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Katharina Böcherer-Linder d, Markus Vogel e, Sven Hilbert f

a Faculty of Mathematics, University of Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany
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A B S T R A C T

Background: Bayesian reasoning is understood as the updating of hypotheses based on new evidence (e.g., the
likelihood of an infection based on medical test results). As experts and students alike often struggle with
Bayesian reasoning, previous research has emphasised the importance of identifying supportive strategies for
instruction.
Aims: This study examines the learning of Bayesian reasoning by comparing five experimental conditions: two
“level-2” training courses (double tree and unit square, each based on natural frequencies), two “level-1” training
courses (natural frequencies only and a school-specific visualisation “probability tree”), and a “level-0” control
group (no training course). Ultimately, the aim is to enable experts to make the right decision in high-stake
situations.
Sample: N = 515 students (in law or medicine)
Method: In a pre-post-follow-up training study, participants’ judgments regarding Bayesian reasoning were
investigated in five experimental conditions. Furthermore, prior mathematical achievement was used for pre-
dicting Bayesian reasoning skills with a linear mixed model.
Results: All training courses increase Bayesian reasoning, yet learning with the double tree shows best results.
Interactions with prior mathematical achievement generally imply that students with higher prior mathematical
achievement learn more, yet with notable differences: instruction with the unit square is better suited for high
achievers than for low achievers, while the double tree training course is the only one equally suited to all levels
of prior mathematical achievement.
Conclusion: The best learning of Bayesian reasoning occurs with strategies not yet commonly used in school.

1. Introduction

“Most important decisions men make are governed by beliefs con-
cerning the likelihood of unique events” (Tversky& Kahneman, 1973, p.
231). Today, this may be even more the case than ever, since nowadays
we live in an increasingly data-driven society (Radermacher, 2022)
where statistical and probabilistic information do not only govern po-
litical debates and business decisions but are also a highly relevant

source for individual decision making (Galesic & Garcia-Retamero,
2010; Reyna & Brainerd, 2007). Therefore, understanding, critically
evaluating and deciding on probabilistic information, are more and
more understood as decisive tools for every “citizen’s need to cope with
uncertainty and risk in the modern world” (Batanero & Álvarez-Arroyo,
2024, p. 5) and are also essential concepts in statistical literacy and
statistics education (Burril, 2020; Burrill & Pfannkuch, 2024; Gal &
Geiger, 2022).
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Coping with uncertainty and risk often entails handling conditional
probabilities. Especially Bayesian reasoning, which is the process of
updating probabilities for hypotheses based on new information to
arrive at conclusions and make decisions (Reani et al., 2018), is crucial
for different professions, for example, law (Lindsey et al., 2003), medi-
cine (Gigerenzer et al., 2007) or economics (Hoffrage, Hafenbrädl, &
Bouquet, 2015). For instance, a judge should be able to revise the
probability of a potential guilt of an accused person based on a particular
piece of evidence (e.g., a DNA-test result) and a physician has to update
the probability of a certain illness in the light of medical test results
(Fig. 1). Erroneous Bayesian reasoning is often reported (Binder et al.,
2020; Eichler et al., 2020) even among experts (Hoffrage & Gigerenzer,
1998), and can have dramatic consequences. For example, physicians
and HIV consultants often misinterpret positive test results, assuming
that being infected with HIV is absolutely certain if the subject tested
positive in an HIV test even though the probability in the described
scenario is only about 70% (Ellis & Brase, 2015; Prinz et al., 2015).
Faulty Bayesian reasoning can have tragic consequences such as over-
treatment in medicine (Wegwarth & Gigerenzer, 2013) or even suicides
based on wrong interpretations of test results (Stine, 1996).

Justifiably, Bayesian reasoning is also part of statistics education in
universities and schools in the framework of teaching conditional
probabilities (Borovcnik, 2016; Veaux et al., 2012). Although proba-
bility and statistics are increasingly included in curricula worldwide, the
actual implementation in textbooks and teaching is not always satis-
factory (Batanero et al., 2016; Binder et al., 2015). Therefore, research
on how to teach Bayesian reasoning and avoid typical errors is relevant
both for teaching probabilities at school and for training stakeholders as
well.

In the present paper, we empirically examine the effects of four
computer-based training courses for learning Bayesian reasoning. Par-
ticipants (N = 515) are university students of medicine and law, thus the
focus is on preparing future experts with the skills for correct Bayesian
reasoning. In doing so, we additionally explore interactions with prior
mathematical achievement for determining which training course is
appropriate for which learner. Although our study does not directly deal
with secondary teaching, our training courses could also be used in
school teaching of probability.

2. Bayesian reasoning

The simplest case of Bayesian situations consists of a binary hy-
pothesis H (e.g., ill vs. healthy) and binary information I (e.g., test
positive vs. test negative; Zhu & Gigerenzer, 2006). In such situations,
Bayesian reasoning implies estimating conditional probabilities
(McDowell& Jacobs, 2017) based on three probabilities (i.e., base rate P
(H), true-positive rate P(I|H) and false-positive rate P(I|H))1 and a
typical task is to assess the positive (or negative) predictive value (PPV
or NPV; for an example, see Fig. 1). Mathematically, the inference can be
modelled using Bayes theorem:

P(H|I) =
P(H)⋅P(I|H)

P(H)⋅P(I|H) + P(H)⋅P(I|H)
(positive predictive value)

(equation 1)

Fig. 1 displays a Bayesian situation about prenatal screenings with a
triple test. The triple test holds promising characteristics: the probability
for a woman carrying an unborn child with Down syndrome to correctly
test positive is 75% (true-positive rate), while the probability for a
woman carrying an unborn child without Down syndrome to falsely test
positive is only 5% (false-positive rate). Nevertheless, in this situation

with a base rate of 3%, the PPV is only about 32% for a woman to
actually carry an unborn child with Down syndrome if this woman tests
positive.

Such percentages for the PPV have often been documented as unin-
tuitively low (Hoffrage & Gigerenzer, 1998). An obstacle for correct
Bayesian reasoning is the tendency to overlook the influence of the base
rate for estimations of the PPV. This bias became known as base rate
neglect in the research of Kahneman and Tversky (1982). The
meta-analysis for Bayesian reasoning by McDowell and Jacobs (2017)
shows that the performance for correctly assessing the PPV (or NPV)
without previous instruction is only about 5%, if the statistical infor-
mation in such situations is given in probabilities (Fig. 1, left). Even
among experts, the performance is similarly poor, as shown in the field
of law or medicine (e.g., Kurzenhäuser & Hoffrage, 2009; Lindsey et al.,
2003). As a consequence, patients such as the pregnant women in the
example on prenatal screenings may be misled and therefore assume a
much higher degree of certainty of the positive test result than would be
appropriate. Fatal consequences may be abortions and unnecessary
worrying of the pregnant women (Roberts et al., 2002; West & Brase,
2023). The topic of Bayesian reasoning including such tragic conse-
quences have even been repeatedly published in journals such as Science
(e.g., Spiegelhalter et al., 2011; Tversky & Kahneman, 1974) or Nature
(e.g., Goodie & Fantino, 1996), highlighting the urgent need to improve
people’s Bayesian reasoning abilities.

In reality, the starting point in domains such as in medicine and law
is usually a representation of such a situation in probabilities with no
additional visualisation of the statistical information provided (see
Fig. 1, left). In principle, previous research established that fostering the
understanding of Bayesian reasoning can be approached by a) using
supportive representations of the Bayesian situation (see 2.1) or b)
explicit training courses (see 2.2).

