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1 Introduction
In recent years, the study of atomically thin two-dimensional (2D) materials has found
widespread attention, continuously demonstrating new physics and opening the frontiers
of technological advances [1]. Graphene is certainly the forerunner and model student
amongst the 2D materials [2, 3, 4], often even used as a synonym for 2D materials in
general. The discovery of graphene demonstrated just how different the properties and
applications of bulk materials and their 2D counterparts can be. Soon after graphene,
the exfoliation and study of other 2D materials, like transition-metal dichalcogenides
(TMDCs) [5, 6], followed. Meanwhile, most phenomena witnessed in 3D materials
found their counterparts in the 2D world. Furthermore, these properties can even be
transferred onto other 2D materials by proximity effects in so called van der Waals
heterostructures [1]. These structures consist of multiple 2D materials stacked on top of
each other, being held together by van der Waals forces. Neighbouring layers can then
adopt properties from one another by sheer proximity.

The most relevant application of this principle is likely proximity-induced spin-orbit
coupling (SOC) in graphene, which can be used with great effect to construct novel
devices within the context of spintronics – a research field aiming to rethink electronics
by replacing the charge degree of freedom with the spin degree of freedom [7, 8, 9].
The very weak SOC exhibited by graphene leads to long spin lifetimes and has hence
proven to be useful for transporting spin currents [10, 11]. However, at the same time,
the weak SOC is also detrimental for spin manipulation, i.e. the reading and writing of
spins. Bringing the graphene in contact with high-SOC materials can change this and give
researchers control over graphene’s potential for spin manipulation. However, it is not
that simple – the SOC can come in various forms (or flavours), each of which lends itself
to different applications. Control over both the magnitude and the flavour of the proximity
SOC in graphene has been a prominent goal of research in the last decade. In order to
achieve this control, theoretical investigations of such heterostructures are highly relevant.
They can be done for example by using tight binding models or by employing density
functional theory (DFT) [12], a state of the art ab-initio method. Pioneering DFT studies
by Gmitra et al. [13, 14] on heterostructures of graphene and semiconducting TMDCs
(like WSe2 or MoS2) paved the way for such investigations. Although these TMDCs
are the most frequently used materials for inducing SOC in graphene, there are multiple
other high-SOC 2D materials, which can also induce their SOC in graphene.

Ever since the discovery of superconductivity in magic angle twisted bilayer graphene [15,
16, 17, 18], the twist angle has been recognized as a major tuning knob in van der Waals
heterostructures. This culminated in the birth of a new field of research – twistronics.
While former investigations (both theoretical and experimental) paid little to no attention
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1 Introduction

to the relative twist angle between two layers and how it can affect their interaction, it
is meanwhile widely recognized that it can play a major role, especially for proximity
effects. Theoretical investigations by means of tight binding calculations predicted signif-
icant control over both magnitude and flavour of the proximity SOC by varying the twist
angle [19, 20, 21].

In this thesis, we aim to give an extensive DFT perspective on the topic of twist-
angle dependent SOC in graphene-based heterostructures. To this end, we employ DFT
calculations on a multitude of twisted heterostructure supercells consisting of graphene
and high-SOC materials. In the tradition of Gmitra et al., we utilize a model Hamiltonian
of the low energy Dirac cone states in order to extract the SOC parameters. The extracted
SOC parameters are then compared based on the twist angle of the heterostructure
supercell. We uncover a great potential for tuning both the flavour and magnitude of
the proximity SOC in graphene by twisting and gating, confirming the findings of the
tight binding calculations. The underlying mechanisms behind the witnessed effects
are further explained by employing the theory of generalized Umklapp processes [22].
Furthermore, the investigation of twisted heterostructures reveals the possibility for a
radial in-plane spin texture, which is forbidden by symmetry in the commonly used
untwisted heterostructures. The consequence of this radial spin texture is the emergence
of an unconventional form of charge-spin-interconversion, which we capture by defining
a figure of merit based on calculations within linear response theory. Unfortunately,
employing DFT for the investigations of heterostructures yields one major problem –
as commensurate heterostructure supercells are needed, it is inevitable to artificially
strain one of the layers, resulting in potential distortion of the results. Arguably the most
detrimental effect of this strain is a change in band offset between the layers. In order to
remedy this problem, we utilize external electric fields, correcting the band offsets. We
extensively discuss this issue of strain related effects in order to clarify and justify our
approach.
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2 Motivation
Spin-orbit coupling (SOC) – the interaction between an electron’s spin and its orbital
degree of freedom – is an inherently relativistic phenomenon; it appears only after
describing the system using the Dirac equation instead of the Schrödinger equation.
Hence, in an atom, SOC is most relevant, if the electrons travel close to the speed of light.
The velocities of the orbiting electrons are dictated by the atom’s atomic number Z and in
fact the SOC strength can be approximated to show a Z2 dependence [23, 24, 25, 26, 27],
meaning heavier atoms exhibit substantially more SOC. The light carbon atoms of
graphene are therefore one reason for its very small SOC. An additional factor, hampering
the possibility of graphene to exhibit SOC, is the orbital composition of the Dirac cone
states, which are close to the Fermi level and hence govern the relevant physics (e.g.
transport). These states predominantly consist of pz-orbitals forming π-bonds. As
pz-orbitals have no net out-of-plane orbital momentum and hence cannot exhibit the
symmetry-allowed SOC, there are only two pathways for the Dirac states to display
SOC [28, 29, 30]: either by mixing of the π-bonds with the underlying sp2 hybridized
σ-bonds (as e.g. in graphene nanotubes or rippled graphene) or by virtual tunneling
processes through d- (or higher) orbitals. While for flat pristine graphene the σ-π-mixing
is suppressed, the d-orbitals can provide a SOC on the order of 10µeV [30, 31, 32,
33].

Equipping graphene with more substantial (meV scale) SOC has various applications;
this chapter is dedicated to shining light on some of the most relevant ones. Besides topo-
logical physics (quantum spin Hall effect (QSHE) [34, 35] and pseudohelical states [36]),
the main field of applications of graphene with enhanced SOC is spintronics [7, 9]. While
in conventional electronics information is transmitted, processed and stored using the
charge of an electron, in spintronics its spin is used. This approach can have many
benefits: information can be stored without loss of power (non-volatility), operations are
less power consuming, data can be stored more densely and switching of states can be
performed more rapidly [37]. In spintronics, there is both the need for spin transport and
for spin manipulation (reading and writing of spins). Graphene’s weak SOC allows for
only very limited spin relaxation (i.e. high spin life times), making graphene excellent
for spin transport. Although the low SOC is beneficial for spin transport, it is detrimental
for spin manipulation. To fix this problem, parts of graphene sheets can be decorated
by heavy adatoms [38, 39] or proximitized by high-SOC materials [13, 40, 41, 21] (like
TMDCs), to locally increase the potential for spin manipulation. Depending on the setup,
different kinds of SOC (see Sec. 4.3) can be induced in graphene. Which of those flavours
is demanded, depends on the concrete application. In this chapter, we discuss three
different relevant applications for the three different kinds of SOC described by the model
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2 Motivation

employed by us (see Eq. (4.43)):

1. Kane-Mele SOC λKM is the key factor in enabling the QSHE, entailing spin-
momentum-locked topological surface states.

2. Valley-Zeeman SOC λVZ is crucial in enabling highly anisotropic spin relaxation,
where in-plane spins relax much faster than the out-of-plane spins do.

3. Rashba SOC λR is the driving parameter for the Rashba-Edelstein effect (REE)
and the unconventional REE (UREE), which present an efficient way of realizing
charge-to-spin conversion (CSC).

Since the different flavours of SOC are relevant for different applications and can even
be detrimental to other applications, it is a highly relevant endeavour to not only tune
the magnitude of the SOC, but also the kind of SOC. In order to exercise control over
the SOC, different controlling knobs can be used in experiment. This includes interlayer
distance (tunable by pressure), transverse electric field (realized by a gate voltage), strain
and twist angle (the latter two can be determined in the manufacturing process). While
interlayer distance almost exclusively influences the general strength of the SOC, the
latter three show great potential for tuning the SOC flavour as well. In Sec. 4.5 the
interplay between gate voltage, strain and twist angle is discussed in more detail. It is the
goal of this thesis to demonstrate how these tuning knobs can be used to control the SOC
parameters and therefore the effects discussed in the following.

2.1 Quantum spin Hall effect

Akin to the quantum Hall effect (QHE), the QSHE is a topological state of matter
occurring in 2D systems. However, the QSHE is time reversal symmetric, whereas the
QHE requires an external magnetic field, breaking the time reversal symmetry. Like the
QHE, the QSHE comes with one dimensional edge states (see Fig. 2.1) robust against
backscattering by impurities, allowing for dissipationless transport; in the case of the
QSHE these impurities have to be non-magnetic, in order to preserve the time-reversal
symmetry. Where in the QHE any integer number of edge states (equal to the Chern
number, a Z invariant) wrap around the sample, in the QSHE there are always exactly
two non-trivial edge states propagating in opposite directions. As these states have
opposite spin (spin-momentum locking), backscattering between them is only allowed
by scattering off of magnetic impurities. The topological invariant of the QSHE is a Z2
invariant, meaning it is always either 0 or 1, i.e. topologically trivial or non-trivial. Edge
states will always arise at a border between a non-trivial (e.g. graphene with sufficiently
high λKM) and trivial (e.g. vacuum) zone.

The original proposal of the QSHE, made by Kane and Mele [34, 35], includes graphene
as the material of choice. However, this requires sufficiently high SOC, inducing a topo-
logically non-trivial gap in the Dirac cone, within which the edge states reside. Since
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2.2 Giant anisotropic spin relaxation & spin field-effect transistor

(b)(a)

Figure 2.1: (a) Schematic illustration of the QSHE edge states winding around
the 2D sample (taken from [47]). (b) Graphene ribbon band structure with edge
states within the bulk band gap (taken from [34]).

the SOC of pristine graphene is not enough to stabilize the QSHE, proximity-induced
SOC was sought to solve the problem. Unfortunately, the kind of SOC needed in order to
stabilize the QSHE is the Kane-Mele SOC λKM, while most practical ways of inducing
SOC in graphene result in a mixture of Rashba SOC and valley-Zeeman SOC. DFT cal-
culations suggest that Kane-Mele SOC can be induced in a certain graphene/topological
insulator (TI) heterostructure (see Refs. [42, 43, 41, 44] and Sec. 6.4). Although exper-
imental hints of the QSHE in this particular situation are sparse [45], the QSHE has
been experimentally verified in other materials, like HgTe quantum wells [46]. Our DFT
results suggest a strong tunability by gate voltage of the magnitude and even sign of the
Kane-Mele SOC λKM in graphene/TI heterostructures. Since this is the mass term in the
QSHE, gate control could be used to selectively locally induce the QSHE in graphene
and create the edge states within the graphene sheet based on the gating.

2.2 Giant anisotropic spin relaxation & spin
field-effect transistor

In spin transport, the spin lifetime describes how long the electrons involved in the spin
transport can propagate before scattering and losing their spin-orientation. As previously
stated, graphene has a very high spin lifetime and is therefore excellent for spin transport,
since the spins keep their orientation for a long distance. Enhancing graphene’s SOC,
enhances the scattering rates and therefore decreases the spin lifetime, so why would we
be interested in doing so? By specifically increasing only the valley-Zeeman SOC, we
can specifically decrease the spin lifetime of in-plane spins [48], further expanding on
the ability to control the spins. The result is a large difference between the lifetimes of
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2 Motivation

Figure 2.2: Experimental setup for measuring the spin-relaxation anisotropy
through Hanle precession in a non-local spin transport measurement (taken from
Ref. [49]).

spins pointing in different directions, a spin lifetime anisotropy

ξ =
τs,⊥

τs,‖
=
λ2

VZ

λ2
R

·
τiv
τp

+
1
2
, (2.1)

with spin lifetimes out of plane τs,⊥ and in-plane τs,‖ . In the extreme situation, where
graphene exclusively acquires valley-Zeeman SOC (λVZ), all Dirac states are purely spin-
polarized in z-direction. Here, the spin relaxation anisotropy is highest (within formula
Eq. (2.1) even infinite). Adding Rashba SOC (λR), induces an in-plane component to
the spin texture, opening up the possibility of scattering into in-plane polarized spins.
But even for λR ≈ λVZ, due to the interplay of two different scattering mechanism
(inter-valley scattering τiv and momentum scattering τp), ξ is nevertheless enhanced.
Estimations on these scattering mechanisms [48] suggest τiv

τp
≈ 5. In experiments [49,

50, 51] large spin relaxation anisotropies of ξ > 10 can be measured. In Fig. 2.2 an
experimental setup for measuring the spin-relaxation anisotropy is shown: In-plane spins
are induced in the graphene through the magnetic contact C2. The spins propagate to
the opposing magnetic contact C5 resulting in a signal in the non-local resistance Rnl .
Then, an external magnetic field B is applied, changing the spins’ direction through Hanle
precession [52, 49, 53, 54]. Since the spins are now (partially) oriented out-of-plane, their
lifetime increases. Therefore, the signal measured at C5 first increases with magnetic
field B. Increasing B further, however, the dephasing effect takes over and the signal
decays again. Fitting this curve to the results of the Bloch equations gives estimates for
the in-plane and out-of-plane spin lifetimes [49].

Another scheme, where the proximity-induced SOC selectively decreases the spin
lifetimes, is the proposed spin-orbit valve system by Gmitra et al. [55, 56, 57] capable of
functioning as a spin field-effect transistor (SFET). The concept of a SFET was originally
proposed by Datta and Das [58]. It describes the spintronics analogue of a field-effect
transistor (FET). The difference to a FET is, that in a SFET, the gate allows for electrical
control not over the flowing charge current between source and drain, but over the spin
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2.3 Charge-to-spin conversion & spin-orbit torque

ON

OFF

(c)(b)(a)

Figure 2.3: (a) Bilayer graphene proximitized by TMDC. (b) Zoom to the low-
energy spectrum of the proximitized bilayer graphene; the spin splitting (effect
of the SOC) is limited to the valence band, if no external electric field is applied.
(c) ON and OFF configuration of the bilayer graphene-based SFET (all figures
are taken from Ref. [55]).

current. The setup proposed by Gmitra et al. is the following: Using bilayer graphene
instead of monolayer graphene results in a situation, where one of the graphene sheets
(the one closer to the substrate) exhibits substantially more proximity SOC. An external
gate can then be used to tune the layer polarization of the Dirac cone states (i.e. whether
the states near the Fermi level live in the high-SOC or the low-SOC layer). This control
over the layer polarization then in turn enables control over the spin transport properties
of the device: it can be in one of two states:

1. ON-state, the graphene layer further away from the substrate is contributing to
transport; high spin lifetimes

2. OFF-state, the graphene layer close to the substrate is contributing to transport; low
spin lifetimes.

Coherent spin transport between source and drain is then only possible, if the system
is in an ON-state and hence the spin lifetimes are high. Such a device (as illustrated in
Fig. 2.3(c)) would then constitute such a SFET, presenting a major step for the field of
spintronics. There is already experimental evidence supporting this idea [56, 57].

2.3 Charge-to-spin conversion & spin-orbit
torque

Any physical process that translates a charge current or charge accumulation into a spin
current or spin accumulation can be considered CSC. The inverse effect (a spin-to-charge
conversion) can usually be achieved in the same system. Therefore, sometimes both
effects are referred to under the umbrella term charge-spin-interconversion. The two
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2 Motivation

most prominent examples for such an effect are the spin Hall effect (SHE) [59] and the
REE [60, 61, 62]. The efficiencies of both can be calculated rather easily with a simple
approach within linear response theory [63, 64, 65, 66] (more elaborate approaches can
for example be found in Refs. [62, 67, 68]). In Sec. 4.6, we elaborate in detail how to
calculate such CSC efficiencies for the REE. The effect is illustrated in Fig. 2.4(a)-(c):
an external electric field introduces a bias in the occupation of the electric states in
the proximitized graphene’s Dirac cone. Because spin and momentum of the newly
populated states are locked, a spin imbalance is achieved. The direction of these spins
can be perpendicular (REE) or collinear (UREE) to the charge current j, depending on
the specific in-plane spin texture of the Dirac cone. The UREE is especially interesting,
since it is less common and has often been ignored in the interpretation of spin transport
experiments. The same spin-momentum locking exhibited by proximitized graphene
is also observed in the surface states of 3D TIs (see Sec. 3.3). However, instead of the
two subbands with opposite spins (but different k-radius) in Fig. 2.4(b) and (c), the 3D
TI’s surface states are degenerate, but located at different surfaces and therefore only
one of them will be relevant at any given surface. In Fig. 2.4(d) a typical experimental
setup for measuring spin-to-charge conversion is shown: Non-equilibrium spin densities
are created through the magnetic contact (blue rectangle). They propagate towards the
proximitized region and lead to a measurable charge density response.

In spintronics, the spin accumulation can be used with great effect to exert a spin-
orbit torque (SOT) on a nearby magnetic layer [69, 70], switching its magnetization.
Since in a magnetoresistive random-access memory (MRAM) system the magnetization
direction represents the information of a bit (0 or 1), one can thereby establish control
over the bit. Such a SOT-driven process constitutes a new step in the development
of spintronics MRAM, potentially replacing the spin-transfer torque (STT) [70, 7, 71]
devices. Fig. 2.4(e) and (f) illustrate the design of STT-MRAM and SOT-MRAM,
respectively. The STT works in a very similar way, with the key difference that the
charge current used to flip the spin (writing) has to flow through the magnetic layers. The
electrons first run through the fixed layer, where they acquire spin polarization, which
they maintain, while passing the tunneling barrier. In the free layer, the spin current
exerts a torque on the magnetization of the free layer and flips it. As the current used
to read the magnetization also runs in the same direction (just with a smaller current),
STT-MRAMs can display problems with reliability, as the magnetization can accidentally
be flipped in the reading process. The SOT-MRAMs avoid this problem by separating the
writing- and reading-lines. Here, the material in which the CSC occurs (CSC-material) is
directly adjacent to the free layer. Therefore, while in the writing process current runs
along the CSC-material, producing a spin accumulation exerting torque on the free layer,
in the reading process the current runs perpendicular to the CSC-material and hence the
free layer is not subject to any torque. Furthermore, control over the directions of the
spins can aid in creating space-efficient device designs. While CSC by means of the
SHE creates out-of-plane spins, REE and UREE create in-plane spins (perpendicular or
collinear to the current, respectively).
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2.3 Charge-to-spin conversion & spin-orbit torque

(a) (b) (c)

(d)

(e) (f)

EF

ED

REE UREE

STT-MRAM

CSC material

SOT-MRAM
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fixed layer
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g w
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free layer

fixed layer

writing

re
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Figure 2.4: (a) Dirac cone with a mixture of Rashba and valley-Zeeman SOC.
The Dirac cone energy ED and the Fermi energy EF are drawn. By applying
a voltage (resulting in a current j) the states at the given Fermi energy are
redistributed to favour the ones marked with red. (b) Cut through the Fermi
energy of the Dirac cone shown in (a). The tangential in-plane spin texture
in combination with the redistribution of states leads to a spin imbalance; the
direction of the spins is perpendicular to j. (c) Same as (b), but for a radial
in-plane spin texture; the direction of the spins is perpendicular to j. (b) and
(c) demonstrate the REE and the UREE, respectively. (d) An example of an
experimental setup for probing spin-to-charge conversion (taken from Ref. [72]).
(e) and (f) show schematics of the STT and SOT, respectively. The brown layer
is a tunneling barrier.
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3 Materials

In van der Waals heterostructures [1], different 2D materials can be joined together,
imprinting their properties on the neighbouring layers through proximity effects. In this
thesis, we investigate heterostructures of graphene with other 2D materials (sometimes
loosely called substrates throughout the thesis). This chapter is mainly dedicated to
introducing the individual materials, which were used: First, graphene as the template
material, which will be imprinted with proximity spin-orbit coupling (SOC), is discussed.
Then, the two material classes (transition-metal dichalcogenides (TMDCs) and topologi-
cal insulators (TIs)) serving as substrates, are introduced. For all materials, we present
both the real space and reciprocal space structures and their most important physical
properties and applications are highlighted. We conclude the chapter by briefly discussing
the procedure of combining the materials into van der Waals heterostructures.

3.1 Graphene

Graphene is a 2D sheet of carbon atoms in a honeycomb arrangement. Its 3D counterpart
is regular graphite, which simply consists of millions of graphene layers stacked on top
of each other. In 2004, graphene was first isolated using the scotch-tape method [2, 3, 73].
This simple method of mechanically exfoliating graphene (’top-down’ method) is still
widely used, although ’bottom-up’ methods [74, 75, 76] have become more popular,
providing a scalable alternative for industrial purposes. Astonishingly, although graphene
is only the 2D format of such a simple and widely spread material like graphite, it has
gathered a lot of attention due to its outstanding properties. This does not only include
its high electron mobility [77, 78, 4] and mechanical robustness [79, 80, 3, 81], but also
its long spin lifetimes [10, 11]. The latter makes it a material suitable for spintronics
applications [7, 9]. Moreover, its 2D structure ensures that its properties can be easily
manipulated by proximity effects in van der Waals heterostructures. It also comes in
several derivative forms like carbon nanotubes [82, 3], fullerene [83, 3] or graphene
nanoribbons [3, 4, 36]. To describe the electronic structure of graphene we use both a full
tight binding model and a model Hamiltonian linearized around the K/K′ point, which
will be introduced in Sec. 4.3. The hexagonal structure of graphene is described by the
two lattice vectors

a1 =

(
1
0

)
· a, a2 =

(
1/2
√

3
2

)
· a (3.1)
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A
B

(a) (b) (c)

Figure 3.1: Graphene structure in real and k space. (a) The real space lattice of
graphene with lattice vectors a1 and a2. (b) 1st Brillouin zone (BZ) of graphene
with high symmetry points Γ, K , K′ and M . (c) DFT band structure along a high
symmetry path indicated as blue dotted line in (b) with a zoom to the Dirac cone
at K .

in combination with the two basis atoms — which build the two sublattices A and B —
sitting at

r1 =

(
0
0

)
· a, r2 =

1
3

a1 +
1
3

a2 = *
,

0.5
1

2
√

3

+
-
· a. (3.2)

This results in an equally hexagonal structure in reciprocal space. The reciprocal lattice
vectors are

b1 = *
,

1
− 1√

3

+
-
·

2π
a
, b2 = *

,

0
2√
3

+
-
·

2π
a

(3.3)

with the K/K′ point sitting at

K =
1
3
· b1 −

1
3
· b2, K′ = −

1
3
· b1 +

1
3
· b2. (3.4)

and the M/M′ point sitting at

M = −
1
2
· b1, M′ =

1
2
· b2. (3.5)

The real space and reciprocal space structures are depicted in Fig. 3.1(a) and (b), respec-
tively. In order to describe the band structure along the high symmetry points Γ, K and
M both DFT or tight binding model might be used.

3.2 Transition-metal dichalcogenides
TMDCs are a class of layered materials used for a wide range of applications. This
includes valleytronics [84, 85, 86], straintronics [87, 88], optoelectronics [89, 90] and
not least spintronics [7, 9]. A monolayer TMDC usually occurs in the 2H phase, which
means it has the same hexagonal structure as graphene, with a metal atom (e.g. W or Nb)
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sitting at sublattice A and two vertically shifted chalcogenide atoms (e.g. S or Se) sitting
at sublattice B (see Fig. 3.2(a) and (b)). Its structure is defined by the lattice parameter
a and its thickness dXX (distance between the chalcogen atoms). Although all TMDCs
discussed in this thesis have this structure, TMDCs can also occur in other configurations,
like the 1T configuration [91, 92].

Due to their metal atoms, all TMDCs have strong SOC, resulting in huge (up to more
than 400 meV) spin splittings, with opposite signs at opposing points in k space (most
prominent at the valleys at Q, K and K′, see Fig. 3.2(e)). Since, additionally, most
TMDCs are semiconducting, their optical properties are of great interest and have been
investigated thoroughly, especially exciton physics [93, 94, 95, 96]. Furthermore, the
TMDCs’ 2D nature makes them easy to implement in heterostructures. On the one hand,
this opens the possibility for further modifying their optical properties by interlayer
excitons [97, 98, 99, 100], dielectric screening [101, 102, 103, 104] and hybridization
effects [105]. On the other hand, they can transfer their properties through proximity
effects onto another material. In this thesis we focus on investigating such proximity
effects, in particular the proximity SOC. As chapter 5 and chapter 6 are dealing with
semiconducting TMDCs (MoSe2, MoS2, WSe2, WS2) and a metallic TMDC (NbSe2),
respectively, we discuss these further in the following.

3.2.1 Semiconducting TMDCs: MoSe2, MoS2, WSe2, WS2

As already mentioned, semiconducting TMDCs have exceptional optical properties.
Their band gaps are indirect in the bulk and direct in the monolayer (see Fig. 3.2(c)) and
range mostly between 1 eV and 2 eV [84, 88]. Due to their broken inversion symmetry
(in monolayers), they show optical selection rules (see Fig. 3.2(d)): Depending on the
handedness of the circularly polarized light (σ+ or σ−), shined on the sample, excitations
can occur either at the K or K′ valley. This means one can specifically produce valley- and
spin-polarized excited electrons. This opens up the field of valleytronics – the selective
manipulation of the valley degree of freedom. Furthermore, 2D materials in general and
TMDCs in specific represent an excellent platform for exciton physics [93, 94, 95, 96].
The reduced dielectric screening of 2D materials increases the excitons’ binding energies
and the large spin splitting of TMDCs additionally introduces different types of excitons
(type A and type B). On top of that, in bilayers of TMDC the electron and hole forming
an exciton can come from different layers, creating so called interlayer excitons. These
interlayer excitons depend both on the twist angle and the stacking configuration of the
layers, enriching the possibilities even further [97, 98, 99, 100]. In order to tune the optical
properties, different knobs can be used. Strain can for instance be used to great effect in
order to tune the size and position in k space of the TMDC band gap [88]. This effect can
be witnessed in bubbles, forming in experimental setups [87]. Furthermore, encapsulation
(e.g. with hBN or graphene) can manipulate the dielectric environment of the TMDC and
therefore both the band gap and the exciton binding energy [101, 102, 103, 104]. On top
of these rather well known effects, proximity to graphene in particular can change the
g-factors of the excitons via a multistep process driven by a hybridization of the layers’
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Se/S

W/Mo/Nb

bulk qudrilayer bilayer monolayer

(a)

(e)

(c)

(b)

(d)

(f)

Figure 3.2: (a) Top view and lattice vectors a1 and a2 of the TMDCs. (b)
Side view of a TMDC with indicated chalcogen-chalcogen distance dXX. (c)
Transition from indirect band gap (bulk, Γ to Q-valley) to direct band gap
(monolayer, K to K) for MoS2 without SOC. (d) Schematic depiction of the
optical selection rules in semiconducting TMDCs. (c) and (d) are adapted from
Ref. [84]. (e) Band structure of monolayer MoS2 along high symmetry points as
calculated by DFT. Spin-z expectation values are color coded from blue (spin
down) to red (spin up). (f) NbSe2 band structure along high symmetry points
with orbital decomposition (blue Γ states are more out of plane, while red K
states are more in-plane); adapted from Ref. [106].
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wavefunctions [105]. In Chap. 5 graphene/TMDC heterostructures are discussed. Here,
the band gaps are also crucial, since they ensure that (as long as the graphene Dirac
cone sits within the band gap, which it usually does) the transport will occur exclusively
through the graphene.

3.2.2 NbSe2

In contrast to the semiconducting TMDCs, monolayer NbSe2 has metallic bands near the
Fermi level (see Fig. 3.2(f)). In combination with its SOC, this opens up the possibility
for charge-to-spin conversion (CSC) [107, 72, 108]. However, in heterostructures (e.g.
graphene/NbSe2) this can complicate the transport properties, as it opens up an additional
channel for the current. Additionally, NbSe2 shows superconducting behaviour [109, 110]
at low temperatures and can even equip graphene with superconductivity via proximity
effect [111, 112, 113, 66]. Although superconducting graphene has been discussed
intensely in recent years, it was mainly in the context of twisted bilayer graphene [15,
16, 17, 18]. Yet, proximity to NbSe2 could simultaneously provide graphene with both
superconductivity and SOC, both of which could be modulated via twist angle [111, 66].
Such superconducting graphene with both tuneable SOC and tuneable superconductivity
might be relevant for applications involving the superconducting diode effect (SDE) [114,
115, 116, 117, 118], in which a mixture of (Rashba) SOC and superconductivity leads to
a Josephson junction, in which the supercurrent can run only in one direction. Another
phenomenon observed in monolayer NbSe2 is the charge density wave (CDW) [119, 120,
106], a periodic modulation of both the electron ground state density and the atomic
lattice. The typical periodicity of this CDW in NbSe2 is that of a 3 × 3 supercell. In
Chap. 7 our DFT calculations on twisted graphene/NbSe2 heterostructures are discussed.
There, we find that the metallic states of the NbSe2 do not present a major problem to
the extraction of the SOC parameters, as they do not hybridize with the Dirac cone so
strongly as to distort it. Furthermore, the NbSe2 can be manipulated by the strain in the
graphene in a meaningful way, shifting offset between the NbSe2 Γ- and K-bands.

