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Chiral materials lacking mirror symmetry can exhibit unconventional spin-orbit fields, including fully
momentum-aligned radial Rashba fields as seen in twisted van-der-Waals homobilayers. We theoretically study
Cooper-pair transfer in superconductor/ferromagnet/superconductor Josephson junctions with crossed (tangen-
tial and radial) interfacial Rashba fields. We find that their interplay leads to what we call the unconventional
supercurrent diode effect (SDE), where supercurrent rectification occurs even with collinear (w.r.t. the current)
barrier magnetization, not possible for conventional spin-orbit fields. This SDE, distinct from conventional
Rashba-induced effects on Cooper-pair momenta, arises from the spin precession in the magnetic barrier. We
propose it as a sensitive probe of chiral spin textures.

Introduction. The interplay of spin-orbit coupling (SOC)
and magnetism is essential for spintronics applications [1, 2],
enabling transport magnetoanisotropies [3, 4], tunneling Hall
effects [5, 6], or spin-orbit torque in magnetic tunnel junc-
tions [7]. Particularly sensitive probes are superconducting
junctions [8, 9], in which superconducting coherence can sig-
nificantly amplify this interplay [10–14] and lead, e.g., to
triplet pairing [8, 15–21].

In Josephson junctions formed by Al/InAs heterostructures,
the interfacial Rashba field induces supercurrent rectification
in the presence of an in-plane magnetic field perpendicular
to the current direction [22–36]. This supercurrent diode ef-
fect (SDE) has been observed in a variety of systems includ-
ing superconducting superlattices [37], twisted bi- and trilayer
graphene [38–40], van-der-Waals heterostructures [41–44], or
topological materials [25, 45, 46]. Detecting the SDE in
twisted multilayer high-temperature superconductors [47–50]
indicates unconventional (e.g., 𝑑-wave-like) superconducting
pairing.

The common argument for the SDE is the formation of
Cooper pairs with a finite center-of-mass momentum due to
the distorted Fermi surface in the presence of SOC, such as
Rashba [51, 52] and Dresselhaus [53], and an in-plane mag-
netic field [30, 54–58]. This results in marked phase asym-
metries of the Andreev states [59] and anomalous 𝜑0-phase
shifts [60–78] in the current–phase relations (CPRs) of the
individual transverse channels. The interference of multiple
channels in wide junctions—each with slightly different 𝜑0—
leads to a strongly distorted total CPR and a sizable Joseph-
son SDE [22, 23, 28, 29, 34, 79, 80]. A recent theoretical
work [81] investigating supercurrents through a chiral quantum
dot argues for a SDE even without SOC and finite Cooper-pair
momentum.

Rashba and Dresselhaus spin-orbit fields in magnetic junc-
tions are well studied, particularly in III–V semiconductors like
InAs being used in Al/InAs/Al Josephson junctions [22, 23].
However, the recently discovered chiral spin textures in topo-
logical materials [82–88] and predictions of purely radial
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Rashba SOC in twisted heterostructures [89, 90] offer ways for
controlling magnetotransport, as shown by large-scale simula-
tions of quantum focusing [36].

In this paper, we investigate Josephson junctions with a
magnetic barrier and interfacial regions that feature crossed
conventional (CR) and radial Rashba (RR) fields in the plane
transverse to the tunneling. While it is expected that a magne-
tization in the plane of the spin-orbit fields leads to the SDE,
for the crossed fields we find a marked nonreciprocal critical
current for the magnetization of the barrier collinear with the
transport direction and perpendicular to the spin-orbit fields.
We term this effect unconventional SDE (USDE). The mecha-
nism for the USDE is polarity- and field-orientation-dependent
precession of the electron spins, conditioned by the interfacial
spin-orbit fields, by the magnetization of the tunneling barrier,
which finally results in different transmission probabilities for
left- and right-propagating electrons. The USDE is different
from the commonly considered finite-momentum Cooper-pair
generation in the conventional SDE, which requires the mag-
netization (or an external magnetic field) to lie in the plane
of the Rashba field (if the magnetization is perpendicular, as
in our case, the Cooper pairs have nominally zero momentum
in each electrode). Our numerical model calculations illus-
trate that the USDE is sizable already at weak radial Rashba
coupling, reproducing all symmetries (tunabilities) w.r.t. the
out-of-plane magnetization orientation and Rashba angle that
we expect from our spin-precession picture.

Theoretical model. We consider an epitaxially grown,
highly-ballistic, vertical S/F/S Josephson junction whose semi-
infinite 𝑠-wave superconducting electrodes (S; spanning 𝑧 < 0
and 𝑧 > 𝑑) are weakly coupled by a ferromagnet (F; span-
ning 0 < 𝑧 < 𝑑) and that hosts ultrathin tunneling barriers
at both F/S interfaces, as illustrated in Fig. 1. The left inter-
face (𝑧 = 0) could, e.g., consist of a van-der-Waals monolayer
to induce—apart from scalar potential scattering—CR SOC,
while a twisted heterostructure or another chiral material in-
duces an unconventional RR component, quantified by the
twist-angle-dependent [89] Rashba angle 𝜃R, at the right inter-
face (𝑧 = 𝑑).

Solving the stationary Bogoljubov–de Gennes (BdG) [91]
equation ĤBdGΨ(r) = 𝐸Ψ(r), with the corresponding BdG
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FIG. 1. Sketch of the vertical S/F/S Josephson junction using 𝐶2𝑣
principal crystallographic orientations 𝑥 ∥ [110], 𝑦̂ ∥ [110], and 𝑧 ∥
[001]; Δ0 (𝜑) indicates the superconducting gap (phase difference)
and the magnetization direction (white arrow) of the F with length 𝑑
is aligned along +𝑧 (out-of-plane). The two-dimensional monolayer
barrier (B) at 𝑧 = 0 induces CR SOC (dark-blue arrows, shown along
the spin-up Fermi surface ⇑), while the twisted bilayer B at 𝑧 = 𝑑
results in crossed CR (dark-red) and RR (turquoise) SOCs depending
on the Rashba angle 𝜃R.

