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1 Introduction

The recent work demonstrating the duality between the path integral of Jackiw-Teitelboim
(JT) gravity [1] and a certain double scaled matrix integral [2, 3] has allowed for direct
calculations of n-point correlation functions in terms of a perturbative genus expansion,
making JT gravity a useful toy model for studying quantum gravity. The link to a matrix
integral strongly suggests the notion that JT gravity behaves as a quantum chaotic system.
Indeed, the very definition of quantum chaos, as conjectured by Bohigas, Giannoni and
Schmit [4], is that the spectral statistics of a quantum Hamiltonian should be described by
random matrix theory (RMT) in the proper universal regime. The agreement between the
spectral statistics of JT gravity dual to a unitary matrix model and universal RMT has
recently been established analytically [5]. Furthermore, in the low temperature limit, JT
gravity is described by the same Schwarzian action as the SYK model [6, 7], and numerical
evidence has established agreement between the spectral statistics of the SYK model and
RMT universality [8]. The universal chaos bound [9], calculated from out-of-time-order-
correlators, has also been shown to be saturated, both analytically and numerically, for the
SYK model [10–12]. However, there has been a lack of exploration of the quantum chaotic
properties of unorientable JT gravity (corresponding to the time-reversal invariant case)
due to the theory being divergent [3].

To be precise, one can consider the canonical spectral form factor (SFF),
⟨Z(β + it)Z(β − it)⟩c, as a useful diagnostic for chaos in quantum systems [13]. The quan-
tity can be computed from an analytic continuation of the connected two-point function,
⟨Z(β1)Z(β2)⟩c. The path integral gives an interpretation of ⟨Z(β1)Z(β2)⟩c as a sum over
all connected spacetime topologies with two asymptotic boundaries, and the solution can
be written as a genus expansion in the parameter eS0 . The parameter S0 is a coupling in
the gravitational action and can be interpreted as the leading order contribution to the
entropy [14]. The important point is that the path integral calculation reduces to computing
the volume of the moduli space of the topologies under consideration. For example, when the
moduli space consists of bordered orientable Riemann surfaces, as shown in [2], the volume
of the moduli space is given by the Weil-Petersson (WP) volume, which can be computed
effectively from Mirzakhani’s recursion relation [15, 16]. In general, the manifolds included in
the path integral can be orientable or unorientable, contain additional spin or pin structures,
or they can be supersymmetric. The precise specification determines the symmetry class
of the dual matrix model. The complete classification of such variations of JT gravity and
their dual matrix model theories was done in [3].

The focus of this paper is the case when the manifolds are allowed to be unorientable, but
contain no additional structures and have no supersymmetry, corresponding to a matrix model
in the orthogonal symmetry class. This can be considered as a more important case than
the unitary symmetry class because it implies time reversal invariance of the corresponding
boundary theory. The necessary generalization of the WP volumes to unorientable surfaces
contains logarithmic divergences and the volume is therefore infinite [17, 18]. However, it
was recently shown by utilizing a regularization scheme that the unorientable WP volumes
satisfy a Mirzakhani type recursion relation [19]. This unorientable Mirzakhani recursion
relation is then related via Laplace transform to the standard loop equations [3, 20] of a
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matrix model with orthogonal symmetry and the JT gravity leading order energy density
ρJT
0 (E) ∝ sinh

(
2π

√
E
)
. In the low energy limit JT gravity reduces to the Airy model,

also known as topological gravity, with energy density ρAiry
0 (E) ∝

√
E. For this model,

the volume of the moduli space is finite, allowing one to define the unorientable Airy WP
volumes without any issue.

The main task of this work is to compute the canonical SFF of unorientable topological
gravity and compare the result to universal random matrix theory. On the gravitational
side it is necessary to first compute the unorientable Airy WP volumes for the case of two
boundaries. To do so we will use the loop equations with the Airy spectral curve. The
universal random matrix theory result of the canonical SFF can be derived from the Laplace
transform of the form factor, which is well established in the quantum chaos literature [21, 22].
The form factor in the universal regime depends only on the symmetry class and mean
level spacing of the matrix model. In a traditional, i.e. not double scaled, matrix model
the universal limit is N → ∞, where N is the dimensionality of the matrices. In practice,
for a double scaled matrix model N will be replaced by eS0 , and the relevant limit will be
eS0 → ∞. This quantity can be interpreted as the typical value of the eigenvalue density
of the matrix model in this double scaled limit.

For the unorientable Airy model to be quantum chaotic, the behavior of the canonical
SFF should agree with the universal RMT result for the orthogonal symmetry class in the late
time limit, see [23] for a discussion on time scales in quantum chaos. This time, t, is taken to
be on the order of eS0 , i.e. t ∼ eS0 . We will work in the so called “τ−scaling” limit where both
eS0 → ∞ and t→ ∞ but the quantity τ := te−S0 is held fixed. This limit has been studied
somewhat extensively [5, 24–26] for the orientable Airy model corresponding to the unitary
symmetry class. In this case, it is straightforward to show the canonical SFF of the Airy
model agrees with universal RMT after τ−scaling. However, it will be shown the canonical
SFF of the unorientable Airy model has terms that are higher order in eS0 , so that powers of
t and terms logarithmic in t survive the τ−scaling limit. The universal RMT result, by its
very definition, is independent of t after τ−scaling, and thus the comparison between the
results becomes fairly non-trivial. In order to reconcile the two expressions we use asymptotic
expansions of generalized hypergeometric functions to derive an identity, valid in the limit
t → ∞, to demonstrate equivalence of the expressions for low orders in τ . We then argue
how similar identities could be derived to demonstrate equivalence for higher order terms.

We now present necessary background material and give a summary of the main results
of the paper.

1.1 Canonical SFF from unorientable topological gravity

The connected two-point function of unorientable topological gravity has the following genus
expansion [3]:

⟨Z(β1)Z(β2)⟩c =
∑

g=0, 1
2 ,1...

Zg,2(β1, β2)
(eS0)2g , (1.1)
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where

Zg,2(β1, β2) =
∫ ∞

0

∫ ∞

0
b1 db1 b2 db2 Zt(b1, β1)Zt(b2, β2)V Airy

g,2 (b1, b2), (1.2)

with the trumpet partition function defined as

Zt(b, β) := 1√
4πβ

e
− b2

4β , (1.3)

and V Airy
g,2 are the unorientable Airy WP volumes. The SFF is found by taking β1 = β + it

and β2 = β − it, i.e.

κβ(t) := ⟨Z(β + it)Z(β − it)⟩c =
∑

g=0, 1
2 ,1...

κg
β(β1, β2)
(eS0)2g . (1.4)

Therefore, once the V Airy
g,2 are known, computing the SFF is straightforward. The easiest way

to compute the volumes is to take advantage of the duality to a double scaled matrix integral
of orthogonal symmetry class. The duality is defined by the following correspondence [19, 27]:

V Airy
g,n (b1, . . . , bn) = L−1

[
n∏

i=1

(−2zi

bi

)
RAiry

g,n (−z21 , . . . ,−z2n), (b1, . . . , bn)
]

(1.5)

= (−1)n
∫

δ+iR
RAiry

g,n

(
−z21 , . . . ,−z2n

) n∏
j=1

dzj

2πi
2zj

bj
ebjzj (1.6)

The Rg,n are the coefficients of the genus expansion of the connected n-point correlation
function of the resolvents taken from a double scaled matrix integral of orthogonal symmetry
class. Here we will mainly be interested in the case n = 2. The Airy limit of the WP volumes
is given by the limit b1, . . . , bn → ∞. This limit can be computed using (1.6) by taking the
leading order energy density of the matrix model to be:

ρAiry
0 (E) =

√
E

2π . (1.7)

With this information the RAiry
g,n can be recursively computed using the loop equations [3, 20].

In this work we compute RAiry
g,2 , and correspondingly V Airy

g,2 , up to g = 7/2. The unorientable
Airy WP volumes we find are of the form

V Airy
g,2 (b1, b2) = V >

g (b1, b2)θ(b1 − b2) + V >
g (b2, b1)θ(b2 − b1), (1.8)

with

V >
g (b1, b2) =

α1+α2=6g−2∑
α1,α2∈N0

Cα1,α2b
α1
1 bα2

2 , (1.9)

and in general not symmetric coefficients Cα1,α2 . The contributions to (1.4) up to g = 7/2
derived from these volumes are reported in section 2. Here we report the first few terms
after taking the τ−scaling limit:

e−S0κWP
β (τ) = τ

2πβ − τ2√
2πβ

+ τ3

π

[
−10
3 + log

(2t
β

)
−

√
2π
3
(
tτ2
)1/2

− 2
(
tτ2
)2

45

]

+ 8
√
2πβ
3 τ4 +O

(
τ5
)
, (1.10)
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where the superscript WP was added to indicate this was computed from the unorientable
Airy WP volumes as opposed to universal RMT. Note that powers of t and logarithmic terms
in t remain after τ−scaling. It will become clear why the coefficient of τ3 is presented in
this way after comparing to the SFF computed from universal RMT.

1.2 Canonical SFF from universal RMT with orthogonal symmetry

The canonical SFF of universal RMT, after τ−scaling, is given by:

e−S0κβ(τ) =
∫ ∞

0
dEe−2βEρ0(E)−

∫ ∞

0
dEe−2βEρ0(E)b

(
τ

2πρ0(E)

)
, (1.11)

where b is the form factor and we have used notation consistent with [21]. The form factor
depends on the specific symmetry class of the matrix model and we will use the value derived
for the Gaussian orthogonal ensemble (GOE). To be consistent with the unorientable Airy
model we again take the leading order energy density, ρ0(E), to be given by (1.7). The exact
result of the orthogonal SFF computed from universal RMT, referred to as κGOE

β (τ), is given
in section 3.2. Here we report the first few terms:

e−S0κGOE
β (τ) = τ

2πβ − τ2√
2πβ

−
γ + log

(
2βτ2

)
+ 1

3
π

τ3 + 8
√
2πβ
3π τ4 +O

(
τ5
)
. (1.12)

In view of the definition (1.11), there cannot be any t-dependent terms.

1.3 Comparison of unorientable topological gravity and universal RMT

By comparison, the agreement of (1.10) and (1.12) is obvious for all terms except the τ3

coefficient. More generally, we have checked that all terms even in τ agree up to τ8, and all
odd terms, in both computations, have a structure similar to the τ3 terms presented in (1.10)
and (1.12), respectively. For example, we have checked the coefficient of log(β) agrees up
to τ7. In section 4 we prove the following equivalence for τ3:

−τ3
log
(
2βτ2

)
+ γ + 1

3
π

= τ3

π

(
−10

3 + log
(2t
β

)
−

√
2π
3
(
tτ2
)1/2

− 2
(
tτ2
)2

45

)
+O

(
t−1/2

)
+O

(
τ9
)
, (1.13)

and we will show the terms of order τ9 and greater depend on t and are not relevant for the
τ3 comparison. The O

(
t−1/2

)
indicates this equivalence is only valid in the limit t → ∞.

Therefore, the τ3 term also agrees in the universal limit. We further show that in order
to prove the equivalence of the τ5 term, the g = 4 from the loop equations, i.e. V Airy

4,2 , is
needed, which, however, has not been computed so far. The agreement of terms even in τ ,
the agreement of the τ1 and τ3 terms, and the structure of the rest of the odd terms provide
strong evidence that the two results for the SFF agree in the universal limit.

1.4 Cancellations

We show directly that this agreement, as for the unitary case, implies the cancellation of certain
contributions to the canonical SFF that would arise for a generic choice of the coefficients
in the unorientable WP volumes. Along the lines of [28, 29], we derive expressions for
exemplary cases of said contributions and the corresponding constraints on the coefficients of
the unorientable Airy WP volumes, which we show to be fulfilled in all the cases studied so far.
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1.5 Structure of the paper

The rest of the paper is organized as follows: in the following section we briefly review the
loop equations formalism, before demonstrating how the relevant contour integrals can be
solved for the case of the unorientable Airy model. We then compute the unorientable Airy
WP volumes, comment on their general structure, and use them to compute the canonical
SFF. In section 3 the general formula for the universal canonical SFF from RMT is derived
and then computed for the specific case of the Airy model for the orthogonal symmetry
class. In section 4 we compare the two expressions, demonstrate equivalence for the first
few terms in the series, and argue they are equivalent to all orders. Section 5 is concerned
with giving an outlook on how to use the consistency of the unorientable Airy model with
universal RMT to derive constraints on the coefficients of the unorientable Airy WP volumes.
In appendix A and appendix B we collect our results for the resolvents computed from the
loop equations. In appendix C we use diagrammatic considerations to show that the structure
of the unorientable Airy WP volumes we claim is indeed generic. In appendix D we work
out the generic form of the canonical SFF for the unorientable Airy model as needed for the
construction of constraints in section 5. Lastly, appendix E contains the derivation of the
universal RMT result for the canonical SFF of the unorientable Airy model.

2 Canonical SFF from unorientable topological gravity

2.1 Matrix model computation

As we explained in the introduction, it is possible to compute the correlation functions of
partition functions of the unorientable Airy model by employing the duality to a double-scaled
matrix model with the leading genus density of states ρAiry

0 (x) =
√

x
2π .1 In order to do so,

it is easiest to use the loop equations approach to compute the perturbative expansion of
matrix model correlation functions of resolvents which then determine the unorientable Airy
WP volumes needed for the computation of the correlation functions of partition functions.
To facilitate presenting this computation, it is worthwhile to quickly recall said formalism
for a not yet double-scaled one-cut matrix model, as this will be sufficient for the present
case of interest. Readers already familiar with this formalism can skip this presentation
and continue with section 2.1.2.

2.1.1 The perturbative loop equations

We follow the notation of [3]. There it was shown that for a matrix model of size N ,
determined by a potential V (x) and a choice of β ∈ {1, 2, 4}, where the choice of β = 1
corresponds to the orthogonal case, it holds that

−N⟨P (x, I)⟩c =
(
1− 2

β

)
∂x⟨R(x, I)⟩c + ⟨R(x, x, I)⟩c +

∑
J⊇I

⟨R(x, J)⟩c⟨R(x, I\J)⟩c

−NV ′(x)⟨R(x, I)⟩c +
2
β

n∑
k=2

∂xk

[⟨R(x, I\{xk})⟩c − ⟨R(I)⟩c

x− xk

]
,

(2.1)

1This genus 0 density of states is the same for both the orientable and the unorientable theory.
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where

R(x1, . . . , xn) = Tr 1
x1 −H

. . .Tr 1
xn −H

(2.2)

is the n-point resolvent and

I = {x1, . . . , xn}. (2.3)

The definition of P (J) can be looked up in [3], but the important thing to note is that it
is analytic in x. The idea now is to plug the genus expansion of the correlation functions
of the resolvents, given by

⟨R(I)⟩c =
∑

g∈{0, 1
2 ,1,...,}

Rg(I)
N2g+|I|−2 , (2.4)

into eq. (2.1). Considering each order in N of the resulting equation separately enables
one to compute Rg(I) recursively through a dispersion-relation-like contour integral. For
completeness, we swiftly recall the special cases g = 0, n = 1, 2, 3, computed in [3], before
citing the result for generic g, n.

g = 0, n = 1. Considering I = ∅ and taking the leading order term in eq. (2.1), one finds

y(x)2 = (analytic), (2.5)

with y(x) := R0(x)−
V ′(x)
2 , (2.6)

where y(x) is the spectral curve which turns out to determine all the Rg(I). The first special
case encodes the connection of the spectral curve with the potential V , used here to define
the matrix model. Furthermore, as the potential V is assumed to be analytic, the relation
can be used to replace subsequent occurrences of R0(x) by the spectral curve at the cost
of adding an additional analytic term. For brevity’s sake, we only state the properties of
the spectral curve needed for the subsequent explanation, referring the reader for proof and
details to e.g [3, 20]. As we are only concerned with one-cut matrix models, it suffices to
consider the case of the cut being a real interval [a−, a+] with the spectral curve having a
square-root singularity at the end points. Another important property of the spectral curve
one can derive from the relation of R0(x) with the density of states is

lim
ϵ→0

y(x± iϵ) = ∓iπρ0(x). (2.7)

Hence, one can determine the spectral curve from ρ0, i.e. the genus zero term, which for the
case of interest in this paper is given by (1.7). This yields the spectral curve of the Airy model,

yAiry(x) =
√
−x
2 , (2.8)

i.e. a− = 0, a+ → ∞.

