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A B S T R A C T

Aspect-Based Sentiment Analysis (ABSA) is a fine-grained task in sentiment analysis, aiming to identify
sentiment expressed towards specific aspects of an entity. This paper explores the use of Large Language Models
(LLMs), specifically GPT-3.5-turbo and Llama-3-70B, for generating annotated data in Aspect-Based Sentiment
Analysis (ABSA), aiming to address the scarcity of labelled datasets in the field. Two low-resource scenarios
are considered, with 25 and 500 manually annotated examples available. In the 25-example scenario, adding
synthetic examples generated through few-shot prompting resulted in F1 scores of 81.33 for Aspect Category
Detection (ACD) and 71.71 for Aspect Category Sentiment Analysis (ACSA). For the 500-example scenario,
synthetic data augmentation showed a notable gain only for the ACSA task, raising the F1 score from 84.54
to 86.70.
1. Introduction

Aspect-Based Sentiment Analysis (ABSA) is a subfield of sentiment
analysis (SA), aiming to provide more nuanced and detailed insights
into opinions expressed in textual data. Unlike traditional sentiment
analysis, which classifies an entire document (Hellwig, Bink, Schmidt,
Fehle, & Wolff, 2023; Tripathy, Anand, & Rath, 2017) or sentence (Liu,
2010) as positive, negative, or neutral, ABSA focuses on identifying sen-
timents associated with specific aspects or features of a product, service,
or entity. This granular approach allows for a deeper understanding of
people’s opinions, enabling more precise insights (Liu, Hu, & Cheng,
2005; Pontiki, Galanis, Papageorgiou, Manandhar, & Androutsopoulos,
2015).

Similar to other areas of natural language processing research, the
field of ABSA faces a lack of annotated corpora across various languages
and domains for training machine learning models to recognize aspects
and associated sentiment polarities in texts (Chebolu, Dernoncourt,
Lipka, & Solorio, 2022; Fehle, Schmidt, & Wolff, 2021). The process
of manually annotating corpora is very time-consuming, primarily due
to the multi-layered nature of the aspect-based sentiment annotation
process, which involves multiple steps: identifying related aspect and
sentiment phrases and then categorizing them into aspect and polarity
classes (Fehle, Münster, Schmidt, & Wolff, 2023; Li, Wang, Ding, Zhou,
& Yan, 2023).

∗ Corresponding author.
E-mail addresses: Nils-Constantin.Hellwig@ur.de (N.C. Hellwig), Jakob.Fehle@ur.de (J. Fehle), Christian.Wolff@ur.de (C. Wolff).

1 No generally accepted definition exists for categorizing language models as small or large. In this study, models with less than 1 billion parameters are
categorized as small, otherwise as large.

Large language models (LLMs) appear to be a promising approach
in this context. LLMs are based on a transformer architecture and are
characterized by their large size with billions of parameters. They have
shown a comprehensive language understanding and the ability to
produce text that is difficult for humans to distinguish from authentic
human text in a wide range of language tasks (Brown et al., 2020;
Floridi & Chiriatti, 2020). Across document-, sentence- and aspect-
level, LLMs have demonstrated commendable zero-, one- and few-shot
sentiment classification performance without resource-intensive data
annotations (Møller, Dalsgaard, Pera, & Aiello, 2023; Zhang, Deng, Liu,
Pan, & Bing, 2023).

In certain situations, a scarcity of domain-specific examples for
annotation and training may occur. Moreover, classifying text through a
commercial API of proprietary LLMs like GPT-3 may not be allowed due
to inherent privacy considerations (Møller et al., 2023). Furthermore,
training and inference of LLMs is highly computationally intensive
compared to Small Language Models1 (SLMs) like those based on BERT
(Bidirectional Encoder Representations from Transformers) architec-
ture fine-tuned on annotated datasets (Devlin, 2018; Wang, Liu, Xu,
Zhu, & Zeng, 2021). To overcome the limitations from data scarcity as
well as from computational demands, studies have generated training
examples utilizing LLMs both in the broader field of NLP and specif-
ically in the domain of sentence-level SA (Meyer, Elsweiler, Ludwig,
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Fernandez-Pichel, & Losada, 2022; Møller et al., 2023; Van Nooten &
Daelemans, 2023).

This study utilized LLMs to generate annotated examples for ABSA
n low-resource scenarios, assuming only 500 or 25 manually annotated
real) examples. LLMs, specifically Llama-3-70B and GPT-3.5-turbo,
ere used to generate examples. Using increasing numbers of synthetic

examples in addition to a fixed set of the given 500 or 25 annotated
real examples, SLM were trained for four common ABSA tasks. The
performance of the models was compared against that achieved when
exclusively using 500, 1,000 or 2,000 real examples for training. Fi-
nally, the quality of annotations generated by LLMs was assessed and
compared using 2,400 human annotations of synthetic examples.

For a given set of training examples, we fine-tuned state-of-the-art
SOTA) transformer models. Specifically, we considered those empha-
ized in the comprehensive literature review on ABSA tasks by Zhang,
i, Deng, Bing, and Lam (2022). The following ABSA tasks were con-

sidered: (1) Aspect Category Detection (ACD), (2) Aspect Category
Sentiment Analysis (ACSA), (3) End-to-End ABSA (E2E-ABSA) and (4)
Target Aspect Sentiment Detection (TASD). Finally, a total of 2,400
human annotations of synthetic examples were employed to assess the
quality of annotations generated by LLMs.

Supplementary materials, including code and model training re-
ults, are provided in the appendix of this work and are accessible on
itHub2.

2. Related work

2.1. Performance of LLMs in Sentiment Analysis (SA)

In the field of Sentiment Analysis (SA), Large Language Models
LLMs) have showcased commendable performance. Qin et al. (2023),

for instance, reported an accuracy of 88.8 in the evaluation of 872 sam-
les from the SST2 (Stanford Sentiment Treebank v2) dataset (Socher
t al., 2013) using GPT-3.5 (text-davinci-003) under zero-shot learning

conditions. Each prompt consisted of a concise task description, along
with the sentence to be classified, to which labels, POSITIVE or
NEGATIVE, were to be assigned (Qin et al., 2023).

Zhang et al. (2023) conducted evaluations on various ABSA tasks,
ith the prompt including a description of each task along with a list of

the considered sentiment polarities. They assessed the performance of
determining the sentiment polarity expressed towards a given aspect
term in a text. Employing ChatGPT, the evaluation revealed an F1
score of 76.80 for Laptop14 and 82.80 for Rest14. Notably, these
datasets were introduced in the SemEval ABSA challenge 2014 (Pontiki
et al., 2014) and consist of laptop and restaurant reviews, respectively.
Moreover, they assessed ChatGPT’s performance in E2E-ABSA, where it
was required to identify all aspect terms in a given sentence, along with
he sentiments expressed towards them. When evaluating the restaurant

domain of the SemEval ABSA datasets from 2014 to 2016, the obtained
F1 scores were 54.46, 40.03, and 75.80 for Rest14, Rest15, and Rest16,
respectively.

Moreover, Zhang et al. (2023) investigated the impact of utilizing
10 annotated examples per sentiment polarity as few-shot examples. In
the case of Rest14 and Rest15, incorporating these few-shot examples
improved performance and resulted in an F1 score of 63.30 (+8.95) and
2.85 (+12.82), respectively. However, for Rest16, the performance
eclined to 59.22 (−16.58).

To further improve on the capabilities of LLMs, Simmering and
uoviala (2023) compared the performance of GPT-4 and GPT-3.5

or the E2E-ABSA task on the Rest14 dataset by investigating few-
hot learning and fine-tuning of LLMs. They discovered that the mod-

els sometimes encountered difficulties in adapting to the detailed re-
uirements of the ABSA task during few-shot learning, whereas fine-

tuned models were able to achieve a better adaptation to the complex
properties of the E2E task, resulting in a F1 score of 83.8.

2 Resources for the paper: https://github.com/NilsHellwig/exploring-absa-
lm-augmentation
2 
2.2. Data augmentation to mitigate data scarcity in ABSA

Data augmentation techniques aim to create new training exam-
ples by transforming existing data in a constrained way to improve
the model’s generalization ability (Li et al., 2023). These techniques
are particularly valuable when the labelled data is limited or unbal-
anced (Bayer, Kaufhold, & Reuter, 2022).

In the field of ABSA, back-translation has been employed as a data
augmentation approach (Liesting, Frasincar, & Truşcă, 2021; Wang,
Jiang, Ma, Liu, & Okazaki, 2023). As an example, Liesting et al. (2021)
applied a back-translation technique by translating English sentences
into Japanese and subsequently re-translating them back into English.
Adding these transformed sentences to the training dataset led to an
improvement in accuracy by +0.5 (84.4) when evaluating Rest16.
The input of the trained model consisted of both the sentence and a
category, for which the polarity had to be identified (Liesting et al.,
2021). Furthermore, Liesting et al. (2021) applied random synonym
replacements using the WordNet lexicon (Fellbaum, 2010), along with
word insertions, deletions, and swaps. Their approach led to an increase
of +0.5 (84.4) in accuracy when evaluating on the sentiment polarity
detection subtask of Rest16 (Liesting et al., 2021). Similarly, evaluation
n the same subtask of Rest15 resulted in an improvement of +1.0
78.9) in terms of accuracy.

