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Introduction

Motivation and area of research

Over the last decades machine learning and artificial intelligence became increasingly important

for scientific research and practical applications, see, e.g., Bharadiya et al. (2023). The superior

performance compared to standard algorithms makes machine learning a preferred choice in

many applications, see, e.g., Bellotti et al. (2021) or Bohr and Memarzadeh (2020). However,

most of the modern algorithms are considered as “back boxes” and are difficult to interpret, see,

e.g., Burkart and Huber (2021). Therefore, the need of explainable artificial intelligence (XAI)

approaches is becoming more important. To justify the use of machine learning algorithms those

XAI approaches are crucial, see, e.g., Burkart and Huber (2021) or European Banking Authority

(2023a). Furthermore, the uncertainty related to the prediction should also be a key component

for machine learning algorithms since it helps to improve the reliability of predictions (Tyralis

and Papacharalampous, 2024).

One example where reliability of the model and their predictions are crucial are financial insti-

tutions. This holds especially for the credit risk sector, see, e.g., Fritz-Morgenthal et al. (2022).

According to the risk assessment report of the European Banking Authority credit risk is of great

importance as it causes 84% of all risk weighted assets (European Banking Authority, 2023b).

Credit risk is typically characterized by the expected loss (EL) amount which contains three

components. The probability of default (PD), the loss given default (LGD) and the exposure at

default (EAD), see Basel Committee on Banking Supervision (2006). Recent studies show that

more complex approaches like machine learning models tend to perform superior compared to

classical statistical approaches, see, e.g., Bellotti et al. (2021). Most standard techniques espe-

cially the machine learning approaches neglects the distribution of the prediction and therefore

the associated uncertainty. There is an active area of research that combines statistical methods
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Introduction

and machine learning to obtain a flexible model that can characterize the the distribution of the

prediction. For an overview, see Tyralis and Papacharalampous (2024).

According to Baesens and Smedts (2023) preprocessing the raw data is a crucial step in credit

risk modeling. One part of this preprocessing is handling missing values. Modeling uncertainty

plays also an important role in handling missing data. Most imputation approaches replace

the missing values by one estimated or one observed value. Using such an imputed dataset

assumes that the imputed value corresponds to the observed value since it does not account for

the uncertainty due to missingness. This often leads to problems when statistical inference is

conduced, see, e.g., (Van Buuren, 2018, Ch. 1). There is a quote, that according to Kniss (2008)

is attributed to Richard Feynman that says: “What is not surrounded by uncertainty cannot be the

truth.". Despite related to another context this quote summarizes this fundamental problem in

missing data very well. As a solution to this problem multiple imputation was introduced in the

1970s (Rubin, 2004). In this framework as pointed out in (Van Buuren, 2018, Ch. 1) the dataset

is completed multiple times. Each completed dataset is analyzed separately and the results are

pooled afterwards to conduct valid statistical inference.

This thesis aims to deal with the topic of uncertainty-aware machine learning approaches. The

application of and the extension to uncertainty-aware machine learning techniques are covered

in three independent research papers that correspond to the Chapters 1, 2 and 3. The first paper

deals with a recent machine learning approach, that can calculate the uncertainty that comes

along with the prediction and divide it into aleatoric and epistemic uncertainty. This method is

applied to market-based LGDs in order to get a deeper understanding of the uncertainty and

the challenges that are associated with it. The second paper uses the insights of the first paper

and combines a statistical approach with a machine learning technique that allows flexible

modeling in distributional parameters. This is also applied to market-based LGDs and further

analyzed with an XAI method to get a better insight in LGDs and in its most important features

for their prediction. The last and third research paper deals with the important task of handling

missing data. In this paper a well established imputation method is extended by combining the

learned relationships of a neural network with it. This allows the in this paper introduced novel

imputation approach to handle missing values such that statistical inference is valid under a

non-linear data generating process. Furthermore, a heuristic is proposed to extend this method

to interactions as well.

2
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Research paper I | Quantifying uncertainty of machine learning methods for loss given default

The expectes loss (EL) amount plays a central role in risk management. It is defined as the

product of the probability of default (PD), the exposure at default (EAD) and the loss given

default (LGD), see Basel Committee on Banking Supervision (2006). PD denotes the probability

that an creditor is unable to fulfill his agreed obligations. EAD is defined as the outstanding

obligations at the time of default. The last component LGD denotes the proportion of the credit

line that can not be recovered due to the default. This paper focuses on market-based LGD

that represents the average relative decrease in the market price of corporate bonds 30 days

after default, see, e.g. Gambetti et al. (2019). As stated in SIFMA Research (2022) this market

has a estimated volume of 10 trillion USD and therefore, is an essential part of the financial

market and its stability. There is a board range of studies on market-based LGDs focusing on

predicting and explaining LGDs, see, e.g., Loterman et al. (2012); Kaposty et al. (2020) or Bastos

and Matos (2022), but not the corresponding uncertainty of the prediction. Therefore, the

research question remains: How big is the uncertainty that comes along with the prediction and

is this uncertainty caused by the data or rather by the model? This paper aims to close this gap

by quantifying the uncertainty in the LGD prediction by using the deep evidential regression as

introduced in Amini et al. (2020) and extended in Meinert et al. (2022). This allows to separate

the uncertainty into aleatoric uncertainty, that is related to the uncertainty in the data itself,

and into the epistemic uncertainty, that corresponds to the uncertainty due to the model.

Research paper II | Non-linearity and the distribution of market-based loss rates

The LGD is one key component of the EL. Due to its complex structure and difficult to model

characteristics like multi modality and bounded support, advanced methods are applied, see,

e.g., Gambetti et al. (2019). One well established approach to meet these characteristics is

to model the LGD by a beta regression. This method assumes that the LGD follows a beta

distribution with a mean and a precision parameter, whereas the latter is often treated as a

nuance parameter. Furthermore, it relies on linearity and therefore neglects non-linearities if

not modeled explicitly. However, several studies like Bastos (2010); Loterman et al. (2012) or

Olson et al. (2021) conclude that models, that can model non-linearity, improves the prediction

of LGDs. This leads to the following research questions: First, how much non-linearity is

in the modeled estimates? Second, are there differences if a precision parameter is modeled

additionally? The second research paper aims to answer this questions by combining a statistical

framework, the beta regression, with a machine learning approach, the neural network, and

analyze the resulting model with an explainable artificial intelligence technique called Accumu-
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lated Local Effect Plot (ALE Plot) by Apley and Zhu (2020) to get a deeper understanding of

marked-based LGDs.

Research paper III | GAMME - Advances in Predictive Mean Matching

Missing data is a common problem in most scientific and practical areas as illustrated in King

et al. (2001); Rubin (2003); Bryzgalova et al. (2024). Since many applications require fully

observed data, handling missing data is part of the important data preprocessing, see, e.g.,

Baesens and Smedts (2023). If a substantial amount of observations is missing deleting those

can reduce the dataset immensely and make some applications not suitable anymore. Therefore,

imputing missing values is often chosen. But improper imputation can bias the results and

lead to incorrect statistical inference, see, e.g., Schafer and Graham (2002). One common

approach is to use predictive mean matching which is a non-parametric imputation technique

that provides good results under different assumptions, see, e.g., Kleinke (2017). This and

many other imputation models rely on linear dependencies which does not necessary meet the

truth. As a consequence several imputation models are proposed to overcome this problem, see,

e.g, Stekhoven and Bühlmann (2012); Doove et al. (2014); Deng and Lumley (2023). But they

can all result in invalid statistical inference. Therefore, the research question remains: How

can missing values being imputed such that statistical inference is valid if the data generating

process is not linear? The aim for this research paper is to answer that question and provide

a solution. The well established predictive mean matching approach is extended by utilizing

an explainable artificial intelligence approach to reveal non-linearities and account for them.

Furthermore, a heuristic is proposed that extends this method to interactions.

Literature

Uncertainty and its estimation is a essential part in classical statistics. It is the basis for statistical

tests, confidence intervals or prediction intervals. One branch of statistics that is closely related

to uncertainty is bayesian statistic. This allows to especially model epistemic uncertainty that is

associated with the model itself and differs from the aleatoric uncertainty, that is inherent to the

data (Gawlikowski et al., 2022). Besides the classical statistical models uncertainty becomes

more important in the field of machine learning. The “natural” extension is to apply bayesian

theory to machine learning algorithms. For neural networks this is possible by using Bayes by

Backprop (Blundell et al., 2015), that allows to learn a distribution over the neural network

weights. Due to the increased computational burden there are some alternatives published

in recent years. Lakshminarayanan et al. (2017) use an ensemble of neural networks with a
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negative log-likeikelihood as loss function to assess uncertainty. Gal and Ghahramani (2016)

showed, that using the regularization technique dropout at test time can approximate a deep

Gaussian process. This is extended by Mobiny et al. (2021) that drops weights instead of

neurons. A further possibility to estimate uncertainty is the deep evidential regression by Amini

et al. (2020) and its extension by Meinert et al. (2022) and Meinert and Lavin (2022). This

approach has the advantage of separating aleatoric and epistemic uncertainty by only minor

changes to the neural network architecture. A literature review on this topic can be found in

Chapter 1 (Section 1.1, Introduction).