Hamiltonian

ĤBdG =

[ Ĥe Δ̂S (𝑧)
Δ̂†S (𝑧) Ĥh

]
, (1)

yields the general scattering states Ψ(r) for incoming spin-
polarized electronlike and holelike quasiparticles of excita-
tion energy 𝐸 , from which we obtain the Andreev-reflection
amplitudes. These coefficients provide the input to com-
pute the CPRs 𝐼 = 𝐼 (𝜑) by means of the Green’s function-
based Furusaki–Tsukada approach [92], as outlined in the
Supplemental Material (SM) [93]. Assuming equal Fermi
levels 𝜇 and effective masses 𝑚 throughout the junction,
the effective Hamiltonian for unpaired electrons reads as
Ĥe = [−ℏ2/(2𝑚)∇2 − 𝜇]𝜎̂0 − (ΔXC/2)Θ(𝑧)Θ(𝑑 − 𝑧) (m̂ ·
σ̂) + ĤB, its holelike counterpart as Ĥh = −𝜎̂𝑦Ĥ ∗e 𝜎̂𝑦 , and
the S pairing potential is approximated [94] by Δ̂S (𝑧) =
Δ0 tanh(1.74

√︁
𝑇c/𝑇 − 1) [Θ(−𝑧) + ei𝜑Θ(𝑧 − 𝑑)]𝜎̂0 with the

zero-temperature gap Δ0 = 2.5 meV ≈ 10−3𝜇, the ra-
tio between temperature 𝑇 and critical temperature 𝑇c set
to 𝑇/𝑇c = 0.1, and the phase difference 𝜑. The unit vector
m̂ = [cos(Θ) cos(Φ), cos(Θ) sin(Φ), sin(Θ)]⊤ describes the
magnetization direction inside the F with exchange splitting
ΔXC in terms of the out-of-plane angle Θ (w.r.t. the interface)
and in-plane azimuthal angle Φ, while 𝜎̂0 (𝜎̂𝑖) indicates the
2 × 2 identity (𝑖th Pauli spin) matrix and σ̂ = [𝜎̂𝑥 , 𝜎̂𝑦 , 𝜎̂𝑧]⊤.
The ultrathin barriers of height (width) 𝑉B (𝑑B) are described
in the deltalike form ĤB = 𝑉B𝑑B𝜎̂0 [𝛿(𝑧)+𝛿(𝑧−𝑑)]+𝛀̂(k∥ ) ·σ̂,
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FIG. 2. (a) Spin-resolved electron tunneling (incident from the left)
through the F link (center) with magnetization 𝑚𝑧 > 0. The spins
polarized along ±𝑦̂ by CR SOC at the left (L) interface precess
counter-clockwise in-plane inside the F such that the CR field at
the right (R) interface looks effectively rotated by the angle 𝜙CR;
the transmission probability is T→CR (𝑚𝑧 > 0). (b) Reversing the
magnetization (𝑚𝑧 < 0) results in the same tunneling picture with
transmission probability T→CR (𝑚𝑧 < 0) = T→CR (𝑚𝑧 > 0). The (pos-
itive) critical currents—illustrated by dark-green Cooper pairs—are
equal for magnetizations parallel and antiparallel to the current. (c)
and (d) In the presence of RR SOC at the R interface, the spin-
precession angles 𝜙RR ≠ 𝜙RR, as well as the transmission prob-
abilities T→RR (𝑚𝑧 > 0) ≠ T→RR (𝑚𝑧 < 0), depend on the relative
orientation between magnetization and current. The critical currents
become polarity-dependent (Josephson USDE).

with the Rashba spin-orbit field 𝛀̂(k∥ ) = 𝛀̂(𝑘𝑥 , 𝑘𝑦) =
𝛼[𝑘𝑦 ,−𝑘𝑥 , 0]𝛿(𝑧) +𝛼[− sin(𝜃R)𝑘𝑥 − cos(𝜃R)𝑘𝑦 , cos(𝜃R)𝑘𝑥 −
sin(𝜃R)𝑘𝑦 , 0]𝛿(𝑧−𝑑) accounting for CR (crossed CR and RR)
SOC of strength 𝛼 at the left (right) interface.

Physical picture. To trace the origin of the USDE in our
Josephson junction, we initially analyze the transmission prob-
abilities of spin-polarized electrons through the junction in
the presence of CR SOC at both interfaces (the SOC field at
the right interface is aligned oppositely owing to hybridiza-
tion), as illustrated in Figs. 2(a) and 2(b). For simplicity, we
focus on a single transverse channel with transverse momen-
tum k∥ = [−𝑘F, 0]⊤ (𝑘F =

√︁
2𝑚𝜇/ℏ is the Fermi wave vector),

noting that a similar mechanism applies to all other channels.
The SOC at the left interface polarizes the spins of the

electrons traveling along the +𝑧-direction in-plane along ±𝑦̂.
When entering the F, the spins are exposed to the magnetiza-
tion 𝑚𝑧 > 0 pointing along the +𝑧-(out-of-plane)direction—
i.e., parallel to the electrons’ propagation direction—and pre-
cess counter-clockwise in the plane parallel to the interfaces.
Arriving at the right interface, the precessing spins will ef-
fectively see the second spin-orbit field rotated by the an-
gle 𝜙CR determining their transmission probability T→CR ∝
cos2 (𝜙CR/2). As this mechanism applies analogously to spin-
up and spin-down electrons, the Cooper-pair-forming elec-
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trons sequentially tunnel from the left into the right supercon-
ductor in the same way, and the positively-counted critical
Josephson current 𝐼+c (𝑚𝑧 > 0) must also scale with T→CR .
For electrons propagating along the opposite −𝑧-direction,
the tunneling picture is similar (i.e., T←CR = T→CR ), suggest-
ing that the negative critical Josephson current is equal in
magnitude, |𝐼−c (𝑚𝑧 > 0) | = 𝐼+c (𝑚𝑧 > 0). If the magneti-
zation direction is reversed (𝑚𝑧 < 0), the spins precess also
oppositely (clockwise) but still enclose the same angle 𝜙CR
w.r.t. the spin-orbit field at the right interface. The critical-
current amplitudes are consequently not affected and we expect
𝐼+c (𝑚𝑧 < 0) = |𝐼−c (𝑚𝑧 < 0) | = 𝐼+c (𝑚𝑧 > 0) = |𝐼−c (𝑚𝑧 > 0) |,
meaning that the SDE is absent if both spin-orbit fields are
conventional; the same arguments rule out the SDE in the case
that both spin-orbit fields are radial.

Let us now consider crossed Rashba fields. Suppose that
the chiral spin texture is exhibited by the right interface.
As shown in Figs. 2(c) and 2(d), and in strong contrast to
the previous case, the angles between the precessing spins
and the radial spin-orbit field are different for magnetizations
along +𝑧 (angle 𝜙RR) and −𝑧 (angle 𝜙RR ≠ 𝜙RR). Therefore,
the left-to-right transmission probabilities T→RR (𝑚𝑧 > 0) ∝
cos2 (𝜙RR/2) ≠ T→RR (𝑚𝑧 < 0) ∝ cos2 (𝜙RR/2), and the re-
sulting positive critical currents 𝐼+c (𝑚𝑧 > 0) ≠ 𝐼+c (𝑚𝑧 < 0),
depend on the magnetization direction (parallel or antiparallel)
w.r.t. the current. Moreover, 𝜙RR and 𝜙RR are interchanged
when the electrons travel instead from right to left, entailing
𝐼+c (𝑚𝑧 > 0) = |𝐼−c (𝑚𝑧 < 0) | ≠ 𝐼+c (𝑚𝑧 < 0) = |𝐼−c (𝑚𝑧 >
0) |, i.e., transport becomes nonreciprocal and the Josephson
USDE occurs. The microscopic origin of the USDE—spin-
precession-induced polarity- and field-orientation-dependent
transmission probabilities—is thus well-distinct from the in-
plane Cooper-pair momentum that is responsible for the con-
ventional SDE.