– 7 –
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g = 0, n = 2. Next, it is useful to consider I = {x1} and look at the leading term in
eq. (2.1) arising for this case:

R0(x, x1)
[
2R0(x)− V ′(x)

]︸ ︷︷ ︸
=2y(x)

+ 2
β
∂x1

[
R0(x) +R0(x1)

x− x1

]
= (analytic). (2.9)

Using eq. (2.6) this can be rewritten as

2y(x)R0(x, x1) +
2
β

y(x)
(x− x1)2

= (analytic in x near the cut). (2.10)

To solve for R0(x, x1), we use an argument due to Migdal [30]. The idea is to compute
R0(x, x1) by a suitable contour integral with an integrand vanishing at infinity. It is thus
advisable to divide eq. (2.10) by y(x), as in general, y(x) does not vanish for large |x|.
However, doing so alters the analyticity properties of the r.h.s., since 1

y(x) diverges at the
edges of the cut. To cure this, one defines

σ(x) := (x− a+)(x− a−), (2.11)

such that
√
σ(x) has the same branch-cut structure as y(x),2 guaranteeing

√
σ(x)

y(x) is analytic
near the cut. Using this to divide out y(x) results in√

σ(x)R0(x, x1) +
1
β

√
σ(x)

(x− x1)2
= (analytic in x near the cut). (2.12)

Now one can compute

R0(x, x1)
√
σ(x) Cauchy= 1

2πi

∮
C′

dx′

x′ − x
R0(x′, x1)

√
σ(x′)

= 1
2πi

∮
C

dx′

x′ − x
R0(x′, x1)

√
σ(x′)

= − 1
2πi

1
β

∮
C

dx′

x′ − x

√
σ(x′)

(x′ − x1)2

=: − 1
β

1
2πi

∮
C
dx′ f(x′),

(2.13)

where, in the first line Cauchy’s theorem was used to rewrite R0(x, x1) as an integral over the
contour C′ encircling x clockwise, see figure 1(a). In the second line the contour was deformed
first to the black contour using the fact that R0(x′, x1) is holomorphic away from the cut, then
the points where the green curve starts were brought together on the real line away from the
cut, using again the analyticity of the integrand there. Now one takes the radius of the circle
to infinity, using that for large |x′|, R0(x′, x1) ∝ 1

x′ . Thus, only the contour C encircling the
cut remains, as depicted in figure 1(b). Employing once more the analyticity of the integrand,
this contour is contracted so that it only encircles the cut-region. In the third line of eq. (2.13),
we use eq. (2.12), noting that the integral over a function analytic near the cut vanishes.

To evaluate this integral, it is most convenient to deform the contour C to the contour
C′, as depicted in figure 2. The deformed contour C′ is chosen such that the contribution of

2Meaning
√

σ(x) = −
√

σ(x̂), where x and x̂ denote, as in [3], the coordinate on the “first” and the “second”
sheet, respectively.
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(a) (b)

Figure 1. Illustration of the branch cut structure of the spectral curve y(x) of a one-cut matrix
integral with the branch cut depicted as the broken line with the edges a− and a+. In a) the contour
C′ is depicted in red, in b) its deformation is depicted in black with the final deformation C being the
completion of the contour circumventing the cut, i.e. the black solid and dotted lines.

Re(x')

Im(x')

a- a+

x1

x2

(a)

Im(x')

a- a+

x1

x2

Re(x')

(b)

Figure 2. Illustration of the deformation of the integration contour. In a), the original contour C is
depicted in red, in b), its deformation C′ is depicted in green.

the circle vanishes as its radius is sent to infinity due to the behaviour of the integrand for
large x′. Taking the connections from the arc at infinity to the small circles around x1 and
x2 very narrow, the two parts of a given connection will cancel each other (as they run in
opposite directions and the integrand is analytic in the region enclosed by them). Hence, one
is left only with the contribution of the two poles of the integrand at x1 and x2, which are
encircled in the mathematically positive way. Using the residue theorem, one finds

R0(x1, x2)
√
σ(x1) = − 1

β

(
Res

x′=x1
+ Res

x′=x2

)
f(x′)

= − 1
β

[ √
σ(x1)

(x1 − x2)2
−
x1x2 + a+a− − a++a−

2 (x1 + x2)
(x1 − x2)2

√
σ(x2)

]

= 1
β(x1 − x2)2

[
x1x2 + a+a− − a++a−

2 (x1 + x2)√
σ(x2)

−
√
σ(x1)

]
.

(2.14)
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Hence, one has

R0(x1, x2) =
1

β(x1 − x2)2

(
x1x2 − a++a−

2 (x1 + x2) + a+a−√
σ(x1)

√
σ(x2)

− 1
)
, (2.15)

which only depends on the edges of the cut that are specified when giving a spectral curve.
For the spectral curve yAiry(x), one has to consider the limits a− → 0, a+ → ∞. Taking
these limits one after the other in eq. (2.15), one finds

R0(x1, x2) =
1

β(x1 − x2)2

 x1x2 − a+
2 (x1 + x2)√

x21 − x1a+
√
x22 − x2a+

− 1


a+→∞−−−−→ 1

2β
[(√

−x1 −
√
x2
)
(
√
−x1 +

√
−x2)

]2
(
−x1 − x2 − 2

√
−x1

√
−x2√

−x1
√
−x2

)

= 1
2β

1
(
√
−x1 +

√
−x2)2

√
−x1

√
−x2

,

(2.16)
as reported in [3].

g = 0, n = 3. For the last special case, {x1, x2}, analogously to the previous case, one
considers the leading term and rewrites it as a contour integral to find

R0(x, x1, x2) =− 1
2πi

∫
C

dx′

x′ − x

√
σ(x′)√
σ(x)

1
y(x′)

×
[
R0(x′, x1)R0(x′, x2) +

1
β

(
R0(x′, x2)
(x′ − x1)2

+ R0(x′, x1)
(x′ − x2)2

)]
.

(2.17)

Generic case. For all other cases, one can show in analogous fashion that

Rg(x, I) = − 1
2πi

∮
C

dx′

x′ − x

√
σ(x′)√
σ(x)

1
2y(x′)Fg(x′, I), (2.18)

with

Fg(x, I) =
(
1− 2

β

)
∂xRg− 1

2
(x, I) +Rg−1(x, x, I)

+
′∑

J⊇I,h

Rh(x, J)Rg−h(x, I\J)

+ 2
n∑

k=1

[
R0(x, xk) +

1
β

1
(x− xk)2

]
Rg(x, I\{xk}),

(2.19)

where
∑′ indicates that R0(x) and R0(x, xk) are excluded from the sum.3

3Note that this formula needs to be modified for g = 0, hence why we split off the special cases
(g, n)=(0, 1), (0, 2), (0, 3). We do not provide them, as for higher n it is more efficient to use the quite fast
algorithm of [31] for the orientable volumes and translate to the unorientable volumes by the simple relation
derived in [3].
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2.1.2 Introduction of the double cover coordinate

To solve the contour integrals, as demonstrated already in the g = 0, n = 2 case, one could
deform the contour C to surround the poles of the integrand, enabling evaluation by the
residue theorem. However, it turns out to be more convenient to use the double-cover
coordinate z ∈ P1,4 (e.g. [32]), defined via x = −z2, to rewrite the integrals, which will
be the object of this section.

Before doing so, we briefly comment on the fate of the
√
σ terms in the case a+ →

∞, a− = 0. As seen from (2.18), we only have to consider the term,

lim
a+→∞

√
x′(x′ − a+)√
x(x− a+)

=
√
−x′√
−x

= z′

z
, (2.20)

where we went to the double-cover coordinate in the last step. Furthermore, the spectral
curve becomes yAiry(z) = 1

2z.
From here, it is straightforward to write down eq. (2.18) in the double cover coordinates

Rg(−z2, I) = − 1
2πi

∮
Cz

2z′dz′

z′2 − z2
z′

z

1
2y(−z′2)Fg(−z′2, I)

= − 1
2πiz

∮
Cz

z′2dz′

z′2 − z2
1

y(−z′2)
Fg(−z′2, I)

= 1
2πiz

∮
[−i∞+ϵ,i∞+ϵ]

z′2dz′

z′2 − z2
1

y(−z′2)
Fg(−z′2, I)

(2.21)

Here, Cz is the preimage of C under z → x(z). In the last line this has been made explicit
as the interval [−i∞+ ϵ, i∞+ ϵ] which, as z is defined on the Riemann sphere P1, is indeed
a closed contour winding once around the sphere with a small offset to the hemisphere of
positive real value. One can argue that this is indeed the correct preimage as follows. The
most important property of the contour C is that it encircles the cut once in a clock-wise
fashion. Thus, for a− = 0, a+ → ∞, it intersects the negative real axis at a position −δ
and before (after) this intersection point has negative (positive) imaginary part. Using the
branch-cut structure of the square root, one can quickly convince oneself that the contour in
the double cover coordinate has to go from positive imaginary infinity to negative imaginary
infinity with a small offset ϵ which gives the claimed contour. Changing the direction of
integration, thus cancelling the sign, gives the result stated above, which is in agreement
with [19]. In the following we will denote this contour in an abbreviated fashion as iR+ ϵ.

Now consider Fg(x, I). After noting that

∂xf(x) =
1

−2z ∂zf(z), (2.22)

one finds

Fg(−z2, I) =
(
1− 2

β

) 1
−2z ∂zRg− 1

2
(−z2, I) +Rg−1(−z2,−z2, I)

+
′∑

I⊇J,h

Rh(−z2, J)Rg−h(−z2, I\J)

+ 2
n∑

k=1

[
R0(−z2,−z2k) +

1
β

1(
z2k − z2

)2
]
Rg(−z2, I\

{
−z2k

}
).

(2.23)

4Using the notation P1 for the Riemann sphere.
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For the sake of readability, we will denote the dependence on a double-cover coordinate zi

just by zi, making the true dependence on −z2i implicit from now on.
Having considered the general case of Fg(z, I) in the double-cover coordinate system,

it is illustrative to reconsider the case of (g, n) = (0, 2). Transforming the relevant contour
integral for this case, given in eq. (2.13), to the double-cover coordinate one finds

R0(z1, z2) =
1

2πiβz1

∮
iR+ϵ

dz′

z′2 − z21

2z′2(
z′2 − z22

)2 (2.24)

The integrand as a function of z′ has poles at ±z1 and ±z2. We first consider the case of
Re(z1) > 0 and Re(z2) > 0.5 Then, the poles at −z1 and −z2 are in the hemisphere of
the negative real part (left) while the other two are on the other hemisphere. Now there
are two ways to deform the contour, first surrounding the two poles on the left hemisphere
counterclockwise, second surrounding those on the other hemisphere clockwise. The first
option gives

R0(z1, z2) =
1

βz1

[
Res

z′=−z1
+ Res

z′=−z2

] dz′

z′2 − z21

2z′2(
z′2 − z22

)2
= 1

2β
1

z1z2(z1 + z2)2
,

(2.25)

and the second

R0(z1, z2) =
−1
βz1

[
Res
z′=z1

+ Res
z′=z2

] dz′

z′2 − z21

2z′2(
z′2 − z22

)2
= 1

2β
1

z1z2(z1 + z2)2
,

(2.26)

which agree with each other, as they must, and with (2.15). The choice of positive real parts
of the double-cover coordinate yields R0,2 on the “first sheet” while other choices yield the
different continuations to other sheets. We are only interested in the “first sheet” quantities,
so we will use the assumption Re(zi) > 0 to compute the resolvents and then extend the
result to the whole plane in each variable.

This concludes the discussion of the loop equations for a general one-cut double-scaled
matrix model. The remainder of this section will focus on applying the formalism for the
Airy spectral curve in the orthogonal symmetry class.

2.1.3 Airy model correlation functions for β = 1

Before computing the correlation functions of resolvents, it is worthwhile to quickly recall
their relation with the Airy WP volumes6 to facilitate the comparison to the few known
results in the literature. The relation of the (Airy) WP volumes with the contributions to
the genus expansion of resolvents is given by

Vg,n(b1, . . . , bn) = L−1
[

n∏
i=1

(−2zi

bi

)
Rg(−z21 , . . . ,−z2n), (b1, . . . , bn)

]
(2.27)

= (−1)n
∫

δ+iR
Rg

(
−z21 , . . . ,−z2n

) n∏
j=1

dzj

2πi
2zj

bj
ebjzj (2.28)

5Actually larger than ϵ, but by sending ϵ → 0 after the computation this drops out.
6This relation holds for the orientable as well as the unorientable case.
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as one can quickly derive by inverting the expression of the partition function and inserting
the JT gravity formula for the partition function as trumpets integrated against the relevant
WP volume. However, the case of g = 1

2 , n = 1 is special, as one has to integrate the trumpet
only against db (as opposed to the usual WP form b db) to obtain the partition function [3].
Hence, in this case the above formula must be modified by removing the division by b1.

Having stated this expression we begin by considering some examples for the computation
of the resolvents in the orthogonal case, i.e. β = 1.

g = 1
2 , n = 1. In this arguably simplest case, one has

F 1
2

(
−z2

)
= 1

2z ∂zR0(−z2) →
1
2z ∂zy(z) =

1
4z , (2.29)

where R0(−z2) was replaced by the spectral curve by adding analytic terms which vanish
under the contour integration. Thus by eq. (2.21)

R 1
2
(z) = 1

2πiz

∫
iR+ϵ

z′2 dz′

z′2 − z2
2
z′

1
4z′ =

1
2

1
2πiz

∫
iR+ϵ

dz′

(z′ − z)(z + z′)

= 1
2z Res

z′=−z

1
(z′ − z)(z′ + z) = − 1

2z Res
z′=z

1
(z′ − z)(z′ + z)

= − 1
4z2 ,

(2.30)

where in the evaluation of the contour integral, the assumption Re{z} > 0 was used. To
compare with the JT result from [3], we compute the corresponding unorientable Airy WP
volume, i.e.

