
Vol.:(0123456789)

SN Computer Science           (2024) 5:729  
https://doi.org/10.1007/s42979-024-03045-3

SN Computer Science

REVIEW ARTICLE

On Eye Tracking in Software Engineering

Lisa Grabinger1  · Florian Hauser1  · Christian Wolff2  · Jürgen Mottok1 

Received: 8 December 2023 / Accepted: 8 June 2024 
© The Author(s) 2024

Abstract
Eye tracking is becoming more and more important as a research method within the field of software engineering (SE). 
Existing meta-analyses focus on the design or conduct of SE eye tracking studies rather than the analysis phase. This article 
attempts to fill this gap; it presents a systematic literature review of eye tracking studies in the field of SE—focusing mainly 
on the data analysis methods used. From the IEEE Xplore and ACM digital libraries we gather 125 papers up to the first 
quarter of 2024. Detailed evaluation provides information on the number of papers that use specific methods of analysis (i.e., 
descriptive or inferential statistics, and gaze visualization) or settings (e.g., sample size, technical setup, and selected aspects 
of research design). With the data obtained we can infer the popularity of specific analysis methods in the field. Those results 
enable efficient work on data analysis tools or education of aspiring researchers and can serve as basis for standardization or 
guidelines within the community—providing for methods to include as well as current inconsistencies.
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Introduction

Eye tracking tells us where a person focuses their visual 
attention—by recording an estimation of their point of gaze 
over time [52]. Capturing people’s visual focus helps to 
understand how visual artifacts are perceived (i.e., what pro-
motes or hinders processing) and hence also to uncover or 
mimic certain visual strategies (i.e., what makes an expert). 
As empirical research method, eye tracking is particularly 
useful in highly visual fields—such as software engineering 

(SE), the discipline that deals with the means and practice 
of developing software systems [13, p.17].

Even though the first eye tracking study.1 in SE was pub-
lished more than 30 years ago [35], it was only a decade ago 
that the research area really began to grow [70, 120]; the 
late upswing is mostly blamed on the accessibility of eye 
tracking systems [70, 119]. Today, there is an active and 
growing community that engages in workshops [11], estab-
lishes standards [118, 120], and reflects with meta-analyses 
[70, 91, 119].

Yet, up to now, most overarching efforts in the field are 
directed towards planning or conducting a study. Existing 
systematic literature reviews (SLRs) focus on the design, set-
up, or sample of the study [70, 91, 119].2 The data analysis 
phase is rarely addressed: [118] states that data analysis is 
either hypothesis-driven or data-driven while [120] outlines 
data visualization options and gives best practices for statis-
tical data analysis.

The present article starts at this very point: It takes a 
closer look at which data analysis methods are actually 
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being used in eye tracking studies in SE—information that is 
crucial to work on proper tools, to establish standards, or to 
train young researchers for the analysis phase of eye tracking 
studies. To obtain this information, we perform a SLR—col-
lect publications that analyze SE eye tracking studies and 
report the analysis methods used in them. We also report 
the sample size, technical set-up, and selected aspects of 
the research design. This provides a more comprehensive 
picture of the selected papers as well as comparability with 
the main findings of the two comprehensive meta-analyses 
of the field, [119] and [91].

The article is structured as follows. First, we elabo-
rate on the research method itself—from research goals 
to collection and evaluation procedures. In “Results” we 
present the evaluation results and compare them, where 
reasonable, with [119] and [91]. The paper is rounded off 
by “Discussion”, where we answer our research questions 
discuss the validity of findings as well as implications for 
future work.

Methods

For this article, we perform a SLR based on the guidelines 
given in [67]. The detailed methodology is described on the 
following pages: After starting with the research questions 
(“Research Questions”), we explain the process followed for 
selecting (“Selection Procedure”) and evaluating (“Evalua-
tion Procedure”) papers.

Research Questions

As explained earlier, our research is mainly driven by the 
question of what methods are used for data analysis in SE 
eye tracking studies. In view of the different types of analysis 
methods we expect (i.e., statistics as well as eye tracking 
specific analyses), we formulate our main research questions 
(RQs) as follows: 

 (RQ1)  What descriptive statistics methods are used for 
data analysis in SE eye tracking studies?

 (RQ2)  What inferential statistics methods are used for data 
analysis in SE eye tracking studies?

 (RQ3)  What gaze visualization methods are used for data 
analysis in SE eye tracking studies?

Beyond that, we are also interested in the setting of SE eye 
tracking studies. Thereby, we focus on sample size, tech-
nical set-up (i.e., eye tracking device and sampling rate), 
and selected aspects of research design (i.e., materials, 
grouping variables, and measured variables). This leads 
to the following additional research questions: 

 (RQ4)  What are the samples sizes in SE eye tracking stud-
ies?

 (RQ5)  What eye trackers are used in SE eye tracking stud-
ies?

 (RQ6)  What are the sampling rates in SE eye tracking 
studies?

 (RQ7)  What SE-related artifacts are used in SE eye track-
ing studies?

 (RQ8)  What kinds of data grouping are used in SE eye 
tracking studies?

 (RQ9)  What data is collected for analysis in SE eye track-
ing studies?

To shed light on the development of SE eye tracking 
studies, we do not only present our findings but compare 
them—as far as possible—with the two comprehensive 
meta-analyses [119] and [91], both of which date back 
more than five years.

Selection Procedure

The process of selecting papers within this SLR fol-
lows [119] and [91]; the steps are outlined in Fig. 1 and 
explained in detail in the following subsections.

Data Bases

Sharafi et al. [119] uses the Engineering Village database, 
but emphasizes that it also searches the IEEE Xplore and 
ACM digital libraries. Obaidellah et al. [91] uses IEEE 
Xplore, ACM, and Scopus but points out that Scopus gave a 
lot of duplicates. Starting from that, we focus on the freely 
available IEEE Xplore and ACM digital libraries.