Numerical results. To analyze our numerical results, we
introduce the dimensionless parameters 𝑃 = (ΔXC/2)/𝜇 (𝑘F𝑑)
for the spin polarization (effective length) of the F, while 𝑍 =
2𝑚𝑉B𝑑B/(ℏ2𝑘F) and 𝜆R = 2𝑚𝛼/ℏ2 quantify the interfacial
barrier and Rashba strengths. We consider a weak F described
by 𝑃 = 0.4 and 𝑘F𝑑 = 12 (corresponding to a length of a few
nm depending on the Fermi level), as well as high interfacial
transparencies of 𝜏 = [1+(𝑍/2)2]−1 = 80 % (equivalently 𝑍 =
1) [95] and realistic Rashba SOC 𝜆R = 1 [10, 13].

Figure 3(a) illustrates a generic case: the CPRs 𝐼 (𝜑) in
the presence of CR at the left and tilted Rashba field with
Rashba angle 𝜃R = 0.2𝜋 at the right interface, with variable
F magnetization from the in-plane to the positive out-of-plane
orientation. If the magnetization is fully aligned in the in-
terfacial plane (Θ = 0), the CPR is strictly point-symmetric
w.r.t. zero phase difference and the critical-current amplitudes
are polarity-independent, i.e., 𝐼+c = |𝐼−c | ≡ 𝐼c (Θ = 0). With
increasing Θ, a finite out-of-plane component 𝑚𝑧 ≠ 0 is im-
printed on the magnetization and the electron spins precess
in the F according to Fig. 2. The precession w.r.t. the radial
Rashba field leads to polarity-dependent transmission proba-
bilities, manifesting themselves in polarity-dependent critical-
current amplitudes 𝐼+c ≠ |𝐼−c | as a direct signature of the USDE.
Furthermore, the CPRs acquire intrinsic 𝜑0-shifts—such that

0

0

0.02

–0.02

0.04

–0.04

0.5–0.5 1–1

0.06

0.08

–0.06

–0.08

0 0.2–0.2–0.4–0.6–0.8 0.4 1–1

0 0

0.04

–0.04

0.08

–0.08

0.12

–0.12

0.16

–0.16

–0.2

–0.4

–0.6

–0.8

–1

0.2

0.4

0.6

0.8

1

(a)

(b)

SS F

BB

CR CR & RR

0.6 0.8

FIG. 3. (a) CPRs 𝐼 (𝜑) for the effective F length 𝑘F𝑑 = 12, Rashba
SOC 𝜆R = 2𝑚𝛼/ℏ2 = 1, Rashba angle 𝜃R = 0.2𝜋, and indicated
out-of-plane magnetization angles Θ; the polarity-dependent critical
currents 𝐼+c and |𝐼−c | are indicated by squares, and the 𝜑0-shifts by ticks
along the 𝜑-axis. (b) Resolved CPRs 𝐼 (𝜑; 𝑘𝑥 , 𝑘𝑦 = 0) for transverse
channels with momenta 𝑘𝑥 ∈ [−𝑘F; 𝑘F] (while 𝑘𝑦 = 0) and out-of-
plane magnetization Θ = 0.5𝜋. The total CPR in (a)—dashed red
curve—follows from integrating out 𝑘𝑥 and 𝑘𝑦 ; white regions indicate
the 𝜑0-phase shifts (CPR zero crossings). The current is always
given in multiples of 𝜋Δ0𝐺S/𝑒; 𝐺S = 𝐴𝑒2𝑘2

F/(2𝜋ℎ) is Sharvin’s
conductance of a point contact with cross section 𝐴.

𝐼 (𝜑) ∝ sin(𝜑 − 𝜑0) in the simplest case—effectively shift-
ing their zero crossings and inflection points to finite phase
differences [28, 29]; |𝜑0 | monotonically increases with in-
creasing |Θ| and becomes maximal for fully perpendicular
magnetization (Θ = 0.5𝜋). The amplitudes of both 𝜑0 [reach-
ing about 0.4𝜋; see Fig. 4(a)] and the USDE [see Fig. 4(b)] are
sizable already at rather small Rashba angles (and weak spin
polarization).

Scrutinizing our spin-precession picture exposes a funda-
mental difference from the conventional SDE. While the con-
ventional SDE results from a superposition of multiple chan-
nels’ individual CPRs—all with slightly different 𝜑0-shifts—
that finally distorts the total CPR such that the critical currents
have different amplitudes (and while the critical currents of
the individual channels are polarity-independent) [28, 29],
the USDE occurs already in single-channel junctions as
the direction-dependent transmission probabilities discussed
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FIG. 4. (a) Polarity-dependent critical-current amplitudes 𝐼+c and
|𝐼−c | as functions of the out-of-plane magnetization angle Θ and for
the same parameters as in Fig. 3(a). Inset: 𝜑0-shifts vs. Θ for
indicated Rashba angles 𝜃R. (b) Dependence of the critical-current
difference Δ𝐼c = 𝐼+c − |𝐼−c | on Θ for indicated 𝜃R; currents are normal-
ized as in Fig. 3. Inset: |Δ𝐼c | normalized to the polarity-independent
critical current 𝐼c (Θ = 0) for in-plane magnetization.

above directly produce nonreciprocal CPRs in all channels
with finite transverse momentum |k∥ | ≠ 0 (at |k∥ | = 0, SOC
vanishes). This explains the larger efficiency of the USDE
and the observation that its amplitudes are not directly con-
nected to those of the 𝜑0-shifts—contrary to the conventional
SDE in which sudden jumps of 𝜑0 close to current-reversing
0–𝜋-like transitions are tightly bound to peaks in the SDE
efficiency [28, 29]. For better illustration, the color map in
Fig. 3(b) shows the channel-resolved (as a function of 𝑘𝑥 ;
𝑘𝑦 = 0 for simplicity) CPRs 𝐼 (𝜑; 𝑘𝑥 , 𝑘𝑦 = 0). Inspecting the
color scale, we conclude that 𝐼+c and |𝐼−c | are indeed (slightly)
different in magnitude for individual 𝑘𝑥-channels (i.e., the col-
ors indicating maximal-amplitude currents are slightly asym-
metric around 𝜑 = 0 at |𝑘𝑥 | ≠ 0), while the 𝜑0-shifts are
mostly caused by channels with large |𝑘𝑥 |.