Generative approaches using language models to generate synthetic
training examples have been used less frequently to date. In the broader
field of SA, Møller et al. (2023) operated under the assumption of a
low-resource scenario, utilizing a dataset comprising 500 real exam-
ples from the SemEval-2017 Task 4: "Sentiment Analysis in Twitter"
(Rosenthal, Farra, & Nakov, 2017). A prompt was executed for each
individual real example from the dataset. LLMs received the example
(one-shot learning) and its associated sentiment as inputs to gener-
ate 10 examples simultaneously. Subsequently, an investigation with
both ChatGPT and GPT-4 was conducted to ascertain whether using
500 synthetic examples, coupled with a gradual increase in size up
to 5000 samples, could yield an improved classification performance
compared to training based solely on real examples. Their findings
revealed that synthetic data exhibited a lower classification perfor-
mance than human-annotated data. However, it should be noted that a
direct comparison was made between exclusively synthetic examples
n one hand and exclusively real sentences on the other hand. The
ynthetic examples were thus not added to the existing real sentences
or training.

In the field of ABSA, Li, Chen, Quan, Ling, and Song (2020) utilized
a masked sequence-to-sequence method for data augmentation in order
to tackle the ATE task. They fine-tuned a MASS (MAsked Sequence
to Sequence pre-training) model (Song, Tan, Qin, Lu, & Liu, 2019)
in order to generate new sentences by masking half of the tokens
in a sentence while preserving the text and position of the aspect
terms. For each example of the dataset of real examples, one synthetic
example was generated using the MASS model. The performance of
ATE was improved by adding synthetic examples to real examples
when evaluating a BERT model used for token classification in order
to determine the aspect terms, as proposed by Xu, Liu, Shu, and Yu
(2019). Evaluating the ATE subtask of Rest16 revealed an F1 score of
80.29, which was an increase of +2.8 compared to the setting without
augmented examples. Similarly, the evaluation of the ATE subtask of
Laptop14 revealed an improved F1 score when augmented examples
were included, rising from 84.59 to 85.33 (+0.74).

3. Methodology

3.1. Study design

In this study, we considered two low-resource scenarios. Following
the example of low-resource scenarios studied by Møller et al. (2023)
and Zhang et al. (2023), the first low-resource scenario assumed the

https://github.com/NilsHellwig/exploring-absa-llm-augmentation
https://github.com/NilsHellwig/exploring-absa-llm-augmentation
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Table 1
Experimental conditions.
Conditions C1 C2 C3 C4 C5 C6 C7 C8 C9

# Real Examples 500 1,000 2,000 500 500 500 25 25 25
# Synth Examples for LRS500 0 0 0 500 1,000 1,500 0 0 0
# Synth Examples for LRS25 0 0 0 0 0 0 475 975 1,975

# Total Examples 500 1,000 2,000 1,000 1,500 2,000 500 1,000 2,000
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availability of 500 annotated sentences (subsequently referred to as
LRS500). For these examples, it was assumed that annotations exist
or all aspect terms, their corresponding aspect categories and the

sentiment expressed towards each aspect term. An LLM was utilized
o generate 500, 1,000 or 1,500 examples using 25 few-shot examples
andomly selected from the 500 real annotated sentences.

The incorporation of synthetic examples was evaluated for various
BSA tasks. We assessed whether incorporating synthetic examples
long the 500 real examples enhances performance compared to relying
olely on the 500 real examples. Additionally, performance was com-
ared against conditions involving only 1,000 or 2,000 real examples,
esulting in a total of six conditions (C1–C6 in Table 1).

The second scenario (LRS25) assumed a limited dataset of 25 exam-
les instead of 500, with all of them being employed to generate new
xamples by using LLMs. In this context, 475 examples (C7) were gen-
rated, resulting in a total of 500 when combined with the given 25 real
entences, enabling a comparison with the performance archived when
sing 500 real examples for training (C1). Similarly, the performance
as examined when generating an additional 975 synthetic examples

C8) and when generating an additional 1,975 synthetic examples (C9).

3.2. Exemplary low-resource scenario and dataset

To demonstrate the augmentation with LLMs, we considered a
ow-resource scenario focusing on a German-language domain, specifi-
ally German restaurant reviews. As already stated by Hellwig, Fehle,

Bink, and Wolff (2024) and Fehle et al. (2023), there are only a few
erman-language datasets for ABSA to date. We utilized GERestaurant

from Hellwig et al. (2024), comprising 3,078 annotated sentences
extracted from restaurant reviews. The annotations encompass both im-
licit and explicit aspects, including their corresponding aspect terms,
spect categories (GENERAL-IMPRESSION, FOOD, SERVICE, AMBI-
ENCE, PRICE), and sentiment polarity (positive, negative, neutral).
GERestaurant exhibits an imbalance in regard to the aspect categories
and sentiment polarities.

3.3. Evaluation procedure

A random stratified 6-fold cross-validation was carried out for eval-
uation. Six iterations were chosen instead of the commonly employed
five iterations for cross-validation, since the given annotated dataset
employed for evaluation provided a sufficient number of examples
o support six folds comprising 500 examples each. The evaluation
rocedure is further illustrated exemplarily for conditions C3, C4, C7

and C8 in Appendix A.

3.4. Large Language Models (LLMs)

In order to generate the synthetic examples, both an open-source
LLM, Llama-3-70B (70 billion parameters) (Touvron et al., 2023), and
 commercial model, GPT-3.5-turbo3 (Brown et al., 2020) were utilized.

Technical details on the employed LLMs are explained in more detail
in Appendix B.

3 We used GPT-3.5-turbo with a training cut-off date of 13th June 2023
(GPT-3.5-turbo-0613).
3 
3.5. Prompting strategy

In alignment with the prompting strategy suggested by Zhang et al.
(2023) and Møller et al. (2023), the employed prompt included com-
ponents such as a task name, task definition, output format, and a
demonstration section containing annotated examples. An example of
a prompt is provided in Appendix C.

3.5.1. Formatting of few-shot examples
Each of the 25 annotated few-shot examples comprised a label and

 corresponding sentence, as demonstrated in Table 2. The label was
structured as an array containing tuples, with each tuple representing
n aspect addressed in the text. Each tuple included the aspect category
nd sentiment polarity associated with that aspect. In instances where
n explicit aspect was present, the aspect terms were enclosed with an
ML tag. The aspect category and sentiment polarity of an aspect term
ere indicated using XML attributes. XML tags provided the capability

of nesting, enabling multiple combinations of aspect categories and
sentiment polarity to be assigned to a single aspect term.

We also considered the approach of predicting both the text and
the positions of aspect terms, rather than directly tagging aspect terms
within the text using XML tags. However, we decided against this
approach, as LLMs have demonstrated inaccuracies in counting words
or characters in text (Davis, 2024; McCoy, Yao, Friedman, Hardy, &
Griffiths, 2023).

For LRS25, the selection process of the few-shot examples involved
nitially choosing five unique random examples from a fold comprising
00 annotated examples for each of the five aspect categories (as illus-
rated in appendix Fig. A.1(c)) resulting in a total of 25 examples. These

25 examples were used to generate all synthetic examples. Notably, due
to the possibility of multiple occurrences or repetitions of an aspect
category in a label, a given aspect category could occur more than five
times across all 25 few-shot examples.

In the case of LRS500, 25 unique few-shot examples were randomly
ampled for each prompt from the available 500 annotated examples.
s for the other low-resource scenario, five examples were randomly
elected for each aspect category, guaranteeing the presence of at least
ive few-shot examples with the aspect category appearing at least once
n its label.

In both low-resource scenarios, the 25 few-shot examples in the
rompt were randomly shuffled for each prompt. The same few-shot
xamples and prompts were used regardless of the LLM employed for
eneration.

3.5.2. Label associated with example to be generated
At the end of the prompt, a label was given in the same format as in

the few-shot examples, for which a sentence had to be generated by the
LLM. We ensured that aspects assigned to each possible combination
of aspect category and sentiment polarity as evenly as possible in the
generated examples in order to obtain a balanced dataset. The process
s described in more detail in Appendix D.

By combining the given label with the LLM’s generation, we got
a training example that included the sentence and triplets, as illus-
rated in Table 3. An English version of the illustration is provided in

Appendix F. The sentence was obtained by removing the XML tags from
the generation. The default assumption was that an aspect, represented
by a tuple in the label, was an implicit aspect. In case the generation
contained an aspect term corresponding to a combination of aspect
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Table 2
Formatting of a few-shot example.
Label: [(’SERVICE’, ’NEGATIVE’), (’FOOD’, ’POSITIVE’)]
Prediction: Alle vom <aspect-term aspect="SERVICE" polarity="POSITIVE">
Personal</aspect-term> sind sehr unfreundlich, aber es war lecker.

English translation: "The staff (Ger.:"Personal") is very friendly
(Ger.:"freundlich"), but it was delicious (Ger.:"lecker")."
Table 3
Examples for the translation of a generation into a training example.