V Airy
1
2

(b) = L−1
[
−2zR 1

2
(z), b

]
= 1

2L
−1
[1
z
, b

]
= 1

2 . (2.31)

In the JT case one finds [3] V 1
2
(b) = 1

2 coth
b
4 , which, in the large b limit, reproduces the

unorientable Airy result.7

g = 1, n = 1. Here one finds from eq. (2.23)

F1(z′) =
∂z′R 1

2
(z′)

2z′ +R0,2(z′, z′) +R 1
2
(z′)R 1

2
(z′) = · · · = 7

16z′4
(2.32)

and thus

R1(z) =
1

2πiz

∫
iR+ϵ

z′2 dz′

z′2 − z2
2
z′

7
16z′4

= 7
8z

1
2πi

∫
iR+ϵ

dz′

(z′ − z)(z′ + z)z′3

= 7
8z

[
Res
z′=0

+ Res
z′=−z

] dz′

(z′ − z)(z′ + z)z′3
= 7

8z

( 1
2z4 − 1

z4

)
= − 7

16z5

= − 7
8z Res

z′=z

dz′

(z′ − z)(z′ + z)z′3
= − 7

16z5 .

(2.33)

With this, one can compute the corresponding WP volume

V Airy
1 (b) = 1

b
L−1[−2zR1(z), b] =

7
8bL

−1
[
z−4, b

]
= 7

8 · 3!b
2 = 7

48b
2, (2.34)

which matches the result reported in [19].
7This is not surprising, since that result could be derived using the same integral as here, only using the

JT spectral curve.
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g = 1
2 , n = 2. For this case, one has

F 1
2
(z′, z2) =

1
2z′∂z′R0(z′, z2) + 2R 1

2
(z′)

R0(z′, z2) +
1(

z′2 − z22

)2
, (2.35)

which, using eq. (2.21), leads to

R 1
2
(z1, z2) =

1
z1

[
Res
z′=0

+ Res
z′=−z1

+ Res
z′=−z2

]
(−1) z2

(
z2(z2 + z′)− 2z′2

)
+ 2z′3

z2z′2
(
z′2 − z21

)
(z′ − z2)2(z2 + z′)3

= − 1
z1

[
Res
z′=z1

+ Res
z′=z2

]
(−1) z2

(
z2(z2 + z′)− 2z′2

)
+ 2z′3

z2z′2
(
z′2 − z21

)
(z′ − z2)2(z2 + z′)3

= z41 + 3z2z31 + 3z22z21 + 3z32z1 + z42
2z41z42(z1 + z2)3

.

(2.36)

Again using eq. (2.28) to compute the WP volume, one finds

V Airy
1
2

(b1, b2) = θ(b1 − b2)b1 + θ(b2 − b1)b2 = max (b1, b2), (2.37)

in accordance with the result reported in [5].

g = 0, n = 3. Remembering that this was a special case of the loop equations, we first
rewrite eq. (2.17) in the double-cover coordinate to find

R0(z1, z2, z3) =
1

2πiz1

∮
iR+ϵ

z′2dz′

z′2 − z21

2
y(z′)

×

R0(z′, z2)R0(z′, z3) +
1
β

 R0(z′, z3)(
z22 − z′2

)2 + R0(z′, z2)(
z23 − z′2

)2

. (2.38)

This can now be evaluated as usual to yield

R0(z1, z2, z3) =
1
z1

[
Res
z′=0

+ Res
z′=−z1

+ Res
z′=−z2

+ Res
z′=−z3

]
z′2

z′2 − z21

2
y(z′)

×

R0(z′, z2)R0(z′, z3) +

 R0(z′, z3)(
z22 − z′2

)2 + R0(z′, z2)(
z23 − z′2

)2



= 1
z1

[
Res
z′=0

+ Res
z′=−z1

+ Res
z′=−z2

+ Res
z′=−z3

]
z23z

′2 − 4z2z3z′2 + z22
(
z23 + z′2

)
+ z′4

z2z3z′
(
z′2 − z21

)(
z′2 − z22

)2(z′2 − z23
)2

= − 1
2z31z32z33

. (2.39)

Of course, one finds the same result when using the deformation of the contour surrounding
the poles at zi in the right hemisphere. For the corresponding WP volume, we have

V Airy
0,3 (b1, b2, b3) = 4 = 23−1V Airy, β=2

0,3 , (2.40)

which matches the rule, proven in [3], that for g = 0,

V β=1
0 (I) = 2|I|−1V β=2

0 (I). (2.41)
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These examples should be sufficient to illustrate the method used to compute the
resolvents and, from those, the unorientable Airy WP volumes. As the main object of interest
of this paper is the spectral form factor, we report the resolvents for n = 2 in appendix A.
To find the ones appearing in the recursion, we refer to the Mathematica notebook in the
supplementary material. Rather than reporting their lengthy expressions, here we give the
general form of the resolvents which, at fixed genus g, is given by

Rg(z1, z2) =
Pg(z1, z2)

(z1z2)6g+1(z1 + z2)2g+2 , (2.42)

with a symmetric polynomial Pg(z1, z2) of combined degree 8g. This form can be read
off from the results of the computation and can also be motivated by the diagrammatic
considerations in appendix C.8

In the following section, we use the results of the resolvents from the loop equations to
compute the unorientable Airy WP volumes for n = 2 up to g = 7

2 .

2.2 Unorientable Airy WP volumes

Before reporting the volumes, let us first make some general statements about their form.
In the unitary case, i.e. for orientable manifolds, the Airy WP volumes for two geodesic

boundaries have the form [15]

V Airy,β=2
g,2 (b1, b2) =

α1+α2=3g−1∑
α1,α2∈N0

Cβ=2
α1,α2b

2α1
1 b2α2

2 , (2.43)

with Cβ=2
α1,α2 ∈ Q+. The immediate generalisation for a larger number of boundaries also holds

true, but we focus here on n = 2 as a sufficient example. Furthermore, the coefficients Cβ=2
α1,α2

are symmetric. The question at hand is how this is modified for unorientable manifolds.
The mathematical foundation of the full WP volumes in the unorientable case is less

established than in the orientable case, i.e. their computation requires a regularization. The
unorientable Airy WP volumes, in which we are interested here, do not suffer from this as
they are precisely the first regularization independent terms of the regularized unorientable
WP volumes [19]. However, to the best of our knowledge, the general form of the unorientable
Airy WP volumes (i.e. an expression like eq. (2.43)) was not yet given in the literature.
Working towards this, we begin by studying which properties of the orientable Airy WP
volumes should carry over to the unorientable setting. First of all, already by the definition
of the correlation functions, the general form of the resolvents reported in eq. (2.42), or the
diagrammatic considerations of appendix C, the symmetry under b1 ↔ b2 is still present.
Furthermore, one can argue, again using eq. (2.42) or the diagrammatic expansion discussed
in appendix C, that for a fixed value of the lengths, the volumes are still polynomials. In

8To be more specific, the diagrammatics provide one with a proof for the form, while the orders of the
polynomial Pg(z1, z2) and the order in (z1 + z2) is predicted higher than observed from the result of the
loop equations. This however is not a contradiction, but rather implies that the polynomial appearing in the
numerator of the diagrammatic result must have as many zeroes at z1 = −z2 as factors of (z1 + z2) required to
cancel in order to be consistent with the loop equations. This can of course only be achieved if the coefficients
of the diagrams have a certain type of symmetry, which is further explored in appendix C.
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general, those polynomials are not symmetric and thus the symmetry in b1 ↔ b2 can only
be retained if one introduces step functions that differentiate the cases b1 > b2 and b1 < b2.
Therefore, we propose as a generalisation of eq. (2.43):

V
Airy(,β=1)

g,2 (b1, b2) = V >
g (b1, b2)θ(b1 − b2) + V >

g (b2, b1)θ(b2 − b1), (2.44)

with

V >
g (b1, b2) =

α1+α2=6g−2∑
α1,α2∈N0

Cα1,α2b
α1
1 bα2

2 , (2.45)

where the coefficients Cα1,α2 are not necessarily symmetric but still non-negative rational
numbers.9 This is indeed reproduced by transforming the resolvents obtained in the previous
section. Furthermore, in appendix C diagrammatics are used to show that this is generic.

As specific examples we give the results for the lowest three non-zero genera while
referring the reader to appendix B for a complete list of the computed volumes.

V >
1
2
(b1, b2)= b1, (2.46)

V >
1 (b1, b2)=

1
96
(
7b41+14b22b21+8b32b1+3b42

)
, (2.47)

V >
3
2
(b1, b2)=

1
40320

(
64b71+448b22b51+245b32b41+560b42b31+147b52b21+175b62b1+23b72

)
. (2.48)

In the next section, we will use the volumes found above to compute the spectral
form factor.

2.3 The canonical SFF at large times

The canonical SFF is defined as

κβ(t) := ⟨Z(β + it)Z(β − it)⟩c (2.49)

where β ∈ R+ is the inverse temperature and t the time. In the following we will, for
readability’s sake, use β1 = β + it, β2 = β∗1 . The genus expansion of the correlation function
of partition functions translates to a genus expansion of the spectral form factor, i.e.

κβ(t) =
∑

g=0, 1
2 ,1,...

e−2gS0Zg,2(β1, β2) =
∑

g=0, 1
2 ,1,...

e−2gS0κg
β(t). (2.50)

For a given genus g, the contribution to the correlation function of partition functions is
given by

Zg,2(β1, β2) =
∫ ∞

0
db1 b1

∫ ∞

0
db2 b2Zt(β1, b1)Zt(β2, b2)V Airy

g,2 (b1, b2) (2.51)

9A possible source of confusion here is that the indices in Cα1,α2 correspond to the actual powers of the
respective length in the respective monomial whereas in the orientable case the indices of Cβ=2

α1,α2 correspond
to half the powers of lengths in the respective monomial of the orientable Airy WP volume. This is used to be
consistent with the literature convention for the orientable Airy WP volumes where this way of writing the
coefficients makes more sense as only even orders of lengths appear in the volumes.
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with

Zt(β, b) = 1√
4πβ

e
− b2

4β . (2.52)

Using this, one can compute the κg
β(t) from the volumes stated above. However, as we have

already explained, the main point of interest of this work is to investigate the “universal”
part of the spectral form factor which for the canonical SFF means the behaviour at large
times, i.e. times of the order eS0 . Thus, due to the prefactor e−2gS0 of the contribution to
the spectral form factor at genus g, terms of a smaller or equal order in t than 2g can be
neglected. The relevant contributions (neglecting the lower order terms) to κβ(t) are given by

κ0β(t) =
√
t2 + β2

2πβ (2.53)

κ
1
2
β (t) = − t

2 + β2√
2πβ

(2.54)

κ1β(t) =
[
−10
3 + i

(
arctan

(√
β − it

β + it

)
− arctan

(√
β + it

β − it

))]
t3

π
(2.55)

κ
3
2
β (t) =

8
√
2πβ
3π t4 − it4

3
√
π

(√
β − it−

√
β + it

)
(2.56)

κ2β(t) =
βt5

π

[
163
15 − 2πi+ 8i arctan

(√
β + it

β − it

)]
(2.57)

κ
5
2
β (t) = −64(2πβ)

3
2

15π2 t6 + t6
√
t2 + β2

30
√
π

(√
β − it+

√
β + it

)
+ 21it5

√
t2 + β2β

5
√
π

(√
β − it−

√
β + it

) (2.58)

κ3β(t) =
−2t8

√
β2 + t2

45π − 1658β2t6
√
β2 + t2

63π +
16iβ2t7

(
π − 4 arctan

(√
β+it√
β−it

))
3π (2.59)

κ
7
2
β (t) =

it7
√
β2 + t2

210
√
π

((
756β2 − t2

)(√
β + it−

√
β − it

)
+ 31iβt

(√
β − it+

√
β + it

))
+ 2048

105

√
2
π
β5/2t8. (2.60)

From these results, one can observe that the contributions to the SFF at half-integer genus
are mainly of the same functional form as the orientable contributions (cf. e.g. [5, 28, 29]), i.e.
exhibiting mostly a polynomial dependence on β and t with additional appearances in the
form of

√
β,

√
β ± it and

√
β2 + t2. For integer genus however, there are arctan-terms which

do not occur in the GUE-like theory. Rewriting the arctan on C as a logarithm,10 one finds

arctan
(√

β + it

β − it

)
= 1

2i

[
log

(
−t+

√
t2 + β2

β

)
+ i

π

2

]
. (2.61)

We first note that for all the cases we have computed, the −iπ
2 cancels all the other imaginary

terms in the above contributions. This is necessary since by definition, the canonical SFF
has to be a real function.

10A more detailed treatment of this type of terms is given in appendix D.2.
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Since we are mainly interested in the behaviour of the genus expansion at large times, β
t

is a small quantity in the regime of interest. This motivates an expansion of the contributions
in β

t around 0. Taking only the leading order behaviour, one finds

1
2i log

(
−t+

√
t2 + β2

β

)
→

log
(

β
2t

)
2i . (2.62)

For (2.53)–(2.60), this yields

κ0β(t) →
t

2πβ (2.63)

κ
1
2
β (t) → − t2√

2πβ
(2.64)

κ1β(t) → −
[10
3 + log

(
β

2t

)]
t3

π
(2.65)

κ
3
2
β (t) = −

√
2πt

9
2

3π + 8
√
2πβ
3π t4 (2.66)

κ2β(t) →
βt5

π

[163
15 + 4 log

(
β

2t

)]
(2.67)

κ
5
2
β (t) → −64(2πβ)

3
2

15π2 t6 + t7
√
2t

15
√
π
+ 17βt6

√
t

6
√
2π

(2.68)

κ3β(t) →
−2t9

45π − 1658β2t7

63π −
32β2t7 log

(
β
2t

)
3π (2.69)

κ
7
2
β (t) →

t10
√
t

105
√
2π

− 3βt9
√
t

10
√
2π

− 881β2t8
√
t

120
√
2π

+ 2048
105

√
2
π
β5/2t8. (2.70)

Comparing this expression to the corresponding expression of the GUE-like theory, we see
the admission of unorientable surfaces leads to several differences. The first, and perhaps
least interesting, is the inclusion of even powers of t at half-integer genus. However, a rather
striking difference is the appearance of terms having a logarithmic dependence on 2t

β for
integer genus contributions. Terms of the same form have been discovered in a diagrammatic
treatment of the orientable Airy model in [5] as well, though they all cancelled. Tracing
their origin to the unorientable Airy WP volumes one can see that they originate only from
terms in V >

g that are of odd order in both lengths.11 Recalling that the combined order
of lengths in V >

g is given by 6g − 2, which for half-integer genus is odd while being even
for integer genus, one can directly see that odd/odd terms, and thus the appearance of the
logarithms, is only possible for integer genus.

A further difference compared to the SFF from the orientable theory can be seen after
τ−scaling, i.e. using t = eS0τ . In the orientable theory, as first shown in [5], the τ−scaled
SFF can be written as

κGUE
β (eS0τ) = eS0f(τ) (2.71)

11For a derivation of this and a more detailed study of the structure of the contributions to κβ(t) the reader
is referred to appendix D.
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with f having no dependence on S0. Doing this for the unorientable SFF, e.g. the contribution
at g = 3

2 , one finds

κβ(eS0τ) ⊃ eS0
√
βτ4

(
−
√
2π
3π

√
t

β
+ 8

√
2π

3π

)
. (2.72)

This contains a term scaling as τ4
√
t. Higher order square root terms occur for every half-

integer genus we have computed starting at g = 3
2 . From the g = 3 contribution we see a

term that, after τ−scaling, scales as τ7t2. In the corresponding orientable theory no such
terms appears, and the τ−scaled SFF has no t dependence (or terms of higher order than
1 in eS0). In section 4 we argue that terms higher order in t, including the logarithms, are
in fact related and can be eliminated using certain identities.

