Y ) = −h(ν,∇XY )− g(ν,D∇(h)(X,Y ))− g(Dν(h),∇XY ). (B.37)

We decompose TM |Σ ∼= R ⊕ TΣ into vector components perpendicular and tangential to
Σ. Using this decomposition, we can write Z = Z∥ − g(ν, Z)ν for Z ∈ C∞(Σ,TM |Σ),
where Z∥ ∈ C∞(Σ,TΣ).31 Then the third term in eq. (B.37) is equal to

−g(Dν(h), (∇XY )∥ − g(∇XY, ν)ν) =h(ν, (∇XY )∥)− 1

2
h(ν, ν)g(∇XY, ν)

=h(ν, (∇XY )∥) +
1

2
h(ν, ν)k̃(X,Y )

31Note the sign in front of the second term due to the metric.
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by again the product rule for g and (the proof of) Lemma B.6.
For the first term in eq. (B.37) we find

−h(ν,∇XY ) =− h(ν, (∇XY )∥) + h(ν, ν)g(ν,∇XY )

=− h(ν, (∇XY )∥)− h(ν, ν)k̃(X,Y )

(again using the product rule for g). Thus the first and the third term in eq. (B.37)
combine to

−1

2
h(ν, ν)k̃(X,Y ). (B.38)

For the second term in eq. (B.37), we found in Proposition 4.3 that it is equal to
−1

2((∇Xh)(ν, Y )+(∇Y h)(ν, Y )−(∇νh)(X,Y )). Thus, inserting this and (B.38) in (B.37),
we get

Dk̃(h)(X,Y ) = −1

2
h(ν, ν)k̃(X,Y )− 1

2
(∇Xh)(ν, Y )− 1

2
(∇Y h)(X, ν) +

1

2
(∇νh)(X,Y ),

which is eq. (4.19).

Proof of Lemma 5.1. We calculate the formulae for smooth sections of the tensor bundle.
As these lie dense in the Sobolev sections, the lemma then follows also for Sobolev sections.
In the following, we denote by {ei}1≤i≤n a local orthonormal frame on TΣ (defined where
necessary). The signs ϵi are here all equal to +1. Let X,Y ∈ TΣ.

Clearly h̃ is the linearised first fundamental form induced by h. Furthermore we have

(∇Y h)(ν,X) = ∂Y h(ν,X)− h(∇Y ν,X)− h(ν,∇YX) = −h(∇Y ν,X)

(because h(ν, ·) identically vanishes on Σ). On the other hand, we calculate:

(h̃ ◦ k̃)(X,Y ) =g̃(h̃(X, ·), k̃(·, Y ))

=

n∑
i=1

g̃(h̃(X, ei), k̃(ei, Y )) =

n∑
i=1

h̃(X, k̃(Y, ei)ei)

=

n∑
i=1

h̃(X, g(∇Y ν, ei)ei) =

n∑
i=1

h(X, g(∇Y ν, ei)ei) = h(X,∇Y ν),

where it has been used that X is tangential to replace h̃ with h. Thus

(∇Y h)(ν,X) = −(h̃ ◦ k̃)(X,Y ). (B.39)

Analogously we obtain (∇Xh)(ν, Y ) = −(k̃ ◦ h̃)(X,Y ). Therefore,

Dk̃(h) =− 1

2
h(ν, ν)k̃(X,Y )− 1

2
(∇Xh)(ν, Y )− 1

2
(∇Y h)(ν,X) +

1

2
(∇νh)(X,Y )

=0− 1

2
(∇Xh)(ν, Y )− 1

2
(∇Y h)(ν,X) + m̃(X,Y )− 1

2
(h̃ ◦ k̃ + k̃ ◦ h̃)(X,Y )

=m̃(X,Y )

by the properties of h, so m̃ is indeed the linearised second fundamental form induced by
h.

We continue by showing δg(h)|Σ = 0, which we do by showing that δg(h)|Σ(X) = 0 for
all X ∈ TΣ, and then δg(h)|Σ(ν) = 0.
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We note that

h(∇Y Y,X) = h(∇̃Y Y,X) + h(−g(∇Y Y, ν)ν,X) = h̃(∇̃Y Y,X)

and
h(Y,∇YX) = h(Y, ∇̃YX) + h(Y,−g(∇YX)ν) = h̃(Y, ∇̃YX)

(since by assumption, h(ν, ·) is zero on Σ, and for tangential vectors, h equals h̃). Therefore,

(∇Y h)(Y,X) =∂Y (h(Y,X))− h(∇Y Y,X)− h(Y,∇YX)

=∂Y (h̃(Y,X))− h̃(∇̃Y Y,X)− h̃(Y, ∇̃YX) = (∇̃Y h̃)(Y,X).