2.1. Supportive representations of statistical information

2.1.1. Natural frequencies
Research on decision making under uncertainty and probability

teaching within the last three decades has identified several supportive
representations for Bayesian reasoning.

One helpful strategy goes back to the seminal work by Gigerenzer
and Hoffrage (1995) in which they introduced the so-called natural
frequencies (Fig. 1, right). These can be understood as a pair of natural
numbers “a out of b” with a ≤ b (Krauss et al., 2020) and relate the
probabilistic information to a concrete sample of individuals (e.g., 10,
000 pregnant women) through the principle of natural sampling
(Kleiter, 1994). One advantage of natural frequencies is that they
simplify the calculation of the correct solution (Gigerenzer & Hoffrage,
1995; McDowell& Jacobs, 2017). Furthermore, the influence of the base
rate is more palpable than with probabilities. For instance, only in the
natural frequency format does it become clear why so many
false-positives appear: despite the low false-positive rate of 5%, the
absolute number of false positives (485) is more than double compared
to the amount of true positives (225), simply because there are so many
more women carrying an unborn child without Down syndrome (9,700,
where false positives might appear) than women carrying an unborn
child with Down syndrome (300, where true positives might appear).
According to the meta-analysis, the performance in Bayesian reasoning
tasks increases from about 5%, when the statistical information is given
in probabilities, to about 25%when it is presented in natural frequencies
(McDowell & Jacobs, 2017).

2.1.2. Visualisations
Another strategy is to visualise the statistical information of the

Bayesian situation (Brase, 2009; Garcia-Retamero & Hoffrage, 2013;
Reani et al., 2018) with, for instance, tree diagrams, 2× 2 tables, double
trees, or unit squares (Fig. 2). A broader overview of different visual-
isations for Bayesian situations is given by Khan et al. (2015) or

1 The latter two, i.e., P(I|H) and P(I| H), are notations for conditional prob-
abilities and read as “probability of I, given H″ or “probability of I, given not H″
respectively.
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Spiegelhalter et al. (2011). In the following, we focus on commonly used
visualisations (i.e., in school and university teaching) and enhancements
of these.

When teaching probabilities in school, tree diagrams and 2× 2 tables
filled with probabilities are often utilised (Fig. 2, first progression). This
is, for example, evident in many national as well as international
curricula and mathematics textbooks. Empirical studies, however, show
that such tree diagrams or 2× 2 tables are only of limited help, yet when
probabilities are replaced in the corresponding visualisations with nat-
ural frequencies (Fig. 2, second progression), the understanding of the
situation can be improved substantially (Binder et al., 2015). Today,

visualisations based on natural frequencies can be considered the most
promising combination of representational strategies for gaining insight
into Bayesian situations (e.g., McDowell & Jacobs, 2017).

Double trees and unit squares (Fig. 2, third progression) are further
enhancements of tree diagrams and 2 × 2 tables. Both visualisations can
boost performance to about 60%, for instance, compared to only about
30% based on a frequency tree diagram (Böcherer-Linder & Eichler,
2019). A salient advantage of the unit square compared to a 2 × 2 table
is that it can display conditional probabilities, which are originally
presented in Bayesian situations, i.e., 75% and 5% (Büchter, Steib, et al.,
2022). Note that the 2 × 2 table (Fig. 2, above) contains joint

Fig. 1. Example of a Bayesian situation based on probabilities (left) and natural frequencies (right) with authentic statistical information (Health Quality
Ontario, 2019).
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probabilities that are not given at the starting point but first would have
to be derived from the typically given conditional probabilities (i.e.,
true-positive rate and false-positive rate).

It may be argued that other visualisations, e.g., so-called icon ar-
rays2, are even more promising (Brase, 2008; Gigerenzer et al., 2021).

This is admittedly the case if the completed visualisation is already
constructed and presented (Böcherer-Linder& Eichler, 2019). However,
for the purpose of learning and instruction, it is important that visual-
isations can easily be sketched by teachers and students, as only in this
way is it possible to tackle the starting point where no additional support
is provided. Yet, drawing an icon array is very time-consuming in many
authentic Bayesian situations (Binder et al., 2015). For example, in the
prenatal screening in Fig. 1, a number of at least 10,000 icons would
have to be depicted.

In contrast, both double tree and unit square a) display all proba-
bilities given in a Bayesian situation, b) have proven supportive in
empirical studies so far, especially when completely filled with natural

Fig. 2. Stepwise evolution of helpful representations of the Bayesian situation given in Fig. 1.

2 An icon array is a visualisation in which icons represent the natural fre-
quencies. Thus, for the situation in Fig. 1, there would be 10,000 icons (e.g.,
circles) to represent all pregnant women. Some of these icons would be high-
lighted in a certain way (e.g., colored) to represent the different subsets in the
sample.
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frequencies and c) can be easily sketched by teachers and students
themselves. In short, both visualisations are suitable not only for
teaching purposes, but also for a training study aimed at enabling par-
ticipants to handle Bayesian situations.

2.2. Explicit training courses

Providing the representational strategies above (i.e., double tree or
unit square based on natural frequencies) helps to improve
Bayesian reasoning, but is still not sufficient to reach expert standard
(Büchter, Eichler, et al., 2022). Moreover, since in many domains
probabilities are usually available without a supportive representation,
it is necessary to explicitly train Bayesian reasoning based on this initial
situation and to clarify how to deal with the given probabilities for a
better understanding.

A number of studies have already implemented training courses about
Bayesian reasoning, partially showing quick improvements (for an over-
view of eleven existing training studies, see Büchter, Eichler, et al., 2022).
The aim of the present paper is to combine the following aspects, which
were considered only separately in previous training studies:

• Authentic tasks for measuring Bayesian reasoning, i.e., probabilities
as a starting point (without visualisation) and realistic contexts with
genuine statistical information.

• A combination of both most helpful representational strategies so far (i.
e., visualisations based on natural frequencies).

• Studying both short- and medium-term effects (i.e., pre-post-follow-up
design).

• Generalisability of results, based on a sufficiently large sample and the
implementation of a control group without a training course.

• A high internal validity with as many further aspects as possible
experimentally controlled.

Authentic tasks (in the above sense) were implemented, for instance,
in Hoffrage, Krauss, et al. (2015). Sometimes frequency-based visual-
isations were implemented in training studies (e.g., Chow & van
Haneghan, 2016; Feufel et al., 2023; Ruscio, 2003; Sirota et al., 2015;
Steckelberg et al., 2004; Wassner, 2004) showing mixed effects when
compared to, e.g., a probability training course (for large effects see e.g.,
Wassner, 2004: for no effects see e.g., Sirota et al., 2015). Few training
studies so far have conducted a pre-post-follow-up design aiming to
address both short- and medium-term learning (e.g., Bea, 1995; Sedl-
meier & Gigerenzer, 2001; Wassner, 2004). Interestingly, a number of
training studies have compared different training courses without
implementing a control group without any training (for exceptions, see
e.g., Bea, 1995; Sirota et al., 2015; Talboy& Schneider, 2017). However,
only the parallel implementation of an additional group without any
training guarantees a valid estimation of the “true” effects of training
courses. Last but not least, the two visualisations double tree and unit
square (see Fig. 2) have not yet been compared to each other in a
standardised training study, nor have they been experimentally
compared to respective de-compositions, i.e., “probability tree only” (as
a school-typical visualisation without natural frequencies) or “natural
frequencies only".

