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Abstract 

Artificial Intelligence (AI) and especially Machine Learning (ML) models are ubiquitous 
in research, business and society. However, the predictions of many ML models are often 
not transparent for users due to their black box nature. Therefore, several Explainable AI 
(XAI) methods aiming to provide local explanations for individual ML model predictions 
have been proposed. Importantly, existing XAI methods relying on surrogate models still 
have critical weaknesses regarding fidelity, robustness and sensitivity. Thus, we propose 
a novel method that avoids building surrogate models but instead represents the actual 
decision boundaries and class subspaces of ML models in a functional and definite 
manner. Further, we introduce two well-founded measures for the sensitivity of 
individual data instances regarding changes of their features values. We theoretically 
and empirically evaluate the fidelity and robustness of our method (on three real-world 
datasets) outperforming existing methods and demonstrate the validity and 
meaningfulness of our sensitivity measures. 

Keywords: Explainable artificial intelligence, XAI, local explanation, sensitivity 

Introduction 

Artificial Intelligence (AI) and its applications are pervasive in business and society, and their importance 
and impact on everyday life continues to rise. Although the transparency of AI models can lead to side 
effects (cf., e.g., Bauer & Gill, 2024), it is indispensable to explain the predictions and decisions of Machine 
Learning (ML) models for a responsible use of AI (Brasse et al., 2023). The importance of this topic has 
been recognized and intensively discussed, which becomes evident by the AI Act recently approved by the 
EU parliament (EU AI Act, 2024). The AI Act regulates the use of AI by categorizing it into risk classes and 
imposing requirements towards their transparency, accuracy/fidelity, and robustness. This is particularly 
relevant for AI models that are applied in the fields of education, healthcare, or other critical domains. To 
address these critical requirements, the research field of Explainable AI (XAI) aims to mitigate the risks by 
improving the explainability of black box ML models (Brasse et al., 2023; Ribeiro et al., 2016). Among other 
valuable contributions of XAI, a plethora of methods have been proposed to make black box models and 
their predictions more transparent, since they play a vital role in ML-augmented decision-making, 
especially in critical domains such as medical diagnostics (Kim et al., 2023). 

In this paper, we aim to contribute to the body of knowledge dealing with transparency and explanations of 
individual class predictions (instances) of ML models, and thus local explainability. Moreover, we focus on 
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model-agnostic XAI methods, which are not specialized to explain one particular type of ML model. 
Literature offers a large body of knowledge for model-agnostic local XAI methods (i.e., methods that 
provide local explanations), for which LIME (Ribeiro et al., 2016), LEAP (Jia et al., 2019), and ROLEX 
(recently published by Kim et al. (2023) in their MISQ paper) are important examples. Like many other 
model-agnostic local XAI methods, they generate simpler surrogate models which aim to locally explain the 
neighborhood of a considered instance. Despite the strengths of these methods and the interpretable 
outcomes they provide for black box models, they still suffer from methodological issues associated with 
the generation of surrogate models. Although being aware that surrogates are intended to simplify the local 
decision boundaries (DBs) of a ML model, their generation using approximations, random samples, and 
other stochastic elements leads to significant shortcomings. For example, capturing the structure of the DBs 
and class subspaces (CSs) even locally often poses a substantial problem, especially when multiple DBs 
occur (cf. details in Section Related Work). As a result, existing XAI methods exhibit both limited 
accuracy/fidelity and robustness in the sense that they determine false predictions for instances compared 
to the ML model to be explained, crucially leading to inaccurate explanations. Moreover, existing XAI 
methods are not able to validly assess the sensitivity of a model prediction of the instance considered. 
Consequently, even if a minor change in the instance’s feature values completely changes the model 
prediction, this would not be recognized. Striving to address these limitations, we propose EXPLORE 
(EXPlaining machine learning models by LOcal REconstruction), a novel local XAI method which does not 
rely on surrogate models or stochastic elements but explicitly focuses on the reconstruction of all DBs and 
CSs in the neighborhood of the instance to be explained. Our (meta) method is model-agnostic and its 
instantiation is demonstrated for classification NNs as typical black box ML models in depth. Thus, the 
research questions that we aim to address are the following: 

RQ1 How can the DBs and CSs of a ML model be locally reconstructed in a functional and definite 
manner, thus making them fully transparent? 

RQ2 Based on RQ1, how can the sensitivity of a classification decision be rigorously analyzed? 

Our contributions are twofold: We (1) propose EXPLORE, a novel post hoc local explanation method that 
uses piecewise linear functions to locally reconstruct the DBs and CSs of ML classification models in a 
functional and definite manner. We (2) present two novel measures allowing for an exact analysis of the 
sensitivity of ML decisions. Based on the functional and definite reconstruction of the DBs and CSs of the 
ML model, our method significantly outperforms existing local XAI methods regarding fidelity and 
robustness. We provide formal proofs of the fidelity and robustness of EXPLORE and substantiate these 
theoretical guarantees with empirical evidence on three real-world datasets from the domains of healthcare, 
loan approval, and criminal recidivism. Moreover, we demonstrate the validity and meaningfulness of our 
sensitivity measures for selected instances from the healthcare dataset. These contributions come with 
several implications: First the DBs and CSs of a classification ML model are made fully transparent, 
providing the basis for accurate explanations and visualizations of the feature space in the neighborhood of 
a considered instance. Moreover, although in this paper we instantiate our meta method in depth only for 
NNs, it is model-agnostic and our theoretical foundations also apply for other ML classification models such 
as random forests. Finally, EXPLORE also provides the basis for the valid assessment of the sensitivity of 
ML predictions which is vital for the transparent application of ML models especially in high-risk domains. 

The remainder of the paper is structured as follows. In the following section, we position our work in 
literature, especially related to existing post hoc local XAI methods and derive the research gap. Next, we 
present the theoretical foundations and the basic ideas for both our method and the sensitivity measures. 
We then introduce the meta method of EXPLORE and instantiate it for feedforward NNs. On this basis, we 
present our two sensitivity measures for ML model predictions. Thereafter, we evaluate our method as well 
as the sensitivity measures and discuss our results and main findings. Finally, we conclude by reflecting on 
limitations and providing an outlook on future research. 

Background and Related Work 

A central goal of XAI is to provide transparent and accurate explanations for the predictions of ML models. 
In general, ML models aim to extract and generalize patterns from a given sample of data (i.e., the training 
data) in their learning procedure. This should allow them to make (at best) accurate predictions for new, 
unseen data instances from the same feature space based on these patterns. In the case of a classification 
task, a ML model 𝑓: 𝑋 → 𝑌 is learned which assigns an output value 𝑦 = 𝑓(𝑥) to any instance 𝑥 ∈ 𝑋. Usually, 
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the output value 𝑦 ∈ 𝑌 is either given by a class itself or by a value directly corresponding to a class, e.g., the 
Softmax vector of a NN prediction (Goodfellow et al., 2016). In this sense, the ML model divides the feature 
space into several CSs, each consisting of predictions that are assigned to the same class by the ML model. 
The boundaries between CSs are the DBs and can be linear or non-linear, depending on the classification 
task and ML model used (Bishop, 2006; Kim et al., 2023). In general, there exist symbolic and subsymbolic 
ML models. Symbolic ML models such as, e.g., decision trees or variants of regressions, incorporate DBs 
with a higher degree of transparency, because the model prediction can be reconstructed directly based on 
the feature values of the instance and the learned model parameters. For example, in a decision tree, an 
instance is assigned to one path if a feature value exceeds a learned threshold, and to another path if it falls 
below that threshold. By examining the feature values and associated parameters, this decision can be 
directly recognized. Traversing all nodes of the tree reveals the model’s class decisions, making its DBs and 
CSs transparent. However, many well-established ML models such as NNs or support vector machines are 
subsymbolic, i.e., their DBs and CSs are not transparent from the learned model parameters. This makes 
these ML models black boxes, as decisions cannot be directly recognized (Bishop, 2006). 

For reviewing both existing local XAI methods and criteria to assess their performance, as well as for our 
discussions throughout the rest of the paper, we briefly present a running example. We introduce the real-
world Fetal Health dataset (Ayres-de-Campos et al., 2000) for this purpose, on which we trained a typical 
(black box) feedforward NN (details cf. Section Evaluation). We have chosen this dataset from the 
healthcare domain because it emphasizes the importance of an accurate and robust explanation. The 
prediction of the NN should support the diagnosis of a fetus’s health and comprises the classes “NORMAL” 
(the fetus is healthy), “SUSPECT” (the fetus might not be healthy and further medical checks are required) 
and “PATHOLOGICAL” (the fetus’s health is critical and immediate medical action is required) based on the 
following five data features: The first feature is the fetus’s Baseline Heart Rate. Two further features capture 
possible abnormalities of the heart rate, namely the number of Prolonged Decelerations (per 1,000 
seconds), and the relative fraction of time in which the heart rate exhibits Abnormal Short-Term 
Variability (i.e., strong fluctuations in the heart rate). Moreover, the difference between the lowest and the 
highest fetal heart rate (called Heart Rate Histogram Width) and the number of Uterine Contractions 
experienced by the mother (again per 1,000 seconds) are considered. The classification task corresponds to 
a highly critical decision situation, aiming to support a diagnosis of a fetus’s health for which an explanation 
of each ML prediction should be transparent and accurate. 