Search String

We use a search string based on the ones used in [119] and 
[91], but with some modifications. We adopt the basic idea of 
both sources to combine individual search strings for meth-
ods (i.e., eye tracking) and materials (e.g., artifacts of SE). 
We refrain from including a third partial search term target-
ing typical software engineering activities (e.g., debugging), 
as is the case in [119] and partially in [91]. Following [119] 
and [91], the partial search string on eye tracking should 
include the terms for method and device each in the two com-
mon spelling variants with and without hyphens (i.e., “eye 
tracking”, “eye-tracking”, “eye tracker”, and “eye-tracker”).3 
Unlike in [119], we do not include the term “RFV” (short for 
restricted focus viewer); also, departing from both previous 
3 This disagreement goes so far that even two works with identical 
titles can be found—except for the hyphen in the term “eye(-)track-
ing” [46, 118].
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SLRs, we add the more general terms “eye movement” or 
“eye movements”. For the partial search term on SE-related 
artifacts, we take the overlap of the two previous SLRs: 
“code” (from “source code” in [119] and “code” or “pseudo 
code” in [91]), “program*”, and “uml”; deviating from the 
two works, we add the terms “software” and “requirement”.

Individual databases treat the same search string differ-
ently. [119] sticks to one database, while [91] has slightly 
different search terms for different databases—thereby 
threatening the internal validity of the SLR [119]. To avoid 
this, we define a common search term that is suitable for 
both selected databases, given below:

(eye-tracking OR eyetracking OR eye-tracker OR eyetracker

OR eye movement OR eye movements) AND (code OR program*

OR uml OR software OR requirement*)

Search Queries

For the actual queries, we still need to slightly adjust the 
common search string. In accordance with [119] we search 
in titles, abstracts, and keywords, all at the same time; in 
contrast, [91] searches only in keywords and abstracts, one 
after the other. These different fields are addressed differ-
ently in the two databases—as shown in Fig. 2.

Inclusion and Exclusion Criteria

Entering the queries from Fig. 2 into the corresponding 
search engines, we obtain 719 results from IEEE Xplore 
and 485 results from ACM up to the end of the first quarter 
of 2024. From these more than a thousand search results, 
we gather work that: 

publication  ... is found within a journal or conference pro-
ceedings published either by ACM or IEEE 
Press.

contents  ... presents the (statistical) analysis of data 
collected as part of an empirical survey using 
eye tracking as a research method. Here, 
we include work that analyzes a previously 
published study, but with a new method of 
analysis.

aim  ... is of direct interest to SE educators or prac-
titioners, i.e., provides insights for software 
engineering artifacts, processes, or teaching.

To ensure that only relevant papers are selected accord-
ing to the above inclusion criteria, we review the full paper 
against predefined exclusion criteria. To be precise, we do 
not consider work that: 

publication  ... is written in a language other than English 
or less than two pages. We also do not con-
sider so-called grey literature—a criterion that 
is unused because we base our search exclu-
sively on the IEEE Xplore and ACM digital 
libraries, which do not provide such type of 
work.

contents  ... uses some type of head-mounted or inte-
grated eye tracker for data collection. Instead, 
we limit our analysis to studies conducted 
with monitor-based eye trackers in a labora-
tory setting.

Fig. 1  Paper selection process
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aim  ... evaluates the overall user experience of 
interfaces, the web, or visual elements—even 
if the particular system or element is relevant 
to SE. In addition, we exclude work that 
addresses the development of a comprehen-
sive approach to analyzing eye tracking data, 
such as ML models or tools.

Applying these criteria drastically reduces the number 
of hits, leaving 61 papers from IEEE and 78 papers from 
ACM. Among these are 14 duplicates, i.e., papers that 
are listed in both digital libraries. Finally, after manual 
duplicate removal, 125 papers remain [1–10, 12, 14–40, 
42–45, 47–51, 53–66, 68, 69, 71–90, 92–117, 121–128, 
130–137].

Snowballing

For the same reason that we agreed to limit our systematic 
search to two databases, namely IEEE Xplore and ACM 
digital library, we refrain from any kind of snowballing: The 

goal of this study is not to provide a comprehensive list of all 
publications in the designated field, but rather to understand 
what analysis methods or settings are common in that field; 
therefore, it is sufficient to consider the papers published by 
the two main publishing houses of that area.

Evaluation Procedure

We follow a two-step process to analyze the 125 collected 
papers. First, we extract the data for each paper in a struc-
tured manner, and then we combine the extracted data across 
all papers to answer our research questions. A detailed 
explanation is given in the below subsections.

Data Extraction Form

For extracting the relevant information of selected papers, 
we again follow [119] and define a data extraction form 
specifically tailored to our needs. The form is listed in the 
Table 1, along with the possible data values and the mapping 
to the research questions. We specify the data type, or, where 

Fig. 2  Actual search queries



SN Computer Science           (2024) 5:729  Page 5 of 20   729 

SN Computer Science

appropriate, the categories from which to choose, where an 
empty string (i.e., “”) means that the specific criterion is not 
applicable to or given in that paper. If more than one answer 
applies to a work, the individual answers are listed jointly, 
separated by semicolons. If data is not assigned to a specific 
research question, a hyphen is given instead.

Extracted Data

Regardless of the research questions, we extract informa-
tion about the publication as such—the number of pages 
in the published PDF, the year of publication, whether it 
was published in conference proceedings or a journal, either 
ACM or IEEE, as well as the abbreviation of the respective 
conference or journal. We also indicate whether the authors 
provide access to the study data—not at all, with a now dead 
link, as raw data, or in structured form.