2.3. Influence of prior mathematical achievement

Since Bayesian reasoning is relevant for a diverse group of people
with varying mathematical skills, it seems important to identify the role
of individual prerequisites for learning Bayesian reasoning.

In studies without previous instruction or training, numeracy and
more general measures of mathematical and cognitive skills can predict
performance in Bayesian reasoning (e.g., Brase, 2021; Bruckmaier et al.,
2021; Johnson & Tubau, 2015; Sirota et al., 2014).

Furthermore, a range of findings showed that measures of prior
(mathematical) achievement influence the learning of statistics (Chance

et al., 2022; Kogan & Laursen, 2014) or academic achievement in gen-
eral (Blömeke, 2009; Hattie, 2009; Schneider & Preckel, 2017). Such
studies often use final (mathematics) grades in school as estimates of
prior mathematical achievement.

We are not aware of existing research investigating the effect of prior
mathematical achievement on the learning processes of Bayesian
reasoning. However, only knowledge on the interaction of individual
prerequisites with different training courses would allow to develop
tailored teaching for various groups of learners.

Moreover, as the training courses of our study differ primarily with
regard to the visualisation (see below), studying the effect of prior math-
ematical achievement will provide insights into the varying demands of
learning with different visualisations. This seems important as it is rec-
ognised that there is no “one-size-fits-all visualisation” (Liu et al., 2020, p.
693). Still, to the best of our knowledge, research about individual dif-
ferences and visualisations has not yet focused on the learning but rather
on the performance with given visualisations (Hall et al., 2022).

2.4. Research interest and hypotheses

The present study investigates the short-term (directly after training)
and medium-term (after about 8 weeks) learning effects between five
computer-based experimental conditions. The special characteristic of
the present study is that two competing training courses were con-
structed “as-optimal-as-possible” while keeping both of them parallel.
Both training courses are based on a combination of the two supportive
strategies, i.e., to visualise the situation and to use natural frequencies
(“level-2”). These two training courses are (1) double tree based on natural
frequencies and (2) unit square based on natural frequencieswhich compete
against each other as so-called “level-2 training courses” in the sense of a
“betting model” (Verschaffel, 2018). Additionally, two “level-1 training
courses” (i.e., with only one helpful strategy) are implemented, namely
(3) natural frequencies only and a (4) school training course, based on a
probability tree that is typically used in school teaching. Finally, a
control group (5) without any training (“level-0”) was implemented.

The first research question is, whether the level-1 training courses
are in fact more supportive than not receiving any training as in the
control group (RQ1) which we hypothesise in H1. In particular, we aim
to challenge the effects of the elements which are usually taught in
school under controlled conditions. Moreover, we want to analyse
whether the level-2 training courses (double tree and unit square; both
based on natural frequencies) are in fact more supportive than the level-
1 training courses (RQ2), as we expect in H2.

Additional research questions look at which of both level-2 training
courses performs better (RQ3) and how the school training course is
ranked (RQ4). Concerning all training courses, we are interested which
differential effects regarding prior mathematical achievement can be
observed (RQ5). RQ3-5 are studied without explicit hypotheses.

3. Material and methods

3.1. Participants

Our participants comprised n = 255 law and n = 260 medical stu-
dents. About 30% (n = 162) of the sample identified as men and 70% (n
= 351) as women (n = 2 participants as other). Age varied from 18 to 35
years (M = 21.6; SD = 2.8) and the semester of the students ranged from
1 to 20 (M = 5.5; SD = 6.3). Participation in the study was voluntary;
written informed consent was obtained from the participants. All stu-
dents of both domains received payment (~75$ per person; ~38,625$ in
total, funded by the DFG3) if they were participating at all three mea-
surement points. The Ethics Commission of the University of Kassel
approved the study (zEK-18).

3 German Research Foundation (DFG: Deutsche Forschungsgemeinschaft).
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3.2. Study design

The effectiveness of the different training courses was examined in a
pre-post-follow-up design (Fig. 3).

The pre-test, training course and post-test were all carried out on the
same day (day 1). The follow-up-test (day 2) was conducted about 8
weeks (M = 8.3; SD = 1) after day 1 of the study. For the construction of
the three tests, see section 3.3 on tasks and materials. The training
course took place between pre- and post-test and lasted 32 min on
average (input: 22 min; exercise: 10 min).4

In each domain, participants were randomly assigned to one of the
five different experimental conditions (see section 3.4 for a description
of the training courses): double tree training (level 2), unit square training
(level 2), natural frequencies only training (level 1), school training with a
probability tree (level 1) or control group without a training course (level 0).
No significant differences regarding the covariates (e.g., gender, age,
semester) between the five experimental conditions were observed.

3.3. Tasks and materials

All Bayesian situations (for both law and medicine) and the corre-
sponding tasks were constructed under supervision of experts from both
domains (e.g., professors of law and professors of medicine) and can be
found in the supplementary material A.1 (English translations) and A.2
(original wording in German). A total of 14 Bayesian situations (7 from
law and 7 from medicine) were constructed (Table 1).

These tasks are combined in the following way to constitute the pre-,
post- and follow-up-tests (also compare Table 1): In the pre-test, four
“domain-specific” tasks (= from the domain of the participants) had to
be answered (d1, d1*, d2 and d3; with * indicating a question for the
NPV). The post-test (five tasks) included two tasks from the pre-test (d1,
d1*), two domain-specific tasks not set before (d4, d5) and a “transfer-
task” (t1), i.e., from the other domain (e.g., about prenatal screening for
law students). The follow-up-test (six tasks) consists of two tasks from
the pre-test (d1, d1*), one task from the post-test (d4), two domain-
specific tasks not set before (d6, d7) and one transfer-task not set

before (t2). Thus, the first presented Bayesian situation and questions
about the PPV (d1) and the NPV (d1*) was part of all three measurement
points (i.e., d1 and d1* served as anchor items).

Bayesian reasoning was measured by asking for the conditional
probability PPV (or NPV). In all Bayesian situations, the three pieces of
statistical information (base rate, true-positive rate, and false-positive
rate) were given as probabilities without a visualisation. The partici-
pants were asked to enter their calculated or estimated PPV (or NPV) as
a probability. For each task participants were required to submit a
percentage with two decimals. They could not skip any tasks; thus, there
are no missing answers for any task.

Prior research in Bayesian reasoning has identified errors that are
typically committed by participants when asked to estimate the PPV
(Binder et al., 2020; Eichler et al., 2020; Woike et al., 2023). These
known errors are summarised for the Bayesian situation regarding pre-
natal screenings (Fig. 1) in Table 2. In our study, an answer was
considered correct if it deviated no more than 0.5% percentage points
from the correct value. This interval never included any of the
well-known errors and was primarily allowed to accommodate for
rounding errors. Additionally, we classified whether the given answer
corresponds to one of the known errors.

Prior mathematical achievement was measured by the final mathe-
matics grade in secondary school (with values from 0 to 15, where 15 is
the best and 0 the worst grade).

3.4. Training courses

An overview of the different representations of statistical informa-
tion in the four computerised training courses on Bayesian reasoning is
given in Fig. 4. The training courses were constructed based on an
elaborated approach for teaching interventions, namely multimedia
principles (Mayer, 2009), and the 4C/ID model (Frerejean et al., 2019)
including a worked example (Renkl, 2014) on how to calculate the PPV
in a Bayesian situation.