To quantify the USDE, we extract the amplitudes of the

polarity-dependent critical currents 𝐼+c and |𝐼−c | from the CPRs
to compute the critical-current difference Δ𝐼c = 𝐼+c − |𝐼−c |
as the figure of merit of the SDE. The critical currents are
presented as functions of the out-of-plane magnetization an-
gle Θ and for the same Rashba angle as before (𝜃R = 0.2𝜋)
in Fig. 4(a). Note that 𝐼+c [𝑚𝑧 ∝ − sin(Θ)] = |𝐼−𝑐 (−𝑚𝑧) |, as
anticipated from our spin-precession picture, holds. While 𝐼+c
monotonically increases with a more dominant out-of-plane
+𝑧-magnetization (0 < Θ ≤ 0.5𝜋)—which could be a possible
signature of a more sizable triplet supercurrent induced by RR
SOC—|𝐼−c | initially decreases, drops into a dip at Θ ≈ 0.2𝜋,
and finally increases as well. The reason for the nonmonotonic
|𝐼−c |-dependence is the remainder of a current-reversing 0–𝜋(-
like) transition, which is most pronounced if both interfaces
induce CR SOC (𝜃R = 0)—see also Refs. [11] and [93]—and
gets strongly suppressed by a RR component (𝜃R > 0) that
favors a 0 < |𝜑0 | < 𝜋- instead of a constant 𝜋-shift; the 0–𝜋(-
like) transitions emerge as sudden 𝜑0-jumps [96] in the blue
and turquoise curves (𝜃R = 0 and 𝜃R = 0.1𝜋) in the inset of
Fig. 4(a).

The corresponding dependence of the critical-current dif-
ference Δ𝐼c on Θ is illustrated in Fig. 4(b) tuning the spin-orbit
field at the right interface from purely CR (𝜃R = 0) to purely
RR (𝜃R = 0.5𝜋) SOC. While Δ𝐼c scales (nearly perfectly)
sinusoidally with Θ at large Rashba angles (𝜃R = 0.4𝜋 and
𝜃R = 0.5𝜋), the aforementioned 0–𝜋(-like) transitions may
still cause reminiscent deviations at smaller 𝜃R-values—such
as a suddenly emerging steeper increase at small |Θ| followed
by a saturation into the maximal |Δ𝐼c | already at rather small
|Θ|, as seen, e.g., in the turquoise curve for 𝜃R = 0.2𝜋. In
agreement with our spin-precession picture, the maximal |Δ𝐼c |
are reached at fully perpendicular magnetization. Moreover,
|Δ𝐼c | increases monotonically with the Rashba angle 𝜃R (the
maximal |Δ𝐼c | at Θ = 0.5𝜋 increases nearly sinusoidally with
𝜃R [93]), indicating that a maximal asymmetry between the
SOCs—fully CR at one and fully RR at the other interface—
is most effective to maximize the USDE. The sign reversal
of Δ𝐼c when reversing the out-of-plane magnetization direc-
tion reflects again that 𝐼+c [𝑚𝑧 ∝ − sin(Θ)] = |𝐼−𝑐 (−𝑚𝑧) |. As
pointed out above, and contrary to the conventional SDE, a
large USDE does not necessarily coincide with sizable |𝜑0 |-
CPR shifts. Figure 4 confirms this expectation, as the absolute
SDE measure |Δ𝐼c | increases with increasing 𝜃R, while the
corresponding |𝜑0 | simultaneously even decrease as a result of
the initially present and with increasing 𝜃R quickly suppressed
0–𝜋(-like) transitions [97].

To give a relative estimate of the USDE, we normalize |Δ𝐼c |
to the polarity-independent critical current for in-plane (along
+𝑦̂) magnetization 𝐼c (Θ = 0) in Fig. 4(b) [98]. Note that
𝐼c (Θ = 0) itself depends on 𝜃R, which explains the nonmono-
tonic dependence of |Δ𝐼c |/𝐼c (Θ = 0) on 𝜃R. Relative SDE
efficiencies beyond 20 % at small RR SOC and reaching max-
ima of about 60 % are sizable, also in comparison with the
conventional SDE [28, 29].

As an alternative platform for the USDE, one might consider
two-dimensional lateral S/F/S junctions with in-plane CR in
one and RR SOC in the other S, and the F magnetization
being aligned perpendicular to the plane. We elaborate on a
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theoretical model for these systems and discuss the numerical
results in the SM [93].

Conclusions. In summary, we predicted the Josephson
USDE that emerges—contrary to the yet studied conventional
SDE—from the interplay of interfacial CR and RR SOCs with
the out-of-plane magnetization in vertical S/F/S junctions. In-
plane precessions of the current-carrying electrons’ spins in
the F link trigger different transmission probabilities for left-
and right-propagating electrons, as well as for magnetizations
parallel and antiparallel to the current, manifesting in non-
reciprocal transport and polarity-dependent critical currents.
After elaborating on the qualitative spin-precession picture
and deducing its most relevant ramifications on the USDE, we
performed numerical model calculations and analyzed various
system parameters. We quantified the USDE together with
the intrinsic 𝜑0-CPR shifts, unraveling that the amplitudes
of both do not necessarily coincide; while the conventional
SDE requires the superposition of many transverse channels

with distinct 𝜑0 to obtain a sizable SDE, the spin-precession
mechanism produces the USDE already for a single channel
independent of its |𝜑0 |. The efficiency of the USDE is experi-
mentally widely tunable through knobs like the magnetization
orientation, Rashba angle, and the thickness or spin polariza-
tion of the F (see the SM [93]).
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[42] L. Bauriedl, C. Bäuml, L. Fuchs, C. Baumgartner, N. Paulik,
J. M. Bauer, K.-Q. Lin, J. M. Lupton, T. Taniguchi, K. Watanabe,
C. Strunk, and N. Paradiso, Nat. Commun. 13, 4266 (2022).

[43] J. Yun, S. Son, J. Shin, G. Park, K. Zhang, Y. J. Shin, J.-G. Park,
and D. Kim, Phys. Rev. Res. 5, L022064 (2023).

[44] J.-K. Kim, K.-R. Jeon, P. K. Sivakumar, J. Jeon, C. Koerner,
G. Woltersdorf, and S. S. P. Parkin, Nat. Commun. 15, 1120
(2024).

[45] B. Lu, S. Ikegaya, P. Burset, Y. Tanaka, and N. Nagaosa, Phys.
Rev. Lett. 131, 096001 (2023).

[46] P.-H. Fu, Y. Xu, S. A. Yang, C. H. Lee, Y. S. Ang, and J.-F. Liu,
Phys. Rev. Appl. 21, 054057 (2024).

[47] O. Can, T. Tummuru, R. P. Day, I. Elfimov, A. Damascelli, and
M. Franz, Nat. Phys. 17, 519 (2021).

[48] S. Y. F. Zhao, X. Cui, P. A. Volkov, H. Yoo, S. Lee, J. A. Gar-
dener, A. J. Akey, R. Engelke, Y. Ronen, R. Zhong, G. Gu,
S. Plugge, T. Tummuru, M. Kim, M. Franz, J. H. Pixley, N. Poc-
cia, and P. Kim, Science 382, 1422 (2023).

[49] S. Ghosh, V. Patil, A. Basu, Kuldeep, A. Dutta, D. A. Jangade,
R. Kulkarni, A. Thamizhavel, J. F. Steiner, F. von Oppen, and
M. M. Deshmukh, Nat. Mater. 23, 612 (2024).

[50] P. A. Volkov, Étienne Lantagne-Hurtubise, T. Tummuru,
S. Plugge, J. H. Pixley, and M. Franz, Phys. Rev. B 109, 094518
(2024).