One possible field of application is the modeling of Loss Given Defaults (LGDs). The LGD is one

key parameter in calculating the expected loss (EL) that is essential for credit risk management.

In fact, the adequate modeling of LGDs is crucial for financial institutions as they are allowed

to use their own models (Basel Committee on Banking Supervision, 2017). Furthermore, from

a economic point of view LGDs for the US corporate bond market are of great importance

due to the large volume of this market (SIFMA Research, 2022) . In classical statistics LGDs

are primarily modeled with linear models such as beta regression (Ferrari and Cribari-Neto,

2004; Gambetti et al., 2019) or fractional response regression (Bastos, 2010). With the rise

of artificial intelligence complex machine learning algorithms found their way into the LGD

literature. This lead to the opportunity of allowing non-linearity and interactions without

specifying them in advance. One example are regression trees as used in Bastos (2010) or

random forests and neural networks in Kaposty et al. (2020). A vast selection of different models

are evaluated in Bellotti et al. (2021) including random forests, boosted trees and Cubist that

are superior in terms of forecasting. Most studies focus on forecasting LGDs and only a few

consider distributional characteristics of the LGDs as in Gambetti et al. (2019) or Kellner et al.

(2022). A more in depth literature review can be found in Chapter 1 (Section 1.1, Introduction)

and Chapter 2 (Section 2.2, Literature review).

Uncertainty is also an important aspect in the research area of missing values. Missing values

are a common problem in many practical applications and scientific fields, see, e.g., King et al.

(2001); Boeschoten et al. (2019); Bryzgalova et al. (2024). As stated in Baesens and Smedts (2023)

the preprocessing of the data including handling missing values can affect the performance

of credit risk models. To impute missing values there is a broad body of literature on this

topic. Most approaches can be divided into single imputation (SI) and multiple imputation (MI)

techniques. Standard SI approaches are mean imputation, regression imputation or stochastic

regression imputation, see, e.g., (Van Buuren, 2018, Ch. 1). They often assume only linear
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dependencies. Therefore, they can be extend to more complex and flexible models. One

prominent example is MissForest by Stekhoven and Bühlmann (2012) that rely on iterative

random forests. On the neural network side the imputation approaches are often based on

generative adversarial networks (GANs) by Goodfellow et al. (2014), see, e.g., GAIN by Yoon

et al. (2018) or MisGAN byLi et al. (2019). These single imputation techniques treat the imputed

values as observed ones and thus neglect the uncertainty due to missingness. This is especially

important if the goal is to conduct valid statistical inference, see, e.g., (Van Buuren, 2018, Ch.

1). As a consequence multiple imputation was introduced that produces multiple imputed

datasets. On each of these datasets a model is applied e.g. a linear regression. The results of

these regressions can further be pooled to get valid statistical inference. Most SI methods can be

extended to MI approaches. A well established MI method is predictive mean matching (PMM)

that imputes only observed values by matching predictive means. PMM also relies on linear

dependencies, see, e.g., (Van Buuren, 2018, Ch. 3), but there are a few possible extensions to

overcome this burden e.g. by using a classification and regression tree (CART) as in Doove et al.

(2014) instead of a linear regression. One recent development by Deng and Lumley (2023) uses

extreme gradient boosting (XGBoost) as the underlying model. A comprehensive overview on

the current literature can be found in Chapter 3 (Subsection 3.2.2, Literature).

Contributions

This thesis contributes to the literature by studying various aspects of uncertainty in the

application of machine learning. In particular it contributes by quantifying the uncertainty in

the LGD prediction and proposing an approach that allows more flexibility in modeling the

dominant aspects of the LGD distribution. Furthermore, for a broader range of applications

an imputation technique is proposed to correct the uncertainty due to missingness in order to

make statistical inference valid. The Chapters 1, 2 and 3 represent the independent research

papers that structure the main contributions of this thesis.

Contribution I | Quantifying uncertainty of machine learning methods for loss given default

Although Loss Given Default is studied in many recent publications, see, e.g., Calabrese and

Zanin (2022), most of them focus on prediction as in Loterman et al. (2012); Bellotti et al.

(2021) or finding the most relevant drivers, see, e.g., Gambetti et al. (2019). There are only very

few publications that study the uncertainty that is associated with it. Research paper I (see

Chapter 1) aims to contribute to the literature by closing this gap. Therefore, a method known

as deep evidential regression by Amini et al. (2020) and its extension by Meinert et al. (2022) is
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applied to model LGDs. This approach has the advantage of obtaining the uncertainty along

with the prediction. Furthermore, this uncertainty can be divided into aleatoric and epistemic

uncertainty. As stated in Gawlikowski et al. (2022) the latter can be reduced by increasing the

number of training samples and is also known as model uncertainty. Aleatoric uncertainty

covers the uncertainty of the data itself and can not be reduced. Furthermore, the features are

analyzed with ALE plots by Apley and Zhu (2020). This reveals non-linearities in the mean

prediction.

Applying the deep evidential regression framework leads to several interesting findings. First,

although the deep evidential regression has some additional parameter in order to model the

uncertainty the performance of this approach is comparable to common methods for LGD

estimation. Second, for the mean prediction the proportion of the uncertainty that is associated

with the model is smaller than the proportion of the aleatoric uncertainty. Therefore, most of

the uncertainty can be attributed to data inherent uncertainty.

Contribution II | Non-linearity and the distribution of market-based loss rates

Loss Given Default is an essential part of credit risk and therefore, received a lot of attention in

recent studies, see, e.g., Gambetti et al. (2019); Bellotti et al. (2021); Bastos and Matos (2022).

Frequently LGDs are modeled by statistical models like a beta regression, see, e.g., Gambetti et al.

(2019) or a local logit regression as proposed in Sopitpongstorn et al. (2021). Other studies focus

on machine learning methods and compare several approaches, see, e.g., Loterman et al. (2012);

Bellotti et al. (2021). There are only a few publications that combine those two approaches as

e.g. in Kellner et al. (2022), which focused on the estimation of quantiles. Research paper II

(see Chapter 2) aims to close the gap and combine the well-known (generalized) linear beta

regression by Ferrari and Cribari-Neto (2004); Smithson and Verkuilen (2006) and a neural

network resulting in the Generalized Beta Regression Neural Network (G-BRANN). This is

accomplished by choosing a neural network with two output neurons one for each parameter

of the beta distribution and minimizing the corresponding negative log-likelihood as the loss

function. This flexible approach allows interactions and non-linearities in the mean and the

precision parameter. Since the bounded support of the precision parameter can be challenging

to model trainable activation functions in the sense of He et al. (2015) are derived as a novelty

to improve robustness and allowing further flexibility.

G-BRANN models the LGDs as a beta distribution with two parameters, mean and precision,

using a neural network structure. This has the advantage that non-linearities and interactions
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are learned without specifying them in advance. This flexible structure improves the fit that

leads to the conclusion that non-linearites and interactions play an important role in modeling

the LGDs. To reveal these non-linearities and quantify the proportion of non-linearity ALE

plots by Apley and Zhu (2020) are used as in the sense of Nagl (2023). For the mean parameter

it can be shown that the proportion of non-linearity is 14.10%. The proportion of non-linearity

for the precision parameter on the other hand is 80.37%. Therefore, allowing non-linearity

is especially important for the precision parameter. Furthermore, the increased flexibility in

modeling the distributions allows a more refined distinction between bond characteristics and

between macroeconomic states.