In each training course, first, an introduction with technical terms
was given (e.g., what is meant with base rate, true-positive rate and
false-positive rate). Afterwards, a worked example consisting of three
steps was used to explain how to calculate the PPV (see below for de-
tails), followed by some practical information (e.g., typical wording of
conditional probabilities). After that, an exercise in an authentic
Bayesian situation (i.e., d3 from pre-test) followed, in which the par-
ticipants received individual feedback to their answer. The core part of
the training courses are the worked example, which followed the
introduction (see the following).

Fig. 3. Study design (blue: level-2 trainings, green: level-1 trainings, white: level-0 without any training). (For interpretation of the references to color in this figure
legend, the reader is referred to the Web version of this article.)

4 The materials of the training courses and the tests covers also two exten-
sions of conventional Bayesian reasoning (=“calculation”), namely covariation,
which requires judging the consequences when input variables change (Büchter
et al., 2024; Steib et al., 2023) and communication, which refers to explaining
the correct result (Böcherer-Linder et al., 2022). However, these additional
tasks are not the focus of the present paper.

N. Steib et al. Learning and Instruction 95 (2025) 102032 

6 



Note that the detailed steps of the worked examples were always
based on a “more general” Bayesian situation, structurally equivalent to
the Bayesian situation (Fig. 1) but abstracted to a more universal situ-
ation with an unspecified piece of evidence or medical test result and
their general implication about criminal charges or diseases (see sup-
plementary materials B.1 for the training courses for medicine translated
into English, and B.2 and B.3 for the original German training courses for
medicine and law, respectively).

The first step of the worked example is to draw the representation of
the training course (e.g., the nodes and branches of the double tree
without numerical information) and to add the given probabilities to the
representation (e.g., add percentages on the branches of the double
tree). In the second step, in the training courses with natural fre-
quencies, the frequencies were added to the representation of the
training course (e.g., into all nodes in the double tree, see Fig. 4) based
on the given probabilities. In this step, the given probabilities are rein-
terpreted as proportions before translating these into natural fre-
quencies. In the third step of the worked example, the calculation for the
PPV with the complete representation is explained in each of the
training courses. The three worked examples in training courses with
natural frequencies (double tree, unit square, natural frequencies only)
are constructed as completely parallel apart from the fact that, in the
training “natural frequencies only”, no visualisation is drawn.

The school training course deviates from this parallelism, as it is
supposed to represent what is typically carried out in school teaching.
Here, in the second step no frequencies were added to the representation
– as tree diagrams in textbooks in school typically do not display fre-
quencies but probabilities – instead the tree diagram is completed by
calculating the joint probabilities and adding them at the end of each
path (Fig. 4). Moreover, prior to the worked example, the participants of
the school training course revised the addition and multiplication rules
for probabilities, as this is relevant for working with the probability tree
diagram but not with the other representations.

Thus, in the school training course, the focus was on parallelism to
the textbooks in school and not on parallelism to the level-2 training
courses. Nevertheless, while adhering to structure and expressions from
textbooks, here we also used multimedia principles (Mayer, 2009). With
the help of experts (e.g., experienced mathematics teachers) and a
thorough textbook analysis, we aimed to create a promising
school-typical implementation to give the school training course a fair
chance (see supplementary material B.1 to B.3).

3.5. Administration

All students participated in groups (with a maximum number of 38
individuals per group) in a laboratory setting where a computer was
provided for each participant. Students worked individually at their own
pace in a digital study environment set up in the survey-software Uni-
Park, in which Java codes were implemented for all tests and training
courses. The digital study environment provided information about the
structure and progress of the study, so that no further interaction of the
participants was necessary with the researcher during the study. The
participants were allowed to take notes on a paper while completing the
tests, to allow them to apply the strategies learned in the training courses
(i.e., draw a visualisation), with any output handed in after each test.
Participants could take a break between the pre-test and the training
course (average break time: 10 min) and between the training course
and the post-test (average break time: 3min). The total average time was
about 2.5 h for day 1 and about 1 h for day 2.

3.6. Statistical analysis

In our analyses, we use linear mixed regression models (LMMs) to
predict the proportion of correct solutions to the Bayesian reasoning
tasks at the three measurement points (i.e., pre-, post-, or follow-up-test)
based on the different experimental conditions and on the individualTa
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prior mathematical achievement (Hilbert et al., 2019). We run two
LMMs (see formulae of both models below) to predict the short- and
medium-term learning effects separately (LMM1 from pre- to post-test
and LMM2 from pre- to follow-up-test). Fixed factors of the model are
measurement point (pre-, post- or follow-up-test), the experimental
condition, and prior mathematical achievement, as well as the corre-
sponding interactions of these predictors. The reference of the mea-
surement point is the pre-test and the reference for the increases from
pre- to post- or to follow-up-test are the increases in the “natural fre-
quencies only” group (in which a medium increase is expected).

The other experimental conditions (DTGroup = double tree training;
USGroup = unit square training; SchoolGroup = school training; CON-
Group = control group without any training) and measurement points
(Post = post-test; FollowUp = follow-up-test) are dummy coded vari-
ables in the model (hence, have the value 1 if applicable and 0 other-
wise). The estimates for these variables determine a change in the
prediction between the dummy-coded categories, for example, between
pre-test (coded as 0) and post-test (coded as 1). The only metric (non-
dummy-coded) variable is prior mathematical achievement (MA), which
was standardised for the model. Therefore, estimated values for MA in

Table 2
Typical errors for estimating the PPV in the example on prenatal screenings for Down syndrome (base rate = 3%; true-positive rate = 75%; false-positive rate = 5%;
correct PPV: 31.69%).

Name of the known error Fisherian Joint occurrence Base rate only Likelihood-
subtraction

Likelihood Pre-
Bayes

Evidence only

Error indicated as the PPV = P(H|I) P(I|H) P(H ∩ I) P(H) P(I|H) − P(I|H) P(H ∩ I)
P(H ∩ I)

P(H)

P(I)
P(I)

Value in the Bayesian situation about prenatal screening 75% 2.25% 3% 70% 46.39% 42.25% 7.1%

Fig. 4. Representations of statistical information in the four training courses.
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the model denote increases or decreases in the predicted proportion of
correct solutions to the Bayesian reasoning tasks with a change of MA
from the average (coded as 0) to one standard deviation above average
(coded as 1).

Random factors can be implemented into mixed models (such as
LMMs) as possible sources of errors for non-independent data (Brauer &
Curtin, 2018). The (1|ID) and (1|domain) terms in the formulae denote
random intercepts for the values nested within the categorical variables
‘domain’ and ‘ID’, in order to control for differences between the do-
mains and individual persons in the pre-test.5

The models for predicting the proportion of correct solutions in the
Bayesian reasoning tasks are given with the following formulae:

LMM1 : ŷ1
= β1.0 + β1.1Post + β1.2MA + β1.3Post × DTGroup + β1.4Post

× USGroup + β1.5Post × SchoolGroup + β1.6Post × CONGroup

+ β1.7Post × MA + β1.8Post × DTGroup × MA + β1.9Post

× USGroup × MA + β1.10Post × SchoolGroup × MA + β1.11Post

× CONGroup × MA + (1|domain) + (1|ID)
(equation 2)

LMM2 : ŷ2
= β2.0 + β2.1FollowUp + β2.2MA + β2.3FollowUp × DTGroup

+ β2.4FollowUp × USGroup + β2.5FollowUp × SchoolGroup

+ β2.6FollowUp × CONGroup + β2.7FollowUp × MA

+ β2.8FollowUp × DTGroup × MA + β2.9FollowUp × USGroup

× MA + β2.10FollowUp × SchoolGroup × MA + β2.11FollowUp

× CONGroup × MA + (1|domain) + (1|ID)
(equation 3)

For being able to test all hypotheses regarding the order of the
different training courses, we also added post-hoc tests: for that we ran
the same models but one with the school and another with the unit
square training course as reference for the increases from pre- to post- or
follow-up-test.