The same argument shows (∇Y ((trgh)g))(Y,X) = (∇̃Y ((trgh)g̃))(Y,X). Furthermore,
extending {ei}1≤i≤n by ν to a generalized orthonormal frame on TM , and using this to
calculate the metric traces, one recognizes (trgh)|Σ = trg̃h̃, because (h(ν, ν))|Σ = 0. Also

(∇ν((trgh)g))(ν,X) = ((∂ν(trgh))g + (trgh)(∇νg))(ν,X) = 0,

because g(ν,X) = 0 and g is parallel (so both terms vanish).
These preliminaries can then be used to calculate δg(h)|Σ(X): We get

δg(h)|Σ(X) =

(
∇ν(h− 1

2
(trgh)g)

)
(ν,X)−

n∑
i=1

(
∇ei(h− 1

2
(trgh)g)

)
(ei, X)

=(∇νh)(ν,X)−
n∑

i=1

(
∇̃ei(h̃− 1

2
(trg̃h̃)g̃)

)
(ei, X)

=− δg̃
(
h̃− 1

2
(trg̃h̃)g̃

)
(X) + δg̃

(
h̃− 1

2
(trg̃h̃)g̃

)
(X) = 0 (B.40)

by the properties of h. So δg(h)|Σ, applied to any vector tangential to Σ, is indeed zero.
Now we calculate δg(h)|Σ(ν). We obtain

δg(h)|Σ(ν) = (∇ν(h− 1

2
(trgh)g))(ν, ν)−

n∑
i=1

(
∇ei(h− 1

2
(trgh)g)

)
(ν, ei). (B.41)

The terms not involving traces of h add up to

(∇νh)(ν, ν)−
n∑

i=1

(∇eih)(ν, ei) = −2trg̃m̃+

n∑
i=1

1

2
(h̃ ◦ k̃ + k̃ ◦ h̃)(ei, ei), (B.42)

where we recall (∇Y h)(ν,X) = −(h̃ ◦ k̃)(X,Y ) and (∇Xh)(ν, Y ) = −(k̃ ◦ h̃)(X,Y ) for
tangential X and Y .32

For the terms involving the traces, we calculate, noting that g is parallel, hence its

32Cf. eq. (B.39). Using this and the fact that we plugged in two times the same tangential vector, we
obtain the “symmetric” formula above.
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covariant derivative vanishes, and g(ν, ei) = 0 for all 1 ≤ i ≤ n:

− 1

2
(∇ν((trgh)g))(ν, ν) +

1

2

n∑
i=1

(∇ei((trgh)g))(ν, ei)

=
1

2
(∂ν(h(ν, ν)))g(ν, ν)−

1

2

n∑
j=1

(∂ν(h(ej , ej)))g(ν, ν)

+
1

2

n∑
i=1

(∂ei(−h(ν, ν)))g(ν, ei) +
1

2

n∑
i,j=1

ϵi(∂ei(h(ej , ej)))g(ν, ei)

=− 1

2
(∂ν(h(ν, ν))) +

1

2

n∑
j=1

(∂ν(h(ej , ej))).

As the result must be a tensor, we may assume that {ej}1≤j≤n and ν all have vanishing
covariant derivative at p. (We may replace them with vector fields which coincide with
{ej}1≤j≤n and ν at p, but are synchronous there.) Then ∂ν(h(ν, ν)) = (∇νh)(ν, ν) and
∂ν(h(ej , ej)) = (∇νh)(ej , ej).

Thus the terms involving the traces become, by the properties of h,

− 1

2
(−2trg̃m̃) +

1

2

n∑
j=1

(2m̃− (h̃ ◦ k̃ + k̃ ◦ h̃))(ej , ej)

= trg̃m̃+ trg̃m̃− 1

2

n∑
j=1

(h̃ ◦ k̃ + k̃ ◦ h̃)(ej , ej). (B.43)

Inserting equations (B.42), (B.43) into eq. (B.41), we obtain that the terms cancel and
δg(h)|Σ(ν) = 0. Together with eq. (B.40), we deduce from this δg(h)|Σ = 0, and this
finishes the proof of the lemma.

Proof of Lemma 5.5. Let X ∈ D′(N,TN). Let {ei}1≤i≤n be a local orthonormal frame
with respect to ĝ. We may assume ∇̂eiei = 0 throughout the calculation below, as the
result must be a tensor equation. We calculate, using eq. (B.33) with (trĝLV ĝ)ĝ in the first
equation, trĝLV ĝ = 2

∑n
j=1 ϵj ĝ(∇̂ejV, ej) in the second equation, and that ∇̂ commutes
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with ♭ in the last equation:

δĝ
(
LV ĝ −

1

2
trĝ(LV ĝ)ĝ

)
(X)

=−

(
n∑

i=1

ϵi(∇̂eiLV ĝ)(ei, X)

)
+

1

2
d(trĝLV ĝ)(X)

=−

(
n∑

i=1

ϵi(∇̂eiLV ĝ)(ei, X)

)
+ ∂X

 n∑
j=1

ϵj ĝ(∇̂ejV, ej)


=

n∑
i=1

ϵi

(
−∇̂eiLV ĝ(ei, X) + ∂X ĝ(∇̂eiV, ei)

)
=

n∑
i=1

ϵi

(
−ĝ(∇̂2

ei,eiV,X)− ĝ(∇̂2
ei,XV, ei)− ĝ(∇̂eiV, ∇̂eiX)− ĝ(∇̂XV, ∇̂eiei)

+ĝ(∇̂2
X,eiV, ei) + ĝ(∇̂eiV, ∇̂eiX)

)
=

n∑
i=1

ϵi

(
−ĝ(∇̂2

ei,eiV,X)− ĝ(∇̂2
ei,XV, ei) + ĝ(∇̂2

X,eiV, ei)
)

=
n∑

i=1

ϵi

(
−(∇̂ei(∇̂eiV ))♭(X))− ĝ(Rĝ(ei, X)V, ei)

)
=δĝ(∇̂V ♭)(X)− ricĝ(V,X).

This is eq. (5.2).
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