[51] Y. A. Bychkov and E. I. Rashba, J. Phys. C 17, 6039 (1984).
[52] Y. A. Bychkov and E. I. Rashba, Pis’ma Zh. Eksp. Teor. Fiz. 39,

66 (1984); JETP Lett. 39, 78 (1984).
[53] G. Dresselhaus, Phys. Rev. 100, 580 (1955).
[54] A. Daido, Y. Ikeda, and Y. Yanase, Phys. Rev. Lett. 128, 037001

(2022).
[55] N. F. Q. Yuan and L. Fu, Proceedings of the National Academy

of Sciences 119, e2119548119 (2022).
[56] J. J. He, Y. Tanaka, and N. Nagaosa, New Journal of Physics

24, 053014 (2022).
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In this Supplemental Material, we present the technical details of our analytical model for the (three-dimensional) vertical
S/F/S Josephson junction considered in the main text, as well as the results of additional model calculations. We furthermore
elaborate on a tight-binding model for two-dimensional lateral (planar) S/F/S Josephson junctions and demonstrate that these
systems can likewise induce the USDE.

I. MODEL DETAILS FOR THE VERTICAL S/F/S JOSEPHSON JUNCTION

In the main text, we analytically describe the three-dimensional vertical S/F/S Josephson junction by means of its stationary
Bogoljubov–de Gennes Hamiltonian [S1]

ĤBdG =

[ Ĥe Δ̂S (𝑧)
Δ̂†S (𝑧) Ĥh

]
, (S1)

where

Ĥe =

(
− ℏ2

2𝑚
∇2 − 𝜇

)
𝜎̂0 − ΔXC

2
Θ(𝑧) Θ(𝑑 − 𝑧) (m̂ · 𝝈̂) + ĤB, (S2)

Ĥh = −𝜎̂𝑦 Ĥ ∗e 𝜎̂𝑦 , (S3)

ĤB = 𝑉B 𝑑B 𝜎̂0 [𝛿(𝑧) + 𝛿(𝑧 − 𝑑)]
+ 𝛼 𝛿(𝑧) [𝑘𝑦 ,−𝑘𝑥 , 0] · 𝝈̂ + 𝛼 𝛿(𝑧 − 𝑑) [− sin(𝜃R)𝑘𝑥 − cos(𝜃R)𝑘𝑦 , cos(𝜃R)𝑘𝑥 − sin(𝜃R)𝑘𝑦 , 0] · 𝝈̂, (S4)

and

Δ̂S (𝑧) = Δ0 tanh

(
1.74

√︂
𝑇c
𝑇
− 1

)
[Θ(−𝑧) + ei𝜑Θ(𝑧 − 𝑑)]𝜎̂0. (S5)

The scattering states Ψ (1) (r) for incident (1) spin-up electronlike quasiparticles of energy 𝐸 > 0 from the left S are obtained
as solutions of the Bogoljubov–de Gennes equation ĤBdG Ψ (1) (r) = 𝐸 Ψ (1) (r), which yields

Ψ (1) (r) = 𝜓 (1) (𝑧) ei (k∥ ·r∥ ) = 𝜓 (1) (𝑧) ei (𝑘𝑥 𝑥+𝑘𝑦 𝑦) (S6)

with

𝜓 (1) (𝑧 < 0) = ei𝑞e𝑧


𝑢
0
𝑣
0


+ A (1) e−i𝑞e𝑧


𝑢
0
𝑣
0


+ B (1) e−i𝑞e𝑧


0
𝑢
0
𝑣


+ C (1) ei𝑞h𝑧


𝑣
0
𝑢
0


+ D (1) ei𝑞h𝑧


0
𝑣
0
𝑢


, (S7)

𝜓 (1) (0 < 𝑧 < 𝑑) = E (1) ei𝑘↑e 𝑧 𝜒↑e + F (1) ei𝑘↓e 𝑧 𝜒↓e + G (1) e−i𝑘↑h 𝑧 𝜒↑h + H (1) e−i𝑘↓h 𝑧 𝜒↓h

+ I (1) e−i𝑘↑e 𝑧 𝜒↑e + J (1) e−i𝑘↓e 𝑧 𝜒↓e + K (1) ei𝑘↑h 𝑧 𝜒↑h + L (1) ei𝑘↓h 𝑧 𝜒↓h , (S8)
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as well as

𝜓 (1) (𝑧 > 0) =M (1) ei𝑞e𝑧


𝑢 ei𝜑

0
𝑣
0


+ N (1) ei𝑞e𝑧



0
𝑢 ei𝜑

0
𝑣


+ O (1) e−i𝑞h𝑧


𝑣 ei𝜑

0
𝑢
0


+ P (1) e−i𝑞h𝑧



0
𝑣 ei𝜑

0
𝑢


; (S9)

the spinors in the F (0 < 𝑧 < 𝑑) are

𝜒↑ (↓)e =
[
𝜒↑ (↓) , 0

]⊤
and 𝜒↑ (↓)h =

[
0, 𝜒↓ (↑)

]⊤
(S10)

with

𝜒↑ (↓) =
1√
2

[(−)√︁1 + (−) sin(Θ) e−iΦ√︁
1 − (+) sin(Θ)

]
. (S11)

Within Andreev approximation (𝐸,Δ0 ≪ 𝜇), the electron(like) and hole(like) wave vectors are

𝑞e ≈ 𝑞h ≈
√︃
𝑘2

F − k2
∥ (S12)

in the S regions (𝑧 < 0 and 𝑧 > 𝑑) and

𝑘↑ (↓)e ≈ 𝑘↑ (↓)h ≈
√︃
𝑘2

F [1 + (−)𝑃] − k2
∥ (S13)

in the F (0 < 𝑧 < 𝑑); 𝑘F =
√︁

2𝑚𝜇/ℏ indicates the Fermi wave vector and 𝑃 = (ΔXC/2)/𝜇 the spin polarization of the F. As usual,
𝑢 and 𝑣 correspond to the Bardeen–Cooper–Schrieffer coherence factors such that

𝑢2 =
1
2

©­­«
1 +

√︃
𝐸2 − Δ2

0

𝐸

ª®®¬
= 1 − 𝑣2. (S14)

Applying the interfacial (𝑧 = 0 and 𝑧 = 𝑑) boundary conditions

𝜓 (1) (𝑧 = 0−) = 𝜓 (1) (𝑧 = 0+), (S15)

𝜓 (1) (𝑧 = 𝑑−) = 𝜓 (1) (𝑧 = 𝑑+), (S16){[
− ℏ2

2𝑚
d
d𝑧
+𝑉B𝑑B

]}
𝜂𝜓 (1) (𝑧)

��
𝑧=0+
+

[
𝛀̂L · 𝝈̂ 0̂2×2

0̂2×2 −(𝛀̂L · 𝝈̂)
]
𝜓 (1) (𝑧)

��
𝑧=0+

= − ℏ2

2𝑚
d
d𝑧

𝜂𝜓 (1) (𝑧)
��
𝑧=0−

, (S17)

and
{[

ℏ2

2𝑚
d
d𝑧
+𝑉B𝑑B

]}
𝜂𝜓 (1) (𝑧)