When reviewing local XAI methods in more depth, it is important to understand how their performance 
has to be evaluated from a methodological perspective. One central and well-known criterion for 
performance is fidelity or accuracy (Kim et al., 2023; Laugel et al., 2018). It expresses the extent to which 
the decisions of the surrogate model generated by a XAI method locally match the decisions of the ML 
model being explained. Precisely, measures such as the local fidelity score (local faithfulness) or the local 
DB-aware fidelity score (LDA, cf. Kim et al., 2023) have to be revealed here which, for a number of instances, 
assess whether the classes assigned by the surrogate model match the classes assigned by the ML model. If 
this match holds true for all instances, the local (DB-aware) fidelity would be perfect (i.e., 100% or 1). Even 
in a local environment this fidelity can fall well below 100%, which is critical because then the surrogate 
model evidently fails to provide an accurate explanation of the ML model, as it suggests false class 
assignments for multiple instances. This means that if, for example, the ML model predicts Class “SUSPECT” 
for a fetus, while the surrogate model predicts Class “NORMAL”, the XAI method would try to explain the 
(false) class. Further important criteria of performance are robustness or reproducibility (Alvarez-Melis & 
Jaakkola, 2018; Yeh et al., 2019), which aim to assess how stable or similar the explanations of a XAI 
method are for (very) similar instances or even the same instance. More precisely, one has to measure the 
degree to which the explanations of similar instances are consistent (e.g., Dombrowski et al., 2019). One 
reason to assess these criteria is the fact that many XAI methods often rely on stochastic elements when 
generating their explanations (e.g., LIME utilizes random samples to train the surrogate model). Crucially, 
different surrogate models and thus explanations for the same instance (e.g., the same fetus is diagnosed 
several times) or very similar instances pose a significant problem for the robustness and reproducibility of 
the XAI method. A third important criterion is sensitivity, which measures how sensitive a ML model’s 
decision is to a change in the instance’s feature values (Ribeiro et al., 2016; van Stein et al., 2022). Thereby, 
a close neighborhood of an instance reflecting possible changes in its feature values is examined regarding 
the ML model’s class assignment. The degree to which a XAI method and its generated surrogate models 
accurately reveal the sensitivity of an instance is crucial for transparency as it indicates, e.g., how ‘close’ a 
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class decision was made. In our running example, such a sensitivity analysis could reveal that only a slight 
increase in the heart rate of a fetus instance would result in a different model prediction from “SUSPECT” to 
“PATHOLOGICAL”. Ideally, also the exact amount of this change should be exactly determined, e.g., that an 
increase of at least 5 heart beats per minute would change the model’s class prediction. Note that sensitivity 
is different from the robustness criterion discussed before, since robustness measures the (unwanted) 
change in the explanation of the XAI method for similar instances (or even the same instance), while 
sensitivity aims to measure the effects of (deliberately) introduced changes of feature values on the ML 
model decision. Being able to accurately assess the sensitivity of the class prediction for an instance is highly 
relevant for a XAI method, since it not only provides information on what changes in feature values lead to 
a different class assignment, but also sheds light upon the importance of each feature to the model decision. 

Based on these performance measures, we can now discuss well-known local XAI methods and review their 
methodological strengths and weaknesses. To make the model decision of a certain instance transparent, 
XAI methods propose to approximate the black box ML model locally (i.e., in the neighborhood of a 
considered instance) with a simpler, symbolic surrogate model (e.g., a linear regression or decision tree). 
This is typically achieved by first generating artificial sample instances close to the instance to be explained 
and obtaining the prediction of the black-box ML model for each sample. Based on these samples and their 
predictions as training data, the surrogate model is trained to approximate the ML model including its DBs 
in the neighborhood of an instance. After training, this surrogate is used to explain the ML model decision, 
for example, in the case of a linear regressor by interpreting the feature coefficients. The most well-known 
representative of such local XAI approaches is LIME (Local Interpretable Model-agnostic Explanations; 
Ribeiro et al., 2016) as a model-agnostic method, with a multitude of further approaches building upon it, 
such as LS (Local Surrogates; Laugel et al., 2018) and LEAP (Local Embedding Aided Perturbation; Jia et 
al., 2019). In particular, Kim et al. (2023) has to be noted, as they clearly outperform previous local XAI 
approaches in terms of accuracy/fidelity with their method ROLEX (RObust Local EXplanations). 

Despite the strengths of the mentioned approaches, such as (partly) providing good surrogates and thus 
explanations for selected instances, there are also methodological limitations. A key limitation is that actual 
DBs are not or not correctly approximated during the generation of the surrogate models. Partly, this is due 
to the well-known limitations of sampling approaches in higher dimensions. More crucially, local XAI 
methods and their surrogate models often have difficulties to capture the structure of DBs even locally, 
especially when there are multiple DBs (which is a common case). Such problems are critical because they 
often lead to inaccurate explanations for these instances. Based on our analysis of 426 test instances (cf. 
details in Section Evaluation), with LIME respective ROLEX as many as 215 (>50%) instances respective 
75 (>17%) instances in the Fetal Health test dataset are affected by such problems, resulting in their fidelity 
being severely compromised with often less than 60%. This means that the surrogate model fails to 
accurately explain the ML model, therefore potentially leading to seriously wrong assessments of the health 
of the concerned fetus instances. Related to ROLEX, an example for such a case is visualized in Figure 1 
with respect to the two features Uterine Contractions and Heart Rate Histogram Width. The left side of 
Figure 1 displays the local explanation for the Instance 𝐼 by ROLEX: For the generation of the surrogate 
model (dotted line in left side of Figure 1), the closest Training Instance 𝑇 with a different class than 𝐼 is 
identified in a first step. Thereafter, a surrogate model (e.g., a Ridge Regression) is trained based on random 
samples drawn from a sphere whose center (lying between 𝐼 and 𝑇) and radius is determined via an 
optimization process. This sphere, illustrated as the circle in Figure 1, aims to encompass the DB lying 
between 𝐼 and 𝑇 (which belong to different classes) and thus pose a suitable ground set for the training 
samples of the surrogate model. Crucially, this procedure disregards all regions around 𝐼 that do not lie in 
the direction of 𝑇 and could potentially contain other DBs in the neighborhood. Indeed, this occurs in the 
case of the fetus instance considered, as the right side of Figure 1 showing the actual DBs of the ML model 
demonstrates. Thereby, several DBs (𝑑𝑏1-𝑑𝑏4 in Figure 1) lie in the neighborhood of 𝐼 (dotted rectangle in 
Figure 1) yet all but 𝑑𝑏1 are completely neglected by ROLEX. For this reason, the generated surrogate model 
misclassifies a substantial number of samples drawn from the neighborhood of 𝐼, leading to limited 
accuracy. Furthermore, ROLEX completely neglects the DBs (𝑑𝑏2 and 𝑑𝑏3) and CS corresponding to Class 
“PATHOLOGICAL”. Note that usually due to the black box nature of subsymbolic ML models, it is not even 
known that the actual DBs 𝑑𝑏2-𝑑𝑏4 exist at all (which is made transparent by our method proposed in the 
following). Thus, the explanation provided by ROLEX would also not indicate that the ML prediction for 
the health status of the fetus 𝐼 changes to “PATHOLOGICAL” because of only a small decrease of the Uterine 
Contractions. This emphasizes that a valid sensitivity analysis is hardly possible. Overall, surrogate models 
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– although generated with a local focus – often do not locally represent the actual DBs and CSs of the ML 
model, and cannot provide valid information on the sensitivity of the instance’s classification. 

 
       Surrogate Model generated by ROLEX          Actual DBs of the ML model 

Figure 1: DBs Close to a Fetus Instance (Fetal Health Example) 

To conclude, existing local XAI methods, while contributing to a transparent and accurate explanation of 
ML predictions, suffer from methodological issues, e.g., due to their nature of generating approximative 
surrogate models or their use of sampling approaches and other stochastic elements. Thus, they exhibit 
both a limited fidelity and robustness (cf. also Section Evaluation). Moreover, as discussed above, a 
sensitivity analysis is hardly feasible. With these limitations in mind, we aim to address the research gap 
for a transparent and accurate local explanation, which is independent from stochastic elements, sampling 
approaches, or the shortcomings of surrogate models. This allows to not only address fidelity and 
robustness, but also to rigorously analyze the sensitivity of the model’s decision. 

Theoretical Foundations and Basic Ideas 

The paper has two objectives: (1) making the DBs and CSs of a ML classification model fully transparent 
and (2) determining the sensitivity of a ML classification decision. To address objective (1), instead of 
generating surrogate models associated with methodological limitations, we propose to represent the DBs 
and CSs of the ML model in a functional and definite manner, in particular for subsymbolic black box 
models such as NNs. This leads us to the first proposition of our approach, which we will examine and prove 
for the case of NNs in the next section. 

PROPOSITION 1: DBs and CSs of the ML model to be explained. 

1a. The DBs of a ML model can be represented in a functional and definite (well-defined) manner using 
piecewise linear functions. For ML models that induce piecewise linear DBs (e.g., NNs with ReLU 
activation function, decision trees, random forests), this corresponds to an exact reconstruction of the 
DBs, while for ML models with non-piecewise linear DBs (e.g., NNs with sigmoid activation functions), 
this corresponds to an (arbitrarily exact) approximate reconstruction. 

1b. By composing the reconstructed DBs of a ML model represented by piecewise linear functions, the CSs 
of the ML model are also determined in a functional and definite manner. 

If Proposition 1 holds, meaning that the DBs and CSs of a ML model to be explained can be reconstructed 
in a functional and definite manner, then all instances can be traced exactly and deterministically in the 
feature space. Creating a good or bad surrogate model is no longer necessary; instead, the DBs and CSs of 
the ML model are made fully transparent by their functional representation. This has significant advantages 
as now all DBs close to a considered instance are captured, meaning that no DBs are ignored, or wrong 
(non-nearest) DBs are selected. Referring to the Fetal Health dataset, Figure 2 (left) shows the actual DBs 
and CSs of the ML model for the two selected Features Uterine Contractions and Abnormal Short-Term 
Variability in the intervals [0;12.0] and [8.2;68.3]. For this visualization, no surrogate models or averaging 
of features values (e.g., Partial Dependency Plots use such simplifications and thus do not visualize the 
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actual DBs) would be necessary. Moreover, the Instances I1 and I2 are exemplified. Thereby, it becomes 
evident that Instance I1 is not only classified as “NORMAL” (part of CS NORMAL) but is also close to several 
actual DBs of the ML Model (𝑑𝑏1 − 𝑑𝑏4 are exemplified in Figure 2). This determination of the position of 
Instance I1 and thus the transparency provided can be utilized for further analysis (cf. below, sensitivity). 
In contrast, Instance I2 lies deep within a CS PATHOLOGICAL and thus further away from DBs. Additionally, 
if DBs and CSs can be determined deterministically, then these representations are robust and reproducible, 
even upon repetition, which directly contributes to the criterion of robustness. 