Label [(’SERVICE’, ’NEGATIVE’), (’FOOD’, ’POSITIVE’)]

Generation Alle vom <aspect-term aspect=’SERVICE’ polarity=’POSITIVE’>
Personal</aspect-term>sind sehr unfreundlich aber es war
lecker.

Sentence "Alle vom Personal sind sehr unfreundlich aber es war lecker."
Triplets [(’Personal’, ’SERVICE’, ’NEGATIVE’, start=9, end=17),

(’NULL’, ’FOOD’, ’POSITIVE’, start=0, end=0)]

(a) Explicit and implicit aspects in a generation.
beginequation*7pt]

Label [(’FOOD’, ’POSITIVE’), (’FOOD’, ’POSITIVE’)]

Generation Es war sehr lecker, auch die <aspect-term aspect=’FOOD’
polarity=’POSITIVE’>Pizza</aspect-term> war lecker.

Sentence "Es war sehr lecker, auch die Pizza war lecker."
Triplets [(’Pizza’, ’FOOD’, ’POSITIVE’, start=29, end=34),

(’NULL’, ’FOOD’, ’POSITIVE’, start=0, end=0)]

(b) Duplicate tuple in label.
l
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category and sentiment polarity present in the label, it was considered
an explicit aspect.

For a generated example, we analysed the presence of a few char-
acteristics (see Appendix G) in terms of format (e.g. correct XML
formatting) and language requirements using basic NLP techniques. If
one of the criteria was not met, the prompt was executed again.

3.6. Baseline augmentation method

We employed back-translation, as proposed by Liesting et al. (2021)
s a baseline data augmentation method for LRS500. Using the
deep_translator library,4 the given 500 examples were first translated
into English and then back into German. Each back-translated example
was subsequently added to the given dataset, resulting in a total of
1,000 training examples.

3.7. Tasks and models

The nine conditions presented in Table 1, with conditions C4-C9
considered for the two employed LLMs, were evaluated across four
common ABSA tasks: ACD, ACSA, E2E-ABSA und TASD. We utilized
SOTA transformer-based models for all tasks, as previously employed
by Hellwig et al. (2024).

As for SemEval-2014, SemEval-2015, and SemEval-2016, the micro-
averaged F1 score was used as the primary evaluation metric. Metrics
including the macro-averaged F1 score, precision, recall were calcu-
lated as well. The reported value of each metric corresponds to its
average across all six iterations.

3.7.1. Aspect Category Detection (ACD) and Aspect Category Sentiment
nalysis (ACSA)

Similar to prior studies (Fehle et al., 2023; Hellwig et al., 2024),
we treated aspect category detection (ACD) and the identification of
both aspect categories and the sentiment polarity expressed towards
them (ACSA) as multi-label classification tasks. The base model utilized,
gbert-large5 (Chan, Schweter, & Möller, 2020) (337 million parameters),

4 deeptranslator: https://pypi.org/project/deep-translator/
5 German BERT large: https://huggingface.co/deepset/gbert-large
4 
developed by deepset, is based on the BERT architecture pre-trained on
arge-scale German language corpora (Chan et al., 2020). We fine-tuned
his model for both classification tasks. The selection and optimization
f hyperparameters is explained in detail in Appendix I.

3.7.2. End-to-End ABSA (E2E-ABSA)
Similar to Li, Bing, Zhang, and Lam (2019), the E2E-ABSA was

tackled using a BERT model for token classification. Specifically, we
mployed the gbert-large model for this task. E2E-ABSA involved pre-
icting a tag sequence 𝑦 = {𝑦1,… , 𝑦𝑇 }, where each tag corresponds to

a token in the sentence. The potential values for 𝑦𝑡 include B-{𝑃 𝑂 𝑆,
 𝐸 𝐺, 𝑁 𝐸 𝑈}, I-{𝑃 𝑂 𝑆, 𝑁 𝐸 𝐺, 𝑁 𝐸 𝑈}, or O. These tags denote the

eginning (B) and inside (I) of an aspect term, along with negative,
neutral, or positive sentiment. In addition to B and I, O was used to
denote that a token is not part of an aspect term.

For training, we employed binary cross-entropy loss and used the
igmoid function as the activation function. Following the evaluation
ethodology of Li et al. (2019), we set the learning rate to 2e−5, batch

size to 16, and trained the model for 1,500 steps. During evaluation,
true positives included all correctly identified pairs of aspect terms
nd the sentiment polarity expressed towards them, consistent with the
pproaches of Zhang et al. (2023) and Li et al. (2019).

3.7.3. Target Aspect Sentiment Detection (TASD)
For the TASD task, the paraphrasing approach by Zhang et al.

(2021) was employed, specifically the version adapted for (aspect term,
aspect category, sentiment polarity)-triplet annotations in the German
language introduced by Hellwig et al. (2024).

t5-base6 (223 million parameters) was employed as the underlying
eq2seq model. In terms of training parameters, batch size was set to
6, number of training epochs to 20 and learning rate to 3e−4, similar
o Zhang et al. (2021) and Hellwig et al. (2024). For evaluation, true

positives encompassed all correctly identified triplets, meaning that all
three sentiment elements (aspect term, aspect category and sentiment
olarity) were identified correctly.

6 t5-base: https://huggingface.co/google-t5/t5-base

https://pypi.org/project/deep-translator/
https://huggingface.co/deepset/gbert-large
https://huggingface.co/google-t5/t5-base
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Table 4
Average number of tokens in examples generated by LLMs for each low-resource scenario.

Data Source LRS Avg. # Tokens in Sentence Avg. # Tokens in Examples of each Iterationa

Real Examples – 13.12 –

Llama-3-70B LRS25 10.83 [ 10.36, 10.95, 10.08, 10.86, 10.79, 11.96 ] (SD = 0.588)
LRS500 10.36 [ 10.39, 10.30, 10.13, 10.08, 10.71, 10.54 ] (SD = 0.221)

GPT-3.5-turbo LRS25 9.92 [ 9.24, 9.72, 9.10, 10.32, 10.01, 11.14 ] (SD = 0.686)
LRS500 9.07 [ 8.97, 9.11, 8.84, 8.87, 9.40, 9.21 ] (SD = 0.197)

a The standard deviation is provided within parentheses for the means when avg. number of tokens are calculated individually across all six
iterations.
t

v
a
o

a
l

3.8. Human annotations of synthetic examples

In order to assess the quality of the LLM’s annotation, e.g. the ability
f an LLM in marking all aspect terms in the text or the reliability of
ddressing aspects specified in the labels, the annotations generated by
he LLM were compared with manual annotations by humans.

A total of 2,400 sentences were annotated, with 600 synthetic exam-
ples annotated for each considered LLM and low-resource scenario (2
LLMs × 2 low-resource scenarios × 600 synthetic examples). The choice
of selecting 600 synthetic examples arises from randomly selecting 100
xamples from the synthetic examples generated for each iteration of

the cross-validation process. For illustration, in the case of LRS25, this
entails selecting 100 examples from the 1,975 generated examples for a
ingle iteration. As a reminder, for each iteration, no more than 1,975

synthetic examples were generated, aligning with the quantity required
for condition C9. The approach allowed for the determination of the
average quality of examples generated across all six iterations.

The synthetic examples underwent removal of XML tags, ensuring
that the annotators only received the sentence for annotation, without
the LLM’s annotations of aspect terms in order to prevent a potential
bias. The annotation was performed by two expert Annotators: First,
annotator A annotated all sentences independently, and subsequently,
each annotation underwent validation by annotator B.

Annotator B proposed a label different from that assigned by anno-
tator A for 30 out of the 2,400 sentences.

4. Results

In this chapter, we report the properties of the generated examples
nd the performance that could be achieved with the addition of

synthetic examples. Examples generated by the two LLMs for the con-
sidered low-resource scenarios can be found in the GitHub repository7

associated with this work.

4.1. Comparison of real and synthetic data

In order to get a more comprehensive understanding of the lin-
uistic variability in the generated examples, several NLP metrics were
omputed at the sentence-level.

As illustrated in Table 4, synthetic examples comprised fewer tokens
on average than real examples (13.12). However, it can be noticed
that examples generated by Llama-3-70B, on average, contained more
tokens (10.83 & 10.36) than those generated by GPT-3.5-turbo (9.92 &
9.07). When analysing the mean token count across examples generated
for each of the six iterations in the cross-validation setting, examples
generated for LRS25 exhibited a higher token count when employing
Llama-3-70B in comparison to GPT-3.5-turbo. A comparison of the
ndividual iterations is feasible, since, the same few-shot examples were
sed regardless of the LLM employed except for the cases in which new
ew-shot examples were used (or the given 25 few-shot examples were
huffled in the case of LRS25) after 25 invalid generations.

7 https://github.com/NilsHellwig/exploring-absa-llm-augmentation
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Table 5
Proportion of examples with the first token identified as a determiner (DET) POS tag.