3.3 3D Topological insulators Bi2Se3 and Bi2Te3

Another class of materials, which has introduced plenty of new and interesting physics,
are topological materials [121]. An experimentally viable one [122, 123, 124, 125, 126]
is the 3D topological insulator (3D TI, referred to simply as TI throughout the thesis)
as described by the Bernevig-Hughes-Zhang (BHZ) model [127, 128]. Here, a material
with a small band gap and large SOC can achieve a so called band inversion. This means
that valence and conduction bands partially switch their orbital decomposition, i.e. the
valence band obtains the ’nature’ of the conduction band, and vice versa. This manifests
in a non-trivial topological invariant in the bulk, the Hamiltonian of the 3D TI bulk
cannot be connected to the vacuum adiabatically without closing the band gap. At the
surface of such a material (where the non-trivial material meets the trivial vacuum) the
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band gap needs to be closed – the topological surface state arises. This is called the
bulk-boundary correspondence [121]. In contrast to trivial surface states, the topological
state cannot be lifted or destroyed easily (only by magnetic impurities) and is therefore
very robust. In the 3D TI, this surface state takes the form of a Dirac cone at the Γ point
(see Fig. 3.3(c)). The fact that its spin and momentum are locked to each other prevents
electrons from being backscattered [121, 122]. Additionally, it can provide a platform
for effective CSC by the Rashba-Edelstein effect (REE, see Sec. 2.3) through its in-plane
spin texture [129, 130, 131] (see Fig. 3.3(d)).

Two of the most widely used materials for realizing a 3D TI are Bi2Se3 and Bi2Te3. Al-
though the primitive unit cell (containing 5 atoms) of their bulk versions is rhombohedral,
their layered structure is best captured in their hexagonal unit cell (15 atoms). This hexag-
onal unit cell can be described by the two lattice parameters a and c in combination with
the atomic constants u and v. This unit cell contains 3 quintuple layers (QL) of Bi2Se3 (or
Bi2Te3), see Fig. 3.3(b). From this bulk unit cell it is easy to construct heterostructures of
thin layers (few QLs) of TI. In this quasi-2D form, the 3D TIs can show finite-size effects.
If the films are thin enough, the surface states from the bottom and top surfaces (which
decay exponentially into the bulk) can overlap slightly, introducing a gap in the surface
state. How this finite size gap evolves with decreasing thickness of the 3D TI layer can
be seen in Fig. 3.3(c). One can generally say that at 5-6 QLs the surface states are fully
formed and show only minimal hybridization with each other [126, 132, 133, 134].
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1.QL

(b)

Bi2Te3

(a) (c)

(d)

Bi

Te/Se

Figure 3.3: (a) Top view and lattice vectors a1 and a2 of the hexagonal Bi2Te3
(or Bi2Se3) unit cell. (b) Side view of 3QL of the TI with structural parameters
u, v and c. (c) Band structure of 1-6 QLs of Bi2Se3; the surface state fully forms
while increasing the number of QLs; adapted from Ref. [135]. (d) In-plane spin
texture of a cut through the surface states of 6QL Bi2Te3. Red and blue arrows
stem from states living at opposing surfaces.

3.4 Van der Waals heterostructures & proximity
effects

In the previous sections, we discussed different layered materials, i.e. 2D or quasi
2D materials, which can be repeatedly stacked on top of each other, building their
3D equivalents (e.g. graphene to graphite). Since the only forces holding together
these layered 3D structures are van der Waals forces (as opposed to chemical bonds),
one can easily combine the different 2D materials creating so called van der Waals
heterostructures [1]. In such structures, the materials’ wavefunctions hybridize very
slightly, introducing qualities of one layer to a neighbouring one by sheer proximity.
Hence, such an effect is called a proximity effect. A prominent example of this are
graphene/TMDC heterostructures — here the TMDC’s large SOC is transferred to the
graphene (see e.g. Ref. [13, 136, 137, 19, 40] and Chap. 5), but also the large g-factor of
graphene enhances the TMDC g-factors (see Ref. [105]). The scope of possible proximity
effects, however, is much bigger, as meanwhile an extensive list of 2D materials exists.
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In this list, a large range of material classes and effects are represented: this includes
magnets (e.g. CrI3), large-gap semiconductors (e.g. hBN), high-SOC materials (e.g.
TMDCs), superconductors (e.g. NbSe2), topological insulator (e.g. Bi2Se3) etc.

Experimentally, these heterostructures can be manufactured in many ways, which can
all be classified in two categories [138]:

1. ’Bottom-up’ (e.g. chemical vapor deposition (CVD), molecular beam epitaxy
(MBE)): Here, one 2D material is assembled from smaller constituents (i.e. grown)
on top of another in some fashion. The two layers are likely to form a commensurate
structure, despite the resulting strain on one or both of the layers. Some twist angles
are more likely than others, since the corresponding configurations involve less
strain.

2. ’Top-down’ (e.g. exfoliation, wet transfer): Here, one existing 2D material (usually
extracted from its 3D version) is transferred on top of another 2D material. The two
materials brought together might have been manufactured either in a ’top-down’ or
in a ’bottom-up’ fashion in the first place. However, the process of joining them
combines two already existing layers. Therefore, change of lattice constant by
adaption is very limited, even if the material is annealed afterwards. Also, the
resulting twist angle between the layers is in most cases random.

It is possible to determine the twist angle of a sample of such a van der Waals heterostruc-
ture in experiment after the manufacturing process. This can be done for example by
second-harmonic generation [139, 137] or by the orientation of the flakes, grown on a
substrate [139, 140].

18



4 Methods

4.1 Constructing heterostructure supercells

In order to ensure periodicity in the DFT calculations on heterostructures, commensurate
supercells of the combined materials need to be constructed; we call them heterostructure
supercells. Since all materials discussed in this thesis have a hexagonal unit cell, we
can easily combine them [141, 142, 143]. The construction of heterostructure supercells
involving mixed lattice types would be more complicated, as it would require uniaxial
strain. The method we employ works as follows: First, we construct a supercell for each
of the two layers in a way that the supercells of both layers have a similar supercell lattice
constant. By straining one (or both) of the supercells by a small margin, we can then
put them together into one commensurate supercell. In this section, we will discuss the
construction and properties of such a heterostructure supercell in detail.

4.1.1 Construction of an (n,m) supercell

Let us first start with constructing a general (n,m) supercell of a 2D material. We start
from the primitive hexagonal unit cell of the material, e.g. graphene in Sec. 3.1. Note
that in order to keep the integers n and m mostly positive, we assume unit cells with an
acute angle between the lattice vectors a1]a2 = 60◦. For unit cells with an obtuse angle
a1]a2 = 120◦, the scheme also works. However, the formulas are inconsistent with those
presented here. Using the integers n and m, we define the lattice vectors aS,1

(n,m) and aS,2
(n,m)

as a linear combination of the primitive lattice vectors a1 and a2 (see Fig. 4.1(a)):

aS,1
(n,m) = n · a1 + m · a2 (4.1)

aS,2
(n,m) = −m · a1 + (n + m) · a2. (4.2)

We assign attributes (n,m) to such a new supercell. The fact that its lattice vectors
are linear combinations of the primitive lattice vectors ensures that the supercell is
commensurate with the underlying lattice. aS,2

(n,m) was simply obtained by rotating aS,1
(n,m)

by 60◦. For this, we use the general rotation matrix

RΘ =

(
cos(Θ) − sin(Θ)
sin(Θ) cos(Θ)

)
(4.3)
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for twist angle Θ = 60◦:

R60◦ =

(
cos(60◦) − sin(60◦)
sin(60◦) cos(60◦)

)
= *

,
0.5 −

√
3

2√
3

2 0.5
+
-
. (4.4)

Since we know that the primitive lattice vectors enclose an angle of 60◦ (i.e. a2 = R60◦a1),
we can express aS,2

(n,m) as:

aS,2
(n,m) = R60◦ (na1 + ma2)

= nR60◦a1 + mR2
60◦a1

=

[
n *

,
0.5 −

√
3

2√
3

2 0.5
+
-

+ m *
,
−0.5 −

√
3

2√
3

2 −0.5
+
-

]
a1

=

[
(n + m) *

,
0.5 −

√
3

2√
3

2 0.5
+
-
− 2m

(
0.5 0
0 0.5

) ]
a1

= (n + m)R60◦a1 − ma1

= −m · a1 + (n + m) · a2.

(4.5)

This makes it apparent that every (n,m) supercell has the same form as the primitive unit
cell, just rotated by some angle Θ and enlarged by some scaling factor s. How much it is
enlarged can be determined by examining the supercell lattice constant

aS
(n,m) = |aS,1

(n,m) | = |a
S,2
(n,m) | =

√
n2a2

1 + m2a2
2 + 2nma1a2

=

√
n2a2 + m2a2 + 2nm · a2 · cos(60◦)

= a ·
√

(n2 + m2) + n · m = a · s.

(4.6)

Here, a = |a1 | = |a2 | is the lattice constant of the primitive unit cell. The number of
atoms in such a supercell is Nat = Nat,prim · (n2 + m2 + n · m), with Nat,prim being the
number of atoms in the primitive unit cell.

Now, we determine the relative twist angle Θ(n,m) with respect to the primitive unit cell,
i.e. the angle between the old lattice vector a1 and the new lattice vector aS,1

(n,m). In order
to do so, we compare a rotated and enlarged version of a1 with the new lattice vector
aS,1

(n,m):

RΘ(n,m) a1 · s
!
= aS,1

(n,m) (4.7)

= na1 + ma2 (4.8)

=
[
n + mR60◦

]
a1 (4.9)
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with the scaling factor from Eq. (4.6) s =
√

n2 + m2 + nm. Inserting the rotation matrices,
we find (

cos
(
Θ(n,m)

)
− sin

(
Θ(n,m)

)
sin

(
Θ(n,m)

)
cos

(
Θ(n,m)

) )
a1 · s

!
=

[
n + m *

,
0.5 −

√
3

2√
3

2 0.5
+
-

]
a1. (4.10)

Comparing the two sides elementwise, we find:

cos
(
Θ(n,m)

)
=

(
n +

m
2

)
·

1
s

and sin
(
Θ(n,m)

)
=

( √3m
2

)
·

1
s
. (4.11)

Dividing these two equations gives the angle Θ(n,m) between a (n,m) supercell and the
primitive unit cell:

Θ(n,m) = arctan*
,

√
3m

2n + m
+
-
. (4.12)

4.1.2 Generalized backfolding rules

When working with a supercell of a material, one has to consider the backfolding of the
primitive unit cell’s 1st Brillouin zone (BZ) into the supercell’s 1st BZ. Since we are
focused on extracting the properties of the Dirac cone, which resides at K/K′ in the BZ
of the primitive unit cell, we will now determine where this K/K′ point is folded back to
in the supercell’s 1st BZ. Determining this backfolding is not only important in order to
find the Dirac cone in k space. More importantly, it is crucial in deciding whether the
extracted Dirac cone stems from K or K′. This information is necessary to determine the
correct sign of the valley-Zeeman spin-orbit coupling (SOC). For simple supercells like a
2 × 2 (n = 2, m = 0), 3 × 3 (n = 3, m = 0) or

√
3 ×
√

3 (n = m = 1), this backfolding is
already well known. To determine this backfolding rule for a general (n,m) supercell, we
first need to know an expression for the general reciprocal lattice vectors. It can easily be
shown that

bS,1
(n,m) =

1
(n2 + m2 + nm)

·
[
(n + m) · b1 + m · b2

]
(4.13)

bS,2
(n,m) =

1
(n2 + m2 + nm)

·
[
− m · b1 + n · b2

]
(4.14)

fulfill bS,i
(n,m) · a

S,j
(n,m) = 2πδi,j for all n,m ∈ Z and can therefore be used as the reciprocal

lattice vectors. The condition for backfolding is, that it exists a vector GS
(n,m), such

that:

k !
= kS + GS

(n,m), (4.15)

where k is the k point within the 1st BZ of the primitive unit cell which is backfolded and
kS is the k point within the 1st BZ of the supercell where the k is backfolded to. GS

(n,m) is
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(a)

(b)

    back-
folded to:

Figure 4.1: Four examples (1 × 1, 2 × 2,
√

3 ×
√

3 and
√

7 ×
√

7) of (n,m)
supercells in real space (a) and their corresponding k space structures (b). (a)
The hexagonal background represents the hexagonal structure of a graphene
sheet. However, the supercell generation and backfolding rules work for any
structure with a hexagonal primitive unit cell independent of the basis atoms. For
each of the four (n,m)- supercells, we show the supercells’ lattice vectors aS,1

(n,m)

and aS,2
(n,m). Additionally we display the angle Θ(n,m) between the supercells and

the underlying primitive unit cell. (b) The hexagonal backgrounds represent the
k space of the four supercells divided into hexagonal BZs. The Γ, K and K′

points of these BZs (ΓS, K S and K′S) are marked as squares, dots and circles,
respectively. For all four hexagonal supercells of (a), we draw the 1st BZ of the
primitive unit cell above the grid centered around one of the supercell BZs. We
especially mark the K point of the primitive cell’s 1st BZ, and note where it falls
on the underlying lattices, which provides information about the backfolding.
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a general reciprocal lattice vector for a (n,m) supercell

GS
(n,m) = k · bS,1

(n,m) + l · bS,2
(n,m), (4.16)

with k, l ∈ Z. The position of K in the 1st BZ of the primitive unit cell is

K =
1
3

b1 −
1
3

b2. (4.17)

By graphically analyzing this issue, we presume that backfolding of K is only possible to
K , K′ and Γ of the supercell. Therefore, we now determine when K coincides with the
vectors KS, K′S or ΓS, which are the K , K′ and Γ points of the supercell’s 1st BZ:

KS =
1
3

bS,1
(n,m) −

1
3

bS,2
(n,m) (4.18)

K′S = −KS = −
1
3

bS,1
(n,m) +

1
3

bS,2
(n,m) (4.19)

ΓS = 0. (4.20)

Hence, from Eq. (4.15) we know that backfolding occurs, if:

K !
= KS + GS

(n,m) =(k +
1
3

) · bS,1
(n,m) + (l −

1
3

) · bS,1
(n,m) (4.21)

K !
= K′S + GS

(n,m) =(k −
1
3

) · bS,1
(n,m) + (l +

1
3

) · bS,1
(n,m) (4.22)

K !
= ΓS + GS

(n,m) =k · bS,1
(n,m) + l · bS,1

(n,m) . (4.23)

The solutions of the ensuing systems of equation are:

for KS : k =
(n − m − 1)

3
, l =

−2m − n + 1
3

= −k − m (4.24)

for K′S : k =
(n − m + 1)

3
, l =

−2m − n − 1
3

= −k − m (4.25)

for ΓS : k =
(n − m)

3
, l =

−2m − n
3

= −k − m. (4.26)

Since k and l need to be integers, we can find suitable l and k (and therefore have
backfolding to the given k point (K , K′ or Γ)), if and only if the following backfolding
rules are fulfilled:

backfolding to Γ for: n − m = 0 + 3 · p
backfolding to K for: n − m = 1 + 3 · p

backfolding to K’ for: n − m = 2 + 3 · p
(4.27)

23



4 Methods

with p ∈ Z. As we see, this covers all possible (n,m) supercells. Therefore our assumption
that checking only K , K′ and Γ is enough has proven to be correct. Example for these
foldings can be found in Fig. 4.1(b).

4.1.3 Combining two supercells

The last step is to combine a (n,m) supercell of one material with a (n′,m′) supercell of
another materials. In heterostructures, the lattice constants of the supercells can never
match exactly, which necessitates the introduction of strain. Whether layer 1 or layer 2
are strained or whether the strain is distributed between the two layers depends on the
specific materials and the details of the manufacturing process. When performing DFT
calculations, this is a choice up to the researcher. It depends on factors like the materials’
robustness against strain and the effects one would like to study. In our calculations,
we choose to always strain graphene, since it is more resilient to strain than the other
materials [79, 80, 144, 145, 146]. Assuming that we put all the stain on layer 1 (lattice
constant a1, (n,m) supercell) and leave layer 2 (lattice constant a2, (n′,m′) supercell)
unstrained, the strain can be calculated as:

ε =
a2 ·
√

n′2 + m′2 + n′m′

a1 ·
√

n2 + m2 + nm
− 1. (4.28)

With this, the twist angle between the supercells and the primitive unit cells (Eq. (4.12))
can now be used to determine the relative twist angle between the two layers of the
heterostructure. The relative twist angle between the two layers is

Θ = Θ(n′,m′) − Θ(n,m) = arctan*
,

√
3m′

2n′ + m′
+
-
− arctan*

,

√
3m

2n + m
+
-
. (4.29)

Note that in Chap. 5 the interlayer twist angle Θ is defined with an additional minus sign,
hence the formula differs from the one presented.

4.2 Density functional theory

The main method employed in this thesis is density functional theory (DFT) [12]. It
is an ab-initio technique (i.e. it operates from first principles, in principle without any
external parameters) used to calculate the zero-temperature ground state band structure
of a system. As we use the well established QUANTUM ESPRESSO code [147] with
standard settings, we limit ourself to a brief overview of the DFT method. We refer to
more in depth explanations of DFT in Refs. [148, 149, 150], which inspired and informed
this section. After introducing the fundamental theoretical background in Subsec. 4.2.1,
we discuss various options and the concrete flavour of DFT we employ in Subsec. 4.2.2.
Some further details on our DFT calculations (electric field, relaxation, strain distribution)
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4.2 Density functional theory

are discussed in Sec. 4.5.

4.2.1 Fundamentals

Employing only the Born-Oppenheimer approximation, i.e. assuming that the Hamil-
tonians describing atom cores and electrons are decoupled, one can write the electron
part of a non-relativistic many-body Hamiltonian of a given system (without an external
magnetic field) as [150]:

Ĥ = T̂ + V̂ + V̂ext (4.30)

with T̂ = −
~2

2m

∑
i

∇2
ri (4.31)

V̂ =
e2

8πε0

∑
i, j

1
| ri − r j |

(4.32)

V̂ext = −
1

4πε0

∑
i,j

e2Zi

| Ri − r j |
+ V0. (4.33)

Here, T̂ is the many-body kinetic energy operator with ∇ri acting on the electron coor-
dinates ri of electron i, and m is the electron mass. The Coulomb interaction between
the electrons is captured in V̂ , with elementary charge e and electric constant ε0. V̂ext
represents the external potential given by the atom cores, with atomic number Zi and co-
ordinates Ri of atom i. The potential V0 arises from the interaction of the atom cores and
is a constant within the Born-Oppenheimer approximation. This Hamiltonian constitutes
the starting point for DFT.

Hohenberg Kohn theorems

The theorems of Hohenberg and Kohn, formulated in 1964 [12], are fundamental to DFT.
The first one states that there is a one-to-one correspondence between the electron ground
state density

ρ(r) = 〈Φ|
∑

i

δ(r − ri) |Φ〉 (4.34)

and the external potential V̂ext (up to a constant). As an immediate consequence, the
ground state expectation value of any observable Ô is a unique functional of ρ(r):

O[ρ] = 〈Φ| Ô |Φ〉 . (4.35)

The second theorem is concerned with the case in which this operator Ô is the Hamiltonian
Ĥ . Here, one can see that the first part – the Hohenberg-Kohn density functional FHK[ρ]
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– is universal for all systems, as all system-specific parts are concentrated in V̂ext:

EVext[ρ] = 〈Φ| Ĥ |Φ〉 = 〈Φ| T̂ + V̂ |Φ〉 + 〈Φ| V̂ext |Φ〉

= FHK[ρ] + Vext[ρ].
(4.36)

Furthermore, EVext[ρ] has its minimum if ρ is the real ground-state density corresponding
to Vext. Using the density ρ(r) instead of individual electron coordinates reduces the
degrees of freedom from 3N (where N is the number of electrons in the system) to only
3.

Kohn Sham formalism

Unfortunately, the exact Hohenberg-Kohn density functional FHK[ρ] is not known. It is
the idea of Kohn and Sham [151] to map the many-body problem onto a non-interacting
effective single-body problem with the same ground-state density. In this new form, all
effects of the interaction are represented in an effective potential, the exchange-correlation
potential. This amounts to recasting Eq. (4.36):

EVext[ρ] =

T[ρ]︷             ︸︸             ︷
(T0[ρ] + Vc[ρ]) +

V [ρ]︷              ︸︸              ︷
(VH[ρ] + Vx[ρ]) +Vext[ρ]

= T0[ρ] + VH[ρ] + Vxc[ρ] + Vext[ρ].
(4.37)

The correlation energy Vc[ρ] is separated from the kinetic energy term, leaving only the
kinetic energy of a single particle problem T0[ρ]. The V [ρ] is split into a Hartree-term
VH[ρ], representing the Coulomb interaction of a many-electron density with itself, and an
exchange term Vx[ρ]. The exchange-correlation functional Vxc[ρ] now encompasses both
the exchange and the correlation features of the system. Finding a suitable approximation
for this term is an endeavour crucial to DFT.

Self-consistency problem

As the initial many-body problem is now reduced to an effective single-body problem, it
is a feasible endeavour to calculate ground state properties. However, the Hamiltonian
involves the ground state density itself, and as a consequence the equations have to be
solved iteratively. After an initial guess for the wave functions is made, the equations are
solved and the new value for the density is used. This is repeated until a self-consistent
solution is achieved.

4.2.2 Methodological choices & further approximations

After introducing the fundamentals of DFT, we now discuss some details of how DFT is
realized in an actual practical calculation and clarify which additional approximations
and modifications are employed in our calculations.
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4.2 Density functional theory

Exchange-correlation functionals

As already discussed, the exchange-correlation functional is the last unknown piece of
the DFT formalism. Here we present some widely used approximations:

1. Local density approximation (LDA): The exchange-correlation functional Vxc[ρ] is
approximated to be of the form

Vxc[ρ] =

∫
dr ρ(r)εxc(ρ(r)), (4.38)

where εxc(ρ(r)) is the exchange-correlation energy of a homogeneous electron gas,
which is numerically known [150, 152].

2. Generalized gradient approximation (GGA): The GGA is similar to LDA, only
additionally including the local gradient of ρ(r).

3. Hybrid functionals: The idea of hybrid functionals is to replace some fraction of the
exchange-correlation energy by the (exact) Hartree-Fock exchange energy [153]:

V HF
x = −

1
2

∫
dr1

∫
dr2
Φ∗i (r1)Φ j (r1)Φ∗j (r2)Φi (r2)

| r1 − r2 |
(4.39)

Although this increases accuracy, it comes with a substantial increase of the com-
putational cost.

Throughout all of our calculations, the Perdew-Burke-Ernzerhof (PBE) functional [154]
is employed. This is a widely used GGA exchange-correlation functional.

Plane wave basis and k-grid

Several options for the basis set of the wave functions can be chosen, each with their
own advantages and disadvantages. The three most widely employed options are atomic
orbitals, Gaussian-type orbitals and plane waves [155]. This choice certainly depends
on the system one aims to describe. For extended structures like the 2D structures we
investigate, the natural option are plane waves. In order to limit the number of basis
states, we need to define a cutoff for the wave functions. The cutoffs for our calculations
are presented in Tab. 4.1. Also, a grid in k space needs to be defined, covering the 1st BZ.
For this, we use a nk × nk Monkhorst grid [156], where the nk is chosen based mostly
on the size of the supercell. We list the values for nk for all calculations in Chap. 5 here,
in Tab. 4.2. The nk of the other cases are listed alongside their respective supercells
(Tabs. 6.2 and 7.1) in the respective chapters.

Pseudopotentials and projector augmented wave method

One problem which arises when using plane waves is that, in order to describe the
strongly oscillating wave functions close to the atom cores, a large cutoff would be
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Table 4.1: Computational details: Used charge density cutoff energy Eρ and
wave function kinetic energy cutoff Ewfc for the calculations of Chap.5, Chap.6
and Chap. 7.

MoS2 WS2 MoSe2 WSe2 Bi2Se3 Bi2Te3 NbSe2
Eρ[Ry] 55 70 60 65 58 48 60

Ewfc[Ry] 350 500 350 550 480 480 350

Table 4.2: Computational details: k-grid density (we used a nk × nk grid) for
the supercells listed in Tab. 5.2. For calculations with electric fields, the grid
was sometimes adjusted, those are listed with a tilde over the material. The
supercells are in the same order as in Tab. 5.2.

MoS2 IMoS2 WS2 W̃S2 MoSe2 IMoSe2 WSe2 IWSe2
0° 21 21 15 15 21 15 21 15
0° 3 9 3 9 3 9 3 9

5.2° 21 - 21 15 21 15 21 21
6.6° 21 21 - - 18 12 18 12
9.5° 21 18 - - 18 18 - -

10.9° - - - - 21 - 21 -
13.9° 21 21 3 9 21 15 - -
13.9° 9 15 - - - - - -
13.9° 21 - - - 6 12 3 3
19.1° 30 30 30 30 21 21 21 21
22.7° 21 18 - - 18 12 - -
23.4° - - - - 18 - 21 12
27° 21 - 15 15 21 15 21 21
30° 39 39 21 36 21 21 21 21
30° 21 - - - 6 - - -

needed, entailing large computational costs. To tackle this problem, the principle of
pseudopotentials has proven to be very helpful. With this method, only the outer shell
electrons are described correctly within DFT, while the inner shell electrons are joined
with the atom core forming a screened potential. This way, the resulting wave functions
have less nodes in the region close to the atom cores than the actual wave function. This
lowers the computational cost at the price of misrepresenting the wave functions close to
the core, where no relevant physics occurs. We employ an extension of this idea – the
projector augmented wave (PAW) method [157]. Here, within a given radius around the
atom core, the all-electron wave functions (i.e. the correct wave functions) are mapped to
smooth pseudo wave functions via a linear transformation.
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4.3 Theoretical modeling of graphene

Empirical van der Waals corrections

The long ranged van der Waals forces are not well described within DFT. As these are the
forces holding together the systems we want to describe, it is apparent that these forces
should be incorporated. In order to do so, we deviate from the pure ab-initio approach
and add a term based on empirical data to our model. This term has the form:

VvdW =
∑
i,j

Ci,j

r6
i,j

f (ri,j ). (4.40)

It connects all atoms in a pairwise fashion, with atoms i and j separated by a distance
ri,j . Ci,j are the dispersion coefficients of atom pairs and f (ri,j ) is a damping function.
There are several different implementations of this method; we use the Grimme-D2 van
der Waals corrections for all of our calculations [158, 159, 160].

4.3 Theoretical modeling of graphene

Describing a system using DFT gives us a very accurate picture without demanding any
parameters (ab initio). However, it does not give us a clear picture of the underlying
processes. Representing the system in a simpler form can give us more insight into what
mechanisms are at play and, combined with DFT results, allows us to quantify them
accordingly. To this end, one can use a tight binding model (or the linearized model
Hamiltonian) describing the system (or a part of it). As such models are not ab-initio,
some parameters need to be defined. We can combine the strengths of both approaches
by fitting a model Hamiltonian to the DFT data, thereby providing us with reasonable
values for the parameters. In this section, we introduce the full tight binding Hamiltonian
and the model Hamiltonian capable of describing graphene with the most relevant SOC
effects.

4.3.1 Tight binding Hamiltonian

In graphene, the s- and px/y-orbitals build the strong in-plane sp2 hybridized honeycomb
lattice connecting the C atoms (σ-bonds). States formed by those orbitals are energetically
far away from the Fermi level and are not actively participating in transport. The pz-
orbitals on the other hand constitute the relevant physics near the Fermi level (π-bonds).
Therefore, the tight binding model constructed to emulate these physics is described by
hoppings between the pz-orbitals. In its simplest form, the tight binding Hamiltonian
consists of hoppings (with strength t) between nearest neighbours sites in the hexagonal
structure:

H0 = t
∑
〈i j〉,s

c†isc j s (4.41)
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(b)(a)

A
B

(c)

(d)

Figure 4.2: Graphene structure in real and k space. (a) The real space lattice
of graphene with lattice vectors a1 and a2 with indicated sublattice A and B
atoms. We also show the on-site potentials and hoppings in the tight binding
Hamiltonian from Eq. (4.42). (b) 1st BZ of graphene with high symmetry points
Γ, K , K′ and M. (c) Tight binding band structure (taken from Ref. [161]). (d)
DFT band structure along a high symmetry path indicated as blue dotted line in
(b).
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We now additionally incorporate on-site potentials and, to include spin-orbit effects, we
add hoppings representing the most relevant SOC terms [14, 162]:

H = H0 +
∑
i,s

∆ic
†

iscis

+
i

3
√

3

∑
〈〈i j〉〉,ss′

c†isc j s′ (λKM + ξλVZ)[νi j sz]ss′

+
2iλR

3

∑
〈i j〉,ss′

c†isc j s′

[
exp

(
−iΦ

sz

2

)
[ẑ · (s × di j )] exp

(
iΦ

sz

2

)]

ss′
.

