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Chapter 1

Introduction

Accurate assessment of liver function is crucial for diagnosing liver diseases, deter-
mining treatment options, and predicting outcomes in patients with liver disorders.
Traditional methods of evaluating liver function rely on blood tests and invasive
procedures like biopsies, which have limitations in terms of accuracy, patient
comfort, and ability to capture the heterogeneity of liver tissue. There is a growing
need for non-invasive techniques that can provide comprehensive and reliable
information about liver health and functionality.
Magnetic resonance imaging (MRI) has proven to be a powerful non-invasive tool
for visualizing liver anatomy and pathology. Recent advances in MRI technology
and protocols have enabled the acquisition of high-resolution, multi-parametric
images that can potentially reveal important biomarkers of liver function. However,
the manual analysis and interpretation of these complex MRI datasets is time-
consuming and subject to inter-observer variability based on examiner experience.
Artificial intelligence (AI) and machine learning techniques offer promising so-
lutions for automating the analysis of medical images and extracting clinically
relevant information. In particular, deep learning models have shown remarkable
performance in tasks like organ segmentation and feature extraction from radiolog-
ical images. Applying these advanced AI methods to liver MRI could potentially
enable automated, quantitative assessment of liver function and improve clinical
decision-making.
This thesis aims to develop and evaluate an automated pipeline for liver function
prediction based solely on MRI-derived features, utilizing state-of-the-art deep
learning and machine learning approaches.
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2 CHAPTER 1. INTRODUCTION

The key objectives are:

• Implementation and comparison of different deep learning architectures for
automated segmentation of liver and related structures from multi-phase
MRI sequences.

• Refinement of the automated segmentation due to problems that arise
specifically for breath-holding imaging techniques as used in this thesis.

• Extraction of comprehensive quantitative features from the segmented liver
regions that may correlate with liver function.

• Development of classification and regression machine learning models that
can accurately predict established liver function scores using only the MRI-
derived features.

• Assessment and evaluation for the performance of the automated pipeline
with comprehensive feature sets against traditional methods.

By achieving these objectives, this work seeks to advance the field of non-invasive
liver function assessment and demonstrate the power of AI-driven analysis of
medical imaging data. The proposed techniques could potentially improve the
accuracy, efficiency, and accessibility of liver function evaluation, leading to better
patient care and outcomes in hepatology.



Chapter 2

Preliminary Concepts

2.1 The Liver
This section provides a brief introduction to liver anatomy and physiology, the
major liver functions, diseases that can lead to impaired liver functions and relevant
scoring systems used for quantification. This foundation helps the reader with the
necessary background to understand the deployed methods and the motivation
behind this thesis. Unless otherwise stated, references [1, 2, 3] and [4] serve as the
primary sources for this section.

2.1.1 Liver anatomy
The liver is located in the upper right quadrant of the abdomen, just below the
diaphragm and is a vital organ. The basic anatomy is illustrated in figure 2.1.
In adults, the liver weighs approximately 1.5 kg and consists of four lobes that
are further subdivided into smaller lobules. These contain hepatic cells, so-called
hepatocytes, arranged in a hexagonal pattern around a central vein. Specialized
capillaries within the lobules, Liver sinusoids, facilitate the exchange of substances
between the blood and hepatocytes. At any given moment, the liver holds about
thirteen percent of the body’s blood and is supplied by two main sources, the
hepatic artery and the portal vein. The latter is responsible for ≈ 75% of its blood
supply.

3



4 CHAPTER 2. PRELIMINARY CONCEPTS

Aorta
Inferior vena cava

Figure 2.1 This figure illustrates the liver anatomy, including the liver parenchyma,
the hepatic vascular system (comprising the portal vein, common hepatic artery, and
right and left hepatic arteries), the hepatic veins, the inferior vena cava, the aorta, the
gallbladder, the cystic duct, and the common bile duct. Adapted and extended from [5].

Generally, the aorta is the main artery that supplies oxygenated blood to the
abdominal organs and to the hepatic artery. As blood flows through the gastroin-
testinal tract, spleen and pancreas, it picks up nutrients and other substances. This
nutrient-rich, but oxygen-poor blood collects into smaller veins, converging to form
the portal vein that carries this nutrient-rich blood directly to the liver. The portal
vein divides into smaller vessels within the liver lobes, aiding in the processing of
nutrients and detoxification prior to the blood’s entry into the systemic circulation.
The hepatic veins in turn collect blood from the liver lobules and carry it to the
inferior vena cava, which then transports it back to the heart. The liver is also
involved in the production of bile, which is transported via the bile ducts to the
gallbladder and to the small intestine, where it aids the digestion and absorbtion
of fats. Additionally, resident macrophages of the liver, so-called Kupffer cells,
play a crucial role in immune function of the human body.
In summary, this complex anatomy supports the major liver functions, including
the metabolism of macronutrients, detoxification of harmful substances like alcohol
and other drugs, synthesis of plasma proteins as albumin and clotting factors, as
well as the production and secretion of bile, which is essential for digestion and
absorption of fats. Because of these vital roles, liver disease can lead to a variety
of side-effects, like ascites (abdominal fluid accumulation), coagulation disorders
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or even hepatic coma. All of this highlights the liver’s critical role in maintaining
overall metabolic and digestive health. However, due to its multifunctional role
in the body, the liver is susceptible to various diseases and conditions which
subsequently can lead to impaired liver function. This can result from mutliple
factors, including chronic alcohol abuse, nonalcoholic fatty liver disease, certain
medications and viral hepatitis. Those conditions can lead to inflammation of the
liver, fibrosis and eventually cirrhosis, which impacts the liver’s ability to perform
its vital functions [6].

2.2 Key Biomarkers of Liver Function: Albumin,
Bilirubin, Creatinine and INR

Clinically, liver function is commonly assessed by four crucial biomarkers: Bilirubin,
Creatinine, the INR (International Normalized Ratio) and Albumin. Those are
integral components of the MELD- (Model for End-Stage Liver Disease), ALBI -
(Albumin-Bilirubin) and Child-Pugh-scores. These are widely used to evaluate the
severity of chronic liver disease and prioritize patients for liver transplantation [7,
8].
Relevant liver function scores for this thesis and their use cases will be explained
in detail in section 2.3.
Albumin is synthesized exclusively by the liver and is the most abundant protein
in the blood plasma. Serving as the main controller of plasma oncotic pressure, it
also acts as a vital carrier molecule for numerous substances including vitamins,
pharmaceuticals, and hormonal compounds. With impaired liver function, low
levels of albumin (hypoalbuminemia) in the blood can occur. The albumin levels
are a sensitive marker of malnutrition and chronic liver disease and therefore reflect
its synthetic capacity and overall health [9, 10].
Bilirubin originates mostly from the breakdown of hemoglobin in red blood
cells and is a yellow compound. The liver plays an essential role in processing
bilirubin. It is responsible to convert unconjugated bilirubin (insoluble in water)
into conjugated bilirubin (soluble and can be excreted). This process happens in the
hepatocytes and is required to eliminate bilirubin from the body. Thus, impaired
liver function can lead to elevated levels of bilirubin in the blood. Clinically this
can manifest as icterus, characterized by yellowing of the skin and eyes. Therefore,
bilirubin serves as a vital marker of hepatic function that reflects the liver’s capacity
to detoxify and excrete waste products [11, 12].
Creatinine is a byproduct from muscle metabolism and usually excreted by the
kidneys. It is primarily associated with kidney function and muscle mass, but



6 CHAPTER 2. PRELIMINARY CONCEPTS

is also relevant in the context of liver disease and thus included in several liver
function scores. With severe liver dysfunction, one can develop a hepatorenal
syndrome. This refers to a condition, where advanced liver disease is the reason
for degraded kidney function. Therefore, comprised renal function as a result of
liver disease can be observed by elevated serum creatinine levels [7, 8, 13].
INR (International Normalized Ratio) is an internationally standardized measure
of blood clotting. Several clotting factors (proteins as prothrombin) that are
essential for normal blood coagulation are synthesized in the liver. Impaired blood
clotting can be observed in case of a damaged liver because of its deteriorated
ability to produce those proteins. Due to this, there is an increased risk of bleeding,
which is a critical concern in patients with liver disease. Subsequently, the INR is
a crucial component of several liver function scores as it provides insight into the
livers synthetic function and its ability to maintain hemostasis [14, 15].

2.3 Liver Function Scores
Liver function scores are essential tools used in clinical practice to assess the
severity of liver disease and estimate outcomes in patients. They are also used for
triage. There is a wide variety of tests and scores to assess liver function, including
the CHILD-PUGH, MELD, ALBI, LiMAx, ICG-clearance, and others [16, 14, 17,
18, 19].
For the cohorts in this study there were three available, the MELD-, - and the
ALBI-score, which will be described in the following.
The MELD-score accurately assesses the risk of death in patients with end-stage
liver disease and is suitable to determine organ allocation priorities. It estimates
the likelihood of a patient’s survival over the next three months [20]. Initially,
the MELD was calculated with serum creatinine and bilirubin levels, the INR for
prothrombine time and a factor for different liver disease etiologies [14]. This last
factor was removed in 2007 after extensive study, hence the current MELD-score
formula is [21]:

MELD score =3.78 × ln(bilirubin[mg/dL]) + 11.2 × ln(INR)+
9.57 × ln(creatinine[mg/dL]) + 6, 43.

(1)

This is commonly used for prioritizing the organ allocation for liver transplantations
[21]. The MELD score ranges from six to 40, with lower scores indicating a
higher likelihood of survival over the next three months. A MELD≥15 is generally
considered an indication for being listed for liver transplantation. However, patients
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may be listed with a lower score if their quality of life is unacceptable due to the
disease or if there are secondary complications of cirrhosis [22, 7, 8].
The LiMAx-score (liver maximum function capacity-score) is based on the LiMAx
test, a minimal-invasive diagnostic tool to assess liver function. It involves the
intravenous administration of 13C-methacetine that is metabolized into 13CO2 by
the liver and subsequently exhaled by the patient. The increase in 13CO2 in the
exhaled breath is then compared to a baseline measurement before administration
of 13C-methacetine. The results are reported in micrograms of 13C-methacetine
metabolized per kilogram of bodyweight per hour (µg/kg/h). Higher values
indicate better liver function and for a healthy liver, values above 315 are normal
and allow for resection of up to four liver segments in surgery. Intermediate liver
function is defined for values between 140-315. For patients with a LiMAx value
lower than 140, surgery must be refused, because of a high likelihood to develop
complete liver failure after resection. The LiMAx test has been shown to be a
reliable tool for predicting postoperative liver failure and mortality [23, 17, 24].
The ALBI-score was initially developed as an evidence based approach to assess
liver function in patients with hepatocellular carcinoma (HCC). However, it was
successfully applied as a general liver function score for various aetiologies, as well
[25].
It is based only on total bilirubin and serum albumin, which makes it easy to obtain
and free from subjective clinical assessment and was developed as an alternative
to the Child-Pugh classification. The Child-Pugh score, which is used for patients
with liver cirrhosis, also relies on albumin and bilirubin, but also takes additional
parameters into account that are highly subjective. Because of this, the ALBI-score
seemed more suitable for the experiments conducted in this thesis [26].
This score is calculated with the following equation:

ALBI score = −0.085 × (albumin[g/L]) + 0.66 × log10(bilirubin[mol/L]). (2)

The result can then be categorized into three grades. For an ALBI-score ≤ −2.60
it is Grade 1. If −2.60 < ALBI-score ≤ −1.39, it is Grade 2 and for values
above −1.39, the Grade is 3. Higher grades indicate worse liver function. The
ALBI-score has shown comparable or even superior prognostic performance to the
more traditional liver function scores as Child-Pugh and MELD in many scenarios
and is easy to obtain [26, 27].

2.4 Magnetic Resonance Imaging
This section will provide a short introduction to the physical and physiological
concepts of magnetic resonance imaging (MRI). MRI is a non-invasive and non-
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ionizing imaging technology that allows us to collect high-resolution volumetric
images of the human anatomy with excellent soft-tissue contrast and is primarily
used in medical settings. Unless otherwise specified, this section primarily relies
on references [28, 29, 30, 31, 32, 33] and [34].

2.4.1 Magnetic Resonance Imaging Physics
The basic principle of MRI relies on the spin, which is a fundamental property
of particles. The nuclear spin is of particular importance and thus the imaging
technique was called nuclear magnetic resonance imaging (NMRI) in earlier days.
However, because of the negative connotation of the word nuclear, the name was
changed to the nowadays more common MRI.
The spin is characterized by the spin quantum number s that possesses values of
multiples of 1

2 and can be positive or negative. In the case of individual unpaired
particles like neutrons, electrons and protons, s = 1

2 . The human body consists
of about 63% hydrogen atoms and for medical applications the most relevant
nuclear magnetic resonance (NMR) signals arise from water and fat, which are
the predominant hydrogen containing tissues in human body. These hydrogen
atoms contain a nucleus that is composed of a positively charged proton. Since
only hydrogen atoms will be taken into consideration for the explanations, those
nuclei will be referred to as protons in the following. Those posess the so-called
NMR property due to two crucial characteristics. Because of their own nuclear
spin, two effects arise. The spin results in an angular momentum J⃗ due to the
odd-numbered atomic mass (i.e. ≈ 1) and it generates an electrical current because
of the positive charge of the proton. When placed within a magnetic field, like in a
MRI scanner, that current induces a torque which is called the magnetic moment
µ⃗.
The combination of those effects leads to the phenomenon that protons which are
placed in an external magnetic field with flux density B⃗ (in the following referred
to as the magnetic field), can absorb and emit energy in the radio frequency (RF)
range of the electromagnetic spectrum. Consequently they produce a NMR signal,
which can be captured and transformed into images.
To ensure the magnetic field B⃗0 inside the scanner bore is both uniform and
sufficiently strong (typically 1.5 to 7 Tesla for humans), a substantial electric current
flowing through a coil is required. Therefore, the coil must be superconducting
and is cooled down to 4.2K using liquid helium. The direction of B⃗0 is pointing
from feet to head of the subject. For the following explanations, this is defined as
the z-axis, thus:

B⃗0 = B0êz. (3)
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Consequently, the plane perpendicular to this axis can be defined as the x-y plane
with the x-axis pointing from the left to the right hand of the subject. The y-axis
points from the back to the front of the subject.
If a subject is placed into the magnetic field B⃗0, µ⃗z of the protons in its body aligns
either parallel or anti-parallel to the magnetic field. However, µ⃗x ̸= 0, µ⃗y ̸= 0,
therefore, the spinning protons exhibit a gyroscopic motion called precession,
rather than remaining strictly aligned with the magnetic field (See Fig. 2.2). The
angle between the spin axis and the axis defined by the magnetic field is dictated
by the angular momentum J⃗ of the protons. The frequency of precession is called
the Larmor-frequency

ωL = γB0, (4)
with γ being the gyromagnetic factor and γproton ≈ 2.675 · 108 rad

s·T .

M
ag

ne
tic

 fi
el

d

Figure 2.2 This figure illustrates the precession of high- and low-energy states of protons
in an external magnetic field. They are either in the parallel state with lower energy
(orange) or the antiparallel state with a higher energy level (blue). There are always
more protons in the lower energy state, compared to the anti-parallel state.

The ratio of number of particles in parallel NP and particles in anti-parallel NAP

configuration in equilibrium can be described by the Boltzmann statistics [34]:

NAP

NP
= e

− ∆E
kBT . (5)

There, ∆E is the difference of energy for both states, kB = 1.3806 · 10−23J the
Boltzmann constant and T the temperature of the system. Since the parallel
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alignment represents a lower energy state compared to the anti-parallel alignment,
there’s a greater abundance of particles aligned parallel to the magnetic field. As
a consequence, there is an excess of particles with a component pointing in the
direction of µ⃗z. This surplus gives rise to the so-called netto magnetization

M⃗netto
z = (NP − NAP )µz êz (6)

within the tissue under consideration. In equilibrium, this magnetization is parallel
to B⃗0 and its strength is determined by the difference of numbers of protons in
each energy state.
For a simpler understanding of MRI, it is helpful to have a more macroscopic view
of the process. Therefore, multiples of protons can theoretically be grouped into
so-called spin-packets, which are three-dimensional cuboids, containing several
nuclei that experience equal magnetic field strength. Then, the net magnetization
of each packet can still be described by equation (6). The only thing that changed
is the amount of tissue under consideration.
Because the spins within a single spin-packet all precess at identical frequencies
yet varied phases, the components perpendicular to the magnetic field, within the
xy-plane, collectively nullify to zero on a statistical basis (see Fig. 2.3). Therefore,
M⃗netto

x = M⃗netto
y = 0 and consequently M⃗netto

equilibrium = M⃗netto
z .
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Figure 2.3 This diagram depicts a spin-packet containing six spins, each exhibiting
identical precession cones but with distinct phases. Despite sharing the same precession
frequency, the spins’ varied orientations result in the cancellation of components within
the xy-plane (indicated by the blue arrows), leading to zero net magnetization in
that plane. Consequently, magnetization predominantly occurs along the z-axis, as it
represents the statistical sum of the spin vector’s z-components. Inspired by [30].

At this point, there needs to be emphasized that MRI techniques measure those
net magnetizations of a spin-packet in a given volume of tissue and are not capable
to detect individual nuclei. These signals are then depicted in the final MR image
through structures known as voxels, which serve as three-dimensional counterparts
to pixels.
The combination of equations (5) and (6) clarifies that lower temperatures and/or
higher energy differences between parallel and anti-parallel configuration yield
greater measurable net magnetization. However, lower temperatures with a
significant effect on the net magnetization are not applicable to humans. Instead,
higher magnetic fields are utilized, leveraging the Zeeman effect, where [32]:

∆E = h

2π
γB0. (7)

Subsequently, with equations (5) and (6) follows, M⃗netto
z ∝ B.

In order to detect a signal, it’s necessary to disrupt the balanced state by adminis-
tering a RF-pulse to the tissue. Consequently, a proton in a lower energy state
can absorb a photon, becoming excited to a higher energy state. These protons in
the heightened energy configuration can subsequently emit a photon with energy
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equal to ∆E, which can be detected by a RF-receiver coil in the MRI scanner.
The most effective excitation can be achieved by a photon with frequency

ν = ωL

2π
= γ

B0

2π
(8)

For a typical MRI scanner with a magnetic field strength of 3T - as used for the
acquisition of the images used in this work - this results in ν ≈ 128MHz.
The RF-pulse can be modified to flip the net magnetization by an arbitrary angle

Θ = 2πγtBpulse, (9)

where t is the duration and Bpulse the magnetic field component of the pulse.
It is fasctinating that this is achievable, despite the fact that the magnetic moments
of each proton are limited to only two discrete values. This is mathematically
justified by the Bloch equations, which introduce a semi-classical perspective on
these spin systems, thus enabling the utilization of Euler’s equations of motion for
the precessing net magnetization vectors.
The essential flip-angles for the following explanations are 90° and 180°.
As stated before, the spins precess around the z-axis at the larmor frequency. After
flipping the whole net magnetization by 90° into the x-y plane with an RF-pulse,
this also starts to precess around the z-axis with ωL, since the spins are precessing
in phase and don’t statistically cancel out each other in the x-y plane anymore.
This motion of M⃗net within the examined tissue can induce an oscillating current
in a nearby receiver coil, as per Faraday’s law of electromagnetic induction.
This is directly followed by the two relaxation processes, where the energy trans-
ferred to the spin system dissipates into the surroundings through spin-lattice or
spin-spin interactions and consequently, the spins revert to their original config-
uration (see Fig. 2.4). This causes the net magnetization to return to its initial
state during a spiraling motion, leading to a decline in the signal detected by the
receiver coil. This decline in signal is called the free induction decay (FID).
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Figure 2.4 This figure is a schematic representation for the longitudinal (left) and
transversal (right) relaxation of the net-magnetization for the co-moving coordinate
system of the spin. Looking at it from the stationary coordinate system, the left picture
would show a spiraling motion. Longitudinal relaxation is primarily influenced by
interactions between spins and the lattice, while spin-spin interactions predominantly
account for transverse relaxation.