Data source LRS % Examples with the first Token
Identified as a Determiner (DET)
POS Tag

Real Examples – 27.3%

Llama-3-70B LRS25 79.7%
LRS500 78.6%

GPT-3.5-turbo LRS25 92.4%
LRS500 91.9%

On the linguistic level, a notable observation is the predominant use
of determiners at the beginning of generations as opposed to realistic
examples, particularly with GPT-3.5-turbo, but also with Llama-3-70B
(see Table 5).

The number of unique sentences, tokens, and lemmas in the syn-
hetic examples, compared to real examples, is presented in Table 6. In

order to examine the impact of the number of examples on the linguistic
ariability, all metrics for 500, 1,000 and 1,500 examples are presented
s the mean over the six iterations. Further details on the preparation
f data for the linguistic analysis can be found in Appendix J.

Examining the number of unique sentences generated by Llama-3-
70B, there are almost exclusively unique sentences in examples gen-
erated for both low-resource scenarios, regardless of the considered
number of examples. However, the frequency of unique sentences is
slightly lower than that of real examples. In contrast, the number of
unique sentences in examples generated by GPT-3.5-turbo is much
lower. When considering only 500 examples, there are 308 and 318
unique sentences in the case of LRS25 and LRS500 respectively. When
considering 1,500 examples, slightly more than half of the synthesized
sentences are unique in case of both low-resource scenarios (778 unique
sentences for LRS25 and 784 for LRS500).

The number of unique tokens and lemmas in examples generated by
GPT-3.5-turbo is consistently lower compared to examples generated by
Llama-3-70B at every sample size and regardless of the examined low-
resource scenario. However, for examples generated by Llama-3-70B
and GPT-3.5-turbo, the count of unique tokens and lemmas is lower
when compared to real examples at every sample size and regardless
of the examined low-resource scenario.

Overall, for a given LLM and sample size, the metric values are
consistently only slightly larger for examples generated for LRS500
compared to those generated for LRS25. The only exception is Llama-
3-70B, where, in the case of a sample count of 500 and 1,500, the
number of unique sentences is higher in examples generated for LRS25
compared to those generated for LRS500.

4.2. Human annotations of synthetic examples

In addition to examining the linguistic variability of synthetic ex-
mples, the annotation quality of the utilized LLMs generated for both
ow-resource scenarios was analysed.

As shown in Table 7, synthetic examples where a conflicting senti-
ment was expressed towards an aspect, resulting in an assigned polarity
label of CONFLICT, were infrequent in both examples generated by

https://github.com/NilsHellwig/exploring-absa-llm-augmentation
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Table 6
Linguistic variability of synthetic examples: Sentence-level.
Data Source LRS # Examples # Unique Sentences # Unique Tokens # Unique Lemmas

Real Examples -
500 497 1,918 1,493

1,000 990 3,061 2,349
1,500 1,481 3,996 3,038

Llama-3-70B

LRS25

500 480 612 480
1,000 930 893 700
1,500 1,367 1,108 860

LRS500

500 478 666 528
1,000 930 974 762
1,500 1,364 1,212 941

GPT-3.5-turbo

LRS25

500 308 296 216
1,000 553 377 275
1,500 778 440 319

LRS500

500 318 294 216
1,000 560 387 280
1,500 784 454 327
Table 7
Sentiment polarity label conflicts or unannotated aspects in synthetic examples as detected by human annotation.
LLM LRS # Examples with Polarity Conflict # Examples without annotated Aspects

Llama-3-70B LRS25 8 10
LRS500 7 15

GPT-3.5-turbo LRS25 5 1
LRS500 4 0
.

ed

a

p

Llama-3-70B and GPT-3.5-turbo. Sentences generated by Llama-3-70B
more commonly lacked at least one aspect towards which a sentiment
is expressed (10 sentences in the case of LRS25, 15 sentences in the
case of LRS500). In the case of GPT-3.5-turbo, this phenomenon was
exclusively observed for LRS25, only in 1 out of 600 sentences.

As depicted in Table 8(a), Llama-3-70B exhibited a higher perfor-
ance in terms of the F1 score regarding annotating aspect terms

ompared to GPT-3.5-turbo. Higher F1 scores could be observed for
lama-3-70B across both low-resource scenarios. Notably, the precision
f Llama-3-70B was lower than that of GPT-3.5-turbo, while recall was

higher. In contrast to aspect term annotation, when considering both
aspect term and sentiment annotation (see Table 8(b)), the F1 score
was higher for GPT-3.5-turbo compared to Llama-3-70B.

The performance in exclusively addressing the aspect categories
specified in a label within a generated sentence is presented in Table 8(c)
With both micro- and macro-averaged F1 scores above 95 for both
LRS25 and LRS500, GPT-3.5-turbo achieved a very high performance.
When examining sentences generated by Llama-3-70B, the micro-averag
F1 scores (LRS25: 85.90, LRS500: 85.86) were lower compared to GPT-
3.5-turbo. Additionally, GPT-3.5-turbo outperformed Llama-3-70B in
terms of both micro- and macro-averaged F1 score when considering
the addressing of all combinations of aspect category and sentiment
polarity specified in the label (see Table 8(d)).

Finally, the identification of triplets was analysed, meaning that a
riplet generated through the translation process illustrated in Table 3

was identified by manual annotators as well. The results are presented
in Table 8(e). The micro-averaged F1 score was the highest for GPT-3.5-
urbo, 55.92 for LRS25 and 55.38 for LRS500, surpassing Llama-3-70B,
here micro-averaged F1 scores of 46.71 (LRS25) and 47.98 (LRS500)
ere achieved.

4.3. Task performance

4.3.1. Aspect Category Detection (ACD)
The results of the ACD task and all other tasks are presented in

Table 9. For LRS25, the micro- and macro-averaged F1 score consis-
ently remained below that achieved when employing exclusively 500,
,000, or 2,000 real examples for training, regardless of whether Llama-
-70B or GPT-3.5-turbo was employed for example generation and the

uantity of examples that were generated. e

6 
In the case of Llama-3-70B and LRS25, the best F1 score (micro:
81.33, macro: 80.37) was achieved when adding 475 synthetic exam-
ples for training, the highest number of additional synthetic examples
tested here. However, there is a small trend that the micro-averaged
F1 score decreased by an increasing number of synthetic training
examples. Similarly, in the case of GPT-3.5-turbo and LRS25, the best
micro-averaged F1 score was achieved when adding 475 synthetic
examples for training (micro: 79.80, macro: 79.13) without further
improvement by an increasing number of synthetic training examples.
However, regardless of the number of examples generated for LRS25,
both micro- and macro-averaged F1 scores were higher for Llama-3-70B
than for GPT-3.5-turbo.

Adding synthetic examples (including back-translated examples) to
the 500 real examples (LRS500) did not improve both micro- and
macro-averaged F1 score, regardless of the LLM considered.

When employing Llama-3-70B for example generation, the addition
of an increased number of synthetic examples to the existing 500 real
examples in LRS500 did not lead to an enhanced micro-averaged F1
score across all aspect categories. In the case of GPT-3.5-turbo and
LRS500, the micro-averaged F1 score marginally improved only for the
GENERAL-IMPRESSION and FOOD categories, albeit to a minimal
extent.

4.3.2. Aspect Category Sentiment Analysis (ACSA)
In the case of LRS25 and the ACSA task, when adding synthetic

examples to the given 25 real examples, the achieved micro-averaged
F1 score is below that achieved when using exclusively 500, 1,000 or
2,000 real examples, regardless of the number of generated examples
and the LLM used for synthesis. In the case of LRS25 and Llama-3-
70B, the best micro-averaged F1 score (66.07) was achieved when
employing when adding 1,975 synthetic examples.

When employing GPT-3.5-turbo for LRS25, slightly higher micro-
averaged F1 scores were achieved as compared to Llama-3-70B. In
the case of GPT-3.5-turbo, a micro-averaged F1 score of 71.71 was
chieved when using 1,975 synthetic examples for training. For LRS25

and Llama-3-70B, irrespective of the number of synthetic examples used
for training, the macro-averaged F1 score was consistently below the
erformance achieved when using exclusively 500, 1,000 or 2,000 real
xamples for training.
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Table 8
Comparison of LLM annotations with human annotations.

LLM LRS F1 Micro Precision Recall

Llama-3-70B LRS25 84.12 89.02 79.74
LRS500 81.52 88.65 75.46

GPT-3.5-turbo LRS25 75.11 91.44 63.72
LRS500 72.61 92.44 59.78

True Positives: All correctly marked aspect terms using XML tags.
(a) Aspect term.

LLM LRS F1 Micro F1 Macro

Llama-3-70B LRS25 55.73 39.55
LRS500 56.05 40.11

GPT-3.5-turbo LRS25 67.23 50.28
LRS500 66.12 49.38

True positives: All correctly marked aspect terms where the sentiment expressed
towards them has also been correctly specified in the corresponding XML tag.

(b) Aspect term + sentiment polarity.

LLM LRS F1 Micro F1 Macro

Llama-3-70B LRS25 85.90 85.26
LRS500 85.86 85.53

GPT-3.5-turbo LRS25 95.56 95.42
LRS500 95.60 95.61

True Positives: All correctly addressed aspect categories.
(c) Aspect category.