For our analyses we used the statistical software R 4.3.0 (R Core
Team, 2016) with the lme4 package (Bates et al., 2012). The resulting
p-values were computed with the lmerTest package (Kuznetsova et al.,
2017), the resulting pseudo R2 with the MuMIn Package (Barton, 2023).
The data and the R-script can be accessed in the supplementary mate-
rials C.1 and C.2, respectively.

4. Results

All n = 255 law and n = 260 medical students took part in all three
measurement points.6 Therefore, we have no missing data. All groups in
each domain are equally distributed (n = 51 participants in each of the
five groups of law students and n = 52 participants in each group of
medical students).

Firstly, and before comparing experimental conditions, a substantial
overall difference in performance between both domains stands out
(Table 3; also see Fig. 5) that was not expected to this degree: medical
students clearly outperformed law students. Due to the sufficient re-
liabilities with high measures of internal consistency regarding pre-test,
post-test and follow-up-test (see Cronbach’s alphas in Table 3), we use
the reliable average scores as indicators of Bayesian reasoning perfor-
mances below (Fig. 5). Secondly, from a descriptive perspective, these

differences remain relatively stable across the three measurement points
(thus, the training courses seem to work similarly in both domains). The
large differences between the domains might be explained by two
possible reasons:

a) Varying difficulty between the tasks used for each domain.
b) Individual differences of the participants between both domains (e.

g., regarding the prior mathematical achievement).

Since a) can be excluded considering the similar performances in
domain-specific (“d”) and transfer (“t”) tasks (see Table 3), we follow up
on b). There is a large difference between participants of both domains
with respect to prior mathematical achievement (MA): law students
have an average of 9.7 (SD = 3.3) while medical students have an
average of 12.7 (SD = 2.3) out of 15 points (t = − 12.0; p < 0.01). Dif-
ferences regarding other covariates (e.g., gender, age, semester) were,
however, negligible. Hence, differences between both domains build to
a large extent on differences in MA.

Again, the domain was not modelled as a fixed factor because it is not
part of the hypotheses or research questions (see above) and we
refrained from post-hoc modelling adjustments. Instead of running two
different models in both domains as a result of the striking differences,
we decided to combine both sub-samples for the models of section 3.6.
Since we are especially interested in which training course is appro-
priate for which prior mathematical achievement, we can obtain more
general results for this question by combining both sub-samples.
Modelling both domains separately would, in any case, not change our
results or conclusions substantially (see supplementary material D).
Some domain-specific exceptions will be explained in 4.1.

In Table 4, the effects regarding LMM1 (pre-post) and LMM2 (pre-
follow-up) are reported separately. While, in section 4.1, both models
are initially discussed without considering MA, in 4.2 the role of MAwill
be focused for short-term (LMM1) and medium-term effects (LMM2).

4.1. Learning gains in the five experimental conditions

In Fig. 5 (lower part, in which the performances for both domains are
aggregated), the double tree training course descriptively shows the
largest learning gains (short-term and medium-term), while the other
three training courses display smaller yet still substantial effects.

In the LMMmodels, the intercepts of 15% (β1.0 and β2.0) stand for the
estimated proportion of correct solutions in the pre-test (across all
groups, because no pre-test differences between groups were modelled
as fixed effects). The regression coefficient for “Post” (or “Follow-Up”)
represents the estimated increase in the mean proportion of correct so-
lutions from the pre- to post-test (or follow-up-test) in the reference
group with the natural frequencies only training:7 hence, an additional
41% in the post-test (see β1.1) and an additional 19% in the follow-up-
test (see β2.1; also compared to the pre-test). These increases were also
significantly larger than in the control group, as the mean increase from
pre- to post-test is estimated to be 30% lower (see β1.6), and 9% lower
(see β2.6) for the estimated mean increase from pre- to follow-up-test in
the control group. Compared to the group with the natural frequencies
only training, the short- and medium-term improvements were not
significantly larger in the group with the school training, see β1.5 and
β2.5. Thus, taken together, H1 was supported for both level-1 training
courses concerning short-term and medium-term learning.

Moreover, in the group with the double tree training, short- and
medium-term improvements were significantly larger than in the group
with the natural frequencies only training, as the mean proportion of

5 Domain was not implemented as a fixed factor because there was no hy-
pothesis or research question about this variable. In our study, domains serve
instead for the purpose of mutual validation.
6 Note: payment was subject to participation in the follow-up-test.

7 Unlike the previous effect for the intercept, the effect for “Post” only refers
to the group with natural frequencies only and not to all groups. This is the case
because for “Post” the interactions with the groups are added in the model, for
example, “Post × DTGroup”.
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correct solutions increased by an additional 16% for the post-test (see
β1.3) and an additional 23% for the follow-up-test (see β2.3). However,
contrary to our hypothesis, in the group with the unit square training,
the mean short- and medium-term improvements did not significantly
exceed those of the group with the natural frequencies only training (see
β1.4 and β2.4). Hence, H2 was only supported for the training with a
double tree, not for the training with a unit square.

The post-hoc analyses (see Fig. 6) reveal: even though the school
training was descriptively better than the training with natural fre-
quencies only, the training with a double tree is still significantly su-
perior to the school training. Likewise, although the unit square training
was descriptively inferior to the training with natural frequencies only,
it still turned out to be significantly more effective than the control
group without any training.

We additionally calculated LMM1 and LMM2 for law and medical
students separately (see supplementary material D for the results). The

results suggest that the effects reported are indeed comparable between
both student groups with a notable exception: the unit square training
and the natural frequency training seem to interact with the domain,
showing significantly better results of the unit square training than the
training with natural frequencies only for the law students, but also
inferior results of the unit square training compared to the training with
natural frequencies only for the medical students. Moreover, among the
medical students, the unit square training and, among the law students,
the training with natural frequencies only, do not result in medium-term
learning compared to the control group without any training.

The effects reported so far represent the estimates for participants
with average prior mathematical achievement, because for these par-
ticipants the standardised MA equals 0.

Table 3
Percentage of correct answers in the five experimental conditions, separated by domain, measurement point
and task.
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4.2. Influence of prior mathematical achievement on learning gains in five
different experimental conditions

In the following, we consider the role of MA for short- and medium-
term learning in the different experimental conditions. Descriptively,

the positive slopes in Fig. 7 suggest that the increases from pre- to post-
(or to follow-up-) test (displayed on the y-axis) were higher for students
with higher mathematical achievement (displayed on the x-axis) in most
groups (i.e., students with higher mathematical achievement learn
more). Interestingly, learning with the double tree training seems – at

Fig. 5. Average proportion of correct answers per measurement point and experimental condition, separated for law and medical students (above) and across both
domains (below).
Note: The varying locations of the five experimental conditions within each measurement point are only implemented for the visibility of the standard errors but do
not signify a temporal delay between the five experimental conditions.
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least regarding short-term learning – to have been almost independent
from previous mathematical achievement, as the slope is close to 0.