3 Canonical SFF from universal RMT

The aim of this section is to derive the canonical SFF from the perspective of universal RMT.
The canonical SFF will then be computed for the orthogonal symmetry class and a leading
order energy density corresponding to the Airy model.

3.1 The universal RMT form of the canonical SFF

The connected canonical two-point correlation function is given by a double Laplace transform
of the connected density-density correlation function:

⟨Z(β1)Z(β2)⟩c =
∫ ∞

0

∫ ∞

0
⟨ρT(E1)ρT(E2)⟩ce

−β1E1−β2E2 dE1 dE2 , (3.1)

where the superscript T indicates “total”, consistent with the notation of [2], e.g. ⟨ρT (E)⟩
= eS0⟨ρ(E)⟩. The SFF is then given by taking β1 = β + it and β2 = β − it:

⟨Z(β + it)Z(β − it)⟩c =
∫ ∞

0

∫ ∞

0
⟨ρT(E1)ρT(E2)⟩ce

−β(E1+E2)−it(E1−E2) dE1 dE2

= 2
∫ ∞

0
dEe−2βE

∫ 2E

0
d∆cos(t∆)⟨ρT

(
E + ∆

2

)
ρT
(
E − ∆

2

)
⟩c,

(3.2)

where in the second line a change of variables to E = E1+E2
2 , ∆ = |E1 − E2| was performed.

To study the universal behaviour of the SFF, it needs to be evaluated in the late time limit,
which we take to be of the order eS0 . To accomplish this one can define a scaled time [5]:

τ = e−S0t, (3.3)

where τ is assumed to be finite. Then one obtains

⟨Z(β + iτeS0)Z(β − iτeS0)⟩c

= 2
∫ ∞

0
dEe−2βE

∫ 2E

0
d∆cos

(
eS0τ∆

)
⟨ρT

(
E + ∆

2

)
ρT
(
E − ∆

2

)
⟩c

= 2e2S0

∫ ∞

0
dEe−2βE

∫ 2E

0
d∆cos

(
eS0τ∆

)
⟨ρ
(
E + ∆

2

)
ρ

(
E − ∆

2

)
⟩c,

= 2eS0

∫ ∞

0
dEe−2βE

∫ 2EeS0

0
dx cos(τx)⟨ρ

(
E + xe−S0

2

)
ρ

(
E − xe−S0

2

)
⟩c.

(3.4)
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In the second line the factors of eS0 in the total densities were factored out and in the last
line the variable x = eS0∆ was defined. The limit eS0 → ∞ is precisely what is known as
the “universal” regime of the two-point function of the energy density which is known for all
10 Altland-Zirnbauer classes [33]. To make the meaning of this limit precise, following the
notation from [22] adapted to the double scaled theory,12 one defines the spectral correlation
functions as:

R1(E) = eS0⟨ρ(E)⟩ (3.5)
R2(E1, E2) = e2S0⟨ρ(E1)ρ(E2)⟩ − eS0δ(E1 − E2)⟨ρ(E1)⟩, (3.6)

and accordingly the connected two-point correlation function:13

C2(E1, E2) = R1(E1)R1(E2)−R2(E1, E2) (3.7)
= e2S0⟨ρ(E1)⟩⟨ρ(E2)⟩+ eS0δ(E1 − E2)⟨ρ(E1)⟩ − e2S0⟨ρ(E1)ρ(E2)⟩ (3.8)
= eS0δ(E1 − E2)⟨ρ(E1)⟩ − e2S0⟨ρ(E1)ρ(E2)⟩c. (3.9)

The universal limit is then taken to be

lim
eS0→∞

C2(E1, E2)
R1(E1)R2(E2)

= Υ(⟨ρ(E)⟩x), (3.10)

such that x is kept finite. The function Υ is referred to as the cluster function and depends
on the specific symmetry class of the ensemble. The limit also justifies the replacement of
⟨ρ(E1)⟩ = ⟨ρ(E2)⟩ = ⟨ρ(E)⟩. Using the above explicit expressions one can write,

C2(E1, E2)
R1(E1)R2(E2)

= δ(⟨ρ(E)⟩x)− ⟨ρ(E1)ρ(E2)⟩c

⟨ρ(E)⟩2 , (3.11)

where one can take the universal limit and obtain the sought for expression:

⟨ρ
(
E + xe−S0

2

)
ρ

(
E − xe−S0

2

)
⟩c = δ(x)⟨ρ(E)⟩ − ⟨ρ(E)⟩2Υ(⟨ρ(E)⟩x). (3.12)

We then define the universal limit of the canonical SFF in the following way:

e−S0κβ(τ) := lim
eS0→∞

e−S0⟨Z(β + iτeS0)Z(β − iτeS0)⟩c. (3.13)

To take this limit we note that ⟨ρ(E)⟩ has a genus expansion in powers of e−S0 . The leading
order contribution, ρ0(E), is the genus zero term, such that

ρ0(E) = lim
eS0→∞

⟨ρ(E)⟩. (3.14)

Therefore, the following replacement can be made in (3.12):

⟨ρ(E)⟩ → ρ0(E). (3.15)

12I.e. N → eS0 .
13In [22], ⟨ρ(E1)ρ(E2)⟩c is referred to as S(E1, E2).
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Then (3.12) can be plugged into (3.4) and the upper limit of the integral over x can be taken to
infinity.14 These considerations lead to the following definition of the universal canonical SFF:

e−S0κβ(τ) =
∫ ∞

0
dEe−2βEρ0(E)− 2

∫ ∞

0
dEe−2βEρ0(E)

∫ ∞

0
dx cos

(
τ

ρ0(E)x
)
Υ(x) (3.16)

where Υ(x), eq. (3.10), depends on the specific symmetry class.

3.2 The Airy canonical SFF for the orthogonal symmetry class

It is necessary to compute the universal canonical SFF, within the orthogonal symmetry
class, for the Airy model using (3.16) in order to compare it to the result derived using the
unorientable Airy WP volumes. Since the Airy model is a low energy limit of JT gravity,
this comparison provides a non-trivial test of the quantum chaotic nature of unorientable JT
gravity. Specifically, the leading order contribution to the energy density for the Airy model is

ρAiry
0 (E) =

√
E

2π . (3.17)

The cluster function for the orthogonal symmetry class then reads [21]:

Υ(x) = sin2(πx)
π2x2

+
(∫ ∞

x
dtsin(πt)

πt

)( d
dx

sin(πx)
πx

)
(3.18)

= sin2(πx)
π2x2

+
(1
2 −

∫ x

0
dtsin(πt)

πt

)( d
dx

sin(πx)
πx

)
. (3.19)

The integral over x in (3.16) is the form factor [21]:

2
∫ ∞

0
dx cos

(
τ

ρ0(E)x
)
Υ(x) =


1− τ

πρ0(E) +
τ

2πρ0(E) log
(
1 + τ

πρ0(E)

)
if τ

2π ≤ ρ0(E)

−1 + τ
2πρ0(E) log

( τ
π
+ρ0(E)

τ
π
−ρ0(E)

)
if τ

2π ≥ ρ0(E)
(3.20)

The canonical SFF of the unorientable Airy model can then be computed by plugging (3.20)
into (3.16) with ρ0(E) from eq. (3.17):

e−S0κGOE
β (τ) =

∫ τ2

0
dE e−2βE

[√
E

π
− τ

2π log
(
τ

π
+

√
E

2π

)
+ τ

2π log
(
τ

π
−

√
E

2π

)]

+
∫ ∞

τ2
dE e−2βE

[
τ

π
− τ

2π log
(
1 + 2τ√

E

)]
,

(3.21)

where the superscript GOE indicates the universal RMT result for the orthogonal symmetry
class. The solution, derived in appendix E, reads:

e−S0κGOE
β (τ) = 1

2(2β)3/2√π
Erf

(√
2βτ2

)
− τe−8βτ2

8πβ

[
Γ(0, 2βτ2)(1− e8βτ2)

+ 16βτ2 2F2

(
1, 1; 32 , 2; 8βτ

2
)
+ πErfi

(√
8βτ2

)

−
∞∑

n=1

(
n∑

m=1

(−1)n+m(2)2m

(m)!(n−m)!(n− m
2 )

)(
2βτ2

)n
]
.

(3.22)

14It is not at all obvious the corrections arising from keeping the upper bound finite are subleading in eS0 ,
but we will not pursue this computation here.
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Here 2F2 is the generalized hypergeometric function and Erfi is the imaginary error function.
The first few terms of the expression are:

e−S0κGOE
β (τ)

= τ

2πβ − τ2√
2πβ

−
γ + log

(
2βτ2

)
+ 1

3
π

τ3 + 8
√
2πβ
3π τ4 +

β
(
4γ + 4 log

(
2βτ2

)
− 7

15

)
π

τ5

− 64(2πβ)
3
2

15π2 τ6 +O
(
τ7
)
, (3.23)

with γ denoting the Euler-Mascheroni constant. It remains to compare this expression to
the result derived from the unorientable Airy WP volumes.

4 Comparison of unorientable topological gravity and universal RMT

In this section we will explicitly demonstrate the non-trivial equivalence of the τ3 term in
both expressions of the canonical SFF. It will also be shown that terms containing even
powers of τ are in agreement for all terms so far computed, i.e. up to g = 7

2 . The reason
for limiting the comparison of odd powers to τ3 lies in the fact that demonstrating this
equivalence requires higher order terms in the loop equations than one would naively expect,
e.g. the g = 4 contribution for τ5.

To compare the universal RMT result, (3.23), to the result from the unorientable Airy
WP volumes we first rewrite the latter as

e−S0κWP
β (t) =

∑
g=0, 1

2 ,1...

e−(2g+1)S0κg
β(t), (4.1)

where κg
β are given by eqs. (2.63)–(2.70) and the superscript WP indicates this was computed

from the unorientable Airy WP volumes. The aim is to show κWP
β (τ) = κGOE

β (τ) in the
universal limit, at least for the first few orders. The first few terms of (4.1) after τ scaling,
i.e. using τ = te−S0 , are

e−S0κWP
β (τ)= τ

2πβ−
τ2√
2πβ

+
[−10

3 +log
(2t
β

)]
τ3

π
−
√
2πβτ4

3π

(
t

β

)1/2
+8

√
2πβ
3π τ4

+βτ5

π

[163
15 −4log

(2t
β

)]
− 64(2πβ)

3
2

15π2 τ6+17(2πβ)3/2τ6

24π2
(
t

β

)1/2

+ τ6(2πβ)3/2

30π2
(
t

β

)3/2
− 1658β2τ7

63π +
32β2τ7 log

(
2t
β

)
3π − 2τ7β2

45π

(
t

β

)2
+O

(
τ8
)
.

(4.2)

Note that after τ scaling there remain powers of t, however, the terms containing powers of t
can be shown to be a part of an asymptotic series, and in this way eliminated. In order to

– 22 –



J
H
E
P
0
7
(
2
0
2
4
)
2
6
7

accomplish this elimination the series in eq. (4.2) has to be reorganized:

e−S0κWP
β (τ)= τ

2πβ−
τ2√
2πβ

+ τ3

π

[
−10
3 +log

(2t
β

)
−
√
2π
3
(
tτ2
)1/2

− 2
(
tτ2
)2

45

]

+8
√
2πβ
3π τ4+βτ5

π

[
163
15 −4log

(2t
β

)
+17

√
2π

12
(
tτ2
)1/2

+ t
√
2π

15
(
tτ2
)1/2

+O
(
τ4
)]

− 64(2πβ)
3
2

15π2 τ6+O
(
τ7
)
. (4.3)

For the purpose of comparison, terms of order τ7 were dropped except for the one term in the
coefficient of τ3, which will prove to be necessary. In writing (4.3) in this way, we recognize
that terms containing powers of t are actually encompassed in the coefficients of odd powers
of τ . Comparing (4.3) and (3.23), it is seen the τ2, τ4, and τ6 terms agree. This holds true for
τ8 as well and we suspect for all even powers of τ . The coefficients of log(β) also agree for all
terms computed. However, it is not at all obvious that the coefficients of odd powers of τ agree.

To prove the τ3 coefficient of κWP
β (τ), as written in (4.3), agrees with the τ3 coefficient

of κGOE
β (τ), given by (3.23), consider the following generalized hypergeometric functions:

τ3
(
tτ2
)2

45π

(
62F2

(
2, 2; 3, 72;−tτ

2
)
− 41F1

(
3
2;

7
2;

−tτ2

2

))
= 2τ7t2

45π +O
(
τ9
)
. (4.4)

The O
(
τ9
)

terms here depend on t and would contribute to higher order odd powers of τ as
written in (4.3), so they are not needed for the purposes of computing the τ3 coefficient. For
example, the τ9 term would contribute to the τ5 coefficient, the τ11 term would contribute
to the τ7 coefficient, etc. Then consider the asymptotic expansion of this function [34]:

τ3
(
tτ2
)2

45π

(
62F2

(
2, 2; 3, 72;−tτ

2
)
− 41F1

(
3
2;

7
2;

−tτ2

2

))

= τ3

π

(
−
√
2π
3
(
tτ2
)1/2

+ log
(
4tτ2

)
+ γ − 3

)
+O

(
t−1/2

)
. (4.5)

Setting (4.4) equal to (4.5) we see that:

−τ3
log
(
2βτ2

)
+ γ + 1

3
π

= τ3

π

(
−
√
2π
3
(
tτ2
)1/2

+ log
(2t
β

)
− 10

3 − 2
(
tτ2
)2

45

)
+O

(
t−1/2

)
+O

(
τ9
)
. (4.6)

The coefficient of τ3 on the left hand side is the same as the result in κGOE
β (τ) and on the

right hand side is the same as in κWP
β (τ). Again, we emphasize the terms contained in

O
(
τ9
)

depend on t and would contribute to higher order odd powers of τ , and hence are not
important for the τ3 comparison. Therefore, the coefficients of τ3 match in the universal limit.

Due to the agreement of the log(β) coefficients in κWP
β (τ) and κGOE

β (τ), we do not see
a reason why a similar identity cannot be derived to demonstrate the coefficient of τ5 also
agrees, and all subsequent odd powers of τ . However, this would require higher order terms
in the loop equations which we have not yet computed. For example, since the t dependent
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τ9 term contributes to τ5, showing the equivalence of the τ5 coefficient would require the
g = 4 contribution. Nevertheless, it is worthwhile to speculate how the τ5 coefficients could
be shown to be equivalent. The τ5 term in (4.3) is

βτ5

π

[
163
15 − 4 log

(2t
β

)
+ 17

√
2π

12
(
tτ2
)1/2

+ t
√
2π

15
(
tτ2
)1/2

+O
(
τ4
)]
. (4.7)

Based on the contribution to τ9 in (4.4) and the structure of the g = 3 term from the
loop equations, we can speculate the form of the t dependent O

(
τ4
)

term in brackets to
be a(tτ2)2 + bt(tτ2)2, where a and b could be determined if the g = 4 contribution was
known. The τ5 term would then read

βτ5

π

[
163
15 − 4 log

(2t
β

)
+ 17

√
2π

12
(
tτ2
)1/2

+ t
√
2π

15
(
tτ2
)1/2

+ a(tτ2)2 + bt(tτ2)2
]
. (4.8)

The analogous expressions to (4.4) and (4.5) would then require three hypergeometric functions
instead of two. A first educated guess would be something of the form:

A
(
tτ2
)2

2F2
(
2,2;?,?;−tτ2

)
+B

(
tτ2
)2

1F1

(
3
2;?;−

tτ2

2

)
+Ct

(
tτ2
)2

1F1

(
3
2;?;−

tτ2

2

)
. (4.9)

However, it is possible that more complicated functions are needed. Along these lines, all
coefficients of odd powers of τ could be made to agree, though they would require progressively
more hypergeometric functions. In principle, if the loop equations could be solved to all
orders, we expect that the asymptotic expansion in t of κWP

β (τ) should reduce exactly to
the universal RMT result.