Based on research questions RQ1 through RQ3, for each 
paper we list the methods used in that paper. For reasons 
of clarity, we use more than one list per research ques-
tion and paper. We differentiate between visualizations 
(e.g., box plots) and measures (e.g., standard deviation) for 
descriptive statistics; meanwhile, we split inferential sta-
tistics into hypothesis tests for group differences, correla-
tion analyses, and regression analyses. Gaze visualizations 
are distinguished in visualizations displayed directly on the 
stimulus4 (e.g., heat maps) and visualizations of transitions 
between areas of interest (AOIs).5 For all statistical methods, 
we interpret data collected on a Likert scale as metric; for 
hypothesis tests for group differences and correlation analy-
ses, we do not extract the exact method but the test setting 
(e.g., “one metric dependent variable between multiple inde-
pendent groups” or “two metric variables”, respectively).

For research question RQ4 through RQ6 we gather data 
on the experimental set-up itself—the number of partici-
pants as well as the sampling rate and manufacturer of the 
eye tracking device. For the former, we specify the number 
of individuals whose eye movement data are analyzed; for 
pair programming tasks, each member of the pair is counted 
individually. For the latter, we limit the question about eye 
trackers to manufacturers rather than models, because mod-
els change rapidly over the years as [91] points out.

Research Question RQ7 is addressed by data on the 
SE-related artifacts used for the stimuli. To each paper, 
we assign one of four categories: computer science (e.g., 

logic gates [51]), requirements engineering (e.g., social goal 
models [112]), software development (e.g., UML diagrams 
[137]), or source code. For the latter, we also record the 
chosen source code language(s).

For research question RQ8, we track criteria used to group 
data (e.g., when conducting a hypothesis test for group differ-
ences). In doing so, we deviate from the procedure in [119] 
and [91] in a few ways: First, we track not only what is some-
what explicitly stated as an independent variable, but what is 
actually used for a sample split. Second, we track whether the 
sample split is pairwise (e.g., same participants with and with-
out intervention [16]) or not (e.g., two groups of participants 
in [35]). Third, rather than tracking the specific characteristic, 
we assign them to categories, such as experience (e.g., novice 
versus expert in [35]), personal data (e.g., gender in [116]), 
or setting (e.g., graphic versus textual representations [117]).

Based on research question RQ9, we extract the meas-
ured quantities that are investigated by means of statistics 
or AOI-based visualizations, not distinguishing between 
mitigating or dependent variables due to different report-
ing styles across papers. When talking about eye tracking 
study measurements, it is important to keep in mind that 
the handling of eye movement metrics is far from consistent 
[118]. Yet we need definitions and names to assign them. 
Thereby, we again deviate from [119] and [91]. We use the 
naming convention provided by the eye tracking device man-
ufacturer Tobii [129] rather than the one proposed in [118, 
119], for two reasons: First, most readers should be familiar 
with the Tobii naming convention anyway, since Tobii is 
the most commonly used eye movement manufacturer (see 
“Results”); second, the naming convention from [119] resp. 
[118] does not cover the aspect of visits that we consider 
important. Also, for clarity, we report only the baseline vari-
able (e.g., the number of fixations) and not a specific metric 
derived from it (e.g., the fixation rate on relevant items in 
[113]). However, we do not limit ourselves to eye tracking 
data but also include analysis of non-eye tracking data col-
lected as part of the study, with two limitations. First, when 
multiple studies are reported in an article, we focus only on 
the eye tracking study (e.g., in [8]). Second, we omit meas-
urements that are used only to describe the sample (e.g., age 
in [121]). We also do not capture stimuli characteristics that 
are used to compute complex metrics (e.g., the number of 
words to obtain the number of fixations per word in [53]). 
However, just as with the data for RQ8, we report what is 
actually used rather than what is said to be used.

In addition, for each paper we list together the measures, 
visualizations, hypothesis tests, and procedures used that 
do not fall into one of the above categories. However, we 
deliberately omit three aspects: First, the pre-processing of 
eye movement data (i.e., the steps from time series data to 
fixations and saccades with time stamps), second, the deter-
mination of extreme values or range as well as calculations 

4 In eye tracking research, a stimulus is the visual material provided 
to a participant [119].
5 In eye tracking research, it is common to analyze not only the stim-
ulus as a whole, but also specific regions of the stimulus, referred 
to as AOIs. AOIs can be included in two ways: Either to restrict the 
computation of a metric to that region (e.g., number of fixations to a 
specific region rather than the entire stimulus) or to analyze gaze in a 
discrete manner. In the latter case, the changes between two AOIs are 
usually referred to as a switch [16] or transition [119].
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of basic arithmetic (e.g., percentages), and third, whether or 
not a paper includes interview responses by simple citation.

During data extraction, we noted differences in the visual 
representations of bar plots, line plots, scatter plots, and heat 
maps that might be of interest for tool development or train-
ing. Therefore, we systematically collected data for bar plots 
on group treatment (i.e., singular, grouped, or stacked) and 
other features (e.g., error bars), for line or scatter plots on 
x-axis scaling (i.e., whether it is qualitative or quantitative) 
and other features (e.g., error bars, groups, or trend lines), 
and for heat maps on the color scheme (e.g., green to red), 
the basis of calculation (e.g., frequency or duration), or the 
treatment of individual subjects (e.g., aggregated or singular).

Analysis Criterion

As we aim to understand how common certain analysis methods 
or settings are, we choose the number or percentage of papers 
using that method or setting as our main evaluation criterion. 
To account for the fact that we included all papers ranging from 
two-pagers to extensive articles of more than 30 pages, we 
divide the papers into three groups based on their page count:

• short papers with up to four pages,
• regular papers with five to nine pages, and
• long papers with at least ten pages.