In general, Proposition 1 aims to enhance the transparency of an individual ML model decision including 
all its relevant DBs and CSs. We argue that by functionally defining the DBs and CSs, we can not only 
recognize why an instance is assigned to a class by a ML model, but also understand the role of features and 
their values for this assignment. Moreover, we can also determine how the feature values of an instance 
need to be altered to achieve a different class assignment. For that, it is necessary to analyze the proximity 
of an instance allowing us to precisely examine the sensitivity of the model decision to changes in its feature 
values. To analyze the sensitivity of instances, we rely on the concept of the neighborhood of an instance 
which reflects the potential extent of changes in individual feature values. Figure 2 (right) illustrates 
exemplary possible neighborhoods of both Instances I1 and I2 (dotted rectangles). 

To determine the effects of altering the instance’s feature values in the neighborhood, we propose to analyze 
whether and how the ML model decision (class assignment) would change and thus, how sensitive the ML 
model decision is. Precisely, we aim to determine the probabilities of class assignments when the feature 
values of an instance are altered within this neighborhood. In Figure 2, the ML model decision for 
Instance I1 is Class “NORMAL”. However, the neighborhood of Instance I1 also comprises subspaces of the 
classes “SUSPECT” and “PATHOLOGICAL” to a significant extent. This would be reflected in the probabilities 
of class assignments for Instance I1, which are, e.g., (0.464; 0.232; 0.304) for the classes “NORMAL”, 
“SUSPECT” and “PATHOLOGICAL”. This shows that while the probability for the predicted Class “NORMAL” is 
the highest, the sum of the probabilities for the other two classes is higher overall. This transparently 
discloses the high sensitivity of the ML model decision (i.e., Class “NORMAL”), as even a small decrease of 
the values of Feature Uterine Contractions respective a small increase or decrease of the values of Feature 
Abnormal Short-Term Variability would result in a different model decision. For assessing the prediction 
of the ML model, for example, within a decision support context, this is of high importance as even a slight 
change in the feature values reveals that the ML model is more likely to assign the Fetus Instance I1 to one 
of the other two serious classes rather than the (unproblematic) Class “NORMAL”. Moreover, it is possible 
for the neighborhood of an instance to not contain any DBs (cf. Instance I2 in Figure 2). To address 
transparency and sensitivity in such a scenario as well, we propose to determine the distances and directions 
of the instance to the next DBs. Methodically, this represents the maximum possible change in the feature 
values of an instance before the current ML model decision changes. Figure 2 illustrates this for the 
Instance I2, where the distances to the nearest DB 𝑑2(𝐼2) as well as the next DBs 𝑑1(𝐼2) and 𝑑3(𝐼2) regarding 
both features are illustrated. Based on this discussion, we formulate Proposition 2 for sensitivity. 

PROPOSITION 2: Sensitivity of a ML model decision (regarding a considered instance). 

 

Figure 2. Reconstructing a ML model (Fetal Health Example) 
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2a. When altering the feature values of an instance, which defines the neighborhood of this instance, the 
probabilities of class assignments can be calculated in an exact and definite manner. 

2b. The distances and directions of an instance to the nearest DBs can be calculated in an exact and definite 
manner. 

If Proposition 2a holds, it is possible to precisely determine how much the change of its feature values affects 
the probability of the instance being assigned to each class. This is not possible for existing XAI methods, 
as neither DBs nor CSs of the ML model were represented in a functional and definite manner. For example, 
the Softmax value of an instance is frequently used as a ‘probability’ for its class assignment. However, 
methodologically, although often argued, the Softmax value neither represents a probability for a class 
assignment nor is it a valid measure for any sensitivity (e.g., Hendrycks & Gimpel, 2017). In contrast, 
analyzing the characteristics of an instance’s neighborhood allows for an explanation of why a model 
decision is determined as it is. Further, if Proposition 2b holds, the position of the instance related to the 
next DBs and CSs can be precisely determined (e.g., distance 𝑑2(𝐼2)). However, the advantage goes beyond 
the mere calculation of this position. By considering the distances and directions of the instance to the 
nearest DBs, the contribution of each feature to the ML model decision can be rigorously analyzed. For 
instance, a small decrease of the values of Feature Uterine Contractions is crucial for the ML decision for 
Fetus Instance I1 because it would then be classified as “PATHOLOGICAL”. This underscores the importance 
of a certain change (i.e., direction) in the value of this feature (as opposed to an undirected feature 
importance) and is of high value for assessing a ML prediction in decision support. We now proceed by 
presenting our method for reconstructing the DBs and CSs as well as the sensitivity measures. 

Explaining Machine Learning Models by Local Reconstruction 

Meta Method of EXPLORE 

In this section, we first describe our model-agnostic meta method of EXPLORE which we subsequently 

instantiate for feedforward NNs in a model-specific manner. The latter is used to prove whether Proposition 

1 holds for NNs. To reconstruct the DBs and CSs of a ML model, the following steps are necessary: 

Step 1. Formal definition of the ML model: In a first step, we formally define the ML model to be 
explained. To this end, we conceive the ML model as a mathematical function 𝑓:𝑋 → 𝑌 which maps any 
instance 𝑥 ∈ 𝑋 in the feature space onto a target value 𝑓(𝑥) = 𝑦 ∈ 𝑌 in the output space. The feature space 𝑋 
reflects the features and their values. Hence, 𝑋 might be a discrete or continuous space, or a mixture thereof. 
Similarly, 𝑌 represents the output space of the ML model, which might also be discrete (e.g., the set of 
classes that a decision tree can predict) or continuous (e.g., a simplex which contains the output values of a 
NN prediction). 

Step 2. Identification of linear regions in the feature space: As stated in Proposition 1, we aim to 
represent DBs by piecewise linear functions. Therefore, we need to determine in which regions of the feature 
space the DBs are piecewise linear (i.e., behave like a straight line) and where the break points between 
these linear segments of the DBs lie. In Figure 2, the piecewise linear segments 𝑑𝑏1 − 𝑑𝑏4 as well as the 
breakpoints between them are shown. In fact, these segments correspond to the so-called linear regions 
(denoted by 𝐴𝑢) of the ML model, on which the ML model behaves piecewise linearly. More precisely, the 
function 𝑓 is given by an affine linear (or even constant) function 𝑓𝑢 on each disjoint linear region 𝐴𝑢 ⊂ 𝑋 
in the feature space. As this is our basis to determine the DBs, we have to identify (locally) all linear regions 
of the ML model in a formal and definite manner. For ML models that naturally generate piecewise linear 
regions in the feature space (e.g., NNs with ReLU activation function, decision trees), this corresponds to 
an exact reconstruction of the ML model. Other ML models (e.g., NNs with non-piecewise linear activation 
functions) can be approximated with arbitrary exactness (Hornik et al., 1989; Hu et al., 2020) by such a 
piecewise linear function consisting of linear regions 𝐴𝑢 together with affine linear functions 𝑓𝑢. 

Step 3. Determining DBs in the feature space: The subdivision of the feature space 𝑋 (or a part 
thereof) into linear regions 𝐴𝑢 together with their respective affine linear functions 𝑓𝑢 provides complete 
information about 𝑓 (and hence, the ML model to be explained), because the union of the linear regions 
covers the whole feature space. Importantly, they can be used to recognize and understand where exactly 
the ML model changes its (class) decision, enabling the determination of the DBs of the ML model in a 
functional and definite manner. More precisely, it can be analyzed which 𝑥 ∈ 𝐴𝑢 ⊂ 𝑋 form the DB up to 
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which the respective functions 𝑓𝑢 induce the same class prediction. For example, in the case of a NN, the 
affine linear function 𝑓𝑢 would map all 𝑥 ∈ 𝐴𝑢 that lie on a DB onto an output vector with at least two equal 
entries. This means that 𝑥 lies on a DB between the classes to which the equal entries correspond. 

Step 4. Building CSs in the feature space: Finally, the feature space can be subdivided into CSs, based 
on the DBs identified in Step 3. As a result, even though each CS corresponds to a single class, it is enclosed 
by potentially multiple DBs adjoining different classes. Because DBs constitute hypersurfaces in the feature 
space and can thus be described by (a system of) equalities, CSs can typically be represented by (a system 
of) their respective inequalities. 

EXPLORE-Method for Feedforward Neuronal Networks 

In this section, we instantiate our meta method for the relevant and complex case of feedforward NNs. 

Step 1: Formal definition of the NN 

In the following, we consider an arbitrary feedforward NN mapping instances with 𝑚 ∈ ℕ features onto 𝑛 ∈

ℕ classes in the output space. Thus, we denote the NN by a function 𝑓: 𝑋 → Y with feature space 𝑋 ⊂ ℝ𝑚 

and output space 𝑌 ⊂ ℝ𝑛. A NN is well-known as a concatenation of layers (Bishop, 2006; Goodfellow et 

al., 2016), each consisting of a linear transformation followed by a non-linear activation function (e.g., 

ReLU). Hence, for an instance 𝑥0 ∈ 𝑋 the result 𝑥𝑖+1 after the 𝑖-th NN layer can be computed as 𝑥𝑖+1 =

𝑔𝑖( 𝑊𝑖𝑥𝑖 + 𝑏𝑖). Here, 𝑊𝑖 denotes the weight matrix, 𝑏𝑖 the bias, and 𝑔𝑖 the activation function (applied entry-

wise) of the 𝑖-th layer. Typically, the activation function of the output layer is a Softmax function, for the 

other activation functions in the intermediate layers, (Leaky) ReLU, sigmoid, or tanh are common choices. 