5 Outlook: cancellations

Having presented evidence that the τ scaled limit of unorientable topological gravity agrees
with the prediction of universal RMT for the orthogonal case, we can proceed to use this, in the
spirit of [28, 29], to infer constraints on the coefficients of the unorientable Airy WP volumes.
To briefly recapitulate the idea and because we will need the result in a specific form for later
comparison we briefly revisit the consideration from the unitary symmetry class of [28].

The first step one has to take is to compute the canonical SFF from the general structure
of the respective Airy WP volumes, using general coefficients. In the unitary case the structure
of the Airy WP volumes is given by eq. (2.43). Using the standard integration of trumpet
partition functions Zt(β, b) against the volumes to obtain the canonical SFF one finds

κg,β=2
β (t) =

∑
n+m=3g−1

Cβ=2
n,m

n!m!22(n+m)

π
(β + it)n+ 1

2 (β − it)m+ 1
2

= t3g
∑

n+m=3g−1
f(g)Cβ=2

n,m n!m!(−1)m
∞∑

j,k=0

(
n+ 1

2
j

)(
m+ 1

2
k

)
ik+j(−1)j

(
β

t

)k+j

,

(5.1)

wherein the second line we used the generalized binomial theorem, assuming t > β and
introduced f(g) to collect all the factors that depend only on the genus or are constants
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irrelevant to the following discussion. Summing over the contributions to the genus expansion
including the weighting by e2S0 , performing the τ -scaling, and ordering the summands by
powers in τ one finds

κβ=2
β (τ) =

∞∑
g=0

egS0τ3g
∑

n+m=3g−1

∞∑
l=0

C(g, l)e−lS0τ−lβl

× Cβ=2
n,m n!m!(−1)m

∑
k+j=l

(
n+ 1

2
k

)(
m+ 1

2
j

)
(−1)j ,

(5.2)

where C(g, l) includes f(g) in the equation above and also captures the dependence on l.
After having written the canonical SFF for the unitary symmetry class in this form, we come
to the vital second part of our argument. Namely, as we can see from eq. (3.16) the RMT
prediction, shown to agree with the topological gravity prediction in [5], has the form

κβ=2
β (τ) = eS0g(τ), (5.3)

with g(τ) containing no dependence on eS0 . This consequently implies that all terms in
eq. (5.2) being of higher order than 1 in eS0 have to cancel. Specifically, defining

Kβ=2
g (l) :=

∑
n+m=3g−1

Cβ=2
n,m n!m!(−1)m

∑
k+j=l

(
n+ 1

2
k

)(
m+ 1

2
j

)
(−1)j , (5.4)

this amounts to the statement that for a given genus g

∀
0≤l<(g−1)

Kβ=2
g (l) = 0. (5.5)

These constraints can be cast into a much more convenient form as shown in [28]. However,
for the present purpose it is more useful to rewrite the constraints in a way that is better
comparable to the orthogonal result. In order to motivate this, we recall that the unitary WP
volumes only contain even powers of the lengths while all powers appear for the orthogonal case.
Thus, to facilitate comparison to the orthogonal case it makes sense to write the constraints as

Kβ=2
g (l) =

∑
α+γ=6g−2

α,γ even

Cβ=2
α
2 , γ

2
Γ
(
α

2 + 1
)
Γ
(
γ

2 + 1
)
(−1)

γ
2
∑

k+j=l

(
α+1
2
k

)(
γ+1
2
j

)
(−1)j . (5.6)

Having recalled the constraints on the coefficients in the unitary case, we now apply the
concept to the orthogonal case. There the structure of the Airy WP volumes is generalized
to the form reported in eq. (2.44). This generalization, compared to the unitary case, leads
to two novel features in the large t limit of the canonical SFF: the emergence of log

(
2t
β

)
at

integer genus and powers of t that survive the τ−scaling limit. As we argued in the preceding
section, by using identities derived from hypergeometric functions, these types of terms can
be combined to produce the logarithm expected from universal RMT. Once these identities
have been established, the cancellations can be studied in the same way as in the unitary
case. In the following, we present the first step of this study, considering only a subset of
terms related to the logarithmic terms, while referring a complete study to future work.
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The terms in the canonical SFF containing a log
(
2t
β

)
are particularly interesting because

they do not appear in the unitary case. Thus the cancellations inferred for these terms are
genuinely new. As we discussed above, logarithmic terms can only arise from monomials in
the V >

g (b1, b2) that are odd in both lengths. As we show in appendix D, the contribution
of the term

bα
1 b

γ
2θ(b1 − b2) (5.7)

to the canonical SFF is given by

I(α, γ) = 1
8π

√
β1β2

(
− ∂

∂a

) γ+1
2
(
− ∂

∂b

)α+1
2 arctan

(√
a
b

)
√
ab

, (5.8)

with a = 1
4β2

, b = 1
4β1

. As we are only interested in the logarithmic terms which originate
from the arctan we extract the part from I(α, γ) that contains an arctan, leading to

I(α, γ) →
26g−1Γ

(
1 + α

2
)
Γ
(
1 + γ

2
)

π2
β

α+1
2

1 β
γ+1

2
2 arctan

(√
β1
β2

)
=: I logα,γ(β1, β2).

(5.9)

Plugging into this expression, as for the unitary case β1 = β + it = β∗2 and summing over all
the contributing monomials in V >

g , including also the complementary θ-function, one finds

κβ=1
β (t) ⊃ κlogβ (t) :=

∞∑
g=0

e−2gS0
∑

α+γ=6g−2
α,γ odd

I logα,γ(β1, β2) + (β1 ↔ β2). (5.10)

One can write the contribution at genus g to the first part of the sum as

e−2g arctan
(√

β + it

β − it

)
t3g

π

3g∑
l=0

C(g, l)βlt−l

∑
α+γ=6g−2

α,γ odd

Cα,γ
Γ(1 + α

2 )Γ(1 +
γ
2 )

π
(−1)

γ+1
2

∑
n+m=l

(
α+1
2
n

)(
γ+1
2
m

)
(−1)m

︸ ︷︷ ︸
:=Kβ=1

g (l)

. (5.11)

Here we defined C(g, l) to be a non-vanishing function depending only on g and l and thus
being irrelevant for the present discussion. Furthermore, we note that Kβ=1

g (l) is a rational
number because the Cα,γ ∈ Q+ by definition, the binomial coefficients are also natural
numbers as α and γ are odd, and the factor of π in the denominator is cancelled by the
two factors of

√
π arising from the Γ-functions due to both indices being odd. Expanding

now the arctan for large times, as we prove in appendix D.2, one finds that for even powers
in t multiplying it, effectively

teven arctan
(√

β + it

β − it

)
→ π

2 , (5.12)
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and for odd powers

todd arctan
(√

β + it

β − it

)
→ log

(
β

2t

)
+

∞∑
k=0

C(2k)
(
β

t

)2k

. (5.13)

Here the C(k) are rational constants defined in appendix D.2 and “→” denoting that the
r.h.s. is the contribution to the canonical SFF arising from the contribution from the l.h.s.
upon including also the complementary contribution to it, i.e. the one stemming from the
θ(b2− b1)-part of the unorientable Airy WP volume. Thus, if after τ -scaling the t multiplying
the arctan yield a contribution of higher order in eS0 than 1, the contribution to the τ -scaled
canonical SFF from this term is

e(g−l)S0Kβ=1
g (l)τ

3g−l

π

log
(

β
2t

)
+
∑∞

k=0C(2k)
(

β
t

)2k
for 3g − l odd,

π
2 for 3g − l even.

(5.14)

Having computed the general contribution to the τ -scaled canonical SFF, the next step is to
compare to the prediction from universal RMT. At first glance this would amount to requiring
all contributions at higher order than 1 in eS0 to cancel, as for the unitary case. Notably, this
is not as easily achieved as in the latter case, since by the considerations given in section 4
also terms of higher order than 1 in eS0 in the result from the unorientable Airy WP volumes
can be transformed to agree with the universal RMT result. However, the transformation
does not cancel terms containing log

(
β
2t

)
as those are mapped to a logarithm of different

argument and would persist. This implies, that for the case of odd g − l > 1, Kβ=1
g (l) has to

vanish. Furthermore, the structure in terms of factors of π, namely that at integer genus the
contribution to the canonical SFF is of order π−1, can only be transformed into terms of order
π−

1
2 . Thus, terms that are of order π0 would transform to terms of order π

1
2 , incompatible

with the universal RMT result. Curiously, for the present case, agreement with the universal
RMT result does require all the terms comprising a higher order than eS0 to vanish, i.e.

∀
0≤l<(g−1)

Kβ=1
g (l) = 0. (5.15)

Having claimed this, we will give some examples. As the type of terms under consideration
appear only for integer genus we will consider all the cases available for us so far, i.e. g = 1, 2, 3.
For genus one there is of course no cancellation as the maximal order in eS0 is given by g

which here of course is one already. For the case of g = 2 one finds one constraint which
one can work out to be

Kβ=1
2 (0) ∝ 21C1,9 − 7C3,7 + 5C5,5 − 7C7,3 + 21C9,1. (5.16)

For g = 3 there are two, which are given by

Kβ=1
3 (0)∝ 715C1,15−143C3,13+55C5,11−35C7,9+35C9,7−55C11,5+143C13,3−715C15,1,

(5.17)

Kβ=1
3 (1)∝ 1001C1,15−143C3,13+33C5,11−7C7,9−7C9,7+33C11,5−143C13,3+1001C15,1.

(5.18)
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Using the results for the respective volumes given in appendix B one can read off

V >
2 (b1, b2)=

1
232243200(3885b

10
1 +58275b22b81+30720b32b71+186690b42b61+64512b52b51+

+183330b62b41+46080b72b31+38835b82b21+10240b92b1+1885b102 ),
(5.19)

V >
3 (b1, b2)=

1
2142493684531200(887887b

16
1 +35515480b22b141 +18350080b32b131 +

+348079732b42b121 +143130624b52b111 +1242409168b62b101 +449839104b72b91+
+1735393660b82b81+599785472b92b71+1049704656b102 b61+286261248b112 b51+
+269432436b122 b41+55050240b132 b31+21347416b142 b21+3670016b152 b1+447567b162 ).

(5.20)

Plugging he coefficients into the constraints one finds, as it should be, that they are indeed
fulfilled.

Having shown these examples, we briefly compare Kβ=1
g (l) to their unitary counterparts

which, specifically when written as in eq. (5.6), are just the same, only that the sum runs
over even (α, γ) as opposed to the sum over odd pairs in the orthogonal case. However, it is
important to point out that while some of the unitary constraints are fulfilled directly due
to the symmetry of the coefficients this is not the case for the orthogonal constraints which
are all non-trivial. Nevertheless, the similarity is interesting and might point at a similar
origin as the unitary constraints which have been shown to reflect properties of intersection
numbers on the canonical SFF [29].

6 Conclusion

We have presented strong evidence of the quantum chaotic nature of unorientable topological
gravity, as determined by the agreement of the τ -scaled limit of the canonical SFF with
universal RMT for the orthogonal symmetry class i.e. corresponding to the universality
class of systems with time-reversal invariance. Although such agreement has previously been
established for JT gravity on orientable surfaces [5], generalizing this result to unorientable JT
gravity faces extra difficulties due to the infinite volume of the unorientable WP volumes. For
this reason, the agreement between RMT and the Airy limit considered here has important
implications for unorientable JT gravity, as it makes it plausible that the τ−scaled limit
of the SFF for unorientable JT gravity agrees with universal RMT. However, the fidelity
to RMT in the full JT case most likely manifests itself in a highly non-trivial manner, as
we saw here for the case of topological gravity.

Nevertheless, under the conjectured existence of the universal RMT regime, the τ−scaled
limit of the SFF of unorientable JT gravity could be computed from the RMT side. This
approach would have the advantage of being less technically involved and it can be solved to
all orders in τ . In this context, it is interesting to ask whether or not the infinities of the
unorientable WP volumes would survive the τ−scaled limit of the SFF, an aspect that we leave
for future investigation. Inverting the reasoning, now from the perspective of computing the
canonical SFF on the RMT side, i.e. (3.16), it is not clear where the divergences would arise.
This would imply that any ϵ-dependent regularization scheme of the unorientable WP volumes,
such as that in [19] used to compute the SFF, would have to be independent of ϵ in the
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τ−scaled limit. In this way, by assuming agreement with the finite results of universal RMT,
well motivated by our results for topological gravity, late-time correlation functions can be
computed in unorientable JT gravity. The computation of the orthogonal SFF from universal
RMT using the JT gravity leading order energy density will be the subject of future work.

Furthermore, the computation can also be extended to a matrix model in the symplectic
symmetry class since the form factor for this case is known. It is also rather straightforward
to generalize the results of the unorientable Airy WP volumes to the symplectic case [3].
Along these lines, it would be interesting to see the work extended to the (α, β) ensembles,
which in the case of (α, β) = (1, 2) was already done in [35].

As a further development of the work presented here, the examples of cancellations
discussed in section 5 can be extended to the complete set of cancellations as discussed for the
orientable case in [28, 29]. A prime application of such a complete set of constraints would
be to study whether the equivalence of cancellations to certain properties of intersection
numbers found in [29] can be generalised to the unorientable setting. However, this requires
a notion of intersection numbers for the unorientable setting, the mathmatically rigorous
definition of which as far as we know is an unsolved problem. Along this line of thought it is
also tempting to conjecture that the relation between the “unorientable intersection numbers”
and the unorientable Airy WP volumes is a direct generalisation of what happens in the
unitary case (see e.g. eq. (C.2)), i.e. the intersection numbers correspond to the coefficients of
the Airy WP volumes up to some prefactors. This would allow one to investigate whether
properties of the orientable intersection numbers, such as the string and dilaton equations,
carry over to the unorientable setting.

Another interesting perspective comes from our observation of logarithmic terms in
the canonical SFF for the unorientable Airy model, in contrast to the observation of the
cancellation of logarithmic contributions to the canonical SFF of the orientable model in [5].
In the work for the orientable case, i.e. dual to a unitary matrix model, these cancellations
were linked to the cancellations of contributions from certain encounters arising in the periodic-
orbit approach to universal RMT for the unitary symmetry class [36]. This connection was
motivated by the study of Kontsevich graphs (cf. appendix C). In the periodic-orbit calculation
for the orthogonal symmetry class these cancellations are not present, which is exactly what we
observe for the logarithmic contributions to the canonical SFF of the unorientable Airy model
corresponding to this symmetry class. Thus, it is a well motivated idea to assume that the link
between logarithmic contributions and encounters also persists in the orthogonal case, which
would then manifest itself in the presence of logarithmic terms in the canonical SFF. To further
support this, it would be interesting to consider the explicit form of the unorientable Kontsevich
diagrams for special cases such as g = 1 in order to study more closely the connection between
encounter contributions and Kontsevich diagrams in the orthogonal symmetry class.
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A Collection of resolvents for the Airy model, β = 1

To abbreviate the presentation in the following, we introduce the notation

ma1,··· ,an(z1, · · · , zn) :=
∑

π∈S(n)

n∏
i=1

z
aπ(i)
i , (A.1)

where S(n) denotes the permutation group for a set of order n. Note, that here, in contrast
to e.g. [28] and the following appendix B there is no additional factor of 2 in the exponents.