LLM LRS F1 Micro F1 Macro

Llama-3-70B LRS25 58.98 49.72
LRS500 61.68 48.67

GPT-3.5-turbo LRS25 84.37 71.46
LRS500 83.66 77.60

True Positives: All correctly addressed combinations of
aspect categories and sentiment.

(d) Aspect category + sentiment polarity.

LLM LRS F1 Micro F1 Macro

Llama-3-70B LRS25 46.71 43.94
LRS500 47.98 45.02

GPT-3.5-turbo LRS25 55.92 55.30
LRS500 55.38 54.71

True Positives: All addressed/marked implicit and explicit aspects
(aspect term) where its assigned aspect category and sentiment polarity
are given in the label.

(e) Triplets: Aspect term + aspect category + sentiment polarity.
When generating 975 examples using GPT-3.5-turbo, a macro-
veraged F1 score of 62.56 was achieved, and a macro-averaged F1
core of 63.67 in the case of 1,975 synthetic training examples. In
ontrast to the score obtained when adding 475 synthetic examples
o training (50.86), both scores seem higher than that achieved when

using exclusively 500 real training examples (59.52).
Finally, in contrast to the ACD task, when employing Llama-3-70B

nd GPT-3.5-turbo for LRS25, the micro- and macro-averaged F1 score
mproved with an increasing number of synthetic examples used for
raining.

In the context of LRS500, the micro-averaged F1 score was not
mproved by adding synthetic examples generated by Llama-3-70B.
owever, when adding 500, 1,000, or 1,500 synthetic examples gen-

erated by Llama-3-70B in addition to the given 500 real examples for
raining, the macro-averaged F1 scores were consistently greater than
hat observed when using exclusively 500 real examples for training.
he macro-averaged F1 scores are by far above that, achieved when
dding the back-translated examples.

In the case of GPT-3.5-turbo and LRS500, the micro-averaged F1
core exhibited slight improvements by adding 500 (86.70), 1,000
7 
(86.60), or 1,500 (85.94) synthetic examples to the given 500 real
examples for training. The inclusion of back-translated examples im-
proved performance to a much smaller extent. A notable improvement
in the macro-averaged F1 score was observed, particularly in the case
of GTP-3.5-turbo and LRS500. By adding 500, 1,000, or 1,500 examples
generated by GPT-3.5-turbo for the training, the macro-averaged F1
score was much higher than that achieved with exclusively 500 real
training examples.

In a next step, we observed that the macro-averaged F1 score is
higher with 500, 1,000, or 1,500 synthetic examples being included
in the training set along the given 500, compared to using exclusively
1,000 real examples for training. Wenn adding 500 synthetic examples
to the given 500 real examples, the F1 macro is even above that
achieved when using exclusively 2,000 real examples for training. For
GPT-3.5-turbo and LRS500, the micro- and macro-averaged F1 score did
not increase with an increasing number of synthetic examples.

The F1 scores for all prediction classes (15 in total: 5 aspect cate-
gories × 3 sentiment polarities) play a role in elucidating the observed
enhancement in the macro-averaged F1 scores when incorporating
synthetic examples in the aforementioned scenarios. Notably, when
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Table 9
Performance scores for ACD, ACSA, E2E and TASD: Micro- and macro-averaged F1 scores for ABSA models trained for LRS25 and LRS500.

Data Source LRS # Real # Synth ACD ACSA E2E TASD

F1Micro F1Macro F1Micro F1Macro F1Micro F1Macro F1Micro F1Macro

Real Examples -
500 0 90.901.37 89.971.66 84.541.14 59.521.66 77.161.77 70.075.01 61.801.77 53.034.86

1,000 0 92.021.19 91.101.46 88.601.29 74.644.26 80.691.65 75.032.61 65.441.05 58.296.31
2,000 0 92.351.15 91.531.31 89.401.37 78.865.06 82.003.68 78.834.89 68.961.31 60.224.53

Back-translation LRS500 500 500 90.490.78 89.251.11 85.321.28 64.423.34 78.082.08 70.416.21 62.921.58 54.934.85

Llama-3-70B

LRS25

25 475 81.330.36 80.371.30 60.684.27 49.933.41 51.952.41 44.502.00 38.533.89 29.842.36
25 975 80.762.03 80.181.65 64.953.41 54.423.60 53.655.49 46.815.40 39.103.01 30.272.02
25 1,975 80.651.77 80.201.11 66.073.95 55.583.52 57.343.82 48.523.10 39.142.35 29.501.84

LRS500

500 500 89.881.42 88.771.72 83.221.00 70.663.81 75.251.59 66.862.23 58.331.52 44.323.23
500 1,000 88.771.06 87.151.10 82.291.30 67.964.30 73.192.89 63.802.49 58.661.10 44.663.04
500 1,500 88.491.61 87.111.55 80.641.50 66.523.84 71.983.01 61.952.57 56.231.98 41.492.06

GPT-3.5-turbo

LRS25

25 475 79.802.57 79.132.15 60.186.20 50.865.30 59.154.39 52.615.08 36.962.60 29.254.49
25 975 79.523.32 78.803.58 70.954.35 62.565.60 58.654.70 52.665.71 37.883.95 31.535.20
25 1,975 79.633.17 79.113.49 71.713.59 63.673.05 61.323.87 58.153.81 37.393.13 28.743.55

LRS500

500 500 90.850.91 89.891.16 86.702.03 79.007.11 76.793.89 72.273.78 61.391.15 50.836.11
500 1,000 90.521.33 89.811.42 86.601.36 78.425.28 75.963.26 72.552.91 59.511.90 50.516.63
500 1,500 89.680.96 88.771.23 85.941.45 78.473.31 76.143.54 71.673.02 59.421.74 48.765.04

Mean was calculated for all metrics, derived from six iterations of the cross-validation and are accompanied by the standard deviation for each
metric, calculated across the six values.
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relying exclusively on 500 real examples for training, the F1 score
was 0 for the recognition of a neutral sentiment in the aspect cate-
gories GENERAL-IMPRESSION, SERVICE, AMBIENCE, and PRICE,
denoting an absence of true positives. The augmentation with synthetic
examples notably boosted the F1 score for these four classes, associated
with a neutral sentiment, evident for both LRS25 and LRS500.

4.3.3. End-to-End Aspect Based Sentiment Analysis (E2E-ABSA)
In the context of LRS25, the micro- and macro-averaged F1 score us-

ng examples generated by Llama-3-70B and GPT-3.5-turbo was lower
han that achieved using exclusively 500, 1,000 or 2,000 real training
xamples. Furthermore, an improved micro- and macro-averaged F1
core was achieved with an increasing number of synthetic examples.
or LRS25, the best F1 score (micro: 61.32, macro: 58.15) was observed
hen adding 1,975 synthetic examples generated by GPT-3.5-turbo to

he given 25 real examples.
Neither adding synthetic sentences generated by GPT-3.5-turbo nor

those generated by Llama-3-70B led to an improvement in the micro-
averaged F1 score for LRS500 compared to using only 500 real examples
for training. Furthermore, in the case of LRS500, no improvement of the
micro-averaged F1 score was observed with an increased number of
synthetic examples. Conversely, adding 500 back-translated examples
to the given 500 real examples led to an improvement of the F1 micro
to 78.08.

An improvement in the macro-averaged F1 score could not be
achieved through the inclusion of examples generated by Llama-3-70B
in the case of LRS500. When augmenting the existing 500 examples with
those generated by GPT-3.5-turbo for training, the macro-averaged
F1 score showed enhancement, even higher than that achieved when
adding back-translated examples, reaching 72.27 for 500, 72.55 for
1,000, and 71.67 for 1,500 synthetic examples.

Looking at the performance achieved with respect to each class, we
noticed that in the case of LRS500, an improvement of the F1 score was
chieved for the neutral polarity when adding examples generated with
PT-3.5-turbo.

4.3.4. Target Aspect Sentiment Detection (TASD)
In the case of LRS25, the addition of 475, 975, and 1,975 synthetic

examples to the existing 25 real examples did not yield a micro-
veraged F1 score superior to that achieved with exclusively 500,
,000, or 2,000 real examples, but even resulted in a much lower
core. For LRS25 and Llama-3-70B, the highest micro-averaged F1 score,
9.14, was reported when incorporating 1,975 synthetic examples for
raining. In case GPT-3.5-turbo-generated examples were introduced for
8 
LRS25, a micro-averaged F1 score of up to 37.88 could be achieved,
specifically with the addition of 975 synthetic examples.

Concerning LRS500, there was no improvement in the F1 score when
incorporating synthetic examples, regardless of the number of synthetic
training examples considered and the specific LLM used for example
generation. Overall, for both low-resource scenarios, no clear trend that
increasing the number of synthetic examples lead to an increase in the
F1 score was observed in either the case of Llama-3-70B or GPT-3.5-
turbo. Applying Back-translation, however, allowed for a boost in both
the micro- and macro-averaged F1 score.

Regardless of the LLM used for generating annotated examples,
he low-resource scenario considered, and the number of synthetic
xamples added to the training set, the macro-averaged F1 score never
xceeded that achieved using exclusively 500, 1,000, or 2,000 real
xamples.