One can focus either on longitudinal relaxation, primarily influenced by spin-lattice
interactions, or transverse relaxation, mainly driven by spin-spin interactions, which
is crucial for achieving the desired contrast in subsequent MRI images. The former
is known as T1-recovery, and the latter as T2-decay.
T1 represents the time constant for longitudinal relaxation, indicating the duration
required for the net magnetization to achieve 1

1−e
of its initial value following

the excitation. Formally, the longitudinal magnetization recovery over time is
mathematically described as

Mnet
z = M0(1 − e

− t
T1 ), (10)

where M0 =
∣∣∣M⃗net

∣∣∣ represents the absolute value of the initial net magnetization
before excitation.
Immediately after the excitation pulse with Θ = 90◦, the transverse net magnetiza-
tion vectors of all associated spin packets within a specific voxel are in phase, which
leads to the maximum transverse component of M⃗net. The transversal relaxation
process describes the decay of the xy-component of the net magnetization. This
happens due to dephasing of the transverse net magnetization vectors of the
spin-packets in a given voxel, mainly because of spin-spin interactions (see Fig.
2.5).
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t
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Figure 2.5 This figure is a schematic representation for the transversal relaxation of
the net-magnetization of a spin-packet after excitation with a RF-pulse. Adapted and
extended from [30], p. 80.

T2 is the duration required for the transverse net magnetization to decay to 1
e

of
its peak value. Its temporal progression of the transverse net magnetization is
represented by:

Mnet
xy = M0e

− t
T2 . (11)

However, during experiments, the FID diminishes at a faster rate, given by the
effective time constant T ∗

2 . Rather than solely accounting for spin-spin interactions,
as done by T2, field inhomogenities are also encompassed. Because of those
inhomogenities, ωL differs for the spins, since it depends on the local magnetic
field strength (see (4)) and, in turn, leads to a faster dephasing.
Therefore, the decay after the initial 90° excitation pulse is too fast to serve as
the signal for image reconstruction. To capture a meaningful signal, a technique
called rephasing is employed. This technique involves realigning the dephased net
magnetizations of the spin-packet by applying a second excitation pulse with a
flip angle of 180 degrees. By doing this, the dephasing process is reversed and
the transverse net magnetization vectors gradually decrease their phase difference
again, hence they rephase. This process leads to the generation of another MR
Signal, the so-called spin echo [35].
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Spin Echo

An excitation pulse with a flip angle of 90 degrees occurs at t = 0. Subsequently,
another pulse with Θ = 180° is applied at t = τ . The rephasing process matches
the duration of dephasing up to that point. Therefore, the maximum spin echo
signal can be detected at t = 2τ , denoted as the echo time (TE). However, the
spin echo signal is always weaker than the FID. Its peak strength is determined
by the T2-relaxation curve [36, 35]. This phenomenon is illustrated in figure 2.6.

T2*

90° pulse 180° pulse

Figure 2.6 This figure illustrates the most basic spin echo sequence. The initial 90°
excitation pulse is followed by another with a flip angle of Θ = 180°. Adapted and
extended from [31], p. 90.

Furthermore, this principle can be extended to multi-echo sequences. In such
sequences, successive 180°-pulses are applied to the tissue, until transverse mag-
netization is completely decayed according to the T2-relaxation [36, 35]. With
this approach, one can obtain several images of the same location with different
T1/T2-weighting, all without increasing the overall acquisition time [31].

The outlined theory of MRI physics serves as the foundation for acquiring NMR
signals. However, additional steps are needed to be able to create spatially resolved
images, because according to the pre-described theory, all spins in the scanner
perceive the same B-field, thus they posess the same larmor frequency. Therefore,
all spins are excitated with the same RF pulse and afterwards they send an
equivalent NMR signal, regardless of their location in the scanner. This uniformity
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would make it impossible to distinguish between signals from different spatial
locations. The first step in resolving this issue is the utilization of gradient fields,
which were first mentioned by Lauterbur in 1973 [37].

Gradient Coils

Gradient coils can apply a linear magnetic field along a given axis and overlay
with the static field B⃗0. Therefore they can induce local variations in the magnetic
field and subsequently a local change in ωL (See eq. (4)) [37].
Having a gradient coil in z-direction allows for spatial resolution of the image
in this dimension. The gradient coil must be switched on simultaneously with
the RF-pulse for the excitation of a single slice, rather than the whole subject.
The slice thickness and thus the resolution can be determined by the increase in
intensity of the gradient field along the given axis. For a stronger/steeper increase,
the slice will be thinner (see Fig. 2.7).
Therefore, the gradient coil in z-direction is referred to as the slice selecting gradient
coil (Gs) [31].

z

𝜔

Δ𝜔!

Δ𝑧!

Figure 2.7 This figure illustrates the effect of the slice selection gradient on the perceived
linear magnetic field (green line). This leads to an excitation frequency width ∆ω0
and the resulting selected slice in z-direction with its thickness ∆z0 in a given subject.
Adapted from [31], p. 101.

By utilizing the slice-selecting gradient coil, one of the three desired spatial
dimensions is resolved. Consequently, two additional gradient coils are needed to
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resolve the remaining dimensions, one for the x-axis and one for the y-axis.
To encode the x-direction, another gradient coil, which also introduces a linear
dependency of the Larmor frequency in the x-direction, must be activated. This
gradient field is switched on during signal acquisition, giving each voxel in a given
row along the x-direction a unique Larmor frequency as its precession frequency.
Hence, this gradient is called the frequency encoding gradient (GF). The intensity
and spatial information of this row of voxels are encoded by applying a Fourier
transformation to the received mixture of signals from all the voxels. This process
allows to encode the information for each individual voxel.
For the final dimension, the y-direction, a different method is required to achieve
spatial encoding, as otherwise, at least two voxels with the same Larmor frequency
would appear and be indistinguishable. Therefore, a phase encoding gradient coil
(GP) is utilized. This gradient coil is activated briefly between the pulse and
signal acquisition stages. This causes spins to precess at different speeds for a
short period. After deactivation of the gradient, spins exhibit varying phase shifts
directly corresponding to their positions along the y-direction. Subsequently, these
phase shifts can be encoded. In conclusion, Fourier transformation is applied to
obtain both the intensity and spatial information from each voxel. These values
can then be converted into a series of grayscale images. Finally, those can be
stacked to form the conventional MRI volume, which is used in daily medical
applications.

2.4.2 MRI Sequences
All images used for clinical diagnostic purposes must display a clear contrast
between any pathology and normal anatomical features. Without this contrast,
physicians cannot detect abnormalities within the examined tissue.
In MRI images, the contrast is influenced by intrinsic and extrinsic parameters.
The intrinsic parameters are fundamental properties of tissues that affect their
MR-signal and cannot be influenced. However, the extrinsic parameters, like
field strength, imaging sequences or contrast agents can be modified, hence this
subsection will focus on those.
One can obtain a high signal of a specific tissue, if there’s a large transverse
component of coherent magnetization at t=TE, resulting in a bright voxel in the
image. T1 and T2 relaxation times vary across different tissues, which can be
utilized to create different contrasts in the images (see table 2.1). With higher
magnetic fields, T1-relaxation is increasing, whereas T2-relaxation almost stays
the same [38, 39, 40, 41, 42].
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Table 2.1 This table shows the approximate T1 and T2 relaxation times of different
tissues at 3T in milliseconds at body temperature. Data from [43].

Tissue T1 time [ms] T2 time [ms]
Water 4000 2000
Fat 250 70
Muscle 900 50
Liver 500 40

To get the desired contrast - in the following referred to as sequences or modalities
- specific values for TR and TE need to be selected for a given pulse sequence. As
a result, the image is weighted to emphasize a particular contrast mechanism.
In this study, two fundamental types of contrast will be explained: T1-weighted
and T2-weighted contrasts. Following that, contrast enhancement via the injection
of a contrast agent and a specific T1-weighted sequence known as the T1-VIBE
sequence will be discussed, due to its significance for the main objective of this
thesis.

T1-weighted Images

Images in which the contrast primarily relies on the variations in T1 times be-
tween different tissues - primarily fat and water - are referred to as T1-weighted.
By adjusting the repetition time (TR), it is possible to control the recovery of
the transverse component of magnetization for each tissue before the subsequent
excitation. Therefore, TR has to be short enough that the net magnetization from
fat and water can’t completely return to align to B⃗0, within that timeframe.
Optimal contrast is achieved at the point where the difference in longitudinal
magnetization between the two tissues is greatest. T1-weighted images are charac-
terized by bright signals in fatty tissues, whereas water, lesions such as cysts or
tumors and veins appear dark. An example for a standard T1-image is illustrated
in figure 2.8 (a).

T2-weighted Images

Given that water possesses a much longer T2 relaxation time compared to fat (see
table 2.1), the transverse magnetization component of fat decays more rapidly.
This rapid decay results in a diminished signal from fat at later time points. T2
weighting is primarily influenced by the echo time (TE), which determines the
extent of T2 decay occurring before the signal acquisition. Thus, TE plays a
crucial role in defining the degree of T2 contrast in the resulting image.
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T2-weighted images are characterized by bright signals in tissues with high water
content, as inflamed liver tissue, cysts and some types of tumors and fat and
fibrous or cirrhotic tissues appear darker due to its lower water content compared
to healthy liver tissue.

Contrast Enhancement

Contrast enhancement can be achieved by injection of a contrast agent that is
capable of shortening the T1-relaxation time in tissues. For the liver, there are
mainly two hepatocyte-selective contrast media, namely gadobenate dimeglumine
(Gd-BOPTA) and gadoxetic acid (Gd-EOB-DTPA), also known as Primovist in
Europe or as Eovist in the USA [44, 45].
Both of them contain Gadolinium, which is a paramagnetic ion with unpaired
electrons, creating a local magnetic field. This can interact with nearby water
protons in the body and shorten their T1 relaxation time. Because of this, tissues
where it accumulates appear brighter on T1-weighted MRI images [46].
Primovist is directly specialized for liver imaging, with significant hepatocyte
uptake and equal renal and biliary excretion [47]. With this, it can provide both
morphological and functional liver imaging and thus it the choice for MRI imaging
of patients with liver diseases in our clinic. The dynamic contrast enhancement of
it can be seen in figure 2.8, when comparing the native T1 image (a) to the ones
during and after contrast agent injection (b) - (e).

VIBE-sequence

The T1-VIBE (T1-Volume Interpolated Breath-hold Examination) sequence is
frequently used in MRI for high-resolution liver-specific imaging because of its
rapid acquisition and excellent spatial resolution. This makes it ideal for dynamic
abdominal imaging, including liver scans using contrast agents like Primovist.
Various methods can be used with this sequence to selectively suppress fat signal.
For the datasets in this thesis, the spectral fat suppression was used, which utilizes
the different resonance frequencies between water- and fat-bound protons. A
narrow-band frequency-selective RF-pulse excites mainly protons bound in fat and
their transversal magnetization is destroyed with spoiler gradients, thus no fat
magnetization can be measured. This helps in optimizing the visualization of the
liver parenchyma and improving the detection of lesions and vascular structures
during MRI examinations with contrast agents [48, 49, 50].
In T1-VIBE sequences, multiple thin sections of the body are acquired during
a single breath-hold. This reduces motion artifacts and enables for detailed
visualizations of anatomical structures and dynamic processes such as perfusion.
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Five images are acquired sequentially, reflecting the dynamic contrast enhancement
of the liver, caused by the Primovist. The five phases are called native, arterial,
late arterial, portalvenous, hepatobiliary late phase (HBP20). All of them are
illustrated for one patient of the cohort in figure 2.8 (a) - (e). The first phase is
acquired prior any application of Primovist and the last one ist typically acquired
about 20 minutes after injection of the contrast agent [49, 50].

(a) (b) (c)

(d) (e)

Figure 2.8 This figure demonstrates the dynamic contrast enhancement of a T1-VIBE
sequence for one subject in the cohort. From (a) to (e), one can see the native, arterial,
late arterial, portalvenous and hepatobiliary late (HBP-20) phase.
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2.5 Artificial Intelligence
Finding and precisely delineating damaged tissue within the liver and segmenting
the whole organ for an estimation of survival is a crucial step in surgical planning.
Liver volumetry is done both automated and manually. While manual segmentation
in medical images is still considered as the gold standard and almost always used
as a baseline for performance evaluation of a segmentation algorithm, there are a
lot of downsides to it. It requires a highly experienced physician, is very prone
to inter- and intra-rater variability and it’s very tedious and time-consuming on
three dimensional MRI images [51, 52, 53]. Hence, there’s a lot of motivation to
build and use automated techniques like neural networks or transformer models
for tasks like that. After receiving automatically created segmentation maps of the
tissue under observation one can use those to extract meaningful features of the
MRIs to train machine learning models for liver function estimation, as deployed
in this thesis.
To understand the methods used in this work, the basic principles of conventional
machine learning (ML) algorithms and advanced deep learning (DL) models,
which are both subcategories of artificial intelligence (AI), will be explained in the
following [54].
If not stated differently, the following subsections are mainly obtained from [55,
56] and [57].

2.5.1 Conventional Machine Learning
Conventional machine learning (ML) encompasses a range of algorithms and
techniques used for classification, regression, clustering, and other tasks. These
methods can be broadly categorized into supervised and unsupervised learning.
Supervised Learning involves training a model on labeled data, where not only
the input features, but also the corresponding output labels are known. The goal
is to learn how the inputs can be mapped to the outputs and use this to generate
predictions on new, unseen data. Examples include classification algorithms like
Random Forest [58] and Gradient Boosting [59, 60], as well as regression techniques
[61, 62, 63] and Support Vector Machines [64, 65].
On the other hand, Unsupervised Learning deals with unlabeled data. The
objective is to identify patterns or structures within the data. Common unsuper-
vised learning techniques include clustering algorithms such as K-means [66] and
hierarchical clustering [67], and dimensionality reduction methods like Principal
Component Analysis (PCA) [68].
In the context of medical imaging, conventional ML techniques have been widely
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used for tasks such as tumor detection, organ segmentation, and disease classifica-
tion. Commonly, cross-validation is employed to ensure the model performs well
on unseen data [69, 70, 71, 72, 73, 74].
For the liver function estimation in this thesis, meaningful features are extracted
from the MRI images with automated segmentations, generated by deep learning
models, and subsequently those are used to build and train predictive machine
learning models with supervised learning. Those employed methods will be ex-
plained in detail in the following.

Random Forest

The random forest algorithm is a basic, but powerful, ensemble machine learning
method that was introduced by Leo Breiman in 2001 [58]. It can be used for
multiple tasks, including classification, regression and clustering. The method
operates by building numerous decision trees during the training phase, typically
numbering in the hundreds or thousands, hence the name forest. Every tree is
built on a different randomly selected subset of the training data with a technique
called bagging [75] (bootstrap aggregating), introducing further diversity among
the trees. Random forests further enhance this diversity by randomly selecting
a subset of features to consider at each node split, a technique known as feature
bagging [76]. This combination of bagging and random feature selection helps
mitigate overfitting, a common problem in machine learning, where the applied
method performs good on the training dataset but poor on unknown data. In
other words, the method is not able to generalize well. The final prediction is
determined by aggregating the predictions of all trees, either through averaging
(for regression) or majority voting (for classification) [58]. A schematic illustration
of the Random Forest is given in figure 2.9.
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Random Forest

Dataset (X)

Random Subset (1) Random Subset (N)Random Subset (2) Random Subset (3) Random Subset (4)

Decision Tree (1) Decision Tree (N)Decision Tree (2) Decision Tree (3) Decision Tree (4)
…

…

Result (1) Result (2) Result (3) Result (4) Result (N)

Majority Voting / Averaging

Final Result

Figure 2.9 This figure illustrates a basic Random Forest. The dataset is split into random
subsets, and based on each of those, a decision tree is built and trained. Depending
on the task, the results from each of the N decision trees are then either averaged (for
regression tasks) or majority voted (for classification tasks) to get the final result.

Random forests are popular because of their ability to handle high-dimensional
data and their high accuracy, robustness to outliers and noise. On top of that, they
can also provide measures for feature importance, making them suitable for feature
selection and interpretation of the results. However, they can be computationally
intensive and may struggle with imbalanced datasets [77, 78, 79, 80, 81].

Gradient Boosting Algorithms

Another basic machine learning approach for classification and regression tasks
are Gradient boosting algorithms. They are based on the foundational work
of Freund and Schapire, who introduced the AdaBoost algorithm in 1995 [59].
AdaBoost was a significant milestone in machine learning applications and laid
the groundwork for subsequent advancements in boosting techniques. Gradient
boosting specifically, as further developed by Friedman in 2001, extends these
concepts by sequentially building an ensemble of weak learners, typically decision
trees, to improve predictive accuracy through gradient descent optimization [82].
A highly scalable and efficient implementation of such an algorithm is XGBoost
(eXtreme Gradient Boosting), as introduced by Chen et.al. in 2016 (see Fig. 2.10).
This incorporates various optimizations such as tree pruning and regularization,
which makes it particularly effective for competitive machine learning tasks and
large datasets [60]. Tree pruning is used, which is a method, where the model
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Dataset X
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Figure 2.10 This figure is a flow chart of XGBoost. Each tree depends on the residual of
its predecessor. The trees work with the input X and they learn a parameter Θ during
the training. The final prediction is received by summation over all outputs.

is simplified by removing sections of the tree that are non-critical or redundant
for classifying instances [83]. Regularization is employed in two ways. L1 (Lasso
(least absolute shrinkage and selection operator)) regularization is used as well as
L2 (Ridge) regularization. A more detailed explanation of these techniques can
be found in the following paragraph about regression models. On top of those
optimizations, parallel processing is also employed in the XGBoost algorithm.
During training, a weight parameter Θ for each tree is implicitly learned.
Contrary to the Random Forest, where each tree is constructed independently
using bagging, the XGBoost algorithm builds trees sequentially. There, every new
tree tries to correct the errors made by the previous ones, and thus enhancing
the model’s accuracy through gradient boosting (see Fig. 2.10) [60]. With this
sequential approach, XGBoost is able to reduce both bias and variance more
effectively than Random Forest [84, 85, 86]. XGBoost’s advanced optimization
features along with its excellent predictive performance, make it a widely used
choice for achieving high accuracy in complex tasks, particular in structured or
tabular scenarios [87, 88, 89, 90].
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Regression Models

In machine learning, regression analysis is a fundamental technique for modeling
relationships between variables.
Linear regression is the simplest form of a regression model. It tries to establish
a linear relationship between dependent variables y⃗ (target) and independent
variables x⃗ (predictors) with the equation:

y⃗ = β0 + β1x1 + β2x2 + ... + βnxn + ϵ. (12)

There, β0 is the intercept, e.g. the value, where the linear regression line crosses
the y-axis and β1, ..., βn are the coefficients of the independent variables. ϵ denotes
the error or disturbance term that accounts for differences between the observed
values of the dependent variable y⃗ and the values predicted by the regression model.
Loss functions play a crucial role in measuring how well a model’s predictions
match the actual data in machine learning. For regression tasks, one common
loss function is the Ordinary Least Squares (OLS), which minimizes the sum of
squared residuals:

Cost function
(
y⃗ true, y⃗ pred

)
=

p∑
i=1

(
y⃗ true − y⃗ pred

)2
, (13)

where y⃗ true refers to the actual value and y⃗ pred is the predicted value. The goal in
training regression models is to minimize this loss function, thereby improving the
model’s accuracy [91, 62, 61].
However, to improve model generalization and adress overfitting, regularized
variants of linear regression have been developed.
Lasso Regression (L1 regularization) is one commonly used of those. It adds a
penalty term to the linear regression’s cost function based on the absolute values
of the coefficients β⃗:

Lasso cost function
(
y⃗ true, y⃗ pred

)
=

p∑
i=1

(
y⃗ true − y⃗ pred

)2
+ λ

n∑
j=1

|βj|, (14)

where λ is referred to as the regularization parameter. With this, some coefficients
can be shrunk or even set to zero and therefore less important features are
eliminated from the model, thus some sort of automatic feature selection is
performed. This type of regression is particularly useful for models with high-
dimensional data, where automatic feature selection is beneficial [92, 62].
Ridge Regression (L2 regularization) on the other hand adds a penalty term
to the linear regression cost function based on the squared magnitude of the
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coefficients:

Ridge cost function
(
y⃗ true, y⃗ pred

)
=

p∑
i=1

(
y⃗ true − y⃗ pred

)2
+ λ

n∑
j=1

β2
j . (15)

Contrary to Lasso, Ridge does not set any coefficients to zero but shrinks them
toward zero with the regularization parameter λ. This helps to reduce model
complexity and multicollinearity. This type of regression is particularly useful
for multicollinear data, because it is addressing the issues of highly correlated
predictors and thus allows for more stable and interpretable models [93, 62, 61].
Elastic Net Regression combines both L1 and L2 regularizations, thus offering
a balance between coefficient shrinkage and feature selection. Mathematically, it
can be described by:

Elastic Net cost function
(
y⃗ true, y⃗ pred

)
=

p∑
i=1

(
y⃗ true − y⃗ pred

)2
+λ

n∑
j=1

β2
j +α

n∑
j=1

|βj|.