R0(z1,z2)=
1

2z1z2(z1+z2)2
(A.2)

R 1
2
(z1,z2)=

m4+3m1,3+3m2,2
2z41z42(z1+z2)3

(A.3)

R1(z1,z2)=
35m8+140m1,7+231m2,6+240m3,5+240m4,4

16z71z72(z1+z2)4
(A.4)

R 3
2
(z1,z2)=

1
16z161 z162 (z1+z2)5

[
256m12+1280m1,11+2752m2,10+3590m3,9

+3710m4,8+3739m4,7+3750m6,6
] (A.5)

R2(z1,z2)=
1

256z131 z132 (z1+z2)6
[
42735m16+256410m1,15+675990m2,14+

+1072682m3,13+1245767m3,12+1274496m5,11+

+1283626m6,10+1288828m7,9+1290516m8,8
] (A.6)

R 5
2
(z1,z2)=

1
256z161 z162 (z1+z2)7

[
573440m20+4014080m1,19+12533760m2,18+

+23596510m3,17+31441170m4,16+34299125m5,15+
+34838419m6,14+35034993m7,13+35143367m8,12+

+35195056m9,11+35210000m10,1
]

(A.7)

R3(z1,z2)=
5

2048z191 z192 (z1+z2)8
[
15094079m24+120752632m1,23+435952517m2,22+

+953649872m3,21+1456609553m4,20+1744284376m5,19

+1836576352m6,18+1855963688m7,17+1863669631m8,16

+1867877552m9,15+1870061755m10,14+1871078024m11,13

+1871370530m12,12
]

(A.8)

B Collection of the unorientable Airy WP volumes

Presenting the volumes in the form given in eq. (2.44) becomes rather cumbersome for
increasing genus. Instead, we present them in a more symmetric form, i.e.

V Airy
g,2 = P 1

g (b1, b2) + θ(b1 − b2)P 2
g (b1, b2) + θ(b2 − b1)P 2

g (b2, b1), (B.1)
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where P 1
g is the symmetric part of the volume, defined in the following way: for each unordered

pair of indices (n,m) appearing in the respective V >
g find the terms Cm,nb

m
1 b

n
2 +Cn,mb

n
1b

m
2 ⊂

V >
g (b1, b2). Now define C̃m,n = min(Cm,n, Cn,m). Then

P 1
g (b1, b2) :=

∑
m,n

C̃n,m(bm
1 b

n
2 + bn

1b
m
2 ), (B.2)

P 2
g (b1, b2) can then be computed by subtracting P 1

g from V >
g . Having written the unorientable

Airy WP volume in this form, one can of course uniquely recover the form of eq. (2.44) by
rewriting P 1

g (b1, b2) = P 1
g (b1, b2)[θ(b1 − b2) + θ(b2 − b1)].

Using this convention however, the unorientable Airy WP volumes for n = 2 and the
two smallest genera are

V Airy
1
2 ,2 (b1, b2)=max(b1, b2)= θ(b1−b2)b1+θ(b2−b1)b2 (B.3)

V Airy
1,2 (b1, b2)=

1
96
((

4b41+8b32b1
)
θ(b1−b2)+

(
4b42+8b31b2

)
θ(b2−b1)+14b21b22+3

(
b41+b42

))
.

(B.4)

To abbreviate the presentation of the volumes of higher genus, we introduce the notation of [37]

ma1,··· ,an(L1, · · · , Ln) :=
∑

π∈S(n)

n∏
i=1

L
aπ(i)
i , (B.5)

where S(n) denotes the permutation group for a set of order n.

P 1
3
2
(b1, b2) =

23m7
40320 + 7m5,2

1920 + 7m4,3
1152

P 2
3
2
(b1, b2) =

41b71
40320 + 43b22b51

5760 + 1
128b

4
2b

3
1 +

5b62b1
1152

(B.6)

P 1
2 (b1, b2) =

377m10
46448640 + 863m8,2

5160960 + m7,3
7560 + 97m6,4

122880 + m5,5
3600

P 2
2 (b1, b2) =

5b101
580608 + 3b22b81

35840 + b42b
6
1

69120 + b72b
3
1

15120 + b92b1
22680

(B.7)

P 1
5
2
(b1, b2) =

907m13
20437401600 + 32743m11,2

30656102400 + 37m10,3
26542080

+ 377m9,4
53084160 + 37m8,5

5898240 + 143m7,6
13271040

P 2
5
2
(b1, b2) =

46547b131
797058662400 + 49177b22b111

30656102400 + 50527b42b91
5573836800 + 10483b62b71

464486400

+ 4351b82b51
265420800 + 551b102 b31

132710400 + 13b122 b1
29491200

(B.8)

P 1
3 (b1, b2) =

149189m16
714164561510400 + 2668427m14,2

267811710566400 + m13,3
116756640

+ 246733m12,4
1961990553600 + m11,5

14968800 + 3121m10,6
6370099200

+ m7,9
4762800 + 86683m8,8

107017666560

P 2
3 (b1, b2) =

43b161
209227898880 + 1153b22b141

174356582400 + 211b42b121
5748019200 + 47b62b101

522547200

+ b92b
7
1

14288400 + b112 b
5
1

14968800 + b132 b
3
1

58378320 + b152 b1
583783200

(B.9)

– 31 –



J
H
E
P
0
7
(
2
0
2
4
)
2
6
7

C Unorientable Airy WP volumes: the point of view of Kontsevich graphs

In this section the diagrammatic approach stemming from the Kontsevich matrix integral of
the orthogonal symmetry class will be used to derive the generic structure of the unorientable
Airy WP volumes. It is well known the Kontsevich matrix integral of the unitary symmetry
class can be taken as a generating function for intersection numbers [38]. The known
relationship between intersection numbers and Airy WP volumes allows a direct computation
of the Airy WP volumes from the ribbon graph expansion of the matrix model. It is an
obvious question to ask whether or not the Kontsevich matrix integral of the orthogonal
symmetry class can be used to compute unorientable Airy WP volumes. The idea was first
explored for the case of (g, n) = (12 , 2) in [5], and the graphs were shown to have the necessary
structure for reproducing the correct unorientable Airy WP volume. However, for higher
order cases the graphs becomes far too tedious to be used to compute the unorientable Airy
WP volumes15 and the loop equation implemented in section 2 have to be used. Fortunately,
for our purposes, it is possible to derive the generic structure of the unorientable Airy WP
volumes from the functional form of the graphs without ever needing to draw the graphs or
compute their symmetry factors. The advantage of the diagrammatic method here is the
functional form of the graphs is known for all genus. In order to present our arguments we
first recall the orientable formalism, primarily based on [39], comment on the extension to
the unorientable setting in section C.1, and then in section C.2 go on to derive the general
structure of the unorientable Airy WP volumes as claimed in the main text.

C.1 General structure

The diagrammatic expansion we refer to here is an expansion in terms of ribbon dia-
grams/ribbon graphs, i.e. diagrams with the propagators not being lines but double-lines and
analogous vertices. For such a diagram one defines the notion of a boundary by labelling
sides of the propagators being connected through a vertex by the same label. Doing this
for all sides of all propagators induces a partition of the sides into n distinct sets which is
denoted as the number of boundaries of the diagram. Additionally, one can compute the
Euler characteristic of the diagram as the Euler characteristic of the corresponding single-line
graph. The number of boundaries of course coincides with the number of boundaries the
graph has when being considered as a surface. This point of view allows one to express the
Euler characteristic of a given graph as χ = 2 − 2g − n with n the number of boundaries
and g the genus of the diagram when considered as a surface.

A convenient starting point for presenting the expression of the Airy WP volumes in
terms of ribbon graphs for the orientable case is Kontsevich’s theorem which can be stated as

Theorem C.1 (Kontsevich [38]). Denote by Γg,n the set of ribbon graphs build from 3-valent
vertices having n boundaries and genus g. Furthermore, adopt the standard notation for

15It is also possible the graphs generated by the Kontsevich matrix integral of orthogonal symmetry class
need an additional structure, such as orientation reversal, in order to correctly reproduce the unorientable
Airy WP volumes.
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intersection numbers (cf. [40]). Then it holds that

∑
|α⃗|=3g−3+n

⟨τα1 , . . . , ταn⟩
n∏

k=1

(2αk − 1)!!
z2αk+1

k

=
∑
Γg,n

22g−2+n

|Aut(Γg,n)|

6g−g+3n∏
k=1

1
zl(k) + zr(k)

where the product on the r.h.s. is over the edges of the individual ribbon graph, thus l(k)
denotes the boundary component to which the left edge of he respective edge belongs, r(k) the
right edge, respectively.

Therefore, on the side of the ribbon diagrams one only needs to consider 3-valent vertices.
This implies that the number of propagators (i.e. number of edges for the one-line graph) is
given by 3

2#Vertices as from each vertex three half edges originate that have to recombine
with another half edge to form an edge. The Euler characteristic of such a ribbon graph is
then χ = #Vertices −#Edges = −1

2#Vertices. From the expression of χ in terms of genus
and number of boundaries one can infer that for all graphs in Γg,n

#Vertices = 4g + 2n− 4, #Edges = 6g + 3n− 6. (C.1)

On the intersection number side, to relate to the WP volumes one uses the well known
result of Mirzakhani16 [15]

Vg,n(L1, . . . , Ln) =
∑

|α⃗|+m=3g−3+n

(
2π2

)m
2|α⃗|α⃗!m!

∫
Mg,n

ψα1
1 · · ·ψαn

n ωmL⃗2α⃗ (C.2)

with α⃗! :=
∏

i αi!, L⃗α⃗ =
∑

i L
αi
i . For the further appearing objects, the Weil-Petersson form

ω, the Deligne-Mumford compactifiction of the moduli space of Riemann surfaces Mg,n and
the ψ classes we refer to [15] as they will not be needed in the following. This is due to
the fact that the Airy WP volumes correspond to the leading order terms of the actual
WP volumes [2]. This corresponds exactly to the terms in eq. (C.2) without insertion of
the WP symplectic form ω. Furthermore, those terms are recognized to be precisely the
definition of the intersection numbers, i.e.

⟨τα1 , . . . , ταn⟩ =
∫
Mg,n

ψα1
1 · · ·ψαn

n . (C.3)

Explicitly one finds

V Airy
g,n (L1, . . . , Ln) =

∑
|α⃗|=3g−3+n

1
2|α⃗|α⃗!

⟨τα1 , . . . , ταn⟩L⃗2α⃗. (C.4)

16For g = 1, n = 1 there is an additional factor of 2 in the convention of [15] here we adopt the convention
of [2] for which the factor of 2 is put in the definition of the volume such that it does not appear in this
equation.

– 33 –



J
H
E
P
0
7
(
2
0
2
4
)
2
6
7

Recognising the l.h.s. of Kontsevich’s theorem to be closely related to the Laplace transform
of this expression one computes

L
[
V Airy

g,n (L1, . . . , Ln); (z1, . . . , zn)
]
=

∑
|α⃗|=3g−3+n

1
2|α⃗|α⃗!

⟨τα1 , . . . , ταn⟩
n∏

i=1

(2ai + 1)!(
z2i
)ai+1

=
∑

|α⃗|=3g−3+n

⟨τα1 , . . . , ταn⟩
n∏

k=1

(2αk − 1)!!
z2αk+1

k

=
∑
Γg,n

22g−2+n

|Aut(Γg,n)|

6g−6+3n∏
k=1

1
zl(k) + zr(k)

,

(C.5)

where Kontsevich’s theorem has been used in the last step. By this relation one now has
an expression of the Laplace transform of the Airy WP volumes in terms of ribbon graphs
and thus a way to compute the volumes.

The discussion so far applied only for the case of orientable ribbon graphs, i.e. the GUE
like theory. However, the Kontsevich diagrammatics can be extended to the orthogonal case by
allowing propagators to be twisted as it was demonstrated in [5, 20], resulting in contributions
from unorientable manifolds. By this reasoning the authors compute V Airy

1
2

(b1, b2), and one
could also go on to consider higher genera or other numbers of boundaries. However, one
can use loop equations to compute those volumes much more efficiently, and for the explicit
results in the main text we used this method. But by eq. (C.5) one has a way of expressing
the Laplace transform of the unorientable Airy WP volume at arbitrary genus as a sum over
graphs with the contribution of the individual graph being only dependent on the number
of the possible propagators occurring in a graph and a rational constant one has to find by
counting. Thus, regarding the generic functional form of the volumes, all relevant information
is present in this expression. To be more specific, as we are mainly interested in the spectral
form factor we can focus on the case of two boundaries. In this case, there are only three
possible propagators. First, the two possibilities of having both sides with the same label
(denoted as (11) or (22), following the notation in [5]) and second the possibility of having
different labels. As the total number of propagators for a given genus is fixed, it suffices to
know the number of two out of three of these options to determine the functional form of
the contribution of a specific graph. Choosing the numbers of (11) and (22) propagators,
denoted as n and m one can thus write eq. (C.5) for this special case as

L
[
V Airy

g,2 (L1, L2); (z1, z2)
]
=
∑
n,m

Ck
n,m

1
zn
1 z

m
2 (z1 + z2)k(g)−n−m

, (C.6)

with k(g) = #Edges = 6g and Ck
n,m a rational positive constant. Therefore, while the process

of constructing the graphs, computing the symmetry factors, etc., which fixes the constant
Ck

n,m, is quite tedious, the functional dependence on the zi is known without ever drawing
one diagram. Thus, to unravel the structure of the WP volumes deriving from a specific
graph we only have to perform a Laplace transform of the corresponding term, which will
be the focus of the following section.
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1 2

3

Figure 3. labelled 3-valent vertex.

C.2 General contribution to the unorientable Airy WP volumes

Using eq. (C.6) one directly sees that the generic contributions arising from a diagram
with a total number of k propagators of which n are of type (11) and m of type 22 to the
unorientable Airy WP volume is given by

Vk
n,m(b1, b2) := Ck

n,m

∫
C1

dz1
2πi

∫
C2

dz2
2πi

eb1z1eb2z2

zn
1 z

m
2 (z1 + z2)k−n−m

, (C.7)

where the contours are chosen such that they go from −i∞ to i∞ on the right side of all
poles of the integrand.

Before giving the result of the computation of this integral we remark that the case
(n,m) = (0, 0), i.e. a diagram with all propagators having different labels on their two sides, is
not possible. In order to see this, we look at one 3-valent vertex which is the basic construction
block of all diagrams considered above. We choose an ordering of the legs, as indicated by
the numbers which is arbitrary. Assuming that one can build a graph having no (1, 1)/(2, 2)
propagators, one has to be able to colour the sides of the outgoing propagators17 such that
every leg has two different colours. We choose to satisfy this, without loss of generality, first
for legs 1 and 2, for which there is only one option to do so (modulo interchanging colour
labels). Having done so we see that for leg 3, as it not possible to have a line change its colour
through a vertex, both sides have the same label. Thus, one cannot even construct a vertex
satisfying the property assumed for the whole diagram which contradicts the assumption
and thus proves our statement.