5. Discussion

This work employed LLMs for generating annotated examples for
BSA. An LLM was used to generate sentences with annotations of

aspect terms, their corresponding aspect category and the sentiment ex-
pressed towards them. Low-resource scenarios assuming the availability
f only 25 (LRS25) or 500 real examples (LRS500) were considered.
n the case of LRS25, each synthetic example was generated using all
vailable 25 examples as few-shot examples in the prompt, whereas
n the case of LRS500, 25 out of 500 given examples were randomly
elected as few-shot examples for the generation of each synthetic
xample.

5.1. Generation of annotated examples with Llama-3-70B and GPT-3.5-
turbo

For the examined low-resource scenarios and employed LLMs, there
was often a need to re-execute the prompt due to the generated example
not exhibiting the desired characteristics. In order to reduce the number
of regenerations and therefore computation time or monetary costs,
one approach could be to provide more detailed guidance on these
characteristics in the task description of the prompt. In the case of
LRS500, using more than 25 examples from the available set of 500 real
examples as few-shot examples in the LLM’s prompt could be explored
n order to improve the LLMs understanding of the required format of
an annotated example.
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5.2. Disparities in linguistic variability and annotation quality across exam-
ned LLMs

For both LRS25 and LRS500, examples generated by Llama-3-70B
emonstrated a higher linguistic variability than those generated by

GPT-3.5-turbo in terms of metrics such as the number of unique sen-
ences, tokens, and lemmas. Since we did not evaluate multiple hy-

perparameter configurations of the LLMs for the generation of our
synthetic examples, the linguistic variability in synthetic sentences
by GPT-3.5-turbo may be enhanced by a different specification of
hyperparameters of the LLM’s such as its temperature.

Furthermore, 2,400 synthetic examples were annotated by human
nnotators. Llama-3-70B outperforms GPT-3.5-turbo in annotating all
spect terms in the examples. However, if the aim is to mark both
ll aspect terms and assigning the sentiment expressed towards them,
he micro-averaged F1 score is higher for GPT-3.5-turbo. GPT-3.5-
urbo also exhibits a higher micro-averaged F1 score in addressing
xactly the aspect categories (and sentiment polarities) specified in the

label. Finally, the identification of triplets was scrutinized by examin-
ing whether manually annotated triplets aligned with those generated
through the translation process depicted in Table 3. In this context,
GPT-3.5-turbo demonstrated a higher micro- and macro-averaged F1
score compared to Llama-3-70B.

Considering the differing annotation quality and language vari-
bility across the LLMs employed, one could explore further LLMs
or example generation. This exploration may encompass LLMs with
ifferent parameter sizes, context sizes and LLMs explicitly designed
or the language under consideration (in our application, German).
oreover, considering LRS500, fine-tuning an LLM on the available 500

eal examples could be pursued, enabling the LLM to capture insights
rom all 500 available annotated real examples.

Finally, given the higher linguistic variability observed in examples
generated by Llama-3-70B compared to those generated by GPT-3.5-
urbo as well as the superior performance of GPT-3.5-turbo in annotat-
ng examples, it could be considered to employ two distinct LLMs for
he processes of text generation and annotation, respectively. Notably,
his approach would result in increased computational or financial
osts, as each step would necessitate the execution of a distinct LLM
or generating each example.

5.3. Augmentation with synthetic examples in low-resource scenarios

The generated examples were finally utilized to train SOTA SLMs
based on the transformer-architecture dedicated to four common ABSA
tasks. Notably, SLMs demand less computational power than LLMs, al-
lowing them to proficiently handle individual ABSA tasks with reduced
computational requirements.

5.3.1. Performance in LRS25
Looking at the overall task performances, irrespective of the LLM

and the quantity of synthetic examples considered for LRS25, a superior
micro-averaged F1 score was never achieved compared to using exclu-
sively 500, 1,000, or 1,500 real training examples. The micro-averaged
F1 score reached its peak in all but three cases when 1,975 synthetic
training examples were added to the given 25 real examples. For the
ACD task, employing both Llama-3-70B and GPT-3.5-turbo for example
generation yielded best micro-averaged F1 scores when utilizing only
475 generated examples for training, in addition to the existing 25
real examples. Furthermore, in the case of GPT-3.5-turbo and the TASD
task, the best micro-averaged F1 score was achieved when adding 975
examples. However, in all three cases, the F1 micro score was only
slightly lower when adding more synthetic training examples.

A limitation of this study may be that no investigation of a larger
et of synthetic examples for training was conducted beyond 1,975
ynthetic examples. This potentially allows performance enhancements
 m

9 
and an investigation of the threshold at which adding more synthetic
examples no longer contributes to performance improvement.

When evaluating the ACD task, micro-averaged F1 scores of 81.33
and 79.80 were achieved for examples generated by Llama-3-70B and
GPT-3.5-turbo, respectively. In the ACSA task, a notable performance
gap between the evaluated LLMs was observed, with Llama-3-70B
achieving a micro-averaged F1 score of 66.07, which was lower than
the micro-averaged F1 score of 71.71 achieved when adding training
examples generated by GPT-3.5-turbo.

The E2E-ABSA task yielded micro-averaged F1 scores of 57.34 for
Llama-3-70B and 61.32 for GPT-3.5-turbo. This performance aligns
closely with results reported by Zhang et al. (2023), who achieved
omparable scores using ChatGPT as a classifier for the E2E-ABSA task

with a prompt comprising 10 few-shot examples per sentiment polarity
(Rest14: 63.3, Rest15: 52.85, Rest16: 59.22).

Finally, in the TASD task, a substantial difference in results emerged
etween using exclusively real training examples and synthetic exam-

ples generated for LRS25. Employing Llama-3-70B-generated training
xamples yielded a micro-averaged F1 score of 39.14, whereas the
se of GPT-3.5-turbo-generated examples resulted in a score of 37.88.
onversely, utilizing exclusively 500 real examples led to a higher
erformance, a micro-averaged F1 score of 61.80.

5.3.2. Performance in LRS500
In the case of LRS500, the inclusion of LLM-generated examples

alongside the existing 500 real examples for training did not improve
the micro-averaged F1 score, while adding back-translated examples
did boost performance for all tasks except for the ACD task. An excep-
ion was the ACSA task, where the micro-averaged F1 score exhibited
mprovement with the incorporation of 500, 1,000 or 1,500 examples
enerated by GPT-3.5-turbo. While exclusively using real examples re-
ulted in an average F1 micro score of 84.54, introducing 500 synthetic
xamples improved the micro-averaged F1 score to 86.70. Notably, the
oost in performance was higher than that observed when adding 500
ack-translated examples (85.32).

In the same way, the macro-averaged F1 score demonstrated an
improvement as well, when 500, 1,000 or 1,500 examples generated
y Llama-3-70B or GPT-3.5-turbo were added to the existing 500 real

training examples. It increased from 59.52 when using exclusively
500 real training examples to 79.00 when 500 examples generated by
GPT-3.5-turbo were incorporated alongside the 500 real examples.

This improvement can be attributed to the equal frequency of each
sentiment polarity in 500, 1,000 or 1,500 synthetic examples. This
stands in contrast to the real examples, where a neutral sentiment is
nfrequent compared to positive and negative sentiments. In four of the
xamined classes in the ACSA task (15 in total: 5 aspect categories ×
 sentiment polarities) associated with a neutral sentiment, reported
1 scores were 0. Through the inclusion of synthetic examples, these
cores could be enhanced. Notably, the performance boost of the F1
acro score is far beyond that, observed when adding back-translated

xamples (64.42), underlining the huge potential of LLMs for improving
he performance for rare classes.

In the case of the E2E-ABSA task, an enhancement in the macro-
veraged F1 score was observed by adding 500, 1,000, or 1,500 exam-
les. While achieving a score of 70.07 using solely 500 real training
xamples, the highest improvement was attained by adding 1,000
PT-3.5-turbo-generated examples (72.55).

One limitation of the study might be the lack of an evaluation of
a balanced training approach, wherein, for example, sentences with
a neutral sentiment receive additional weight during the optimization
of model parameters due to their scarcity among real data. It could
e investigated whether the inclusion of synthetic examples still leads
o an improvement when being compared to a balanced-training ap-
roach. Finally, in the context of LRS500, an even higher improvement
n performance might be achieved by applying the aforementioned

easures to improve linguistic variability and annotation quality.
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6. Conclusion and future work

In the present work, two LLMs, namely Llama-3-70B and GPT-
3.5-turbo, were utilized to generate annotated training examples for
ABSA, encompassing annotations of aspect terms, aspect categories, and
sentiment polarities.

The study explored two low-resource scenarios, LRS25 and LRS500,
onsidering the availability of a pool of 25 or 500 annotated real

examples, respectively. LLMs were instructed with prompts containing
a task description and 25 few-shot examples randomly drawn from
he pool to generate additional annotated sentences. At the end of
he prompt, a label was provided, consisting of one or more tuples,
ach representing an aspect. A tuple comprised an aspect category of
n aspect to be discussed in the generated sentence, and a sentiment
olarity to be expressed towards the aspect.