(4.42)

The single brackets constitute sums over nearest neighbours and the double brackets
constitute sums over next nearest neighbours. c†is and cis are the creation and annihilation
operators of an electron at site i with spin s, di,j is a unit vector pointing from site j to
nearest neighbour site i, s is a vector containing the Pauli matrices, νi j is equal to +1
for clockwise and equal to -1 for counterclockwise hoppings from site j to i, ξ is +1 for
sublattice A and -1 for sublattice B, ẑ is the unit vector in z-direction. The first term
describes a series of on-site potentials ∆i. The second term describes Kane-Mele and
valley-Zeeman SOC. The third term describes a Rashba SOC related to an electric field in
z-direction. λR, λKM and λVZ constitute the three main flavours of SOC discussed in the
thesis. We will give more information on them in the context of the model Hamiltonian
in the next subsection. This Hamiltonian is not exactly the general C3v-symmetric
Hamiltonian from Ref. [162], it was modified to suit our calculations. That is why, on the
one hand, it additionally includes the Rashba angle Φ (breaking C3v-symmetry), but on
the other hand does not include PIA (pseudospin inversion asymmetry) SOC; this holds
true for both the tight binding and the model Hamiltonian version.

Translating this model into k space produces a decent representation of the graphene
band structure, which can be seen in Fig. 4.2(c). At K and K′ we see the most relevant
feature, the Dirac cone, located at the Fermi energy (half filling in the tight binding
model). For low energies it has a nearly isotropic linear dispersion. In the case without
SOC (λKM = λVZ = λR = 0), its states are doubly degenerate. Adding these terms
will give more complexity to the low energy band structure, which is discussed in the
following.

4.3.2 Model Hamiltonian

Linearizing the Fourier-transformed version of Eq. (4.42) around the K/K′ point produces
a simpler version [14, 19], capturing the physics of the Dirac cone:

H (k) = Horb(k) + Hso = Horb(k) + Hso,I + Hso,R. (4.43)
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The orbital part describes the dispersion of the Dirac cone; it is linearized around the
K /K′ point, therefore k is the electron wave vector measured from K /K′:

Horb(k) = ~vF (κσx kx + σyky) + ∆σz . (4.44)

Here, vF is the Fermi velocity of the Dirac electrons and σx ,σy and σz are the Pauli
matrices operating on the sublattice (A/B) space. The parameter κ determines, whether
the Hamiltonian describes the band structure near K or K′ (κ = 1 for K and κ = −1
for K′). The on-site potentials ∆i are reduced to a staggered potential ∆, describing the
difference in potential between A- and B-sublattice. Although this is no spin-orbit term, it
is often needed in order to take into account any asymmetrical influence of the substrate
on the graphene A- and B-sublattice. The intrinsic spin-orbit Hamiltonian

Hso,I =
[
λKMσz + λVZσ0

]
κsz, (4.45)

and the Rashba spin-orbit Hamiltonian

Hso,R = −λR exp
(
−iΦ

sz

2

) [
κσx sy − σysx

]
exp

(
iΦ

sz

2

)
, (4.46)

both include spin Pauli matrices sx , sy and sz acting on the spin space; λVZ and λKM
are the valley-Zeeman [13, 40] SOC and the Kane-Mele [34, 35] SOC, respectively.
The Rashba SOC term is defined by two parameters: the magnitude λR and the Rashba
(phase) angle Φ [163, 21]. The effects of the different flavours of SOC are depicted in
Fig. 4.3(a)-(c). They can be summarized as:

1. The Kane-Mele SOC (λKM) is the SOC which is already present in pristine
graphene, although only on the µeV scale. It introduces a mass term (and therefore
a gap) to the Dirac cone. In contrast to the trivial gap induced by ∆, it has different
signs for K and K′. Hence, if it is large enough, it can produce a quantum spin
Hall state [34, 35].

2. The valley-Zeeman SOC (λVZ) splits the degenerate bands into a spin-up and a
spin-down band just like a Zeeman field. Since time-reversal symmetry has to
be conserved, this effective magnetic field has opposite signs at K and K′. It can
enable pseudohelical states [36] and is the main driving force for spin-relaxation
anisotropy [48].

3. The Rashba SOC (λR,Φ) originates from a breaking of the inversion symmetry
by a substrate. It is the same term arising in e.g. bilayer graphene when applying
an out-of-plane electric field. Through Rashba SOC, the Dirac cone acquires an
in-plane spin-texture (see Fig. 4.3(c)), which enables charge-to-spin (or spin-to-
charge) conversion. The Rashba angle Φ determines the radial part of the spin
texture (from a purely tangential spin texture at Φ = 0◦ to a purely radial one at
Φ = 90◦). We choose to limit the Rashba parameter to positive values λR > 0.
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(a) Kane-Mele SOC (b) valley-Zeeman SOC (c) Rashba SOC

Figure 4.3: (a)-(c) The Dirac cone as obtained by the model Hamiltonian
(Eq. (4.43)) with only one flavour of SOC. The only non-zero spin-orbit param-
eter is λKM (a), λVZ (b) or λR (c). For (c), we additionally show the in-plane
spin texture within circles around the K point for the purely tangential case
(Φ = 0) and mixed tangential and radial case (Φ , 0). (d) The Dirac cone of a
Θ = 0◦ graphene/Bi2Se3 heterostructure as calculated by DFT (dots) and the
model Hamiltonian fit (solid lines). Both energies and spin expectation values
can be captured in the fit.

A sign change of λR then corresponds to an additional phase shift of Φ by a half
rotation, i.e. Φ→ Φ + 180°.

The model Hamiltonian can be used with great effect to fit the results of the DFT
calculations near the Dirac cone energy. Both spins and energies can be usually described
very accurately with the model Hamiltonian (see Fig. 4.3(d)).

4.4 Interlayer interaction via generalized
Umklapp processes

Apart from the DFT approach we use, the effect of the twist angle can be described
by other means, most importantly tight binding [19, 20, 21]. Tight binding models
incorporate the twist angle into their calculations through generalized Umklapp processes.
In this section, we present the general interlayer interaction in layered systems via
generalized Umklapp processes as discussed by Koshino in Ref. [22]. The main insight
this theory offers is which k points of the individual layer’s 1st BZ can interact with
each other and how this can be varied using the interlayer twist angle and strain. This
knowledge can be very helpful in interpreting DFT results. Although in Ref. [22]
incommensurate lattices are discussed, the theory is equally valid for the commensurate
systems used in DFT.
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4.4.1 Notation

Firstly, we will introduce the notations adapted from Ref. [22] describing an incommen-
surate bilayer system. We assume a heterostructure of two layers with different lattice
vectors a1 and a2 (layer 1) and ã1 and ã2 (layer 2). The corresponding reciprocal lattice
vectors of the two layers are b1 and b2 (layer 1) and b̃1 and b̃2 (layer 2). The system is
described within tight binding with the atomic orbitals and sublattices noted by the index
X = A,B, ... (for layer 1) and X̃ = Ã, B̃, ... (for layer 2). These orbitals are localized at
the position τX (or τ X̃ for layer 2) within each unit cell. Note that τX and τ X̃ can have
both in-plane and out-of-plane components and the interlayer distance separating the two
layers is encoded in the τX (or τ X̃ ). Hence, all atomic positions are given by

RX = n1a1 + n2a2 + τX for layer 1 (4.47)
RX̃ = ñ1ã1 + ñ2ã2 + τ X̃ for layer 2 (4.48)

with n1,n2, ñ1, ñ2 ∈ Z. Furthermore, |RX 〉 ≡ ΦX (r − RX ) and ��RX̃
〉
≡ ΦX̃ (r − RX̃ ) are

the atomic states (with sublattice and atomic orbital determined by X or X̃) localized at
RX in layer 1 and layer 2, respectively. The transfer integral between two sites

−TX̃ ,X (RX̃ − RX ) (4.49)

depends only on the relative position RX̃ − RX between the sites and their different
orbitals X̃ and X . The Bloch states of the two layers are the defined as

���k,X
〉

=
1
√

N

∑
RX

exp
(
ikRX

)
|RX 〉 for layer 1 (4.50)

���k̃, X̃
〉

=
1
√

Ñ

∑
RX̃

exp
(
ik̃RX̃

) ��RX̃
〉

for layer 2, (4.51)

with k and k̃ in-plane Bloch wave-vectors of layer 1 and 2, respectively, and N and Ñ
number of unit cells (of layer 1 and 2, respectively) in the (large, but finite) total system
area Stot.

Using the transfer integral −TX̃ ,X (RX̃ −RX ), we now define the interlayer Hamiltonian
in real space as

U = −
∑
X,X̃

TX̃ ,X (RX̃ − RX ) ��RX̃
〉
〈RX | + h.c. (4.52)

The main piece of the formalism is the k space interlayer Hamiltonian. For a detailed
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derivation of it, we refer to Ref. [22]. It can be written as

UX̃ ,X (k̃,k) =
〈
k̃, X̃ ��� U ���k,X

〉
(4.53)

= −
∑
G,G̃

t X̃ ,X (k + G) exp
(
−iG · τX + iG̃ · τ X̃

)
δk+G,k̃+G̃. (4.54)

with in-plane Fourier transform of the transfer integral

t X̃ ,X (q) =
1
√

SS̃

∫
TX̃ ,X (r + zX̃ X ez) exp(−iqr)d2r. (4.55)

Here, we define the out-of plane distance of orbitals X and X̃ as zX̃ X = (τ X̃ − τX ) · ez
using the out-of-plane unit vector ez. The integral is performed in 2D, covering the
system area Stot. S and S̃ are the unit cell’s area of the layers 1 and 2, respectively. G and
G̃ are general reciprocal lattice vectors (i.e. linear combinations of the reciprocal lattice
vectors) of layers 1 and 2, respectively:

G = s · b1 + t · b2, (4.56)

G̃ = s̃ · b̃1 + t̃ · b̃2, (4.57)

with s, t, s̃, t̃ ∈ Z.

4.4.2 Interaction rules

The k space interlayer Hamiltonian UX̃ ,X (k̃,k) from Eq. (4.54) is the main result of the
approach as it can be used e.g. in explicit tight binding calculations within perturbation
theory to determine proximity SOC terms [19, 20, 21]. However, even without assuming
explicit atomic orbits and transfer integrals, we can draw conclusions from it, namely
which k points of the two layers couple with each other. For this we only need the
two sets of lattice vectors {a1,a2} and {ã1, ã2} (including the relative twist angle) and
the assumption that all transfer integrals between orbitals decay exponentially with the
distance (RX̃ − RX ). The two most relevant parts of UX̃ ,X (k̃,k) are

1. the condition for k point matching δk+G,k̃+G̃ and

2. the Fourier-transformed transfer integral t X̃ ,X (q).

k matching condition

Let us first discuss δk+G,k̃+G̃. It imposes the condition

k + G = k̃ + G̃ (4.58)

on the k points. This means one needs to find a G and a G̃, such that somewhere in the
extended k space (i.e. extended beyond the 1st BZ) the vectors k+G (in layer 1) and k̃+G̃
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(a)

(b)

(d)

(c)

Figure 4.4: Visualizing the k point matching condition for the example of a
Θ = 19.1◦ commensurate graphene/transition-metal dichalcogenide (TMDC)
supercell. (a) and (b) show the 1st BZ of layer 1 (TMDC) and layer 2 (graphene)
with the corresponding reciprocal lattice vectors. The main subfigure (c) shows
the extended reciprocal structures of layer 1 (black) and layer 2 (blue) on top
of the underlying reciprocal structure of the supercell (red). k points, which
fulfil the matching condition between the layer 2 K point and any k point in
layer 1 are marked with dots (’first order’), squares (’second order’) and crosses
(’third order’). The higher the order, the farther away the k point is from the
origin of the extended k space (marked as Γ). The dotted lines indicate a ’unit
cell’, which forms a repeating pattern (for both layer 1 and layer 2 reciprocal
structures) throughout the extended reciprocal space. The green vectors show for
two examples (’first order’ dot without prime and ’second order’ square marked
with prime) how the vectors of Eq. (4.58) look like. For the ’first order’ case
k̃ = K̃ and G̃ = 0 are omitted. (d) shows the points discussed in (c), which fulfil
the matching condition, drawn within the 1st BZ of layer 1.
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(in layer 2) match (see Fig. 4.4(c)). For the incommensurate structures (as discussed in the
tight binding models), this condition alone would be trivially fulfilled: somewhere in the
extended k space the points will inevitably match, since the incommensurate combination
of G − G̃ is able to cover the whole 2D k plane. For commensurate structures (as used
in DFT), however, going further away from the origin of k space, the k space structures
of layer 1 and 2 will eventually form a repeating pattern (dotted lines in Fig. 4.4(c)).
Therefore, no further new matching pairs of k and k̃ can arise from this point forward.

Let us now discuss the case of commensurate systems, as they appear in DFT calcula-
tions. Here, there are three relevant 1st BZs: the one of layer 1, the one of layer 2 and the
one of the commensurate heterostructure supercell. They are depicted as black, blue and
red, respectively, in Fig. 4.4(c). If the matching condition Eq. (4.58) is fulfilled, the two k
points k (1st BZ of layer 1) and k̃ (1st BZ of layer 2) automatically fold back to the same
point in the 1st BZ of the supercell. This can be seen in Fig. 4.4(c), where all k points
fulfilling the matching condition are residing at one of the K points of the underlying
supercell extended reciprocal structure (red hexagonal grid). A proof for this statement
works as follows: The k point in the extended k space that fulfills the matching condition
can always be represented using a k point kS within the supercell system’s 1st BZ and a
reciprocal lattice vector GS of the supercell system:

k + G = k̃ + G̃ = kS + GS . (4.59)

As both G and G̃ can be interpreted as linear combinations of reciprocal lattice vectors of
the supercell system as well, we can incorporate them into GS:

k = kS + (GS −G) = kS + GS
new,1 (4.60)

k̃ = kS + (GS − G̃) = kS + GS
new,2. (4.61)

Using the backfolding condition Eq. (4.15), this proves that both k and k̃ fold back to the
same point kS in the 1st BZ of the supercell system.

Proving the inverse, namely that, if k and k̃ fold back to the same point kS in the
supercell system’s 1st BZ, they automatically fulfill the matching condition Eq. (4.58), is
a bit more cumbersome and requires an additional condition. This condition is that the
heterostructure supercell in question is the smallest possible one describing this exact
heterostructure system (same twist angle and same strain). Another way of phrasing
this, is that the heterostructure cannot be viewed as a supercell of another heterostructure
supercell. If this condition is not met, for example when combining a 15 × 15 and a
10 × 10 supercell (instead of a 3 × 3 supercell and a 2 × 2 supercell), we have practically
formed a ’supercell of a supercell’. Therefore, bands could be folded on top of each other
without being linked by the matching condition Eq. (4.58). However, for all supercells
used in this thesis, this condition is fulfilled, as artificially enlarging the supercells only
increases the computational cost without providing any benefit. We perform the proof for
this inverse statement under said condition in App. A.
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Fourier-transformed transfer integral t X̃ ,X (q)

The second important term of UX̃ ,X (k̃,k) is t X̃ ,X (q). It is the Fourier transform of the
transfer integral −TX̃ ,X (RX̃ − RX ). Naturally, the real space transfer integral decays with
increasing distance r = |RX̃ − RX | between orbitals. In the literature, the real space
transfer integral is commonly assumed to decay exponentially [19]. Hence, (ignoring the
direction dependence induced by the different orbitals) we describe the dependence of
−TX̃ ,X (RX̃ − RX ) on the distance r by some function

f (r) = exp(−α(r − r0)), (4.62)

with decay strength α and equilibrium distance r0. It can be shown that the 2D Fourier
transform of this function is

f (q) = F ( f (r)) =

√
2πα exp(αr0)

(α2 + |q |2)3/2 . (4.63)

If another decaying function was assumed, the Fourier transform t X̃ ,X (q) would still
decay with |q | in some fashion. This decaying behaviour of t X̃ ,X (q) means, that although
k and k̃ are allowed to couple by the matching condition, because G and G̃ exist, so
that

k + G = k̃ + G̃, (4.64)

the coupling might be suppressed if the needed vectors G and G̃ are so large that |k + G|
is too far away from the origin of the 2D k space. For the parameters chosen in Ref. [22]
for bilayer graphene, the values of t X̃ ,X (q) for the ’first order’ (points with the lowest
|k + G|) and the ’second order’ (points with the second lowest |k + G|) are separated by
almost two orders of magnitude. Hence, all contributions beyond this ’first order’ are
usually neglected.

4.4.3 Modifying the coupling by twist angle and strain

Introducing a twist angle between the two layers in real space, the corresponding recipro-
cal structures will twist as well with regard to each other. If we twist layer 1 by a twist
angle Θ using the rotation matrix RΘ, this amounts to transforming the real space and k
space vectors of layer 1 as follows:

{a1,a2} → {RΘa1,RΘa2} (4.65)
{b1,b2} → {RΘb1,RΘb2}. (4.66)

This has consequences for the interaction between the two layers. Namely, that for a fixed
k point k̃ in the 1st BZ of layer 2, different k points k in the 1st BZ of layer 1 now couple
to it. More precisely, as the twist angle Θ increases, the points k follow a circular path
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Figure 4.5: ’Path of interaction’ of the graphene K point within the 1st BZ of the
neighbouring WS2 layer when varying twist and strain in the incommensurate
heterostructure. (a) The paths of all three points of ’first order’ interaction
(connected by C3 symmetry) from 0◦ ≤ Θ ≤ 30◦. In all following subfigures
only one of the three paths is shown. (b) One of the paths from (a) for range
−30◦ ≤ Θ ≤ 90◦. (c) One ’first order’ (blue) and one ’second order’ (red) path
for 0◦ ≤ Θ ≤ 30◦. The blue (or red) dots are separated by a twist angle of
∆Θ = 2◦. (d) The same ’first order’ path, with additional dotted lines indicating
the alternative paths with ε = +5% (light blue) and ε = −5% (dark blue) strain
on the graphene.

continually exiting and reentering the 1st BZ (see Fig. 4.5(b)). Throughout the thesis we
will occasionally refer to such a path as ’path of interaction’. The radius of this circular
path grows with |k + G| and therefore with the ’order’ of the layer interaction. Hence,
with increasing ’order’ the paths appear as increasingly straight lines through the 1st BZ
(see Fig. 4.5(c)).

Additionally, the interlayer interaction can be varied by changing the structure through
the introduction of strain. Surely, the modifications to the system by strain are plentiful
and we offer a comprehensive discussion in Sec. 4.5. One of these effects is that –
similar to the twist angle – the point of interaction between the layers is modified by
the strain. Straining the real space lattice of layer 1 by the margin ε will result in a
transformation

{a1,a2} → {(1 ± ε )a1, (1 ± ε )a2} (4.67)

{b1,b2} → {
1

(1 ± ε )
b1,

1
(1 ± ε )

b2}. (4.68)

of the real space and k space vectors, respectively. While increasing the twist angle will
lead to a circular path, increasing the strain will lead to a straight path. This path is always
locally perpendicular to the circular one induced by twist. Combining both twist angle
and strain as degrees of freedom and limiting them to a certain range of values therefore
opens up an annular sector within the 1st BZ (see Fig. 4.5(d)).
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4.4.4 Symmetry considerations

Based on these interlayer interaction rules [22], there have been subsequent tight binding
calculations of a concrete graphene-based system [19, 20, 21]. These use perturbation
theory in order to determine the twist-angle dependence of the proximity SOC in graphene.
Without discussing the concrete tight binding results (which depend on details of the tight
binding description of the substrate), one can use this approach to deduce symmetry rules
regarding the twist angle for the proximity SOC (i.e. the model Hamiltonian parameters
of Eq. (4.43)) in graphene. Although these rules can be mostly understood using the
symmetries of the real space structures as well, we discuss them here, as they were first
introduced in Ref. [19, 20, 21]. Also, the ’path of interaction’ the k points take through
the substrate’s 1st BZ often nicely illustrates the symmetries. In this subsection, we
consider the case of graphene (layer 1) on a substrate with a hexagonal 1st BZ (layer 2,
e.g. TMDC) and discuss how the graphene Dirac cone at the K point of layer 1 couples
to different parts of the 1st BZ of layer 2 with varying twist angle. In the following, we
only consider the path that one of the three ’first order’ k points takes with increasing
twist angle, as these three points are connected by C3 symmetry (see Fig. 4.5(a)).

Symmetry rules for twisting by 60◦

As the twist angle changes from Θ = 0◦ to Θ = 60◦, the path of ’first order’ interaction
(depicted in Fig. 4.5(b)) goes from a point close to the K point to one close to the K′

point. For 60◦ < Θ < 120◦, this path is repeated in a similar way starting from a point
close to the K′ point and ending at one close to the K point. This illustrates that twisting
by 60◦ from any situation leads to the same interlayer coupling with a switch K → K′.
The ensuing symmetry rules for the SOC parameters are:

λVZ(Θ + 60°) = −λVZ(Θ) (4.69)
λR(Θ + 60°) = λR(Θ) (4.70)
Φ(Θ + 60°) = Φ(Θ). (4.71)

This can be understood as follows: twisting graphene by 60◦ leaves us with the same
structure, only sublattice label ’A’ and ’B’ are exchanged. Consequently only the SOC
parameter λVZ has to change its sign, as it is sensitive to this relabeling.

Symmetry rules for twisting clockwise/counterclockwise

From tight binding calculations, we can conclude that twisting from Θ = 0◦ clockwise
or counterclockwise yields mostly the same results. Only the Rashba angle Φ shows
a sensitivity to this change, which can be used with great effect in trilayer systems in
order to create purely radial Rashba SOC [21, 164]. The symmetry rules capturing this
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behaviour can be written as:

λVZ(−Θ) = λVZ(Θ) (4.72)
λR(−Θ) = λR(Θ) (4.73)
Φ(−Θ) = −Φ(Θ). (4.74)

These rules can be proven using the explicit form of the reflection operator Rx converting
(x, y, z) → (−x, y, z) (which connects Θ→ −Θ) from Ref. [19]:

Rx = −iσ0sxτx R̃x , (4.75)

with σ0 and sx acting on the sublattice- and spin-space, respectively, as always. Addi-
tionally, τx acts on the valley-space (K/K′) and R̃x represents the reflection operator for
the envelop function by the x-axis. It is now a straight forward task to show that for the
valley-Zeeman and Rashba terms

Hso,VZ(λVZ) = λVZσ0szτz (4.76)

Hso,R(λR,Φ) = −λR exp
(
−iΦ

sz

2

) [
σx syτz − σysxτ0

]
exp

(
iΦ

sz

2

)
(4.77)

= −
λR

2

[
cos(Φ)(σx syτz − σysxτ0) − sin(Φ)(σx sxτz + σysyτ0)

]
(4.78)

the reflection operator fulfills the equations

Rx Hso,VZ(λVZ)R−1
x = Hso,VZ(λVZ) (4.79)

Rx Hso,R(λR,Φ)R−1
x = Hso,R(λR,−Φ), (4.80)

proving the (anti-)symmetry rules in Eq. (4.72) to Eq. (4.74).

Zero points of λVZ and Φ

From the rules above, one can easily deduce that

λVZ(Θ = 30◦)
(4.72)

= λVZ(Θ = −30◦)
(4.69)

= −λVZ(Θ = 30◦) = 0 (4.81)

We find this also in our DFT calculations and it can easily be understood in the following
way: At Θ = 30◦ the interlayer coupling takes place at a k point directly between K
and K′, therefore inheriting the exact amount of spin-splitting from K and K′ just with a
different sign. In a similar fashion we can establish the rules

Φ(0◦)
(4.74)

= −Φ(−0◦) → Φ(0◦) = 0 + n · 180◦ (4.82)

Φ(30◦)
(4.74)

= −Φ(−30◦)
(4.71)

= −Φ(30◦) → Φ(30◦) = 0 + m · 180◦. (4.83)
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Figure 4.6: The twist-angle dependent SOC parameters of graphene/MoS2
heterostructures from Ref. [19] expanded beyond the initial (irreducible) range
0◦ ≤ Θ ≤ 30◦ using the symmetry relations. (a) shows valley-Zeeman SOC
λVZ (blue) and Rashba SOC λR (red). (b) shows Rashba angle Φ from two
different tight binding approaches: Ref. [19] (blue) and Ref. [21] (black). The
vertical dotted line marks the initial twist-angle range. The horizontal lines in (b)
mark the Φ = −180◦ and Φ = 180◦ values, which constitute the same physical
situation as Φ is defined only modulo 2π.
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with n,m ∈ Z. This means that there are two separate zero points where Φ can be either
0◦ or 180◦, both entailing an exclusively tangential in-plane spin texture, i.e. for all
l, k ∈ Z it holds:

Φ(l · 60◦) = Φ(0◦) = Φ(60◦) = ... =

{
0◦

180◦

Φ(30◦ + k · 60◦) = Φ(−30◦) = Φ(30◦) = ... =

{
0◦

180◦ .
(4.84)

The reason for the possibility of Φ = 180◦ is that Φ is defined only modulo 2π. The
symmetry enforced zero points (or 180◦ points) of Φ are also witnessed in DFT calcu-
lations [163, 67, 64]. They can alternatively be derived from the reflection symmetries
converting (x, y, z) → (−x, y, z) and (x, y, z) → (x,−y, z) at Θ = 0◦ and Θ = 30◦, respec-
tively [19]. Using all the above symmetry rules, it is sufficient to discuss the twist-angle
range 0◦ ≤ Θ ≤ 30◦, as the SOC parameters for all other twist angles can be deduced
using these symmetry rules. Fig. 4.6 illustrates this by expanding the SOC parameters of
the usual 0◦ ≤ Θ ≤ 30◦ beyond that range.

4.5 Combating unwanted strain effects in DFT

In the previous section we mentioned Refs. [19, 20, 21], where a tight binding model
is used to describe the influence of the twist angle on the proximity SOC and establish
a quantitative twist-angle dependency of the SOC parameters. In order to check if this
notion can be validated by an ab-initio perspective and to obtain more realistic values
going beyond the (tight binding) model approach, we use density functional theory (DFT).
The basic formalism and idea behind DFT were already layed out in Sec. 4.2. Contrary
to the tight binding approach, the heterostructures used for DFT calculations need to be
commensurate. How to generate commensurate heterostructure supercells with specific
twist angles was discussed in Sec. 4.1. We reiterate that such commensurate supercells
always involve strain in one or multiple layers. If we want to emulate heterostructures
with specific commensurate structures (as they appear in ’bottom-up’ sample fabrication,
e.g. CVD or MBE), this specific combination of strain and twist angle (e.g. 30◦ supercell
in Chap. 6) is a natural part of the situation that we aim to describe. However, as most
of the experimental setups involve incommensurate structures without significant strain
due to ’top-down’ fabrication (e.g. exfoliation), we mostly view the strain as an artifact
introduced by DFT. This means in order to establish a relation that links twist angle
to the SOC parameters, we need to combat the effects of the strain — specifically the
effects on the SOC. Since the effects of different parameters are entangled, we need to
consider the interconnected effects of several parameters (see Fig. 4.7): twist angle, strain,
relaxation, interlayer distance, external electric field and lateral shift between the layers.
Within the DFT approach, there are several choices and control knobs that need to be
taken into account. In this section, we present our specific approach of implementing
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twisted heterostructures in DFT and the problems and choices of parameters that come
with it and compare it to the literature (see Tab. 4.4). Although our argumentation
assumes graphene-based heterostructures, most of it can be reformulated to fit general
heterostructures.

4.5.1 The effects of strain

Every heterostructure supercell comes not only with a certain twist angle, but also with
a certain strain. This means the parameters twist angle and strain are linked, i.e. we
only have one degree of freedom (the choice of the supercell) instead of two degrees
of freedom (twist angle and strain). For a few cases, there are two supercells with the
same twist angle and different strains, or the same strain and different twist angles. These
supercells can help us in gauging the effectivity of our approach. But as they are the
exception, we mostly cannot tune the twist angle without simultaneously changing the
strain and vice versa. This shows how important it is to know the effects of the strain on
the properties of the heterostructure, especially on the proximity SOC. It is here that a first
choice needs to be made. Namely, how should the strain be distributed? We could either
put tensile strain on the slightly smaller supercell or compressive strain on the slightly
larger supercell or distribute the strain equally among both layers. In our approach, we
choose to always put the strain on the graphene layer, as its properties under strain are
rather well known and it is resilient to strain [79, 80, 144, 145, 146]. In the following,
we identify four main effects of the strain on graphene, although we cannot fully exclude
that there are other effects of the strain.