(16)
Those regularization techniques can help in handling mutlicollinearity and high-
dimensional data [94].
The choice of regularization often depends on the specific dataset and problem and it
is always good practice to test them against each other. The regularization strength
of those models depends on the parameters λ or α and can be optimized through
cross validation for achieving the best trade-off between predictive performance
and model complexity [63, 95].
Logistic Regression is a technique for binary classification problems. Unlike
linear regression which predicts continuous values, logistic regression estimates the
probability that an instance belongs to a particular class. The logistic function
(also called sigmoid function) is used to map predictions to probabilities between
0 and 1:

P (y = 1|x⃗) = 1
1 + e−(β0+β1x1+...+βnxn) (17)

Where P (y = 1|x⃗) is the probability that y belongs to class 1 given input x⃗, and
βi are the model parameters. The cost function used for logistic regression is the
log loss or cross-entropy:

Logistic Regression Cost function = − 1
m

m∑
i=1

[yi log(ŷi) + (1 − yi) log(1 − ŷi)] (18)

Where yi is the true class and ŷi is the predicted probability. Like linear regression,
logistic regression can also be regularized using L1 and/or L2 penalties to prevent
overfitting. Logistic regression is particularly useful for interpretable models
and when the relationship between input features and output probabilities is
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approximately linear. It serves as a foundation for more complex classification
algorithms [62].

Support Vector Machines

Support Vector Machines (SVMs) are robust supervised machine learning algo-
rithms used for classification and can be extended to so called Support Vector
Regression (SVRs) for regression tasks. They are based on the Vapnik-Chervonenkis
theory, which was developed from the 1960s to the 1990s [64, 65]. While SVMs
aim to find the optimal hyperplane that maximally separates different classes in
the feature space, SVR tries to find a function that deviates from the actual target
values by less than a pre-defined margin ϵ [96].
Schematic illustrations of those approaches can be found in figures 2.11 and 2.12,
respectively.

Figure 2.11 Schematic illustration of classification boundaries for a Support Vector
Machine with a polynomial kernel of degree 3.

Both techniques employ the so-called kernel trick, allowing them efficient com-
putation of dot products in high-dimensional feature spaces without the need to
explicitly compute the coordinates. With this, they are able to handle non-linear
relationships by implicitly mapping input data into a higher dimensional space.
Contrary to explicitly transforming the data, the kernel trick approximates inner
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Figure 2.12 Illustration of Support Vector Regression for a polynomial kernel of degree
3.

products in the transformed feature space directly with a kernel function k(xi, xj),
simplifying the computations significantly. A basic example for such a function
would be the polynomial kernel [97]:

k(x⃗i, x⃗j) = (x⃗i · x⃗j + 1)d , (19)

which allows the SVMs to create a complex decision boundary without the need
for explicit mapping, thus making the algorithm computationally efficient.
In its basic form, SVMs are designed to solve binary classification problems, by
finding the optimal hyperplane that separates both classes. However, this can be
extended to multiclass classification problems with several techniques. The most
common are One-vs-Rest (OvR) and One-vs-One (OvO).
For the One-vs-Rest method, a separate binary classifier is trained for each class,
where each classifier differentiates between its class and all other classes combined.
This results in K binary classifiers for K classes. The final prediction is chosen
based on the highest confidence score for a given class [98, 99].
The One-vs-One approach trains a binary classifier for every pairwise combination
of classes. This results in K(K−1)

2 classifiers. Each classifier is trained just to
distinguish between two classes, ignoring all others. During prediction, the final
output is received by majority voting of all predictions from all classifiers [100, 99].
Those strategies allow SVMs to handle multiclass-classification problems.
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2.5.2 Neural Networks
Neural networks are inspired by the learning processes of the human brain that
consists of neurons interconnected by axons and dendrites. Those are then con-
nected by synapses. The strength of the synaptic connections can be altered by
external stimuli. Basically, this represents the learning process in living organisms.
Artificial neural networks - referred to simply as neural networks (NNs) in this
thesis - attempt to mimic these biological mechanisms. The computational units,
also called neurons, are connected by weights that resemble the synaptic connection
strengths in the human brain. The network processes input data by transmitting
values from input nodes to output nodes, effectively calculating a function of the
provided inputs.
Unlike for traditional programming, where one has input data and must explicitly
code the instructions to achieve the desired output, supervised deep learning
(DL) applications use both input and output data for a given training subset, as
explained in the previous subsection. Both datasets are fed into the neural network
and in an ideal scenario, the network learns to extract features from the input
data by itself, to generate the output data [54]. This process is referred to as the
training process, where the best values for the weights can be determined and are
adjusted accordingly. The input-output pairs used in this process are analogous to
the external stimuli required for learning in biological organisms.
For this thesis, those pairs are represented by voxel representations of three-
dimensional patches of the abdominal MRI scan and their corresponding label
maps. Those maps maintain the same voxel spacing and dimensions as the original
MRI images, where voxels overlapping with the liver are assigned a value of one,
those overlapping with a lesion have a value of four, and the remaining six tissues
of interest are similarly annotated with other values in those volumes. These labels
are crucial for the network to know where it has to look for the important features
in the MRI image, to be able to extract and learn those.
The patches and labels are fed to the network, where it tries to predict the voxels
corresponding to the tissues of interest, using the three-dimensional patches from
the original MRI image. The labels provide feedback to the network regarding the
accuracy of its predictions. As a result, the network adjusts its weights to better
match its predictions more closely with the annotations in the label maps. This
process is performed after each iteration, resulting in enhanced model performance,
if the training parameters are appropriately configured. With a large and hetero-
geneous dataset, the network can learn various representations of what it should
detect, reducing the difficulty of identifying unknown data. This phenomenon,
is known as model generalization. With increasing dataset size, deep learning
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models are able to achieve much higher accuracy compared to conventional machine
learning models.

Perceptrons

The most basic neural network was invented by Rosenblatt in 1958 and is called a
perceptron [101]. It consists of a single input layer and an output node (see Fig.
2.13). In the input layer, a series of inputs is directly fed into the network. These
inputs are - depending on the network’s activation function Φ(·) and the weights
- mapped to an output. Computation occurs only in the output layer without
any feedback loop from the output back to the input layer. Such a network is
operating in what is referred to as a feed-forward mode. Because of this, the
predicted output signal y⃗ pred can be described by:

y⃗ pred = Φ(ν⃗) = Φ
∑

k,n

wk,nxn

 . (20)

Here, ν⃗ represents the local field, wk,n denotes the edge weights and xn are the
input signals.
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Figure 2.13 Schematic representation of a single-layer perceptron. The orange x’s
are the input neurons, which are connected to the green output neuron (y) via their
corresponding weights and an activation function. There, the sign function was used as
activation function, which decides, whether the output neuron will be activated or not,
based on the weighted sum of the input neurons.
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An simple task like binary classification in combination with the sign activation
function (see Fig. 2.13) is well suited for a basic explanation. There, the summation
is mapped to the value +1 or -1 and therefore, the weighted sum of the inputs
can be converted into a class label. Typically, some part of the prediction remains
invariant and is referred to as bias bn. The combination of this with (20) leads to:

y⃗ pred = sign(
∑
k,n

wx,nxn + bn). (21)

For further explanations the bias term will be neglected and hence bn = 0. The
prediction’s error for this is calculated by

E⃗(y⃗ true, y⃗ pred) = y⃗ true − y⃗ pred. (22)

Combined with prior explanation, this can possess a value from the set {−2; 0; +2}.
Such a neural network is capable of linearly splitting the hyperspace with its acti-
vation function, hence it is able to learn problems that can be linearly separated.
To overcome the limitations of a single-layer perceptron and be capable of solv-
ing nonlinear problems, multilayer perceptrons are introduced. Basically, those
are several serially connected single-layer perceptrons, also operating in the feed-
forward mode. The first and last layer are called the input- and the output-layer,
respectively. All layers in between are referred to as hidden-layers. The width of a
a layer is determined by the number of neurons in it, while the number of layers
defines the depth of the neural network. A schematic representation of a multilayer
perceptron with three hidden layers, each having a width of four, is shown in
figure 2.14. All the layers are fully connected, meaning that each neuron in layer
n+1 is connected to every single neuron in layer n. In the following text, matrices
are represented by capital letters with arrows, whereas vectors are denoted by
lowercase letters with arrows.
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Figure 2.14 Multi-layer perceptron with three hidden layers, two input neurons, and
two output neurons. The orange x’s are the input neurons, which are fully connected to
the blue neurons in the hidden layers via their corresponding weights and an activation
function. The arrows indicate the feed-forward process. The hidden layers are fully
connected with the green output neurons.

Denoting the k weights between the k neurons in the m-th and the n neurons in
the (m-1)-th layer as a matrix, leads to:

W⃗ (m) =


w

(m)
0,0 . . . w

(m)
0,n

w
(m)
1,0 . . . w

(m)
1,n

... ... ...
w

(m)
k,0 . . . w

(m)
k,n

 . (23)

The same can be done with the inputs. Therefore, the input to the neurons in the
first hidden layer can be calculated with:

h⃗(1) =


h

(1)
0

h
(1)
1
...

h(1)
n

 = W⃗ (0) · x⃗(0) =
∑
k,n

w
(0)
k,n · x(0)

n . (24)

With this, the output of the k neurons in the first hidden layer to the n neurons
in the second one is:
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a⃗(1) = Φ
(
h⃗(1)

)
=


Φ(h(1)

0 )
Φ(h(1)

1 )
...

Φ(h(1)
n )

 = Φ0

∑
k,n

w
(0)
k,n · x(0)

n

 , (25)

the same as the output of a single layer perceptron (see Eq. (20)).
Generalized, the output of the (i-1)-th layer with k neurons to the j neurons in
the i-th layer is:

a⃗(i) = Φi−1
(
W⃗ (i−1) · a⃗(i−1)

)
= Φi−1

∑
j,k

w
(i−1)
j,k ·

Φi−2

∑
k,n

w
(i−2)
k,n · a(i−2)

n

 .

(26)
By concatenating multiple layers, the network becomes capable of solving nonlinear
problems. However, to achieve this, the activation function must be nonlinear,
because a composition of linear functions would still result in a linear function.
Some relevant activation functions are described in the following subsection.

Activation Functions

There are various activation functions to choose from, each playing a crucial
role in neural networks by influencing the model’s capacity to capture nonlinear
relationships within the data. The sigmoid activation function, characterized by its
S-shaped curve (see Fig. 2.15 (a)), is particularly effective when employed in the
output layer for binary classification tasks. Its output can be directly interpreted
as the probability of a given voxel belonging to the desired class.
In the context of multiclass classification, such as in this thesis, the softmax
activation function emerges as a natural extension of the sigmoid function and is
applied in the output layer of the evaluated architectures. This function transforms
raw logits into probabilities across multiple classes, ensuring that the sum of the
predicted probabilities for all classes equals 1. Conceptually, the softmax function
can be seen as an expansion of the sigmoid function across multiple dimensions,
reflecting the probabilistic distribution of inputs into distinct classes. For example,
in this thesis involving classification among 7 foreground and 1 background class,
the softmax activation function serves as a mechanism to estimate the likelihood
of each observation belonging to any of the specified categories [102].
Rectified linear units (ReLU) activation functions were introduced to adress the
vanishing gradient problem commonly observed in neural networks during training,
while maintaining computational efficiency [103, 104].
However, a drawback arises as inputs below zero are clipped, rendering neurons
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dead. This issue prompted the development of the Leaky ReLU variant (see Fig.
2.15 (b)), introducing a small, non-zero gradient for negative inputs to enhance
model robustness [105].
In this thesis, Leaky ReLU is used in the hidden layers of the nn-UNet variants
(see subsection 3.4.1). For the SwinUNetR architecture (see subsection 3.4.3), the
Gaussian Error Linear Unit (GELU) is applied in all layers except the last one. In
contrast to Leaky ReLU, it shows a smooth, continuous non-linearity and therefore
is differentiable everywhere. This provides a more stable gradient flow during
training and can help contributing to faster convergence during training [106].

(a) (b) (c)

Figure 2.15 Three common activation functions that are typically employed in neural
networks. The Sigmoid (a), the Leaky ReLU (b) and the GELU (c) activation function.

Loss Functions

As introduced in section 2.5.1 Regression models, a loss function measures the
discrepancy between a model’s predictions and the actual data. In neural networks,
these functions take on additional importance due to the complexity of the models.
The loss functions are an integral part of a neural network and measure, how good
the predictions of the network during the training phase are. This process can
be illustrated with a very straightforward cost function, the mean squared error
(MSE). Given a multilayer perceptron with one in- and output layer and only one
hidden layer with N training examples, this loss function would be:

L
(
y⃗ true, y⃗ pred

)
= 1

2N

∑
j

(
ytrue

j − ypred
j

)2

= 1
2N

∑
j

(
ytrue

j − Φ1
(
W⃗ 1 · a⃗(1)

))2

= 1
2N

∑
j

(ytrue
j − Φ1

(∑
k

w
(1)
j,k · Φ0

(∑
n

w
(0)
k,n · x(0)

n

))2

.

(27)
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The loss function measures the error of the predictions, and the network aims to
minimize this error during training by continuously adjusting the weights using a
learning rate η until convergence is achieved. This process is known as learning
with gradient descent, where η dictates the magnitude of changes in the trainable
parameters during each adjustment [107, 108]. The gradient of the trainable
parameters - the weights in the given example - is computed sequentially from the
last layer to the first, a process known as backpropagation and briefly explained in
the next subsection (2.5.2) [109].

Backpropagation

Basically the network’s operation in each step during training contains two sweeps
through the whole network. Initially, inputs are presented in mini-batches (several
samples simultaneously), to compute neuron activities in the first layer [109].
Using mini-batches offers several advantages in estimating the gradient over the
whole training set, compared to the single-sample calculations. Moreover, it can
accelerate the training, by enabling parallel computations across a mini-batch of
m samples instead of sequentially computing those [110].
This output serves as the input to the next layer and repeats, until the output
layer is reached. There, the network produces the components of the vector y⃗ pred,
which is the net’s estimation of y⃗ true. Following this, every output neuron will
be set to its correct output, which starts the second sweep. This is known as the
backward phase, where signals propagate backwards from the output to the input,
hence the name backpropagation. During this phase, the gradients are calculated
[109].
The generalized learning rule for this process is as follows:

weight adjustment = −learning rate · local gradient · input j to neuron
∆w

(m)
k,n = − η · δk · x(m)

n .
(28)

It is important to note that δk, depending on the specific layer, can represent a
local gradient influenced by other local gradients. For δk ̸= 0, the weight ω

(m)
k,n

must be adjusted after the iteration, according to the following rule:

w
new(m)
k,n = w

old(m)
k,n + ∆w

(m)
k,n . (29)

After adjusting the weights, the network processes the next mini-batch during
the forward phase. Then, the backpropagation algorithm starts again. This cycle
continues until a predefined condition is met.
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2.5.3 Convolutional Neural Networks
Convolutional Neural Networks (CNNs) are specialized types of Artificial Neu-
ral Networks (ANNs) that include at least one convolutional layer. They are
particularly effective for processing data with a grid-like topology and spatial
dependencies, like the 3D MRI volumes used in this thesis. However, the principles
of CNNs can also be applied to other types of data, like audio or video. This
section introduces the main concepts of CNNs for image processing, which are
essential for understanding the used architectures. A typical CNN comprises sev-
eral convolutional, pooling, and normalization layers, often incorporating residual
blocks as well. Nowadays, also deep supervision is commonly employed. All of
those building blocks are explained in the following subsection.

Convolution Layers

The most important defining characteristic of a CNN is the convolution operation,
which leverages three key ideas that can enhance machine learning systems: equiv-
ariant representations, sparse connectivity, and parameter sharing. In the context
of CNNs (Convolutional Neural Networks), convolution refers to the process of
multiplying a grid-structured set of inputs with a similar grid-structured set of
weights, known as kernels or filters. Unlike traditional neural networks, where
layers are fully connected, CNNs generally feature sparse connectivity (see Fig.
2.16 (a)).
This is achieved by the use of a grid-structured weights matrix, or kernel, which is
significantly smaller than the entire input volume. Small but meaningful features
such as edges and textures can be detected within a small 3D volume of, about
10 × 10 × 10 voxels, even if the entire input volume has a resolution of 512
× 512 × 512 voxels or more. This method reduces the number of operations
required to compute the output, thereby significantly lowering the computational
cost compared to traditional fully connected neural networks (see Fig. 2.16 (b)).
Additionally, this approach allows 3D CNNs to effectively capture and utilize local
patterns within three-dimensional data.
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Figure 2.16 Impact of sparse connectivity versus fully connected layers, as seen from a
top view. In both subfigures, the output unit s3 and the influencing input units xn are
highlighted in blue. Those xn’s are referred to as the receptive field of s3. In (a) s⃗ is
formed through convolution with a 3-unit-wide kernel, resulting in a receptive field for
s3 that includes only three input units. Contrary to that, (b) shows s⃗ as fully connected
to all of the input units, where all of them affect s3.