Step 2: Identification of the linear regions 

One of our main ideas is to represent DBs by piecewise linear functions. Therefore, we need to find the 
segments of the feature space on which the DBs are linear and hence, the break points between these 
piecewise linear segments. This can be done by identifying the linear regions of the NN. NNs with piecewise 
linear activation functions (such as Parametric ReLU, Leaky ReLU, ReLU) can be exactly reconstructed by 
a piecewise linear function on their feature space (cf. Krapf et al., 2024; Sattelberg et al., 2023; Zhang et al., 
2018). For NNs with non-piecewise linear activation functions (such as, e.g., sigmoid or tanh) we propose 
to approximate the activation function with a piecewise linear function. Indeed, any NN can be 
approximated arbitrarily well by a NN with piecewise linear activation functions (Hu et al., 2020). 
Following this idea, we introduce Definition 1 allowing us to reconstruct NNs as piecewise linear functions. 

Definition 1 (NNs as Piecewise Linear Functions). Let 𝑋 ⊂ ℝ𝑚, 𝑌 ⊂ ℝ𝑛 and 𝑓: 𝑋 → Y be the function 
representing a NN with piecewise linear activation functions. Then, 𝑓 has the piecewise linear form 

𝑓(𝑥) = {

𝑇1𝑥 + 𝑐1, 𝑖𝑓 𝑀1𝑥 ≤ 𝑙1,
𝑇2𝑥 + 𝑐2, 𝑖𝑓 𝑀2𝑥 ≤ 𝑙2,

…
𝑇𝑡𝑥 + 𝑐𝑡 , 𝑖𝑓 𝑀𝑡𝑥 ≤ 𝑙𝑡

 (1) 

with 𝑇𝑢 ∈ ℝ𝑛×𝑚, 𝑀𝑢 ∈ ℝ𝑛𝑖×𝑚, 𝑐𝑢 ∈ ℝ𝑛, 𝑙𝑢 ∈ ℝ𝑛𝑖 for 𝑡, 𝑛𝑢 ∈ ℕ, 1 ≤ 𝑢 ≤ 𝑡. 

The systems of 𝑛𝑢 inequalities 𝑀𝑢𝑥 ≤ 𝑙𝑢 in Term (1) divide the feature space 𝑋 into 𝑡 polytopes 𝐴𝑢 =
{𝑥 ∈ 𝑋 | 𝑀𝑢𝑥 ≤ 𝑙𝑢}, which are disjoint (in the sense that the 𝑚-dimensional Lebesgue measure of their 
intersection vanishes, i.e., they only have their boundaries in common) and satisfy 𝑋 = ⋃𝑢=1

𝑡 𝐴𝑢. On each 
polytope 𝐴𝑢, the NN represented by 𝑓 is given by an affine linear function defined by 𝑇𝑢 and 𝑐𝑢. Thus, 𝑓 is a 
piecewise linear function with respect to the linear regions 𝐴𝑢. As describe above, besides NNs with 
piecewise linear activation functions, we can also deal with NNs with other (i.e., non-piecewise linear) 
activation functions (such as, e.g., sigmoid or tanh) by approximating the activation function with a 
piecewise linear function (Hu et al., 2020). 

Step 3: Determining the DBs 

We now leverage the piecewise linear form of the NN from Step 2 to determine its DBs. To this end, we 
begin by formally characterizing the points that lie on a DB in the output space using the (in)equalities in 
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the following definition and prove their validity. Thereafter, we reconstruct the DBs in the feature space as 
the preimage of the output space DBs under 𝑓. 

Definition 2 (Output Space DBs). Let again 𝑋 ⊂ ℝ𝑚, 𝑌 ⊂ ℝ𝑛 and 𝑓: 𝑋 → Y be the function representing 

a NN. If 𝑦 ∈ 𝑌 satisfies 𝑦𝑖 − 𝑦𝑗 = 0 for 𝑖 ≠ 𝑗 and (𝑦𝑗 =)𝑦𝑖 ≥ 𝑦𝑘  and all 𝑘 ≠ 𝑖, 𝑗 (with 𝑦𝑖  denoting the 𝑖-th vector 

entry of 𝑦 ∈ 𝑌 ⊂ ℝ𝑛), then 𝑦 lies on an output space DB between the classes 𝑖 and 𝑗. Therefore, the DBs 
between two (different) classes 𝑖, 𝑗 in the output space 𝑌 are given by 

𝑑𝑏𝑖,𝑗
𝑜 = {𝑦 ∈ Y | 𝑦𝑖 − 𝑦𝑗 = 0 ∧ ∀𝑘 ≠ 𝑖, 𝑗: 𝑦𝑖 ≥ 𝑦𝑘} (2) 

for all 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑛. By this definition, the symmetry 𝑑𝑏𝑖,𝑗
𝑜 = 𝑑𝑏𝑗,𝑖

𝑜 holds. 

Proof. In NNs used for classification (with at least two classes, i.e., 𝑛 ≥ 2), the prediction for an instance 
with output value 𝑦 is determined by selecting the class with the highest corresponding vector entry of 𝑦. 
Therefore, the DB between the classes 𝑖 and 𝑗 in the output space lies where their corresponding entries are 
equal, i.e., where 𝑦𝑖 − 𝑦𝑗 = 0 holds. However, this equation only defines a DB where no other class 𝑘 attains 

a higher value than 𝑦𝑖  and 𝑦𝑗, i.e., where (𝑦𝑗 =)𝑦𝑖 ≥ 𝑦𝑘 , ∀𝑘 ≠ 𝑖, 𝑗 holds. Thus, the output space DB between 

the classes 𝑖 and 𝑗 is given by Term (2). Alternatively, the output space DB can also be described by the 
system of (in)equalities 

𝑦𝑖 − 𝑦𝑗 = 0, 

𝑦𝑘 − 𝑦𝑖 ≤ 0 𝑓𝑜𝑟 𝑘 ≠ 𝑖, 𝑗. 

 
□ 

(3) 

On this basis, we next propose a system of (in)equalities which represents the DBs in the feature space. 
This is a key result in this section, which we first formulate and prove for one linear region 𝐴 and two classes 
𝑖, 𝑗 in the following lemma. Thereafter, we generalize this result in Definition 3 and characterize all DBs 
(between all classes) in the whole feature space. 

Lemma 1 (Feature Space DBs). Let again 𝑋 ⊂ ℝ𝑚, 𝑌 ⊂ ℝ𝑛 and 𝑓: 𝑋 → Y be the function representing a 
NN. Moreover, let 𝐴 be a linear region of 𝑓 (as in Definition 1), and 𝑑𝑏𝑖,𝑗

𝑜 be a DB in the output space 

between the (different) classes 𝑖 and 𝑗. Then, the corresponding DB in the linear region 𝐴 is characterized 
by the system of (in)equalities 

𝑣𝑖,𝑗 ⋅ 𝑇 ⋅ 𝑥 + 𝑣𝑖,𝑗 ⋅ 𝑐 = 0, 

𝑣𝑘,𝑖 ⋅ 𝑇 ⋅ 𝑥 + 𝑣𝑘,𝑖 ⋅ 𝑐 ≤ 0  
(4) 

for 𝑥 ∈ 𝐴. In this term, 𝑣𝑖,𝑗 ∈ ℝ𝑛 is defined as the vector with 1 in the 𝑖-th entry, −1 in the 𝑗-th entry and 0 

otherwise, and 𝑇, 𝑐 are defined as the affine linear mapping representing 𝑓 on the linear region 𝐴.  

Proof. According to Definition 1, 𝑓(𝑥) = 𝑇𝑥 + 𝑐 holds for 𝑥 ∈ 𝐴. Then, according to Term (3), the DB 𝑑𝑏𝑖,𝑗
𝑜 

in the output space can be written by 𝑣𝑖,𝑗 ⋅ 𝑦 = 0, 𝑣𝑘,𝑖 ⋅ 𝑦 ≤ 0 for 𝑦 ∈ 𝑌, 𝑘 ≠ 𝑖, 𝑗. For 𝑦 = 𝑓(𝑥) = 𝑇 ⋅ 𝑥 + 𝑐, this 

system of (in)equalities can directly be rewritten as in Term (4).                 □ 

Note that it is possible that the set of 𝑥 ∈ 𝐴 satisfying these (in)equalities might also be empty, which is the 
case if (and only if) the linear region 𝐴 contains no DB between the classes 𝑖 and 𝑗. By considering all classes 
and linear regions, we can now obtain the complete system of (in)equalities which represents all DBs in the 
whole feature space 𝑋. 

Definition 3 (Feature Space DBs). The DBs in the feature space are given by the system of (in)equalities 

𝑣𝑖,𝑗 ⋅ 𝑇𝑢 ⋅ 𝑥 + 𝑣𝑖,𝑗 ⋅ 𝑐𝑢 = 0, 

𝑣𝑘,𝑖 ⋅ 𝑇𝑢 ⋅ 𝑥 + 𝑣𝑘,𝑖 ⋅ 𝑐𝑢 ≤ 0, 

𝑀𝑢𝑥 ≤ 𝑙𝑢 

(5) 

for all 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑛, 𝑘 ≠ 𝑖, 𝑗 and 1 ≤ 𝑢 ≤ 𝑡. According to Definition 1, instance 𝑥 satisfying the inequalities 
𝑀𝑢𝑥 ≤ 𝑙𝑢 is equivalent to instance 𝑥 lying in 𝐴𝑢. We denote the DBs, i.e., the sets of all 𝑥 ∈ 𝑋 which satisfy 
this system of (in)equalities for the linear region 𝐴𝑢 and classes 𝑖 and 𝑗, by 𝑑𝑏𝑢,𝑖,𝑗. 