Change of Dirac cone Fermi velocity

The first effect is the change of the graphene band structure induced by the strain. As
the applied strain is biaxial, there is no change in crystal symmetries and therefore the
only relevant effect is an effective scaling of the Fermi velocity (slope) of the Dirac
cone [80, 144]. This can be easily understood within the tight binding model of graphene.
The hopping term t scales with the distance between the carbon atoms and therefore with
the applied strain; for tensile strain the atoms move apart leading to decreasing t, while
for compressive strain they move closer leading to increasing t. Since the Fermi velocity
is directly linked to this hopping parameter vF =

√
3

2~ a · t [162], it will scale accordingly.
Although there is the additional effect due to the change of the lattice constant a, this effect
is overshadowed by the change of t, resulting in an approximately linear dependency of
the Fermi velocity on the strain [80]. Since the rescaling of the Fermi velocity itself is
not influencing the SOC, we do not need any measures to counteract this effect. As the
SOC in graphene can also be described as hoppings, it is reasonable to assume that the
SOC might scale with the strain in a similar way. However, none of our data supports this
hypothesis. We assume that, as the electron follows a virtual tunneling process through
the substrate layer, it does not scale in the same fashion.
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k-space probed by Umklapp process

The second effect of the strain does not concern the graphene itself, but rather the
interaction between the two layers of the heterostructure. In Sec. 4.4 we describe how the
twist angle between the layers will influence what regions of the substrate (e.g. TMDC)
1st BZ are probed by the Dirac cone — the k point, which the Dirac interacts with, will
describe a certain ’path of interaction’ through the 1st BZ as the twist angle is tuned
(see Fig. 4.5). Straining graphene changes the size of graphene’s 1st BZ, which will in
turn shift said path. Allowing for a range of strains will accordingly open the path to an
annular sector (see Fig. 4.5(d)). Contrary to the other effects, this effect is both inevitable
and affects the SOC. It cannot be avoided by putting the strain on the other layer, as it
only depends on the ratio of lattice constants of the layers alayer 1

alayer 2
. Counteracting it might

be possible by estimating corrections based on the tight binding models of Ref. [19, 20].
However, we do not follow this path, as it would rely heavily on details of the specific
tight binding approach.

Rippling

The third effect of the strain in graphene is the rippling of graphene for strong compressive
strains. It is a very common (see Tab. 4.4) procedure to calculate atomic forces and
allow for atomic relaxation within the DFT unit cell, before the actual self consistent
calculations. During such a relaxation process, graphene supercells with large compres-
sive strains will form ripples in order to minimize the forces on the atoms. For large
strains (up to 10%), these ripples can be as big as 2 Å (for example for a supercell
with ε = −6.64% strain, see Fig. 4.8(b)). But already for smaller strains (up to 3%), a
significant rippling of about 0.3 Å can still be observed (for example for a supercell with
ε = −2.9% strain, see Fig. 4.8(a)). In Ref. [163], we find the main consequence of these
ripples in graphene/TMDC heterostructures to be an increase in the staggered potential ∆
and the Kane-Mele SOC λKM, which are the two fitting parameters, which are close to
zero for the unrelaxed structures. The emergence of these two parameters is reasonable,
as the rippling can plausibly induce both an asymmetrical potential on the A/B-sublattices
(emergence of ∆) and a σ-π-mixing, i.e. mixing of the sp2 hybridized in-plane states and
the pz-orbitals dominated out-of-plane states (emergence of λKM).

Graphene work function and band offsets

The fourth effect we attribute to the strain is a change in band offsets, i.e. the energetic
shift between the band structures of the two layers. Assuming an otherwise rigid band
structure of the two layers, it is determined by the difference in energy between some fix
points within the two band structures. For example, the band offset between graphene
and a TMDC substrate can be measured as the difference between the energy of the
Dirac cone and the energy of the valence band edge ∆E = ED − ETMDC,val. The work
function of graphene changes approximately linear [80, 165] with a small quadratic
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(a) (b)

(c)

Figure 4.8: Rippling in compressively strained graphene: (a)-(b) Side view of
relaxed graphene/MoS2 heterostructure with (a) medium strain (ε = −2.9%)
and (b) large strain (ε = −6.64%). (c) Angled view of graphene layer from (b)
without MoS2.
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Table 4.3: Extrapolated zero-strain band offsets ∆E0
material,F and deformation

potential αmaterial for graphene-based heterostructures involving all investigated
materials. The fix points F are: valence band edge for the semiconducting
TMDCs, conduction band edge of the surface state remnant for the topological
insulators (TIs), the upper band edge of the states (at Γ) near the Fermi level for
NbSe2.

MoS2 WS2 MoSe2 WSe2 Bi2Te3 Bi2Se3 NbSe2
∆E0

material,F[meV] 1365 1027 680 290 396 671 -109
αmaterial [meV/%] -74 -79 -78 -89 -52 -50 -35

correction [145] (see Fig. 4.9(a)). For compressive strain, the work function shrinks,
while for tensile strain it grows. The slope of this change in work function as determined
by Ref. [145] (αWF,ref ≈ 86meV

% ), nicely aligns with the one we find (αWF ≈ 89meV
% )

from fitting the data of our DFT calculations in Fig. 4.9(a). As the band offsets are
in part determined by the work functions of the two layers, this approximately linear
change in work function translates to an approximately linear change in band offsets for
graphene-based heterostructures. We witness this result in all of our calculations. When
plotting strain against the band offsets for an array of different heterostructure supercells
of the same material combination, we see a clear correlation (see Fig. 4.9(b)-(d)). Fitting
it with a linear fit gives us two values: the estimated zero-strain band offset between
the graphene Dirac cone and some fixpoint F in the substrate band structure ∆E0

material,F
and the deformation potential αmaterial. Both depend on the material that graphene is
proximitized with (substrate), while ∆E0

material,F additionally depends on our choice of
the fixpoint F (e.g. valence band edge) in the substrate band structure. We list a table of
the offsets and deformation potentials in Tab. 4.3. We see that, while the work function
change fully translates into a band offset change for graphene/WSe2 heterostructures
(αWF ≈ αWSe2), for most heterostructures αWF constitutes an upper limit to the band
offset change. As the vicinity of the Dirac cone to the substrate’s bands (and therefore
also the band offset) is crucial for the acquired proximity SOC, there is the need for a
method, which can eliminate this error. Luckily, in DFT we can easily correct for these
strain-induced changes in band offset by applying an electric field perpendicular to the
heterostructure, as it will be presented in the next subsection.

4.5.2 Control knobs

In the following, we present certain control knobs within DFT that can be used in order
to combat the problems induced by the strain. Also, potential problems that might go
along with these solutions are discussed.
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Figure 4.9: (a) Work function of graphene for different strains (blue dots repre-
sent DFT calculations, green curve is the linear fit and red curve is the quadratic
fit). (b)-(d) Strain-dependent band offsets for different graphene-based het-
erostructures (dots represent DFT data, lines are linear fits): (b) graphene/MoS2,
(c) graphene/Bi2Se3, (d) graphene/NbSe2. Adjacent pictograms illustrate the
way the band offsets are measured. In (b) the slope of the curve is positive,
because the band offsets are measured as positive, if the Dirac cone is positioned
under the conduction band edge. In (b) and (c) we additionally indicate the twist
angles for each data point in order to demonstrate that the twist angle has no
significant influence on the offsets. Also in (b) and (c) we additionally show the
band offsets after correction through the electric field in green.
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External electric field

One of the problems induced by the strain in graphene is the change in band offsets due
to the strain-dependent work function of graphene. These band offsets can be adjusted
using an external electric field perpendicular to the 2D plane of the heterostructure (z-
direction). This electric field can be realized in DFT by adding an artificial sawtooth
potential to the exchange-correlation potential. The potential rises along the z-direction
with a constant slope equal to the strength of the electric field over the heterostructure
and rapidly drops in the vacuum region. As long as it is ensured that the overlap between
the heterostructure’s wave function and the region of the dropping potential is minimized,
this method can be used to effectively introduce an electric field. The main effect of the
electric field is the adjustment of the band offsets — the two layers of the heterostructure
are set to different potentials and therefore we can correct the band offsets between the
layers by tinkering with the electric field. However, the side effect of this approach is that
the layers themselves are also subject to the electric field and therefore their electronic
structures are altered as well. Thin layers like graphene exhibit a very small effect, e.g.
even the strongest fields used in our calculations would produce a Rashba SOC of only
λR = 60µeV [166, 31]. Thick layers, on the other hand, can feel more drastic changes,
e.g. the surface states of 8 quintuple layers of the TI Bi2Te3 will split by 6.5 meV per
1mV

nm [167]. However, as we are mainly interested in proximity effects and these are short
ranged, the relevant parts of the substrate are the ones close to the graphene layer. For
the example of Bi2Te3, this means: since the graphene can only interact with the nearby
surface state anyways, the splitting between the surface state will not be too relevant
for the proximity SOC. Keeping the potential side effects in mind, we can nevertheless
use this method to ensure a consistent band offset for all heterostructure supercells. In
Fig. 4.9(b) and (c), we additionally show the band offsets after the corrections with the
electric field, demonstrating roughly equal band offsets throughout all twist angles.

Atomic relaxation

The heterostructure supercells constructed in Sec. 4.1 are idealized structures. This
means, although we used sensible structural parameters taken either from other DFT
calculations or experimental studies, there can be forces on the atoms due to induced
strain or the influence of the layers on each other. In order to minimize these forces,
one can perform relaxation calculations within DFT. In these calculations forces on the
atoms are calculated and small changes in the atomic positions are made accordingly.
Then, forces are calculated again and the process repeats until all the forces on the atoms
are below a certain threshold. This procedure is very commonly used (see Tab. 4.4)
and can lead to more realistic results. However, as discussed prior, excessive strain in
graphene will lead to massive rippling of the graphene. Assuming zero strain, allowing
for a relaxation of the heterostructure supercell will incorporate subtle effects of the twist
angle on the electronic structure through atomic reconstruction (this can in principle
also affect the SOC, but probably to a rather small degree [163, 67]). However, in
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reference Naimer [163] PEF [105] Naimer [66] Zollner [67] Gmitra [14]
code QE QE&W2k QE QE QE

materials MoS2, MoSe2, MoS2, NbSe2 MoS2, MoSe2, MoS2, MoSe2,
WS2, WSe2 WS2 WS2, WSe2 WS2, WSe2,

MoTe2, WTe2
Ntwist 8 2 13 11 1

relaxation sample yes sample yes yes
interlayer distance 3.3Å - 3.3Å - -
max. strain |εmax | 10% 3.11% 5% 2.5% 7.8%
strain distribution on GR on GR on GR on GR on both
E-field corrections yes no no no no

lateral shift yes yes no no yes
reference Hou [168] Lee [64] Pezo [169] Di Felice [170] Wang [143]

code VASP VASP SIESTA Fireball VASP
materials PdS2, PtS2 WSe2 WSe2, MoTe2 MoS2 MoS2

Ntwist 4 8 7 4 4
relaxation yes yes yes yes yes

interlayer distance - - - - -
max. strain 5.2% 2% 3.55% 5.9% 5.4%

strain distribution on GR on TMDC on TMDC on both on both
E-field corrections no no no no no

lateral shift no no no no no
reference Naimer [44] Song [41] Zollner [171] Jin [172] Popov [173]

code QE VASP QE VASP VASP
materials Bi2Se3, Bi2Se3 Bi2Se3, Sb2Te3 Bi2Se3

Bi2Te3 Bi2Te2Se
Ntwist 9 2 1 1 1

relaxation no yes no yes no
interlayer distance 3.5Å - 3.5Å - 2.2Å-3Å

max. strain 10% 3% 1.06% 1% 2.3%
strain distribution on GR on GR on GR on GR on TI
E-field corrections yes no no no no

lateral shift yes yes no yes no

Table 4.4: Comparison of different DFT studies on graphene-based heterostruc-
tures and their approaches. The first author of the paper is listed under ’reference’.
We list the employed DFT codes (QUANTUM ESPRESSO (QE) [147], Wien2k
(W2k) [174], Vienna ab initio simulation package (VASP) [175], Spanish Ini-
tiative for Electronic Simulations with Thousands of Atoms (SIESTA) [176]
or Fireball [177]). Furthermore, we list the materials they use as substrates for
graphene, the number of investigated twist angles Ntwist, whether the authors
choose to relax the structure (if not, what was set as interlayer distance), how
the strain was distributed among the layers, the maximal strain used |εmax | (if
the strain was distributed between the layers, we nevertheless list the total strain,
as if the strain was only put on one layer), whether band offsets were corrected
by an electric field corrections and whether lateral shifts were considered. The
entry ’sample’ for relaxations means that although the main results come from
unrelaxed structures, relaxation calculations were performed and evaluated for a
few samples.
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situations including rippled graphene, although there might be atomic reconstruction due
to the neighbouring layer, this effect is often overshadowed by the consequences of the
rippling. Consequently, for large strains in graphene, it is more representative of the true
twist-angle physics to skip the relaxation process in order to eliminate this pathway of
strain-related error, although this means simultaneously also eliminating the legitimate
pathways of twist-angle physics through the means of atomic reconstruction. In Fig. 4.7
this is indicated by the fact that the effect of ’strain’ on ’atomic reconstruction’ is depicted
as solid arrow, while the effect of ’twist angle’ on ’atomic reconstruction’ is only depicted
as a dotted arrow.

Interlayer distance

One structural parameter which can be determined during the relaxation process is the
(average) interlayer distance, as the layers can move freely towards each other or away
form each other. Skipping the relaxation process prohibits this natural way of determining
an (average) interlayer distance. Instead, it is usually set using values from literature
or estimated from relaxation calculations on exemplary supercells. However, the main
effect of the interlayer distance is its influence on the general strength of the SOC, while
it hardly effects the weight of the different SOC flavors. The only route by which the
SOC flavour can be tuned is via the slight influence of the interlayer distance on the
band offsets — changing the interlayer distance will change the built-in electric field
of the heterostructure and hence the band offsets, which in turn can influence the SOC.
In experiment, the interlayer distance can be tuned by subjecting the heterostructure to
hydrostatic pressure [136].

Lateral shift

As a final control knob, we want to list the lateral shift between the layers. By shifting
the two layers laterally with respect to each other, different microscopic atomic registries
can be realized. In graphene-based structures the nomenclature usually refers to the
position of nearby atoms with respect to the graphene (’Top’, ’Hollow’ or ’Bridge’
position). The heterostructure supercells we use, however, are usually large enough that
many individual local stacking orders occur. A lateral shift then causes all of these local
stacking orders to change, which on average does not lead to any significant change of
the SOC parameters [13, 163]. However, for very small heterostructures (as in Sec. 6.4
or Refs. [44, 41]) or for homobilayers [164], the effects of lateral shifts on the proximity
SOC can be highly relevant. Examples for different lateral shifts and their effects on the
graphene Dirac cone are given in Fig. 4.10.
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Figure 4.10: Effects of different shiftings on the graphene Dirac cone: (a)
graphene/MoS2 19.1◦ supercell, (b) graphene/TI 13.9◦ supercell, (c) graphene/TI 30◦

supercell. For (a) and (b) the supercells are big enough for averaging, therefore the
small changes to the Dirac cone are given in the form of fitting parameters, whereas for
(c) the changes are clearly visible in the Dirac cone. 53
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4.6 Charge-to-spin conversion efficiencies from
linear response theory

In Chap. 2, we introduced the REE and the UREE as possible mechanisms for charge-spin
interconversion, which can be used in spintronics. In order to give quantified estimates
for the efficiencies of such charge-to-spin (or spin-to-charge) processes, we utilize the
Kubo formula [178, 179] in the Smrcka-Streda decomposition [63, 180, 181]. We first
give a short derivation of the formulas in Subsec. 4.6.1, followed by the application to
the Dirac cone model Hamiltonian in Subsec. 4.6.2. Then, in Subsec. 4.6.3, we describe
the dependence of the efficiencies on the chosen Fermi level and in Subsec. 4.6.4 we
discuss the scaling of the charge-to-spin conversion (CSC) efficiencies with different
(SOC) parameters.

4.6.1 Derivation

The Kubo formula describes the linear response of the system in an observable (A, with
operator Â), when a perturbation, a time-dependent external change in the Hamiltonian
(δĤ = B̂ · f (t)), is added. The change in A can be expressed as

δA =
−i
~

∫ t

t0

dt′
〈[

Â(t), δĤ
]〉

=
−i
~

∫ t

t0

dt′
〈[

Â(t), B̂(t′)
]

f (t′)
〉
, (4.85)

where t0 is the point in time, the perturbation takes action and 〈·〉 is the equilibrium
average with respect to the unperturbed Hamiltonian. The external change δH in the
Hamiltonian consist of an operator B̂ and f (t). The former is needed to form the correlator
between Â and B̂, which ends up as the susceptibility χAB. In the following we will omit
the index B, because we always consider the response to an electric field in x-direction,
and therefore use B̂ = ĵx . The second part ( f (t)) contains the electric field E. In the
setup we are using, we are interested in the spin response (A) of a system to an external
electric field (B). However, using the Onsager relations, the CSC efficiencies we extract
with this setup are the same as the spin-to-charge efficiencies.

In the Smrcka-Streda decomposition [63, 180, 181], the change in A can be expressed
as δA =

[
χI

A + χII
A

]
· E in such a situation. Here E is the strength of the electric field and

χI/II
A are the susceptibilities given by

χI
A =
~

2π

∫
dε
∂ f (ε )
∂ε

Re
(
Tr

(
ÂĜr B̂(Ĝr − Ĝa)

))
, (4.86)

χII
A =
~

2π

∫
dε f (ε )Re

(
Tr

(
ÂĜr B̂

∂Ĝr

∂ε
− Â

∂Ĝr

∂ε
B̂Ĝr )) . (4.87)

Here, f (ε ) is the Fermi-Dirac function, Â and B̂ are the operators corresponding to the
observables A and B, respectively, and Ĝr/a = limγ→∞

1
ε−Ĥ±iγ

is the retarded/advanced
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Green’s function of the system. We use a similar decomposition given by Bonbien et
al. [181], dividing the terms into Fermi sea and Fermi surface terms:

δA =
[
χI

A + χII
A

]
· E =

[
χsurf

A + χsea
A

]
· E with (4.88)

χsurf
A =

~

4π

∫
dε
∂ f (ε )
∂ε

Re
(
Tr

(
Â(Ĝr − Ĝa)B̂(Ĝr − Ĝa)

))
(4.89)

χsea
A =

~

2π

∫
dε f (ε )Re

(
Tr

(
Â(Ĝr − Ĝa)B̂(

∂Ĝr

∂ε
+
∂Ĝa

∂ε
)
))
. (4.90)

Further assuming a constant scattering (given by γ) in the weak disorder limit and using
a Bloch basis for the Hamiltonian, we can rewrite the terms to be more practical for
calculations (for details see App. B):

χsurf
A (k) =

~

π

∑
n,m

γ2Re
(
〈nk| Â |mk〉 〈mk| B̂ |nk〉

)
(
(εF − εnk)2 + γ2

) (
(εF − εmk)2 + γ2

) (4.91)

χsea
A (k) =~

∑
n,m

( f (εnk) − f (εmk))
Im

(
〈nk| Â |mk〉 〈mk| B̂ |nk〉

)
(εnk − εmk)2 , (4.92)

where |nk〉 and εn,k are the eigenstate and eigenenergy of the Hamiltonian H (k) with
band number n at a certain position k in k space, εF is the Fermi energy and γ is the
broadening of the states by scattering. Notice, that χsea

A is now independent of γ as
we have taken the limit γ → 0. While the terms we derived here are the same as
used in Refs. [181, 182, 65], Ref. [64] reintroduces γ to χsea

A as a broadening for the
numerical calculations. χsurf

A and χsea
A are called Fermi surface and Fermi sea term,

respectively. This terminology comes from the fact that the states around the Fermi level
(here (εF − εn/m) is minimal) constitute the main contribution to χsurf

A , while χsea
A only

includes occupied ( f (εn) − f (εm) , 0) states.

4.6.2 Application to the graphene Hamiltonian

The system we aim to describe is graphene with SOC, as described in Sec. 4.3 either by a
full tight binding model or the low-energy model Hamiltonian. Since the only relevant
physics in our system will come from the Dirac cone, we use the low-energy model
Hamiltonian described in Eq. (4.43) as the starting point unperturbed Hamiltonian Ĥ.
Ref. [64] uses the full tight binding Hamiltonian (Eq. (4.42)) arriving at very similar
results, underpinning our assumption that focusing on the Dirac cone is sufficient.

Since the Hamiltonian and therefore the eigenstates are k-dependent, we have to
integrate over the 1st BZ

δA =

∫
d2k
4π2

[
χsurf

A (k) + χsea
A (k)

]
· E (4.93)
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in order to obtain the total response of the system. In our case the integration takes place
over two square grids covering the K and the K′ point. It needs to be large enough to
cover the Dirac cone for the highest used Fermi level and its grid needs to be dense
enough to resolve all relevant physics. We use a 151×151 square grid with a side length
of ∆k = 0.03 1

vF~
≈ 2.5 · 10−3 2π

a , sufficiently fulfilling the two conditions. In Fig. 4.11(b)
we show how a smaller and less dense grid would entail less accurate results. While the
more coarse grid density only results in slight noise, the too small size will lead to a
breakdown of the results at high Fermi levels. This can simply be attributed to the fact
that the outer band leaves the integration grid at higher Fermi levels. For computationally
more demanding situations an adaptive integration region (e.g. a ring covering only
the cut through the Dirac cone) could be applied in order to be computationally more
efficient.

The next question is how the operators Â and B̂ are chosen. In our case we are only
interested in the spin responses due to a charge current. Therefore, without loss of
generality, we set our perturbation as an electric field in x direction, hence

B̂ = ĵx = −ev̂x = −e
1
~

∂H
∂kx

= −evF κσx . (4.94)

And the relevant observables to measure are

Â = ŝx =
~

2
σx (4.95)

Â = ŝy =
~

2
σy (4.96)

Â = B̂ = ĵx = −evF κσx . (4.97)

Eq. (4.95) and Eq. (4.96) give us the collinear and perpendicular spin density responses,
respectively. Eq. (4.97) is used to find the conductivity, which we use to define the
normalized figures of merit

αREE =
vFe
~

δsy
δ jx

=
vFe
~

δsy
σx,x

(4.98)

αUREE =
vFe
~

δsx

δ jx
=

vFe
~

δsx

σx,x
, (4.99)

which we use to quantify the Rashba-Edelstein effect (REE) and the unconventional
REE (UREE), respectively. We will refer to αREE and αUREE as the REE and UREE
efficiencies throughout the thesis.

4.6.3 Fermi energy dependence

Naturally, the efficiencies αREE and αUREE will depend on the Fermi energy EF we set for
the calculations. A typical Fermi level dependence is depicted in Fig. 4.11(a). It shows
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the following features, which are congruent with Refs. [64, 62, 67]:

• The (U)REE signal is antisymmetric with respect to the middle of the Dirac cone
gap. We will therefore in the following describe the signal starting from the gap
and moving (either up or down) in energy to EF → ±∞.

• Within the gap there is a residual signal.

• At the onset of the first band we usually see an initial peak of the signal, due to a
certain flatness of this first band.

• After this initial peak, it follows a plateau that stretches until the Fermi energy
hits the second band. In this plateau δsx/y and δ jx grow at the same rate, as both
depend linearly on the k-radius at which the Fermi energy cuts the Dirac cone.

• As soon as both bands contribute to the signal, δsx/y will stay constant, since the
additional contribution from the first and second band cancel out. Because δ jx
continuous to increase, the (U)REE signal α(U)REE vanishes for EF → ±∞.

In order to assign a general (U)REE efficiency, independent of the Fermi level, to a
system, one might follow different approaches:

• One could use the Fermi level as determined by the DFT calculations. However,
this Fermi level can depend on details of the DFT calculation. Furthermore, the
Fermi level can be tuned in experiment. Hence, we argue that this approach is the
least sensible.

• As the Fermi level can be tuned in experiment, another option is to use the Fermi
energy, which yields the maximal (U)REE signal α(U)REE. However, with this
approach, the height of the initial peak will prevail as the only relevant measure,
ignoring the size of the plateau. Experimental realization of this peak (U)REE
efficiency would require fine tuning of the Fermi level more precise than the meV
range. Moreover, as Fig. 4.11(b) shows, the height of the peak depends heavily on
the disorder parameter γ, further complicating the analysis in this approach.

• The last approach is averaging α(U)REE over a certain range of EF . As long as this
range is chosen in a sensible manner, covering the region where the (U)REE signal
constitutes a relevant contribution, this approach presents the most reasonable
solution.

We choose to use the last approach and average over a certain range of EF throughout the
entirety of the thesis. In Fig. 4.11 we compare the last two approaches, indicating them
with ’max. REE’ and ’avg. REE’, respectively. If not mentioned otherwise, we use the
range from EF = 0 meV to EF = 12 meV. Hence, if the Rashba angle is Φ = 0, a negative
REE efficiency is always expected. Similarly, for a positive Rashba angle 0 < Φ < 180 a
positive UREE is expected.
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(d)
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Figure 4.11: (a) Example of a graphene Dirac cone modelled by the model Hamiltonian
Eq. (4.43) and the Fermi energy dependence of its subsequent CSC efficiencies for REE and
UREE. The model Hamiltonian parameters are Φ = −24◦, ∆ = −0.018 meV, λKM = 0.067 meV,
λVZ = 0.366 meV and λR = 1.726 meV. (b) Fermi energy dependence of REE efficiency
for different scenarios: standard parameters as given in the main text (black line), standard
parameters with reduced γ = 0.01 meV (instead of γ = 0.1 meV) (red), standard parameters
with smaller (side length reduced by 20%) and less dense (101×101 instead of 151×151)
square grid used for integration (green line). The model Hamiltonian parameters are chosen as
Φ = ∆ = λKM = 0, λVZ = 0.667 meV and λR = 2 meV. (c) (U)REE efficiencies (using maximal
value or averaging over Fermi energies) for varying Φ. Other model Hamiltonian parameters
are chosen as ∆ = λKM = 0, λVZ = 1 meV and λR = 3 meV. (d) and (e) show the maximal (d)
and Fermi-energy averaged (e) REE efficiency for increasing λVZ for different values of λR. (f)
shows the averaged REE efficiencies for increasing λR for different values of λVZ. For (d)-(f) all
other model Hamiltonian parameters are zero.
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4.6.4 Scaling with different parameters

In the following, we will examine, how different parameters affect the CSC efficiencies.
After briefly discussing the role of the averaged scattering rate γ, we explain how the
actual SOC parameters λR (Rashba SOC), λVZ (valley-Zeeman SOC) and Φ (Rashba
angle) translate into CSC efficiencies. We do not explicitly discuss the effects of the
parameters λKM (Kane-Mele SOC) and ∆ (staggered potential), as they are very close to
zero for most of our fitting results from the DFT calculations.

The role of γ

Contrary to the Fermi sea term χsea
A , the Fermi surface term χsurf

A inherently scales with
the averaged scattering γ. However, the quantities we extract (spin accumulation δsx/y
and induced charge density δ jx) both exclusively show contributions by Fermi surface
terms. Therefore, in the CSC efficiencies α(U)REE =

vF e
~

δsx/y
δ jx

the γ dependencies of the
two terms cancel out and hence α(U)REE does not scale with γ. Nevertheless, there are
effects of the choice of γ that can be witnessed (see Fig. 4.11(b)). The first consequence of
adding a finite broadening γ is the attenuation of the initial peak before the plateau in the
Fermi-level dependence. Additionally, the broadening aids in smoothing the irregularities
of the Fermi-energy dependence arising from using k space grids with finite density.

Rashba SOC λR

The Rashba SOC λR is responsible for the in-plane spin texture. Therefore, if we set
λR = 0, the CSC efficiencies automatically vanish. If we introduce finite λR to an
otherwise unmodified Dirac cone (all other parameters zero), the valence and conduction
bands both split into two bands with opposite spin textures, creating the plateaus in the
Fermi-energy dependence. The (U)REE efficiencies scale roughly linear with λR, because
the energy split of the bands (i.e. the length of the plateau) scales linear with λR, while
the plateau’s height stays constant. The tail towards higher Fermi energies, however,
distorts this picture, especially for small λR. The scaling can be seen in Fig. 4.11(f) for
different values of λVZ.

Valley-Zeeman SOC λVZ

Although the driving force of (U)REE is the Rashba SOC λR, the valley-Zeeman SOC
λVZ also plays a role, albeit a more subtle one. On one hand, the addition of a finite
λVZ reduces the in-plane spin expectation values of the Dirac cone bands by inducing
out-of-plane ones, thereby reducing the (U)REE efficiencies. On the other hand, the
λVZ can bring about more flat bands, creating the initial peak at the onset of the bands.
Fig. 4.11(d) and (e) show this ambiguity. If only the maximum value of the (U)REE
efficiencies is tracked (Fig. 4.11(d)), a certain amount of λVZ can be beneficial for the
(U)REE. However, plotting the more relevant observable, namely (U)REE efficiencies
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averaged over a certain range of EF (Fig. 4.11(e)), it is revealed that λVZ is detrimental
to the (U)REE.