Table 1  Data extraction form

Aspect Extracted data Possible data values RQ

Publishing details Number of pages integer –
Year of publication [1990; 2023] –
Format {“conference proceedings”; “journal article”} –
Publisher {“ACM”; “IEEE”} –
Abbreviated source string –
Data set {“”; “dead link”; “raw”; “structured”} –

Descriptive statistics Measures string RQ1
Visualizations string RQ1
Bar plot (group handling) {“”; “grouped”; “singular”; “stacked”} –
Bar plot (extras) {“”; “with error bars”; “without error bars”} –
Line plot (x-axis) {“”; “qualitative”; “quantitative”} –
Line plot (extras) {“”; “with error bars”; “with groups”; “without error bars”; “without groups”} –
Scatter plot (x-axis) {“”; “qualitative”; “quantitative”} –
Scatter plot (extras) {“”; “with groups”; “with trend line”; “without groups”; “without trend line”} –

Inferential statistics Group differences string RQ2
Correlation analysis string RQ2
Regression analysis string RQ2

Gaze visualizations On-stimulus string RQ3
AOI transitions string RQ3
Heat map (color scheme) string –
Heat map (computation) {“”; “duration”; “frequency”} –
Heat map (subjects) {“”; “aggregated”; “singular”} –

Experimental set-up Number of participants integer RQ4
Eye tracking device string RQ5
Sampling rate integer RQ6

Research design Artifact {“computer science”; “requirements engineering”; “software development”; 
“source code”}

RQ7

Source code language string RQ7
Data grouping (unpaired) string RQ8
Data grouping (paired) string RQ8
Measured quantities string RQ9

Others Other measures string –
Other visualizations string –
Other hypothesis tests string –
Other procedures string –
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Accordingly, we provide four frequencies for each research 
item: overall as well as separated into short, regular, and 
long papers. For example, the total number of papers col-
lected is 125 (14 short, 58 regular, 53 long). Figure 3 shows 
the distribution of papers over the number of pages, together 
with the division into the three groups and their respective 
coloring for the remainder of the paper.

Results

The following pages present the information collected 
through the SLR—ordered by the grouping aspects from 
Table 1. Here, the results are presented without direct refer-
ence to the research questions—the answer to which can be 
found in “Discussion”.

Publishing Details

The data collected for this aspect are not intended to answer 
research questions, but to give a better idea of the sample. 
The first criterion, the number of pages is already shown in 
advance in Fig. 3; it serves for grouping within the sample 
and is not further discussed.

The year of publication is broken down in Fig.  4; 
thereby, the data for 2024 may be misleading as we were 
captured the first quarter. Sharafi et al. [119] and Obaidel-
lah et al. [91] report a positive trend in the number of 
publications over the years—a statement we can at least 

partially support. Sharafi et al. [119] collected a total of 36 
papers by 2015, with a maximum of seven papers per year 
in 2012; Obaidellah et al. [91] included three more years 
and collected significantly more papers (i.e., 63), with a 
maximum of eight papers per year in 2015. Five years 
later, even with an incomplete search, we found a total of 
125 papers—with the strongest years being 2019 and 2020, 
each with 15 papers per year. Sharafi et al. [119] indicates 
that only 14% of papers were published up to 2006—in 
our sample, this number drops to about 4%. According to 
Obeidellah et al. [91], 62% of articles are published in or 
after 2012—in our data it is 91%. Nevertheless, we cannot 
confirm a steady increase, as the number of publications 
per year declined after 2021 and 2022. In large part, this 
is probably not due to a waning interest in the field, but to 
the more difficult conditions for laboratory studies due to 
the emergence of the COVID-19 pandemic.

Format and publisher are jointly presented in Table 2. 
Overall, the ratio of ACM to IEEE is nearly even with 
54–46%—for journal articles alone, the reverse is true with 
more than twice as many IEEE results. Note that overall, 
journal articles account for only about 10% of all articles, 
even less than [119] and [91] report (i.e., 22% or 25%, 
respectively).

We also recorded the abbreviation of the respective pub-
lishing conference or journal. The results can be found in 
Fig. 5. Sources that are unique are grouped as “other confer-
ences” or “other journals”. As in [119], ETRA turns out to 
be the most important conference, followed by ICPC—in 

Fig. 3  Number of papers by 
pages (red: short, yellow: regu-
lar, blue: long)

Fig. 4  Number of papers by 
year of publication (red: short, 
yellow: regular, blue: long)



 SN Computer Science           (2024) 5:729   729  Page 8 of 20

SN Computer Science

[91], these two conferences are also listed among the top 
three. Note that recurring workshops lead to bias. Take the 
EMIP workshop as an example: Throughout the years, it 
published its papers both independently (e.g., in 2022 [20, 
69]) or as part of the proceedings of the conference with 
which it was co-located (e.g., in 2023 [6, 48, 126]).

Regarding data availability, we observe that not even a 
quarter of papers provide links to data repositories. How-
ever, of these, some links are unavailable (i.e., 11 (0 short, 1 
regular, 10 long) paper); accordingly, the database is actually 
available in only 14% of the papers. In most cases, raw data 
is offered (i.e., 11 (0 short, 1 regular, 10 long) paper); only 
six (0 short, 2 regular, 4 long) papers provide structured data.