In both LMMmodels, the regression coefficients of 5% for “MA” (β1.2
and β2.2) stand for mean increase in the proportion of correct answers in
the pre-test across all experimental conditions, if MA is one standard
deviation above average. We are particularly interested in the influence
of MA on the improvements from pre- to post- or follow-up-test, which
can be seen in the interactions with MA. Hence, the p-values for the
regression coefficients for “Post × MA” and “FollowUp × MA” (β1.7 and
β2.7) show that, in the group with the natural frequencies only training8,
the influence of MA on the performance was significantly larger in the
post- and follow-up-test than in the pre-test, suggesting that the short-
and medium-term learning effects of participants with higher MA were
larger than those of participants with lower MA. The effects of the other
interactions with MA imply that the influence of MA on the short- and
medium-term learning was not significantly different in the other groups
compared to the natural frequency group.

Nevertheless, the post-hoc analyses reveal that the influence of MA

was significantly larger in the unit square group than in the double tree
group for the short-term learning (β= − 0.1; SEβ = 0.04; tβ = − 2.47;
p= 0.01

)
but not for the medium-term learning (for the estimated

models, see end of section 3.6). This implies that the level-2 training
courses particularly differed regarding the influence of MA on the short-
term learning results: in the double tree group, participants with high
and lowMAmay have learned equally well in the short-term (Fig. 7), but
training with the unit square seems to have been particularly suitable for
participants with higher MA.

4.3. Analysis of typical errors

As we are particularly interested in comparing which training course
is most effective for enabling students to provide correct answers, we
limited our inferential analyses to the proportion of correct answers (as
reported above). However, we also checked whether participation in the
training courses helped to reduce typically known errors regarding the
estimation of the PPV (Table 2). These analyses revealed that all errors
are reduced in the post-test through participation in all of the training
courses and also in the follow-up-test (though to a lesser extent).
Furthermore, these reductions in errors do not essentially differ between
the training courses, with one exception: regarding the changes from
pre- to post-test the Fisherian strategy is reduced to a greater degree in
the three training groups with a visualisation (i.e., training with a
double tree, training with a unit square and school training) than in the
training with natural frequencies only. The reduction of the Fisherian
strategy in the training group with natural frequencies only seems
comparable to the reduction of this strategy in the control group without
any training course.

4.4. Qualitative validation of the results

The results regarding the training with a unit square do not confirm
our hypothesis (H2). In order to provide explanations for these sur-
prising findings, we carried out a further qualitative validation of our
results by analysing the notes of the participants. For that, we coded (in
each task of the pre-, post- and follow-up-test) if and what visualisation
was sketched as a representation of the Bayesian situation in the task. In
Fig. 8, we display the results of this analysis. In the pre-test, mostly
(single) tree-diagrams (not double trees) and 2× 2-tables were sketched
by the participants, if a visualisation was used at all. In the post- and
follow-up-test, the representation of the training course was used in all
training groups. However, it is notable, that in the school training group
the proportion of students using the visualisation from the training (i.e.,
a probability tree-diagram) was the highest. This is particularly
remarkable in the follow-up-test. Moreover, it emerges clearly that the
proportion of students sketching the unit square in the post- or follow-
up-test is smaller than that of students sketching the double tree. The
same is true for the students with the natural frequencies only training.

5. Discussion

In the present study, the effectiveness of four different training
courses on Bayesian reasoning (double tree, unit square, natural fre-
quencies only, probability tree) was investigated in a pre-post-follow-up
design with n = 255 students of law and n = 260 students of medicine.
The results show short- and medium-term learning effects with all
training courses and a superiority of the training course with double tree
over the others. Furthermore, students with higher prior mathematical
achievement (MA) profited more from the training courses than those
with low previous MA (only short-term learning with the double tree
training was independent from MA).

Our results are informative and valuable for the education of future
experts with a need for Bayesian reasoning. However, we consider these
results also as relevant for teaching probabilities in school. This claim of

Table 4
Results of LMM1 and LMM2. Reference of the measurement point is the pre-test
and reference for the increases from pre-to post- or follow-up-test is the natural
frequencies only training.

LMM1 (short-term effects: Pre-Post)

β1.k SEβ1.k tβ1.k p

Intercept (β1.0) 0.15 0.11 1.3 0.42
Post (β1.1) 0.41 0.03 13.7 <0.01
MA (β1.2) 0.05 0.01 3.52 <0.01
Post × DTGroup (β1.3) 0.16 0.04 4.02 <0.01
Post × USGroup (β1.4) − 0.02 0.04 − 0.56 0.58
Post × SchoolGroup (β1.5) 0.02 0.04 0.54 0.59
Post × CONGroup (β1.6) ¡0.3 0.04 ¡7.67 <0.01
Post ×MA (β1.7) 0.06 0.03 2.34 0.02
Post × DTGroup × MA (β1.8) − 0.06 0.04 − 1.52 0.13
Post × USGroup × MA (β1.9) 0.04 0.04 1.14 0.26
Post × SchoolGroup × MA (β1.10) 0.01 0.04 0.17 0.87
Post × CONGroup × MA (β1.11) − 0.05 0.04 − 1.29 0.2
R2

Marginal = 0.32; R2
Conditional = 0.62

LMM2 (medium-term effects: Pre-Follow-Up)

β2.k SEβ2.k tβ2.k p

Intercept (β2.0) 0.15 0.1 1.42 0.39
FollowUp (β2.1) 0.19 0.03 6.74 <0.01
MA (β2.2) 0.05 0.01 3.71 <0.01
FollowUp× DTGroup (β2.3) 0.23 0.04 6.07 <0.01
FollowUp × USGroup (β2.4) − 0.01 0.04 − 0.19 0.85
FollowUp × SchoolGroup (β2.5) 0.04 0.04 0.92 0.36
FollowUp× CONGroup (β2.6) ¡0.09 0.04 ¡2.36 0.02
FollowUp×MA (β2.7) 0.06 0.03 2.21 0.03
FollowUp × DTGroup × MA (β2.8) 0.03 0.04 0.89 0.37
FollowUp × USGroup × MA (β2.9) 0.02 0.04 0.65 0.52
FollowUp × SchoolGroup × MA (β2.10) 0.03 0.04 0.78 0.44
FollowUp × CONGroup × MA (β2.11) − 0.05 0.04 − 1.42 0.16
R2

Marginal = 0.19; R2
Conditional = 0.62

Note: βi.k = estimated regression coefficients (unstandardised for βi.0, βi.1, βi.3 −

βi.6; semi-standardised for βi.7 − βi.11; standardised for βi.2)

SEβi.k = standard error of the estimated regression coefficients.
tβi.k = t-value of each estimated regression coefficient.
p= probability for committing a type-I error.
R2

Marginal = variance explained by fixed effects.
R2

Conditional = variance explained by both fixed and random effects.