For a layer with m in- and n outputs, the matrix multiplication requires m × n

parameters, resulting in a runtime O(m × n). In a sparsely connected approach,
if each output has only k connections and k << m, the runtime is significantly
faster, especially with an increasing amount of layers.
In traditional neural networks, each weight matrix element is used once to compute
the layer’s output (see Fig. 2.17 (a)). In CNNs, weight sharing means each distinct
kernel element is used multiple times for every input position (see Fig. 2.17 (b)),
except for edge neurons like x1 and x5 which lack adjacent partners in the s-layer.
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Figure 2.17 This figure demonstrates the impact of parameter sharing in convolutional
layers versus fully connected layers. In both subfigures, specific parameters that are equal
are highlighted in the same color. In (a), due to parameter sharing, the 3 elements of
the kernel are utilized across all input positions. Conversely, in (b), the fully connected
model lacks parameter sharing, resulting in each element of the weight matrix being
used only once.
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Image data exhibits translation invariance, where objects are recognized regardless
of their position within the volume. 3D CNNs achieve this by using small 3D
filters that move through the volume with a defined stride, generating similar
feature values from local regions with similar patterns. The stride determines how
far the filter moves in each direction, allowing the 3D CNN to learn features from
adjacent volumetric windows. This particular form of parameter sharing makes
the layer equivariant to translations.
Each layer in a 3D CNN is a 4D grid structure with height h, width w, depth d,
and the number of channels c. The height, width and depth refer to the spatial
dimensions of the input volume (the number of frames in the volumetric image).
In this context, the number of channels refers to the input channels, the amount
of modalities in the input data.
For an input of size h1×w1× d1× c1, each 3D kernel (h2×w2× d2× c1) in the
kernel tensor (h2 × w2 × d2 × c2) moves through the volume, computing the dot
product between the kernel weights and the underlying voxels at each position.
This process produces c2 output feature maps, forming the output tensor with
dimensions h3 × w3 × d3 × c2 (see Fig. 2.18).
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Figure 2.18 Schematic representation of a 3d cconvolution. For clarity, the process is
demonstrated for only one of the color channels. The input matrix is shown in blue with
the dimensions h1 × w1 × d1 × c1. The kernel (filter) matrices are depicted in orange,
with h2 × w2 × d2 representing the size of the given kernel tensor. Althoug c2 would
be the number of kernels in the convolutional layer, it is not shown for better visibility.
The output matrix , shown in green, has the dimensions h3 × w3 × d3 × c2. Adapted
and extended from [111].
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Those convolutions lead to a size reduction of the (n+1)-th layer, compared with
the n-th layer. However, this results in a loss of information at the edges of the
input volume, which is generally undesirable. This issue can be resolved by using
padding, which involves adding zero-value voxels around the edges of the feature
map to preserve its spatial dimensions. The number of layers, rows, and columns
of voxels needed for padding depends on the kernel size and the stride. Since these
added voxels are zeros, they do not contribute to the convolution operation but
allow the kernel to extend beyond the border of the layer. It is crucial to note
that the kernel size and stride directly affect the receptive field, which indicates
the number of output neurons in the previous layer that a specific input in a
hidden layer is connected to (see Fig. 2.16 (a)). Consequently, each feature in the
subsequent layer captures a larger spatial region in the input volume, enabling the
recognition of more complex features. For instance, the first layer may learn edges,
the second layer shapes, and the third layer more complex patterns.
For the architectures used in this thesis, the leaky ReLU or GELU activation
functions are used after the conolutional layers. With this, matrices are generated,
which are generally referred to as activation maps. Subsequently, those are used as
the input for the next layer. Often, those are pooling layers and will be introduced
in the following.

Pooling Layers

In 3D networks, pooling layers operate on small cubic regions of size hpool × wpool ×
dpool within each layer. These layers commonly employ max-pooling, which extracts
maximum values from each cubic region across the activation volumes. Unlike
convolutional layers, pooling layers do not change the number of feature maps. The
pooling operation increases the receptive field while reducing the spatial footprint
due to larger strides. Max-pooling significantly enhances translation invariance
compared to strided convolutions, which reduces computational costs notably in
deeper layers.

Residual Blocks

Deeper networks generally provide better performance, but there is a limit to
the depth of traditional CNN models, beyond which performance degrades with
additional layers. This issue can be mitigated by introducing residual blocks (see
Figure 2.19).
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Figure 2.19 This figure shows a schematic representation of a residual block. x denotes
the input to the residual block and the residual F (x) is the output of the second weight
layer. Both are combined and then presented as an input to the next ReLU function.

The basic principle of such a block is that it creates shortcut connections, enabling
the network to skip one or more layers and allow it to learn residual functions
relative to the layer inputs.

Deep Supervision

Deep supervision is a technique used in neural network training to improve learning
efficiency and model performace, especially in architectures with convolutional and
residual blocks. This involves incorporating additional, smaller neural networks
- also referred to as auxiliary classifiers - at intermediate network layers. Those
generate gradient signals at various depths to ensure that meaningful updates will
also reach the early layers. With this, the vanishing gradient problem can be allevi-
ated. Moreover, faster convergence, enhanced generalization and improved model
accuracy can be achieved by providing direct feedback throughout the network.
Deep supervision can be particularly advantageous in deep architectures, where
standard backpropagation struggles to effectively transmit gradient information
through many layers [112, 113, 114].
This technique is incorporated into the architectures of the nnU-Net framework
that are used for liver segmentation in this thesis [115].

2.5.4 Transformer Networks
Transformer Networks, introduced in 2017 by Vaswani et al. [116], have revolution-
ized various fields, particularly natural language processing (NLP) and computer
vision tasks [117, 118, 119, 120]. This is evident from the success of prominent
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models like ChatGPT, relying on GPT (Generative Pre-trained Transformer) [119,
121] and Google’s BERT [120]. These models have become well-known tools, even
among people not deeply involved in machine learning.

Self-Attention Mechanisms

The main innovation of Transformers is the so-called self-attention mechanism,
allowing the model to dynamically focus on relevant parts of the input while
processing it. This enables the model to capture long-range dependencies and
contextual information.
The self-attention mechanism operates on three main components: Queries (Q),
Keys (K) and Values (V). Those are derived from the input sequence by learnable
weight matrices that resemble linear transformations. With an input matrix X,
this derives to:

Q = X · W Q

K = X · W K

V = X · W V ,

(30)

where W Q, W K , W V are the learned weight matrices. With this, attention scores
are calculated by taking the dot product of each Query vector with all Key vectors.
After scaling them, a softmax activation function is applied to get attention weights.
Subsequently those are multiplied with the corresponding Value vectors, which
can be mathematically expressed as:

Attention(Q, K, V ) = softmax

(
QKT

√
dK

)
V. (31)

The dimension of the Key vectors, dK , is used for scaling to improve numerical
stability. This approach allows each position in the sequence to attend at all
positions, which enables the model to capture global dependencies regardless of
their distance in the given sequence.
This can be expanded to the typically employed multi-head self-attention, which
performs additional self-attention operations multiple times in parallel, but with
different learnable functions for every so-called head. For n heads, this can be
expressed as:

MultiHead(Q, K, V ) = Concat(head1, ..., headn)W 0, (32)

with
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headi = Attention
(
QW Q

i , KW K
i , V W V

i

)
= softmax

(
(QW Q

i )(KW K
i )T

√
dK

)(
V W V

i

)
.

(33)
The key-differences to only the original self-attention mechanism is that every
head has its own set of additional learned weight matrices W Q

i , W K
i and W V

i to
transform their inputs Q, K and V, which are the derived values obtained from
equations (30).
In other words, this becomes a two-step transformation, where in the first step
the input sequence X → Q, K, V and then Q, K, V → Qi, Ki, Vi, the head’s
specific representations for Query, Key and Value. This allows each head to
focus on different aspects of the same input and enhances the model’s ability to
capture various aspects of the input data simultaneously. This multi-head approach
has proven particularly effective in vision transformers and hybrid architectures,
enabling the model to process visual information at multiple scales and perspectives,
concurrently [116, 118, 122, 123].

Vision Transformers

For computer vision tasks, a powerful alternative to Convolutional Neural Networks
has recently emerged, the so-called Vision Transformers (ViTs). They offer several
key advantages and were introduced by the prominent Google paper "An image is
worth 16x16 words" [122].
ViTs adapt the transformer architecture that has been originally designed for
natural language processing tasks to image analysis. The main innovation is
their approach to image processing, where an image is divided into a sequence
of patches. Those are then linearly embedded and processed using self-attention
mechanisms. With this approach, ViTs are able to model long-range dependencies
and contextual information more effectively than CNNs, which are limited by their
local receptive fields. Recent studies have shown that Vision Transformers (ViTs)
are able to outperform Convolutional Neural Networks (CNNs) in certain tasks,
particularly when pre-trained on large datasets. ViTs have demonstrated improved
scalability and, in some cases, better computational efficiency compared to CNNs
[122, 123, 124].

Hybrid Architectures

Because of this success, hybrid architectures like the Swin UNETR were developed,
to have the best of both worlds. Those combine the strengths of CNNs and
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transformers to achieve state-of-the-art performance in complex tasks like 3D med-
ical image segmentation, even with smaller datasets. Those hybrid architectures
leverage the global context modeling of transformers while retaining the local
feature extraction capabilities of CNNs [125, 118].
For the Swin UNETR specifically, the transformer component employs shifted
windows and patch merging to efficiently model both local and global contextual
information in volumetric medical images [126]. With this, the architecture is able
to capture long-range dependencies while still maintaining computational efficiency.
It was able to demonstrate state-of-the-art performance on challenging medical
segmentation benchmarks like the Medical Segmentation Decathlon (MSD) [127]
and the Beyond the Cranial Vault (BTCV) [128] datasets [118].
Swin UNETR is specifically suited for self-supervised pre-training on large unla-
beled datasets which allows it to learn robust feature representations that transfer
well to downstream segmentation tasks with limited labeled data. However, the
publicly available self-supervised pre-trained weights for Swin UNETR are based
on CT images, which presents a challenge for MRI-based tasks due to the signifi-
cant domain differences between CT and MRI imaging modalities [125]. Despite
facing these limitations, experiments were conducted to assess the transfer-learning
performance of Swin UNETR on MRI data using the CT-based self-supervised
pre-trained weights. However, these tests yielded poorer results compared to the
architecture trained from scratch on MRI data. Subsequently, the latter is used for
segmentation performance comparison in this work. Given these findings and the
focus on MRI-based segmentation for the tasks in this thesis, the self-supervised
pre-training aspect of Swin UNETR will not be elaborated at this point.





Chapter 3

Data and Methods

3.1 Datasets
This section provides a detailed description of the datasets used for training and
evaluation of the architectures for segmentation as well as the datasets used for
liver function estimation.
All MRI images used in this work were acquired on a Siemens MAGNETOM
Skyra 3T scanner in the years 2016 to end of 2023. The datasets include a
total of 458 adult subjects with liver diseases, who underwent Gd-EOB-DTPA-
enhanced T1-weighted volumetric interpolated breath-hold examination (VIBE)
MRI sequences with fat suppression at 3T during the native, arterial (AP), late
arterial (LAP), portal venous (PVP), and hepatobiliary late phases (HBP20) were
included. Additional criteria included current liver function estimation (± 3 days
relative to the MRI acquisition), no allergic reactions to the liver-specific MRI
contrast agent Gd-EOB-DTPA (Primovist®, Bayer Healthcare, Berlin, Germany)
and no general contraindications to MRI.
For the T1-weighted VIBE sequences with fat suppression, the following parameters
were used: a repetition time of 3.09 ms, echo times of 1.17 ms and 2.49 ms, a flip
angle of 10°, a parallel imaging factor of 2, and 64 slices. The measured voxel size
was 1.71 × 1.25 × 4.5 mm3. Those were reconstructed to a voxel size of 1.25 × 1.25
× 3.0 mm3 and dimensions of 320 x 320 x 64. All images were obtained during a
14-second breath-hold, both before Gd-EOB-DTPA administration (native phase)
and during the dynamic phases. Patients received an intravenous bolus injection of
Gd-EOB-DTPA (0.025 mmol/kg body weight) at a flow rate of 1 mL/sec, followed
by 20 mL of 0.9% sodium chloride flush for contrast-enhanced MRI.
Initially, T2-weighted images were considered for inclusion in the dataset to

45
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improved lesion classification and enhanced segmentation of structures like ascites,
due to better water visibility in these modalities. However, the T2-weighted images
had a significantly different voxel size for the out-of-plane orientation (6.6 mm)
compared to the 3 mm for the T1-VIBE sequences and different FOVs (fields of
view). This discrepancy made sufficient coregistration to the T1-VIBE images
unfeasible in the performed tests. Consequently, only the T1 sequences necessary
for feature extraction in later stages were used.

3.1.1 Dataset for Liver Segmentation
This dataset includes 78 adult subjects, that underwent the 13C-Methacetine
breath test about 24 hours before MRI acquisition in 2016.
For 19 of the patients, at least one of the five acquired imaging phases was of very
poor quality with lots of artifacts that often occur when the patients are not able
to remain still or can’t hold their breath for 14 seconds without moving. These
samples were excluded from the test sets. However, those were still available to the
training, making it harder for the network to learn features and likely rendering it
more robust during inference. Three of those bad images are illustrated in figure
3.1 and a comparison with the good samples shown in figure 2.8 clearly highlights
the problems with those images. Here needs to be emphasized that not all phases
from those patients were blurry, hence of course it was possible to manually label
those MRI volumes on other phases.
This lead to a total of 59 patients in the test sets, on which the networks were
evaluated.
The dataset was split into four different combinations of data available to the
training and hold-out data that is only available for testing. Three of those
combinations have 14 images in the test set, whereas the fourth combination has
17 subjects for testing.
An experienced radiologist from Universitätsklinikum Regensburg labeled the liver,
hepatic veins, portal vein, lesions, abdominal aorta, thoracic aorta, and ascites in
the preprocessed MRI images of 78 patients with the software ImFusion Labels
v.0.21.5 [129].
Initially, the lesions were classified into categories such as cancerous (malign)
tumors (hepatocellular carcinoma (HCC) and cholangiocellular carcinoma (CCC)),
non-cancerous (benign) tumors (focal nodular hyperplasia (FNH), adenoma, he-
mangioma), cysts, ablation defects, metastases, bilioma, and regenerative nodules.
In total, the cohort comprises 21 HCCs, 9 CCCs, 9 FNHs, 5 adenoma, 7 heman-
gioma, 8 cysts and 10 metastases. However, in most of the given cases, the lesion
areas are very small and more often than not showed atypical contrast medium
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(a) (b) (c)

Figure 3.1 This figure demonstrates three images with poor quality, due to breathing
artifacts, that were excluded from the test dataset. The field of view for all three images
is exactly the same. The differences in appearance are there because of drastically
different body mass indices. (a) depicts the late arterial phase of one patient, (b) shows
the arterial phase for another subject and (c) was acquired during the portalvenous
phase.

behavior. Additionally, there was no possibility to get more manually labelled
data than those 78 patients, because the radiologist’s time for this task was very
limited, since it is extremely time-consuming and the daily clinical routine is more
important.
Consequently, achieving good classification performance for these lesions was not
feasible. The segmentations were acceptable, but classification just didn’t work.
Therefore, all defective areas in the liver were grouped together into one lesions
class, resulting in seven remaining classes of interest in the cohort.
Only 7 patients showed signs of ascites in their MRIs, which is anticipated, as
this pathology typically indicates an advanced, very late stage of liver disease,
especially in patients with cirrhosis [130].

3.1.2 Datasets for Liver Function Estimation
For every patient in the aforementioned dataset, the LiMAx values are available,
and initially, this was planned to be the only score used as ground-truth for liver
function estimation in this thesis. However, the LiMAx test is not routinely em-
ployed in the daily clinical routine in Regensburg. Additionally, for some patients,
the LiMAx values acquired a few days apart showed drastic variance. Therefore,
the inclusion of other typically employed scoring systems, such as the MELD score,
seemed to significantly improve the quality and robustness of these experiments
and led to a much bigger cohort.
Even though, 6871 T1-VIBE MRI scans were acquired at the University Hospital
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in Regensburg from 2016 to the end of 2023, after deep investigation of the MRIs
and laboratory values, only 458 met the previously mentioned inclusion criteria
for this experiment.
Subsequently, the datasets used for liver function estimation comprise a total of
458 patients, which are subdivided into multiple cohorts corresponding to three
different liver function scores that were used. For some of the patients, there are
multiple liver function scores available and therefore they appear in more than one
cohort. Specifically, ALBI-scores were measured for 207 subjects, MELD-scores
are available for 409 of them and LiMAx values were measured for 208 patients.
The dataset for training and evaluation of the neural networks for segmentation
(see previous subsection 3.1.1) is completely included in the LiMAx cohort.

(a) (b)

Figure 3.2 Distribution of the LiMAx-scores for the corresponding cohort in this thesis.
Because of their wide range, they were grouped to the three cutoff ranges that are used
for classification of healthy, intermediate and significant impaired liver function. (a)
shows the general distribution per group, whereas (b) provides a more in-depth view of
how the subjects are distributed within the corresponding group.

The grouped distribution of the aforementioned cohort is illustrated in Figure 3.2.
For the first group (score lower than 139), second group (LiMAx between 140-314),
and third group (values above 315), there are 72, 87, and 49 subjects available
in the cohort, respectively. This distribution of the data is relatively balanced,
except for the third group, which is slightly underrepresented.
The subjects of the MELD cohort showed MELD-scores from 6 to 31 with an
overrepresentation of values between 6 and 9 and only single occurences of scores
greater than 20 (see Fig. 3.3). This is slightly contrary to the distribution of
the LiMAx cohort, but similar distributions for the MELD-score can be observed
in other studies [131, 132] and can be explained by an increasing three-months
mortality rate for patients with higher MELD-scores. Because of this, the patients
with a lower score are more stable and can wait longer for a transplantation. Some
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of them receive a transplant, with an increase in MELD and some of them die
before, unfortunately [133, 134].
Those findings highlight the importance of correct liver function evaluation, espe-
cially in the early stages of chronic liver diseases.

Figure 3.3 Distribution of the MELD-scores for the corresponding cohort in this thesis.

The last cohort (ALBI-score) comprises 85, 90 and 32 patients with albi grades
1, 2 and 3, respectively (see Fig. 3.4). This distribution mirrors that of the
MELD-scores, with fewer patients exhibiting severely impaired liver function, a
pattern attributable to similar factors. Notably, within the ALBI groups 1 and 3,
scores cluster towards the boundaries of grade 2, resulting in a limited number of
outliers in the cohort and many patients that are harder to classify accurately.

(a) (b)

Figure 3.4 Distribution of the Albi grades for the corresponding cohort in this thesis.
Albi grades 1 and 2 are equally represented, while there are less patients with grade 3.
(a) shows the general distribution per group, whereas (b) provides a more in-depth view
of how the subjects are distributed within the corresponding group.
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For patients with multiple available scores, pairwise comparisons were conducted to
assess the correlation and comparibility between different scoring systems. These
results are presented in the following.

Correlation of Different Liver Function Scores

The correlation between MELD- and LiMAx-scores is depicted in Figure 3.5.
The analysis reveals a Pearson correlation coefficient of -0.42 and a Spearman’s
correlation of -0.49, indicating a moderate negative monotonic relationship. This
suggests that while the linear relationship is weak, there is a stronger monotonic
trend, as captured by the Spearman correlation. Subsequently, as the MELD-score
increases, indicating worsening liver function, the LiMAx-score tends to decrease,
reflecting reduced liver metabolic capacity. Tis moderate correlation may not be
representative for other cohorts, as there are only a small amount of patients with
a MELD-score greater than 17 in this one. However, the values are in aggreement
with what can be found in other studies [135, 136].

Figure 3.5 Cross correlation of MELD- and LiMAx-score for the given cohort. Moderate
Pearson and Spearman correlations of -0.42 and -0.49 can be observed.