Contribution III | GAMME - Advances in Predictive Mean Matching

Research paper III (see Chapter 3) refers to the general problem of adequately handling missing

data. Many standard missing data approaches rely on linear models. Even though they achieve

good results under difficult settings, see, e.g., Kleinke (2017), this can lead to biased results as

discussed in Doove et al. (2014). This paper extends one well established imputation approach,

predictive mean matching, to allow for non-linearities. This is archived by firstly fitting a neural

network to learn the presumably complex structure of the data. The learned non-linearities are

revealed by an explainable artificial intelligence method the Accumulated Local Effect Plots. By

utilizing the functional decomposition property of the ALE plots the prediction of the neural

network can be linearized with respect to the ALE values. Therefore, this ALE values can be used

to incorporate non-linearities into an additive structure that can be processed by the predictive

mean matching. This extended approach is called the Generalized Adaptive Predictive Mean

Matching Estimator (GAMME). Moreover, this method can also be applied to interactions, that

are revealed by second order ALE plots. The properties to impute the missing values properly

are analyzed in a large simulation study and compared to several other imputation approaches.

The proposed method is evaluated under different simulation settings that includes two different

missing data mechanisms Missing Completely at random (MCAR) and Missing at Random

(MAR). MCAR is often considered as an unrealistic assumption, but is an essential part of the

missing data literature, see, e.g., Liang and Wang (2023). In this setting GAMME performs

competitive compared to the best imputation approaches for MCAR. Furthermore, GAMME

is challenged under MAR as well. In these conducted simulations GAMME provides the best

results considering bias of the regression coefficients and coverage rate out of 12 different

imputation approaches. Taking everything into account GAMME is the only approach that leads

to good results under MCAR and MAR.
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Structure

This thesis is structured by three independent research papers with varying co-authors1. Chap-

ter 1 consists of the first paper (Quantifying uncertainty of machine learning methods for loss given

default) that studies the uncertainty in the LGD prediction. The second paper (Non-linearity

and the distribution of market-based loss rates) is comprised in Chapter 2, that extends the beta

regression to allow non-linearities and interactions and analyzes the effects of that. Chapter 3 is

subjected to the third and last paper (GAMME - Advances in Predictive Mean Matching). This

paper introduces a novel imputation technique to allow valid statistical inference in the presence

of non-linearites and interactions. The Conclusion summarizes this thesis, discusses the main

results and provides an outlook.

1 The co-authors and the current state of the research papers are mentioned at the beginning of each chapter.
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Chapter 1

Quantifying uncertainty of machine learning

methods for loss given default

This chapter is a joint work with Maximilian Nagl* and Daniel Rösch† and corresponds to a

paper published as:

Nagl, M., Nagl, M., & Rösch, D. (2022). Quantifying uncertainty of machine learning methods

for loss given default. Frontiers in Applied Mathematics and Statistics, 8, 1076083

https://doi.org/10.3389/fams.2022.1076083

Abstract

Machine learning has increasingly found its way into the credit risk literature. When applied

to forecasting credit risk parameters, the approaches have been found to outperform standard

statistical models. The quantification of prediction uncertainty is typically not analyzed in the

machine learning credit risk setting. However, this is vital to the interests of risk managers and

regulators alike as its quantification increases the transparency and stability in risk manage-

ment and reporting tasks. We fill this gap by applying the novel approach of deep evidential

regression to loss given defaults (LGDs). We evaluate aleatoric and epistemic uncertainty for

LGD estimation techniques and apply explainable artificial intelligence (XAI) methods to ana-

lyze the main drivers. We find that aleatoric uncertainty is considerably larger than epistemic

uncertainty. Hence, the majority of uncertainty in LGD estimates appears to be irreducible as it

stems from the data itself.

Keywords: Machine Learning, Explainable Artificial Intelligence (XAI), Credit Risk, Uncer-

tainty, Loss Given Default

JEL classification: G21, G32, C45

* University Regensburg, Chair of Statistics and Risk Management, 93040 Regensburg, Germany,
email: maximilian.nagl@ur.de.

† University Regensburg, Chair of Statistics and Risk Management, 93040 Regensburg, Germany,
email: daniel.roesch@ur.de.
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Chapter 1. Quantifying uncertainty of machine learning methods for loss given default

1.1 Introduction

Financial institutions play a central role in the stability of the financial sector. They act as inter-

mediaries to support the supply of money and lending as well as the transfer of risk between

entities. However, this exposes financial institutions to several types of risk, including credit

risk. Credit risk has the largest stake with roughly 84% of risk-weighted assets of 131 major

EU banks as of June 2021 (European Banking Authority, 2021). The expected loss (EL) due to

credit risk is composed of three parameters: Probability of Default (PD), Loss Given Default

(LGD), and Exposure at Default (EAD). PD is defined as the probability that a creditor will not

comply with his agreed obligations at a later time. LGD is defined as the relative fraction of the

outstanding amount that is lost. Finally, EAD is defined as the outstanding amount at the time

of default.

This article focuses on LGD as this risk parameter is important for financial institutions not

only from a risk management perspective but also for pricing credit risky assets. Financial

institutions can use their own models to calculate an estimate for the LGD. This estimate is

subsequently used to determine the interest on the loan/bond and the capital requirement

for the financial institution itself see, e.g., Altman and Kalotay (2014); Kalotay and Altman

(2017); Gambetti et al. (2019); Bellotti et al. (2021) or Kellner et al. (2022). Depending on

the defaulted asset, we can divide the LGD further into market-based and workout LGD. The

former refers to publicly traded instruments like bonds and is commonly defined as one minus

the ratio of the market price 30 days after default divided by the outstanding amount at the

time of default. The latter refers to bank loans and is determined by accumulating discounted

payments from creditors during the default resolution process. In this article, we use a record

of nearly three decades of market-based LGDs gathered from the Moody’s Default and Recovery

Database starting in January 1990 until December 2019. Recent literature using a shorter

history of this data documents that machine learning models due to their ability to account for

non-linear relationships of drivers and LGD estimates outperform standard statistical methods,

see, e.g., Bastos and Matos (2022); Olson et al. (2021); Sopitpongstorn et al. (2021). Fraisse and

Laporte (2022) show that allowing for non-linearity can be beneficial in many risk management

applications and can lead to a better estimation of the capital requirements for banks. Therefore,

using machine learning models can increase the precision of central credit risk parameters and,

as a consequence, could have the potential to yield more adequate capital requirements for

banks due to the increased precision.

There is a large body of literature using advanced statistical methods for LGDs. These include
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beta regression, factorial response models, local logit regressions, mixture regression, and quan-

tile regression among many others, see, e.g., Altman and Kalotay (2014); Kalotay and Altman

(2017); Gambetti et al. (2019); Sopitpongstorn et al. (2021); Qi and Yang (2009); Bastos (2010);

Bellotti and Crook (2012); Loterman et al. (2012); Qi and Zhao (2011); Tong et al. (2013); Krüger

and Rösch (2017); Tomarchio and Punzo (2019). Concerning the increased computational power

and methodical progress in academia, machine learning models have become more and more

frequently applied concerning LGDs.1 Early studies by Matuszyk et al. (2010) and Bastos (2010)

employ tree-based methods. Moreover, several studies provide benchmark exercises using

various machine learning methods, see, e.g., Bellotti and Crook (2012); Loterman et al. (2012);

Qi and Zhao (2011). Bellotti et al. (2021) and Kaposty et al. (2020) update previous benchmark

studies with new data and algorithms. Nazemi et al. (2021) find text-based variables to be

important drivers for marked-based LGDs. Furthermore, evidence that spatial dependence

plays a key role in peer-to-peer lending LGD estimation can be found in Calabrese and Zanin

(2022). By combining statistical and machine learning models, Sigrist and Hirnschall (2019)

and Kellner et al. (2022) show that benefits from both worlds can be captured.

An important aspect, to which the machine learning LGD literature has not yet paid attention,

is the associated uncertainty around estimates and predictions2. Commonly, we can define two

types of uncertainty, aleatoric and epistemic (Der Kiureghian and Ditlevsen, 2009). Following

Gawlikowski et al. (2022), aleatoric uncertainty is the uncertainty in the data itself that can not

be reduced and is therefore also known as irreducible or data uncertainty. In classical statistics,

this type of uncertainty is for example represented by ε in the linear regression framework.

Epistemic uncertainty refers to the uncertainty of a model due to the (limited) sample size.

This uncertainty can be reduced by increasing the sample size on which the model is trained

and is therefore also known as reducible or model uncertainty (Gawlikowski et al., 2022). In

a linear regression setting, epistemic uncertainty is, accounted for by the standard errors of

the beta coefficients. Given a larger sample size, the standard errors should decrease. Recently,

the literature on uncertainty estimation has grown rapidly as outlined in a survey article by

Gawlikowski et al. (2022).