8 Unlike the previous effect for the influence of MA in the pre-test, the effect
for “Post × MA” and “FollowUp × MA” only refers to the reference group and
not to all groups. This is the case, because for “Post × MA” and “Follow-Up ×

MA” the interactions with the groups are added in the model, for example,
“Post × DTGroup × MA”.
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Fig. 7. Scatterplots with slopes indicating the influence of MA (0–15 points) on the increase from pre- to post-test or pre- to follow-up-test (difference of average),
separated by the different experimental conditions.

Fig. 6. Contrasts between the experimental conditions in descriptive order of their ranks with respect to short- and medium-term effects.
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transferability from tertiary to secondary education of the results rests
on the results of the meta-analysis by McDowell and Jacobs (2017), in
which it has been shown that experts (e.g., physicians) and non-experts
generally do not differ regarding their performance in Bayesian
reasoning, and also do not differ in their advantage gained from the
supportive representation including the beneficial effect of natural fre-
quencies. Hence, even though our sample may deviate from upper sec-
ondary students with regard to expertise in the domains of medicine and
law, there is no reason to assume that the learning of Bayesian reasoning
should differ substantially between our sample and students in school.

5.1. Learning Bayesian reasoning with different training strategies

Students with the natural frequencies only training showed better
short- and medium-term learning results than those without any
training. This is consistent with previous literature, showing that
training courses with natural frequencies were identified as a successful
strategy (Chow & van Haneghan, 2016; Feufel et al., 2023; Sedlmeier &
Gigerenzer, 2001; for an exception, see Sirota et al., 2014).

As expected, when natural frequencies are combined with a visual-
isation in a level-2 training course (specifically with a double tree),
learning is stronger in both the short- and medium-term compared to a
level-1 training course with natural frequencies only. This is also
consistent with previous studies on fostering Bayesian reasoning
without instruction, showing a superiority of the frequency double tree
over natural frequencies only (Binder et al., 2020). Hence, our results
show that the combination of both strategies (visualisation and natural
frequencies) is also more effective for instruction. Moreover, apart from
comparisons with the training natural frequencies only, the double tree
training is also superior to learning with a probability tree, which is the
standard method for teaching at school. Overall, as the training course
with a double tree based on natural frequencies stands out compared to
all other training courses, it seems appropriate for future research to
examine its effects for younger students.

However, the results regarding two conditions were unexpected:
namely, the training with the unit square and the school training with
the probability tree. The results with the school training course may
seem surprising as, in previous training studies, instruction with natural

frequencies often led to greater improvements than probabilities,
particularly for medium-term learning (Sedlmeier & Gigerenzer, 2001).
Contrarily, we observed similar short- and medium-term learning in the
group with the school and with the natural frequencies only training.
This may be attributed to the fact that the school training used a visu-
alisation, namely, the probability tree (unlike the natural frequencies
only training), or to the careful multimedia design of the probability tree
and supervision of the design by experienced teachers. Hence, visual-
isations with probabilities (in a convincing design) may be supportive
for learning, even though they are not supportive without instruction
(Binder et al., 2015).

Additionally, the qualitative results of the notes are informative:
while the ability to construct a probability tree diagram was obtained
from post- to follow-up-test, the performance significantly decreased
from post- to follow-up-test. Contrarily, in the group with natural fre-
quencies only, both, the proportion of natural frequency notes as well as
the performance decreased from post- to follow-up-test. This implies
that the probability tree diagram itself may be easy to construct
(possibly based on its familiarity) but it is not a helpful representation as
itself, which can be interpreted as a replication of prior studies regarding
the support of the probability tree diagram (Binder et al., 2015). Yet, the
scaffolding of natural frequencies may remain constant as long as the
ability to construct them is still given. Consequently, it should be
checked whether the comparable results of school and natural fre-
quencies training can in fact be replicated for long-term learning as well
(e.g., about one year after instruction).

However, the learning results regarding the unit square are the most
surprising. Increases after participation in the unit square training do not
differ from both level-1 training groups, concerning short- and medium-
term. This contradicts various prior findings. Firstly, without instruc-
tion, a unit square based on natural frequencies outperforms natural
frequencies only (Tsai et al., 2011). Secondly, without instruction, no
differences have been observed between a unit square and a double tree
(both based on natural frequencies) for Bayesian reasoning
(Böcherer-Linder & Eichler, 2019). Thirdly, previous studies with a
corresponding paper-pencil training course show increases from a per-
formance of about 10% to as much as 80%–90% in the post-test (Eichler,
Gehrke, Böcherer-Linder, & Vogel, 2019).

Fig. 8. Proportion of different types of notes in each test and experimental condition.
Note: the experimental conditions from left to right: training with a double tree, training with a unit square, training with natural frequencies only, training with a
probability tree, control group without any training; percentages of the proportions of the different categories are only displayed if the respective proportion is 5%
or larger.
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One reason for the unexpected results with the unit square training
could be that natural frequencies were not used ideally in this training
(due to the requirement of parallelism of both level-2 training courses):
The first step was to draw the (area-proportional) structure based on the
given probabilities. This means that the construction of the unfamiliar
feature (area-proportionality) rested on probabilities and not on natural
frequencies.9 It could be that using the concept of natural frequencies
while structuring the area proportionality would be easier, as done in
the paper-pencil training course in the study of Eichler, Gehrke,
Böcherer-Linder, & Vogel (2019).

Our results generally raise the question of whether the strategies
identified as helpful without instruction (e.g., McDowell & Jacobs, 2017)
are equally supportive for the instruction of Bayesian reasoning. De-
viations from our expectations may be based on the varying amount of
provided scaffolding by the different visualisations. In typical studies
without instruction, visualisations were directly given in the presenta-
tion of the Bayesian situation. By contrast, in our training study, a vis-
ualisation was not displayed during the tests but only during the training
course. Therefore, our participants had to construct the visualisations
themselves to access the potential scaffolding. Yet, the challenge of
construction may vary for the different visualisations: the probability
tree is known from school and, therefore, likely to be the easiest to
construct and remember. This is also evident in the additional qualita-
tive analyses as, even eight weeks after the training course, 78% percent
of the students were still able to construct the probability tree. The
construction may be somewhat harder for the double tree, as unfamiliar
elements have to be remembered (i.e., frequencies in the nodes), even
though it builds on familiar elements from the tree diagram (i.e., nodes
connected by branches). Indeed, a substantial 79% of participants was
able to sketch the double tree with natural frequencies in the post-test
(slightly fewer than the 86% with the probability tree), yet in the
follow-up-test this structure seems harder to remember as only 50% still
drew the double tree with natural frequencies (and 10% now drew a
double tree with probabilities).

However, constructing the unit square is likely to be the hardest
visualisation to construct and remember, as integrating the area-
proportionality is a completely unfamiliar feature of the visualisation.
This can also be seen in the notes of the corresponding level-2 training
groups for both the post-test (79% sketched a double tree vs. 58% a unit
square) and follow-up-test (50% sketched a double tree vs. 22% a unit
square). Furthermore, the area-proportionality of the unit square might
also have been particularly challenging in the present study, as many of
the authentic tasks had very small base rates (e.g., 0.1%), which are not
possible to draw true to scale. This was different in prior studies with the
unit square (Eichler, Gehrke, Böcherer-Linder, & Vogel, 2019). There-
fore, the results may imply that either the support of the unit square is
limited to situations with higher base rates or that additional training is
necessary how to handle Bayesian situations with small base rates in the
unit square (e.g., by only approximating the proportions).