Step 4: Building the CSs 

The DBs as described in Term (5) can now be used to derive the CSs in the feature space, in which the NN 
attains one single class. Because the equalities in Term (5) divide the linear region into areas corresponding 
to the classes 𝑖 and 𝑗, the CSs can be exactly represented by using their respective inequalities. 
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Definition 4 (Class Subspaces). The feature space can be divided into (convex) subspaces, in which the 
NN attains only class 𝑖, by the system of inequalities (including all inequalities iterating over 𝑘 ≠ 𝑖) 

𝑣𝑘,𝑖 ⋅ 𝑇𝑢 ⋅ 𝑥 + 𝑣𝑘,𝑖 ⋅ 𝑐𝑢 ≤ 0, 

𝑀𝑢𝑥 ≤ 𝑙𝑢 
(6) 

for all linear regions 1 ≤ 𝑢 ≤ 𝑡 .We denote the CS consisting of the set of all 𝑥 ∈ 𝑋 which satisfy these 
inequalities for the linear region 𝐴𝑢 and class 𝑖, by 𝑐𝑠𝑢,𝑖. 

For one single 𝑢, this system of inequalities exactly represents the CS in the linear region 𝐴𝑢 (defined by 
𝑀𝑢𝑥 ≤ 𝑙𝑢), in which the NN predicts class 𝑖. Compared to Term (5), the class index 𝑗 is now attained by the 
running index 𝑘 in this definition, as the output value (of any 𝑥 ∈ 𝑐𝑠𝑢,𝑖) for class 𝑖 must be higher than that 

of all other classes, including 𝑗. Note that by this definition it is possible that two CSs 𝑐𝑠𝑢1,𝑖 and 𝑐𝑠𝑢2,𝑖 of the 

same class 𝑖 adjoin each other if their respective linear regions 𝐴𝑢1
 and 𝐴𝑢2

 adjoin each other. 

Measures for Sensitivity 

In the previous section, we have proven Proposition 1 by establishing the piecewise linear structure of a NN 
and reconstructing its DBs and CSs in a functional and definite manner. We now shift our focus on analyzing 
the sensitivity of ML model decisions (Proposition 2), for which our functional representation of the DBs 
and CSs is employed. To this end, we introduced the idea of a neighborhood of an instance, which reflects 
the potential extent of changes in its individual feature values. We then propose two novel sensitivity 
measures grounded on this notion. 

For an instance 𝑥 we define the neighborhood Ω𝑥 as the subset of the feature space 𝑋 which contains all 
changes of feature values being part of the sensitivity analysis. Moreover, we also consider a probability 
distribution 𝑝x on Ωx, which describes the probabilities of feature value changes in the neighborhood. 
Therefore, we first introduce a probability-theoretic grounding which serves as a rigorous basis for our 
sensitivity measures. 

Definition 5 (Probability-Theoretic Grounding). Let 𝑥 ∈ 𝑋 be the considered instance and let Ωx ⊂
𝑋 be the neighborhood of 𝑥 together with a probability density function 𝑝x. Then the random experiment is 
defined by the probability space (Ωx, 𝔅(Ωx), 𝑃x) where 𝔅(Ωx) denotes the Borel-𝜎-Algebra of Ωx. For any set 
𝐴 ∈ 𝔅(Ωx) the probability measure 𝑃x is defined as 

𝑃x(𝐴) ≔ ∫𝑝x(𝑧)𝑑𝑧

 

𝐴

. (7) 

A natural choice for neighborhood Ω𝑥 can be a cube around the instance 𝑥 with width 𝜀 for each feature, i.e., 
Ω𝑥 = {𝑥′ ∈ 𝑋 | |𝑥𝑖

′ − 𝑥𝑖| ≤ 𝜀/2 , ∀𝑖 = 1,… ,𝑚}. By this definition, positive or negative feature value changes of 
𝜀/2 would be possible for each feature. If a uniform probability distribution is chosen for 𝑝x (i.e., 𝑝𝑥(𝑥

′) =
𝜀−𝑚, ∀𝑥′ ∈ Ω𝑥), then all possible changes in the neighborhood would be equally probable. In general, 
however, the definition of Ωx and 𝑝x is fully adaptable to the context of the needed sensitivity analysis. Other 
choices for Ωx could be spherical or cuboid-shaped neighborhoods, and for 𝑝x various types of probability 
distributions such as Gaussian are conceivable. We now formally define our two sensitivity measures based 
on this theoretical grounding. 

Definition 6 (Class Probability). Let 𝑥 ∈ 𝑋 and (Ωx, 𝔅(Ωx), 𝑃x) be as in Definition 5. We define the class 
probability 𝑝𝑖  (with respect to 𝑓) by the probability mass of the subset Ω𝑥,𝑖 ⊂ Ω𝑥 where 𝑓 predicts class 𝑖. 

𝑝𝑖 ≔ ∫ 𝑝x(𝑧)

 

Ω𝑥,𝑖

𝑑𝑧 (8) 

In the previous section we pointed out that the class decision of a NN 𝑓 corresponds to the highest value in 
its output vector, i.e., it is given by argmax 𝑓(𝑥) for 𝑥 ∈ 𝑋. Using our notation of CSs, the preimage 
(argmax 𝑓)−1(𝑖) is equal the union of all CSs of class 𝑖 over all linear regions ⋃ 𝑐𝑠𝑢,𝑖

𝑡
𝑢=1 . Since we only 

consider the neighborhood Ω𝑥 in Term (8), Ω𝑥,𝑖 = Ω𝑥 ∩ (argmax 𝑓)−1(𝑖) holds. Overall, 𝑝𝑖  describes the 

probability of 𝑓 attaining class 𝑖 in the neighborhood Ω𝑥. Importantly, our functional descriptions of the 
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CSs can be used to exactly calculate 𝑝𝑖, which we demonstrate in Lemma 2. Before, we introduce our first 
sensitivity measure by assembling the class probabilities of all classes. 

Definition 7 (Class Probability Vector (CPV)). Let 𝑥 ∈ 𝑋, (Ωx, 𝔅(Ωx), 𝑃x), and 𝑓 be as in Definition 6. 
We define the Class Probability Vector (CPV) 𝑚𝑥 ≔ (𝑝1, … , 𝑝𝑛) with 𝑝𝑖  denoting the class probability of 
class 𝑖 as defined above. Therefore, the vector 𝑚𝑥 contains the probabilities of 𝑓 predicting each class in Ω𝑥. 

By proposing the CPV in Definition 7, we can now assess the sensitivity of an instance in the sense of 
Proposition 2a. Now following Proposition 2b, we proceed by formally defining our second sensitivity 
measure given by the distances and the directions of an instance to the DBs of 𝑓. 

Definition 8 (Distance and Direction to DBs). We define the distance 𝑑𝑑𝑏(𝑥) of instance 𝑥 ∈ 𝑋 to the 
DBs of 𝑓 as the minimum of its distances to all boundaries 𝑑𝑏𝑢,𝑖,𝑗  for all linear regions 𝐴𝑢 and classes 𝑖, 𝑗: 

𝑑𝑑𝑏(𝑥) = min
u,i,j

𝑑𝑖𝑠𝑡(𝑥, 𝑑𝑏𝑢,𝑖,𝑗) (9) 

Following common notation, for the instance 𝑥 and any set 𝑆, the distance is defined as the infimum of all 
distances of 𝑥 to any point in the set 𝑆 (i.e., 𝑑𝑖𝑠𝑡(𝑥, 𝑆) = inf{‖𝑥 − 𝑠‖ | 𝑠 ∈ 𝑆}). Note that in the case 𝑆 = 𝑑𝑏𝑢,𝑖,𝑗, 

this infimum is always attained at a point 𝑥𝑑𝑏,𝑚𝑖𝑛 ∈ 𝑑𝑏𝑢,𝑖,𝑗, since 𝑑𝑏𝑢,𝑖,𝑗  is always a closed subspace of a 

hyperplane. The vector 𝑑𝑑𝑏
⃗⃗ ⃗⃗ ⃗⃗  (𝑥) ≔ 𝑥𝑑𝑏,𝑚𝑖𝑛 − 𝑥 thus defines the direction of 𝑥 to the closest point on a DB. For 

the distance between 𝑥 and the DBs with respect to a certain feature/dimension 1 ≤ 𝑒 ≤ 𝑛, we define 

𝑑𝑑𝑏
𝑒 (𝑥) = min

u,i,j
𝑑𝑖𝑠𝑡(𝑥, 𝑑𝑏𝑢,𝑖,𝑗

𝑒,𝑥 ), (10) 

where 𝑑𝑏𝑢,𝑖,𝑗
𝑒,𝑥  denotes a DB of the restricted one-dimensional feature space consisting of all points on a DB 

whose feature values ─ except for feature 𝑒 ─ are equal to the feature values of 𝑥. Formally, 𝑑𝑏𝑢,𝑖,𝑗
𝑒,𝑥  can be 

defined as 𝑑𝑏𝑢,𝑖,𝑗
𝑒,𝑥 = {𝑧 ∈ 𝑑𝑏𝑢,𝑖,𝑗  | ∀𝑑 ≠ 𝑒: (𝑧)𝑑 = (𝑥)𝑑}. Intuitively, 𝑑𝑑𝑏

𝑒 (𝑥) describes by how much the value 

of the feature 𝑒 has to be changed to achieve a different class assignment by 𝑓 without changing any other 
feature values of instance 𝑥 (i.e., ceteris paribus). 

Note that the distance to any DB of interest can analogously be determined by adjusting the minimizing 
indices in Term (9). For example, DBs that adjoin a specific class or that lie in a specific direction could be 
analyzed in this manner as well. Before evaluating these measures by concretely assessing the sensitivity of 
the class decision of instances from the Fetal Health dataset, we prove the validity of the computation of 
both sensitivity measures. 