Descriptive Statistics

94% of papers (i.e., 117 (13 short, 53 regular, 51 long) 
paper) use descriptive statistics methods; measures are 

even more popular than visualizations with 110 (12 short, 
48 regular, 50 long) versus 87 (10 short, 38 regular, 39 long) 
papers applying them. The uses of the former are detailed in 
Fig. 6, those of the latter in Fig. 7. For both figures, we group 
the elements that appear only in one work back into the “oth-
ers” category—leaving only one element in this grouping in 
Fig. 7, namely error plots. We observe a strong prevalence 
of the measure mean—used in about 86% of the papers—
followed by standard deviation in more than every second 
paper and median in about every fifth. The most commonly 
used visualization is the bar plot (i.e., in more than one-third 
of the papers) followed by box plots (i.e., in a quarter of 
papers), line plots (i.e., in more than a fifth of papers), and 
scatter plots (i.e., in every tenth paper).

Among the different papers, there are variations in the 
way descriptive statistics visualizations are used, e.g., one 
paper [109] uses a secondary axis on its pie chart that shows 
data in a layered fashion. In what follows, we address such 
variations in the commonly occurring visualization methods, 
i.e., bar plots, box plots, line plots, and scatter plots.

In their simplest form, bar plots are used to represent the 
value of a variable across different groups; however, the visu-
alization form can also handle the grouping of data, resulting 
in so-called grouped or stacked bar plots. Figure 8 shows the 
number of papers that use certain types of bar plots. Note 
that the number of single, stacked, and grouped bar plots as 
shown in the figure does not add up to the total number of 
papers using bar plots. This is because four papers use multi-
ple bar plots with different grouping [5, 96, 115, 131] while 

Table 2  Number of papers by format and publisher (“# all (# short, # 
regular, # long)” papers)

Format Publisher Total

ACM IEEE

Conference 64 (8, 38, 18) 48 (6, 19, 23) 112 (14, 57, 41)
Journal 4 (0, 0, 4) 9 (0, 1, 8) 13 (0, 1, 12)
Total 68 (8, 38, 22) 57 (6, 20, 31) 125 (14, 58, 53)

Fig. 5  Number of papers by 
abbreviated source (red: short, 
yellow: regular, blue: long)
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one paper uses a simultaneously grouped and stacked version 
[134]. Above that, the figure does not take into account the 
fact that one work [24] uses a two-sided version of a bar chart. 
However, we note that grouped bar plots are used in more than 
half of the cases, followed by singular ones in about a third. 
Error bars are added in almost one in six cases; obviously only 
for singular (i.e., 4 (1 short, 2 regular, 1 long)) or grouped 
versions (i.e., 4 (0 short, 3 regular, 1 long)).

For box plots, there is little variety in the presentation. The 
only noticeable aspect is that almost all papers use this visualiza-
tion method to compare different distributions (e.g., one variable 
within different groups); only three papers [61, 106, 107] show 
a single box plot, with the former two [106, 107] also using 
multiple box plots within one plot elsewhere in the paper.

Against that, for line plots, we paid attention to three 
aspects: the x-axis scaling as well as the presence of group-
ing or error bars. These variations are summarized in Fig. 9, 
not accounting for the fact that in one paper [20] the line plot 
is radial. The figure shows that twice as many papers build 
their bar plots on qualitative than on quantitative x-axes. 
Grouping is used in more than three-quarters of cases, six 
times with quantitative x-axis, 15 times with qualitative 

x-axis; note that [12, 80, 85] present different versions of 
line graphs, with and without grouping, all three with quali-
tative x-axis scaling. Error bars are added in only two papers 
[12, 87], both times together with grouping and once with 
qualitative, once with quantitative x-axis scaling.

For scatter plots, we used a similar procedure and 
extracted the scale of the x-axis and the presence of group-
ings and trend lines. Again, the data are summarized in a fig-
ure (i.e., Fig. 10). Regarding the x-axis scaling, we observe 
an opposite trend as for line plots: All but one paper [35] 
placed their scatter plots on a qualitative x-axis. Except for 
this one paper, all added either groups or a trend line—or 
even both [14, 69]. Again, the figure omits one aspect: two 
papers [69, 98] use two different versions of scatter plots: 
with and without groups in [69] as well as with and without 
a trend line in [98].

Inferential Statistics

About three-quarters of the papers (i.e., 90 (11 short, 33 reg-
ular, 46 long) papers) apply inferential statistical procedures; 

Fig. 6  Number of papers by 
descriptive statistical measures 
(red: short, yellow: regular, 
blue: long)

Fig. 7  Number of papers by 
descriptive statistical visu-
alizations (red: short, yellow: 
regular, blue: long)
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almost all of them, 86 (10 short, 32 regular, 44 long) papers, 
use hypothesis tests for group differences. About one in 
five papers reports correlation analysis (i.e., 23 (4 short, 
9 regular, 10 long)), while only 11 (2 short, 3 regular, 6 
long) paper deal with regression analysis. The latter is fairly 
mixed; against that, correlation is always computed between 
two metric variables, except for [3], where a metric and an 
ordinal variable are correlated.

The individual hypothesis tests for group differences are 
further broken down in Fig. 11—omitting tests with covariates 
or multiple dependent variables, as these can only be found in 
one paper [66]. We see that most hypothesis tests are based 
on an independent variable and a metric dependent variable. 
In addition to the data in the figure, note that there is a slight 

tendency toward paired group settings, as tests for dependent 
groups are found in 83 (9 short, 32 regular, 42 long) papers, 
while tests for independent groups are found in only 59 (7 
short, 22 regular, 30 long) papers. In addition, almost twice 
as many papers use a two-group setting rather than looking 
for differences between multiple groups (i.e., 74 (8 short, 30 
regular, 36 long) vs. 39 (4 short, 17 regular, 18 long) papers).