Rashba angle Φ

The effect of the Rashba angle is rather simple. Assuming all other parameters to be fixed
at any value, increasing the Rashba angle from Φ = 0◦ to Φ = 360◦ simply rotates the
in-plane spin texture once. In this fashion, one can alternate between REE and UREE,

without impacting the total magnitude αtot =

√
α2

REE + α2
UREE. As (according to our

definition) we have the case of pure REE forΦ = 0, we can write the CSC efficiencies [68]
as

αREE = ∓αtot cos(Φ) (4.100)
αUREE = ±αtot sin(Φ), (4.101)

where the ± indicates, whether the valence (EF < 0) or conduction bands (EF > 0) are
examined. Fig. 4.11(c) shows this simple sine-cosine behaviour.
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5 Twist-angle dependent proximity
spin-orbit coupling in
heterostructures of graphene
and semiconducting TMDCs

The most frequently employed materials for inducing spin-orbit coupling (SOC) in
graphene are certainly transition-metal dichalcogenides (TMDCs). There are plenty of
theoretical works using both tight binding models [19, 20, 21, 183, 184] and DFT [163,
13, 14, 169, 67, 64] in order to investigate the proximity SOC in such systems. Ex-
perimental studies confirm many of the proposed properties: The general notion of
enhanced graphene SOC in graphene/TMDC heterostructures has been thoroughly
confirmed [185, 40, 186, 187, 188, 51, 189, 190, 191, 54, 136, 192, 137, 193, 194].
Beyond that, the different proposed applications layed out in Chap. 2 have been wit-
nessed in heterostructures of graphene and TMDCs. This includes giant spin-relaxation
anisotropy [51, 49, 50], the spin field-effect transistor proposal [57, 56], and conventional
and unconventional charge-to-spin conversion (CSC) [72, 193, 194, 137]. However, there
are only few experiments explicitly specifying the twist angle [137]. While tight binding
calculations can easily incorporate the twist angle in a continuous way, in DFT studies a
set of commensurate heterostructure supercells needs to be constructed. Although there
are a few references using this approach [143, 168, 170], it is only recently that there has
been an effort to systematically use this procedure in order to extract SOC parameters
depending on the twist angle [163, 67, 169, 64].

Most studies focus on semiconducting TMDCs (e.g. WSe2). These materials are
especially relevant, since the graphene Dirac cone will reside within the band gap of
the semiconducting TMDC, as demonstrated by many studies (e.g. [14, 163, 67, 170,
143]). This does not only guarantee that the Dirac cone is clearly visible and that its
nature is preserved and not distorted by excessive hybridization. It also provides easy
access for studying the effects of proximity SOC on transport through the graphene.
As heterostructures of graphene and semiconducting TMDCs additionally provide an
excellent platform for studying optical phenomena, there are plenty of studies exploring
this side of their nature [105, 101, 195, 104], further providing us with a large expertise
to draw from.

This chapter is based on Ref. [163] and is structured as follows. First, in Sec. 5.1,
we introduce the twisted supercells, which were used. After this, we discuss the band
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graphene and semiconducting TMDCs

structures of the different twisted supercells and their features as calculated by DFT
in Sec. 5.2. In Sec. 5.3 the extracted SOC parameters and especially their twist-angle
dependences are presented. The subsequent CSC efficiencies are shown in Sec. 5.4.

5.1 Twisted supercells
In this chapter we discuss heterostructures of graphene and the semiconducting TMDCs
WSe2, WS2, MoSe2 and MoS2. The structures of the separate graphene and TMDC
monolayers were already shown in Fig. 3.1 and Fig. 3.2, respectively. Their structural
parameters are listed in Tab. 5.1. In order to evaluate the twist-angle dependence of

Table 5.1: Unstrained geometries of the primitive unit cells of graphene and the
four selected semiconducting TMDCs, as determined by relaxation calculations
in Ref. [88]. Note that in our calculations, the structure of the TMDCs stay
unchanged, while the graphene layers are strained by a margin ε listed in Tab. 5.2
to ensure commensurability in the supercell setup.

Graphene MoS2 WS2 MoSe2 WSe2

a[Å] 2.46 3.185 3.18 3.319 3.319
dXX[Å] - 3.138 3.145 3.357 3.364

the proximity SOC of the heterostructure within DFT, we need to construct an array of
different heterostructure supercells with different twist angles. In Sec. 4.1, we discuss
in detail, how such supercells can be generated. In this scheme each heterostructure
supercell is defined by two pairs of integers for the two layers of the heterostructure
((n,m) for graphene and (n′,m′) for TMDC). The lattice vectors of a supercell defined by
the pair of integers (n,m) are linear combinations of that layers primitive lattice vectors
a1 and a2, such that:

aS,1
(n,m) = n · a1 + m · a2 (5.1)

aS,2
(n,m) = −m · a1 + (n + m) · a2. (5.2)

As discussed in Sec. 4.1, we can assign a twist angle Θ to the combined heterostruc-
ture:

Θ = Θ(n,m) − Θ(n′,m′) = arctan*
,

√
3m

2n + m
+
-
− arctan*

,

√
3m′

2n′ + m′
+
-
. (5.3)

Note that this notation differs by the one in Eq. (4.29) by a minus sign. The sizes of
the k-grids, employed in the DFT calculations are given in Tab. 4.2. In Subsec. 4.4.4,
we argue that due to the symmetries of the systems, it is sufficient to use supercells
within a range of Θ = 0◦ to Θ = 30◦ (see Fig. 4.6), since the properties of all other twist
angles can be deduced from the symmetry relations given in Eq. (4.69) to Eq. (4.74).
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5.1 Twisted supercells

(b) 19.1°(a) 0° (c) 30°

C

metal

chalcogen

(d) side view

Figure 5.1: (a)-(c) Bottom view of three graphene/TMDC heterostructure super-
cells with the twist angles |Θ| = 0°,19.1°,30°. (d) Side view of the 0° unit cell.
The interlayer distance was chosen to be d = 3.3 Å and the chalcogen-chalcogen
distance dXX can be found in Tab. 5.1.

We note that in these relations the only parameter susceptible to a change of the sign in
the twist angle is the Rashba angle Φ. Since the Rashba angle was not the focus of this
investigation (Ref. [163]), we did not pay attention to use supercells with uniform signs
of the twist angle. Therefore, we mostly only list the absolute value |Θ| of the twist angle.
As discussed in Sec. 4.5, the construction of commensurate periodic heterostructure
supercells for DFT typically leads to strain, which needs to be applied in either of the
layers. We put all strain on graphene, as it is more resilient to strain [79, 80, 144, 145, 146].
Hence, in all cases the TMDCs remain unstrained. Tab. 5.2 shows all heterostructure
supercells used in the calculations. In Sec. 4.5 we argued that for investigations with high-
strain cases, it is sensible to skip atomic relaxation. Because the strain in the evaluated
structures (up to ε = 10%) is very high, we in do not relax our structures. Although the
lateral shift does apparently not influence the extracted parameters for large supercells in
a relevant way (see Subsec. 4.5.2), we adhere to the following convention for the lateral
shift of the two layers: In the corner of our supercells a carbon atom of graphene will
always sit directly beneath a metal atom of the TMDC. Fig. 5.1 shows the heterostructure
supercells for few exemplary twist angles.
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5 Twist-angle dependent proximity spin-orbit coupling in heterostructures of
graphene and semiconducting TMDCs

Table 5.2: Structural information of the investigated heterostructure supercells
of graphene and semiconducting TMDCs. For each supercell we list the su-
percell attributes (n,m) of graphene and (n′,m′) of the TMDC. Additionally,
we list the absolute value of the twist angle |Θ|, the strain εTMDC in graphene
(depending on the specific choice of TMDC) and the number of atoms (Nat) in
the heterostructure supercell. In the cases, where the strain is written in grey,
the supercells were not investigated for this specific material. These supercells
usually either had too much built-in strain or entailed computational difficulties
(e.g., convergence problems) and are listed only for completeness. The sizes of
the k-grids employed in the DFT calculations of the supercells can be found in
Tab. 4.2

|Θ| (n,m) (n′,m′) εMoS2 εWS2 εMoSe2 εWSe2 Nat
[°] [%] [%] [%] [%]
0.0 (4,0) (3,0) -2.9 -3.05 1.19 1.19 59
0.0 (0,5) (0,4) 3.58 3.41 7.93 7.93 98
5.2 (3,1) (2,1) -4.99 -5.14 -1.0 -1.0 47
6.6 (3,2) (2,2) 2.89 2.73 7.22 7.22 74
9.5 (3,2) (3,1) 7.1 6.93 11.6 11.6 77
10.9 (2,1) (1,1) -15.24 -15.37 -11.67 -11.67 23
13.9 (3,1) (3,0) 7.73 7.56 12.26 12.26 53
13.9 (0,4) (1,3) 16.7 16.52 21.61 21.61 71
13.9 (5,0) (3,1) -6.64 -6.78 -2.71 -2.71 89
19.1 (2,1) (2,0) -2.13 -2.28 1.99 1.99 26
22.7 (3,2) (1,3) 7.1 6.93 11.6 11.6 77
23.4 (3,2) (3,0) -10.89 -11.03 -7.14 -7.14 65
27.0 (3,1) (1,2) -4.99 -5.14 -1.0 -1.0 47
30.0 (2,0) (1,1) 12.13 11.95 16.84 16.84 17
30.0 (5,0) (2,2) -10.3 -10.44 -6.53 -6.53 86

5.2 Band structures

Performing DFT calculations (see Sec. 4.2) on these heterostructure supercells provides
us with their corresponding band structures. In Fig. 5.2 we show some examples with
different twist angles and for the four different TMDCs. The backfolding rules of an
(n,m) supercell (see Eq. (4.27)) hold true for both the graphene layer and the TMDC
layer. However, the backfolding of the TMDC is of little interest for us. The much more
relevant backfolding occurs for the graphene: If

n − m = 0 + 3 · p, with p ∈ Z (5.4)

and consequently both K and K′ (of the primitive 1st Brillouin zone (BZ)) fold back to
the Γ point, an extraction of the SOC parameters is hampered. Concretely, the sign of the
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Figure 5.2: Band structures along high symmetry lines for selected
graphene/TMDC supercells as calculated by DFT. For each of the four semicon-
ducting TMDCs, we show the band structures of supercells with three different
angles: |Θ| = 0°,19.1°,30°, as indicated. The grey dots stem from TMDC
orbitals, while the solid lines come from graphene states. The dotted lines show
the graphene bands without the electric field corrections. Note that band folding
effects change the positions of the TMDC valence band maxima and conduction
band minima in k space. Nevertheless, the global TMDC band gap stays intact.
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5 Twist-angle dependent proximity spin-orbit coupling in heterostructures of
graphene and semiconducting TMDCs

valley-Zeeman SOC λVZ cannot be determined as it is opposite at K and K′. Therefore,
we constructed the supercells in Tab. 5.2 in a way that

n − m = 1 + 3 · p (5.5)
or n − m = 2 + 3 · p. (5.6)

In the former case K simply folds back to K , whereas in the latter case K folds back to
K′ (and vice versa). Therefore it is crucial for us to know, which of the two cases applies,
in order to correctly determine the sign of λVZ.

30°

19.1°

0°
5.2°

27°

zero-strain offset 
0.546 eV

-0.5

0

0.5

1

1.5

2

b
a
n
d
 o
ff
se

t 
E

C
[e

V
]

0°
13.9°

-10 -5 0 5 10 15
strain [%]

zero-strain offset 0.978 eV10.9°

23.4°

27° 0°

19.1°

6.6°
30°

5.2°

-0.5

0

0.5

1

1.5

2

2.5

3

-10 -5 0 5 10 15

b
a
n
d
 o
ff
se

t 
E

C
[e

V
]

strain [%]

0°

13.9°

TMDC conduction

Dirac
cone

TMDC valence

EC

EV

5.2°

27°

0°

19.1°

6.6° 22.7°

9.5°
13.9°

zero-strain offset
0.238 eV

30°

13.9°

30°

-1

-0.5

0

0.5

1

1.5

2

b
a
n
d
 o
ff
se

t 
E

C
[e

V
] DFT without correction

DFT with correction
linear fit

13.9°

0°

-10 -5 0 5 10 15
strain [%]

10.9°

23.4°

30°

5.2° 19.1°

22.7°

13.9°

30°

6.6°
0°

27°

9.5°

zero-strain offset 
0.673 eV

-0.5

0

0.5

1

1.5

2

2.5
b
a
n
d
 o
ff
se

t 
E

C
[e

V
]

13.9°

0°

-10 -5 0 5 10 15
strain [%]

(a)

(c)

(b)

(d)

(e)

Figure 5.3: Strain induced band offsets and correcting for the strain. For all
investigated supercells of graphene with (a) MoS2, (b) MoSe2, (c) WS2 and (d)
WSe2 monolayers we plot the band offsets EC of the Dirac cone with respect to
conduction band against the strain ε on graphene; ε > 0 indicates tensile strain
while ε < 0 indicates compressive strain. Every data point (red dots) is annotated
with the twist angle of the corresponding supercell. From the linear fit (red line)
we extract the (apparent) zero-strain band offsets (empty red circles) which can
be found in Tab. 4.3. Green circles show the band offsets after the correction by
electric field, employed to compensate the influence of strain (see Sec. 4.5.2).
We excluded supercells with strains above 10% or below -10% and supercells
with negative band offsets (EC < 0) from the linear fit. The illustration in (e)
portrays how EC and EV are defined.

In Sec. 4.5.1 we already showed that the graphene work function increases linearly
with strain (see Fig. 4.9(a)). As a consequence, the band offset between graphene and the
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5.3 Extracted SOC parameters

TMDCs changes linearly with strain as well (see Fig. 5.3). We define the band offsets as
the energy difference between the Dirac cone energy and the valence (EV ) or conduction
band edge (EC) as Fig. 5.3(e) shows. Hence, adding EV and EC will always yield the
TMDC band gap, i.e. EC + EV = Egap. Using a linear fit, we give an estimate for the
zero-strain band offsets, i.e. the band offsets we expect for unstrained graphene. For the
parameters extracted from the fit (zero-strain band offsets and deformation potentials)
see Tab. 4.3. Because the strain of the supercells used in this chapter can be up to 10%,
we then use an electric field to counteract this effect and bring the band offsets of all
supercells to the zero-strain band offset (see Sec. 4.5). The graphene Dirac cone resides
within the TMDC band gap for most of our calculations, i.e. EV > 0 and EC > 0.
Although there are high-strain cases where the Dirac cone resides within the conduction
or valence bands (without band offset corrections), the Dirac cone will be pushed inside
the TMDC band gap by the band offset corrections through the external electric field. The
Dirac cone can hence be easily extracted. Fig. 5.4 shows zooms of the band structures
near the Dirac cone. We find that the Dirac cones are highly isotropic and that the bands
can be fitted using the effective model Hamiltonian (Eq. (4.43)) with high precision. In
the next section, we discuss these fitting parameters.

5.3 Extracted SOC parameters

The key question we try to answer is, how the twist angle Θ between the layers affects
the proximity SOC in the graphene. By plotting the SOC fitting parameters of all
heterostructure supercells against their twist angle, we can now give a reasonable answer
from a DFT perspective on this question. This sort of plot is shown in Fig. 5.5, for
the calculations without band offset corrections in (a) and for the ones with band offset
corrections in (b). Data points with excessive strain of |ε | > 10% can be considered
as heavily distorted (see Sec. 4.5), but are nevertheless plotted in a de-emphasized
way (transparent, light color) for completeness. For supercells, where the band offset
corrections were not possible, because excessive electric fields would have been needed,
distorting the TMDC band structure too much, data points are excluded completely
for both the corrected and uncorrected plots. The fitting parameters ∆ and λKM are
omitted, because they are negligibly small for most supercells. We performed additional
calculations on relaxed structures (see Ref. [163]), showing that (in accordance with e.g.
Ref. [14]) ∆ and λKM are non-zero for the relaxed structures. The overall values for both
λR and λVZ are comparable to values from other DFT calculations [14, 67, 64].

5.3.1 Angle dependence of λR and λVZ

The main results – the angle dependence of λR and λVZ – can be seen in Fig. 5.5 and
are summarized in Tab. 5.3 and Tab. 5.4. Let us focus first on the results with corrected
band offsets (Fig. 5.5(b)). The valley-Zeeman SOC λVZ vanishes for Θ = 30◦; here
the system has a pure Rashba SOC. The reason for this is that the Dirac cone couples
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Figure 5.4: Zoom to the Dirac band structures with proximity SOC at the K
point (after band offset corrections). The shown results are from all four used
semiconducting TMDCs and for heterostructure supercells with different angles
|Θ| = 0°, 19.1°, and 30°. The dots represent the DFT data, while the solid
line represent the effective model Hamiltonian fit (see Eq. (4.43)). The color
codes show spin-z expectation values and go from 〈sz〉 = −0.5 (spin down; blue)
over 〈sz〉 = 0 (unpolarized; grey) to 〈sz〉 = 0.5 (spin up; red). The extracted
parameters can be found in Tab. 5.4. In the last row we show the in-plane
spin texture of the spin-up (red arrows) and spin-down (blue arrows) valence
bands of the graphene/MoSe2 supercells. The k-path (dotted line) goes along a
circular path around the K point. We also present the extracted Rashba angle Φ,
measuring the uniform deviation of the spin texture from tangential.
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5.3 Extracted SOC parameters

with a point in the TMDC 1st BZ (see Subsec. 4.4.4), which lies in the middle of its K
and K′ point. Therefore, it does not show spin splitting and in consequence does also
not transfer any proximity valley-Zeeman SOC. Apart from this very general fact of
the matter, the λVZ shows a very different angle dependence in heterostructures with
Mo-based and W-based TMDCs. For the Mo-based structures, we see the following
behaviour. For small twist angles 0◦ ≤ Θ ≤ 15◦ the values of λVZ stay at an intermediate
level. After this, a relatively sharp peak at about Θ ≈ 20◦ arises, which is then followed
by a rapid decline toward λVZ = 0 at Θ = 30◦. This behaviour is very much in line with
the predictions of the tight binding model of Ref. [19], where the peak is explained by
the fact that the Dirac cone couples with the Q-valley of the TMDCs through interlayer
interaction. The W-based structures on the other hand show a different behaviour. Their
maximum value of λVZ can be found at Θ = 0◦, with an almost monotonous decrease,
which is only interrupted by a very small peak at about Θ ≈ 15◦ (WS2) or Θ ≈ 20◦

(WSe2). In general it can be said that the values of both λVZ and λR are on average much
higher for the W-based heterostructures. This is a natural consequence of the fact that W
has a higher atomic number than Mo and therefore exhibits more SOC.

The Rashba SOC λR has a more subtle angle dependence. For most cases it tends
to be stronger in the middle of the 0◦ ≤ Θ ≤ 30◦ range, than at Θ = 0◦ or Θ = 30◦.
There seems to be a maximum at Θ ≈ 25◦ followed by a sharp drop toward Θ = 30◦ for
the W-based structures. However, as these are rather small features, the variance of the
λR is lower than the one of λVZ. Another parameter which can be extracted from the
Dirac cones is the Rashba angle Φ, whose main role it is to determine the angle between
applied voltage and induced spin density in the (unconventional) Rashba-Edelstein effect
((U)REE). We extracted Φ only for a few heterostructures discussed in this chapter (see
Fig. 5.5(c)). However, the picture is nevertheless congruent with more detailed DFT
calculations [67, 64] and experiment [137]. It follows the symmetry rules Eq. (4.84), i.e.
Φ = 0◦ (or Φ = 180◦) at both Θ = 0◦ and Θ = 30◦. The data point at Θ = 180◦ has to
be regarded as less reliable, as it exhibits very high strain and has a very small supercell
making it prone to effects by lateral shifting. In between Θ = 0◦ and Θ = 30◦, there is a
rather small (|Φ| ≤ 50◦) deviation from the Φ = 0◦ case. This however contradicts the
findings of Ref. [21], which predicts much higher values of Φ and for some parameters
even Φ = ±90◦, promising a realization of a pure UREE with purely collinear CSC.

5.3.2 Gauging the effects of strain and the effectiveness of
the approach

Comparing the SOC parameters before (Fig. 5.5(a)) and after (Fig. 5.5(b)) the band offset
corrections via electric field can give valuable insights into the effectiveness of these
corrections. We can see that some features can be observed in both versions, e.g. the peak
of λVZ at Θ = 19.1◦ for MoS2 or the disappearance of λVZ for Θ = 30◦. Also, the subtle
structure of the Rashba SOC is not strongly influenced. However, in the uncorrected
version we see more drastic fluctuations including some serious outlier data points (e.g.
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Figure 5.5: Twist-angle dependence of the SOC parameters. Both (a) and
(b) show λR (red squares) and λVZ (blue dots) as function of the twist angle.
The uncorrected SOC parameters are shown in (a), while (b) shows the SOC
parameters after the band offset corrections with an external electric field. We
de-emphasize (transparent, light red/blue) data points from supercells with
excessive built-in strain of |ε | > 10%, deeming them less reliable. The dotted
line is a guide for the eyes. (c) Rashba angle Φ for a few twist angles. The
data around Θ = 30◦ is depicted as dotted point and line as this data point is
rather unreliable due to high strain and small supercell size. Dotted horizontal
lines mark Φ = 0◦ and Φ = 180◦, both showing purely tangential in-plane spin
texture. (d) Evolution of the SOC parameters λR and λVZ of the 19.1◦ MoS2
supercell for increasing band offset EC to the conduction band.
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5.3 Extracted SOC parameters

Θ = 6.6◦ for WSe2), delivering an overall much less clear picture. The example of the
peak in λVZ at Θ = 19.1◦ nicely illustrates these outliers and how they can be adjusted
using the band offset corrections. For the uncorrected band offsets, this peak is much
more prevalent; compared to the value at Θ = 0◦ an increase by the factor 3 can be noted
as compared to the factor 1.5 for the corrected case. The reason for this is, that in the
uncorrected band structure for the Θ = 19.1◦ supercell the Dirac cone is very close in
energy to the conduction band (EC = 75 meV). Although this is also the case for example
for the Θ = 0◦ supercell (EC = 4 meV), the relevant measure is the distance to the
nearest bands interacting with the Dirac cone through the generalized Umklapp process
in the first order (see Sec. 4.4). This distance is 500 meV for Θ = 0◦ and only 288 meV
for Θ = 19.1◦. The vicinity to these bands strongly enhances the proximity SOC and
over-emphasizes this peak. Applying the electric field corrects the band offset, decreases
the proximity SOC (see Fig. 5.5(d)) and brings about a more realistic peak structure.

We note that at Θ = 0◦ a situation arises, where two data points (with reasonable strain
|ε | < 10%) have the same twist angle, but different strains. These points can be used to
gauge the error arising due to strain. If the strain was not the source of any error, these two
supercells should always yield the same SOC parameters. From our results we can say
that the extracted SOC parameters are similar, but still apart by some margin. Even for
the cases without band offset corrections the two data points mostly seems to fit very well
except for λR in the case of MoSe2. Here the two data points deviate from their average
value by ±26%. For the corrected cases, the worst matching data point pairs are λVZ for
MoS2 and WS2, deviating by ±14% and ±10%, respectively. This showcases again that,
although the overall accuracy of the calculations (as measured by the matching of these
two data points) is not drastically improved by the band offset corrections, especially
outlier data points can be readjusted to more reasonable values.

5.3.3 Comparison with literature

As the proximity SOC in heterostructures of semiconducting TMDCs and graphene are
of great interest to the scientific community, there are several other references explicitly
studying the twist-angle dependence as well. In this subsection, we will place our results
in the context of varying other publications, using different approaches. This includes tight
binding calculations [19, 20, 21] (Fig. 5.6(a) and (b)), other DFT calculations [67, 64]
(Fig. 5.6(c) and (d)) and finally experiment [137] (Fig. 5.6(e)). Fig. 5.6(a) and (b) show
results from Ref. [19] and Ref. [21], respectively, both of which use a very similar tight
binding approach. However, the subtle differences of their approaches and employed
parameters apparently lead to relevant differences of the outcome. One prominent feature,
which both exhibit is the peak of λVZ at Θ ≈ 20◦ for graphene/MoS2, which shows up in
our calculations of the Mo-based heterostructures as well. The twist-angle dependence of
λR of our calculations decently matches the one of Ref. [19] (Fig. 5.6(a)) for most cases.
A feature appearing solely in Ref. [21] (Fig. 5.6(b)) is the sign change of λVZ, which is
at odds with our results. Regarding the Rashba angle Φ, both tight binding references
predict sufficiently higher values of Φ, with Ref. [20] (Fig. 5.6(b)) even predicting a swap
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Figure 5.6: Overview of proximity SOC parameters from different references. Ref. [19] (a)
and Ref. [21] (b) employed tight binding models. Ref. [67] (c) and Ref. [64] (d) employed DFT.
In (e) we show experimental results from Ref. [137]. The Rashba angles from (a) are drawn
from private communication with the authors of Ref. [19]. All plots were recreated using a
uniform style. There might be inconsistent signs or shifts by 180◦ of the Rashba angle as the
calculations might use different conventions (direction of z-axis, direction of the twist).

72



5.4 Charge-to-spin conversion efficiencies

of the Rashba sign (180◦ shift) from Θ = 0◦ to Θ = 30◦. In our calculations, this sign
swap is only observed, if the less reliable Θ = 30◦ is taken into account.

Fig. 5.6(c) and (d) show results from Ref [67] and Ref. [64], respectively, both of
which use a DFT approach. Results of Ref. [169] are not discussed here, as their results
are heavily dependent on the strain, complicating any possible comparison. Details of
the DFT approaches can be found in Tab. 4.4. The results of the DFT-based calculations
are much more congruent with our results. The peak of λVZ for the Mo-based structures,
the declining λVZ for the W-based structures and the subtle dependence of λR with a
small bump at Θ ≈ 15◦ are all reproduced. Although the exact twist-angle dependence of
Φ is differing, the general magnitude of Φ and the presence of sign changes are also in
agreement with both DFT references. The decent consensus between the calculations is
remarkable as the strain on graphene, which is allowed in Refs. [67, 64] is significantly
smaller than the ones allowed in our calculations.

The only experimental reference explicitly plotting proximity SOC parameters against
the twist angle Θ is Ref. [137]. The twist-angle dependence of the Rashba angle Φ in
graphene/WSe2 heterostructures (which is the only SOC parameters they discuss) is
generally compatible with the DFT results (especially of Refs. [67, 64]). The magnitude
of Φ (up to |Φ| = 70◦) seems to represent a middle ground between the DFT (up to
|Φ| = 50◦) and the tight binding predictions (up to |Φ| = 180◦). Possible reasons for this
are plentiful and include for example the notoriously incorrect bands gaps of the DFT
calculations as well as incorrect band offsets.

5.4 Charge-to-spin conversion efficiencies
In Sec. 4.6 we introduced a scheme by which we can calculate CSC efficiencies (REE
and UREE) of graphene-based systems based on the fitting parameters from the model
Hamiltonian Eq. (4.43) within linear response theory. We can now use the extracted
parameters from the band offset corrected calculations of heterostructures of graphene
and the semiconducting TMDCs (see Tab. 5.4 and Fig. 5.5(b)) in order to give such
estimates for the discussed heterostructures. Due to the fact that we did not extract the
Rashba angle Φ for all calculations, we cannot differentiate between REE and UREE
efficiencies for all twist angles. Therefore, we only give the total CSC efficiency defined

as αtot =

√
α2

REE + α2
UREE.

The twist-angle dependencies of this quantity are plotted in Fig. 5.7. It paints a clear
picture: The curves for all four materials (MoS2, MoSe2, WS2 and WSe2) follow for the
most part the curves of the Rashba SOC (see Fig. 5.5). All deviation from these forms
can be readily explained by the detrimental effects of adding valley-Zeeman SOC (as
can be seen in Fig. 4.11(e)). An example of this is the following: the maximal Rashba
SOC λR of the graphene/WSe2 heterostructure can be found at Θ = 19.1◦. However, the
maximal CSC efficiency αtot is located at Θ = 27◦, which can be explained by the lower
value of the valley-Zeeman SOC λVZ for this twist angle.
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2

2

2

2

Figure 5.7: CSC efficiencies of graphene proximitized by MoS2, MoSe2, WS2
and WSe2 as determined by the Kubo formula approach from Sec. 4.6. Because
of a lack of data for the Rashba angle Φ, we show only the total CSC efficiency

αtot =

√
α2

REE + α2
UREE.