��
𝑧=𝑑−
+

[
𝛀̂R · 𝝈̂ 0̂2×2

0̂2×2 −(𝛀̂R · 𝝈̂)
]
𝜓 (1) (𝑧)

��
𝑧=𝑑−

=
ℏ2

2𝑚
d
d𝑧

𝜂𝜓𝜎 (𝑧)
��
𝑧=𝑑+

, (S18)

with

𝜂 =

[
𝜎̂0 0̂2×2

0̂2×2 −𝜎̂0

]
, (S19)

and the Rashba spin-orbit fields

𝛀̂L = 𝛼 [𝑘𝑦 ,−𝑘𝑥 , 0] (S20)

and

𝛀̂R = 𝛼 [− sin(𝜃R)𝑘𝑥 − cos(𝜃R)𝑘𝑦 , cos(𝜃R)𝑘𝑥 − sin(𝜃R)𝑘𝑦 , 0] (S21)

at the left (L) and right (R) junction interfaces, to the scattering states and numerically solving the resulting linear system of
equations determines the calligraphically written scattering coefficients A (1) , . . . ,P (1) . The scattering states Ψ (2) (r), Ψ (3) (r),
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FIG. S1. (a) CPRs 𝐼 (𝜑)—normalized as in the main text—of the vertical S/F/S Josephson junction for the effective F length 𝑘F𝑑 = 12
and various indicated Rashba angles 𝜃R. The F magnetization is aligned along the +𝑧-out-of-plane direction (i.e., Θ = 0.5𝜋) and the Rashba
strength is 𝜆R = 2𝑚𝛼/ℏ2 = 1. A more dominant RR component (larger 𝜃R) results in a current-reversing 𝜋–0-like transition. (b) Corresponding
critical-current difference Δ𝐼c = 𝐼+c − |𝐼−c | as a function of 𝜃R. The normalized, polarity-dependent, critical-current amplitudes 𝐼+c and |𝐼−c | are
additionally illustrated in the upper inset, while the other inset shows the 𝜑0-CPR phase shifts.

and Ψ (4) (r) for incident (2) spin-down electronlike, (3) spin-up holelike, and (4) spin-down holelike quasiparticles—together
with the corresponding scattering coefficients—are analogously obtained.

The Josephson CPRs are then computed from the spin-conserving Andreev-reflection coefficients C (1) , D (2) ,A (3) , and B (4)
according to the Green’s function-based Furusaki–Tsukada formula [S2]

𝐼 = 𝐼 (𝜑) ≈ 𝜋Δ0𝐺S
𝑒

𝑘B𝑇

4𝜋𝑘2
F

∫
d2k∥

∑︁
𝜔𝑛

𝑞e + 𝑞h√︃
𝜔2
𝑛 + Δ2

0

[C (1) (i𝜔𝑛) + D (2) (i𝜔𝑛)
𝑞e

− A
(3) (i𝜔𝑛) + B (4) (i𝜔𝑛)

𝑞h

]
, (S22)

where 𝐺S = 𝐴𝑒2𝑘2
F/(2𝜋ℎ) refers to Sharvin’s conductance of a three-dimensional point contact with cross section 𝐴 (𝑒 is the

positive elementary charge), 𝑘B𝑇 is the thermal energy at temperature 𝑇 (we will consider 𝑇 ≈ 0.1𝑇c, where 𝑇c is the critical
temperature of the S), and 𝜔𝑛 = (2𝑛 + 1)𝜋𝑘B𝑇 with integer 𝑛 are the fermionic Matsubara frequencies.

II. MORE NUMERICAL RESULTS FOR THE VERTICAL S/F/S JOSEPHSON JUNCTION

As we demonstrated in Ref. [S3], interfacial CR SOCs in vertical S/F/S Josephson junctions provide an important knob to induce
triplet Cooper pairs and produce sizable supercurrents, even in the maximally spin-polarized half-metallic limit. Nevertheless,
the relative phase shift between the two Rashba spin-orbit fields (recall the opposite signs of the Rashba terms at the left and
right interfaces owing to hybridization) typically favors the 𝜋-state in the triplet regime, which could be disadvantageous for
applications that require switching between 0- and 𝜋-states in a controlled manner.

In the main text, we indeed recovered the SOC-induced 𝜋-state regime if both spin-orbit fields correspond to CR (𝜃R = 0)
and the magnetization is mostly out-of-plane (Θ ≥ 0.3𝜋); recall the dark-blue curve in the inset of Fig. 4(a). For predominantly
in-plane magnetization (Θ ≤ 0.2𝜋), the junction is still in the 0-state, but will also transition into the 𝜋-state if the SOC strength
𝜆R is further increased. RR SOC at one of the interfaces (i.e., increasing 𝜃R), however, introduces an additional relative phase
shift between both spin-orbit fields that counteracts the initial 𝜋-shift and switches the junction back into the 0-state.

For illustration, Fig. S1(a) shows the corresponding CPRs for out-of-plane magnetization (Θ = 0.5𝜋), effective F thickness
𝑘F𝑑 = 12, and various Rashba angles 𝜃R (similarly to Fig. 3 in the main text, but tuning the Rashba angle 𝜃R instead of the
magnetization-angle Θ). For CR SOCs at both interfaces (𝜃R = 0; blue curve), the junction has undergone a transition into the
𝜋-state when compared to its 0-state in the absence of SOC. Interestingly, already a rather small Rashba angle of 𝜃R = 0.1𝜋 is
enough to switch the junction back into the 0-state (as the junction resides, for the considered SOC parameter, very close to the
SOC-induced 0–𝜋 transition, allowing for quite a simple back-switching), apart from inducing the USDE together with a sizable
𝜑0-phase shift that we both analyze in detail in the main text; the 𝜋–0-like back-transition induced by RR SOC is visible as the
sudden 𝜑0-jump in the inset of Fig. S1(b). Note that the—owing to the USDE polarity-dependent—critical-current amplitudes 𝐼+c
and |𝐼−c | both increase monotonically with the Rashba angle 𝜃R and finally even exceed the (polarity-independent) critical current
in the absence of SOC, possibly indicating the formation of additional triplet Cooper pairs carrying the Josephson current,
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FIG. S2. (a) Critical-current difference Δ𝐼c = 𝐼+c − |𝐼−c |—normalized as in the main text—as a function of the effective F length 𝑘F𝑑 and
its spin polarization 𝑃 for magnetization along +𝑧 (i.e., Θ = 0.5𝜋) and Rashba angle 𝜃R = 0.5𝜋. (b) Corresponding relative SDE efficiency
|Δ𝐼c |/𝐼c (Θ = 0), where 𝐼c (Θ = 0) is the polarity-independent (positive) critical current for in-plane magnetization along +𝑦̂.
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FIG. S3. (a) CPRs 𝐼 (𝜑)—normalized as in the main text—of the vertical S/F/S Josephson junction for effective F lengths (a) 𝑘F𝑑 = 12
and (b) 𝑘F𝑑 = 16, and for various indicated Rashba angles 𝜃R. The F magnetization is aligned along the +𝑦̂-in-plane direction (i.e., Θ = 0
and Φ = 0.5𝜋) and the Rashba strength is 𝜆R = 2𝑚𝛼/ℏ2 = 1. For 𝑘F𝑑 = 16, a more dominant RR component (larger 𝜃R) results in a
current-reversing 𝜋–0 transition.

as shown in the inset of Fig. S1(b). The corresponding, maximal-amplitude (due to the fully perpendicular magnetization),
critical-current difference Δ𝐼c = 𝐼+c − |𝐼−c | as a measure of the USDE depends (nearly perfectly) sinusoidally on the Rashba
angle 𝜃R with small deviations in the vicinity of 𝜃R = 0.05𝜋, which could be a reminiscent feature of the 𝜋–0-like back-transition.