The results revealed that the generated examples showed lower
linguistic variability in terms of unique sentences, tokens, and as-
pect terms compared to real examples. In comparison, Llama-3-70B-
generated examples demonstrated much greater variability than those
generated by GPT-3.5-turbo. In the next step, transformer-based models
with less than 1 billion parameters were trained on synthetic examples
added to the given real examples. In the case of LRS25, a high micro-
averaged F1 score (81.33) was achieved in the ACD task, while only
a micro-averaged F1 score of 39.14 was achieved in the TASD task.
In the case of LRS500 and ACSA, synthetic examples generated with
GPT-3.5-turbo improved both the micro- and macro-averaged F1 scores.

Future work could explore generating annotated examples for do-
ains and languages other than that considered in this study. More-

over, given the observed difference in performance depending on the
LLM employed for augmentation, future work could explore other
LLMs with varying parameter sizes and training data used for their
pre-training. This may include LLMs pre-trained on texts specific to
the domain or language of interest. In order to address time and
financial constraints, exploring methods to generate multiple annotated
examples with a single LLM execution as performed by Møller et al.
(2023) could be explored.

Akin to the SemEval datasets (Pontiki et al., 2016, 2015, 2014),
training examples were generated along with annotations for aspect
terms, aspect categories, and sentiment polarity. One could explore
generating training examples that only include annotations for the
sentiment elements required for the corresponding ABSA task. Subse-
quently, it could be assessed whether utilizing these examples further
mproves performance in the corresponding task. Furthermore, the
apability of LLMs in annotating opinion terms in generated examples
ould be investigated, a sentiment element that was not considered in
his study.

Finally, future work could investigate the task performance achiev-
able when annotated examples are generated without the presence of
few-shot examples (zero-shot learning).
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Appendix A. Training and evaluation workflow

See Fig. A.1.
10 
Fig. A.1. Dataset-splitting to perform a six-fold cross-validation: Illustration of em-
loyed training samples for each iteration using condition C3, C4, C7 and C8 as an

example.

Appendix B. Technical details on the employed LLMs
B.1. Llama-3-70B

Due to its huge size, Llama-3-70B8 could not be loaded onto the
VIDIA Quadro RTX 6000 GPU (24 GB GDDR6 GPU memory) used

for this study. Consequently, a 4-bit quantized version of the LLM9

was utilized. The required memory is lowered by reducing the number
of bits required to represent each parameter of the LLM (Dettmers &
Zettlemoyer, 2023). For inference of the quantized model, llama.cpp10

was used, specifically its official Python bindings.11

B.2. GPT-3.5-turbo

In order to leverage GPT-3.5-turbo,12 the OpenAI Python pack-
age13 was utilized. All requests to the OpenAI API and inference of

8 meta-llama/Meta-Llama-3-70B: https://huggingface.co/meta-llama/
Meta-Llama-3-70B

9 NousResearch/Meta-Llama-3-70B-GGUF: https://huggingface.co/
NousResearch/Meta-Llama-3-70B-GGUF

10 llama.cpp: https://github.com/ggerganov/llama.cpp
11 llama-cpp-python: https://pypi.org/project/llama-cpp-python
12 OpenAI - GPT-3.5: https://platform.openai.com/docs/models/gpt-3-5

https://huggingface.co/meta-llama/Meta-Llama-3-70B
https://huggingface.co/meta-llama/Meta-Llama-3-70B
https://huggingface.co/NousResearch/Meta-Llama-3-70B-GGUF
https://huggingface.co/NousResearch/Meta-Llama-3-70B-GGUF
https://github.com/ggerganov/llama.cpp
https://pypi.org/project/llama-cpp-python
https://platform.openai.com/docs/models/gpt-3-5
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Fig. C.2. Prompt for generating an annotated example: Each prompt comprises a task description, annotated examples and a label. An example appropriate to the label should be
enerated.
o

Llama-3-70B were executed sequentially without any parallelization.
he maximum context length was 4,096 and 8,192 tokens, for GPT-

3.5-turbo and Llama-3-70B respectively, which was sufficient for all
prompts used in this study. The temperature parameter was set to
0.5 for both LLMs in order to balance variability and coherence. The
termination criterion for token generation was specified as "\n", rep-
resenting a newline character, since synthetic examples, similar to the
few-shot examples, were required to be consistently presented in a
single line.

Appendix C. Examples of prompts

C.0.1. Example
See Fig. C.2.

C.0.2. Example translated to English
See Fig. C.3.

Appendix D. Specification of labels of the examples to be gener-
ated

The label followed the identical format as utilized for the few-shot
xamples. The generation of examples for LRS500 was executed in such
 way that for synthetic examples, the frequency of a given number of
uples in the label corresponds to the frequency in the available 500 real
xamples, which served as a representation of the overall population.
or example, if 80% of the generated examples contained only one
uple in their corresponding label, it would be because 400 out of the

13 openai: https://pypi.org/project/openai
11 
500 real examples also had only one tuple in their label (e.g. 400 of
500 examples if 500 synthetic examples are to be generated).

For LRS25, this modelling was not possible, since the quantity of 25
annotated real examples is too small to make a representative judgment
about the overall population. Notably, in this low-resource scenario,
there is no access to the 500 real examples, preventing their distribution
from serving as a reference.

Consequently, for such a low-resource scenario, where no represen-
tative data is available, a distinct strategy was employed. All training
sets from the ABSA task in SemEval-2016, encompassing customer
reviews in various languages and from different domains, were utilized
to determine the distribution used for the labels. Thus, the distribution
was derived from the distribution observed in these examples. Notably,
the distribution of the number of tuples in a label, which was used to
generate examples, is shown in Appendix E for both low-resource sce-
narios. Interestingly, the distribution calculated based on the SemEval
datasets was very similar to the distributions calculated for the six
iterations based on the given 500 examples available in each iteration.

It was ensured, that each combination of aspect category and
sentiment polarity (15 in total since there are 5 aspect categories
and 3 sentiment polarities) occurred with equal frequency among
the labels for the examples to be generated. For instance, the tuple
(’FOOD’,‘POSITIVE’) had to occur with the same frequency as
the tuple (’SERVICE’,‘NEUTRAL’). As the number of tuples across
all labels was not always divisible by 15, exact equality was sometimes
impossible. This approach for label balancing allowed for the inclusion
f combinations of aspect categories and sentiment polarities that may

only rarely have occurred in the real examples.

Appendix E. Distribution of the number of tuples in a label for
few-shot generation

See Table E.10.

https://pypi.org/project/openai
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Fig. C.3. Prompt for generating an annotated example (English translation).
Table E.10
Distribution of the Number of Tuples in a Label for Few-Shot Generation.

# Tuples in Label 1 2 3 4 5 6 7 8 9 16

SemEval Ratio for LRS25 64.8% 21.0% 8.2% 3.6% 1.4% 0.6% 0.2% 0.2% – –

Iteration 1 for LRS500 72.6% 18.8% 5.2% 2.2% 0.4% 0.6% 0.2% – – –
Iteration 2 for LRS500 73.8% 18.2% 5.0% 2.4% 0.2% 0.2% – – 0.2% –
Iteration 3 for LRS500 73.6% 18.6% 5.4% 1.0% 0.8% 0.2% 0.4% – – –
Iteration 4 for LRS500 73.8% 20.0% 4.4% 1.6% 0.2% – – – – –
Iteration 5 for LRS500 69.6% 20.0% 6.4% 2.6% 0.6% 0.4% – 0.2% – 0.2%
Iteration 6 for LRS500 72.0% 19.6% 6.4% 1.4% 0.6% – – – – –
Table F.11
Examples for the translation of a generation into a training example.

Label [(’SERVICE’, ’NEGATIVE’), (’FOOD’, ’POSITIVE’)]

Generation The <aspect-term aspect=’SERVICE’ polarity=’POSITIVE’>staff
</aspect-term> is very unfriendly, but it was delicious.

Sentence "The staff is very unfriendly, but it was delicious."
Triplets [(’staff’, ’SERVICE’, ’NEGATIVE’, start=4, end=9),

(’NULL’, ’FOOD’, ’POSITIVE’, start=0, end=0)]

(a) Explicit and implicit aspects in a generation

Label [(’FOOD’, ’POSITIVE’), (’FOOD’, ’POSITIVE’)]

Generation It was very delicious, even the <aspect-term aspect=’FOOD’
polarity=’POSITIVE’>pizza</aspect-term> was delicious.

Sentence "It was very delicious, even the pizza was delicious."
Triplets (’pizza’, ’FOOD’, ’POSITIVE’, start=32, end=37),

(’NULL’, ’FOOD’, ’POSITIVE’, start=0, end=0)]

(b) Duplicate tuple in label
Appendix F. Examples for the translation of a generation into a
raining example: English example

See Table F.11.

Appendix G. Characteristics analysed in the validation process

See Table G.12.
12 
Characteristics that must be present in a generated example:

• XML tags for marking aspect terms must have a valid XML scheme
(e.g., closing XML tag is present).