These observations may be particularly relevant, as the training
study by Feufel et al. (2023) showed that Bayesian reasoning after a
training course still differed regarding the numerical format of the given
information (i.e., natural frequencies vs. probabilities). The same may
be true for effects of different visualisations that are provided simulta-
neously to textual information in a task. Hence, the possible variation in
the challenge of constructing the different visualisations (and thus var-
iations in their scaffolding) may partly explain the surprising results.
These effects may have even been strengthened by the fact that actively
constructing a visualisation was found to increase performance in one
study (Cosmides & Tooby, 1996).

Finally, the qualitative analyses of the error strategies provide some
interesting results with regards to the Fisherian strategy that seems to be
better avoided when learning with a visualisation (i.e., double tree, unit
square or probability tree) than with natural frequencies only. This is a
relevant finding, as the Fisherian strategy has dramatic consequences
since it leads to drastically overestimating the PPV. For instance, the
confusion of the PPV with the true-positive rate, as documented among
others by HIV consultants in assuming absolute certainty about positive
HIV-test results was based on a high true-positive rate of 99,7% (Prinz
et al., 2015). Thus, learning to visualise Bayesian situations may indeed
help physicians and counsellors to avoid misdiagnosis.

5.2. Influence of prior mathematical achievement on learning Bayesian
reasoning

As discussed by Blömeke (2009), prior achievement is a broad
measure which comprises both cognitive as well as motivational vari-
ables. Accordingly, prior mathematical achievement (MA) can be
interpreted differently, for example, as mathematical skills or prior
knowledge. Our results show that MA strongly influences Bayesian
reasoning in the pre-test already and to a large extent explains differ-
ences between law and medical students. This is in line with previous
findings on Bayesian reasoning in studies without instruction (Brase,
2021). Our results are unique, however, in showing that also the learning
of Bayesian reasoning is influenced by MA (higher MA was associated
with more learning gains). Thus, the learning of Bayesian reasoning with
the strategies used in our study seems to be affected by the “Matthew
effect” (Stanovich, 2009). This effect was already studied in other areas
of mathematics learning (Kollar et al., 2014) and is likely due to the fact
that higher levels of prior knowledge may lead to easier integration of
new information into existing knowledge structures.

Interestingly, this influence of MA on learning differs between both
level-2 training courses (for short-term learning): a double tree is
equally supportive for all participants, in contrast to the unit square, for
which higher MA is associated with more learning. One implication
would be that learners with low prior achievement may depend
particularly on the scaffolding which possibly remains stronger for the
double tree than for the unit square (see above). Another explanation
could be that different levels of mathematical skills are required for
understanding different representations, and the unit square may be a
representation which requires high mathematical skills. A further
implication is based on differences between both training courses: the
double tree training more strongly builds on natural frequencies than
the unit square training. Previous results on the dependence of dealing
with natural frequencies on mathematical abilities are mixed (Chapman
& Liu, 2009; Galesic et al., 2009), at least concerning cross-sectional
purely representational studies. However, our results may indicate
that natural frequencies are equally supportive for all people, as long as
they are combined with an adequate visualisation (i.e., double tree).
These insights can help to tailor training courses for Bayesian reasoning
to the students’ needs.

Our results may also have implications about learning with visual-
isations in general. Not only in Bayesian reasoning but also in other
areas of mathematics education, visualisations are established as a me-
dium to foster understanding (Duval, 2006; Presmeg, 1986; Schoenherr
& Schukajlow, 2024). In an up-to-date review on empirical studies about
visualisations in mathematics education, however, individual differ-
ences are not mentioned as a current area of research (Schoenherr &
Schukajlow, 2024). Similarly, in a review by the same authors focusing
specifically on interventions with visualisations (Schoenherr & Schu-
kajlow, 2023) individual differences are also not mentioned as charac-
teristics with respect to the corresponding effectiveness.

However, the results of our study imply that the causal relationships
between understanding and visualisations are complex, intertwined
with individual differences and, more importantly, vary between
different visualisations. This resonates with prior research in showing

9 Note that the size of the nodes and branches in a double tree and proba-
bility tree are unaffected by the concrete probability. Therefore, entering the
probabilities first may not have been as challenging in the other training
courses.
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that instruction with a specific visualisation depends on students’ prior
achievement (Lee et al., 2018). Thus, future research should study, for
example, which aspects of a visualisation cause difficulties for some but
not others and what kind of previous knowledge and skills are necessary
for being able to learn with different visualisations. In other research
fields, e.g., computational sciences and psychology, more attention has
already been given to individual differences regarding the understand-
ing of visualisations (Cohen & Hegarty, 2007; Liu et al., 2020; Ziem-
kiewicz et al., 2012).

6. Limitations

Our training courses are tailored to situations where only probabil-
ities without any scaffolding are given, and therefore supportive rep-
resentations have to be created from scratch. Thus, our results are
limited to those representations which seem suitable for these kinds of
situations without comparison to other representations (e.g., icon ar-
rays) which may be more supportive in situations where the scaffolding
is already provided.

Also, the results are limited to elementary Bayesian situations, i.e.,
Bayesian situations with binary hypothesis and binary information (Zhu
& Gigerenzer, 2006). It needs to be checked whether the results can also
be replicated for Bayesian situations characterised by multiple hypoth-
eses (e.g., differentiation between different types of trisomy), multiple
test results (e.g., positive, negative or unclear test result) or several
pieces of information (e.g., various tests with positive or negative out-
comes, Krauss et al., 1999).

Additionally, algorithm-based learning cannot be excluded; howev-
er, the similar solution rates for the questions about the NPV (whose
calculation was not explained in neither the worked example nor the
exercises) suggest that the strategies were adopted conceptually.

Furthermore, we are aware that the implications of our results are
limited to the high standardisation with which the computerised
training courses were designed. While this allowed a systematic com-
parison between instructional methods, it needs to be checked whether
the results can be transferred to instruction in a less standardised
teaching context, for example, in schools.

Finally, the presented results are limited to the learning effects on
conventional Bayesian reasoning. In the larger context of our study,
further aspects of an extended framework of Bayesian reasoning (htt
p://bayesianreasoning.de/en/br_trainbayes_en.html) including addi-
tional competencies such as covariation (i.e., judging the effects of
changing input parameters in the Bayesian situation, Büchter et al.,
2024, Steib et al., 2023) and communication of the correct result
(Böcherer-Linder et al., 2022) were also addressed. It is interesting how
the four training conditions affect both the ability for covariation and
communication.

7. Conclusion

A training study in a pre-post-follow-up design on the learning of
Bayesian reasoning was carried out with five experimental conditions:
two optimally designed (level-2) training courses (each with a visual-
isation – double tree or unit square – based on natural frequencies), two
other promising (level-1) training courses, and a control group (level-0).
Moreover, the dependence of the effects of the training strategy on prior
mathematical achievement was studied.

It was shown that Bayesian reasoning in authentic Bayesian situa-
tions can be improved for short- as well as medium-term learning with
all implemented training courses. Participants with high prior mathe-
matical achievement learned more than those with average or lower
prior achievement. The training course with the double tree stands out,
as it shows better learning success than all other training courses.
Consequently, using a double tree with natural frequencies is more
supportive than a strategy often implemented in national curricula and
more common in textbooks, such as the probability tree. From our

perspective, this raises the question of why textbooks, national curricula
and teaching practices still seem to cling to representations which are
less supportive for learning Bayesian reasoning.
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