In the main text, we ascribed the USDE to polarity- and field-orientation-dependent transmission probabilities that micro-
scopically originate from precessions of the in-plane-polarized electron spins when traversing the F link. If the SOC at the left
interface is of the CR and that at the right interface of the RR type, the transmission probabilities of (left-) right-going electrons
depends on the angle (𝜙RR) 𝜙RR that the precessing spins enclose with the preferred direction of the SOC when arriving at the
second interface according to T←RR (𝑚𝑧 > 0) ∝ cos2 (𝜙RR/2) and T→RR (𝑚𝑧 > 0) ∝ cos2 (𝜙RR/2)—assuming 𝑚𝑧 > 0 for the F
magnetization. Depending on how fast the spins precess, either 𝜙RR or 𝜙RR could lead to the larger transmission probability
suggesting that the critical-current difference Δ𝐼c = 𝐼+c − |𝐼−c | can reverse its sign. The most convenient knobs to tune the
precession are the length 𝑑 of the F or its spin polarization 𝑃. The color map in Fig. S2(a) presents Δ𝐼c as a function of 𝑑 and 𝑃
for out-of-plane magnetization along +𝑧 (Θ = 0.5𝜋) and Rashba angle 𝜃R = 0.5𝜋 (pure RR SOC to induce the maximal USDE).
We clearly observe the aforementioned tunability of Δ𝐼c (the USDE)—including the expected sign reversals—with 𝑑 and 𝑃,
agreeing well with our spin-precession picture. The absolute maximum of Δ𝐼c occurs for a very thin F link of length 𝑘F𝑑 = 2
and a weak spin polarization of 𝑃 = 0.3. Figure S2(b) shows the relative SDE measure |Δ𝐼c |/𝐼c (Θ = 0), normalizing Δ𝐼c to
the polarity-independent in-plane-magnetization critical current 𝐼c (Θ = 0), on a logarithmic scale. The maximal relative SDE
efficiency reaches values of about 200 % at 𝑘F𝑑 = 14 and 𝑃 = 0.9, making the USDE a sizable effect.
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For completeness, Fig. S3 presents the CPRs for the same parameters as in Fig. S1 but assuming that the magnetization is
aligned along the in-plane +𝑦̂-direction (Θ = 0 and Φ = 0.5𝜋). As mentioned above, the considered Rashba strength is not
yet enough that CR SOCs switch the junction into the 𝜋-state at 𝑘F𝑑 = 12, panel (a). Nevertheless, the junction is close to
a SOC-induced 0–𝜋 transition and the critical current is already strongly suppressed compared to the case without SOC. The
critical current increases again within the 0-state once the SOC at the right interface acquires a radial component. At the slightly
larger 𝑘F𝑑 = 16, panel (b), CR SOCs induce indeed a 𝜋-state and, similarly to the out-of-plane magnetization discussed above,
a 𝜋–0-like transition back into the 0-state emerges when the Rashba angle grows. As expected from our tunneling picture
elaborated in the main text, in-plane magnetization does not give rise to the spin precessions required to produce the USDE. As
a result, all CPRs for in-plane magnetization are perfectly point-symmetric with respect to zero phase difference and the critical
currents are independent of their polarity.

III. ALTERNATIVE REALIZATION: LATERAL S/F/S JOSEPHSON JUNCTIONS

As an alternative platform for the USDE, we consider the tight-binding model for the two-dimensional lateral (planar) S/F/S
Josephson junction consisting of two 𝑠-wave S leads and a F with an out-of-plane magnetization. We assume that CR SOC is
present in both S leads and RR SOC only in the right S lead. The Rashba angle in the right S leads is 𝜃R and the system is
schematically depicted in Fig. S4(a). The Hamiltonian of the junction is given by

Ĥ = ĤS,L + ĤF + ĤS,R, (S23)

ĤS,L = −𝑡
∑︁
⟨𝑖, 𝑗 ⟩,𝜎

𝑐†𝑖,𝜎𝑐 𝑗 ,𝜎 − 𝜇
∑︁
𝑗 ,𝜎

𝑐†𝑗 ,𝜎𝑐 𝑗 ,𝜎 −
∑︁
𝑗

[
Δ𝑐†

𝑗 ,↑𝑐
†
𝑗 ,↓ + h.c.

]

+ i𝛼
∑︁
𝜇=𝑥,𝑦

∑︁
⟨𝑖, 𝑗 ⟩𝜇

∑︁
𝛼,𝛽

(®𝑛CR
𝜇 · ®𝜎

)
𝛼𝛽𝑐

†
𝑖,𝛼𝑐 𝑗 ,𝛽 , (S24)

ĤS,R = −𝑡
∑︁
⟨𝑖, 𝑗 ⟩,𝜎

𝑐†𝑖,𝜎𝑐 𝑗 ,𝜎 − 𝜇
∑︁
𝑗 ,𝜎

𝑐†𝑗 ,𝜎𝑐 𝑗 ,𝜎 −
∑︁
𝑗

[
Δ𝑐†

𝑗 ,↑𝑐
†
𝑗 ,↓ + h.c.