• Exclusivity of XML tags named "aspect-term", each featur-
ing attributes "aspect" and "polarity". These attributes are
strictly defined to encompass only the five introduced aspect cat-
egories and three sentiment polarities as their respective values.
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Table G.12
Validation process of a marked aspect term.
Generations for Label [(’FOOD’, ’POSITIVE’)]

"Die <aspect-term aspect=’FOOD’ polarity=’POSITIVE’>Pizza</aspect-term> war gut."

✓ Valid Generation: (’FOOD’, ’POSITIVE’) marking the aspect term ’Pizza’ occurs in the given label.

"Es hat mir gut geschmeckt!"

✓ Valid Generation: There is no aspect term marked in the generated text that has been assigned a combination of aspect category and
sentiment polarity not present in the label.

"Die <aspect-term aspect=’FOOD’ polarity=’POSITIVE’>Pizza</aspect-term> hat mir nicht geschmeckt."

✓ Valid Generation: ’Pizza’ is assigned the aspect category FOOD and the sentiment polarity ’POSITIVE’ which is also specified in
the label. Negative sentiment expressed towards ’Pizza’ is not verified automatically, since the validation process operates at a
syntactical level rather than a semantic!

"Die <aspect-term aspect=’FOOD’ polarity=’POSITIVE’>Pizza</aspect-term> und das
<aspect-term aspect=’FOOD’ polarity=’POSITIVE’>Eis</aspect-term>haben mir gut geschmeckt."

✗ Invalid Generation: (’FOOD’, ’POSITIVE’) occurs only once in the provided label.

"Die <aspect-term aspect=’FOOD’ polarity=’NEGATIVE’>Pizza</aspect-term> war gut."

✗ Invalid Generation: (’FOOD’, ’NEGATIVE’) is not present in the provided label.
a

t

A
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• Exclusivity of XML tags highlighting an aspect term assigned to
a combination of aspect category and sentiment polarity that is
specified in the label. This includes ensuring that marked aspect
terms with a particular combination do not occur more frequently
in the generated text than specified in the label. Examples for
valid and invalid generations are given in G.12.

• The generated example consisted of a single sentence, verified
using the NLTK Tokenizer package.

• An XML tag must enclose text and must therefore not be empty.
• An aspect term, unlike an opinion term, must not exclusively

consist of a single word from the following POS (Part-Of-Speech)
classes: adjectives, verbs, conjunctions, determiners, interjections,
and pronouns. Notably, it has also been considered that aspect
terms comprising multiple words, including at least one of these
POS classes, may be excluded. However, words from the men-
tioned POS classes can be part of an aspect term, for example, in
the case of proper nouns (e.g., a restaurant named "Little Goose"
includes the adjective "Little"). POS identification was employed
using spaCy (de_core_news_lg model).

For a generated example, the presence of the other characteristics
was examined only in case the first one was satisfied. In the case
of an invalid XML scheme, it was unclear which part of the genera-
tion belonged to the tags or was part of the sentence and an aspect
term. Consequently, the characteristics of these elements could not be
valuated.

If any of these characteristics were not met, the generation pro-
ess was repeated with the same prompt. In the case that after 25
epeated generations no example was generated that met the aforemen-
ioned characteristics, new few-shot examples were selected in order to
revent an infinite loop. Particularly regarding GPT-3.5-turbo, where
equests incurred costs, this could have become expensive over time.

In the context of LRS25, the absence of further examples that could
be used as few-shot examples led to a random rearrangement of the
existing 25 examples within the prompt. In contrast, for LRS500, 25
few-shot examples were again randomly selected from the 500 real
examples.

Appendix H. Characteristics of generated examples leading to re-
generation

See Table H.13.

Appendix I. Hyperparameter optimization for ACD and ACSA

Since there were only a limited number of examples available in
oth low-resource scenarios that could be used for hyperparameter
13 
optimization, the initially envisioned approach was to employ the
hyperparameters used in related works for both tasks. For instance,
in the study by Fehle et al. (2023), the best performing model on the
ACD task was trained for 3 epochs, and on the ACSA task for 4 epochs.
Similarly, in the work of Sun, Huang, and Qiu (2019), the ACD task
was trained for 4 epochs.

However, during pre-experiments while implementing the model
rchitecture using the dataset from Fehle et al. (2023), it was observed

that for both the ACD and ACSA task, when using only 500 or 1,000
examples for training, the model was only predicting zero values during
he first three epochs, requiring additional epochs for training.

In order to determine hyperparameters such as the number of
epochs for the ACD and ACSA tasks for the sample sizes considered in
conditions C1-C9 (500, 1,000, 1,500, and 2,000), the dataset by Fehle
et al. (2023) was utilized. The characteristics of this dataset’s examples
closely align with those of the examples employed in the present study,
since both comprise German-language examples, and they share an
equivalent number of considered aspect categories (5) and sentiment
polarities (3).

Similar to Fehle et al. (2023), Optuna (Akiba, Sano, Yanase, Ohta,
& Koyama, 2019) was employed for systematic hyperparameter opti-
mization. 20 trials were conducted for each of the eight evaluation
runs (since four sample sizes were considered for both the ACD and

CSA task), aiming to maximize the micro-averaged F1 score using a
ree-structured Parzen Estimator (TPE). A random subset of n training
xamples was selected from the 4,254 sentences of the dataset intro-
uced by Fehle et al. (2023), alongside a random selection of 500 test

examples. This process was repeated five times, which allowed for the
evaluation with five different sets of training and test data in each trial
for increased reliability.

• Learning rate ∈ {2𝑒 − 5, 3𝑒 − 5, 4𝑒 − 5, 5𝑒 − 5}
• Batch size ∈ {8, 16, 32}
• Number of epochs ∈ [2, 20]

The pre-selection of hyperparameters was based on the approach
by Devlin (2018), with the search space of the number of epochs limited
o a maximum of 20 epochs.

Table I.14 presents the hyperparameters of the best performing
trial regarding the F1 score for both the ACD and ACSA tasks and
the considered sample counts. As proceeded by Fehle et al. (2023)
and Hellwig et al. (2024), a prediction was considered a true positive, if
the predicted aspect(s) of a sentence (including the sentiment polarity
for ACSA) occurred in the ground truth labels.
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Table H.13
Characteristics of generated examples leading to regeneration.

Llama-3-70B GPT-3.5-turbo

LRS25 LRS500 LRS25 LRS500

# Examples 11,850 9,000 11,850 9,000
# Regenerations 12,656 4,411 901 258
# Examples with more than one Regeneration 2,308 1,664 260 108
# Examples with more than 25 Regenerations 92 19 9 0

(a) Regenerations

Characteristic Leading to a Regeneration # Regenerations

Llama-3-70B GPT-3.5-turbo

LRS25 LRS500 LRS25 LRS500

Invalid XML Schema 25 27 1 4
Invalid XML Tags (Invalid Attribute or Tag Name) 25 14 0 0
Aspect Category and Sentiment Polarity occur in text but not in label 1,147 887 93 31
Generated text is empty 0 0 0 0
More than one Sentence in Generated text 12,059 3,706 674 143
Empty Aspect Term in Generated text 1 0 0 0
Single Word Aspect Term with Specific Word Classa 997 359 179 86

(b) Characteristics leading to a regeneration
a Aspect terms consisting of one word are considered invalid, in case the word belongs to the following POS-classes: adjectives, verbs,
conjunctions, determiners, interjections, and pronouns.
Table I.14
Best runs of hyperparameter optimization for ACD and ACSA.

Task # Examples # Epochs Learning Rate Batch Size F1 Micro

ACD

500 13 3e−05 8 88.89
1,000 14 2e−05 8 89.81
1,500 10 3e−05 16 90.07
2,000 7 3e−05 32 90.11

ACSA

500 15 2e−05 16 75.48
1,000 15 2e−05 8 79.76
1,500 20 2e−05 16 81.06
2,000 18 3e−05 32 80.82

Appendix J. Preparation of data for the linguistic analysis

In order to calculate the metrics for real examples across the three
sample sizes, we considered 1, 2 or 3 folds of 500 examples-subsets (see
Fig. A.1(b) in the Appendix). The synthetic examples under consider-
tion for this analysis of LRS500 correspond to the synthetic training
xamples considered in conditions C4, C5, and C6, comprising 500,
,000, and 1,500 synthetic examples, respectively.

Since LRS25 did not require three sets of 500 synthetic examples
ach, but rather subsets of 475, 500, and 1,000 examples (as shown
n Fig. A.1(c)), a different approach was adopted here. Firstly, the

availability of three sets, each comprising 500 synthetic examples for
analysis, had to be ensured. Secondly, within each set, every combina-
tion of aspect category and sentiment polarity specified in the labels
had to occur with the same frequency as it is the case for the three sets
of LRS500.

To meet these requirements, the two sets comprising 500 and 1,000
ynthetic examples were initially combined. As required, every combi-
ation of aspect category and sentiment polarity specified in the labels
ccurred with the same frequency in these two sets. Subsequently, the
,500 examples were divided into three sets of 500 examples each using
he stratification method for multi-label data proposed by Sechidis,
soumakas, and Vlahavas (2011). This ensured an even distribution of
ach combination of aspect category and sentiment polarity, as in a
iven set of 500 examples generated for LRS500.

Data availability

Data will be made available on request.
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