In figure 3.6, the correlation between ALBI- and LiMAx-scores is illustrated. Those
have Pearson and Spearman correlation coefficients of -0.65 and -0.69, respectively.
The stronger negative correlations between ALBI- and LiMAx-scores indicate a
more pronounced inverse relationship than for MELD and LiMAx. Again, the
higher Spearman correlation indicates a non-linear, but monotonic relationship
between both scores. The observed coefficients are higher than found in other
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studies [136]. One reason for this can be the small amount of patients with highly
impaired liver function in the cohort

Figure 3.6 Cross correlation of ALBI- and LiMAx-score for the given cohort. Pearson
and Spearman correlations of -0.65 and -0.69 can be observed.

Figure 3.7 presents the cross-correlation between the ALBI- and MELD-scores,
with a Pearson correlation coefficient of 0.67. For Spearman’s correlation, the
coefficient is 0.69. Therefore, those scores share the strongest correlation among
this comparison, which was to expect since they both share Bilirubin as one main
factor for calculation.

Figure 3.7 Cross correlation of ALBI- and LiMAx-score for the given cohort. Pearson
and Spearman correlations of -0.67 and -0.69 can be observed.
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Both scores are used to evaluate liver disease severity, but they are derived from
different parameters. The positive correlation suggests that higher ALBI-scores are
associated with higher MELD-scores. There is a higher linear correlation between
ALBI and MELD for patients with a MELD-score smaller than 20, leading to a
Pearson coefficient of 0.70, whereas for subjects with a higher MELD-score the
correlation drops to only 0.52.
For Spearman’s correlation, the coefficients are 0.68 and 0.44, respectively. This
indicates non-linear correlation, again. However, patients with a higher MELD-
score are underrepresented in this subset, where both scores are available. Therefore,
those values may not be representative for other cohorts.

3.2 Preprocessing of MRI Images
All images for the segmentation task have been pre-processed with the following
pipeline in a Python v.3.10 environment:

1. Conversion from DICOM to Niftii file format using dcm2niix [137],

2. Bias correction using the N4ITK algorithm [138],

3. Image-wise z-score normalization with numpy [139],

4. Coregistration with nipype interface and ANTs registration using three
transformations in the order of Rigid, Affine and finally SyN [140, 141],

5. Reorientation of the MRI images to the standard radiological orientation
with FSL [142],

6. Labeling and reslicing the images to an isotropic voxel spacing of 1.2 mm3

with ImFusion Labels [129].

The reslicing results in spatial dimensions of (160, 333, 333) for the MRI volumes
used in this thesis.
The images for liver function estimation were pre-processed using only the first,
second and fourth step of the pre-described pipeline. The decision against inten-
sity normalization is justified in this case, since the majority of the MRI-derived
features for the liver function estimation are relative intensity-enhancement in-
dices. Therefore, distorting the correlations of the relative intensities in the liver
parenchyma over the five phases would render these measurements unreliable.
However, for generation of the segmentation maps of the anatomical structures,
all preprocessing steps were applied to the images prior to segmentation inference.
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The segmented labels were then applied to the images that underwent the three
aforementioned pre-processing steps.

3.3 Metrics for Evaluation
This section outlines the evaluation metrics employed for the various methods used
in this thesis, including coregistration, segmentation, and liver function estimation
tasks. Accurate evaluation is crucial for determining the effectiveness of these
techniques for medical imaging applications.
For coregistration, metrics that assess the alignment quality between images that
provide insights into both global and local alignment accuracy are utilized.
For the segmentation tasks, a wide range of metrics is employed to quantify the
performance of the tested models and evaluate the accuracy of our segmentation
algorithms in delineating specific regions or structures in medical images.
For the regression and classification tasks, suitable metrics are employed to gain
insight into the predictive performance of the machine learning methods that are
applied for liver function estimation.
With this comprehensive set of metrics, a thorough evaluation of the whole proposed
pipeline for liver function estimation can be ensured.
All of them will be explained in the following.

3.3.1 Coregistration
The coregistration process was performed five times for all 458 subjects and all
phases. Each time a different phase was picked as the fixed image to which all
others were coregistered. The results were evaluated with a combination of visual
inspection and the calculation of multiple metrics to find the best suiting approach.
Several metrics are commonly used to assess the quality of image coregistration,
where the most prominent ones include mean squared error, mutual information,
structural similarity index, and normalized cross-correlation [143, 144, 145].
Each of these metrics provides different insights into the alignment of images,
which will be explained in the following.

Mean Squared Error

The Mean Squared Error (MSE) is a simple metric for basic assessment of image
coregistration quality. It is a measure for the average squared differences between
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the intensity values of corresponding voxels in two images. In this context, the
mathematic equation is:

MSE = 1
LNM

L∑
i=1

N∑
j=1

M∑
k=1

(I2(i, j, k) − I1(i, j, k))2, (34)

where I1(i, j) and I2(i, j) refer to the corresponding intensity values of the n-th
voxel in the two images and L · N · M is the total number of voxels. MSE provides
a simple and clear measure of the overall difference between the images. However,
it has some limitations. It is very sensitive to large differences in intensity values.
On top of that, MSE doesn’t account for any structural or perceptual differences
in the images, thus it is less suitable for multimodal image registration, where
intensity values may vary significantly because of different imaging modalities [146,
147, 148].
Despite those limitations, the metric was still used in combination with the other
metrics for a better and more comprehensive evaluation of the coregistration
performance.

Mutual Information

In the context of image registration, the mutual information (MI) is a measure for
how much information one image provides about another. For image coregistration,
it quantifies the statistical dependence between the intensity values of corresponding
voxels in two images. MI is particularly useful for multimodal image registration,
because it doesn’t assume any specific functional relationship between image
intensities, is robust to intensity variations caused by different modalities and
can handle complex relationships between tissue properties and image intensities.
However, there are also limitations to it, such as sensitivity to image overlap and
potential local maxima in the optimization landscape. The only fixed value for
MI is 0, meaning that two images don’t share any information and are completely
unrelated in terms of their pixel intensities or features. There is no upper limit
and the values can’t be compared to other published datasets, because the MI
highly relies on the way it is calculated (the size of bins used for calculations) [149,
150, 151]. However, for comparing different coregistration approaches on the same
dataset with the same calculations of MI, the values can be compared to each
other and provide valuable insight.

Structural Similarity Index

The Structural Similarity Index (SSIM) is a suitable metric for the evaluation of
multimodal coregistration, because it doesn’t rely on intensity based measurements.
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Unlike those metrics, SSIM is able to assess the structural similarity between two
images or volumes. Therefore, it is well suited to compare coregistered MRI
volumes from various modalities with inherently different intensity distributions
to each other. With this metric, local patterns of pixel intensities normalized for
luminance and contrast, are evaluated. This allows it to capture perceptual and
structural similarities even when absolute intensity values differ between modalities.
Hence, SSIM is particularly effective for detecting subtle misalignments that can’t
be quantified by intensity differences alone. Furthermore, it is robust to noise and
small variations in intensity. The combination of all those aspects shows that SSIM
provides a meaningful measure of alignment quality across modalities, which makes
it a valuable tool for quantitative assessment of multimodal MRI coregistration
success. Downsides of this metric include a high sensitivity to structural changes
as stretching, rotations or other distortions and overestimation of the quality near
hard edges in medical images. The metric can have values between 0 and 1, where
1 indicates perfect similarity [152].

Normalized Cross Correlation

Normalized cross correlation (NCC) is a measure for the degree of linear correlation
between intensity values of corresponding voxels in two images. It is normalized to
account for differences in contrast and image brightness, which makes it suitable
for comparing multi-modal image coregistration, where absolute intensity values
may vary significantly. NCC is robust to linear intensity transformations, therefore
it is effective for detecting global and local misalignments across modalities. It
can identify structural similarities, even when the specific intensity mappings are
different for each modality. Additionally, NCC is resilient to common artifacts
in MRI, such as inhomogeneities in the B-field. Subsequently, it is a reliable
and versatile metric for quantitative assessment of the quality of multimodal
MRI coregistration, especially in scenarios with relatively consistent intensity
relationships between different modalities [153, 154].

3.3.2 Segmentation
There is a wide range of metrics available to quantify the performance of a
segmentation model. The most prominent is the Dice-Sørensen-Coefficient (DSC)
[155, 156]. However, multiple metrics are required for a comprehensive evaluation
of the segmentation performace of an algorithm. Following, there’s an expanded
explanation of the key metrics used to quantify the segmentation success in this
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thesis. There, TP, FP, TN, FN refer to true positive, false positive, true negative
and false positive, respectively.

• Positive Prediction Value (PPV):

PPV = TP

TP + FP
(35)

PPV, also called Precision, quantifies the proportion of correctly identified
positive voxels among all voxels classified as positive. It is particularly useful
in assessing the model’s ability to avoid false positives, which is crucial in
medical applications where overdiagnosis can lead to unnecessary treatments.

• True Positive Rate (TPR):

TPR = TP

TP + FN
(36)

TPR, also known as Sensitivity or Recall, measures the proportion of actual
positive voxels correctly identified by the model. A high TPR indicates
that the model is effective at detecting the target structures or lesions,
which is essential in scenarios where missing a pathology could have serious
consequences.

• Dice-Sørensen-Coefficient (DSC), F1-Score [155, 156]:

DSC = 2TP

FN + FP + 2TP
= 2 · Precision · Recall

Precision + Recall (37)

The DSC (or F1-Score) is a statistical measure of spatial overlap between the
predicted segmentation and the ground truth. It ranges from 0 to 1, where 1
indicates perfect overlap. The DSC is sensitive to both false positives and
false negatives, making it a balanced measure of segmentation accuracy.

• Jaccard-Coefficient[157]:

Jaccard = TP

TP + FP + FN
(38)

Also known as the Intersection over Union (IoU), the Jaccard coefficient is
closely related to the DSC, but the true positives are not double weighed. It
measures the size of the intersection divided by the size of the union of two
segmentation sets. The Jaccard coefficient is always lower than or equal to
the DSC for the same segmentation.
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• Lesion-wise False Positive Rate (LFPR):

LFPR = LFP

PL
(39)

LFPR evaluates the rate of falsely detected lesions among all predicted
lesions. This metric is particularly important in clinical settings where each
false positive could lead to unnecessary follow-up procedures.

• Lesion-wise True Positive Rate (LTPR):

LTPR = LTP

RL
(40)

LTPR assesses the proportion of actual lesions correctly identified by the
model. This metric is crucial for understanding the model’s ability to detect
individual lesions, which can be more clinically relevant than voxel-wise
metrics in some scenarios.

• Volume Difference (VD):

V D =

∣∣∣V oltissue
pred − V oltissue

true

∣∣∣
V oltissue

true

= |(TP + FP ) − V oltissue
true |

V oltissue
true

(41)

VD quantifies the relative difference between the predicted and true lesion
volumes. This metric can be particularly important in applications where the
size of the segmented region is clinically significant, such as tumor volume
assessment for treatment planning or response evaluation.

Each of these metrics is able to provide valuable information about different aspects
of segmentation performance. While the DSC offers a good overall measure of
spatial overlap, the PPV and TPR provide insights into the balance between false
positives and false negatives. The lesion-wise metrics (LFPR and LTPR) are
crucial for assessing performance at the level of individual lesions, which can be
more clinically relevant in some cases. Finally, the VD offers important information
about volumetric accuracy, which is critical in many medical applications.
By using this comprehensive set of metrics, the segmentation performance can be
evaluated thoroughly.

3.3.3 Liver Function Estimation
Liver function estimation, encompassing both regression and classification tasks, is
essential for diagnosing and managing liver diseases. For the deployed regression



58 CHAPTER 3. DATA AND METHODS

models such as linear regression, Elastic Net, Ridge regression, and Lasso regression,
the evaluation metrics include Mean Absolute Error (MAE), Root Mean Squared
Error (RMSE), and R-squared (R2). These metrics provide insights into the
models’ accuracy and goodness of fit by quantifying the average prediction error
and the proportion of variance explained by the model. To ensure a fair comparison
among scores normalized metrics were also used: Normalized Mean Absolute Error
(NMAE) and Normalized Root Mean Squared Error (NRMSE). In this approach,
MAE and RMSE were simply divided by the range of ground-truth values for the
specific score within the given cohort. This normalization process allows for a
more equitable assessment of different scales and datasets.
For the classification tasks, where Support Vector Machine (SVM), Random Forest
(RF), Multilayer Perceptron (MLP), and XGBoost are deployed, performance is
assessed using metrics such as Accuracy, F1-score and Area Under the Receiver
Operating Characteristic Curve (AUC-ROC). These metrics thoroughly evaluate
the models’ ability to correctly classify liver function, balancing the trade-offs
between false positives and false negatives.
By employing this comprehensive set of metrics, a thorough evaluation of the
models’ performance in liver function estimation can be ensured.

3.4 Architectures for Image Segmentation
The first step to derive meaningful features from the preprocessed MRI images
for building an automated machine learning model for liver function assessment
is to create precise segmentations of the tissues under consideration. To achieve
the best possible results for this task, three publicly available models were tested
against each other. The first is the standard U-Net [158] within the nnU-Net
framework [115], which is well researched and has been successfully applied to a
great variety of medical imaging segmentation tasks, where it consistently reached
state of the art performance over the last years [159, 115, 160, 161].
The second architecture is a more recent U-Net variant in the same nnU-Net
framework, but with residual blocks in the encoder path of the model [162].
With the rising attention to transformer models, it is appropriate to test such an
architecture against the well researched CNNs and see, if any improvements can
be observed. For this, the Swin UNETR [118] was used, as it achieved promising
results in some studies and there is an implementation from MONAI [163] available
that can be applied to custom tasks, with minor changes to it.
Those architectures will be explained and illustrated in the following.
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3.4.1 3D nnU-Net
The standard 3D nnU-Net architecture, depicted in Figure 3.8, is configured for
an input patch size of (80, 192, 160), accommodating five input channels that
represent different phases of the T1-VIBE sequence. This configuration allows the
model to leverage multi-phase imaging data effectively. The architecture comprises
six stages, each with a feature map size progression of 32, 64, 128, 256, 320, and
320, respectively. This progression facilitates an increase in feature complexity
and abstraction as the data moves deeper into the network. Each stage employs a
consistent kernel size of (3, 3, 3) for the 3D convolutions, except for the final layer,
which is optimized for output generation.
Dimensionality reduction within the network is achieved through convolutions with
varying strides, as opposed to traditional max pooling layers. Those are configured
as follows: (1, 1, 1) for the initial stage to preserve spatial dimensions, followed
by (2, 2, 2) for the next four stages to effectively downsample the feature maps.
The final stage uses a stride of (1, 2, 2), allowing for selective spatial resolution
retention.
Each stage in the encoder and decoder paths contains two 3D convolution layers,
ensuring a balance between computational efficiency and feature extraction ca-
pability. The use of 3D Instance Normalization throughout the network aids in
stabilizing the training process and improving convergence rates.
The model is trained with a batch size of 2, because of the memory constraints
given by the framework, due to the VRAM allocation limit of 11 GB for this
network configuration.

3.4.2 3D Residual Encoder nnU-Net
The ResEnc nnU-Net is a specialized variant of the standard nnU-Net architecture
shown in figure 3.8 that integrates residual connections within its encoder to
enhance performance, particularly for medical image segmentation tasks [162].
The model in this thesis is configured with a batch size of 2. The patch size is
set to (112,256,256). Each stage employs a kernel size of (3,3,3) across all layers
and the strides for the convolution are set as follows: (1,1,1) for the first stage,
which preserves the spatial dimensions, followed by (2,2,2) for the next four stages,
effectively downsampling the feature maps to reduce dimensionality and increase
the receptive field. The final two stages use strides of (1,2,2), allowing for selective
downsampling while maintaining some spatial resolution.
Each stage contains a specific number of residual blocks: 1, 3, 4, 6, 6, 6 and 6,
respectively. Every residual block contains two 3D convolution layers. In the
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Figure 3.8 3D full resolution nnU-Net architecture used for the segmentations in this
thesis.

decoder path, the network uses a single convolution per stage, which helps in
reconstructing the segmentation map from the encoded features, while still main-
taining efficiency. In the whole network, 3D Instance normalization is utilized.
This architecture is significantly larger and more computationally intensive, re-
quiring substantial VRAM and longer training durations (see section 3.5). It was
specifically engineered to take advantage of the advancements in GPU capabilities
over recent years. This is emphasized, especially when compared to the standard
nnU-Net, which is constrained by a maximum VRAM limit in its self-configuration
method [115]. The ResEnc nnU-Net’s design allows it to handle more extensive and
complex datasets, leveraging modern hardware to achieve superior performance
[162].

3.4.3 Swin UNETR
In this thesis, the Swin UNETR is implemented using the MONAI framework [163],
which provides a flexible and robust platform for medical imaging applications.
This implementation is intended to compare the segmentation performance of a
Transformer-CNN hybrid architecture with the well-established nnU-Net CNN
variants.
The model is configured with an input image size of (128, 128, 128) and accommo-
dates five input channels. The SwinUNetR model is designed with a feature size



3.5. NETWORK TRAINING 61

of 48, doubling in each stage. Figure 3.9 shows a schematic representation of this
architecture.
Due to memory limitations and to enable a fair comparison with the nnU-Net
variants, the model is trained with a batch size of 2. A sliding window inference
method with a batch size of 4 is used for efficient prediction.
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Figure 3.9 (Top) 3D Swin-UNetR architecture used for the segmentation performance
comparison in this thesis. (Bottom) shows a detailed illustration for two serial Swin
Transformer Blocks. W-MSA and SW-MSA refer to regular and shifted window multi-
head self-attention modules, respectively. Inspired by [118].

3.5 Network Training
The final network training and inference was conducted on a NVIDIA DGX Station
A100 with four NVIDIA A100 (40GB VRAM) GPUs, 512 GB RAM and an AMD
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EPYC 7742 CPU with 64 cores (128 threads) in a conda environment with Python
v.3.10, Pytorch v.2.2.0, Tensorflow v.2.14, MONAI v.1.3.2 and CUDA v.11.8.
All architectures underwent training on four distinct combinations of training and
test datasets. For each combination, a five-fold cross-validation was conducted,
ensuring consistent training and validation dataset splits across all architectures.
All architectures were trained with a DiceCELoss function, which combines Dice
loss and cross-entropy loss. Swin UNETR utilizes AdamW optimizer with an initial
learning rate of 1e-4, whereas the nnU-Net variants use SGD as an optimizer with
an initial learning rate of 0.01.
The nnU-Net framework employs a fixed training procedure of 1000 epochs. For
optimal results, the network from the final epoch should be used for inference,
even if an earlier stage showed better validation loss. This approach is necessary
because the validation process during training only samples 50 batches of patches
from the original images, regardless of the total number of possible batches. This
method provides a rough estimate of segmentation accuracy on the entire validation
dataset, balancing speed and performance overview. It’s important to note that
nnU-Net defines epochs differently from the conventional understanding. Instead
of processing all images from the training dataset, an epoch in nnU-Net consists
of a fixed 250 batches, regardless of dataset size or batch size [115].
The SwinUNetR implementation differed in its training and validation process. It
evaluated all images from the validation set during each validation stage, selecting
the network with the best validation loss for inference. Additionally, one epoch
processed all images from the training dataset and the total number of epochs was
set to 1300. This approach mitigated potential overfitting issues in later training
stages by choosing the network with the lowest validation loss and ensured a
training to run long enough to achieve the best results.
The images for the training were augmented to enhance the model’s ability to
generalize and improve its performance on unseen data. Data augmentation
techniques were applied to artificially expand the training dataset and introduce
variability. These techniques included random geometric transformations (rota-
tions, flips, scaling and translations), intensity transformations (brightness and
contrast adjustments, gamma corrections) and elastic deformations to simulate
realistic tissue deformations that are especially important in abdominal imaging
with the problems of breath holding techniques, as explained in section 4.1. These
augmentations were applied on-the-fly during training, ensuring that each epoch
presented the model with a unique set of transformed images. This approach
helped to prevent overfitting and improved the model’s ability to handle variations
in real-world data.
For both nnU-Net and SwinUNetR, the augmentation strategies were kept as con-
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sistent as possible to ensure a fair comparison between the architectures. However,
the specific implementation details may have varied slightly due to the differences
in their respective frameworks.
During the validation phase and inference, no augmentations were applied to the
test images, as the goal in those steps is to evaluate the model’s performance
on unmodified data. This approach allowed for a realistic assessment of how the
trained models would perform in practical applications.
The training process for one fold took 13.5 hours for the standard nnU-Net, 39
hours for the residual encoder nnU-Net and 12 hours for the Swin-UNetR imple-
mentation.
Subsequently, for the 20 networks that were fully trained for each architecture,
this results in a total training time of 11.25, 32.5 and 10 days, respectively. The
history for the training and validation losses for all three architectures is displayed
in figure 3.10.
Training the SwinUNetR implementation, the standard 3D U-Net from the nnU-
Net framework, and the residual encoder nnU-Net requires approximately 32.5
GB, 8.5 GB, and 28 GB of VRAM, respectively.
Inference for ensembled predictions with the three previously mentioned architec-
tures take approximately 58, 45 and 49 seconds for one subject, in that order.
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Figure 3.10 Loss history for the standard nnU-Net (top), ResEnc nnU-Net (mid) and
the SwinUNetR (bottom)
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3.6 Feature Extraction and Feature Engineering
The segmentations for all 458 MRIs for later feature extraction were created with
the nnU-Net architecture, as it achieved the best results overall (see subsection
3.3.2).
As described earlier, the U-Net architecture was trained in five folds within the nnU-
Net framework for four different dataset combinations for training and test datasets.
This led to a total of twenty different neural networks for whole liver segmentation.
Predictions on all 458 MRI acquisitions were made using ensembled predictions.
For each dataset combination, the ensembled softmax output probabilities (of
the five different folds) for every subject were saved to the disk. This led to 4
different softmax probability outputs for the four different datasets, which were
then ensembled to get the final predictions for all patients.
Those segmentation maps were refined with a custom post-processing pipeline,
which will be described in this section.