5.5 Summary
We constructed several twisted supercells of heterostructures of graphene with semicon-
ducting TMDCs MoS2, MoSe2, WS2 and WSe2 and performed DFT calculations on them.
Their strain-dependent band offsets were corrected by using a transverse electric field and
the apparent zero-strain band offsets were extracted. Fitting the low energy Dirac states
of the resulting band structures to a model Hamiltonian yielded relevant SOC parameters
ranging in the meV range consistent with other calculations. The twist-angle dependence
of these parameters was examined and parallels to existing literature were drawn. Most
notably, we found valley-Zeeman SOC peaking at Θ ≈ 20◦ (for Mo-based structures) and
vanishing at Θ = 30◦, which was also predicted by tight binding calculations [19]. We
evaluated the Rashba angle for some twist angles, finding a small deviation from Φ = 0◦

of up to |Φ| = 50◦ with varying sign and without a clear structure. For all systems, we
found the twist-angle dependencies to be in accordance with more refined, computation-
ally more expensive calculations with less strain [67]. This indicates the effectiveness
of our measures mitigating the effects of strain presented in Sec. 4.5. Furthermore, we
used the extracted model Hamiltonian parameters to calculate CSC efficiencies within
linear response theory. The results of these calculations nicely illustrate how the Rashba
SOC translates to CSC, with a small attenuating effect of the valley-Zeeman SOC. Exper-
imental evidence of the effects of the twist angle are scarce, as the twist angle is seldomly
determined in experimental setups. However, the experimental results of Ref. [137] seem
to somewhat align with the theoretical predictions.
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5.5 Summary

Table 5.3: Model Hamiltonian parameters (staggered potential ∆, Kane-Mele SOC λKM,
valley-Zeeman SOC λVZ and Rashba SOC λR) extracted from the band structure calculations
(without band offset corrections) for all used heterostructure supercells. We additionally list
band offsets EV and EC of the Dirac cone with respect to the valence and conduction band,
respectively. The parameters for the calculations with band offset corrections can be found in
Tab. 5.4.

|Θ| ε ∆ λKM λVZ λR EV EC

[°] [%] [meV] [meV] [meV] [meV] [eV] [eV]
MoS2

0 -2.9 0.014 0.000 0.346 0.085 1.598 0.004
0 3.58 -0.005 -0.003 0.405 0.043 1.066 0.533

5.2 -4.99 0.022 -0.001 0.456 0.165 1.773 -0.169
6.6 2.89 0.054 0.000 0.341 0.104 1.118 0.482
9.5 7.1 0.023 0.000 0.225 0.139 0.838 0.761

13.9 7.73 0.017 -0.001 0.120 0.168 0.809 0.791
13.9 16.7 0.037 0.000 -0.270 0.265 0.377 1.230
13.9 -6.64 0.124 -0.023 8.730 1.251 1.828 -0.222
19.1 -2.13 0.023 -0.003 1.227 0.241 1.532 0.075
22.7 7.1 -0.005 0.000 -0.040 0.047 0.859 0.745
27 -4.99 -0.004 0.001 0.458 0.531 1.773 -0.168
30 12.13 0.000 0.000 0.000 0.075 0.596 1.009
30 -10.3 0.000 -0.062 0.000 1.774 1.868 -0.418

WS2
0 -3.05 0.021 -0.000 1.094 0.154 1.248 0.325
0 3.41 -0.097 0.004 1.197 0.077 0.717 0.853

5.2 -5.14 0.000 -0.002 1.150 0.287 1.459 0.114
13.9 7.56 0.866 -0.004 -0.072 0.386 0.463 1.110
19.1 -2.28 0.004 -0.006 1.310 0.526 1.185 0.389
27 -5.14 -0.052 0.001 0.607 0.959 1.459 0.116
30 11.95 0.000 0.004 0.000 0.214 0.237 1.327

MoSe2
0 1.19 0.034 0.001 0.417 0.425 0.535 0.817
0 7.93 -0.625 0.005 0.276 0.717 0.098 1.252

5.2 -1 0.024 0.000 0.412 0.368 0.708 0.645
6.6 7.22 0.069 0.003 -0.026 0.834 0.142 1.209
9.5 11.6 0.038 -0.019 -1.080 1.380 -0.051 1.386

10.9 -11.67 0.244 0.137 4.769 1.011 1.719 -0.363
13.9 12.26 0.029 -0.035 -0.958 1.621 -0.069 1.433
13.9 -2.71 0.024 -0.001 0.695 0.227 0.850 0.503
19.1 1.99 -0.015 0.000 0.873 0.573 0.496 0.856
22.7 11.6 -0.013 0.001 -0.028 0.881 -0.026 1.370
23.4 -7.14 -0.002 0.002 -0.211 0.253 1.284 0.071
27 -1 -0.012 0.001 0.306 0.446 0.721 0.633
30 16.84 0.000 0.005 0.000 0.509 -0.178 1.544
30 -6.53 0.000 -0.004 0.000 0.213 1.224 0.131

WSe2
0 1.19 0.042 0.002 1.649 0.671 0.186 1.081
0 7.93 0.219 0.009 1.528 0.671 -0.018 1.282

5.2 -1 0.034 0.001 1.494 0.675 0.360 0.907
6.6 7.22 0.090 0.004 -0.165 1.219 -0.164 1.429

10.9 -11.67 0.014 -0.013 3.198 1.051 1.417 -0.147
13.9 -2.71 0.023 -0.002 1.614 0.642 0.504 0.764
19.1 1.99 0.009 0.005 0.636 1.051 0.138 1.123
23.4 -7.14 -0.004 -0.002 0.643 0.911 0.943 0.326
27 -1 0.000 0.002 0.345 0.868 0.375 0.894
30 16.84 0.001 0.018 -0.001 0.198 -0.349 1.633
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Table 5.4: Model Hamiltonian parameters (staggered potential ∆, Kane-Mele SOC λKM,
valley-Zeeman SOC λVZ and Rashba SOC λR) extracted from the band structure calculations
(with band offset corrections) for all used heterostructure supercells. We additionally list band
offsets EV and EC of the Dirac cone with respect to the valence and conduction band, respectively
and the electric field used in the band offset corrections. The parameters for the calculations
without band offset corrections can be found in Tab. 5.3.

|Θ| ε E-field ∆ λKM λVZ λR EV EC

[°] [%] [V/nm] [meV] [meV] [meV] [meV] [eV] [eV]
MoS2

0 -2.9 1.499 0.009 0.000 0.331 0.081 1.341 0.262
0 3.58 -1.748 0.130 0.002 0.444 0.016 1.358 0.236

5.2 -4.99 - - - - - - -
6.6 2.89 -1.301 0.032 0.000 0.384 0.111 1.334 0.264
9.5 7.1 -2.962 0.026 -0.001 0.357 0.146 1.322 0.262

13.9 7.73 -3.183 0.010 -0.001 0.292 0.165 1.331 0.258
13.9 16.7 -6.154 -0.327 0.001 0.175 0.157 1.381 0.256
13.9 -6.64 - - - - - - -
19.1 -2.13 1.107 0.031 -0.005 0.597 0.159 1.336 0.258
22.7 7.1 -2.564 -0.004 0.000 0.052 0.092 1.242 0.315
27 -4.99 - - - - - - -
30 12.13 -6.582 0.059 0.002 0.000 0.057 1.359 0.235
30 -10.3 - - - - - - -

WS2
0 -3.05 0.951 0.014 -0.002 1.070 0.168 1.082 0.492
0 3.41 -1.969 -0.047 0.004 1.316 0.024 1.053 0.514

5.2 -5.14 2.234 0.008 -0.001 1.011 0.233 1.056 0.518
13.9 7.56 -3.416 -0.263 -0.002 0.396 0.309 1.035 0.531
19.1 -2.28 0.662 0.005 -0.005 0.942 0.454 1.067 0.507
27 -5.14 2.195 0.010 0.001 0.170 0.559 1.073 0.503
30 11.95 -4.973 -0.001 0.004 0.000 0.069 1.067 0.504

MoSe2
0 1.19 -0.863 0.017 0.001 0.403 0.370 0.673 0.679
0 7.93 -3.754 0.101 0.003 0.460 0.358 0.667 0.678

5.2 -1 0.209 0.016 0.000 0.413 0.378 0.674 0.679
6.6 7.22 -3.453 -0.006 0.001 0.310 0.466 0.672 0.676
9.5 11.6 -5.101 0.038 0.000 0.239 0.555 0.687 0.657

10.9 -11.67 - - - - - - -
13.9 12.26 -5.150 -0.051 0.002 0.283 0.676 0.675 0.672
13.9 -2.71 1.080 -0.016 -0.001 0.625 0.269 0.676 0.677
19.1 1.99 -1.048 0.000 -0.001 0.871 0.490 0.655 0.678
22.7 11.6 -4.958 0.033 0.000 0.360 0.411 0.696 0.655
23.4 -7.14 - - - - - - -
27 -1 0.288 -0.012 0.000 0.313 0.465 0.677 0.677
30 16.84 -6.515 -0.236 0.003 0.000 0.121 0.675 0.655
30 -6.53 - - - - - - -

WSe2
0 1.19 -0.636 0.056 0.001 1.634 0.621 0.289 0.978
0 7.93 -3.445 0.084 0.003 1.725 0.445 0.286 0.977

5.2 -1 0.449 0.033 0.001 1.490 0.703 0.291 0.977
6.6 7.22 -3.137 0.073 0.001 1.051 0.740 0.285 0.979

13.9 -2.71 1.327 -0.022 -0.000 1.388 0.709 0.290 0.978
19.1 1.99 -0.920 0.014 0.001 0.835 0.950 0.294 0.974
23.4 -7.14 3.085 0.000 0.000 0.588 0.906 0.427 0.783
27 -1 0.555 0.000 0.003 0.326 0.892 0.294 0.975
30 16.84 -6.065 0.003 0.009 0.000 0.225 0.313 0.90176



6 Twist-angle dependent proximity
spin-orbit coupling in
heterostructures of graphene
and topological insulators

Although the most prevalent materials to be combined with graphene are transition-metal
dichalcogenides (TMDCs), there is another promising class of materials, used to modify
the spin-orbit coupling (SOC) in graphene — three-dimensional topological insulators
(3D TIs). Such materials (like Bi2Se3, Bi2Te3, Bi2Te2Se, Sb2Te3 etc.) [122, 123, 124,
125, 126] are mostly known for their topological surface states. One crucial property
responsible for the band inversion, and therefore the surface states, is the strong SOC
of these materials. This simultaneously makes them ideal candidates for inducing said
SOC in graphene by proximity in graphene/TI heterostructures. Using 3D TIs instead of
TMDCs not only promises stronger proximity SOC [41, 171], it also introduces new and
interesting physics: since the topological surface state of the 3D TI resides on its surface,
it can be expected to hybridize strongly with the graphene layer. The ramifications of
such an interaction are not fully understood yet, but there are signs that it could be the
reason for the Kane-Mele SOC, which has been proposed to occur in commensurate
graphene/TI heterostructures with a 30◦ twist angle [44, 41]. This constitutes a special
case, as usually only a combination of Rashba SOC and valley-Zeeman SOC are induced
by proximity in graphene. Hence, graphene/TI heterostructures might constitute a unique
platform for the quantum spin Hall effect (QSHE) [34, 35] in graphene. The fact that this
effect apparently only occurs at a specific twist angle underlines the necessity for twist
angle resolved studies.

Experimentally, such a commensurate heterostructure can be effectively realized in
’bottom-up’ fabricated samples [140, 42, 139, 196], e.g. by CVD. Using such procedures,
the resulting structures will most likely exhibit a twist angle corresponding to an energet-
ically favourable commensurate supercell. For graphene/TI heterostructures, the most
commonly found twist angles are 0◦ or 30◦ [139, 140]. DFT calculations on graphene/TI
supercells mainly focus on the 30◦ supercell [43, 172, 197, 42, 198, 199, 173, 200]
or the 0◦ supercell [171, 41]. However, many experiments use ’top-down’ fabrica-
tion [201, 197, 202, 203, 200, 204, 205] (e.g. by exfoliation) of heterostructures, resulting
in incommensurate structures, mostly with random twist angle. These intermediate twist
angles are especially relevant as they allow for the emergence of radial components
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of the in-plane spin texture and therefore the unconventional Rashba-Edelstein effect
(UREE).

This chapter is based on Ref. [44] and is structured as follows. First, in Sec. 6.1, we
establish what twisted supercells were used. After this, we discuss the heterostructure
band structures as calculated by DFT in Sec. 6.2. In Sec. 6.3 the extracted SOC parameters
for twist angles 0◦ ≤ Θ / 20◦ are discussed. In Sec. 6.4 the special case of the highly
commensurate 30◦ twist angle case is discussed in great detail. The SOC parameters are
then used as a starting point to calculate charge-to-spin conversion (CSC) efficiencies in
Sec. 6.5.

6.1 Twisted supercells

We now introduce the heterostructures of graphene and 3D TIs Bi2Te3 and Bi2Se3 used
throughout the chapter. The structures of the separate materials were already depicted
in Fig. 3.1 and Fig. 3.3 and their structural parameters are listed in Tab. 6.1. One open
parameter is the thickness of the used TI layer, which is measured in quintuple layers (QL).
For thin TIs, the TI surface state is gaped out by finite size effects and only fully forms
at about 5QL thickness (see Fig: 3.3(c)). As the proximity effects we are investigating
are short ranged, it is reasonable to assume, that increasing the number of QLs is mostly
influencing the proximity effects via the change of the TI surface state. Hence, we
use only 1QL for the cases with 0◦ ≤ Θ / 20◦, where the surface state is mostly not
influencing the graphene band structure according to the rules of the generalized Umklapp
processes (see Sec. 4.4). For the special case of the Θ = 30◦ supercell, where the surface
state directly influences the graphene Dirac cone, we discuss two cases, the 1QL and the
3QL case.

Table 6.1: Lattice constants and atomic constants of unstrained primitive unit
cells of graphene and TIs Bi2Te3 and Bi2Se3, as taken from Ref. [206]. The
structure of the TIs stays unchanged in the graphene/TI supercells we use, while
the graphene layers are strained by the factors ε listed in Tab. 6.2 to ensure
commensurability.

a[Å] c[Å] u[Å] v[Å]
Graphene 2.46 - - -

Bi2Te3 4.386 30.497 0.4000·c 0.2097·c
Bi2Se3 4.143 28.636 0.4008·c 0.2117·c

As in Chap. 5, we use the scheme layed out in Sec. 4.1, in order to create heterostructure
supercells with integer pairs (n,m) (graphene) and (n′,m′) (TI). We define the twist angle
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6.1 Twisted supercells

Table 6.2: Structural information of the investigated graphene/TI heterostruc-
tures. We list the supercell attributes (n,m) (for graphene) and (n′,m′) (for the
TI), the twist angle Θ between the two layers and the strain εTI imposed on the
graphene (depending on the specific choice of TI). Additionally, we list the num-
ber of atoms Nat, which the heterostructure supercell contains for the cases with
1 and 3 QLs of TI. For completeness, we also list strains and Nat corresponding
to supercells, which were not investigated, in grey. These supercells, which were
not investigated, either had too much built-in strain, too many atoms or entailed
computational difficulties (e.g., convergence problems). Additionally, we list
the k-mesh densities of the nk × nk × 1 meshes employed in the self-consistent
calculations.

Θ (n,m) (n′,m′) εBi2Te3 εBi2Se3 Nat Nat nk nk
[°] [%] [%] (1QL) (3QL) (1QL) (3QL)
0.0 ( 0 2 ) ( 0 1 ) -10.85 -15.79 13 23 15 -
0.0 ( 0 5 ) ( 0 3 ) 6.98 1.05 95 185 6 -
4.3 ( 2 3 ) ( 1 2 ) 8.22 2.22 73 143 9 3
4.7 ( 4 3 ) ( 2 2 ) 1.54 -4.09 134 254 3 -
8.9 ( 1 5 ) ( 0 3 ) -3.93 -9.26 107 197 3 -

10.9 ( 2 1 ) ( 1 1 ) 16.72 10.25 29 95 15 9
13.9 ( 1 3 ) ( 0 2 ) -1.1 -6.58 46 86 15 9
16.1 ( 3 1 ) ( 1 1 ) -14.35 -19.1 41 71 15 -
17.5 ( 3 2 ) ( 1 2 ) 8.22 2.22 73 143 9 -
19.1 ( 4 0 ) ( 2 1 ) 17.93 11.4 67 137 12 -
19.1 ( 5 0 ) ( 2 1 ) -5.66 -10.88 85 155 6 -
19.1 ( 2 4 ) ( 0 3 ) 1.08 -4.52 101 191 3 -
20.8 ( 4 3 ) ( 1 3 ) 5.68 -0.17 139 269 3 -
21.1 ( 5 1 ) ( 2 2 ) 10.93 4.78 122 242 3 -
21.8 ( 4 2 ) ( 1 2 ) -10.85 -15.79 91 161 6 -
30.0 ( 1 1 ) ( 0 1 ) 2.94 -2.77 11 21 45 45
30.0 ( 7 0 ) ( 2 2 ) -11.77 -16.66 158 278 3 -
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Figure 6.1: (a) Side view of the 13.9◦ unit cell with indicated interlayer distance
d, atomic constants u and v and out-of-plane lattice constant c. The upper two
QLs are depicted as transparent, since for the most part only the first QL is
used in our calculations. (b)-(d) Bottom view of the graphene/TI heterostructure
supercells with twist angles Θ = 0◦,13.9◦, and 30◦, respectively. (e) Correcting
the strain induced band offset changes: For all investigated supercells of graphene
and 1QL of Bi2Te3 and Bi2Se3, we plot band offsets ∆E of the Dirac cone
with respect to the TI surface state remnant (see inset) against the strain ε on
graphene. Each data point (red solid circles) is annotated with the twist angle of
the corresponding supercell. From a linear fit (red line) we extract the (apparent)
zero-strain band offsets (empty red circles). The green circles show band offsets
after the electric field corrections.

of a supercell as:

Θ = Θ(n′,m′) − Θ(n,m) = arctan*
,

√
3m′

2n′ + m′
+
-
− arctan*

,

√
3m

2n + m
+
-
. (6.1)

In the creation of the commensurate supercells a strain ε is inevitably induced in one
of the layers. As in chapter. 5, this strain is fully put on the graphene layer, due to
its resilience towards strain [79, 80, 144, 145, 146]. As this strain can be very high
(|ε | = 10%), we do not relax the structure, as argued in Sec. 4.5. We use a fixed interlayer
distance of d = 3.5 Å. For a list of all heterostructure supercells see Tab. 6.2, and for
depictions of examples see Fig. 6.1.
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6.2 Band structures

6.2 Band structures
Performing DFT calculations provides us with band structures of all twisted heterostruc-
ture supercells, examples of which can be found in Fig. 6.2 (for the 1QL case only). It
additionally shows the zooms to the Dirac cones and their in-plane spin textures. The first
notable feature is that at Γ, the TI bands (grey dots) do indeed not exhibit a fully formed
surface state, but rather the remnant of a surface state, i.e. a surface state with a large gap
induced by finite size effects. Let us first analyze the band structure of the twist-angle
range 0◦ ≤ Θ / 20◦. Here, the graphene Dirac cone always resides at the K point of
the supercell’s 1st Brillouin zone (BZ), as we again do not allow for heterostructure
supercells with backfolding to Γ. Energetically, the Dirac cone neither resides within the
gap of the surface state, nor within the TI bulk band gap. Nevertheless, it is locally within
a band gap, i.e. there are no TI states close in energy folded back on top of it. Hence,
there is no strong hybridization with the TI states, rather proximity effects comparable to
those in graphene/TMDC heterostructures. For the Θ = 30◦ case, the situation is different.
Here, the Dirac cones of K and K′ both fold back to Γ forming an eight-band Dirac cone,
which sits somewhere above the TI surface state (for the 1QL case: in an energy gap
between the surface state and bulk bands; in the 3QL case: between two bulk bands). The
consequences of this for the proximity SOC will be discussed in detail in Sec. 6.4.

We define a band offset between the TI’s and the graphene’s band structure as the energy
difference between the Dirac cone and the ’conduction band’ minimum of the TI surface
state remnant (see inset in Fig. 6.1(e)). Note that, in the heterostructure this ’conduction
band’ is technically no longer the conduction band, as the Fermi level rises due to charge
transfer effects from the graphene, hence the quotes. As discussed in Subsec. 4.5.1, the
strain ε has a major influence on the band offset in the heterostructure. Hence we use
(in the same fashion as in Chap. 5) an electric field to counteract this effect. Fig. 6.1(e)
shows the corrected band offsets as green dots. They are aimed towards representing the
zero-strain offsets (as extracted from the linear fits), which are ∆E = 396 meV for Bi2Te3
and ∆E = 671 meV for Bi2Se3.
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Figure 6.2: DFT band structures of graphene/TI heterostructures using Bi2Te3
(first column) and Bi2Se3 (second column), and for three different selected
twisting angles Θ = 0°,13.9°,30°. On the left of each panel we show the band
structures along high symmetry lines. Here, TI orbitals are shown in grey, while
the solid (dashed) lines come from graphene states with (without) the electric
field corrections. The Fermi energy EF used in the scale is taken from the cases
without electric field correction. In addition to that, zooms to the (electric-field
corrected) Dirac cone (with color coded spin-z) and their in-plane spin-textures
are shown. In the former, dots indicate DFT data, while solid lines represent
the fits from the model Hamiltonian (Eq. (4.43)). In the latter, red (blue) arrows
indicate in-plane spin in the energetically lower (higher) valence band. Since
for the Θ = 30° cases the band structure comprises eighth bands, we show two
plots: one with red and orange arrows for the energetically lower pair of valence
bands and one with blue and light-blue arrows for the energetically higher pair of
valence bands. In this case, the conduction bands show the same structure. We
extract the Rashba angle Φ for all, but the Θ = 30° case. Note that the zoomed
band structures of the Θ = 30° cases use an enlarged k window (by a factor of 3
for Bi2Se3 and 15 for Bi2Te3).
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6.3 Extracted SOC parameters 0◦ ≤ Θ / 20◦

In the following, the extracted SOC parameters with band offset corrections (see Fig. 6.3
and Tab. 6.4) for the twist-angle range 0◦ ≤ Θ / 20◦ are discussed. In this range, the
interlayer interaction (see Sec. 4.4) connects the Dirac cone almost exclusively to bulk
states. Furthermore, the Dirac cone is always located locally within a band gap (after
electric field corrections). Hence, the SOC is both in magnitude and flavor akin to the
SOC in graphene/TMDC heterostructures (see Chap. 5). This means that both λKM and
∆ are negligibly small, leaving Rashba and valley-Zeeman SOC as dominating SOC
parameters.

Fig. 6.3(b) and (c) show parameters λR, λVZ and Φ as function of the twist angle. The
first notable feature is the sign switch of λVZ at Θ ≈ 10◦ for both Bi2Te3 and Bi2Se3.
Actually, this change of sign does not only appear when sweeping the twist angle Θ, but
also when sweeping the strain ε , as illustrated by Fig. 6.3(a). It shows the TI’s 1st BZ and
– for each heterostructure supercell – the k point, with which the Dirac cone interacts and
inherits its SOC from. As discussed in Sec. 4.4, the location of this point depends on both
the twist angle and the strain. As each point is color coded with the sign of λVZ extracted
from this supercell, one can easily see a sign switch at high positive strains ε ≈ 10%
(for Bi2Te3) or ε ≈ 5% (for Bi2Se3) for twist angles 10◦ / Θ / 25◦. The magnitude of
the Rashba SOC λR starts with intermediate magnitude at Θ = 0◦ and then is very weak
for 5◦ / Θ / 20◦. Only for the data point Θ = 21.1◦ of the Bi2Se2 based structures, a
sharp rise in λR is witnessed. This is the same data point, where also a sharp sign change
of λVZ occurs. Both of these irregularities are likely related to the vicinity of its ’point
of interaction’ to the surface state (see the green line in Fig. 6.3(a)). We additionally
find that the Rashba angle Φ is significantly more susceptible to the twist angle than it
is the case for graphene/TMDC heterostructures (see Chap. 5 and Chap. 7). For small
twist angles 0◦ < Θ / 15◦, Φ increases slowly, only to then rapidly rise up to values of
Φ ≈ 400◦. This means that almost all values 0◦ ≤ Φ ≤ 360◦ (or 180◦ ≤ Φ ≤ 540◦) can
be realized by adjusting the twist angle Θ. Hence, in principle both REE and UREE can
be readily realized in graphene/TI systems. We discuss the ramifications on those CSC
effects in Sec. 6.5.
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Figure 6.3: Extracted SOC parameters of the graphene Dirac cone in
graphene/Bi2Te3 and graphene/Bi2Se3 heterostructures with electric field cor-
rections. (a) shows the TI BZ and the annular sector (as in Fig. 4.5) in which
interlayer interaction of the Dirac cone can take place for a given range of twist
angle (0◦ ≤ Θ ≤ 30◦) and strain (−10% ≤ ε ≤ 10%). For each heterostructure
supercell, the filled circle indicates the region in which the Dirac cone couples to
the TI Bloch states. Blue (red) circles correspond to supercells, where positive
(negative) valley-Zeeman SOC was extracted. The green circle represents the
Γ point as well as the 30◦ supercell connecting to it. The green line indicates
the cut of the (band offset corrected) Dirac cone energy through the surface
state remnant. The dotted line connects the relevant points with ascending twist
angle in the same order as the guide to the eyes in (b) and (c). (b) shows Rashba
SOC λR (red squares) and valley-Zeeman SOC λVZ (blue circles) as function of
the twist angle Θ. Data points from supercells with excessive built-in strain of
|ε | > 10% are de-emphasized (transparent). The dotted line is a guide for the
eyes. (c) shows the twist-angle dependence of the Rashba angle Φ. Again, data
points with |ε | > 10% are de-emphasized (grey).
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6.4 Extracted SOC parameters 30◦

The combination of a graphene
√

3 ×
√

3 supercell (n = m = 1) and a TI 1 × 1 supercell
(n′ = 0,m′ = 1) results in a supercell with interesting properties. We refer to it as
the Θ = 30◦ supercell, although one can in principle also construct other possible
heterostructure supercells with the same twist angle. However, as these all have either
too high strain or involve too many atoms (resulting in too high computational cost), we
could not use them for extracting SOC parameters. Additionally, this specific highly
commensurate supercell is appearing in experiments [139, 140] utilizing ’bottom-up’
manufacturing of the samples (e.g. CVD). There are three relevant properties by which
this cell differs from the ones discussed in Sec. 6.3.:

1. It is a notably small supercell. As discussed in Sec. 4.5, the lateral shift has almost
no influence on the proximity SOC in heterostructure supercells beyond a certain
size. For this small supercell, however, shifting plays an important role.

2. Since n − m = 0, we find that the K and K′ point of the primitive graphene unit
cell fold back to the Γ point in the supercell’s 1st BZ.

3. Furthermore, the Dirac cone is not only folded back on top of the TI surface states
at the Γ point, but it is also connected to it via interlayer interaction (as discussed
in Sec. 4.4).

In accordance with the first point, we find that the form of the proximitized Dirac cone
varies greatly with the lateral shift between the layers (see Fig. 6.4). We show the results
for three different shiftings ’Hollow’, ’Top’ and ’Bridge’. The ’Hollow’ position is special
as its symmetry demands that all graphene sites experience the same on-site potential.
As a consequence, the eight-band Dirac cone consists of four almost-degenerate band
pairs with only µeV splittings within them. We emphasize that, although these splittings
are very small, they are no numerical artifacts and no symmetry of the system demands
that they are exactly degenerate. However, the on-site potentials, which seem to be the
main driving forces for splitting up these bands, are missing in this case. For all other
shifting situations there are eight well-separated bands (except for the Γ point, where
the degeneracy is demanded by Cramer’s rule). Since the ’Hollow’ shifting is also the
energetically most favourable one, we will only use this configuration from now on.

6.4.1 Distinguishing ’type 1’ and ’type 2’ band pairs

Further analyzing the Dirac cone of this ’Hollow’ case, we find that the almost-degenerate
band pairs fall into either one category. Forward from here, we will call them band pair
of ’type one’ and ’type two’. Our results show that a Dirac cone will always consist of
two band pairs of each type, occurring in an alternating fashion, i.e. the band pairs (going
from energetically low to high) will follow one of two patterns: 1-2-1-2 or 2-1-2-1. It
should be noted that which of these two patterns occurs can be changed for example by
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Figure 6.4: Different laterally shifted supercells for the Θ = 30° case and their
low energy band structures with color coded spin-z. The triangles represent
DFT data. The upwards and downwards pointing triangles represent DFT data
from the almost degenerate band pairs. If the triangles are just touching, the two
bands are degenerate. The lines in (a) come from a fit assuming a four-band
Hamiltonian, while the lines in (b) come from an eighth-band Hamiltonian fit
including different on-site potentials (see Ref. [44]). The lines in (c) are merely
a guide to the eyes.

increasing the thickness of the TI or by applying an external electric field (see Ref. [44]).
But how exactly do ’type one’ and ’type two’ differ? In Fig. 6.5, the differences between
the two types are illustrated. The key differences are:

1. On the one hand, ’type one’ band pairs show barely any out-of-plane spin texture.
The spin-z expectation values of ’type two’ band pairs, on the other hand, show a
strong polarization, which is anisotropic. The bands are most polarized moving
towards the K point, but unpolarized moving towards the M point (see Fig. 6.5(a)
and (d)).

2. The splittings within each band pair is also different for the two types. Although
for both types the splittings are (close to the Dirac cone) on the µeV scale, the
splittings of the ’type one’ band pairs are usually larger by at least one order of
magnitude (see Fig. 6.5(c)).

3. We showed examples of the in-plane spin textures in the last row of plots in Fig. 6.2.
These are also tied to the type of band pair and repeat in an alternating fashion.
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This is especially astonishing as in-plane spin textures caused by usual Rashba
SOC would follow a different sequence (namely 1-2-2-1).