]

+ i𝛼 cos(𝜃R)
∑︁
𝜇=𝑥,𝑦

∑︁
⟨𝑖, 𝑗 ⟩𝜇

∑︁
𝛼,𝛽

(®𝑛CR
𝜇 · ®𝜎

)
𝛼𝛽𝑐

†
𝑖,𝛼𝑐 𝑗 ,𝛽

+ i𝛼 sin(𝜃R)
∑︁
𝜇=𝑥,𝑦

∑︁
⟨𝑖, 𝑗 ⟩𝜇

∑︁
𝛼,𝛽

(®𝑛RR
𝜇 · ®𝜎

)
𝛼𝛽𝑐

†
𝑖,𝛼𝑐 𝑗 ,𝛽 , (S25)

and

ĤF = −𝑡
∑︁
⟨𝑖, 𝑗 ⟩,𝜎

𝑐†𝑖,𝜎𝑐 𝑗 ,𝜎 − 𝜇
∑︁
𝑗 ,𝜎

𝑐†𝑗 ,𝜎𝑐 𝑗 ,𝜎 − 𝑚𝑧

∑︁
𝑗 ,𝜎

𝜎𝑐†𝑗 ,𝜎𝑐 𝑗 ,𝜎 , (S26)

respectively, where ĤF is the Hamiltonian for the F and ĤS,L (ĤS,R) for the left (right) S lead. Thereby, 𝑡, 𝜇, 𝛼, Δ, and 𝑚𝑧

are the hopping amplitude, the chemical potential, the Rashba strength, the 𝑠-wave pairing potential, and the magnitude of the
exchange field along the 𝑧-direction, while 𝜎 = (−)1 for spin (down) up. For the S leads, ®𝑛CR

𝑥 = (0, 1, 0), ®𝑛CR
𝑦 = (−1, 0, 0) are

the Rashba vectors for CR and ®𝑛RR
𝑥 = (1, 0, 0), ®𝑛RR

𝑦 = (0, 1, 0) are the ones for RR SOC, accordingly.
To obtain the Josephson current, we calculate a bond current in the F for each phase difference between the S leads [S4]. The

bond current at temperature 𝑇 is given by

𝐼 (𝜑) = 𝑒𝑘B𝑇

ℏ

𝑁max∑︁
𝑛=0

∑︁
𝑖∈𝐿
𝑗∈𝑅

Im
[
Tr

(
𝐻̂𝑖 𝑗𝐺̌ 𝑗𝑖 (i𝜔𝑛)

) − Tr
(
𝐻̂ 𝑗𝑖𝐺̌𝑖 𝑗 (i𝜔𝑛)

) ]
, (S27)

where 𝐻̂𝑖 𝑗 [𝐺̌𝑖 𝑗 (i𝜔𝑛)] are the hopping matrix (retarded Green’s function) from site 𝑗 to 𝑖 calculated using Kwant [S5], and
𝜔𝑛 = (2𝑛 + 1)𝜋𝑘B𝑇 with integer 𝑛 correspond to the fermionic Matsubara frequencies at temperature 𝑇 analogously to our
analytical model above. The value 𝑁max gives the maximum cut-off frequency and is determined dynamically to ensure
convergence of the current. In Eq. (S27), the sites 𝑖 and 𝑗 are taken within the regions 𝐿 and 𝑅—see the tight-binding
representation in Fig. S4(b)—and the summation over 𝑖 and 𝑗 is performed only when these two sites are nearest neighbor. We
use parts of the code provided in the Supplemental Material of Ref. [S6] to calculate the Green’s function 𝐺̌𝑖 𝑗 (i𝜔𝑛). The system
parameters are taken as 𝜇/𝑡 = −1, 𝛼/𝑡 = 0.4, Δ/𝑡 = 0.1, and 𝑘B𝑇/𝑡 = 0.01 to investigate the exchange-field dependence of the
USDE (in terms of Δ𝐼c) and the anomalous phase shift 𝜑0; the lattice spacing is 𝑎 = 0.4 nm indicating 𝑡 = ℏ2/(2𝑚𝑎2) ≈ 238 meV
for the hopping constant (𝑚 is the free-electron mass).
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FIG. S4. (a) Schematical sketch of the considered planar S/F/S Josephson junctions consisting of two semi-infinite 𝑠-wave superconducting
electrodes weakly coupled by a F link. In the left S, only CR SOC is present, while the right S hosts an admixture of CR and RR SOC quantified
by the Rashba angle 𝜃R (𝜃R = 0.5𝜋 is exemplarily shown). (b) Tight-binding representation of the system used for numerical implementation
in Kwant assuming 100 sites along the transverse 𝑦̂-direction and 𝑁F = 4 sites along 𝑥 inside the F; 𝐿 and 𝑅 indicate the cut-positions at which
the Green’s functions are evaluated (see text) to compute the Josephson CPRs.

As claimed in the main text, this lateral junction supports qualitatively similar physics as discussed for the vertical system. The
CR SOC in the left S polarizes the electron spins along its preferred direction in the plane. When entering the F, the spins precess
in-plane along the axis of the out-of-plane magnetization such that their transmission probabilities into the right S, which hosts
also a nonzero RR component determined by the Rashba angle 𝜃R, depend then on the relative angles between the precessing
spin and the Rashba fields there. This mechanism results in transmission probabilities, and thereby critical currents, that are
different for opposite directions and likewise also for opposite out-of-plane directions of the F magnetization—i.e., in the USDE.
However, it is important to note that the current in the lateral junction flows in the plane of the SOC and the magnetization
is perpendicular to this plane, whereas magnetization and current are parallel and perpendicular to the interfacial SOC in the
vertical junction. This suggests that some transport features—particularly the 0–𝜋(-like) magnetizations effectively controllable
through the interplay of SOC and magnetization in the vertical junction—can be different in the lateral system.

Figures S5(a) and S5(b) show the numerical Kwant results for the critical-current difference Δ𝐼c = 𝐼+c − |𝐼−c | for the Rashba
angles 𝜃R = 0.25𝜋 and 𝜃R = 0.5𝜋, respectively. We clearly observe the USDE at finite out-of-plane magnetizations 𝑚𝑧 > 0,
displaying several sign reversals of Δ𝐼c and a generally increasing trend of the SDE with increasing 𝜃R similarly to the vertical
junction. In contrast to the vertical case, the maximal values of |Δ𝐼c | occur in the half-metallic case when 𝑚𝑧 → 𝜇 (recall
that |Δ𝐼c | oscillates as a function of 𝑘F𝑑 and 𝑃 in the vertical junction, Fig. S2) and its most pronounced sign reversal always
coincides with a 0–𝜋(-like) transition [see the rapid 𝜑0-jumps in Figs. S5(c) and S5(d)]. Interestingly, this 0–𝜋(-like) transition
is independent of 𝜃R and cannot be tuned by introducing more RR SOC in the right S. The reason for that is most likely the
aforementioned elusive interplay between interfacial SOCs and magnetization in the vertical junction that is not present in the
lateral case. As an important confirmation that the origin of the USDE is well-distinct from the finite Cooper-pair momentum,
which has been identified as the key source of the conventional (in-plane-field) SDE [S7–S12], we also computed the spin-resolved
Fermi surfaces inside the F link. The result [see the inset in Fig. S5(c)] indicates that the Cooper pairs do indeed not acquire a
finite center-of-mass momentum (there is no shift or relative displacement of the Fermi surfaces w.r.t. each other) and another
mechanism—i.e., the spin-precession tunneling—must generate the USDE.
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FIG. S5. (a) and (c) [(b) and (d)] Critical-current difference Δ𝐼c = 𝐼+c − |𝐼−c | and 𝜑0-shifts of the lateral S/F/S junction as functions of the
out-of-plane magnetization strength 𝑚𝑧 (perpendicular to the system plane) at Rashba angle 𝜃R = 0.25𝜋 (𝜃R = 0.5𝜋). The inset in panel (c)
shows the momentum-space spin-up (↑; red) and spin-down (↓; blue) Fermi surfaces computed in the F link.
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