A first intuitive way to quantify uncertainty is the Bayesian approach, which is also common in

classical statistics. However, Bayesian neural networks are computationally expensive and do

1 Furthermore, several studies use machine learning to estimate PDs, see, e.g., Li and Chen (2021); Petropoulos et al.
(2020); Luo et al. (2020); Gunnarsson et al. (2021); Dumitrescu et al. (2022). Concerning mortgage probability
of default, see, e.g., Kvamme et al. (2018), Barbaglia et al. (2021), Sadhwani et al. (2021) and Chen et al. (2021).
Overall, there is a consensus that machine learning methods outperform linear logit regression.

2 Gambetti et al. (2019) uses an extended version of the beta regression to model the mean and precision of
market-based LGDs. This can be interpreted as focusing on the aleatoric uncertainty. However, the literature
using machine learning algorithms lacks uncertainty estimation concerning LGD estimates.
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not scale easily to complex neural network architectures containing many parameters. There-

fore, other researchers aim at approximating Bayesian inference/prediction for neural networks.

Blundell et al. (2015) introduce a backpropagation-compatible algorithm to learn probability

distributions of weights instead of only point estimates. They call their approach “Bayes by Back-

prop.” Rather than apply Bayesian principles at the time of training, another strand of literature

tries to approximate the posterior distribution only at the time of prediction. Gal and Ghahra-

mani (2016) introduce a concept called Monte Carlo Dropout, which applies a random dropout

layer at the time of prediction to estimate uncertainty. Another variant of this framework is

called Monte Carlo DropConnect by Mobiny et al. (2021). This variant uses the generalization

of Dropout Layers, called DropConnect Layers, where the dropping is applied directly to each

weight, rather than to each output unit. The DropConnect approach has outperformed Dropout

in many applications and data sets, see, e.g., Mobiny et al. (2021). Another strategy is to use

so-called hypernetworks (Krueger et al., 2017). This type of network is a neural network that

produces parameters of another neural network (so-called primary network) with random noise

input. Finally, the hyper and primary neural networks together form a single model that can eas-

ily be trained by backpropagation. Another strand of literature applies an ensemble of methods

and uses their information to approximate uncertainty, see, e.g., Lakshminarayanan et al. (2017);

Valdenegro-Toro (2019); Wen et al. (2020). However, these approaches are computationally more

expensive than Dropout or DropConnect-related approaches. A further strand of literature

aims at predicting the types of uncertainty directly within the neural network structure. One of

these approaches is called deep evidential regression by Amini et al. (2020) and extensions by

Meinert et al. (2022), which learn the parameters of a so-called evidential distribution. This

method quantifies uncertainty without extra computations after training. Additionally, the

estimated parameters of the evidential distribution can be plugged into analytical formulas for

epistemic and aleatoric uncertainty. This approach quantifies uncertainty in a fast and traceable

way without any additional computational burden. Because it has many advantages, this article

relies on the deep evidential regression framework.

We contribute to the literature in two important ways. First, this article applies an uncertainty

estimation framework in machine learning LGD estimation and prediction. We observe that

deep evidential regression provides a sound and fast framework to quantify both, aleatoric

and epistemic uncertainty. This is important with respect to regulatory concerns. Not only

is explainability required by regulators, the quantification of uncertainty surrounding their

predictions may be a fruitful step toward the acceptance of machine learning algorithms in

regulatory contexts. Second, this article analyzes the ratio between aleatoric and epistemic
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uncertainty and finds that aleatoric uncertainty is much larger than epistemic uncertainty. This

implies that the largest share of uncertainty comes from the data itself and, thus, cannot be

reduced. Epistemic uncertainty, i.e., model uncertainty, plays only a minor role. This may

explain why advanced methods may outperform simpler ones, but still, the estimation and

prediction of LGD remain a very challenging task.

The remainder of this article is structured as follows. Data is presented in Section 1.2, while the

methodology is described in Section 1.3. Our empirical results are discussed in Sections 1.4, 1.5

concludes.

1.2 Data

To analyze bond loss given defaults, we use Moody’s Default and Recovery Database (Moody’s

DRD). This data has information regarding the market-based LGD, default type, and various

other characteristics of 1,999 US bonds from January 1990 until December 20193. We use bond

characteristics such as the coupon rate, the maturity, the seniority of the bond, and an additional

variable, which indicates whether the bond is backed by guarantees beyond the bond issuer’s

assets. Furthermore, we include a binary variable, which determines if the issuer’s industrial

sector belongs to the FIRE (finance, insurance, or real estate) sector. To control for differences

due to the reason of default, we also include the default type in our analysis. In addition to

that, we add the S&P 500 return to control for the macroeconomic surrounding. Consistent

with Gambetti et al. (2019), we calculate the US default rates directly from Moody’s DRD.

To control for withdrawal effects, we use the number of defaults occurring in a given month

divided by the number of firms followed in the same period. Since we are interested in the

uncertainty in the LGD estimation, we include uncertainty variables. To incorporate financial

uncertainty, we use the financial uncertainty index by Jurado et al. (2015) and Ludvigson et al.

(2021) which is publicly available on their website. Finally, we include the news-based economic

policy uncertainty index provided by Baker et al. (2016), which is also accessible on his website.

To keep predictive properties, we lag all macroeconomic variables and uncertainty indices by

one-quarter similar to Olson et al. (2021).

Our dependent variable shows a mode at 90%, illustrated by Figure 1.1. This is consistent

with Gambetti et al. (2019), who analyzed the recovery rates. The average LGD is about 64.29%

3 In the original sample with 2,205 bonds, there are 206 bonds with similar LGDs and the same issuer. Since we
want to analyze the uncertainty of bonds and not of issuers, we exclude those observations from the data set.
However, including these bonds reveals that the uncertainty around their values is considerably smaller, which
might have been expected.

14



Chapter 1. Quantifying uncertainty of machine learning methods for loss given default

Figure 1.1: Histogram of LGDs

as shown in Table 1.1 with a standard deviation of 27.59%. The sample also covers nearly the

whole range of market-based LGDs with a minimum of 0.5% and a maximum of 99.99%.

Table 1.1: Descriptive statistics of LGDs across the whole sample

N Min. Median Mean Max St.Dev. Skewness
LGD 1999 0.50 73.00 64.29 99.99 27.59 -0.59
All displayed values except the sample size and skewness are expressed as percentages.

Table 1.2 lists the variables and data types. In total, we use six bond-related variables, two

macroeconomic, and two uncertainty-related variables. The categorical bond-related variables

act as control variables for differences in the bond structure.

Table 1.2: Selected variables for the network

Variable Variable type Data type
Coupon rate Bond Continuous
Maturity Bond Continuous
Seniority Bond Categorical
Default type Bond Categorical
Backed guarantee Bond Binary
Industry type Bond Binary
S&P 500 Macroeconomic Continuous
Default rate Macroeconomic Continuous
Financial uncertainty Uncertainty Continuous
News-based EPU Uncertainty Continuous

Table 1.3 shows the correlations between macroeconomic and uncertainty variables. The

correlation is moderate to strong across the variables. This must be taken into account when

interpreting the effects of the variables. The only exception is the financial uncertainty index

and the default rate, which have a very weak correlation.
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Table 1.3: Upper triangle of the correlation matrix of macroeconomic and uncertainty
features

S&P500 Default rate Fin. unc. News-based EPU
S&P500 100.00 -65.18 -41.69 -65.21
Default rate 100.00 5.25 43.85
Fin. unc. 100.00 51.88
News-based EPU 100.00
All displayed values are expressed as percentages.

Table 1.4 shows descriptive statistics for the seniority of the bond. Each subcategory captures the

whole range of LGDs, while the mean and the median of Senior Secured bonds are comparably

low. In addition, the Senior Secured bonds have almost no skewness, while the skewness of

Senior Unsecured bonds is moderate. The skewness of Senior Subordinated and Subordinated

bonds is more negative and fairly similar. Comparing the descriptive statistics across seniority,

we observe that the locations of the distributions are different, but the variation of the dis-

tribution is considerably large. This might be the first indication of large (data) uncertainty.

Table 1.4: Descriptive statistics of LGDs according to the seniority of the defaulted bond

N Min. Median Mean Max St.Dev. Skewness
Senior secured 180 0.50 49.75 50.48 99.25 28.87 -0.02
Senior unsecured 1,305 0.50 72.50 63.37 99.97 27.93 -0.53
Senior subordinated 353 0.50 79.0 72.07 99.99 23.97 -0.99
Subordinated 161 0.87 74.0 70.17 99.87 23.74 -0.90

Table 1.5 categorizes the LGDs by their default type, which alters some aspects of the overall

picture. Compared to Table 1.1 the categories Distressed Exchange and Others have lower mean

and median LGD and positive skewness. The biggest difference between these two categories

is that Distressed Exchange has a lower standard deviation. Missed Interest Payment and

Prepackaged Chapter 11 show similar descriptive statistics compared to the whole sample

in Table 1.1. The last category Chapter 11 has even higher mean and median LGD and the

skewness is fairly low.