Lemma 2 (Validity). Let 𝑥 ∈ 𝑋, (Ωx, 𝔅(Ωx), 𝑃x), and 𝑓 be as in Definition 6, then the computation of both 
sensitivity measures is valid, in the sense that they can be calculated exactly by utilizing the functional 
representation of DBs and CSs of the model 𝑓 (cf. Definition 3 and 4). 

Proof. Since the Definitions 1-4 and Lemma 1 also hold for any subset of the feature space, we can set 𝑋 =
Ω𝑥 without loss of generality. Thus, Ω𝑥,𝑖 = (argmax 𝑓)−1(𝑖) = ⋃ 𝑐𝑠𝑢,𝑖

𝑡
𝑢=1  holds in Term (8) and according to 

Definition 4, all CSs 𝑐𝑠𝑢,𝑖 are functionally represented by the systems of inequalities in Term (6), and their 

representation is valid. Therefore, 𝑝𝑖  is given as the sum of the integrals over the linear regions of 𝑋 = Ω𝑥: 

𝑝𝑖 = ∫ 𝑝x(𝑧)

 

Ω𝑥,𝑖

𝑑𝑧 = ∑ ∫ 𝑝x(𝑧)

 

𝑐𝑠𝑢,𝑖

𝑑𝑧

𝑢

 (11) 

This shows the lemma for the CPV 𝑚𝑥. For the distance of 𝑥 to the nearest DB 𝑑𝑑𝑏(𝑥), we first consider the 
DBs 𝑑𝑏𝑢,𝑖,𝑗 for all linear regions 𝐴𝑢 and classes 𝑖, 𝑗 as described in Definition 3. For each DB 𝑑𝑏𝑢,𝑖,𝑗, the system 

of (in)equalities as in Term (5) defines a closed subset of a hyperplane in 𝑋, for which the distance 
𝑑𝑖𝑠𝑡(𝑥, 𝑑𝑏𝑢,𝑖,𝑗) can be calculated by applying the orthogonal projection 𝜋 of the associated hyperplane onto 

𝑥. If the projection 𝜋(𝑥) lies in 𝑑𝑏𝑢,𝑖,𝑗 (which is a closed subset of the hyperplane), then 𝜋(𝑥) is the nearest 

point and 𝑑𝑖𝑠𝑡(𝑥, 𝑑𝑏𝑢,𝑖,𝑗) = |𝑥 − 𝜋(𝑥)| holds. If 𝜋(𝑥) does not lie in 𝑑𝑏𝑢,𝑖,𝑗 this procedure can be reapplied in 

the lower-dimensional projection space 𝜋(𝑋) until the projection point lies in the hyperplane, which is 
guaranteed if the dimension of the projection space reaches zero. As a result, the distance 𝑑𝑖𝑠𝑡(𝑥, 𝑑𝑏𝑢,𝑖,𝑗) can 

be calculated exactly for any combination of indices 𝑢, 𝑖, 𝑗, and taking the minimum yields 𝑑𝑑𝑏(𝑥). This also 
shows the validity of 𝑑𝑑𝑏

𝑒 (𝑥) because this argument also holds for the (one-dimensional) restriction of the 
feature space 𝑋𝑒 = {𝑧 ∈ 𝑋 | ∀𝑑 ≠ 𝑒: (𝑧)𝑑 = (𝑥)𝑑}.                              □ 
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Evaluation 

In this section, we evaluate our method. To this end, we first briefly describe three real-world datasets that 
we use in our experiments and discuss the existing XAI methods against which we compare the performance 
of EXPLORE. More precisely, we first focus on the criterion fidelity and present the LDA fidelity measure 
as proposed in Kim et al. (2023). We next focus on the criterion robustness, and then on sensitivity using 
our measures introduced in the previous section. For all three criteria we provide empirical evidence and – 
if possible – theoretical guarantees, thus evaluating our approach from a methodological perspective. 

Description of the Datasets and Competing XAI Methods 

To evaluate our method, we used three datasets because they are related to critical decision situations in 
healthcare, loan approval, and criminal recidivism and thus are already known in XAI literature. If ML 
model predictions are used for decision support in these domains, they must be treated with great caution 
as they have potentially profound consequences for a person’s life. The first dataset used in this evaluation 
is the Fetal Health dataset which we introduced in the background section. The dataset has five medical 
features, based on which the health of a fetus is predicted as one of the three classes “NORMAL”, “SUSPECT”, 
or “PATHOLOGICAL”. We use 80 percent (i.e., 1,700) of the available 2,126 data instances for model training, 
the remaining 426 instances are used as test instances in our experiments. As second dataset, we use a 
version of the Prosper dataset (https://www.kaggle.com/datasets/henryokam/prosper-loan-data) which 
contains data from a loan company about previous loans and their default status (i.e., whether they 
defaulted or not). Based on this data, a ML model can be trained and used to predict the future status of a 
loan application, e.g., if it will be paid back or defaulted, and thus provide a decision support for the 
company if an application should be approved or not. For this dataset, we consider six features regarding 
the loan and the applicant, and six classes of the loan outcome. Again, we split the 3,000 data instances into 
80 percent training data (2,400 instances) and 20 percent test data (600 instances). As a third dataset, we 
use a version of the COMPAS dataset (https://www.kaggle.com/datasets/danofer/compass) that contains 
information on former criminals and their risk of recidivism. A ML model can thus be trained and used to 
predict the likelihood and point in time of reoffending based on personal information about the former 
inmate. For this dataset, we consider six features and eight classes and once again split the 3,000 considered 
instances into training and test datasets in an 80:20 ratio. For each dataset, we trained a feedforward NN 
with ReLU activations which we aim to explain with EXPLORE and the two competing local XAI methods 
from literature considered in our empirical evaluation. First, we employ the well-known method LIME from 
Ribeiro et al. (2016). According to the publicly available code, the surrogate model was instantiated as a 
Ridge regression in this evaluation. As a second competing method, we consider ROLEX from Kim et al. 
(2023) which significantly outperformed existent local XAI methods. Following the authors’ suggestions as 
well as their original code implementation (including the configuration for ROLEX), a linear Ridge 
regression model is used in the case of linear DBs and a non-linear decision tree model in the case of non-
linear and multiclass DBs in the experiments. For assessing EXPLORE, no configuration is necessary as it 
is deterministic in nature. For calculating sensitivity, we used a cube-shaped local neighborhood with a side 
length of 10 percent (other percentages are also possible) of the respective features total value space in 
positive and negative direction. 

To evaluate our method, we implemented EXPLORE in Python, which was used to generate the reported 
results. For the three datasets considered, the runtime of EXPLORE was few seconds per data 
instance/local explanation and thus comparable to LIME and ROLEX. 

Assessing Fidelity, Robustness and Sensitivity 

To begin with fidelity, the LDA score as presented by Kim et al. (2023) is defined as the average of the local 
fidelity scores of all instances with at least one DB nearby. Hereby, the local fidelity score for a test instance 

𝑥𝑖 ∈ 𝑋 and its local explanation 𝑓�̅�𝑖
 for the ML model 𝑓 is defined as the accuracy (cf. Kim et al., 2023) 

𝐿𝑜𝑐𝑎𝑙𝐹𝑖𝑑(𝑓�̅�𝑖
, 𝑥𝑖) = 𝐴𝑐𝑐𝑧∈𝑍 (𝑓(𝑧), 𝑓�̅�𝑖

(𝑧)). 
 

(12) 

In this term, 𝑍 is a set of random samples drawn from the feature space close to 𝑥𝑖. As a result, the local 

fidelity is 1 if the local explanation 𝑓�̅�𝑖
 predicts the same class as the ML model 𝑓 on all random samples. 

Finally, the LDA score is calculated by the average of the local fidelities of all instances 𝑥𝑖 for which 𝑓 
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predicts at least two different classes on the set of samples, i.e., ∃𝑧1, 𝑧2 ∈ 𝑍: argmax 𝑓(𝑧1) ≠ argmax 𝑓(𝑧2). If 
this condition holds, then there is a least one DB near 𝑥𝑖 since different classes are predicted by 𝑓. As a 
result, fidelities of ‘trivial’ instances without any nearby DBs are excluded in the calculation of 𝐿𝑜𝑐𝑎𝑙𝐹𝑖𝑑. 
Table 1 presents the LDA scores on all three datasets, indicating that both LIME and ROLEX have scores 
well below 1. This exposes not only the mismatch between the ML model and the XAI surrogate model for 
many instances but also potentially highly problematic explanations being generated on inaccurate 
surrogates. 

 ROLEX LIME EXPLORE 

Fetal Health 0.8885 0.6864 1.000 

Prosper 0.6813 0.6549 1.000 

COMPAS 0.6237 0.2770 1.000 

Table 1. LDA Scores 

Our method achieves a fidelity of 1 which can be substantiated by establishing a theoretical proof that 
guarantees a perfect LDA score of 1: Let 𝑍 be the set of all random samples collected and 𝑧 ∈ 𝑍. Utilizing 
our representation of CSs, we are able to identify the (unique) CS 𝑐𝑠𝑢,𝑖 of the ML model 𝑓 containing 𝑧 by 

checking for which linear region 𝐴𝑢 and class 𝑖 the corresponding system of inequalities is satisfied by 𝑧 (cf. 
Definition 4). Since the inequalities describing the CS are valid as a direct consequence of Lemma 1, the 
class predicted by 𝑓 agrees with the one associated to 𝑐𝑠𝑢,𝑖, namely 𝑖. Since this holds for all samples 𝑧 ∈ 𝑍, 

the local fidelity of any instance and hence, the LDA score of EXPLORE must always equal 1. 