Following the same construction one can prove, that there is no graph having no (1, 2)
propagator as every graph having two boundaries at least contains one vertex of the form
depicted in figure 3 which necessitates at least one propagator of the form (1, 2). Having
discussed this, we come to the evaluation of the Vk

n,m.
As usual, this reduces to the computation of residua at poles for which the following

statement, provable by induction (for β > 0), is useful

dα

dzα

ebz

(z + a)β
= ebz

α∑
i=0

(−1)i+αα!(α− i+ β − 1)!
i!(α− i)!(β − 1)!

bi

(z + a)α+β−i
. (C.8)

Starting here with the z2 integral one can compute, using the residue theorem (one has
to close in the half-plane of negative real value of z2 to eliminate the contribution of the

17Being more rigorous one should rather talk about half-edges here, but this is not vital for this argument.
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closing-contour, thus encircling all the poles) assuming for now m > 0∫
C2

dz2
2πi

eb2z2

zm
2 (z1 + z2)k−n−m

= [Resz=0+Resz=−z1 ]
eb2z

zm(z1 + z)k−n−m
. (C.9)

We begin by evaluating the residue at 0:

Resz=0

[
eb2z

zm(z1 + z)k−n−m

]
= 1

(m− 1)!
dm−1

dzm−1

∣∣∣∣∣
z=0

eb2z

(z1 + z)k−n−m

=
m−1∑
i=0

(−1)i+m−1 (k − i− n− 2)!
i!(m− 1− i)!(k − n−m− 1)!

bi
2

(z1)k−n−i−1 ,

(C.10)

where we used eq. (C.8) to get to the second line. Performing now the z1 integral for this
contribution one notices that due to the only exponential term being eb1z1 one has to close
the contour in the half-plane of negative real value of z1, for all values of b1 ≥ 0. As the sole
pole of the integrand is at z1 = 0 the final contribution is given by

Resz1=0

m−1∑
i=0

(−1)i+m−1bi
2

(k − i− n− 2)!
i!(m− 1− i)!(k − n−m− 1)!

ez1b1

(z1)k−i−1

=
m−1∑
i=0

(−1)i+m−1 (k − i− n− 2)!
i!(m− 1− i)!(k − n−m− 1)!(k − i− 2)!b

k−i−2
1 bi

2

:= Ak
n,m.

(C.11)

Thus all contributions are of combined order k − 2 in the lengths.
Coming now to the other residue, one evaluates

Resz=−z1

[
eb2z

zm(z1 + z)k−n−m

]
= 1

(k − n−m− 1)!
dk−n−m−1

dzk−n−m−1

∣∣∣∣∣
z=−z1

eb2z

zm

= e−b2z1
k−n−m−1∑

i=0
(−1)−m (k − n− i− 2)!

i!(k − n−m− 1− i)!(m− 1)!
bi
2

(z1)k−n−i−1 ,

(C.12)

again using eq. (C.8). Analogously to above the final contribution is evaluated by closing
the contour C1. Here one has to be careful, since the exponential term is now e(b1−b2)z1 , and
one has to close the contour in the half-plane of positive real value of z1 if b1 − b2 < 0. In
this case there is no pole inside the integration region and the integral vanishes. For the
case of b1 − b2 > 0 the pole at 0 is the only contribution:

Resz1=0

k−n−m−1∑
i=0

(−1)−m (k − n− i− 2)!
i!(k − n−m− 1− i)!(m− 1)!

e(b1−b2)z1

(z1)k−i−1 b
i
2

=
k−n−m−1∑

i=0
(−1)−m (k − n− i− 2)!

i!(k − n−m− 1− i)!(m− 1)!(k − i− 2)!(b1 − b2)k−i−2bi
2

:= Bk
n,m,

(C.13)

and the contibution to Vn,m arising from this part of the result is given by Bk
n,mθ(b1 − b2)

with θ denoting the Heaviside function.
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Considering briefly the case of either n or m vanishing, (both can’t vanish due to the
considerations at the beginning of this section) we consider without loss of generality m = 0.
In this case there is no pole at z2 = 0, and one has to work out only the second residue
in the first step i.e.

Resz=−z1

[
eb2z

(z1 + z)k−n

]
= 1

(k − n− 1)!
dk−n−1

dzk−n−1

∣∣∣∣∣
z=−z1

eb2z (C.14)

= 1
(k − n− 1)!b

k−n−1
2 eb2z1 . (C.15)

The computation of the second residue is not altered, i.e. one computes

Resz1=0
1

(k − n− 1)!b
k−n−1
2

e(b1−b2)z1

zn
1

(C.16)

= 1
(k − n− 1)!(n− 1)!b

k−n−1
2 (b1 − b2)n−1

︸ ︷︷ ︸
:=Bk

n,0

θ(b1 − b2) (C.17)

As a final result this yields

Vk
n,m(b1, b2) = Ck

n,m

(
Ak

n,m + θ(b1 − b2)Bk
n,m

)
. (C.18)

In all these cases one can easily get the respective (m,n) expression from the (n,m)
expression by exchanging b1 ↔ b2 in the expression and also the θ-function for the case of
the B term. Additionally note, that the coefficients Ck

n,m are symmetric upon n ↔ m as
the exchange is just the other labelling of boundaries of the respective graph. By these
two observations, one can argue for the case of n ̸= m that the contribution to the volume
resulting from the diagrams (n,m) and (m,n) is symmetric with respect to b1 ↔ b2.

For the case of the contributions from (n, n) type diagrams this is not obvious from
eq. (C.18), as there one cannot make the above argument due to there being (at most)
one diagram of this type. However one can see the symmetry with respect to exchanging
the boundary lengths in this case by inspecting eq. (C.7), where it is present. Thus, this
has to carry over to the results of the integral so that it has to hold that for all possible
n for a given k that,

Ak
n,n(b1, b2) + Bk

n,n(b1, b2) = Ak
n,n(b2, b1). (C.19)

We have observed this to be true for all cases we have checked, and it should follow from
the explicit form of Ak

n,n and Bk
n,n. However, as we can also see this by the above argument

from the definition we don’t go into the tedious work of this proof. Thus, as claimed in the
discussion of the WP volumes following from the loop equations we can see the symmetry
of the volumes under b1 ↔ b2 from the diagrammatics.

For the further structure of the WP volumes we can also infer the properties we found in
the main text by inspection of the results of the loop equations, i.e. the structure claimed
in eq. (2.44). The form directly follows from eq. (C.18). To see this we note again that
for every diagram of type (n,m) there is a diagram of type (m,n) which, easiest seen
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by computing its B contribution by exchanging b1 ↔ b2 gives a contribution of the type
(Polynomial × θ(b2 − b1)). Combining these two diagrams one finds the form we use in
eq. (B.1) to present the volumes which is equivalent to the form of eq. (2.44). Furthermore
we can easily read off that the V >

g (b1, b2) are polynomial in b1, b2 with the combined order
of (k − 2). Inserting the expression of k in terms of genus, we find the order 6g − 2 which
proves the final piece of the structure claimed in eq. (2.44).

While this concludes the proof of the form of the unorientable Airy WP volumes made
in the main text we could go on to proof the structure claimed for the contributions to the
genus expansion of the resolvents as well. For the sake of convenience we recall from the
main text that the relation of the WP volumes with the resolvents is given by eq. (2.28)

Vg,n(b1, . . . , bn) = L−1
[

n∏
i=1

(−2zi

bi

)
Rg(z1, . . . , zn), (b1, . . . , bn)

]
, (C.20)

which can conveniently be rewritten as a relation including the Laplace transform of the
volumes, i.e.

L
[(

n∏
i=1

bi

)
Vg,n(b1, . . . , bn), (z1, . . . , zn)

]
=

n∏
i=1

(−2zi)Rg(z1, . . . , zn) (C.21)

= (−1)n
n∏

i=1

∂

∂zi
L[Vg,n(b1, . . . , bn), (z1, . . . , zn)],

where in the second line we used a well-known property of the Laplace transform. As we
know the general structure of the Laplace transform of the unorientable Airy WP volumes
expressed by diagrammatics, given by eq. (C.6), we can perform the derivative and write
the sum with a common denominator, keeping in mind the restriction of the number of
propagators of the form (1, 2) being in [1, k − 1]. Doing this, we find

Rd(iagrammatic)
g (z1, z2) =

P d
g (z1, z2)

(z1z2)6g+1(z1 + z2)6g
, (C.22)

with the combined order of the polynomial P d
g (z1, z2) being 12g − 2. As claimed in the main

text, this coincides with the functional form of the resolvents given by the loop equations
while producing, in general, higher orders for the polynomial P d

g and in the inverse sum of
the variables. Curiously, for genus 1

2 the structures coincide. However, for higher genera this
does not hold true, and the coefficients Ck

n,m in eq. (C.6) have to be such that P d
g (z1, z2) has

a zero of order 4g − 2 at z1 = −z2. As we do not consider the specific diagrammatics, i.e.
constructing explicitly the diagrams this is a check of the consistency of the diagrammatics
with the loop equations that is left for further study.

D The canonical SFF: general structure

The contributions to the topological expansion of the canonical SFF at genus g, κg
β(t) can,

as stated in the main text, be computed as

κg
β(t) =

∫ ∞

0
db1 b1

∫ ∞

0
db2 b2Zt(β1, b1)Zt(β2, b2)Vg,2(b1, b2) (D.1)
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with Zt(β, b) = 1√
4πβ

e
− b2

4β and β1 = β + it, β2 = β∗1 . The results of this computations were
reported above for the explicit volumes derived from the loop equations. For the main purpose
of this work, i.e. the comparison of the SFF with the predictions of universal RMT, this
suffices and the explicit computation is of no special interest, except that it follows through
without any problems. However, if one wishes to study the relation of the specific terms of
the canonical SFF with the various contributions to the unorientable Airy WP volumes or,
in the spirit of [28], wishes to infer constraints on the coefficients of the unorientable Airy
WP volumes it is of interest what the contribution to the SFF for a generic unorientable
Airy WP volume is. Thus, in this appendix we compute this, starting from the generic
form of the unorientable Airy WP Volume, stated in eq. (2.44). After having done this, in
section D.2 we will turn our interest to a more detailed treatment of the arctan, arising for
specific contributions to the SFF of the unorientable Airy model.

D.1 Contribution from generic V Airy
g,2

We recall the generic form of the Airy WP Volume in the unorientable case to be

V Airy
g,2 (b1, b2) = V >

g (b1, b2)θ(b1 − b2) + V >
g (b2, b1)θ(b2 − b1), (D.2)

or equivalently

V Airy
g,2 = P 1

g (b1, b2) + θ(b1 − b2)P 2
g (b1, b2) + θ(b2 − b1)P 2

g (b2, b1), (D.3)

with V >
g and P i

g being polynomials in the two lengths.
Thus, it actually suffices to consider the contribution to the SFF of terms of the form

bα
1 b

β
2θ(b1 − b2). For the sake of completeness however, we also consider the case of purely

polynomial terms, arising from P 1
g , which can be dealt with easily (almost) analogous to

the orientable case, i.e.

∫ ∞

0
db1 b1

∫ ∞

0
db2 b2

e
−

b2
1

4β1
√
4πβ1

e
−

b2
2

4β2
√
4πβ2

ba
1b

b
2

= 4β1β2
4π

√
β1β2

2a
√
β1

a
∫ ∞

0
dx1 e−x1x

a
2
1 2b

√
β2

b
∫ ∞

0
dx2 e−x2x

b
2
2

= 2a+b
√
β1β2β

a
2
1 β

b
2
2

π
Γ
(
b

2 + 1
)
Γ
(
a

2 + 1
)

=: R(a, b)(β1, β2)

(D.4)

As one can clearly see, upon setting β1 = β + it, β2 = β∗1 this yields
√
t2 + β2 multiplied

by a polynomial in t and β where some terms can be multiplied by
√
βi in the case of

exactly one of (a, b) being odd. In the case of (a, b) both being odd, as the leading square
root can be combined with another such term the result is, even before taking the limit
of large t, a polynomial in t and β.
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The interesting terms are those arising from the part of the volume containing θ functions.
Thus one has to evaluate the integral

I(α, γ) :=
∫ ∞

0
db1 b1

∫ ∞

0
db2 b2

e
−

b2
1

4β1
√
4πβ1

e
−

b2
2

4β2
√
4πβ2

bα
1 b

γ
2θ(b1 − b2)

= 1
4π

√
β1β2

∫ ∞

0
db1 e

−
b2
1

4β2 bα+1
1

∫ b1

0
db2 e

−
b2
2

4β2 bγ+1
2 .

(D.5)

This suffices as the contributions arising from the θ(b2 − b1)-term complementary to bα
1 b

γ
2 ,

i.e. bα
2 b

γ
1 results in the same integral I(α, γ) with β1 ↔ β2.

This integral is dealt with in two ways. First, by using differentiation under the integral
sign, which will facilitate the identification of the dependence of the resulting contributions
to the SFF as functions of β1 and β2. With the notation a := 1

4β2
b := 1

4β1
one finds,

distinguishing four cases.

γ even,α even I(α, γ) = 1
16π

√
β1β2

(
− ∂

∂a

) γ
2
(
− ∂

∂b

)α
2 1
b(a+ b) (D.6)

γ even,α odd I(α, γ) = 1
16
√
π
√
β1β2

(
− ∂

∂a

) γ
2
(
− ∂

∂b

)α+1
2 1
a

[ 1√
b
− 1√

a+ b

]
(D.7)

γ odd,α even I(α, γ) = 1
16
√
π
√
β1β2

(
− ∂

∂a

) γ+1
2
(
− ∂

∂b

)α
2 1
b
√
a+ b

(D.8)

γ odd,α odd I(α, γ) = 1
8π

√
β1β2

(
− ∂

∂a

) γ+1
2
(
− ∂

∂b

)α+1
2 arctan

(√
a
b

)
√
ab

. (D.9)

Observing those results, one can distinguish three cases for the terms following the common
1√

β1β2
term

i) γ, α both even: “standard” contribution, i.e. purely polynomial in β1, β2

ii) γ, α containing one even and one odd number: polynomial terms that can be multiplied
by

√
βi and

√
β1 + β2

iii) γ, α both odd: terms of the type ii) with additional terms of a polynomial multiplying
arctan

(
β1
β2

)
Thus, as claimed in the main text, we have shown that the appearance of an arctan, which
leads to a logarithm in the large t limit as we will see below, is only possible for a term in
V >

g,2 that is of odd order in both b1 and b2. Furthermore, apart from this type of contribution,
one cannot make the direct connection of a specific term appearing in the SFF to a certain
type of contribution to the unorientable Airy WP volume.