Table 1.5: Descriptive statistics of LGDs according to the default type

N Min. Median Mean Max St.Dev. Skewness
Chapter 11 705 0.75 85.00 73.48 99.99 25.46 -1.25
Distressed exchange 322 0.50 40.25 44.51 94.87 24.43 0.18
Missed interest payment 677 1.00 73.50 66.79 99.99 23.98 -0.69
Others 161 1.00 47.00 51.22 99.75 31.38 0.20

Prepackaged chapter 11 134 0.50 76.88 66.58 99.64 28.64 -0.64
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1.3 Methods

To model the uncertainty of LGDs, we use a framework called deep evidential regression

by Amini et al. (2020). This method is capable of determining the uncertainty of regression

tasks and estimating the epistemic and the aleatoric uncertainty. One way to model aleatoric

uncertainty in the regression case is to train a neural network with weights w based on the

negative log-likelihood of the normal distribution, and thus perform a maximum likelihood

optimization. The objective function for each observation is Amini et al. (2020):

LLi (w) =
1
2
log(2πσ2

i ) +
(yi −µi)2

2σ2
i

(1.1)

Where yi is the i-th LGD observation of the sample with size N and µi and σ2
i the mean and the

variance of the assumed normal distribution for observation i. Since µi and σ2
i are unknown,

they can be modeled in a probabilistic manner by assuming they follow prior distributions

q(µi) and q(σ2
i ). Following Amini et al. (2020), for µi a normal distribution and for σ2

i a inverse

gamma distribution is chosen:

µi ∼N (γi ,σ
2
i ν
−1
i ) (1.2)

σ2
i ∼ Γ −1(αi ,βi) (1.3)

With γi ∈ R, νi > 0, αi > 1 and βi > 0. Factorizing the joint prior distribution q(µi ,σ
2
i ) = q(µi)q(σ2

i )

results in a normal inverse gamma distribution:

p(µi ,σ
2
i |γi ,νi ,αi ,βi) =

βαii
√
νi

Γ (αi)
√

2πσ2
i

(
1

σ2
i

)αi+1exp{−
2βi + νi(γi −µi)2

2σ2
i

} (1.4)

This normal inverse gamma distribution can be viewed in terms of virtual observations, which

can describe the total evidence Φi . Contrary to Amini et al. (2020), we take the suggested

definition of the total evidence in Meinert et al. (2022) as Φi = νi + 2αi , because as derived in

Meinert and Lavin (2022), the parameters νi and 2αi of the conjugated prior normal inverse

gamma distribution can be interpreted as virtual observations of the prior distribution, where

µi and σ2
i are estimated from. As a result, the total evidence is the sum of those two expressions.

By choosing the negative inverse gamma distribution as the prior distribution, there exists

an analytical solution for computing the marginal likelihood or model evidence if the data

follows a normal distribution (Amini et al., 2020; Meinert et al., 2022). The marginal likelihood,
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therefore, follows a student-t distribution:

p(yi |γi ,νi ,αi ,βi) = St(yi ;γi ,
βi(1 + νi)
νiαi

,2αi) (1.5)

The marginal likelihood represents the likelihood of obtaining observation yi given the parame-

ter of the prior distribution, in this case, γi ,νi ,αi , and βi . Therefore, maximizing the marginal

likelihood maximizes the model fit. This can be achieved by minimizing the negative log likeli-

hood of p(yi |γi ,νi ,αi ,βi). Due to the special conjugated setting with normally distributed data

and normal inverse prior distributions, the marginal likelihood can be calculated in a closed

form (Amini et al., 2020):

LNLLi (w) =
1
2
log(

π
νi

)−αi log(Ωi) + (αi +
1
2

)log((yi −γi)2νi +Ωi) + log(
Γ (αi)

Γ (αi + 1
2 )

) (1.6)

Such that Ωi = 2βi(1 + νi) and Γ (.) represents the gamma function. This closed-form expression

makes deep evidential regression networks fast to compute. To get an accurate estimate of

the aleatoric and the epistemic uncertainty the loss function has to be regularized. Contrary

to the original formulation of Amini et al. (2020), Meinert et al. (2022) suggest a different

regularization term because when using the original formulation the regularized likelihood

is insufficient to find the parameters of the marginal likelihood. Therefore, we follow the

approach of Meinert et al. (2022) and use the adjusted regularization term. This adjustment

scales the residuals by the width of the student-t distribution in Equation (1.5), wSti , such that

the gradients of Φi and therefore, of νi do not tend to get very large in noisy regions:

LRi (w) =

∣∣∣∣∣∣yi −γiwSti

∣∣∣∣∣∣pΦi (1.7)

With p being the strength of the residuals on the regularization. The loss function for the neural

network can therefore be calculated as:

Li(w) = LNLLi (w) +λLRi (w) (1.8)

Where λ is a hyperparameter to determine the strength of the regularization in Equation

(1.7). Since λ and p have to be determined in advance the network has four output neurons,

corresponding to each parameter of the marginal likelihood in Equation (1.5). These parameters

can be used to quantify uncertainty. Due to the close connection between the student-t and the

normal distribution, wSti can be used as an approximation for the aleatoric uncertainty (Meinert

et al., 2022). Following Meinert et al. (2022), the epistemic and aleatoric uncertainty can be
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derived as follows:

uali ≡ wSti =

√
βi(1 + νi)
αiνi

(1.9)

uepi ≡
1
√
νi

(1.10)

By employing this approach, we assume that our dependent variable, y, follows a normal

distribution. LGDs are commonly bound in the interval between zero to one, which is only

a part of the space of the normal distribution. Hence, there is the possibility that we obtain

predicted values outside this range. However, using the normality assumption is very common

in LGD research as the OLS regression is frequently used as the main method or at least as a

benchmark to other methods, see, e.g., Bellotti et al. (2021); Qi and Yang (2009); Bellotti and

Crook (2012); Loterman et al. (2012); Qi and Zhao (2011); Krüger and Rösch (2017); Kaposty

et al. (2020); Jankowitsch et al. (2014); Tobback et al. (2014); Nazemi et al. (2017); Miller and

Töws (2018); Nazemi et al. (2018); Starosta (2021). Anticipating the results in Section 1.4, we

will see that the predicted values for almost all bonds lie in the interval between zero to one and,

thus, our approach produces reasonable estimates. Furthermore, the deep evidential regression

approach requires some assumptions to obtain a closed-form solution. For other distributional

assumptions, e.g., a beta distribution for the LGD, there is no closed-form marginal likelihood

known, which, if used, would eliminate the advantages of this approach.

To unveil the relationships modeled by the neural network, we use Accumulated Local Effect

(ALE) plots by Apley and Zhu (2020). ALE plots visualize the average effect of the independent

variables on the prediction. Another advantage of ALE plots over other explainable artificial

intelligence (XAI) methods is that they are unbiased and fast to compute. As mentioned in

Section 1.2, there is a moderate to high correlation between macroeconomic and uncertainty-

related variables. Therefore, the XAI method has to be robust to correlations, which is another

advantage of ALE plots. For an independent variable Xj ∈ RN×1, the total range of observed

values is divided into K buckets. This is accomplished by defining Zj,k as the k
K quantile of

the empirical distribution. Therefore Zj,0 is the minimum and Zj,K the maximum value of Zj .

Following this approach, Sj,k can be defined as the set of values within the left open interval

from Zj,k−1 to Zj,k with nj,k as the number of observations in Sj,k. Let k(Xj) be an index that

returns the bucket for a value of Xj , then the (uncentered) accumulated local effect can be

formalized as:

gALE(Xj ) =
k(Xj )∑
k=1

nj,k
−1

∑
i∈Sj,k

[
f (Zj,k ,X\j,i)− f (Zj,k−1,X\j,i)

]
. (1.11)
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X\j ∈ RN×P−1 denotes the set of variables without the variable j of P variables and f (.) describes

the neural network’s output before the last transformation. The minuend in the square brackets

denotes the prediction of f (.) if the observation i is replaced with Zj,k and the subtrahend

represents the prediction with Zj,k−1 instead of observation i. The differences are summed over

every observation in Sj,k . This is done for each bucket k and therefore gALE(Xj ) is the sum of the

inner sums weighted by the number of observations in each bucket. In order to get the centered

accumulated local effect with mean effect of zero for Xj the gALE(Xj ) is centered as follows:

ΘALE(Xj ) = gALE(Xj )−N−1
N∑
i=1

gALE(Xj,i) (1.12)

Because of the centering of the ALE plot, the y-axis describes the main effect of Zj at a certain

point in comparison to the average predicted value.