Gaze Visualizations

One in four papers (i.e., 29 (3 short, 11 regular, 15 long)) 
visualizes transitions between AOIs; one in three papers 
(i.e., 44 (1 short, 21 regular, 22 long)) visualizes gaze 
superimposed on the stimulus. Again, we give graphical 

Fig. 8  Number of papers by 
version of bar plot

Fig. 9  Number of papers by 
version of line plot

Fig. 10  Number of papers by 
version of scatter plot
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representations when analyzing the variations in visualiza-
tion (see Fig. 12 and 13). This helps to avoid misunderstand-
ings due to inconsistent naming, e.g., what is called heat 
map in this article is called fixation map in [44] or attention 
map in [62]; the term scan path may refer to text string [20], 
to a visualization of coordinates over time [98], as well as to 
what we call saccade plot [40], gaze plot [7], line-plot-like 
visualization [21], or scarf-plot-like visualization [60].

Figure 12 details the three ways of visualizing transitions 
between AOIs that occur at least twice in the sample, resem-
bling a line plot, a scarf plot, or a state diagram—omitting 
the representation as a matrix [7, 102]. In the line-plot-like 
representation, the axes are sometimes changed to show not 
the AOIs over time, but the fixation number on the x-axis 
[133] or the source code line number on the y-axis [21, 65, 
75, 76, 124, 127, 128, 133]. There is one notable exception 
to the scarf-plot-like visualizations: [114] considers only 
the sequence of AOIs, regardless of the duration they are 
viewed. The state-diagram-like version is often referred to 
as (radial) transition graph [20, 25, 103, 121]. In it, the 

arrows are augmented with some sort of metric based on 
the frequency of the transitions; this is represented by the 
written number [84] or the thickness of the arrows [20, 25, 
103, 121] or both [73, 110]. The order of the nodes is either 
somewhat arbitrary [73, 84, 110] or radially clockwise [20, 
25, 103, 121]. In [121], the size of the nodal area is given 
by the average duration of fixations in the particular area of 
interest.

Figure 13 lists the on-stimulus visualizations that are used 
by at least two different research teams for data analysis 
purposes (i.e., not for procedural explanations such as AOI 
placements as in [92]). We distinguish heat maps (i.e., con-
tinuous or discretized representations of fixation intensity 
[119]), gaze paths (i.e., representations of the sequence of 
raw data), gaze plots (i.e., representations of the sequence of 
fixations and saccades as circles and lines, where the dura-
tion of fixations is reflected as the radius [119]), as well as 
fixation or saccade plots as respective subsets of the latter. 
Here we still have to report some variations within the pre-
sented options. Some works restrict the fixations, to at least 

Fig. 11  Number of papers by 
version of hypothesis test for 
group differences (IV: inde-
pendent variable, DV: depend-
ent variable)

Fig. 12  Number of papers by 
version of visualization of AOI 
transitions

Fig. 13  Number of papers by 
version of visualization on 
stimulus
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300 ms for a gaze plot [105] or 250 ms for a fixation plot 
[125]. [84] includes the numbering of fixations in a saccade 
plot; [7] presents gaze plots enhanced with the number and 
duration of the respective fixations.

For a (continuous) heat map, most papers use either a 
color scheme from green to red (i.e., 14 (1 short, 5 regular, 
8 long) paper) as shown in the figure or from purple to red 
(i.e., 11 (0 short, 3 regular, 8 long) paper); only two papers 
use other color schemes [40, 136]. The intensity of fixations 
is equally often computed by the frequency or duration of 
fixations (i.e., 9 (0 short, 3 regular, 6 long) paper); in the 
remaining 9 papers, the basis of computation is not speci-
fied. While gaze plot, gaze path, fixation plot, and saccade 
plot may only contain gaze data from one person, about half 
of the heat maps displays data aggregated from multiple 
participants (i.e., 13 (0 short, 1 regular, 12 long) papers), 
with one paper being unclear [27]. For a discrete heat map, 
Crosby and Stelovsky [35] uses numbers instead of colors, 
while Busjahn et al. [27] changes the font color of indi-
vidual words rather than the color of regions; when color 
is used, they adhere to the scheme green to red [2, 27, 69]. 
The discretization is based on words [27, 69], elements [35], 
or lines [2]; the calculation is again equally often based on 
frequency [12, 69] as duration [2, 27], but mostly on one 
person’s data—apart from an undefined case [27].

Overall, we agree with the results of [119] and [91] that 
the most commonly used gaze visualizations are heat maps, 
followed by gaze plots.

Experimental Set‑Up

We observe samples sizes between 1 [33] and 207 par-
ticipants [10]—a range even more extreme than the ones 
pointed out by [119] and [91] (i.e., [5; 169] and [2; 82], 
respectively). [119] reports a total of 1022 participants; with 
about three times as many contributions, we get about three 
times as many participants (i.e., 3730)—however, our cor-
responding mean is about half that of [119] (i.e., 29 (22 
short, 26 regular, 34 long) instead of 57). Obeidellah et al. 
[91] argues for analyzing the frequency of each sample size 
rather than descriptives—this is shown in Fig. 14. It can 
be seen from the figure that sample sizes of more than 40 
participants occur only occasionally. Note that three papers 
each report multiple experiments with different samples [34, 
66, 85, 86]; accordingly, the number of papers in the figure 
adds up to 130 instead of 125.

Regarding the eye tracking devices, we report similar 
results to [119] and [91]: An eye tracker from Tobii is used 
in 58% of the papers within our sample, 47% in [119], and 
55% [91]. A detailed listing can be taken from Fig. 15; here, 
again, we group one-time results into “others”.

Sharafi et al. [119] reports sampling rates between 30 and 
500 Hz; we again get a wider range, up to 1000 Hz, detailed 

in Fig. 16—again with the “others” grouping and a total 
other than 125 due to two papers with multiple sampling 
rates [26, 30]. It can be seen that, in accordance with [119], 
the majority of studies samples at 60 Hz.