3.6.1 Postprocessing of Segmentations
Due to the challenges in coregistering the T1-VIBE sequences, particularly for fine
vascular structures (as described in section 4.1), the segmentation maps did not
always align perfectly with all five phases, occasionally aligning with only some
of them for small structures. Thus, they were refined with a custom pipeline to
ensure reliable results for later feature extraction, relying on multiple phases that
are offset against each other (see subsection 3.6.2).
To achieve this, the first step is to split the labelmaps into seven different binary
representations of their corresponding labels. This process is illustrated for one
subject, containing all pathologies and structures to be segmented, in figure 3.11.
If not specified otherwise, the following steps apply to all extracted tissues but
will solely be explained using the liver as an example.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.11 Rendered three-dimensional representation of the separation and binarization
of the segmentations: the initial labelmap (a) with 7 labels is split into 7 binarized
labelmaps ((b) to (h)). The labels are as follows: (b) Liver, (c) Portal vein, (d)
Hepatic veins, (e) Lesions, (f) Ascites, (g) Abdominal aorta, and (h) Thoracic aorta.
All rendered volumes share the same orientation.

For the upcoming visualizations in this subsection, a patient with better overall
health than the one shown in figure 3.11 was picked, because of improved visibility
for all structures and processing steps.
The binarized label masks are applied to all five phases of the T1-VIBE sequence,
yielding five NIfTI files for every label, each containing only the corresponding
tissue in its respective phase. This process is illustrated for the liver label of one
subject in figure 3.12.
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Figure 3.12 All images display axial slices, and the entire figure illustrates the process
of liver extraction with the binarized segmentations from the MRIs. The (top row)
presents all phases of the T1-VIBE sequence for a single patient from the cohort. The
(middle row) shows the initial binary segmentation map, derived from the nnU-Net,
which is multiplied by their corresponding phase above. At this stage of postprocessing,
the same segmentation map is applied uniformly across all phases. The (bottom row)
features axial representations of the results, specifically the extracted liver for each phase.
From left to right, the images correspond to the five phases of the T1-VIBE sequences
in their acquisition order: native, arterial, late arterial, portal venous, and hepatobiliary
late phase.

In the next step, these segmented liver images undergo post-processing to remove
intensity outliers. This step is crucial for eliminating remaining non-liver tissues
in all phases, such as liver veins or portal veins, that may overlap with the liver
parenchyma segmentation in some of the phases, due to problems in coregistration.
Two different approaches were tested for this post-processing. One involves a
widely used statistical approach for intensity outlier filtering in MRI, where all
resulting intensities I ′ in the image are determined with the condition [164, 165,
166, 167]:

I ′ =

0 if I < µ − 3σ or I > µ + 3σ

I otherwise
. (42)

There, I is the intensity value of the current voxel, µ is the mean liver intensity
within the liver label, and σ is the standard deviation of the liver intensity within
the mask.
The second method, known as percentile clipping, is a more aggressive implemen-
tation for refinement. It establishes intensity thresholds based on phase-specific
percentiles of the intensity distribution in the given label area, thereby excluding
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extreme values that are likely indicative of e.g. non-liver tissues. For phases
like the arterial and late phase, where the liver is brighter than the veins, the
boundaries are chosen differently than for phases like late arterial and portalvenous,
where the appearance is the other way around (see figure 3.13 (top row) or 2.8).
For all labels, values were clipped to their phase specific percentiles within their
respective masks for each phase of the T1-VIBE sequence, resulting in refinement
of the initial labels.
Both of those methods result in five refined extracted liver parenchymas, containing
fewer non-liver tissue components that are different from each other. Due to the
reason that a majority of the extraced features for liver function estimation in this
thesis are based on relative enhancement of signal intensities in the corresponding
tissues (see subsection 3.6.2), the extracted livers must be consistent accross all
phases from the VIBE sequence. Otherwise, offsetting the phases against each
other would result in unreliable measurements. Subsequently, those refined liver
images are then binarized again and multiplied together, to ensure that only the
regions consistently identified as liver parenchyma across all phases are retained,
resulting in a final, robust liver mask. This whole process is depicted in figure
3.13.
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Figure 3.13 The (first row) shows the extracted livers with the segmentation map, gen-
erated by the nnU-Net. In the (second row), there are the extracted liver parenchymas
after percentile clipping of the intensities and the (third row) row depicts the binarized
versions of the percentile clipped images. From left to right, there are the corresponding
axial representations from the five phases of the T1-VIBE sequences in the correct order
of acquisition. The slice depicted in the (last row), shows the resulting final binary
mask, derived by multiplication of all five phase-specific masks with each other.

A comparison between the initial mask, the one generated by percentile clipping
and the one derived from the statistical approach can be found in figure 3.14 in
the left, middle and right position, respectively.
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Figure 3.14 This figure depicts axial representations of three distinct liver segmentation
label maps. The (left) image shows the liver mask before postprocessing. The (middle)
image is generated using the statistical approach, utilizing the mean and standard
deviation of the intensities. The (right) image is derived from percentile clipping.
This comparison demonstrates that the percentile-clipping method is a more aggressive
refinement technique.

In the last step, this final liver mask is applied to the original five phases of the
T1-VIBE sequence. By multiplying the final liver mask with every MRI from each
phase, the final extracted liver images are obtained. These images now contain
a consistent representation of the liver tissue across all phases, mostly free from
extraneous tissues and intensity outliers. This is illustrated in figure 3.15, where
one can see the refinement in all five phases based on percentile clipping (bottom)
and with the statistical approach with the mean and standard deviation of the
signal intensities in the mask (mid), compared to the initial segmentation, derived
directly from the nnU-Net (top).
From this figure, one can observe that in the statistical approach, there is still
much left from the hepatic veins and also artifacts that appear hyperintense due
to breathing during signal acquisition (especially visible in phase 2, 4 and 5,
where there are hyperintense lines at the border of the liver). The approach with
percentile clipping removes almost all of the remaining veins and artifacts, leading
to much more reliable measurements of the REIs, hence all following steps for liver
function estimation were based on the labels, refined with this method.
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Figure 3.15 This figure depicts the axial representation of the segmented livers: (Top)
before postprocessing, (mid) refined with the statistical approach and (bottom) post-
processed with percentile clipping of the intensities.

In this whole process, some of the liver parenchyma is also removed due to intensity
differences caused by inhomogeneities in the observed B-field and by artifacts due
to breathing, as explained before. However, the benefit outweighs the harm, as it
is more important not to include other tissue types in the feature extraction than
losing some. This gets clearer, when looking at other current studies in this field
that solely use a few Regions of Interest (ROIs) to correlate liver function with, for
example, the relative intensity enhancement from the native to the hepatobiliary
late phase for the liver parenchyma. Losing some of the liver still provides a much
more comprehensive feature extraction than the subjective placement of single
ROIs (see next subsection 3.6.2).
This meticulous process ensures that the liver segmentation is reliable for the
following tasks, facilitating further analyses and more robust feature extraction.

3.6.2 Extraction of Meaningful Features
Studies have shown that the relative enhancement indices of the liver parenchyma,
hepatic veins, portal veins and abdominal aorta from comparisons of one phase
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of the T1-VIBE sequence to another, as well as the liver volume can be strong
indicators for liver function assessment [168, 169, 170, 171, 172, 173, 174, 175].
Other studies use so-called T1-maps and based on those, calculate reduction
rates of T1 (rrT1) or general changes in the relaxation rate with measurements
of T1 relaxation time from before and after contrast administration in the liver
parenchyma. In those studies they were able to find strong correlation between
liver function and those features [176, 177, 178, 179]. However, T1 maps are
typically not acquired in daily clinical routine, but rather for research purposes,
because of required long breath-hold time during acquisition of single slices and
therefore, even for research purposes, only a small amount of slices will be acquired
for abdominal imaging tasks. For some of the patients in this study, T1-maps were
available, but only contained three slices per patient. Therefore, coregistration
was not possible and thus they wouldn’t have fit into the goal of building a fully
automated pipeline for liver function assessment and manually placing regions of
interest into those slices would have defended the whole purpose of this study,
because all those pre-mentioned studies extract features from the images by only
manually placing 3-9 ROIs into the corresponding tissues, do their measurements
inside those and take this as representative for the whole liver.
Contrary to these approaches, there are studies showing that liver damage and
liver function are not necessarily uniform across the entire liver parenchyma and
therefore, regional differences can be observed [180, 181, 182].
Consequently, manually placing ROIs into the liver parenchyma and other tissues
is prone to inter- and intra-rater variability and can introduce unwanted bias into
the measurements.
Subsequently, in this thesis, the feature extraction builds on the whole segmented
structures, instead of just small portions in form of ROIs.
For the liver parenchyma, hepatic veins, portal veins, abdominal aorta and the
thoracic aorta, the relative enhancement indices (REIs) were calculated with the
following formula:

REIx
n =

SIx
phasen

− SIx
native

SIx
native

. (43)

There, x refers to the desired tissue and n to the corresponding phase to which
the relative contrast enhancement is calculated. n=1, 2, 3 and 4 refer to arterial,
late arterial, portalvenous and hepatobiliary late phase in this order. Mean Signal
Intensity (SI) values are calculated over all voxels of the whole tissue under
consideration, ensuring that the REI reflects the overall enhancement of the tissue.
Differences in intensity from phase n to the native phase are then normalized by
dividing through the mean SI values of the given tissue in the native phase. This
normalization is crucial because MRI signal intensities are arbitrary and can vary
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due to different factors such as scanner settings and patient-specific conditions.
By normalizing with the native phase, which is acquired using the same scanner
and under the same B-field inhomogeneities, the REIs become comparable across
different measurements and conditions.
Additional features from the liver have been extracted with Radiomics [183, 184].
For this, the extracted liver from phase n was subtracted by the liver from the
one from the native phase and then normalized by the native liver, as described
before. The radiomics features were then extracted from these combined and
normalized representations of the liver. Features included the interquartile range
of the intensities in those representations of the liver, median intensity and the
values for the 10th and 90th percentile of the intensities found inside the extracted
liver. Those have been calculated for each of the 4 phases offset against the native
phase. This whole process results in 36 features based on intensity enhancement.
Additionally, liver, lesion, and ascites volumes were used as features, as these
can correlate with liver function. Ascites typically appears only in later stages
of chronic liver diseases and is part of other liver function scores, such as the
Child-Pugh Score [185]. The volumes are calculated by counting the voxels in
the initial label map (e.g., the liver) before post-processing and multiplying this
number by the corresponding voxel sizes for all three orientations. This ensures
compatibility with images that have not been resliced. The rationale behind this
is that post-processing was introduced only to address coregistration challenges
to ensure, only the tissue under consideration is present in all five phases for
feature extraction that relies on multiple images. The low volume difference for
the liver parenchyma segmentations compared with their ground truth (see table
4.2) justified the choice of using the original segmentation maps directly for this
task.
For the lesions and ascites, the volume differences between manual labels and
segmentations are more significant, but post-processing did not improve this. This
can be explained by the high Positive Predictive Value (PPV) and low True Positive
Rate (TPR) values, indicating that the labels include much less of the desired
tissues than the manual annotations but also a low number of false positives.
Therefore, the initial segmentations of these structures were used for volumetry.
Even if not captured very accurately through the automatic segmentations, these
features provide insight into whether these pathologies are present or not.
Additional four features are generated by multiplying the liver Volume with the
REIs of the liver for all phases.
This lead to a total of 43 features, derived from the MRI images.
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3.6.3 Feature Engineering
Feature engineering is a crucial step in the machine learning pipeline for liver func-
tion prediction in this thesis. This ensures that the most relevant and informative
characteristics of the data for each liver function score are captured and utilized
effectively. The primary goal is to improve the data’s quality and relevance as well
as the predictive power of those machine learning models by selecting, modifying
and creating features that provide additional insights into the data, leading to
more accurate and robust models.
The feature engineering includes removing constant, quasi-constant and highly
correlated features. For each of the remaining ones, correlation with the tar-
get variable is calculated and only features that significantly correlate with the
corresponding liver function score, are used for model training and evaluation.
Because of the distinct scores and cohorts, this results in a different amount of
corresponding features that are used for the models.
For the MELD-, LiMAx- and ALBI-score, the feature engineering methods lead to
15, 20 and 22 features that are used for building the machine learning pipelines,
respectively.
Several features consistently remained in all final dataframes after feature engineer-
ing. Notably, liver volume (VolLiver) was retained for every cohort, underscoring its
fundamental role in assessing liver size and capacity, which are crucial indicators
of liver health and useful for pre-operative planning in case of resection.
Additionally, the products of the liver volume with enhancement indices, specifically
REILiver

2 · VolLiver, REILiver
3 · VolLiver, REILiver

4 · VolLiver were consistently included.
These features highlight the importance of enhancement patterns in different
phases: late arterial, portal venous, and hepatobiliary late phase, respectively.
The enhancement index REILiver

4 alone, which pertains to the HBP-20 phase, was
also a key feature across all models. This indicates the significance of liver en-
hancement behavior in the hepatobiliary late phase as a predictor of liver function
as shown in other studies [170, 168, 131, 169, 172, 173]. The consistent presence
of these features across all scoring systems suggests their robust predictive power
and their critical role in liver function assessment.
For the distinct cohorts, the feature engineering process identified several additional
features of significance. A full overview of all features used for each cohort can be
found in the Appendix in table A.1.
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3.6.4 Model training and evaluation
For estimating liver function, a diverse set of machine learning models, each with
multiple hyperparameters, were trained and compared. Following the initial feature
engineering steps, these models were trained and fine-tuned using GridSearchCV
from scikit-learn [186] to find the optimal hyperparameter configurations.
Regression models: The models used for regression included Random Forest,
Support Vector Regression, XGBoost, Multi-layer Perceptron, Lasso and Ridge
Regression, and Elastic Net. Hyperparameter tuning was performed using Grid-
SearchCV with 5-fold cross-validation, focusing on metrics such as Mean Absolute
Error (MAE), R-squared (R2), Root Mean Squared Error (RMSE). The top three
models with the lowest average MAE across all folds were selected for further
analysis. There, stratified 5-fold cross-validation was performed, where one fold
was used as a hold-out test set and the other four as the training data. The
three previously chosen top models were then trained and evaluated for each
combination, by ensembling their predictions and test those against the single-
model-predictions from the top performing model, regarding R2, MAE, RMSE and
normalized versions of MAE and RMSE. Additionally, the Pearson- and Spearman
correlations were calculated between the predictions and the ground-truth values.
The results were visualized by plotting the corresponding predictions against the
ground-truth values. 95%-confidence intervals were calculated for each metric,
using bootstrapping.
The regression was performed on the cohorts with LiMAx-, MELD- and ALBI-
score.
Classification models: The models used for classification included Random For-
est, Support Vector Machine (SVM), XGBoost, Logistic Regression and Multi-layer
Perceptron (MLP). Hyperparameter tuning was also done with GridSearchCV
with 5-fold cross-validation, but with focus on accuracy and F1 score. The top
three models based on their F1-scores were selected for further evaluation. Similar
to regression, stratified 5-fold cross validation was performed for training and
testing the models. For every run, the training set was oversampled with Bor-
derlineSMOTE, focussing on generating synthetic samples for the minority class,
particularly for those samples that are near the borderline with the majority class,
which are more likely to be misclassified [187, 188]. Additionally to the single-model
predictions, a soft-voting ensemble approach was employed to aggregate predicted
class-probabilities from these models, and compare the prediction performance on
the hold-out test set against each other. 95%-confidence intervals were calculated
for accuracy and F1-score, using bootstrapping.
To visualize the classification results, ROC curves were plotted for each class, and



76 CHAPTER 3. DATA AND METHODS

a confusion matrix was generated. All metrics, including the F1 scores, accuracy,
AUCs and ROCs were calculated across all five test sets to provide an overall
performance metric and to ensure a comprehensive evaluation of the classification
models’ effectiveness.
The MELD-, LiMAx- and ALBI-scores were divided into three groups, indicating
normal liver function (NLF), moderate liver disease (MLD) and severe liver disease
(SLD). For the ALBI- and LiMAx-score, the official cutoff values for division into
three classes were used, as described in section 2.3. For the MELD score, published
cutoff values from literature were used, where patients with MELD ≤ 10 represent
NLF, MELD between 11 and 18 refer to MLD and severe liver disease is observed
for patients with a MELD > 18 [189]. Because of the very small amount of patients
with a MELD score above 18, another approach for this cohort was to predict
whether a patient has normal liver function or not. In other words, to predict if
the MELD is above 10. In the following, those three classes for MELD and LiMAx
will be referred to as grades, like for the ALBI-scores.
To evaluate whether the predictive performance of liver function scores was truly
enhanced by using a larger feature set than other approaches that only use the
relative enhancement index REILiver

4 or a combination of this with the liver volume
REILiver

4 · VolLiver [170, 168, 131, 169, 172, 173], the previously described model
training and evaluation was also performed twice, using each of these features
individually. This comprehensive comparison was necessary because the published
approaches rely solely on regions of interest (ROIs), which can be subjective and
liver function can vary across different regions within the liver, as previously
described. Additionally, differences in cohort distribution can also significantly
affect the results, making direct comparisons across different studies inappropriate.
All results for regression and classification are shown in section 4.3.
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Results and Discussion

4.1 Coregistration
The coregistration of MRI volumes across different phases of the T1-VIBE sequence
was performed to ensure accurate alignment and facilitate subsequent analyses. The
results of this coregistration process were evaluated both visually and quantified
by using several metrics: Mutual Information (MI), Normalized Cross Correlation
(NCC), Mean Absolute Error (MAE), and Structural Similarity Index (SSIM). A
detailed explanation of those metrics is provided in subsection 3.3.1.
The results are displayed in table 4.1

Table 4.1 This table illustrates the coregistration performance on the whole dataset
for different phases from the T1-VIBE sequence as the fixed image. All MRI Volumes
for each patient were coregistered to the given phase as the fixed image. Best and
second best results are bold and italic, respectively. Numbers in brackets denote the
95%-confidence intervals for each metric.