There exist several other XAI methods to open up the black box of machine learning methods.

The aim in our article is to investigate non-linear relationships between features and LGD

estimates. We therefore decide to use graphical methods. They include partial dependence plots

(PDP) by Friedman (2001) for global explanations and individual conditional expectation (ICE)

plots by Goldstein et al. (2015) for local explanations. However, the first method especially

can suffer from biased results if features are correlated. This is frequently the case for the

macroeconomic variables used in our article. We therefore use ALE plots by Apley and Zhu

(2020) because they are fast to compute and resolve the problem of correlated features as in

our article. Moving beyond graphical methods, there are several other alternatives, such as

LIME by Ribeiro et al. (2016) or SHAP by Lundberg and Lee (Lundberg and Lee). However,

these methods cannot visualize the potential non-linear relationship between features and LGD

estimates. Furthermore, both approaches are known to be problematic if features are correlated

and are in some cases unstable, see, e.g., Alvarez-Melis and Jaakkola (2018); Visani et al. (2022).

Thus, we use ALE plots by Apley and Zhu (2020) as they are well suited for correlated features.

Concerning credit risk, these methods are frequently applied in recent literature. For example,

Bellotti et al. (2021) use ALE plots focusing on workout LGDs. Bastos and Matos (2022) compare

several XAI methods, including ALE plots as well as Shapley values. Similarly, Bussmann et al.

(2020) use SHAP to explain the predictions of the probability of default in fintech markets.

Barbaglia et al. (2021) use ALE Plots to determine the drivers of mortgage probability of defaults

in Europe. In related fields, such as cyber risk management or financial risk management in

general, the application of XAI methods becomes more widespread as well, see, e.g., Giudici

and Raffinetti (2022); Babaei et al. (2022); Bussmann et al. (2021); Giudici and Raffinetti (2021).
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1.4 Results

1.4.1 Learning strategy

We use the deep evidential regression framework for LGD estimation to analyze predictions as

well as aleatoric and epistemic uncertainty. Our data set contains 1,999 observations from 1990

to 2019. To evaluate the neural network on unseen data, which are from different years than the

training data, we split the data such that the observations from 2018 to 2019 are reserved as

out-of-time data. The remaining data from 1990 to 2017 are split randomly into an 80:20 ratio.

A 20% fraction of this data is preserved as out-of-sample data to compare model performance

on unseen data which has the same structure. The 80% fraction of this split is the training

data. This training data is used to train the model and validate the hyperparameters. Next, the

continuous variables of the training data are standardized to adjust the mean of these variables

to zero and the variance to one. This scaling is applied to the out-of-sample as well as the

out-of-time data with the scaling parameter of the training data. The categorical variables are

one hot encoded and one category is dropped. For seniority, Senior Unsecured, and, for the

default type, Chapter 11 is dropped and thus act as reference categories. For the guarantee

variable and Industry type, we use the positive category as reference. The last preprocessing

step includes scaling the LGD values by a factor of 100, such that the LGDs can be interpreted

in percentages and enhance computational stability.

After the preprocessing, hyperparameters for the neural network and the loss function have to

be chosen4. The parameter p of Equation (1.7) is set to 2 to strengthen the effect of the residuals

on the regularization, see, e.g., Meinert et al. (2022). The parameter λ is set to 0.001. The

analysis is also performed with λ = 0.01 and λ = 0.0001, but the differences are negligible. The

most commonly used hyperparameters in a neural network are the learning rate, the number

of layers, and the number of neurons. To avoid overfitting we included dropout layers, with a

dropout rate, which must also be tuned. We use random search to obtain 200 different model

constellations and validate them using 5-fold cross-validation. For the random search, we

assume discrete or continuous distributions for each hyperparameter. Table 1.6 displays the

distributions of the hyperparameters of the neural network. The dropout rate for example is a

decimal number, which is usually in the interval between 0, no regularization, and 0.5, strongest

regularization. Therefore, we use a continuous uniform distribution to draw the dropout rates.

4 Amini et al. (2020) provide a python implementation for their paper at https://github.com/aamini/
evidential-deep-learning.
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Furthermore, 20% of the data from the iterating training folds are used for early stopping to

avoid overfitting. Each of the five iterations is repeated five times, to reduce the effect of random

weight initialization, and averaged. The best model is chosen such that the mean RMSE of the

five hold-out fold of cross-validation is the smallest. To determine the number of neurons we

use an approach similar to Kellner et al. (2022). As baseline neurons, we use (32, 16) with a

maximum of two hidden layers. In this procedure, the multiplier is the factor that scales the

baseline number of neurons.5 As an activation function ReLU is chosen for all hidden units

and the network is optimized via Adam. To ensure that νi , αi , and βi stay within the desired

interval, their output neurons are activated by the softplus function, whereby 1 is added to the

activated neuron of αi .

Table 1.6: Setup and final values of the hyperparameter search

Parameter Distribution Final parameter

Learning rate U c ∼ [0.0001,0.01] 0.0029
Dropout rate U c ∼ [0.0,0.50] 0.4309
Hidden layer Ud ∼ [1,2] 2
Multiple Ud ∼ [1,4] 4

The table shows the ranges for the hyperparameter search. U c corresponds to the continuous uniform distribution, Ud corre-
sponds to the discrete uniform distribution

The constellation of column three (final parameter) in Table 1.6 is used to form the final network.

For that, the network is trained on the training data, 20% of which is used for early stopping.

Afterward the trained network is evaluated on the out-of-sample and on the out-of-time data.

This procedure is repeated 25 times. Table 1.7 provides the average values and summarizes

the evaluation of the different data sets and compares it across different models. Since the loss

function in Equation (1.8) depends on λ and p, changes in those parameters result in a loss of

comparability.

Table 1.7 compares the neural network from the deep evidential framework to a neural network

trained on the mean squared error and to common methods in the literature. These include

the linear regression, the transformed linear regression, the beta regression, and the fractional

response regression, see, e.g., Bellotti et al. (2021); Loterman et al. (2012). For the transformed

linear regression the LGDs are transformed by a logit transformation, which is then used to fit

a linear regression. The predictions of this regression are transformed back to their original

scale using the sigmoid function. Each model is trained on the same training data. For the

neural network trained with mean squared error, the same grid search and cross-validation

5 For example, if we sample a multiplier of 4 in a two hidden layer network, we have (128, 64).
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Table 1.7: Evaluation metrics

Data set Method Evidential Loss RMSE

Training

Evidential neural network 4.1879 0.1813
Neural network - 0.1427
Linear regression - 0.2088
Transformed linear regression - 0.2142
Fractional response regression - 0.2231
Beta regression - 0.2306

Out of Sample

Evidential neural network 4.2574 0.1964
Neural network - 0.1742
Linear regression - 0.2091
Transformed linear regression - 0.2100
Fractional response regression - 0.2183
Beta regression - 0.2328

Out of Time

Evidential neural network 6.1888 0.4241
Neural network - 0.3695
Linear regression - 0.4499
Transformed linear regression - 0.4674
Fractional response regression - 0.4488
Beta regression - 0.3961

For the calculation of the RMSE, the observed LGDs and the predicted LGDs, γ , are rescaled to the original interval from zero to
one by dividing the LGDs by 100 to make the RMSE comparable in the literature. The smallest RMSE per data set is printed in
bold and the second best is underlined.

approach with early stopping is used6. Since the evidential neural network is the only model

with the marginal likelihood as an objective function the evidential loss can only be computed

for this model. To compare the evidential neural network with different models, we evaluated

the models using the root mean squared error. Note that for computing the root mean squared

error only one parameter, γ , is needed since this parameter represents the prediction in terms

of the LGD. From Table 1.7, we can see that the neural networks perform best on the training

and the out-of-sample data. For the out-of-time data, the beta regression scores second best after

the neural network trained with mean squared error, but the difference to the evidential neural

networks is on the third digit.

6 The final parameters of the neural network trained with a mean squared error are very similar in terms of dropout
rate (0.4397) and identical for the multiple and the number of hidden layers. The final learning rate (0.0004) is
lower than that of the evidential neural network.
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1.4.2 Aleatoric and epistemic uncertainty in predictions

The deep evidential regression framework allows us to directly calculate the aleatoric and

epistemic uncertainty for every prediction of our neural network. Figure 1.2 shows both types

for our estimation sample. The x-axis shows the observation number for the predictions sorted

in ascending order. The ordered LGDs are on the y-axis. The dark gray band around the ordered

prediction is calculated by adding/subtracting the values of Equations (1.9) and (1.10) on our

predictions. The light gray band is obtained by adding/subtracting two times the value of these

equations. In the following, we call this “applying one or two standard errors of uncertainty”

onto our predictions. The gray dots show the actual observed, i.e., true LGD realizations.