Research Design

As shown in Fig. 17, more than three quarters of the papers 
rely on source code—even more than in [119] with 64%, 
but less than in [91] with 79%. Of these papers, 58% use 
Java, followed by C-family languages (i.e., C, C#, C++, and 
ANSI C sum to 34%), see Fig. 18. The dominance of Java 
has decreased compared to [119], which reports 70% of all 
source-code-related papers, and increased compared to [91] 
with 48%.

Obeidellah et al. [91] reports that nearly half of the papers 
use sample splitting when analyzing the data (i.e., 48%), 
with experience being the most common grouping factor 
(i.e., in 43% of papers that use a sample split). When evalu-
ating sample splits we go a step further—taking into account 
the pairing of the resulting groups. The results are summa-
rized in Fig. 19. For the sake of clarity we do not list the 
exact grouping factors, but assign them to categories, such 
as personal data instead of dyslexia [81–83] or gender [66, 
69, 90, 116]. Note that experience is almost always meas-
ured by background (e.g., years of use, occupation, or course 
enrollment), while some papers draw on test scores [3, 132] 
or self-assessment [25]; performance is most often measured 
via task results, with individual papers additionally weight-
ing with completion time [92, 98]. The figure shows that 
for unpaired samples, the most common grouping factor is 
experience, followed by performance, setting, and subjects. 
A split into paired samples is mainly based on screen areas, 
settings, or tasks.

Beyond that, we are of course also interested in which 
quantities are measured or evaluated, respectively. Sharafiet 
al. [119] concludes that “the majority of eye-tracking studies 
use[s] metrics that are calculated using either the numbers 
or durations of fixations”; in contrast, saccade- or region-
based metrics are rather uncommon (i.e., found in only 14% 
of papers) [119]. Obeidellah et al. [91] also works out that 
fixation-based metrics are most commonly used, followed by 
region-based and non-eye-tracking-based measures, namely 
processing time or some kind of task score. For our sample, 
Fig. 20 summarizes the categories of quantitatively meas-
ured quantities that are found in the papers. In total, quan-
titative eye tracking data is used in all but two papers [44, 
62]. Nearly three-quarters of the papers use data that is not 
from eye tracking (i.e., 92 (10 short, 38 regular, 44 long));6 

6 Since processing time can be measured by the eye tracker in 
most cases, another number of interest is 83 (9 short, 32 regular, 42 
long)—the number of papers that include data in their analysis that 
cannot be measured by the eye tracker.
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Fig. 14  Number of papers by 
number of participants (red: 
short, yellow: regular, blue: 
long)

Fig. 15  Number of papers by 
eye tracker manufacturer (red: 
short, yellow: regular, blue: 
long)

Fig. 16  Number of papers by 
sampling frequency (red: short, 
yellow: regular, blue: long)

Fig. 17  Number of papers by 
SE-related artifact (red: short, 
yellow: regular, blue: long)
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thereby, task scores and processing times are both evaluated 
in about half of the papers. Above that, conscious decisions 
(i.e., in the form of ratings) are found in about a quarter of 
the papers (i.e., 33 (2 short, 11 regular, 20 long)).

The eye tracking metrics used are detailed in Fig. 21—
grouped similarly to [118], with the more generic term 
region-based instead of scan-path-based. One metric is 
missing from the figure: the average pupil diameter—
used in five papers [3, 4, 10, 23, 56]. However, the fig-
ure confirms the dominance of fixation-based metrics in 
agreement with [119] and [91].

Others

In this section, we collect the methods used in at 
least two papers that do not fall into one of the above 

categories—starting with hypothesis tests that do not 
investigate group differences. About one in five papers 
reports the use of normality tests; four papers mention 
variance equality tests; two papers each refer to spheric-
ity tests or Chi-squared test of independence. Regard-
ing visualizations, in five papers we observe a repre-
sentation similar to the line plot-like visualization of 
AOI transitions, but with a quantitatively scaled y-axis 
(i.e., coordinates) called gaze transition diagram [84, 
110, 111]. Two papers use bar-plot-like elements within 
tables. Apart from these, there are two noticeable meas-
ures: inter-rater reliability in five and Kullback–Leibler 
divergence in two papers. We also need to report the 
use of three classification models, two cluster analyses, 
and five transformations (including three log transforma-
tions). Sequential analyses are performed in nine papers, 

Fig. 18  Number of papers by 
source code languages (red: 
short, yellow: regular, blue: 
long)

Fig. 19  Number of papers by 
grouping factor (red: short, yel-
low: regular, blue: long)
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including four times based on the Needleman-Wunsch 
algorithm and three times using the sequential pattern 
mining algorithm.

Discussion

This article aims to provide an overview of the analysis 
methods or settings commonly used in SE eye tracking stud-
ies. In this section, the most important findings are summa-
rized together with the respective limitations.

Research Answers

In the following, we summarize the results presented in 
“Results” with respect to the research questions posed at 
the beginning of this paper (i.e., “Research Questions”). We 
underline our statements with the respective percentage of 
all papers—limiting ourselves to what is used in at least 10% 
of the papers. 

 (RQ1)  Regarding descriptive statistics, we mainly observe 
the measures mean (86%), standard deviation 
(53%), and median (18%) as well as the visuali-
zations bar plot (34%), box plot (25%), line plot 
(22%), and scatter plot (10%).

 (RQ2)  As for inferential statistics, hypothesis tests for 
group differences predominate (69%)—mainly for 
a metric dependent variable with one independent 
variable (66%) or for any dependent variable with 
multiple independent variables (12%). In addition, 
we see correlation analyses (18%)—almost all 
between two metric scaled variables.