Fixed image MI NCC MAE SSIM
Native 0.90 [0.90, 0.91] 0.91 [0.91, 0.92] 1370 [1305, 1435] 0.83 [0.82, 0.83]
Arterial 0.92 [0.91, 0.93] 0.91 [0.91, 0.91] 1096 [1034, 1158] 0.87 [0.86, 0.87]
Late arterial 1.03 [1.02, 1.05] 0.95 [0.95, 0.95] 804 [749, 860] 0.87 [0.87, 0.88]
Portalvenous 1.02 [1.01, 1.04] 0.95 [0.94, 0.95] 822 [767, 878] 0.87 [0.87, 0.87]
HBP-20 0.92 [0.91, 0.93] 0.92 [0.92, 0.93] 1095 [1028, 1162] 0.87 [0.87, 0.88]

Taking the late arterial and portalvenous phases as the fixed images, consistently
demonstrated superior performance across all metrics. The late arterial phase
achieved the highest MI (1.03) and NCC (0.95), the lowest MAE (804), and a high
SSIM (0.87). Similarly, the portalvenous phase showed strong results with an MI
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of 1.02, NCC of 0.95, MAE of 822, and SSIM of 0.87. These findings indicate that
the late arterial phase provides the best alignment with other phases, making it
an ideal candidate for the fixed image in coregistration.
In contrast, the coregistrations to the native phase exhibited lower performance,
with an MI of 0.90, NCC of 0.91, MAE of 1370, and SSIM of 0.83. These results
suggest that the native phase has less shared information and more significant
intensity differences with other phases, potentially due to drastic variations in
contrast and intensity.
Those results were in complete aggreement with the visual inspection of the coregis-
trations, where the late arterial phase showed the best performance. Subsequently,
the dataset where all phases were coregistered to the late arterial phase was chosen
for all following steps.
However, due to the nature of VIBE sequences, there are issues where not all
patients are able to inhale the same amount of air for each phase’s acquisition.
Unlike brain MRIs, which maintain consistent structures across all modalities but
may have orientation differences, the issues in abdominal imaging with breath-hold
techniques result in significant deformations of the abdomen and internal organs
in all directions from one phase to another. This is compounded by misalign-
ments due to patient movement and is particularly problematic because of the
soft, deformable tissues involved. When inhaling, the diaphragm contracts and
moves downward to enlarge chest cavity and reduce the pressure inside the lungs
compared to the outside atmosphere and thus creating a vacuum, causing air to
be drawn into the lungs through the airways. This contraction leads to movement
and compression of the abdominal organs. An example with raw images before
preprocessing is shown in figure 4.1. There, one can see slices of the sagittal (top)
and axial (bottom) representations for the arterial (left) and portal venous (right)
phases from the T1-VIBE sequence. Images with same orientation share the exact
same FOV. The lines and arrows are there for reference.
The top horizontal lines in the sagittal views show how the heart (top line) and
vessels (bottom lines) move up and down, when inhaling more or less air. The
vertical lines there show the abdominal border in the arterial (right line) and
portal venous (left) line, where one can see how much difference between them
can be observed. For the axial views, the horizontal lines indicate borders of the
liver (top line) and the spleen (bottom line) in the arterial phase and how they
are different from the portal venous phase. The arrows point to the exact same
spatial positions in both images. The hepatic veins are visible in the portal venous
phase, but not in the arterial phase, due to different amount of air inhaled.
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Figure 4.1 Arterial and portal venous phases from the T1-VIBE sequence for one
subject before coregistration. The arterial phase is shown in the (left) images, and the
portal venous phase in the (right). The (top row) displays the sagittal view with
the patient’s back on the left and abdomen on the right. The (bottom row) shows
the axial orientation of the same MRI. Images in the same row depict the exact same
slice. Due to variations in breath intake, the abdominal organs do not remain in a
fixed position. Brown reference lines aid visualization. Vertical lines in the top images
indicate the moving abdominal border: the right line marks the border in the arterial
phase, while the left line marks the border in the portal venous phase, where less air
was inhaled. Horizontal lines in these images illustrate the movement of the heart (top
line) and vessels (bottom lines) between phases due to breathing. Yellow arrows in the
axial images point to identical spatial positions where the hepatic veins are visible in
the portal venous phase. The horizontal lines indicate the borders of the liver (left) and
spleen (right) during the arterial phase and demonstrate how they shift due to breathing.

Those characteristics made it challenging to get precise coregistration for fine
vascular structures as the hepatic veins, hence in a lot of cases it was not as
accuracte as desired.
The exact same slices for the given example from figure 4.1, but after coregistration,
can be found in figure 4.2 with the reference lines and arrows at the same positions
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in the images.

Figure 4.2 Arterial and portal venous phases from the T1-VIBE sequence for the same
subject after coregistration. The arterial phase is shown in the left images, and the portal
venous phase in the right. The top row displays the sagittal view with the patient’s back
on the left and abdomen on the right. The bottom row shows the axial orientation of
the same MRI. Images in the same row depict the exact same slice. There, the reference
lines indicate an overlap of the given structures in both phases and the yellow arrows
show the hepatic veins. In contrast to the images before coregistration, they are now
visible in the same slice in the arterial phase, but still not exactly at the same positions
as in the portal venous one.

There, it can be observed that the differences of heart and vessel positions can’t
be observed in the sagittal views anymore, between both phases. Additionally, the
liver and spleen borders for the axial views now align in both phases. Hepatic
veins are also visible in the arterial phase, now. However, they still don’t overlap
perfectly.
Those challenges make it hard for the network architectures to learn the correct
features and is especially problematic for the feature extraction in a later stage of
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the pipeline, where features from multiple corresponding MRI phases are offset
against each other with the help of segmentated structures. This raised the need
for an implementation of a custom post-processing pipeline that is applied before
feature extraction and was described in subsection 3.6.1.

4.2 Segmentation
In this section, the segmentation performance of three deep learning models -
standard nnU-Net [115], ResEnc nnU-Net [162], and Swin UNETR [118] - on
the given dataset with seven labels is presented. The models were evaluated
on four different dataset combinations (training- and test-dataset) using 5-fold
cross-validation, and the predictions were ensembled to ensure robustness. The
key metrics used for evaluation are explained in detail in subsection 3.3.2. The
averaged results for the four different test datasets are shown in table 4.2. The
best and second best results for each metric are highlighted in bold and italic,
respectively, and the 95% confidence intervals are provided in brackets.
Both nnU-Net variants (standard and ResEnc) performed exceptionally well on
the liver parenchyma segmentation task, achieving high DSC, IOU, and TPR
scores. The standard nnU-Net slightly outperformed the ResEnc nnU-Net in PPV
and VD, indicating a marginally better precision and volume accuracy. The Swin
UNETR, while delivering competitive results, lagged behind the nnU-Net variants
in all metrics. This suggests that the traditional convolutional architecture of
nnU-Net remains highly effective for liver parenchyma segmentation
For the portal vein and hepatic veins, the standard nnU-Net achieved the
best performance across most metrics. The ResEnc nnU-Net showed competitive
results but was slightly behind in TPR for hepatic veins. The Swin UNETR’s
performance was notably lower, particularly in DSC, IOU and TPR, indicating
less accurate and complete segmentations.
The segmentation of lesions proved challenging for all models, with the standard
nnU-Net achieving the highest DSC and IOU. Additionaly, the LFPR was the
lowest for the standard nnU-Net. The ResEnc variant was slightly behind, while
the Swin UNETR had the lowest scores across most metrics. This suggests that
while nnU-Net variants can handle complex structures to some extent, there is still
room for improvement, particularly in segmenting irregular and small structures
like lesions.
The same suggestions are valid for the segmentation of ascites. There, the
standard nnU-Net outperformed the other models in DSC and IOU, with the
ResEnc nnU-Net following closely. The Swin UNETR showed significantly lower
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performance, indicating its limitations in handling fluid-filled regions and precise
boundary delineation. However, the values for this label should be treated with
caution as the ground-truth labels were not perfect and visual inspection for all
seven patients that showed signs of ascites, tended to give the impression that the
segmentations from the standard nnU-Net were more accurate, as shown in figure
4.3.
Both nnU-Net variants performed similarly well on the abdominal and thoracic
aorta segmentation, with the standard nnU-Net slightly ahead in TPR. The Swin
UNETR, while competitive, was slightly behind in most metrics. These results
suggest that nnU-Net’s architecture is well-suited for segmenting tubular structures
like the aorta.
A comparison of the model’s segmentation with the ground truth annotations and
the original image with no annotations for one subject with liver cirrhosis and
ascites is shown in figure 4.3. The pink arrows with their direction towards the
liver point to the vena cava inferior, which is not part of the original liver labels
and is no liver parenchyma. Both nnU-Net variants were able to identify this as
non-liver tissue, where the Swin UNETR falls short and classifies it as liver, too.
For the pink arrow pointing to the ascites fluid in the images, one can see that
the initial labels were not always perfect, showing that some parts were missed by
the original label. The standard nnU-Net performs a comprehensive segmentation
in this slice, where in the Residual Encoder version some part of the bottom is
missing. The Swin UNETR captures this part, but is misses a bigger part that the
other approaches were capable of. The yellow arrows show, where the nnU-Net
variants were able to precisely segment the liver parenchyma border in this area,
but the transformer model did not capture the small gap correctly. Additionally,
the red ellipse shows, where the Swin UNETR alone was not sure, whether the
given vessel is a hepatic vein or a portal vein and the rectangular box highlights an
area, where it misclassified parts of the stomach as liver and lesion. However, the
ground-truth annotation shows a small area of the border of a lesion (highlighted
with a red ellipse) that none of the architectures was able to capture.
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Figure 4.3 All images show the same axial slice of a patient with liver cirrhosis and
ascites for the late arterial phase. First row is the given image with no annotations.
Labels in the other slices are dark blue, light blue, green, dark yellow, light yellow, and
orange for the labels liver, portal vein, hepatic vein, ascites, lesion and abdominal aorta,
respectively. Left image in the second row depicts the ground-truth annotations, right
one shows the segmentations from the standard nnU-Net. Bottom row illustrates the
residual encoder nnU-Net’s (left) and the SWIN UNETR’s (right) segmentations. Arrows,
ellipses and rectangular boxes highlight major differences between the segmentations
from the models and the ground-truth annotations.
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For another subject with impaired liver function, the model’s segmentations are
compared to the ground-truth annotations in figure 4.4. The yellow arrow indicates
an area, where the nnU-Net models correctly captured the border of the liver
parenchyma like in the ground-truth, but the Swin UNETR was not able to
distinguish between liver and background. The pink rectangular boxes in the
ground-truth annotation show hepatic veins and portal veins that none of the
model was able to segment in that slice, correctly. The red ellipses in the residual
encoder nnU-Net’s and the Swin UNETR’s segmentations indicate, where the
models were not able to distinguish between portal veins and hepatic veins and
therefore misclassified a lot of them, especially the latter.
All the described findings, visually or metric-wise, suggest that the traditional
convolutional architecture of nnU-Net remains highly effective for medical imaging
segmentation, aligning with previous studies that highlight the robustness of
CNN-based models in medical image segmentation. Transformer-based models
like Swin UNETR, while promising, often fall short of the performance achieved
by CNN-based models, especially with datasets comprising multiple labels [162].
This study’s results are consistent with the literature, which frequently reports
nnU-Net as one of the top-performing models in various segmentation tasks [161,
162].
Because of those results and the significant longer training time for the ResEnc
nnU-Net variant (see subsection 3.5), all segmentations for the following steps
were generated with the standard nnU-Net framework that was introduced in 2021
[115].
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Figure 4.4 All images show the same axial slice of a patient with liver disease for the
portalvenous phase. First row is the given image with no annotations. Labels in the
other slices are dark blue, light blue, green and orange for the labels liver, portal vein,
hepatic vein and abdominal aorta, respectively. Left image in the second row depicts the
ground-truth annotations, right one shows the segmentations from the standard nnU-Net.
Bottom row illustrates the residual encoder nnU-Net’s (left) and the SWIN UNETR’s
(right) segmentations. Arrows and ellipses highlight major differences between the
segmentations from the models and the ground-truth annotations. The pink rectangular
boxes show hepatic and portal veins in the ground-truth annotations that all of the
architectures missed.
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4.3 Liver Function Estimation
This section presents the results for the evaluation of liver function estimation
using both regression and classification models. The predictive performance of
different models across three key liver function scores, such as ALBI, MELD,
and LiMAx, is assessed. Those scores are critical for assessing liver health and
guiding clinical decision-making. The analysis aims to determine the effectiveness
of various modeling approaches in accurately estimating liver function with MRI
derived features.

4.3.1 Regression for Liver Function Score Prediction
Table 4.3 compares the performance of regression models for MELD, LiMAx, and
ALBI scores using both single (A) and ensembled (B) prediction approaches for the
distinct feature sets derived by the feature engineering (X) (see table A.1), as well
as for the models trained with only one feature. Once with REILiver

4 (Y) and once
for VolLiver· REILiver

4 (Z). Since the distinct scores are on different scales, normalized
metrics such as Normalized Mean Absolute Error (NMAE) and Normalized Root
Mean Square Error (NRMSE) are used to facilitate a fair comparison.
Figure 4.5 illustrates the relationship between the predicted and actual values for
each liver function score for single models’ predictions when using the corresponding
comprehensive feature sets, derived by the feature engineering steps. The regression
plots highlight the accuracy of the models, with the dashed red line indicating the
ideal scenario where predictions perfectly match the ground truth. The green line
represents the Pearson correlation, providing a visual measure of the strength and
direction of the linear relationship between predicted and actual values.

MELD-Score

For the MELD-score with the full feature set, the top three performing models
were Random Forest, configured with a maximum depth of 10 and 200 estimators;
XGBoost, with a maximum depth of 3 and 10 estimators; and ElasticNet, with
an alpha value of 0.1 and an L1 ratio of 0.1. The Random Forest model and the
ensembled predictions showed similar performance, with an NMAE around 0.09
and an R2 approximately 0.36-0.37, indicating moderate predictive accuracy.
According to the first plot in Figure 4.5 (generated solely with Random Forest
predictions), the best correlation between predicted and actual values is observed
for MELD-scores below 15. Beyond this range, where patients exhibit worse liver
function, the model struggles to meaningfully predict MELD-scores. Notably, the
model never predicts scores higher than 21, despite the cohort containing patients
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with scores up to 31. This suggests a limitation in the model’s ability to generalize
to more severe cases of liver dysfunction. This limitation most probably stems
from the insufficient representation of higher MELD scores in the whole cohort
and subsequently in the training data, leading to a lack of learned patterns for
these cases. However, the MELD scores above 20, did not correlate with the other
liver function scores, like lower MELD ones did (see Figures 3.7 and 3.5), which
could also indicate measurement errors or non-representative samples for the small
amount of subjects in this area.
Using only one feature (Y), showed a decrease in performance, with an R2 of
about 0.26 and a slightly higher NMAE of 0.10-0.11, indicating less accuracy. For
the combined feature VolLiver·REILiver

4 , the accuracy could be improved upon the
relative enhancement index only, achieving an R2 of 0.32-0.33 and an NMAE similar
to the full feature set, suggesting that incorporating liver volume substantially
enhances predictive power. There, the best performing models for both of those
scenarios were a Multi-Layer Perceptron (MLP), XGBoost and Ridge Regression.
However, the models trained on the full feature set still showed the best overall
performance in this comparison. For (X), the ensembled models’ predictions for
the comprehensive feature set slightly improved R2 and Spearman correlation
compared to the single model’s predictions, suggesting better predictive consistency,
although the differences within the 95%-confidence intervals were negligible. For
the small feature sets, performance decreased consistently, when using ensembled
predictions.

LiMAx-Score

Regarding the LiMAx-score with the comprehensive feature set, the top three
performing models were Support Vector Regression (SVR), configured with a C
parameter of 100 and gamma set to ’scale’; Random Forest, with a maximum
depth of 20 and 500 estimators; and XGBoost, with a maximum depth of 3 and 10
estimators. Regression based on the LiMAx score resulted in an NMAE of about
0.14 and an R2 of 0.31, reflecting a moderate level of accuracy. The ensemble
approach did not enhance the metrics for any of the feature sets, especially when
considering the confidence intervals. Using only REILiver

4 slightly decreased the
R2, Pearson and Spearman correlation, indicating that this feature alone is less
effective. Notably, the combined feature VolLiver· REILiver

4 did not improve any of
the metrics at all, suggesting that this combination does not enhance predictive
performance for LiMAx as much as for MELD. For feature-set (Y), XGBoost, SVR,
and MLP were the top-performing models. These same models also demonstrated
the best performance for feature-set (Z), with a slight reordering as MLP and



90 CHAPTER 4. RESULTS AND DISCUSSION

XGBoost switched positions.
The bottom left plot in figure 4.5 shows a moderate correlation between predictions
and ground truth for the model. The Pearson correlation line deviates significantly
from the identity line, indicating that while the model captures some trends, it
struggles with precise predictions across the full range of scores. This discrepancy
suggests that the model may not fully capture the complexity of the LiMAx score,
even though the distribution in the dataset is relatively balanced (see subsection
3.1.2).

ALBI-Score

Regression for the ALBI-score with the comprehensive feature set demonstrated
the highest predictive performance, with an NRMSE of 0.12 and a high R2 of
0.62-0.63, indicating strong model accuracy and reliability. The top three per-
forming models were a Random Forest, configured with no maximum depth and
500 estimators; XGBoost with a maximum depth of 3 and 10 estimators; and
Support Vector Regression (SVR), with a C value of 1 and gamma set to ’scale’.
The Pearson and Spearman correlations for predicted and actual values were
significantly higher at 0.78 and 0.79, respectively, compared to the other scores.
The use of (Y) resulted in a lower R2 of about 0.51-0.52, with a slightly higher
NMAE, showing reduced predictive capability. The VolLiver· REILiver

4 feature set
achieved an R2 of 0.55-0.56, which is better than using the relative enhancement
index alone but still not quite as effective as the full feature set. For feature
set (Y), SVR, MLP and XGBoost were the best performing models. Those also
demonstrated the best performance for feature-set (Z), but in the order of MLP,
XGBoost and SVR. The bottom right plot in figure 4.5 shows, how the predictions
align more closely with the ground truth compared to the other scores, which is in
aggreement with the metrics shown in table 4.3. The Pearson correlation line is
relatively close to the identity line, suggesting a stronger linear relationship.
However, there are still deviations, particularly at the extremes of the score range,
indicating some limitations in the model’s predictive capability. One reason for
this could be the underrepresentation of patients with a high ALBI-score in the
cohort.