To evaluate the criterion of robustness, we need to assess the stability of the XAI method’s explanations by 
measuring the extent to which the explanations of similar instances match. Thus, we generate explanations 
for a certain number 𝐽 ∈ ℕ of similar artificial instances 𝑥𝑖,𝑗 ∈ 𝑋 for each test instance 𝑥𝑖. For the results in 

Table 2, we generated five (i.e., 𝐽 = 5) artificial instances whose feature values differ by at most 3.5 percent 
of the respective features total value space, for each method and dataset. Following Dombrowski et al. 
(2019), the robustness measure is defined as the share of mismatches between all local explanations of 

similar instances 𝑓�̅�𝑖,𝑗
 and the original explanation 𝑓�̅�𝑖

 on a set a of random samples 𝑍: 

𝑅𝑜𝑏(𝑓�̅�𝑖
, 𝑥𝑖) = 1 −

1

𝐽
∑𝐴𝑐𝑐𝑧∈𝑍 (𝑓�̅�𝑖

(𝑧), 𝑓�̅�𝑖,𝑗
(𝑧)) 

𝐽

𝑗=1

 (13) 

In case of perfect robustness, the prediction of the explanation models 𝑓�̅�𝑖,𝑗
 is consistent with the prediction 

of the original explanation model 𝑓�̅�𝑖
 on any random sample 𝑧 ∈ 𝑍. Then, the accuracy 𝐴𝑐𝑐𝑧∈𝑍 (𝑓�̅�𝑖

(𝑧), 𝑓�̅�𝑖,𝑗
(𝑧)) 

would be 1 for each explanation 𝑓�̅�𝑖,𝑗
, leading to the optimal score 𝑅𝑜𝑏(𝑓�̅�𝑖

, 𝑥𝑖) = 0 for 𝑥𝑖. In Table 2, our 

empirical analysis on all three datasets indicates that the robustness of ROLEX is limited, especially for 
incorrectly classified instances, while LIME (at first glance) seems to have high robustness. However, it 
should be noted that according to Table 1, LIME exhibits partially very poor fidelity, resulting in “robust” 
poor surrogate models being generated for many instances. 

 Correctly classified instances Incorrectly classified instances 

 ROLEX LIME EXPLORE ROLEX LIME EXPLORE 

Fetal Health 0.129 0.002 0.0 0.140 0.0 0.0 

Prosper 0.190 0.0 0.0 0.234 0.0 0.0 

COMPAS 0.117 0.065 0.0 0.175 0.068 0.0 

Table 2. Robustness Scores 

Our method achieves a robustness of 0 which can again be substantiated by providing a theoretical proof 
for the perfect robustness: Let 𝑥𝑖 ∈ 𝑋 be the considered test instance and let 𝑥𝑖,𝑗 ∈ 𝑋 be an (artificial) 

instance in close proximity of 𝑥𝑖. By applying our proof for the perfect fidelity of EXPLORE to both 

explanations 𝑓�̅�𝑖,𝑗
 and 𝑓�̅�𝑖

, we can deduce that the class predictions of 𝑓�̅�𝑖,𝑗
 and 𝑓�̅�𝑖

 are equal to the class 



 EXPLORE: Explanation by Local Reconstruction 
  

 Forty-Fifth International Conference on Information Systems, Bangkok, Thailand 2024
 14 

predictions of 𝑓 on all samples 𝑧 ∈ 𝑍. This directly implies that the class predictions of 𝑓�̅�𝑖,𝑗
(𝑧) and 𝑓�̅�𝑖

(𝑧) are 

also equal for all samples 𝑧 ∈ 𝑍. As a result, 𝐴𝑐𝑐𝑧∈𝑍 (𝑓�̅�𝑖
(𝑧), 𝑓�̅�𝑖,𝑗

(𝑧)) = 1 for an arbitrary artificial instance 𝑥𝑖,𝑗 

and 𝑅𝑜𝑏(𝑓�̅�𝑖
, 𝑥𝑖) = 0 follows. 

Instance number 0 78 

Ground truth class Class “NORMAL” Class “NORMAL” 

ML model prediction Class “NORMAL” Class “SUSPECT”  

Five feature values (133.0, 0, 46.0, 69.0, 3.0) (135.0, 0.0, 58.0, 53.0, 1.0) 

Nearest point on DB (136.6, 0.3, 45.6, 67.8, 2.8) (134.9, 0.0, 57.8, 52.8, 1.0) 

Distance to DB (overall) 3.84 0.30 

Class probabilities (CPV) (0.939, 0.061, 0.0) (0.495, 0.501, 0.0) 

Feature  1 2 3 4 5 1 2 3 4 5 

Feature-
wise 
distances 

Negative direction - - - - - 0.4 - 0.3 1.6 0.7 

Positive direction - 5.0 16.6 - - 9.9 2.8 33.3 47.0 1.7 

Table 3. Sensitivity Measures for Fetal Health Instances 0 and 78 

Finally, we demonstrate our two measures for the sensitivity of a class prediction in the case of two selected 
instances from the Fetal Health dataset. An evaluation of LIME and ROLEX is not feasible here, as neither 
of these XAI methods is able to recognize the actual DBs or the CSs of the ML model. Instead, this is feasible 
based on the functional and definite representation of the DBs and CSs in our method. The considered 
instances are selected because they exhibit vastly different and interesting values regarding our sensitivity 
measures, which are presented in Table 3 and visualized in Figure 3 (for two feature dimensions). Instance 
78 lies very close to the nearest DB (with a distance of 0.30) and has class probabilities (CPV) of (0.495, 
0.501, 0.0), both indicating that the class prediction of Instance 78 is very sensitive even to slight changes 
in the feature values. Moreover, training instances with ground truth Class “SUSPECT” (denoted by the 
symbol ‘x’ in Figure 3) lie in the CS “NORMAL”, and vice versa, making transparent that the DBs were not 
learned accurately by the model. In contrast, the class prediction of Instance 0 is not very sensitive, as the 
clearly distinct CPV (0.939, 0.061, 0.0) and the rather high distance to the nearest DB of 3.84 suggest. Note, 
that the probability of 0.061 for Class “SUSPECT” comes from features that are not visualized in Figure 3. 

 

Figure 3. Sensitivity of the two Instances 0 and 78 from the Fetal Health Dataset 
(Ground Truth of Selected Training Instances: Class “NORMAL”: 𝚫, Class “SUSPECT”: x) 
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Discussion, Implications, Limitations and Future Research 

In this paper, we proposed a novel local XAI methods as well as two sensitivity measures. Based on these 
two contributions, we will discuss the main results and implications of our paper. 

Reconstructing DBs and CSs of a ML Model 

First, we introduced EXPLORE, a method to reconstruct the DBs and the CSs of a ML model in a functional 
and definite manner, thus making the ML model fully transparent. We provide formal proofs for the validity 
of this representation and thus for Proposition 1, which ─ together with the fact that our method is 
deterministic and does not rely on stochastic elements ─ guarantees both, the fidelity and robustness of 
EXPLORE from a theoretical perspective. As a result, our method not only perfectly matches the ML model 
in the local neighborhood of any instance to be explained but is also robust and reproducible upon 
repetition. In the evaluation, we substantiate our theoretical guarantees with empirical evidence by 
measuring the fidelity and robustness of EXPLORE and comparing it to the competing local XAI methods 
LIME and ROLEX on three real-world datasets. Indeed, Table 1 shows that EXPLORE clearly outperforms 
the competing methods regarding fidelity, even in challenging settings such as the COMPAS dataset where 
ROLEX and LIME attain a LDA score of 0.623 and 0.277 respectively. Further, our analysis shows that 
EXPLORE provides perfect robustness for similar instances, which is substantiated by our robustness score 
of 0 across all datasets. Interestingly, LIME consistently achieves the lowest fidelity scores but a very high 
robustness (cf. Table 2). Thus, it yields robust, but inaccurate explanations for similar instances (which is 
highly critical). Instead, ROLEX outperforms LIME regarding fidelity, but is less robust compared to LIME 
and our method. More precisely, the robustness scores for 20 fetus instances in the Fetal Health dataset are 
even higher than 0.3 for ROLEX, indicating that the generated explanations for these and similar instances 
vary significantly upon repetition which is also highly critical. These theoretical and empirical results form 
the basis of the first contribution of our paper corresponding to our Proposition 1. By reconstructing the 
DBs and CSs of a ML model in the neighborhood of an instance in a formal and definite manner, we are 
able to accurately represent the ML model in that neighborhood. Essentially, this addresses a key task of 
local XAI methods to make the ML model around an instance transparent: First and foremost, generating 
surrogate models is not necessary. Frequently used surrogate models such as linear regression or decision 
trees often have difficulties to capture the actual DBs of a ML model even locally (cf. Figure 1). This is 
particularly evident in classification tasks with a higher number of classes such as the COMPAS dataset 
(8 classes), where (the surrogate model-based methods) ROLEX and LIME achieve significantly lower 
fidelity than on the Fetal Health dataset (3 classes). Thereby, local XAI methods often explain an instance 
focusing on one (usually the nearest) DB, potentially ignoring other relevant DBs in the neighborhood of 
the instance. In the case of the instance from the Fetal Health dataset illustrated in Figure 1, this can have 
severe consequences as several DBs to Class “SUSPECT” and even Class “PATHOLOGICAL” are in fact 
completely disregarded in the provided explanation. In contrast, our method is able to reconstruct all DBs 
and CSs in a neighborhood of arbitrary size. In particular, this profound information on the (local) decisions 
of the ML model provides a valuable basis for its adaptable and accurate visualization on the feature space 
as shown in the Figures 2 and 3. This indicates that our method has the potential to enhance the 
transparency of the ML model and the decisions it provides. 