 (RQ3)  Gaze visualizations focus mainly on AOI transi-
tions (23%) or are presented in superimposed to 
the stimulus (35%); for the latter, heat maps are 
predominantly used (27%).

 (RQ4)  Sample sizes are often relatively small—83% with 
up to 40 and 46% with up to 20 participants.

 (RQ5)  Eye tracking devices are mainly from Tobii (58%), 
followed by SMI (10%).

 (RQ6)  Sampling rates are unspecified in 43% of cases, the 
most commonly reported sampling rate is 60 Hz 
(26%), followed by 120 Hz (10%).

 (RQ7)  76% of the papers use source code for their mate-
rial—alone 44% the language Java language and 
25% C; another 14% rely on elements of software 
development other than the code itself.

 (RQ8)  For data grouping that results in unpaired samples, 
the most common grouping factor is experience 
(32%), followed by performance (15%), setting 
(14%), and participants (13%). A split into paired 
samples is mainly based on screen areas (44%), set-
tings (40%), or tasks (22%).

 (RQ9)  Quantitatively measured variables primarily 
include eye tracking data (98%), task scores (52%), 
processing times (49%), and ratings (26%). The eye 
tracking data collected are mainly fixation-based 
(78%) or region-based (57%); only 18% use sac-
cade-based measures.

Threats to Validity

The validity of the presented findings is subject to some lim-
itations regarding the sample, analysis criterion, page count, 
interpretation, and generalizability. These are explained in 
more detail below.

• Sample: We only systematically search the IEEE and ACM 
databases and do not perform a snowball search based on 
the results, which means that we do not have an exhaustive 
sample of SE eye tracking studies. In addition, based on our 
search method, we omitted papers with non-SE artifacts that 
provide results relevant to the SE community, such as [41]. 
The goal is to get an overview of the methods used rather 
than sifting through every paper on the topic; IEEE and 
ACM are the publishers of the major conferences in the field, 
so we should cover a large proportion of relevant papers.

Fig. 20  Number of papers by 
measured quantity (red: short, 
yellow: regular, blue: long)
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• Analysis criterion: For the sake of simplicity, we take the 
number of papers using a particular method as a meas-
ure of its prevalence; it does not matter how often the 
paper uses the method or how detailed it is. In addition, 
we do not take into account the research teams behind 
the papers—for example, all reports on the descriptive 
statistical measures kurtosis and variance come from the 
same research team; for skewness, four out of five papers 
are from the same authors.

• Page count: We include papers of all lengths and quali-
ties in our analysis, since some two-page papers turn 
out to be more extensive in terms of analysis than other 
papers of ten or more pages; the longer papers often 
focus more on related work or a broader range of analy-
ses. To compensate for differences in length, we divide 
the papers into three categories: short, regular, and long. 
We do not compensate for the quality of research.

• Interpretation: The classification of methods is not 
always entirely clear; the documentation of inferential 
statistical methods is often incomplete, so that one can 
only guess whether paired samples are present or not. 
In addition, there are special cases, such as. [37], which 
presents a line plot-like representation of what he calls 
a velocity graph. Since the plot is a automatic report 
exported from the eye tracker software and is not a vis-
ualization of an extracted metric, we classify it as an 
“other visualization” rather than a “line plot”.

• Generalizability: Only very few analysis methods are 
specific to the SE domain (e.g., the AOI visualizations 
based on the code line number). Most methods are quite 
general (e.g., statistical methods). Although we can-
not guarantee the applicability of the results to other 
domains, we strongly assume similarities.

To cope with these limitations, the extracted data set is avail-
able for downloading at zenodo (www.doi.org/10.5281/
zenodo.11279180). It is structured to contain one column for 
each item from Table 1 and one row for each selected paper.

Conclusion

As part of future work, it would be interesting to analyze 
the same group of papers in more detail—this time with 

respect to the evolution of method usage over time or the 
influence of specific author groups. With this we can, for 
example, answer the question of whether AOI visualiza-
tions in the form of line plots are more popular than state-
diagram-like ones whether the latter have only recently 
emerged and are replacing the former. Apart of that, it 
might be useful to do the same analysis for an expanded 
list of papers or for papers from a different field—in order 
to understand whether the choice of analysis methods is 
driven by the field (i.e., SE) or the research method (i.e., 
eye tracking).

As a community, we need to work on consistency of 
methods. In the end, the choice of method (e.g., whether to 
use a scarf-plot-like AOI visualization or a gaze plot) will 
always remain at the discretion of the respective authors. 
Yet the naming of these methods should be consistent—so 
that when we talk about a scan path, we all have a common 
representation in mind, not some of us a scarf-plot-like 
AOI visualization and others a gaze plot. The results of 
the present article can serve as basis for such standardiza-
tion—providing for the elements that should be included 
as well as current naming conflicts, e.g., the term scan 
path as explained in “Gaze Visualizations”. With a con-
sistent naming system, we can then go one step further: 
We will provide a practical guide to eye tracking research, 
showing which analysis methods are best suited for which 
type of investigation.

As authors, we need to be transparent. This includes the 
use of naming conventions once they are promoted by the 
community. But we can also make an active contribution to 
transparency regardless of conventions: with comprehensive 
reporting. Clearly identify the design and the (in)depend-
ent variables of the study. Be specific when we referring to 
the applied eye tracking metrics (e.g., which are used for 
computing a heat map). State the choice of statistical tests, 
not just the results. This extends to the idea of open sci-
ence, i.e., making the data sets obtained available—not only 
for replication, but also for ease of understanding. This will 
enable a reader of the respective work to really understand 
the analysis and evaluate it for themselves instead of only 
taking note of the results.

Fig. 21  Number of papers by 
eye tracking data type
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