Overall, the ensembled models do not significantly enhance the predictive perfor-
mance within the confidence intervals for regresssion. Consequently, the single-
model predictions were chosen for further analysis, as simpler models that achieve
similar results are generally preferable due to their ease of interpretation, reduced
computational cost, and lower risk of overfitting [62]. Consequently, the plots in
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Figure 4.5 Regression results for various liver function scores using the complete feature
sets. Predictions are plotted against Ground-Truth values, with the dashed red line
representing the identity line, where perfect predictions would lie. The green line
illustrates the Pearson correlation between predictions and Ground-Truth. The top
panel displays the results for the MELD score, while the bottom right shows results
for the ALBI score. The bottom left panel shows the results for the LiMAx score. For
all scores, the results shown in the plots were achieved using single model predictions.

figure 4.5 show the results for single model predictions.
The combined feature (Z) improved predictions in comparison with using REILiver

4
alone, especially for the MELD score, highlighting the importance of incorporat-
ing multiple features for accurate liver function score predictions. However, the
comprehensive feature sets consistently outperformed the single-feature models,
particularly for the ALBI score, which showed the greatest predictive accuracy
overall.
In summary, the regression models demonstrated varying levels of accuracy across
the different liver function scores. The MELD model showed limitations, particu-
larly for higher scores, indicating a need for better representation of severe cases in
the training data. The LiMAx-score model captured general trends but struggled
with precise predictions, while the ALBI-score model showed a stronger correlation,
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suggesting it may be more reliable for assessing liver function by features derived
from Magnetic Resonance Imaging within the tested range.

4.3.2 Classification for Liver Function Prediction
The classification models for liver function prediction were evaluated for MELD-,
LiMAx-, and ALBI-scores using both single (A) and ensembled (B) prediction
approaches across different feature sets. The notation follows the same form as in
the previous subsection, where (X) refers to the distinct feature sets derived by the
feature engineering (see table A.1), and (Y) and (Z) for the single features. The
results are presented in terms of accuracy and F1-score in Table 4.4. Several ROC
curves and confusion matrices for different feature sets and the distinct scores are
provided for a comprehensive evaluation, as well.

MELD-Grades

The MELD-score was divided into groups and two distinct classification tasks were
performed: binary classification (2 classes) and three-class classification (3 classes).
Detailed cutoff value explanations are provided in subsection 3.6.4.
Using the full feature set for the first task, the binary classification achieved the
highest accuracy of 0.77 [0.73, 0.81] and F1-score of 0.77 [0.73, 0.81] with ensembled
predictions. The ROC curve (top left of Figure 4.6) shows strong performance
with an AUC of 0.84. The confusion matrix (top left of Figure 4.7) confirms this
with a good overlap of predicted and actual classes. The top 3 models and their
hyperparameters were XGBoost with a maximum depth of 3 and 10 estimators;
Logistic Regression with a regularization parameter C of 0.1, a maximum of 10.000
iterations and the liblinear solver; and Support Vector Classifier (SVC) with a C
value of 1 and gamma set to ’scale’.
The three-class classification showed slightly lower performance, with the best
accuracy of 0.72 [0.68, 0.77] and F1-score of 0.72 [0.68, 0.77]. The ROC curve (top
right of Figure 4.6) shows moderate performance with AUC values of 0.84, 0.76,
and 0.78. The confusion matrix (top right of Figure 4.7) reveals more complexity
and moderate misclassification, especially for the third class. The top three
models were SVC with a regularization parameter of 1 and gamma set to ’scale’,
Random Forest with no maximum depth and 500 estimators, and XGBoost with a
maximum depth of 6 and 1000 estimators. When using only the REILiver

4 feature,
the performance decreased for both tasks. The binary classification accuracy and
AUC dropped to 0.67 [0.62, 0.71] and 0.78 (see Figure A.1 top left), while the
three-class classification accuracy fell to 0.56 [0.51, 0.61] with AUCs of 0.78, 0.58
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and 0.78 (see Figure A.1 top right).
In comparison to this, the combined feature VolLiver· REILiver

4 improved performance,
particularly for binary classification, achieving accuracy of 0.71 [0.67, 0.76] and
AUC of 0.84 (Figure A.2, top left), comparable to the full feature set. However,
for the three-class task, this feature alone underperformed, with an accuracy of
0.54 [0.49, 0.59] and F1-Score of 0.58 [0.55, 0.63]. The ROC curve (Figure A.2,
top right) showed moderate performance with AUCs of 0.83, 0.67, 0.75. These
results clearly indicate that a more comprehensive feature set significantly enhances
predictions for multi-class classification tasks, in this case especially for the second
class.

LiMAx-Grades

Classification performance for the LiMAx-grades was generally lower compared to
MELD- and ALBI-grades, just like for the regression task. Using the full feature
set, the highest accuracy achieved was 0.54 [0.47, 0.61] with a corresponding
F1-score of 0.52 [0.45, 0.59]. The ROC curve (bottom left of Figure 4.6) shows
lower performance with AUCs of 0.79, 0.69 and 0.70, indicating challenges in
precise classification. The confusion matrix (bottom left of Figure 4.7) highlights
these challenges with significant misclassification, especially for the second class.
The top three models were Logistic Regression with a regularization parameter of
0.1, a maximum of 10,000 iterations, and using the ’liblinear’ solver, SVC with
a regularization parameter of 1 and gamma set to ’scale’, and MLP with hidden
layer sizes of 300 and a maximum of 10,000 iterations.
Interestingly, for this cohort, using only REILiver

4 showed better performance for
Accuracy and F1-score than the combined feature VolLiver· REILiver

4 . However, the
full feature set also did not improve those metrics siginificantly, suggesting that
MRI derived features alone may not suffice for accurate LiMAx classification, in
general. The ROC-curves for those small feature sets in figures A.1 and A.2, reveal
AUCs of 0.79, 0.58, 0.69 and 0.79, 0.59, 0.71 for (Y) and (Z), respectively, showing
that the performance does decrease significantly for the second class, but stays
about the same for the first and third class in comparison with the comprehensive
feature set.
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Table 4.4 Comparison of Classification Model Performance for MELD, LiMAx, and
ALBI Grades Using Single (A) and Ensembled (B) predictions for different feature sets.
Numbers in brackets denote the 95%-confidence intervals for each metric.

Feature Set (X) Accuracy F1-Score
MELD 2 classes (A) 0.75 [0.71, 0.80] 0.76 [0.72, 0.80]
MELD 2 classes (B) 0.77 [0.73, 0.81] 0.77 [0.73, 0.81]
MELD 3 classes (A) 0.69 [0.65, 0.74] 0.71 [0.67, 0.75]
MELD 3 classes (B) 0.72 [0.68, 0.77] 0.72 [0.68, 0.77]
LiMAx (A) 0.54 [0.47, 0.61] 0.52 [0.45, 0.59]
LiMAx (B) 0.52 [0.45, 0.59] 0.51 [0.44, 0.58]
ALBI (A) 0.68 [0.61, 0.74] 0.67 [0.61, 0.74]
ALBI (B) 0.68 [0.61, 0.73] 0.67 [0.62, 0.74]
Feature Set (Y) Accuracy F1-Score
MELD 2 classes (A) 0.66 [0.61, 0.71] 0.67 [0.62, 0.71]
MELD 2 classes (B) 0.67 [0.62, 0.71] 0.67 [0.63, 0.72]
MELD 3 classes (A) 0.55 [0.50, 0.60] 0.60 [0.55, 0.64]
MELD 3 classes (B) 0.56 [0.51, 0.61] 0.60 [0.55, 0.64]
LiMAx (A) 0.53 [0.46, 0.60] 0.51 [0.44, 0.59]
LiMAx (B) 0.44 [0.37, 0.50] 0.40 [0.34, 0.48]
ALBI (A) 0.54 [0.47, 0.60] 0.51 [0.44, 0.59]
ALBI (B) 0.59 [0.53, 0.66] 0.57 [0.50, 0.64]
Feature Set (Z) Accuracy F1-Score
MELD 2 classes (A) 0.71 [0.67, 0.76] 0.72 [0.68, 0.76]
MELD 2 classes (B) 0.71 [0.67, 0.76] 0.72 [0.68, 0.76]
MELD 3 classes (A) 0.53 [0.49, 0.58] 0.58 [0.55, 0.63]
MELD 3 classes (B) 0.54 [0.49, 0.59] 0.58 [0.54, 0.63]
LiMAx (A) 0.50 [0.44, 0.57] 0.47 [0.40, 0.55]
LiMAx (B) 0.49 [0.43, 0.56] 0.45 [0.39, 0.54]
ALBI (A) 0.57 [0.51, 0.63] 0.56 [0.49, 0.63]
ALBI (B) 0.57 [0.50, 0.63] 0.55 [0.49, 0.62]

ALBI-Grades

The ALBI-grade classification showed moderate performance with the full feature
set, achieving an accuracy of 0.68 [0.61, 0.74] and an F1-score of 0.67 [0.61, 0.74].
The ROC curves (bottom right of Figure 4.6) indicate strong performance, with
AUC values of 0.88, 0.73, and 0.91. The confusion matrix (bottom right of Figure
4.7) demonstrates strong performance, with moderate misclassifications for class 2
and 3. The top three models were Random Forest with no maximum depth and
100 estimators, XGBoost with a maximum depth of 9 and 10 estimators, and SVC
with a regularization parameter of 1 and gamma set to ’scale’.
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With the small feature sets, performance decreased significantly, regarding accuracy
and F1-score. For (Y), ensembled predictions increased those metrics considerably,
compared to the single-model predictions. This observation can not be made
with the full feature set (X) and the small feature set (Z). In this scenario, the
single-model predictions perform as good as the ensembled models, considering the
95%-confidence intervals. Taking the ROC-curves into account, one can see, AUC
values of 0.86, 0.66, 0.88 and 0.88, 0.66, 0.87 for (Y) and (Z), respectively. This
highlights the increased challenges for the models to correctly predict ALBI-grade
2, when using too small feature sets.

Figure 4.6 Receiver Operating Characteristic (ROC) Curves and Area Under Curve
(AUC) for various liver function score classifications using the complete feature sets. The
dashed line represents the performance of a random classifier for balanced datasets. The
top left panel displays results for binary classification of the MELD score, while the
top right plot illustrates three-class classification results for this score. The bottom
left panel shows results for LiMAx grades, and the bottom right panel presents results
for ALBI grades. MELD results were achieved through ensembled predictions, whereas
LiMAx and ALBI results were generated using single-model predictions.

In summary, while the MELD score classification showed strong performance,
particularly for binary classification, the ALBI grade classification demonstrated
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the most promising results for distinguishing between normal, medium, and poor
liver function. Using the full feature set, ALBI classification achieved moderate
accuracy but excellent discrimination ability, with AUC values of 0.88, 0.73,
and 0.91 for the three classes. LiMAx grade classification showed the lowest
performance across all feature sets, suggesting that MRI-derived features alone
may not be sufficient for accurate LiMAx classification. Regarding the MELD
score, ensembled predictions improved the performance for binary-classification
as well as for classification with three grades, where the LiMAx classification
performance consistently decreased with ensembled predictions. For ALBI, the
ensembled performance was better only for feature set (Y) and stayed the same
for the other feature sets.

Figure 4.7 Confusion matrices for liver function score classifications using complete
feature sets. The top left panel shows binary classification results for the MELD score
and the top right panel displays three-class classification results for this score, both
achieved through ensembled predictions. The bottom left panel presents results for
LiMAx grades, and the bottom right panel shows results for ALBI grades, both using
single-model predictions.

Overall, the results indicate that comprehensive feature sets generally improve
classification performance, especially for multi-class tasks, with ALBI score classi-
fication showing the most potential for accurately differentiating between various
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levels of liver function with MRI-derived features. This is also in aggreement with
the regression results from the previous subsection.

Based on the comprehensive analysis of regression and classification models for
liver function estimation using MRI-derived features, the ALBI score and grade
consistently demonstrated the strongest predictive performance across both re-
gression and classification tasks. The MELD score showed moderate predictive
capability for three classes, and very good results for binary classification, while
the LiMAx score proved challenging to predict accurately using MRI features alone
in both, regression and classification tasks. These findings suggest that automated
MRI-derived features, especially when using a comprehensive feature set, have
significant potential for non-invasive liver function assessment, with the ALBI
score emerging as the most promising target for future clinical applications and
research.





Chapter 5

Summary

This thesis presents a novel technique for liver function estimation based solely on
MRI imaging features, utilizing machine learning and deep learning approaches.
The work is structured in the following way:
Chapter 1 introduces the importance of accurate liver function assessment and the
potential of AI-driven methods in combination with medical imaging to enhance
this process.
Chapter 2 provides essential background information on liver anatomy, key biomark-
ers of liver function, liver function scores, principles of MRI, and fundamentals
of artificial intelligence including various machine learning models, CNNs and
transformer networks.
Chapter 3 provides a comprehensive overview of the study’s datasets and method-
ologies. It describes the MRI datasets used for liver segmentation (78 subjects) and
liver function estimation (458 subjects), along with the preprocessing techniques
applied to the MRI images. The chapter also outlines the evaluation metrics
employed to assess the performance of coregistration, segmentation, and liver
function estimation processes. Furthermore, it offers explanations of the various
architectures used for image segmentation, the feature extraction methodology,
and the procedures for model training. Additionally, the chapter presents an
analysis of the cross-correlation between different liver function scores, revealing
that the ALBI and MELD scores exhibit the strongest correlation, while the
LiMAx and MELD scores show the weakest correlation. A detailed explanation of
the meticolous refinement technique for the segmentations can also be found in
this chapter.
Chapter 4 offers a comprehensive presentation and analysis of the thesis findings.
It examines the coregistration performance of MRI volumes across various phases
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and thereby addressing the specific challenges associated with breath-holding
imaging techniques. The chapter also evaluates the segmentation performance of
different architectures for seven liver-related structures. Furthermore, it presents
and discusses the outcomes of liver function estimation using both regression
and classification approaches, providing a thorough assessment of the study’s key
results.
The study utilized three distinct deep learning architectures to comprehensively
evaluate segmentations of the liver parenchyma, portal veins, hepatic veins, lesions,
ascites, and the thoracic and abdominal aorta. In this comparative analysis, the
standard nnU-Net generally outperformed both the residual encoder nnU-Net
and the Swin UNETR transformer network across multiple metrics, including
DSC, IOU, PPV, TPR, LFPR, LTPR, and Volume Difference for most of the
segmentation classes.
Due to coregistration challenges and imperfect segmentations of fine structures
such as vessels, the automatically generated labels from the nnU-Net underwent
a unique post-processing pipeline, as detailed in subsection 3.6.1. These refined
labels were subsequently used to extract meaningful features from the MRIs for
liver function estimation in later stages of the pipeline, as elaborated in subsection
3.6.2.
Before training the liver function estimation models, the feature sets were processed
through a feature-engineering pipeline to retain only the most relevant features
regarding each liver function score. Given the imperfect correlations between scores
(see subsection 3.1.2), this resulted in three distinct comprehensive feature sets for
the three liver function scores, as illustrated in table A.1. Previous studies have
correlated features such as the relative enhancement index of the liver parenchyma,
or its combination with liver volume, to various scores. However, these studies
typically limited their measurements to a small number of liver ROIs, potentially
losing valuable information due to the reported possibility of varying liver health
and function across different regions of the organ [180, 181, 182].
In contrast, this thesis employed comprehensive measurements of the entire tis-
sues under consideration with automated segmentations of the whole structures.
Consequently, for a fair comparison of the comprehensive approach with the single
features, these individual features were also tested against the larger feature sets
under the same conditions in this thesis, to investigate whether the predictive
performance could be boosted by a larger feature set than from the other studies
reported.
The research evaluated both regression and classification approaches on those
different feature sets using machine learning models such as Random Forest,
XGBoost, Support Vector Machines, Multi-layer perceptrons, logistic regression,



101

Ridge- and Lasso-regression, as well as Elastic Net in terms of MAE, R2, RMSE,
Spearman and Pearson correlation, F1-Score, Accuracy, AUCs, Confusion Matrices
and normalized metrics as NMAE and NRMSE. Thorough hyperparamer tuning
was performed to find the best possible configurations for each score and feature
set. The performance of ensembled predictions vs. the single-model predictions
was evaluated, too.
The results demonstrated that using a comprehensive set of features derived from
MRI images continuously improved liver function prediction compared to using
single features, except for the LiMAx-score, which showed the worst results overall,
no matter which feature set was used. This suggests that the use of only MRI
derived features is probably not sufficient to build classification models for the
LiMAx-score. The results for the ALBI score cohort consistently showed the
highest predictive accuracy among the liver function scores evaluated, for the
regression and the classification tasks.
Keeping current research in mind, which states that ALBI can show comparable or
even superior prognostic performance, compared to more traditional liver function
scores as MELD- and Child-Pugh-score [26, 27], the results of this study are very
promising regarding non-invasive liver function assessment.
In conclusion, this study is able to demonstrate that fully automated non-invasive
liver function prognosis - especially for the ALBI score - based on MRI data is
indeed possible, making it a fairly reliable, accurate and objectively reproducible
method that could be implemented in routine clinical practice with little effort.
Furthermore, this thesis contributes to the growing body of knowledge in AI-driven
medical imaging and offers practical solutions for improving the accuracy and
efficiency of automated liver function assessments using MRI data, particularly
highlighting the potential of comprehensive feature sets to enhance predictive
accuracy, except in the case of the LiMAx-score where MRI-derived features alone
may be insufficient.
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Appendix

Table A.1 This table illustrates the final feature sets that were used for the models of
each cohort after the feature engineering.

MELD ALBI LiMAx
VolLiver VolLiver VolLiver

VolLiver · REILiver
2 VolLiver · REILiver

1 VolLiver · REILiver
2

VolLiver · REILiver
3 VolLiver · REILiver

2 VolLiver · REILiver
3

VolLiver · REILiver
4 VolLiver · REILiver

3 VolLiver · REILiver
4

REILiver
4 VolLiver · REILiver

4 REILiver
2

REILiver
4 (median) REILiver

2 REILiver
4

REILiver
4 (10th-percentile) REILiver

3 REILiver
2 (median)

REILiver
1 (interquartile) REILiver

4 REILiver
4 (median)

REILiver
4 (interquartile) REILiver

2 (interquartile) REILiver
3 (interquartile)

REIPV
3 REILiver

3 (interquartile) REIPV
1

REIPV
4 REILiver

4 (interquartile) REIPV
2

REIHV
2 REIPV

1 REIPV
3

REIHV
3 REIPV

2 REIPV
4

REIHV
4 REIPV

3 REIHV
2

REIAbdominal aorta
1 REIPV

4 REIHV
3

REIHV
2 REIAbdominal aorta

1

REIHV
3 REIAbdominal aorta

3

REIHV
4 REIThoracic aorta

1

REIAbdominal aorta
1 REIThoracic aorta

2

REIAbdominal aorta
2 REIThoracic aorta

3

REIAbdominal aorta
3

REIAbdominal aorta
4
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Figure A.1 Receiver Operating Characteristic (ROC) Curves and Area Under Curve
(AUC) for various liver function score classifications using only one feature (REILiver

4 ).
The dashed line represents the performance of a random classifier for balanced datasets.
The top left panel displays results for binary classification of the MELD score, while the
top right plot illustrates three-class classification results for this score. The bottom
left panel shows results for LiMAx grades, and the bottom right panel presents results
for ALBI grades. MELD results were achieved through ensembled predictions, whereas
LiMAx and ALBI results were generated using single-model predictions.
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Figure A.2 Receiver Operating Characteristic (ROC) Curves and Area Under Curve
(AUC) for various liver function score classifications using only one feature (VolLiver ·
REILiver

4 ). The dashed line represents the performance of a random classifier for balanced
datasets. The top left panel displays results for binary classification of the MELD score,
while the top right plot illustrates three-class classification results for this score. The
bottom left panel shows results for LiMAx grades, and the bottom right panel presents
results for ALBI grades. MELD results were achieved through ensembled predictions,
whereas LiMAx and ALBI results were generated using single-model predictions.
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