Measuring the Sensitivity of a ML model decision 

For the second contribution, we leverage the formal and definite representation of the DBs to analyze the 
sensitivity of ML model predictions. To this end, we introduce two theoretically founded measures for 
sensitivity, prove their validity using Definition 3 and 4 and thus show Proposition 2. The first measure 
(CPV in Definition 7) captures the sensitivity of an instance by modeling its potential changes (regarding 
all or a selected set of features) with a probability distribution, and then precisely assigning the probability 
masses to their respective classes. This assignment harnesses the formal representation of the CSs and is 
feasible for arbitrary probability distributions describing feature changes. The resulting class probabilities 
pose a meaningful indicator for the sensitivity of the instance, because, e.g., an instance with similar or 
evenly distributed probabilities for different classes is very sensitive in its ML decision and should thus be 
handled with caution. As a second measure for the sensitivity of an instance, we introduce its Distance and 
Direction to DBs (Definition 8). Again, by harnessing the formal representation of the DBs, it is possible to 
accurately determine the distance between an instance and its nearest point lying on a DB. This provides a 
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meaningful and interpretable indication of the sensitivity of the instance because it not only sheds light 
upon the minimal amount of feature value change required for a different class assignment, but also fully 
discloses the direction (i.e., the combination of features) in which that change needs to occur. Conversely, 
this distance explicitly defines the radius of a sphere around the instance in which the class prediction does 
not change and thus, is stable. For example, the distance between Instance 0 and its nearest point on a DB 
is rather high, indicating that the class decision of the ML model is obviously less sensitive to changes than 
Instance 78 (cf. Table 3 and Figure 3). Moreover, we also apply this measure feature-wise allowing us to 
isolate and analyze the sensitivity of each individual feature. For example, the influence of the feature 
Baseline Heart Rate on the class decision for Instance 78 (x-axis on the right side of Figure 3) is made 
transparent by the feature-wise distances of 0.4 (in negative direction) and 9.9 (in positive direction) 
according to Table 3. This means that even a minimal decrease of the Baseline Heart Rate would change 
the class prediction of the ML model, whereas for the same instance, a substantially higher increase of the 
Baseline Heart Rate would be required. In this manner, all features and their influence on the class decision 
can be analyzed. 

We now briefly outline a possible workflow that users can follow to utilize the advantages of EXPLORE. 
First, we suggest examining the direction vector from the considered data instance to the nearest decision 
boundary (overall or for each class). The entries of the direction vector provide a valid feature attribution 
since they (by definition) indicate the necessary changes for each feature to reach the boundary and thus, 
the subspace of any focused class. Second, one can analyze multiple or – if needed – potentially all nearby 
decision boundaries in the same manner, enabling a comprehensive understanding of the local 
neighborhood. For example, in the case of a physician treating a patient, this reveals possibly very different 
directions to nearby “healthy” class subspaces each corresponding to a possible therapy strategy. However, 
only relevant features (in the given context) should be considered in this analysis, as there are features that 
are impossible to change (e.g., the age of a patient), or only an increase, decrease, or other specific range of 
values is attainable. In such cases, we recommend adapting the expansion of the neighborhood accordingly, 
so that only attainable decision boundaries are explored. On this basis, also the most important features for 
a visualization of the neighborhood can be indicated. Finally, this feature analysis also sheds light on 
possible feature interactions, as the attribution of each feature to a class change often varies depending on 
whether the other features increase or decrease, and by the magnitude of their changes. This way, the 
relevant feature interactions for a data instance become apparent for a user. 

Furthermore, the computational complexity of EXPLORE is approximately proportional to the number of 
linear regions that lie in the considered neighborhood of an instance. Therefore, it makes sense to focus on 
the direct neighborhood containing the nearby and most relevant decision boundaries (and thus, linear 
regions) only. This not only reduces the runtime, but also facilitates the interpretability of our method for 
users. Consistent with the workflow outlined above, we also suggest focusing on a reasonable (pre-)selection 
of relevant features to reduce the dimension of the feature space and thus the computational cost. 

Our work also has limitations that provide a starting point for future research. To begin with, we 
instantiated our meta method only for the challenging ML model type of NNs in this paper. However, our 
method can also be applied to other model types such as decision trees, random forests, support vector 
machines, or other more complex NN architectures such as, e.g., CNNs with ReLU or NNs for text mining 
(Binder et al., 2022). However, it is part of future research to specify corresponding method instantiations. 
Further, we focused on the reconstruction of DBs and CSs in the neighborhood of an instance. Our method 
can also be extended to the whole feature space, resulting in a representation of all DBs and CSs learned by 
the model and thus, a global explanation. Moreover, our method can contribute to the research of 
counterfactual explanations by enabling the deterministic computation of counterfactuals based on the 
overall and feature-wise distances of an instance to the DBs. Thereby, counterfactuals can also be exactly 
determined with respect to other properties discussed in literature such as proximity to ground truth 
instances. Future research could also conduct user-centric studies to examine understandability of our 
visualizations and the proposed sensitivity measures. For example, these could include 2-/3-dimensional 
visualizations of the neighborhood of an instance (including its DBs and CSs). Such studies could further 
develop the alignment of our method with user needs and preferences, facilitating effective interaction and 
collaboration between users and AI. 



 EXPLORE: Explanation by Local Reconstruction 
  

 Forty-Fifth International Conference on Information Systems, Bangkok, Thailand 2024
 17 

References 

Alvarez-Melis, D., & Jaakkola, T. (2018). On the robustness of interpretability methods. Proceedings of the 
2018 ICML Workshop on Human Interpretability in Machine Learning, 66–71. 

Ayres-de-Campos, D., Bernardes, J., Garrido, A., Marques-de-sá, J., & Pereira-Ieite, L. (2000). Sisporto 
2.0: A program for automated analysis of cardiotocograms. Journal of Maternal-Fetal Medicine, 9(5), 
311–318. https://doi.org/10.3109/14767050009053454 

Bauer, K., & Gill, A. (2024). Mirror, mirror on the wall: Algorithmic assessments, transparency, and self-
fulfilling prophecies. Information Systems Research, 35(1), 226–248. 
https://doi.org/10.1287/isre.2023.1217 

Binder, M., Heinrich, B., Hopf, M., & Schiller, A. (2022). Global reconstruction of language models with 
linguistic rules – Explainable AI for online consumer reviews. Electronic Markets, 32(4), 2123–2138. 
https://doi.org/10.1007/s12525-022-00612-5 

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.  
Brasse, J., Broder, H. R., Förster, M., Klier, M., & Sigler, I. (2023). Explainable artificial intelligence in 

information systems: A review of the status quo and future research directions. Electronic Markets, 
33(1), 1–30. https://doi.org/10.1007/s12525-023-00644-5 

Dombrowski, A.‑K., Alber, M., Anders, C., Ackermann, M., Müller, K.‑R., & Kessel, P. (2019). Explanations 
can be manipulated and geometry is to blame. Advances in Neural Information Processing Systems, 
13589–13600. 

EU AI Act. (2024). The EU Artificial Intelligence Act. https://artificialintelligenceact.eu/ 
Goodfellow, I., Courville, A., & Bengio, Y. (2016). Deep learning. The MIT Press.  
Hendrycks, D., & Gimpel, K. (2017). A baseline for detecting misclassified and out-of-distribution examples 

in neural networks. Proceedings of the 5th International Conference on Learning Representations. 
Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal 

approximators. Neural Networks, 2(5), 359–366. https://doi.org/10.1016/0893-6080(89)90020-8 
Hu, X., Liu, W., Bian, J., & Pei, J. (2020). Measuring model complexity of neural networks with curve 

activation functions. Proceedings of the 26th ACM SIGKDD International Conference on Knowledge 
Discovery and Data Mining, 1521–1531. https://doi.org/10.1145/3394486.3403203 

Jia, Y., Bailey, J., Ramamohanarao, K., Leckie, C., & Houle, M. E. (2019). Improving the quality of 
explanations with local embedding perturbations. Proceedings of the 25th ACM SIGKDD International 
Conference on Knowledge Discovery and Data Mining, 875–884. 
https://doi.org/10.1145/3292500.3330930 

Kim, B., Srinivasan, K., Kong, S. H., Kim, J. H., Shin, C. S., & Ram, S. (2023). ROLEX: A novel method for 
interpretable machine learning using robust local explanations. MIS Quarterly, 47(3), 1303–1332. 
https://doi.org/10.25300/MISQ/2022/17141 

Krapf, T., Hagn, M., Miethaner, P., Schiller, A., Luttner, L., & Heinrich, B. (2024). Piecewise linear 
transformation – Propagating aleatoric uncertainty in neural networks. Proceedings of the 38th AAAI 
Conference on Artificial Intelligence, 20456–20464. https://doi.org/10.1609/aaai.v38i18.30029 

Laugel, T., Renard, X., Lesot, M.‑J., Marsala, C., & Detyniecki, M. (2018). Defining locality for surrogates 
in post-hoc interpretablity. Proceedings of the 2018 ICML Workshop on Human Interpretability in 
Machine Learning, 47–53. 

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). "Why should I trust you?" Explaining the predictions of any 
classifier. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery 
and Data Mining, 1135–1144. https://doi.org/10.1145/2939672.2939778 

Sattelberg, B., Cavalieri, R., Kirby, M., Peterson, C., & Beveridge, R. (2023). Locally linear attributes of 
ReLU neural networks. Frontiers in Artificial Intelligence, 6, 1–17. 
https://doi.org/10.3389/frai.2023.1255192 

van Stein, B., Raponi, E., Sadeghi, Z., Bouman, N., van Ham, R. C., & Bäck, T. (2022). A comparison of 
global sensitivity analysis methods for explainable AI with an application in genomic prediction. IEEE 
Access, 10, 103364–103381. https://doi.org/10.1109/ACCESS.2022.3210175 

Yeh, C.‑K., Hsieh, C.‑Y., Suggala, A., Inouye, D. I., & Ravikumar, P. K. (2019). On the (in)fidelity and 
sensitivity of explanations. Advances in Neural Information Processing Systems, 10967–10978. 

Zhang, L., Naitzat, G., & Lim, L.‑H. (2018). Tropical geometry of deep neural networks. Proceedings of the 
35th International Conference on Machine Learning, 5824–5832. 

 