4. The hybridization with the TI states is significantly higher for the ’type one’ bands
(see Fig. 6.5(e)). Furthermore, in relative terms, ’type one’ bands hybridize more
with the surface states (higher s-orbital content) and ’type two’ bands more with TI
states lying deeper in the valence or conduction bands (higher content of p-orbitals
with m j = ±3/2), as shown in Fig. 6.5(b). Therefore, the out-of-plane spin texture
of the ’type two’ bands is akin to those of the deep-lying TI bulk states (Fig. 6.5(f)).
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Figure 6.5: The two types of band pairs of the eight-band Dirac cone forΘ = 30°
for the case of graphene on 1QL Bi2Se3 without electric field correction. (a)
and (b) show the Dirac cone, with color coded spin-z (a) and color coded orbital
decomposition (b). In (b) green dots show TI s-orbital contribution, while yellow
dots show p-orbital contribution with m j = ±3/2. (c) shows the (µeV) splittings
within the band pairs. Plots (d)-(f) are concerned with the properties along a
circular path around the Dirac cone 55 meV above the Dirac point. Here, labels
’K’ and ’M’ indicate whether the k point on the path lies on the Γ-K or Γ-M
connection line, respectively. (d) and (f) show spin-z expectation values of the
Dirac cone and a selected TI bulk states (far inside the TI valence and conduction
band), respectively. (e) shows the contribution of TI orbitals to the Dirac cone
states. Labeling of the bands is energetically ordered, e.g. ’band 1+2’ refers to
the energetically lowest valence band pair.

6.4.2 Spin texture & fitting method

Fitting the 30◦ case Dirac cones is a challenging task, as the spin textures are very unusual.
The out-of-plane spin texture (as also found and discussed in Ref. [41]) is based on a
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µeV splitting and is therefore very elusive. The in-plane spin texture seems to align
in some cases with what might be expected from usual Rashba SOC. However, the
mentioned ordering of the bands (1-2-1-2 instead of 1-2-2-1) is inconsistent with the
model Hamiltonian. Since for Θ = 30◦, symmetry demands both λVZ = 0 and Φ = 0, it
is apparent that these spin textures come from the special highly commensurate shifting-
sensitive nature of the supercell. One can get similar results for both the out-of-plane
and in-plane spin textures by using a full tight binding Hamiltonian (see Eq. (4.42)) and
adding terms taking into account the full real space nature (

√
3 ×
√

3 supercell) of the
heterostructure. This has been done in Ref. [41] and we also used such a Hamiltonian in
the appendix of Ref. [44]. However, none of the models were able to describe the specific
ordering based on the two types of band pairs, but can only describe the spin texture of
one band pair at a time.

As we only use the ’Hollow’ case band structures, we can simplify the task of fitting
by simply using the same four-band model Hamiltonian (see Eq. (4.43)) and ignoring
one band of each band pair. The upside of this approach is that the results are easily
comparable to the ones for cases 0◦ ≤ Θ / 20◦. The downside of this approach is that we
explicitly do not attempt to describe any spins and use only energies for fitting. However,
a comparison of the fitting results for the four-band model Hamiltonian and the eight-band
tight-binding Hamiltonian shows, that the parameters are very much comparable, with
two differences: Firstly, the usual Rashba SOC is replaced by an in-plane Rashba SOC
corresponding to a specific real space arrangement of electric fields. Secondly, there is
an additional Kekule distortion. For details of this, see Ref. [44]. Hence, we choose
this simple model Hamiltonian fit approach, arguing that even though the complicated
spin texture is not represented, some key aspects of the Dirac cone band structure can
nevertheless be captured.

6.4.3 Extracted model parameters

General remarks

In the following, we will analyse the results of the fitting. Firstly, since the heterostructure
supercell in question has a twist angle of Θ = 30◦, symmetry rules (see Subsec. 4.4.4)
demand λVZ = 0. Furthermore, as we are concerned with the ’Hollow’ case, all graphene
atoms experience the same on-site potential, therefore we find ∆ = 0 as well. More
surprisingly, we do find a very substantial amount of Kane-Mele SOC (in accordance
with Ref. [41]). Hence, the only two non-zero parameters are λR and λKM, which both
appear in the meV scale. According to Ref. [19], Kane-Mele SOC is not allowed in
incommensurate structures. Although all heterostructure supercells discussed in this
thesis are commensurate, a non-negligible λKM does not occur in any other structure
except this one. The reason for this might either be its special highly-commensurate
structure or its connection to the TI surface state. The former seems plausible, as it is
the incommensurability, which prohibits λKM in the tight binding calculations. However,
this proposition is somewhat discredited by the fact that one of the Θ = 30◦ cases of
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the graphene/TMDC structures (see Chap. 5) has a similar size and does not show any
relevant λKM. Furthermore, apart from this one case, there is no correlation between
supercell size and λKM in any of the data. The latter proposition (connection of Dirac
cone and TI surface state) is also reasonable, especially as the Kane-Mele SOC is very
sensitive to the position of the Dirac cone within the TI surface state (remnant), as will be
discussed in the following.

Electric field dependence

As discussed previously, for the Θ = 30◦ case, the Dirac cone folds back on top of the TI
surface state and interacts with it directly through interlayer interaction (see Sec. 4.4).
Consequently, both the concrete form of the surface state and its relative position (band
offset) to the Dirac cone will have a much more pronounced impact on the proximity
SOC than for the cases with 0◦ ≤ Θ / 20◦. While the form of the surface state is changed
by the thickness of the TI slab, the band offset can be varied by applying an external
transverse electric field. Therefore, we investigated the electric field dependence of the
SOC parameters for two TI slab thicknesses (1QL and 3QL) for the Θ = 30◦ case. In
order to analyze further, which TI bands provide the proximity SOC to the Dirac cone,
we additionally provide an orbital analysis of both the Dirac cone and the TI bands.

Fig. 6.6 shows the SOC parameters and orbital composition of the Dirac cone states,
while shifting it in energy through the TI band structure within the range marked in black.
We find that, when the Dirac cone approaches one of the TI bands, the total SOC becomes
larger, with both SOC parameters reaching up to 20 meV. A very remarkable feature is
the change of sign for λKM, which occurs during the energetic shifting. This behaviour
can be observed in three out of the four scenarios. In experiment the band offset can be
easily tuned by gating. Such a gate control of the Kane-Mele SOC opens up tremendous
opportunities for spintronics, as the surface states of the QSHE can be activated at will.
Furthermore, one could even engineer edge states within a graphene sheet between two
regions of opposite sign of λKM.

Analyzing the orbital decomposition (see Fig. 6.6, ’orbital decomposition’), we find
that, unsurprisingly, the general overlap with TI states (black curve ’TI content’) of the
Dirac cone states increases, when the Dirac cone is moved in close vicinity to a nearby
TI state. This ’TI-content’ of the Dirac states mostly consists of TI p-orbitals (≈ 90%)
and to a lesser degree of TI s-orbitals (≈ 10%, dark-green curve). We see, that this
s-orbital content increases, when moving the Dirac cone towards the surface state in
most cases. d-orbital contribution is negligible. The p-orbitals can further be split into
those with m j = ±1/2 and m j = ±3/2. This distinction is similar to the distinction
between pz-orbitals (corresponding to m j = ±1/2) and px/y-orbitals (corresponding to
m j = ±3/2) for the spinless case. We find that a decent amount (≈ 20%, orange curve) of
the p-orbitals have m j = ±3/2. This percentage is surprisingly high, considering that the
Dirac cone consists of pz orbitals and that the states with high m j = ±3/2 content are not
energetically close. When the Dirac cone is brought close to nearby TI states, however, it
acquires more of their m j = ±1/2 character, lowering the orange curve. In conclusion, the
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(a) 1QL Bi2Te3

(d) 3QL Bi2Se3 (c) 3QL Bi2Te3 

(b) 1QL Bi2Se3

Figure 6.6: Electric field dependence of the SOC parameters for the 30◦ case:
The four panels show the four cases (1QL or 3QL; Bi2Te3 or Bi2Se3). The left
plot in each panel shows the TI band structure around the Γ point. The projection
of each state onto the TI s-orbitals are depicted as green dots and the projection
onto p-orbitals with m j = ±3/2 as yellow dots. The graphene Dirac cone is
shifted (within the energy range depicted as black bar) using an electric field in
the corresponding graphene/TI heterostructure. We show the development of the
SOC parameters (top right of the panel) and the orbital decomposition (bottom
right of the panel) of the Dirac cone states during this shifting. For the orbital
composition, we use states along the high symmetry path around K and average
over a k range of 0.04 1

Å
(for Bi2Te3) or 0.004 1

Å
(for Bi2Se3). For the 1QL cases

(a) and (b) the horizontal dotted lines indicate the position of the Dirac cone
in the electric field corrected band structure (zero-strain band offset). Hence,
the parameters at this line correspond to the zooms in the last line of plots in
Fig. 6.2. In the ’orbital decomposition’ plot, the black curves show the content
of TI-orbitals in the Dirac cone states. The dark-green curve shows, how much
of those contributing TI states are TI s-orbitals. The yellow curve shows, how
much of the contributing TI p-orbitals have quantum number m j = ±3/2.
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orbital composition of the proximitized Dirac cone suggests that the Dirac cone draws its
proximity SOC from the nearby TI states (e.g. surface state, dominated by s-orbitals and
p-orbitals with m j = ±1/2) to a lesser degree than expected. Rather, it hybridized very
well with the more deep-lying TI states (more than 2 eV away, dominated by p-orbitals
with m j = ±3/2).

6.5 Charge-to-spin conversion efficiencies
The Rashba angles depicted in Fig. 6.3(c) show a great tunability and are hence very
promising for realizing UREE in graphene/TI heterostructures. Therefore, we will in the
following analyze the CSC (REE and UREE) efficiencies of our heterostructure supercells
as determined by linear response theory (see Sec. 4.6). As model Hamiltonian parameters
we use the SOC parameters after electric field correction (see Fig. 6.3 and Tab. 5.4).
Fig. 6.7 shows the REE and UREE efficiencies as function of the twist angle Θ for the
angle range 0◦ ≤ Θ / 20◦ for graphene proximitized with either Bi2Te3 or Bi2Se3. In the
case of Bi2Te3 one can clearly see that although the rising Φ promises great UREE yields,
these are very much diminished, as at the same time λR is dropping, reducing both REE
and UREE efficiencies drastically. While the same things seems to happen in the case of
Bi2Se3 at first, the last data point shows a sign change and sharp increase in total value
of both REE and UREE. The reason for this, as discussed in Sec. 6.3, is probably that it
couples to a k point close to the TI surface state. Overall, it is not possible to discern a
clear trend for these cases.

In the Θ = 30◦ case it is not possible to calculate reliable CSC efficiencies with our
approach, as in our fitting procedure spins were neglected. In principle, one could extract
the energies and matrix elements in Eq. (4.91) and Eq. (4.92) directly from DFT instead
of the model Hamiltonian. However, our code is not designed to do so and we hence
limit ourself to a qualitative argument. The most outstanding property of the CSC in the
Θ = 30◦ systems is that, due to its unusual ordering of the in-plane spin textures of the
bands (1-2-1-2 instead of 1-2-2-1), the (U)REE efficiencies will be symmetric with respect
to the Fermi level. This is in stark contrast to the antisymmetric structure witnessed in
graphene with usual Rashba SOC (see Fig. 4.11(a)). Since the TI surface state shows such
a symmetric structure in the CSC as well, this property is clearly inherited from the TI
surface state. Therefore, one has to call into question the approach of distinguishing CSC
from TI surface states and from proximitized graphene by examining its gate dependence
in graphene/TI heterostructures [204, 205]. Another question which arises is, whether
such structures support a conventional REE, a UREE or a mixture of both. Judging from
the DFT in-plane spin textures (see last row of plots in Fig. 6.2), it appears that only REE
is occurring, as is the case in graphene/TMDC structures with Θ = 30◦.
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(a) Bi2Te3 (b) Bi2Se3

Figure 6.7: Twist-angle dependencies of the REE and UREE efficiencies of
graphene on 1QL Bi2Te3 (a) and 1QL Bi2Se3 (b) for the range 0◦ ≤ Θ / 20◦ as
determined by linear response theory (see Sec. 4.6).

6.6 Summary

We generated an array of twisted graphene/Bi2Se3 and graphene/Bi2Te3 heterostructure
supercells and performed DFT calculations on them, determining their band structure
and especially Dirac cone properties. After band offset corrections with an electric field,
the low energy spectra were fitted to a model Hamiltonian and the resulting extracted
SOC parameters were plotted against the twist angles. Here, a distinction between the
0◦ ≤ Θ / 20◦ twist-angle range and the special highly commensurate Θ = 30◦ case
had to be made. For most cases with 0◦ ≤ Θ / 20◦ the influence of the TI surface
state is very limited. Hence, we observed SOC parameters akin to the ones of the
graphene/TMDC heterostructures, i.e. a combination of Rashba SOC and valley-Zeeman
SOC. A special feature that could be witnessed is the change of sign of λVZ at Θ ≈ 10◦

for both graphene/Bi2Se3 and graphene/Bi2Te3. Another feature is the large tunability of
the Rashba angle Φ. Although this seems promising for realizing UREE, subsequent CSC
calculations utilizing linear response theory suggest that (due to the low overall magnitude
of λR for intermediate twist angles) high values of UREE could only be achieved for
one graphene/Bi2Se3 heterostructure supercell with Θ = 21.1◦. This supercell’s special
properties might arise from the fact that its Dirac cone couples to a point close to the TI
surface state.

For the highly-commensurate case Θ = 30◦, the Dirac cone couples directly to the
TI surface state via interlayer interaction. As this small supercell is very susceptible to
lateral shifting, we use only the low energy and high-symmetry ’Hollow’ case, in order to
simplify the considerations. The eight bands of its Dirac cone form four almost-degenerate
band pairs, which can be categorized into two types differing in spin texture and TI
hybridization. We find that these different band pairs occur in an alternating fashion. This
is especially remarkable as the in-plane spin textures also follow this alternating ordering,
which should result in a CSC symmetric around the Dirac cone energy. Such behaviour
is known rather from TI surface states, all the more demonstrating the hybridization
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between the Dirac cone and the TI surface state. Although its complicated and elusive
spin texture cannot be captured by our model Hamiltonian, we find that fitting it only by
using the energies still gives valuable insight into its nature. That is, most outstandingly,
that it involves Kane-Mele SOC, which opens up the possibility for realizing the QSHE.
Moreover, we find that the sign of this Kane-Mele SOC can be changed by applying a
transverse electric field and therefore changing the band offsets between the TI and the
graphene. This opens up a possible route of engineering the QSHE by controlling the
gate voltage.
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Table 6.3: Parameters extracted from the band structure calculations before
correcting the band offset with an electric field. For both Bi2Te3 and Bi2Se3 and
for all supercells of Tab. 6.2 the twist angle Θ and strain ε are listed alongside
the model Hamiltonian parameters, except if the band offset is too large, shifting
the Dirac cone into the TI bands. Extracted model Hamiltonian (Eq. (4.43)) pa-
rameters are: staggered potential ∆, Kane-Mele SOC λKM, valley-Zeeman SOC
λVZ, magnitude of the Rashba SOC λR and Rashba angle Φ. We additionally
list the band offset ∆E of the Dirac cone with respect to the TI surface band.

Θ ε Φ ∆ λKM λVZ λR ∆E
[◦] [%] [◦] [meV] [meV] [meV] [meV] [eV]

Bi2Te3
0 -10.85 180 2.325 0.698 1.256 1.452 0.972
0 6.98 180 0.002 -0.004 1.934 0.748 -0.015

4.3 8.22 152 0.000 -0.006 2.038 0.512 -0.072
4.7 1.54 146 0.002 -0.003 1.019 0.557 0.141
8.9 -3.93 199 0.418 -0.002 -0.319 0.342 0.458

10.9 16.72 19 -0.067 0.271 13.694 7.140 -0.309
13.9 -1.1 -130 0.010 0.011 -0.464 0.178 0.407
17.5 8.22 -10 0.001 0.154 3.513 2.897 -0.044
19.1 1.08 -42 -0.001 0.024 -0.814 0.980 0.114
19.1 17.93 - - - - - -0.393
19.1 -5.66 - - - - - 0.772
30 2.94 - 0.000 -12.400 0.000 5.089 0.255

Bi2Se3
0 -15.79 180 1.496 0.252 0.726 0.816 1.423
0 1.05 180 0.002 -0.007 1.217 0.901 0.704

4.3 2.22 -178 -0.001 -0.006 1.195 0.621 0.518
4.7 -4.09 190 0.001 -0.005 0.381 0.616 0.831

10.9 10.25 47 -0.049 0.002 3.175 1.024 0.240
13.9 -6.58 -155 0.004 0.007 -0.496 0.623 0.982
17.5 2.22 17 0.080 0.027 -0.552 0.076 0.519
19.1 11.4 47 0.035 0.006 2.304 2.217 0.225
19.1 -4.52 -120 0.005 0.002 -0.917 0.299 0.682
20.8 -0.17 -41 0.001 -0.007 -1.258 0.468 0.524
21.1 4.78 23 0.022 -0.028 0.600 1.680 0.388
30 -2.77 - 0.000 0.517 0.000 1.340 0.754
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Table 6.4: Parameters extracted from the band structure calculations after cor-
recting the band offset with an electric field. For both Bi2Te3 and Bi2Se3 and for
all supercells of Tab. 6.2 the twist angle Θ and strain ε are listed alongside the
model Hamiltonian parameters, except if the band offset is too large, shifting
the Dirac cone into the TI bands. Extracted model Hamiltonian (Eq. (4.43)) pa-
rameters are: staggered potential ∆, Kane-Mele SOC λKM, valley-Zeeman SOC
λVZ, magnitude of the Rashba SOC λR and Rashba angle Φ. We additionally
list the band offset ∆E of the Dirac cone with respect to the TI surface band and
the electric field used to correct the band offsets.
Θ ε E-field Φ ∆ λKM λVZ λR ∆E
[◦] [%] [V/nm] [◦] [meV] [meV] [meV] [meV] [eV]

Bi2Te3
0 -10.85 5.554 180 2.257 0.528 0.786 1.037 0.529
0 6.98 -3.399 180 0.037 -0.022 3.026 2.054 0.510

4.3 8.22 -3.838 181 0.034 -0.024 3.126 1.791 0.471
4.7 1.54 -2.199 171 -1.936 -0.002 1.254 0.852 0.444
8.9 -3.93 0.247 199 -0.001 0.008 0.050 0.438 0.442
10.9 16.72 -6.171 50 0.109 -0.082 9.562 3.574 0.407
13.9 -1.1 -0.145 -133 0.010 0.006 -0.467 0.183 0.418
17.5 8.22 -3.624 54 0.014 -0.028 -1.568 0.531 0.458
19.1 1.08 -2.406 -45 -0.001 0.005 -1.320 0.143 0.114
19.1 17.93 -5.656 59 -0.034 -0.035 8.578 7.467 0.396
19.1 -5.66 1.797 -48 0.007 0.006 -2.720 0.636 0.427
30 2.94 -0.771 - 0.000 -8.413 0.000 2.703 0.324

Bi2Se3
0 -15.79 - - - - - - -
0 1.05 0.074 180 0.003 -0.007 1.204 0.881 0.692

4.3 2.22 -1.36 -175 0.004 -0.010 1.344 0.879 0.695
4.7 -4.09 1.05 -174 -0.001 0.000 0.369 0.447 0.592

10.9 10.25 -4.114 56 0.054 -0.018 5.016 1.554 0.644
13.9 -6.58 2.216 -148 0.003 0.004 -0.331 0.330 0.664
17.5 2.22 -1.354 -150 0.006 -0.017 -1.490 0.281 0.692
19.1 11.4 -3.624 53 0.003 -0.035 3.197 3.146 0.622
19.1 -4.52 -0.098 -124 0.000 0.000 -0.935 0.315 0.706
20.8 -0.17 -1.313 -85 -0.008 -0.031 -2.194 0.819 0.669
21.1 4.78 -2.36 23 -0.005 -0.074 0.844 2.809 0.632
30 -2.77 0.617 - 0.000 0.049 0.000 1.091 0.700
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7 Twist-angle dependent proximity
spin-orbit coupling in
heterostructures of graphene
and NbSe2

In Chap. 5 we already discussed proximity spin-orbit coupling (SOC) in graphene/transition-
metal dichalcogenide (TMDC) heterostructures. There, all employed TMDCs (MoS2,
MoSe2, WS2 and WSe2) were semiconducting. Using the metallic TMDC NbSe2 in-
stead, can bring about new challenges, but also different physics entailing new possible
applications. The most apparent feature of NbSe2 is its superconductivity [109, 110],
which can be transferred to graphene via proximity effects [111, 112, 113, 66]. The
DFT calculations presented in this chapter are used to reveal the proximity SOC in
graphene, but do not describe any superconductivity. However, the flavour of SOC has
significant ramifications on the superconductivity. On the one hand, valley-Zeeman
SOC (also known as Ising SOC) combined with superconductivity will result in Ising
superconductivity, which is very robust against in-plane magnetic fields, as the valley-
Zeeman SOC can extend the Pauli limit [207, 109, 208, 209, 210]. Rashba SOC, on the
other hand, will result in Rashba-type superconductivity, which is needed in order to
realize the superconducting diode effect (SDE) [114, 115, 116, 117, 118]. In the SDE,
the interplay of superconductivity, SOC and an external magnetic field in a Josephson
junction creates a situation where a supercurrent can flow only in one direction. While
tuning the magnitude of the Rashba SOC can be used to tune this effect to a certain
degree, especially control of the Rashba angle can be used to realize the radial SDE [211].
In graphene/NbSe2 heterostructures, both SOC and superconductivity can be induced
(and tuned by the twist angle) simultaneously in graphene, offering a platform for such
effects. NbSe2 additionally displays a charge density wave (CDW) [119, 120, 106] state,
where a periodic modulation of the electron ground state density and the atomic lattice
occurs, with a typical periodicity of a 3 × 3 supercell. Whether this can have an effect
on the proximity effects on graphene is not clearly known yet. For graphene/1T-TaS2
heterostructures, the CDW of 1T-TaS2 in fact seems to heavily impact the proximity
SOC [212, 213, 214]. Hence, investigating these structures can be a worthwhile endeav-
our. Furthermore, there is experimental evidence for the Rashba-Edelstein effect (REE)
and unconventional REE (UREE) in graphene/NbSe2 heterostructures [107, 72], with
charge-to-spin conversion (CSC) occurring in the proximitized graphene in Ref. [72]. In
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order to give estimates for CSC efficiencies in the proximitized graphene from theory,
we follow a Kubo formula approach with SOC parameters from DFT as input. As other
DFT calculations are sparse [111, 215, 216] and do not extract any SOC parameters,
there is a definitive need for such an analysis. In order to obtain collinear CSC via the
UREE as in Ref. [72], twisted structures need to be considered. We therefore extract
the proximity SOC for several different twisted supercells, mapping out the twist-angle
dependence of the SOC parameters. However, there are also challenges, which especially
the metallic states of NbSe2 entail: If there are NbSe2 states at the same energy and
momentum as the graphene Dirac cone, they might hybridize strongly with it and distort
it, so that the Dirac cone can no longer accurately be described with a simple model
Hamiltonian. Furthermore, even if the Dirac cone stays intact, transport through the
heterostructure most likely occurs in both layers. Hence, in order to correctly interpret
experimental results, a scheme is required that can disentangle the transport and correctly
predict through which layer transport is occurring.

The chapter is based on Ref. [66] and structured in the following way: First, we
introduce the twisted supercells used for the calculations in Sec. 7.1. The DFT band struc-
tures of the heterostructures and their band offsets are discussed in Sec. 7.2. Challenges
regarding the metallic nature of the NbSe2 states are addressed in Sec. 7.3. We extract
SOC parameters using a model Hamiltonian and show their twist-angle dependence in
Sec. 7.4. Finally, in Sec. 7.5 CSC efficiencies are discussed.

7.1 Twisted supercells

We create the twisted supercell heterostructures by following the scheme in Sec. 4.1. The
parameters (n,m) (for the graphene layer) and (n′,m′) (for the NbSe2 layer) are given
in Tab. 7.1. It also lists the strain ε , necessary to form commensurate heterostructure
supercells, and the interlayer twist angle Θ, which depends on (n,m) and (n′,m′) and can
be determined using the formula, derived in Sec. 4.1:

Θ = Θ(n′,m′) − Θ(n,m) = arctan*
,

√
3m′

2n′ + m′
+
-
− arctan*

,

√
3m

2n + m
+
-
. (7.1)

Contrary to our approach in Chap. 5 and Chap. 6, we also include heterostructure
supercells with n − m = 3 · k, k ∈ Z, even though in such a case the Dirac cones
of K and K′ fold back on top of each other, making the correct assignment of the
sign of λVZ impossible. These cases are marked with an asterisk in Tab. 7.1. As
lattice constants, we used aGr = 2.46 Å and aNbSe2 = 3.48 Å [111, 217]. The NbSe2
has a thickness of dXX = 3.358 Å [111] and the employed interlayer distance is d =

3.3 Å. As previously discussed, strain ε is necessary for the formation of commensurate
heterostructure supercells; this strain is put on the graphene in all cases, since it is more
resilient to strain [79, 80, 144, 145, 146]. Fig. 7.1(a)-(c) illustrate the graphene/NbSe2
heterostructure supercells.
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Table 7.1: Structural information of the investigated NbSe2/graphene het-
erostructures. Integer attributes (n,m) (graphene) and (n′,m′) (NbSe2) are
listed as well as the corresponding strain ε (imposed on graphene), twist angle
Θ between graphene and NbSe2 and the number of atoms Nat in the supercell. If
a (n,m) is marked by an asterisk, this indicates that for this supercell it holds
n − m = 3 · k, k ∈ Z and therefore the Dirac cone is folded back to Γ. Addition-
ally, we list the k-mesh densities of the nk × nk × 1 meshes employed in the
self-consistent calculations.

Θ (n,m) (n′,m′) ε Nat nk
[°] [%]

0.00000 ( 4 0 ) ( 3 0 ) 6.0976 59 30
0.00000 ( 7 0 ) ( 5 0 ) 1.0453 173 3
1.87177 ( 3 4 ) ( 2 3 ) 1.3725 131 6
3.30431 ( 6 1 ) ( 4 1 ) -1.1402 149 6
5.20872 ( 3 1 ) ( 2 1 ) 3.8058 47 30
5.20872 ( 2 4 ) ( 1 3 ) -3.6090 95 15
8.94828 ( 1 5 ) ( 0 4 ) 1.6303 110 12

10.89339 ( 2 1 ) ( 1 1 ) -7.3905 23 30
11.30178 ( 4 3 ) ( 2 3 ) 1.3725 131 6
12.51983 ( 7 1 )* ( 4 2 ) -0.8516 198 3
13.89789 ( 2 6 ) ( 0 5 ) -1.9128 179 3
13.89789 ( 5 0 ) ( 3 1 ) 2.0107 89 12
16.10211 ( 6 2 ) ( 3 3 ) 1.9352 185 3
16.10211 ( 3 3 )* ( 1 3 ) -1.8401 93 15
19.10661 ( 4 0 ) ( 2 1 ) -6.4308 53 18
19.10661 ( 1 2 ) ( 0 2 ) 6.9363 26 30
20.48466 ( 5 2 )* ( 2 3 ) -1.2610 135 6
23.41322 ( 2 3 ) ( 0 3 ) -2.6382 65 21
26.99551 ( 4 2 ) ( 1 3 ) -3.6089 95 15
26.99551 ( 3 1 ) ( 1 2 ) 3.8058 47 30
30.00000 ( 5 0 ) ( 2 2 ) -1.9913 86 12
30.00000 ( 4 4 )* ( 0 5 ) 2.0924 171 3

99
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(a) 5.2°

(c)

(b) 23.4°

dXX

d graphene
Nb
Se

(d)

(e)

Figure 7.1: Crystal structure of different graphene/NbSe2 commensurate het-
erostructures. (a)-(b) Bottom view of the 5.2◦ and 23.4◦ supercells. (c) Side view
of a heterostructure with indicated interlayer distance d and NbSe2 thickness
dXX. (d)-(e) Relaxed structures for two examples of graphene/NbSe2 heterostruc-
tures, with different underlying NbSe2 supercells (3 × 3 and

√
7 ×
√

7). The
graphene sheet is not shown to better visualize the NbSe2 CDW. To show the
subtle atomic reconstructions in the two supercells, we only plot bonds between
Nb atoms, if they are less than 3.48 Å apart. The black lines indicate the (3 × 3
or
√

7 ×
√

7) NbSe2 supercell.