Figure 1.2: Uncertainty estimation in sample

(a) Aleatoric uncertainty (b) Epistemic uncertainty

Comparing the two plots of Figure 1.2, we observe that the aleatoric uncertainty covers a

much larger range around our predictions than the epistemic uncertainty. Almost all true LGD

realizations lie within the two standard errors of aleatoric uncertainty. Hence, the irreducible

error or data uncertainty has the largest share of the total uncertainty. Recall that market-

based LGDs are based on market expectations as they are calculated as 1 minus the traded

market price 30 days after default. Therefore, the variation of the data also depends on market

expectations which are notoriously difficult to estimate and to a large extent not predictable.

Thus, it is reasonable that the aleatoric uncertainty is the main driver of the overall uncertainty.

In contrast, the epistemic uncertainty, i.e., the model uncertainty, is considerably lower. This

may be attributed to our database. This article covers nearly three decades including several

recessions and upturns. Hence, we cover LGDs in many different points of the business cycle

and across many industries and default reasons. Therefore, the data might be representative

for the data generating process of market-based LGDs. Hence, the uncertainty due to limited

sample size is relatively small in our application.

As we model all parameters of the evidential distribution dependent on the input features,
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we can also predict uncertainty for predictions in out-of-sample and out-of-time samples.

Comparing Figures 1.2, 1.3 one might have expected that the epistemic uncertainty is increasing

due to the lower sample size and the usage of unseen data. However, the functional relation of

the epistemic uncertainty is calibrated on the estimation sample and transferred via prediction

onto the out-of-sample data. Hence, if the feature values do not differ dramatically, the predicted

uncertainty is similar. Only if we observe new realizations of our features in unexpected

(untrained) value ranges, the uncertainty prediction should deviate strongly. Thus, we may use

the prediction of the uncertainty also as a qualitative check of structural changes.

Figure 1.3: Uncertainty estimation out-of-sample

(a) Aleatoric uncertainty (b) Epistemic uncertainty

Figure 1.4: Uncertainty estimation - out-of-time

(a) Aleatoric uncertainty (b) Epistemic uncertainty

Structural changes in LGD estimation are primarily due to changes over time. This is one

reason why some researchers argue to validate forecasting methods especially on out-of-time

data sets, see, e.g., Kalotay and Altman (2017); Olson et al. (2021). In our application, there is

no qualitative sign of structural breaks via diverging uncertainty estimates in 2018 and 2019.

Comparing Figure 1.4 with the former two, we observe a similar pattern. This might have been

expected as the out-of-time-period is not known for specific crises or special circumstances.

Comparing the course of the epistemic uncertainty in all three figures, we observe that the
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uncertainty bands become smaller as the predicted LGD values increase. This implies that the

neural network becomes more confident in predicting larger LGDs. Comparing this course with

the histogram in Figure 1.1, one explanation for that might be the considerably larger sample

size on the right-hand side. As we observe larger LGDs in our sample, the epistemic uncertainty

in this area decreases.

1.4.3 Explaining LGD predictions

In this subsection, we take a deep dive into the drivers of the mean LGD predictions. As

outlined in Section 1.3, we use ALE Plots to visualize the impact of our continuous features. We

choose K = 10 buckets for all ALE plots. Overall we have three different sets of drivers. The

first one consists of bond specific variables, subsequently we investigate drivers that reflect

the overall macroeconomic developments and finally we follow Gambetti et al. (2019) and

include uncertainty-related variables. Evaluating the feature effects is important to validate

that the inner mechanics of the uncertainty-aware neural network coincide with the economic

intuitions. This is of major concern if financial institutions are tempted to use this framework

for their capital requirement calculation. The requirement of explaining employed models is

documented in many publications of regulatory authorities, see, e.g., Bank of Canada (2018);

Bank of England (2019); Basel Committee on Banking Supervision (2019); Deutsche Bundesbank

(2020).

Figure 1.5: Bond-related drivers

(a) Coupon rate (b) Maturity

Figure 1.5 shows the feature effect of bond-related drivers. The feature value range including a

rugplot to visualize the distribution of the feature is shown on the x-axis. The effect of the driver

on the LGD prediction is shown on the y-axis. We observe on the left-hand side of Figure 1.5,

a negative effect of the coupon rate up to a value of roughly 8%. This negative relation seems
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plausible as higher coupon rates may also imply higher reflows during the resolution of the

bond and, thus decreases the Loss Given Default. The relation starts to become positive after

8%, which may be explained by the fact that a higher coupon rate also implies higher risk and,

thus the potential reflow becomes more uncertain. Maturity has an almost linear and positive

relation with the predicted LGD values. In general, the increase in LGD with longer maturity

is explained by sell-side pressure from institutional investors which usually hold bonds with

a longer maturity, see, e.g., Jankowitsch et al. (2014). These relations were also confirmed by

Gambetti et al. (2019), who find that bond-related variables have a significant impact on the

mean market-based LGD.

Figure 1.6: Macroeconomy-related drivers

(a) Default rate (b) S&P 500 return

With regard to features that describe the macroeconomic surrounding, Figure 1.6 shows their

effect on the LGD prediction. The default rate is one of the best-known drivers of market-based

LGDs and is used in various studies, see, e.g., Kalotay and Altman (2017); Gambetti et al. (2019);

Nazemi et al. (2021, 2018). The increasing course reflects the observation that LGDs tend to be

higher in recession and crisis periods than in normal periods. This empirical fact also paves

the way for generating so-called downturn estimates which should reflect this crisis behavior.

These downturn estimates are also included in the calculation of the capital requirements for

financial institutions, see, e.g., Calabrese (2014); Betz et al. (2018) or for downturn estimates of

EAD see Betz et al. (2022). Similarly, we observe a negative relation of predicted LGDs and S&P

500 returns, implying that LGDs increase if the returns become negative. Interestingly, positive

returns have little impact on LGD predictions, which again, reinforces the downturn character

of LGDs.

Consistent with Gambetti et al. (2019), who were the first to document the importance of

uncertainty-related variables in the estimation of LGDs, we include two frequently used drivers

as well, shown in Figure 1.7. Financial uncertainty proposed by Jurado et al. (2015) and the
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Figure 1.7: Uncertainty-related drivers

(a) Financial uncertainty (b) News-based EPU

News-based EPU index by Baker et al. (2016), which cover uncertainty based on fundamental

financial values and news articles. Both show a rather flat course from the low to mid of their

feature value range. However, there is a clear positive impact on LGDs when the uncertainty

indices reach high levels. Again, this reinforces the crisis behavior of market-based LGDs. The

importance of uncertainty-related variables is also confirmed by Sopitpongstorn et al. (2021)

who find a significant impact as well. In a similar sense, Nazemi et al. (2021) use news text-based

measures for predicting market-based LGDs and underlining their importance. To summarize,

recent literature suggests that uncertainty-related variables should be used to include all kinds

of expectations of the economics surrounding the model framework.

1.5 Conclusion

Uncertainty estimation has become an active research domain in statistics and machine learning.

However, there is a lack of quantification of uncertainty when applying machine learning to

credit risk. This article investigates a recently published approach called Deep Evidential

Regression by Amini et al. (2020) and its extension by Meinert et al. (2022). This uncertainty

framework has several advantages. First, it is easy to implement as one only has to change

the loss function of the (deep) neural network and sightly adjust the output layer. Second,

the predicted parameters of the adjusted network can easily be turned into mean prediction,

aleatoric uncertainty, and epistemic uncertainty predictions. There are virtually no additional

computational burdens to calculate predictions and their accompanying uncertainty. Third,

the overall computational expense is much lower compared to approaches like Bayesian neural

networks, ensemble methods, and bootstrapping. Furthermore, deep evidential regression

belongs to a small class of frameworks which allow a direct, analytical disentangling of aleatoric
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and epistemic uncertainty. With these advantages, this framework may also be suitable for

applications in financial institutions to accompany the usage of explainable artificial intelligence

methods with quantification of aleatoric and epistemic uncertainty. Moreover, it is possible to

include other variables, such as firm-specific financial risk factors, or to focus on non-listed

companies. Further applications may also include the prediction of risk premiums in other asset

pricing or forecasting the sale prices of real estate. Moreover, in other areas where predictions

are critical such as health care, the quantification of prediction uncertainty may allow a broader

application of machine learning methods.