We now turn to the second way we considered of solving the integral which will result in
an expression of I(α, γ) as a finite sum, rather than a derivative, which will be most useful
when attempting to study other constraints than the ones studied in section 5. Specifically
we use Hypergeometric functions to find for even α

I(α, γ) =
2α+γ+1β

1
2 (α+γ+3)
1 β

1
2 (α+γ+1)
2 Γ

(
1
2(α+ γ + 4)

)
π(γ + 2)(β1 + β2)(

α+γ
2 +1)

α
2∑

k=0

α
2 !
(

β1
β2

)
kΓ
(γ
2 + 2

)(
α
2 − k

)
!Γ
(
k + γ

2 + 2
) . (D.10)
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This also yields the case of odd α, even γ as one can use 1 = θ(b1 − b2) + θ(b2 − b1) to write

I(α, γ)(β1, β2) = −Ĩ(α, γ)(β1, β2) +R(α, γ)(β1, β2) = −I(γ, α)(β2, β1) +R(α, γ)(β1, β2),
(D.11)

where Ĩ(α, γ) denotes the analogue of I(α, γ) with θ(b1 − b2) replaced by θ(b2 − b1).
Thus, we only have to consider the case of both being odd separately. Setting α =

2a + 1, γ = 2b + 1 we find

I(α, γ) = 22(a+b)+3β
a+b+ 5

2
1 β

a+b+ 3
2

2 Γ(a+ b+ 3)
π(2b+ 3)(β1 + β2)a+b+2 2F1

(
1,−a− 1

2; b+
5
2;−

β1
β2

)
, (D.12)

where the Hypergeometric function can explicitly be written as

2F1

(
1,−a− 1

2; b+
5
2;−

β1
β2

)

=
2Γ
(
a+ 3

2

)
Γ
(
b+ 5

2

)
π

b+1∑
j=−a−1

(
β1
β2

)
−j− 1

2

(a+ j + 1)!(b− j + 1)!

×

− j−1∑
k=0

(−1)k
√

β1
β2

2k+1

2k + 1 +
−1∑
k=j

(−1)k
√

β1
β2

2k+1

2k + 1 + arctan
(√

β1
β2

),
(D.13)

where we adopt the convention that sums where the upper limit is smaller than the lower
limit vanish. These results, which are actually quite tedious to obtain, can now be used to
write out the contribution to the SFF arising from a generic unorientable Airy WP volume
and find cancellations by the method demonstrated in section 5 where it was actually more
economical to use the first way of evaluating the integral.

Having finished this computation, we are only left with having to consider the large t
expansion of the arctan, appearing in both solutions for I(α, γ) to arrive at the form of the
SFF which is comparable to the RMT prediction for the canonical SFF.

D.2 Treatment of the arctan

As we showed in the previous section, the only term arising from the computation of the
canonical spectral form factor that doesn’t have the “standard” functional dependence is
the term containing an arctan, arising from the θ function contribution to the volume with
α, γ both odd. The aim of this section is to perform carefully the large t expansion for those
terms, that was already briefly explained in the main text.

In order to do this, we first determine which terms containing an arctan can actually
appear from I(α, γ) with both arguments being odd. As one can see best from the expression
for I(α, γ) in this case given in eq. (D.9), the relevant terms are the ones where the derivative
doesn’t act on the arctan as this would give a rational function that is not of interest for the
present purpose. Thus, the relevant contribution arising from Iα,γ is given by

I logα,γ(β1, β2) :=
26g−1Γ

(
1 + α

2
)
Γ
(
1 + γ

2
)

π2
β

α+1
2

1 β
γ+1

2
2 arctan

(√
β1
β2

)
. (D.14)
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Now we use the choice of β1 and β2 leading to the SFF, i.e. β1 = β + it = β∗2 . To simplify
further it is useful to use the identity

arctan z = 1
2i log

(1 + iz

1− iz

)
, (D.15)

valid for z ∈ C. Using z± =
√

β±it√
β∓it

, thus considering also the case appearing from the

complementary term of the unorientable Airy WP volume, i.e. bα
2 b

γ
1θ(b2 − b1), one finds

arctan (z±) =
1
2i log

(
i
∓t+

√
t2 + β2

β

)
= 1

2i

[
log

(
∓t+

√
t2 + β2

β

)
+ i

π

2

]
. (D.16)

Now the task is to expand this expression for large t
β
:= 1

x , i.e. small x. Writing the
above logarithm in this form, starting with the + case one finds

log
(
−1
x
+
√
1 + 1

x2

)
= log

(
−1
x
+

∞∑
k=0

(
1
2
k

)
x2k−1

)

= log
[
x

2

(
1 + 2

∞∑
k=2

(
1
2
k

)
x2k−2

)]

= log
(
x

2

)
+ log

(
1 + 2

∞∑
k=2

(
1
2
k

)
x2k−2

)

= log
(
x

2

)
+

∞∑
n=1

(−1)n+1

n
2n

( ∞∑
k=2

(
1
2
k

)
x2k−2

)n

(D.17)

Where in the first line we explicitly use the considered limit of small x, more specifically
1

x2 > 1 to use the generalized binomial series. Furthermore, in the last line we used that the
absolute value of the sum, for x <∞ is bounded above by 1 as one can see by resumming
the series, which enables one then to use the Mercator series for the logarithm.

The final result, as one can see directly, takes the form of log
(

β
2t

)
with corrections in

even powers of x. The coefficients of the corrections terms are elementary, though tediously,
computable by using the multinomial theorem for the power of the sum and subsequently
collecting powers of x. Explicitly one can write

log
(
−t+

√
t2 + β2

β

)
= log

(
β

2t

)
+

∑
m=2,4,...

C(m)
(
β

t

)m

, (D.18)

with C(2) = −1
4 , C(4) = 3

32 , C(6) = − 5
96 , . . . .

Performing the same steps for the complementary case one finds

log
(
t+

√
t2 + β2

β

)
= − log

(
β

2t

)
−

∑
m=2,4,...

C(m)
(
β

t

)m

. (D.19)

This is all there has to be done for the expansion of the logarithmic part of the arctan. To
get the final contributions to the canonical spectral form factor, apart from prefactors, one
now only has to include the factors of β1 and β2. For this we use

β
α+1

2
1 β

γ+1
2

2 =
α+1

2∑
n=

γ+1
2∑

m=0

(
α+1
2
n

)(
γ+1
2
m

)
β

α+γ
2 +1−n−m(it)n+m(−1)m (D.20)
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which is always a polynomial in t and β with a fixed combined order. The notable thing
about these polynomials is, as one can easily convince oneself, that terms that have an odd
power of t are always accompanied by a factor of i while the even powers are not. Thus, only
two cases of terms can appear in I logα,γ(β1, β2). The first of which is for odd powers of t

itoddβk arctan(z+) →
1
2

toddβk

log( β2t
)
+

∑
m=2,4,...

C(m)
(
β

t

)m

+ i
π

2


− toddβk

− log
(
β

2t

)
−

∑
m=2,4,...

C(m)
(
β

t

)m

+ i
π

2


= toddβk

log( β2t
)
+

∑
m=2,4,...

C(m)
(
β

t

)m
,

(D.21)

where by → we indicate that a term of this form arising in I logα,γ(β1, β2) will result in the
r.h.s. of the arrow upon combination with the complementary contribution, for which in the
prefactors t→ −t and for the arctan the complementary result eq. (D.19) is used. Second
we consider even powers of t

tevenβk arctan(z+) →
tevenβk

2i

[
log

(
β

2t

)
+

∑
m=2,4,...

C(m)
(
β

t

)m

+ i
π

2

− log
(
β

2t

)
−

∑
m=2,4,...

C(m)
(
β

t

)m

+ i
π

2

]

= tevenβkπ

2 .

(D.22)

This concludes the steps needed to perform the expansion. The reason why this is stated in
such detail is the important application of these results for the considerations of cancellation
in section 5.

E Derivation of the canonical SFF from universal RMT

In this section the solution to the canonical SFF from universal RMT, (3.22), will be derived.
The integral that needs to be solved is:

κGOE
β (τ) = eS0

∫ τ2

0
dE e−2βE

[√
E

π
− τ

2π log
(
τ

π
+

√
E

2π

)
+ τ

2π log
(
τ

π
−

√
E

2π

)]

+ eS0

∫ ∞

τ2
dE e−2βE

[
τ

π
− τ

2π log
(
1 + 2τ√

E

)]
.

(E.1)

It can be conveniently written as:

= 2κGUE
β (τ)− eS0 τ

2π

[∫ ∞

0
dE e−2βE log

(
1 + 2τ√

E

)
−
∫ τ2

0
dE e−2βE log

(
−1 + 2τ√

E

)]
= 2κGUE

β (τ) + χβ(τ) (E.2)
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where

2κGUE
β (τ) = eS0

2(2β)3/2√π
Erf

(√
2βτ2

)
(E.3)

which was first computed in [5], and

χβ(τ) = −eS0 τ

2π

[∫ ∞

0
dE e−2βE log

(
1 + 2τ√

E

)
−
∫ τ2

0
dE e−2βE log

(
−1 + 2τ√

E

)]
(E.4)

Focusing on the bracketed part, the logs can be split up:[∫ ∞

0
dE e−2βE log

(
2τ +

√
E
)
−
∫ τ2

0
e−2βE log

(
2τ −

√
E
)
−
∫ ∞

τ2
e−2βE log

(√
E
)]

(E.5)

Each integral can be integrated by parts and the sum of the boundary terms vanishes. The
remaining integrals are then:

1
2β

[∫ ∞

0
dE e−2βE 1

2
√
E(2τ +

√
E)

+
∫ τ2

0
e−2βE 1

2
√
E(2τ −

√
E)

−
∫ ∞

τ2
e−2βE 1

(2E)

]
(E.6)

This can be written as:
1
2β

[∫ ∞

0
dx
(
e−2β(x−τ)2 1

(x+ τ) − e−2β(x+τ)2 1
(x+ τ)

)]
(E.7)

The translation operator can be used the on the first term:

e−2β(x−τ)2 = e−2τ d
dx e−2β(x+τ)2 =

∑
n=0

(−2τ)n

n!
dn

dxn
e−2β(x+τ)2 (E.8)

The n = 0 term will cancel the second integral in (E.7), so we will start the sum at n = 1.
The integrals in (E.7) can then be simplified to:

1
2β

∑
n=1

(−2τ)n

n!

∫ ∞

0
dx

dn

dxn e−2β(x+τ)2

(x+ τ) (E.9)

Making a change a variables
√
2β(x + τ) → x and inserting the identity:

1
2β

∑
n=1

(2
√
2βτ)n

n!

∫ ∞
√

2βτ
dx

(−1)ne−x2
ex2 dn

dxn e−(x)2

x
(E.10)

The integrand in (E.10) is just the Hermite polynomial as defined by:

Hn(x) = (−1)nex2 dn

dxn
e−(x)2 = (n!)

floor(n/2)∑
l=0

(−1)l(2)n−2l

(l)!(n− 2l)! (x)
n−2l (E.11)

This allows a change of variables to be made x2 → x. Looking only at the integral:∫ ∞

2βτ2
dx

1
2e

−x(x)
n
2 −l−1 =

Γ(n
2 − l, 2βτ2)

2 (E.12)
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The full solution is then a sum over incomplete gamma functions:

χβ(τ) = −eS0 τ

2π

[
1
4β

∞∑
n=1

floor(n/2)∑
l=0

(−1)l(2)n−2l

(l)!(n− 2l)! (2
√
2βτ)nΓ

(
n

2 − l, 2βτ2
)]

(E.13)

To solve this expression it is necessary to first remove the Γ(0, 2βτ2) from the sum. This
occurs only for even n. The sum can be split into odd and even terms to remove l = n/2 term:

χβ(τ)=−eS0 1
4β

τ

2π

[
Γ(0,2βτ2)(e−8βτ2−1)+

∞∑
n=1

n−1∑
l=0

(−1)l(2)2n−2l

(l)!(2n−2l)! (2
√
2βτ)2nΓ(n−l,2βτ2)

+
∞∑

n=1

n−1∑
l=0

(−1)l(2)2n−1−2l

(l)!(2n−1−2l)! (2
√
2βτ)2n−1Γ

(
n− 1

2−l,2βτ
2
)]

(E.14)

Interchanging the sums gives:
∞∑

l=0

∞∑
n=l+1

(−1)l(2)2n−2l

(l)!(2n− 2l)! (2
√
2βτ)2nΓ(n− l, 2βτ2)

+
∞∑

l=0

∞∑
n=l+1

(−1)l(2)2n−1−2l

(l)!(2n− 1− 2l)! (2
√
2βτ)2n−1Γ

(
n− 1

2 − l, 2βτ2
) (E.15)

A change of variables can be made: m = n− l. The two sums can be recombined which gives:
∞∑

l=0

∞∑
m=1

(−1)l(2)m

(l)!(m)! (2
√
2βτ)m+2lΓ

(
m

2 , 2βτ
2
)
= e−8βτ2

∞∑
m=1

2m (2
√
2βτ)m

(m!) Γ
(
m

2 , 2βτ
2
)

(E.16)
where the sum over l was performed. For m > 0 the incomplete gamma function can be
written as:

Γ(m,x) = Γ(m)−
∞∑

n=0

(−1)nxm+n

n!(m+ n) (E.17)

Plugging this in gives:

e−8βτ2
[ ∞∑

m=1
2m (2

√
2βτ)m

(m!) Γ
(
m

2

)
−

∞∑
m=1

∞∑
n=0

22m(
√
2βτ)2m+2n(−1)n

(m!)(n!)(m
2 + n)

]
(E.18)

Concentrating on the second term since the first is already in an acceptable form, a change
of variable can be made n +m → n and then the sums can be interchanged:

∞∑
m=1

∞∑
n=0

22m(
√
2βτ)2m+2n(−1)n

(m!)(n!)(m
2 + n) =

∞∑
n=1

n∑
m=1

22m(
√
2βτ)2n(−1)n+m

(m)!(n−m)!(n− m
2 )

(E.19)

The important point is that after interchanging the sums the inner sum becomes finite. This
allows simple computation of the coefficients of 2βτ2. The full expression is then:

χβ(τ) = −eS0 1
4β

τ

2π

[
Γ(0, 2βτ2)(e−8βτ2 − 1)

+ e−8βτ2
∞∑

n=1

(
(2)n(2

√
2βτ)n

(n)! Γ
(
n

2

)
−

n∑
m=1

(−1)n+m(2)2m(
√
2βτ)2n

(m)!(n−m)!(n− m
2 )

)] (E.20)
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It is useful to note, that one can perform the first part of the sum over n exactly by noting that

∞∑
n=1

2
5n
2 Γ
(

n
2
)(√

βτ
)n

n! = 16βτ2 2F2

(
1, 1; 32 , 2; 8βτ

2
)
+ πErfi

(
2
√
2
√
βτ
)

(E.21)

Therefore, the final result is:

χβ(τ) = −eS0 τ

8πβ

[
Γ(0, 2βτ2)(e−8βτ2 − 1) + e−8βτ216βτ2 2F2

(
1, 1; 32 , 2; 8βτ

2
)

+ e−8βτ2
πErfi

(√
8βτ2

)
− e−8βτ2

∞∑
n=1

(
n∑

m=1

(−1)n+m(2)2m

(m)!(n−m)!(n− m
2 )

)(
2βτ2

)n
]

(E.22)

Using,

κGOE
β (τ) = 2κGUE

β (τ) + χβ(τ) (E.23)

with (E.22) and (E.3) reproduces (3.22) in the main text. This concludes the derivation
of the canonical SFF from RMT universality.

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.
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