In the main calculations, we do not employ prior structural relaxation, as argued for in
Sec. 4.5. However, NbSe2 exhibits a CDW, which comes with an atomic reconstruction
with the periodicity of a 3 × 3 supercell [119, 120, 106]. In order to check, whether
the nearby graphene layer has an influence on this reconstruction and also whether
the reconstruction has an influence on the Dirac cone of the graphene, we performed
additional relaxation calculations on two of the heterostructure supercells. Fig. 7.1(d)
and (e) show the relaxed structures. The first one has a twist angle of Θ = 0◦ and an
underlying 3 × 3 NbSe2 supercell. Here, the same lattice reconstruction occurs that
we witness in the freestanding 3 × 3 NbSe2 monolayer. Although the filled hexagonal
structure is not congruent with the triangular one commonly seen in literature, it is one
of the many possible configurations [218]. Most importantly, we see that the graphene
layer has barely any influence on the formation of the atomic rearrangement typical for
CDW. The other heterostructure supercell has a twist angle of Θ = 5.2◦ and an underlying√

7 ×
√

7 NbSe2 supercell. The rearrangement witnessed in this supercell is much more
subtle, with a maximal difference in Nb-Nb bond length of 7.66 mÅ. This is an order
of magnitude smaller than the one of the 3 × 3 supercell (72.44 mÅ). We assume that
the formation of this subtle reconstruction is caused by the influence of the graphene
layer. Moreover, the relaxation calculations reveal that we underestimated the interlayer
distance d by about 3.5%. The effects of the atomic reconstruction on the graphene Dirac

100



7.2 Band structures & energetic alignments

cone and the extracted SOC parameters will be presented in Sec. 7.4.

7.2 Band structures & energetic alignments
The DFT band structures are shown in Fig. 7.2(a) and (b) for two different heterostructure
supercells. In most situations the Dirac cone (black lines) is energetically located within
the NbSe2 bands (grey dots). This situation corresponds to a negative band offset
ED − EΓ < 0 (the fix points for measuring the band offsets are defined in Fig. 7.2(e)).
For some cases the Dirac cone is located above these NbSe2 bands, i.e. the band offset
ED − EΓ is positive. However, these cases are nevertheless not fundamentally different,
as the NbSe2 states showing substantial interlayer interaction with the Dirac cone are
located further down in energy (see blue circles in Fig. 7.2(a) and (b)). This will be
discussed in more detail in Sec. 7.3. In Fig. 7.2(c) we show this band offset ED − EΓ
plotted against the strain ε in graphene. For small strains the linear behaviour of the
band offset is less prominent than it was for the heterostructures in Chap. 5 and Chap. 6.
Nevertheless, we can establish a decent linear fit providing us with a zero-strain band
offset ∆E0 = −109 meV. However, contrary to Chap. 5 and Chap. 6, we do not use
external electric fields to adjust the band offsets to match this zero-strain band offset. The
reason is, that we only use heterostructure supercells with |ε | < 5% for the determination
of the SOC parameters. This is different to Chap. 5 and Chap. 6, where the limit was set
at |ε | < 10%, allowing for much more strain induced change in band offsets. Hence, we
chose not to utilize the electric field band offset correction scheme.

One could alternatively define the band offsets using the band edge of the bands
stemming from the NbSe2 K point (from the 1st Brillouin zone (BZ) corresponding
to the primitive NbSe2 unit cell). This would largely yield the same results. However,
it would in fact deviate, as surprisingly the strain ε in graphene also bends the NbSe2
band structure. This can be captured in the ’internal band offset’ EK − EΓ, illustrated
in Fig. 7.2(e). Plotting this ’internal band offset’ against the strain ε reveals a similar
linear trend, see Fig. 7.2(d). The zero-strain band offset is ∆E0,internal ≈ 0, meaning that
EK − EΓ can be tuned to be positive (K-bands above Γ-bands) for compressive strain
ε < 0 or negative (Γ-bands above K-bands) for tensile strain ε > 0. This behaviour
can be explained by the fact that the states of the NbSe2 Γ-bands are localized more
out-of-plane, while the states of the NbSe2 K-bands are more in-plane. Hence, they react
differently to a more dense or less dense graphene sheet.
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Dirac
cone

NbSe2 bands
near EF
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23.4°(a) (b)
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Figure 7.2: (a)-(b) DFT band structures of two different heterostructure super-
cells with Θ = 5.2◦ and Θ = 23.4◦. The blue circles indicate the NbSe2 bands
closest to the Dirac cone, which interact with it through ’first order’ interlayer
interaction. (c)-(d) Band offsets as function of the strain in graphene with linear
fit (solid line) and estimated zero-strain band offset (empty circle). In (c) the
band offset ED − EΓ between the graphene Dirac cone and the band edge of the
NbSe2 Γ-bands is shown. In (d) the ’internal band offset’ EK − EΓ between the
band edges of the NbSe2 K-bands and Γ-bands is shown. (e) Illustration of the
different fix points of the band structures. The simplified NbSe2 band structure
shows the bands near the Fermi level, which can be found in more detail in
Fig. 7.3(c).

102



7.3 Challenges regarding the metallic states

7.3 Challenges regarding the metallic states
NbSe2 is different to the conventionally employed TMDCs discussed in Chap. 5 in many
ways. First and foremost, it is a metal, which means that in a graphene/NbSe2 heterostruc-
ture, the Dirac cone is in most cases at the same energy as the NbSe2 bands and not
located within a band gap, as it is the case for the semiconducting TMDCs. Nevertheless,
we find that for all situations the Dirac cone shows crossings (not anti-crossings) with
nearby NbSe2 bands. This implies that, apparently, although the Dirac cone resides at the
same energy and is folded back to the same k point (in the heterostructure supercell’s
1st BZ) as these nearby NbSe2 bands, it does not hybridize strongly with them. In terms
of the interlayer interaction theory introduced in Sec. 4.4, this would indicate they are
not connected through a ’first order’ interaction, but only through a ’second order’ or
higher order interaction. Although this is detrimental to the proximity SOC yield, it is
beneficial in the way that the Dirac cone is not distorted and can still be described within
the model Hamiltonian. In order to analyze the situation in detail, we examined where
the energetically closest NbSe2 bands are, which hybridize with the Dirac cone through
actual ’first order’ interaction. Fig. 7.3(a) shows the ’first order path of interaction’ the
Dirac cone takes through the NbSe2 1st BZ, when tuning the twist angle between Θ = 0◦

and Θ = 30◦. Fig. 7.3(b) then shows the energies of the NbSe2 states along this path. As
the strain of graphene influences the path, we show both the path and the energies of the
states for three cases with different strain (blue, black and red). From the fit in Fig. 7.2(c),
we can estimate the position of the Dirac cone for the three situations as well (horizontal
lines). This analysis tells us that the closest NbSe2 bands, which are actually interacting
with the Dirac cone through ’first order’ interaction, are always separated from it by at
least 200 meV. There are surely more NbSe2 states along this path, however, these are
even further away energetically. Fig. 7.3(d) additionally shows the orbital decomposition
of the states along the path for the case of ε = 0. It shows that they mostly consists of p-
and d-orbitals with a slight shift towards more d-orbitals towards increasing Θ.

Although we now know that the NbSe2 bands are not directly distorting the Dirac cone,
the metallic states still present a problem for transport. While for heterostructures of
graphene and semiconducting TMDCs, transport could only occur through the proximi-
tized Dirac cone and not through the TMDC, this is not the case for graphene/NbSe2. In
any experiment, transport might occur through either of the layers or through both of them
at the same time in some ratio. This issue affects graphene/NbSe2 as well as graphene/TI
heterostructures. In order to distinguish the transport channels, one can utilize the strong
gate dependence of spin phenomena in the graphene Dirac cone [190, 205, 197, 204, 139].
Most effectively, this is used in determining the origin of charge-spin interconversion
effects [107, 205, 204]. If the Fermi level is moved from the graphene conduction band
to the graphene valence band (or vice versa), the sign of the charge-spin interconversion
should swap, as the spin texture in the Dirac cone is anti-symmetric (except for the special
case of graphene/TI structures with Θ = 30◦; see Sec. 6.4).
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Figure 7.3: NbSe2 states along the ’path of interaction’ (see Sec. 4.4) interacting
with the Dirac cone in ’first order’. (a) NbSe2 1st BZ with indicated ’path of first
order interaction’ of the Dirac cone for twist-angle range 0◦ ≤ Θ ≤ 30◦. Three
different cases with different strain are considered (blue: ε = −5%, black: ε =

0%, red: ε = +5%). (b) Energies of states close in energy to the Dirac cone
along the ’path of first order interaction’ for the three cases. Horizontal lines
indicate the position of the Dirac cone for the three cases as determined by the
fit in Fig. 7.2(c). To better illustrate where these bands lie energetically in the
NbSe2 band structure, we marked two states with circles (green corresponding to
Θ = 0◦, ε = −5%; blue corresponding to Θ = 30◦, ε = 0%). Due to their position
at high-symmetry points, these can be found in the band structure depicted in (c).
(c) NbSe2 band structure along high-symmetry lines; adapted from Ref. [106].
We additionally indicate, where the states marked with a green/blue circle in (b)
are located in this band structure. (d) Orbital decomposition of the states along
the ’path of first order interaction’ for the case of ε = 0%.
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7.4 Extracted SOC parameters
After fitting the Dirac cones of the DFT band structures to the model Hamiltonian from
Eq. (4.43), we are again left with the twist-angle dependence of the SOC parameters,
which are listed in Tab. 7.2 and can be seen in Fig. 7.4(a) and (b). The staggered potential
∆ and the Kane-Mele SOC λKM are negligibly small for all twist angles, as it was already
the case in Chap. 5 and Chap. 6. At Θ = 0◦ the valley-Zeeman SOC λVZ and the Rashba
SOC λR start at roughly the same magnitude just under 1 meV. Both parameters stay at
approximately this level until at Θ ≈ 15◦. After this point, λR increases massively and
reaches its maximal value at Θ = 30◦ with almost 3 meV magnitude. At the same time
λVZ decreases and reaches λVZ = 0 at Θ = 30◦, which is demanded by symmetry (see
Subsec. 4.4.4). The Rashba angle Φ starts out at Φ = 0◦ (as demanded by symmetry) and
only starts to increase atΘ ≈ 15◦, reaching its maximum value atΘ ≈ 23◦, only to decline
rapidly again to zero at Θ = 30◦ (as again demanded by symmetry). This maximum value
is Φ = −24◦, meaning there is some potential for UREE, albeit at a very low magnitude.
Since for both plots the upward and downward triangles mark negative and positive values
of strain, respectively, one can gauge how much and in what direction strain causes the
parameters’ values to deviate. In Fig. 7.4(c) the orbital decomposition of the graphene
Dirac cones’ NbSe2 contribution is depicted, i.e. the projection of the Dirac cone states
onto the different (s, p and d) NbSe2 orbitals. When comparing it to Fig. 7.3(d), one
can see that both plots show a very similar behaviour. Namely, a very small s-orbital
contribution and p- and d-orbitals with comparable sizes, but with d-orbitals increasingly
relevant for bigger twist angles Θ. While Fig. 7.3(d) presents the orbital composition of
the NbSe2 states, which most likely provide the hybridization (and therefore the SOC),
Fig. 7.4(c) presents the actual hybridization, which can be witnessed in the graphene
Dirac cone. It therefore makes sense that Fig. 7.4(c) resembles Fig. 7.3(d) very closely,
with one difference being the bias towards p-orbitals in the former one. This can readily
be explained by the fact that the Se atoms (dominated by p-orbitals) are closer to the
graphene layer in real space. The resemblance of the two plots furthermore supports our
assumption that the states depicted in Fig. 7.3(b) are predominantly responsible for the
proximity SOC.

This leads us to a plausible explanation of the twist-angle dependency depicted in
Fig. 7.4(a): For this, let us evaluate the behaviour of the relevant contributing bands for
zero strain (see black curve in Fig. 7.3(b)), when going from Θ = 0◦ to Θ = 30◦. One can
see two features:

1. They generally move towards the Dirac cone in energy. This enhances overall SOC,
as it allows the bands to hybridize with the Dirac cone more easily.

2. Their internal spin splitting (spin up and down) decreases, vanishing at Θ = 30◦,
where the bands are degenerate. Since the valley-Zeeman SOC is driven by such a
spin splitting, λVZ decreases and vanishes at Θ = 30◦.

Although these general trends seem to align well with the behaviour of the SOC, witnessed
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Table 7.2: Parameters extracted from fitting the DFT band structures. For all
heterostructure supercells, we list the twist angle Θ, strain ε (in graphene),
the extracted fitting parameters and the band offset ∆E = ED − EΓ of the
Dirac cone with respect to the NbSe2 Γ band (see Fig. 7.2(e)). The fitting
parameters are staggered potential ∆, Kane-Mele SOC λKM, valley-Zeeman
SOC λVZ, magnitude of the Rashba SOC λR and Rashba angle Φ. For some of
the supercells the Dirac cone is folded back to Γ (if n − m = 3 · k, k ∈ Z); they
are marked with an asterisk in Tab. 7.1. As a consequence, the sign of the λVZ
cannot be determined unambiguously and is presented with a ±.

Θ[°] ε Φ ∆ λKM λVZ λR ∆E
[%] [°] [meV] [meV] [meV] [meV] [eV]

0.0 6.10 0 0.081 -0.001 0.913 0.846 -0.345
0.0 1.05 0 0.045 0.002 0.817 0.681 -0.055
1.9 1.37 0 0.013 -0.005 0.902 0.791 -0.202
3.3 -1.14 -1 0.049 0.003 0.925 0.716 -0.155
5.2 -3.61 -3 0.021 0.002 0.807 0.538 -0.022
5.2 3.81 2 0.060 0.019 0.619 0.934 -0.272
8.9 1.63 1 0.039 0.010 0.601 0.833 -0.209

10.9 -7.39 -19 -0.016 0.003 0.452 0.225 0.159
11.3 1.37 0 0.036 0.012 0.542 0.848 -0.222
12.5 -0.85 -7 0.023 0.002 ±0.555 0.481 0.057
13.9 -1.91 -12 0.019 0.003 0.524 0.433 0.058
13.9 2.01 -2 0.028 0.021 0.460 0.937 -0.210
16.1 1.94 -7 0.017 0.010 ±0.507 0.877 -0.095
16.1 -1.84 -14 0.015 0.004 0.516 0.619 -0.082
19.1 6.93 -10 -0.002 0.035 -0.438 1.973 -0.347
19.1 -6.43 -33 0.009 0.006 0.315 0.467 0.082
20.5 -1.26 -23 -0.014 0.015 ±0.438 1.361 -0.132
23.4 -2.64 -24 0.018 0.067 0.366 1.726 -0.036
27.0 -3.61 -14 0.009 0.043 0.214 2.17 0.016
27.0 3.81 -15 -0.019 0.054 -0.249 2.562 -0.229
30.0 -2.00 0 0.000 0.053 0.000 2.468 -0.035
30.0 2.09 0 -0.173 0.052 ±0.134 2.638 -0.179
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7.4 Extracted SOC parameters

(a) (b) (c)

[°] [°][°]

[°
]

Figure 7.4: Twist-angle dependences of Dirac cone properties: (a) SOC pa-
rameters λR, λVZ, λKM and staggered potential ∆, (b) Rashba angle Φ and (c)
orbital decomposition of the NbSe2 states featured in the Dirac states. Upward
and downward pointing triangles indicate data points with tensile (ε > 0) and
compressive (ε < 0) strain, respectively. The dotted lines in (a) and (c) and solid
line in (b) are merely a guide to the eyes. If the Dirac cone was backfolded to Γ,
the sign of λVZ cannot be determined. For such data points λVZ is assumed to
be positive in accordance with the other supercells.

in the Dirac cone, it cannot be considered a full explanation of the behaviour, as it is
not accounting for any possible changes in orbital decomposition and therefore overlap
of the states. Although the steep increase in Rashba SOC can be rationalized in parts,
it nevertheless exceeds the expectations associated with this simple picture. Also, the
behaviour of the Rashba angle, which arises from a complex interference of Rashba
contributions from different bands, cannot be explained within this argument.

Lastly, we analyze the SOC parameters of the two relaxed heterostructure supercells
shown in Fig. 7.1(d) and (e). For this, we compare the extracted SOC parameters for the
relaxed and unrelaxed structures. They are listed in Tab. 7.3. As already mentioned, the
relaxed structures adopt a slightly larger interlayer distance. In fact, most of the change
in SOC parameters (overall decrease of about 35%) can be traced back to this increased
interlayer distance and is congruent with what one can expect from such an increased

(n,m) (n′,m′) Θ ε relaxed Φ ∆ λKM λVZ λR
λVZ
λR

[◦] [%] [◦] [meV] [meV] [meV] [meV]
(4,0) (3,0) 0.0 6.10 no 0 0.081 -0.001 0.913 0.846 1.079
(4,0) (3,0) 0.0 6.10 yes 0 -0.649 -0.018 0.559 0.571 0.979
(3,1) (2,1) 5.2 3.81 no 2 -0.060 0.019 0.619 0.934 0.663
(3,1) (2,1) 5.2 3.81 yes 2 0.491 -0.091 0.409 0.604 0.677

Table 7.3: Comparison of the fitting parameters of the two heterostructures
shown in Fig. 7.1(d) and (e) for both the relaxed and the idealized (unrelaxed)
structure. The first two lines describe the structure with a 3×3 NbSe2 supercell
(Fig. 7.1(d)), while the last two lines describe the structure with a

√
7 ×
√

7
NbSe2 supercell (Fig. 7.1(e)).
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interlayer distance (see for example the dependence of the SOC on the interlayer distance
presented in Ref. [14]). Another effect is the onset of non negligible λKM and ∆. However,
this effect is commonly occurring in relaxed structures (see Refs. [13, 14, 163, 67, 64])
and likely arises due to a rippling in graphene. Apart from these predictable effects of
the relaxation, only a slight change of the ratio λVZ

λR
is witnessed. This effect is more

pronounced, but still not major, for the structure based on the 3 × 3 supercell than the one
based on the

√
7 ×
√

7 supercell.

7.5 Charge-to-spin conversion
Let us now evaluate the potential for CSC (REE and UREE) for the different twisted
supercell heterostructures, employing the method discussed in Sec. 4.6. One example
of a graphene Dirac cone and its CSC efficiencies for different Fermi level positions is
shown in Fig. 7.5(a). For this particular heterostructure supercell, the UREE and REE
efficiencies are comparable in size. In Fig. 7.5(b), we show the (U)REE efficiencies as
function of the twist angle. We find that the results are very much in line with what can
be expected from the extracted SOC parameters. This means that

1. The potential for the REE follows the trend of λR, with a roughly constant value at
0◦ ≤ Θ ≤ 15◦ and then rising, reaching its maximal value at Θ = 30◦.

2. The potential for UREE follows the trend of the Rashba angle Φ, showing a
maximum at about Θ ≈ 25◦ and vanishing at Θ = 0◦ and Θ = 30◦. Overall, the
values of the UREE efficiencies never surpass those of the REE, as the maximal
absolute value of Φ is only |Φ|max = 24◦.

The only minute difference is that the peak UREE efficiency is at a slightly higher
twist angle than the peak of Φ, as the Rashba SOC shows a steep increase towards
Θ = 30◦.
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(b)
(a)

[°]

Figure 7.5: CSC in graphene/NbSe2 heterostructures. (a) The left side shows
the graphene Dirac cone for the Θ = 23.4◦ heterostructure supercell with color
coded spin-z. The right side shows the REE and UREE efficiencies (x-axis) for
the Fermi level set to a certain energy near the Dirac cone (y-axis). (b) (U)REE
efficiencies plotted against the twist angle (averaged over a Fermi energy range,
see Sec. 4.6).

7.6 Summary
We performed DFT calculations on multiple twisted graphene/NbSe2 heterostructure
supercells. Examining the energetic alignments of their band structures reveals, that the
band offset between the NbSe2 and graphene band structures exhibits a linear behaviour
with the strain ε applied to graphene. Additionally, the ’internal band offset’ of the NbSe2
band structure shows the same linear trend (albeit to a lesser degree), even though no
strain was applied to the NbSe2 layer. Furthermore, we observed that the graphene Dirac
cone stays intact for all twist angles and strains, although metallic NbSe2 states reside
at the same energy and momentum. This feature can be readily explained within the
theory of interlayer interaction, as introduced by Koshino in Ref. [22]. Fitting the Dirac
cones to a model Hamiltonian provides us with SOC parameters for various twist angles.
These extracted SOC parameters show a tripling of the Rashba SOC at Θ = 30◦ and a
peak of the Rashba angle at Θ ≈ 23◦. Calculating CSC efficiencies within linear response
theory confirms that these two features translate into a large peak REE yield at Θ = 30◦

and a smaller peak UREE yield at Θ ≈ 24◦. These findings can be used to rationalize
experimental findings. Moreover, we analyzed the effects of atomic relaxation for two
exemplary heterostructure supercells. Our findings indicate that the atomic reconstruction
of the 3 × 3 NbSe2 supercell associated with the CDW is neither effected by the nearby
graphene layer, nor does it affect the graphene Dirac cone in any substantial way.
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A Proving the inverse of the
statement about backfolding
from Subsec. 4.4.2

In Subsec. 4.4.2, we proved that k points of two different layers connected by the
matching condition Eq. (4.58), always fold back to the same k point in the heterostructure
supercell’s 1st Brillouin zone (BZ). We stated that, for minimal heterostructure supercells,
i.e. if the heterostructure cannot be viewed as a supercell of another heterostructure
supercell, the inverse is also correct. This means, as long as two k points fold back to
the same k point in the heterostructure supercell’s 1st BZ, they automatically fulfill the
matching condition Eq. (4.58). Demanding that k and k̃ fold back to the same point kS is
equal to demanding, that general reciprocal lattice vectors GS

1 and GS
2 of the supercell

system exist, so that

k = kS + GS
1 (A.1)

k̃ = kS + GS
2 . (A.2)

If we can find the right G and G̃ to add to the equations, i.e.

k + G = kS + (GS
1 + G) (A.3)

k̃ + G̃ = kS + (GS
2 + G̃) (A.4)

so that

(GS
1 + G) = (GS

2 + G̃), (A.5)

then the matching condition is fulfilled. Joining GS
1 and GS

2 into one general supercell
reciprocal lattice vector, which we name GS, we can rewrite it as:

GS B (GS
1 −GS

2 ) = G̃ −G. (A.6)

If we can now prove that for every GS, we can find G and G̃, fulfilling this equation, the
proof is complete. We can prove this by using explicit reciprocal lattice vectors in the
(n,m) notation, introduces in Sec. 4.1. The unit cell of layer 1 forms a (n,m) supercell,
which is matching the (ñ, m̃) supercell of layer 2. Inverting the matrix implicitly given
in Eq. (4.13) and Eq. (4.14), we can formulate a general form of the reciprocal lattice
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vectors b1/2 of the primitive unit cell as linear combination of the supercell’s reciprocal
lattice vectors:

b1 = nbS
1 − mbS

2 (A.7)

b2 = mbS
1 + (n + m)bS

2 . (A.8)

This holds true for both layer 1 (b1/2) and layer 2 (b̃1/2), so we can also write:

b̃1 = nbS
1 − mbS

2 (A.9)

b̃2 = m̃bS
1 + (ñ + m̃)bS

2 . (A.10)

Using this, we can write Eq. (A.6) as

GS =G̃ −G (A.11)

lbS
1 + kbS

2 =s̃b̃1 + t̃b̃2 − sb1 − tb2 (A.12)

=s̃
(
ñbS

1 − m̃bS
2

)
+ t̃

(
m̃bS

1 + (ñ + m̃)bS
2

)
(A.13)

− s
(
nbS

1 − mbS
2

)
− t

(
mbS

1 + (n + m)bS
2

)
, (A.14)

with integers l, k, s, t, s̃, t̃,n,m, ñ, m̃ ∈ Z. This leaves us with two equations (one for bS
1

and one for bS
2):

l =s̃ñ + t̃ m̃ − sn − tm (A.15)
k = − s̃m̃ + t̃(ñ + m̃) + sm − t(m + n). (A.16)

Apart from the non-physical case where n = m = 0 or ñ = m̃ = 0, we need to show
that

∀l, k,n,m, ñ, m̃ ∈ Z ∃s, t, s̃, t̃ ∈ Z (A.17)

so that both equations can be fulfilled. As all cases can effectively be reduced to the case
where m = 0 and m̃ = 0 (i.e. a n × n supercell on top of a ñ × ñ supercell), we will only
discuss this case. Here the Eq. (A.15) and Eq. (A.16) reduce to:

l = s̃ñ − sn (A.18)
k = t̃ ñ − tn. (A.19)

Let us assume l = k = 1, since, if it is true for this case, it is as well for all integers, as
we can simply adjust {s, t, s̃, t̃} by scaling it with l and k, i.e. {s, t, s̃, t̃} → {ls, kt, l s̃, kt̃}.
We can now use Bezout’s identity [219], which states that

∀a,b ∈ Z ∃x, y ∈ Z : ax + by = d, (A.20)
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with d the greatest common denominator of a and b. We can now utilize the assumption
we made, that the heterostructure supercell we constructed is the smallest possible one,
i.e. that it is not a ’supercell of a supercell’. With this assumption, it is clear that the
greatest common denominator of n and ñ is d = 1, concluding the proof.
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B Derivation of the Bloch function
based linear response
susceptibilities in the weak
disorder limit

In the following, we transform the Green’s functions based Fermi-surface (Eq. (4.89))
and Fermi-sea (Eq. (4.90)) susceptibilities of the Bonbien decomposition to the ones
based on Bloch states (Eq. (4.91) and Eq. (4.92)). For this, we first take the traces:

χsurf
A =

~

4π

∑
n,m

∫
dε
∂ f (ε )
∂ε

Re
(
〈n| Â(Ĝr − Ĝa) |m〉 〈m | B̂(Ĝr − Ĝa) |n〉

)
(B.1)

χsea
A =

~

2π

∑
n,m

∫
dε f (ε )Re

(
〈n| Â(Ĝr − Ĝa) |m〉 〈m | B̂(

∂Ĝr

∂ε
+
∂Ĝa

∂ε
) |n〉

)
, (B.2)

where |n〉 ≡ |nk〉 and εn ≡ εn,k are the eigenstate and eigenenergy of the Hamiltonian
H (k) with band number n at a certain position k in k space. We omit the k-dependence
for this derivation. εF is the Fermi energy. Next, we insert the Greens functions Ĝr/a =

limγ→∞
1

ε−Ĥ±iγ
. In the calculation of χsea

A , we will explicitly take the limit of γ going to

zero, while for χsurf
A we reinterpret γ as a constant weak scattering, omit the limit and see

the formula as only valid for small γ. Using Bloch states as basis, we can rewrite

(Ĝr − Ĝa) |n〉 =
( 1
ε − Ĥ + iγ

−
1

ε − Ĥ − iγ

)
|n〉 (B.3)

=
( 1

(ε − εn) + iγ
−

1
(ε − εn) − iγ

)
|n〉 (B.4)

=
−2iγ

(ε − εn)2 + γ2 |n〉 , (B.5)

with the limit

lim
γ→0

(Ĝr − Ĝa) |n〉 = − 2iπδ(ε − εn) |n〉 . (B.6)
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weak disorder limit

Inserting Eq. (B.5) into Eq. (B.1) and Eq. (B.6) into Eq. (B.2) gives us:

χsurf
A =

~

4π

∑
n,m

∫
dε
∂ f (ε )
∂ε

−4γ2Re
(
〈n| Â |m〉 〈m | B̂ |n〉

)
(
(ε − εn)2 + γ2

) (
(ε − εm)2 + γ2

) (B.7)

χsea
A =

~

2π

∑
n,m

∫
dε (2πδ(ε − εm)) f (ε )Im

(
〈n| Â |m〉 〈m | B̂(

∂Ĝr

∂ε
+
∂Ĝa

∂ε
) |n〉

)
(B.8)

Using ∂ f (ε )
∂ε = −δ(ε − εF ) we can eliminate the integral and arrive at the final result for

χsurf
A :

χsurf
A =

~

π

∑
n,m

γ2Re
(
〈n| Â |m〉 〈m | B̂ |n〉

)
(
(εF − εn)2 + γ2

) (
(εF − εm)2 + γ2

) (B.9)

For the Fermi-sea term we additionally need to rewrite:

(∂Ĝr

∂ε
+
∂Ĝa

∂ε

)
|n〉 =(−(Ĝr )2 − (Ĝa)2) |n〉 (B.10)

=
( −1

(ε − εn + iγ)2 +
−1

(ε − εn − iγ)2

)
|n〉 (B.11)

=
( −1

(ε − εn + iγ)2 +
−1

(εn − ε + iγ)2

)
|n〉 , (B.12)

which after inserting to Eq. (B.8) and integrating gives us

χsea
A =~

∑
n,m

Im
(
〈n| Â |m〉 〈m | B̂ |n〉

(
− f (εm)

(εm − εn + iγ)2 +
− f (εm)

(εn − εm + iγ)2

))
. (B.13)

Since Â and B̂ are hermitian, switching the notation of n and m in the first part of the
addition yields an extra minus sign. Thus we arrive at the final result after taking γ to
zero:

χsea
A =~

∑
n,m

( f (εn) − f (εm))
Im

(
〈n| Â |m〉 〈m | B̂ |n〉

)
(εn − εm)2 , (B.14)
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and gate-tunable proximity spin-orbit coupling, spin relaxation anisotropy, and
charge-to-spin conversion in heterostructures of graphene and transition metal
dichalcogenides. Phys. Rev. B, 108,235166, Dec 2023.

[68] Alessandro Veneri, David T. S. Perkins, Csaba G. Péterfalvi, and Aires Ferreira.
Twist angle controlled collinear Edelstein effect in van der Waals heterostructures.
Phys. Rev. B, 106,L081406, Aug 2022.
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