This article uses almost 30 years of bond data to investigate the suitability of deep evidential

regression on the challenging task of estimating market-based LGDs. The performance of the

uncertainty-aware neural network is comparable to earlier literature and, thus, we do not see

a large trade-off between accuracy and uncertainty quantification. This paper documents a

novel finding regarding the ratio of aleatoric and epistemic uncertainty. Our results suggest that

aleatoric uncertainty is the main driver of the overall uncertainty in LGD estimation. As this type

is commonly known as the irreducible error, this gives rise to the conjecture that LGD estimation

is notoriously difficult due to the high amount of data uncertainty. On the other hand, epistemic

uncertainty that can be reduced or even set to zero with enough data plays only a minor role.

Hence, the advantage of more complex and advanced methods, like machine learning, may be

limited. However, this may not hold for all LGD data sets or if we look at different parts or

parameters of the distribution other than the mean. Therefore, we do not argue that our results

should be generalized to all aspects of LGDs, but are the first important steps to investigating

the relation of aleatoric and epistemic uncertainty. Overall, understanding the determinants of

both uncertainties can be key to getting a deeper understanding of the underlying process of

market-based LGDs and, thus is certainly a fruitful path of future research.
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shape of the loss rate distribution entails a large amount of non-linearity and, thus, our approach

consistently outperforms its linear counterpart. Furthermore, we derive trainable activation

functions to allow a data-driven estimation of their shape. This is important if predictions

have to be in a certain interval, e.g., (0,1) or (0,∞). Conducting a scenario analysis, we observe

that our estimated distributions are more refined compared to traditional models, thereby

demonstrating their suitability for risk management purposes. These estimated distributions

can assist financial institutions in better identifying diverse risk profiles among their creditors

and across various macroeconomic states.
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2.1 Introduction

The current economic climate is characterized by different challenges. Financial markets have

experienced significant turmoils recently due to global economic uncertainty, geopolitical

tensions, fluctuations in currency exchange rates and a different interest rate environment. The

European Banking Authority (2022) states that these factors also impact financial institutions

due to increased funding costs for banks and an overall asset quality deterioration. These

circumstances put banks’ internal risk management again into the focus of regulators and

politics. The largest share of risk a bank faces is determined by its credit risk. Following the latest

data, credit risk accounts for 83.3% of risk-weighted assets of 131 major EU banks as of June 2022,

underlining its importance (European Banking Authority, 2022). The expected loss (EL) of credit

risk related assets can be split into three components. Probability of Default (PD) quantifies

the probability that a obligor will not meet his agreed obligations. Exposure at Default (EAD)

defines the amount of outstanding obligations. Finally, Loss Given Default (LGD) refers to the

percentage share of outstanding debt that is lost, given the obligor defaults. This paper focuses

on so-called market-based LGDs, which are relevant for publicly traded instruments such as

bonds. They are defined as one minus the ratio of the market price 30 days after default over the

outstanding amount. Especially market-based LGDs entail challenging characteristics such as

bounded support, skewed distribution, and heteroskedasticity (Gambetti et al., 2019). Moreover,

the estimation of market-based LGDs has also macro-economic implications. According to

SIFMA Research (2022) the US corporate bond market has a volume of 10 trillion USD and

therefore the estimation of the LGDs can be essential for the financial stability of the economy.

The Basel Accord allows banks to use their own models to provide estimates for LGDs as well as

the other components of the expected loss (Basel Committee on Banking Supervision, 2017).

Therefore, academia aims at providing guidance on how to estimate LGDs and which methods

to use, see, e.g., Altman and Kalotay (2014); Kalotay and Altman (2017); Bellotti et al. (2021);

Kellner et al. (2022) or Gürtler and Zöllner (2023).

In this paper we utilize market-based LGDs sourced from Moody’s Default and Recovery

Database spanning from January 1990 to March 2021. This dataset stands out as the most

comprehensive when focusing on market-based LGDs. It comprises a range of LGD-specific

variables, including seniority, industry sector, and default type, among other pertinent informa-

tion. Additionally, we extend this dataset by incorporating commonly used macroeconomic and

uncertainty-related variables described in the literature. Past literature uses classical statistical
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models, such as fractional response regression, to predict LGDs using this data, see, e.g., Bastos

(2010). These methods commonly focus only on the mean LGD predictions, neglecting the

challenging characteristics of LGD distributions. Furthermore, most recent literature reinforces

the evidence of non-linearity of drivers for mean market-based LGD estimates using machine

learning models, see, e.g., Bastos and Matos (2022); Olson et al. (2021); Bellotti et al. (2021) or

Sopitpongstorn et al. (2021). Most of these methods have in common that only the conditional

mean is estimated. Although machine learning models increase the flexibility of the modelling

framework and are capable of incorporating some distributional aspects, none of the studies

explicitly account for these aspects nor investigate their drivers and potential impact.

Making decisions based only on one location parameter, e.g., by using standard machine learning

algorithms, may not be holistic in the sense that further distributional characteristics carry

important information. For example the dispersion can enhance the understanding of the

underlying mechanics between drivers and the whole distribution and be supportive of the

managerial decision process. However, they are frequently neglected in the literature.1 For

example, different parts of the distribution can be interpreted as scenarios for banks and risk

managers. In that sense, lower quantiles of the distribution can be interpreted as good scenarios

for banks, i.e., a low loss realization. On the contrary, higher quantiles imply higher losses.

Hence, risk managers can conduct a scenario analysis to investigate how their loan portfolios

face losses in adverse, normal, and good scenarios based on the individual loss distribution of

their obligors. This enables managers also to reveal different risk profiles among obligors based

on their individual distribution. As future realizations are unknown, comparing (predicted)

quantiles can provide risk managers with a good indication of how likely low and high LGD

realizations can realize and how individual obligors compare to each other. Against this

background, we suggest jointly modeling mean and precision, i.e., a dispersion parameter, to

allow for varying shapes of the distribution. This paper doesn’t aim for a competitive horse race

of various methods but contributes by proposing a novel method for explaining market-based

LGDs. It focuses on understanding the factors influencing LGDs mean and precision, an area

that has been underexplored so far. Rather than predicting future mean LGDs, it uncovers

hidden relationships in the LGD distribution, aiding scenario analysis and deriving implications.

Thus, it is designed as a non-parametric tool for exploring these connections.

We contribute to the literature in four important ways. First, we combine beta regression by

1 There are studies which include distributional characteristics of LGD into their modeling strategy, see, e.g.
Calabrese (2014); Altman and Kalotay (2014); Kalotay and Altman (2017); Krüger and Rösch (2017); Betz et al.
(2018); Hwang and Chu (2018); Hwang et al. (2020) or Kellner et al. (2022). However, they do not explicitly model
the drivers of different parameters of the LGD distribution.
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Ferrari and Cribari-Neto (2004) and its extension by Smithson and Verkuilen (2006) and Simas

et al. (2010) with artificial neural networks. This contributes to the literature on market-based

LGDs, as the combination is the first to allow non-linearity in the mean and precision of the

LGD distribution. It extends the work of Gambetti et al. (2019) as we detect a large amount of

non-linearity especially in the shape of the distribution. Furthermore, our combination achieves

a substantially better performance in and out-of-sample compared to its linear counterpart.

Hence, non-linearity plays an important role for the mean and precision of the loss rates.

Second, we use Accumulated Local Effects (ALE) plots by Apley and Zhu (2020) to unveil

the non-linear relationships in mean and precision. Furthermore, we quantify the amount of

non-linearity in the mean and precision estimation according to Apley and Zhu (2020) and

Nagl (2023). To the best of our knowledge, this paper is the first to incorporate, visualize and

quantify non-linearity in the precision of market-based loss rates.

Third, we derive trainable activation functions similar to He et al. (2015) to increase the ro-

bustness of predictions, especially for unseen data. The trainable activation function offers the

neural network a data-driven way of estimating the shape of final predictions, which is new

to the finance and credit risk literature. In general, this contribution is not restricted to our

discipline but may be beneficial for any other field of research where bounded outputs play an

important role, e.g., demand or sales forecasting.

Fourth, we find the that accounting for non-linearity and interactions the modeled distribu-

tions differ compared to the beta regression such that they can be better distinguished. This

enables risk managers and regulators to better quantify the individual risk of obligors in a

straightforward and interpretable way.

The remainder of this paper is structured as follows. In Section 2.2, we give a summary of the

relevant literature of LGD estimation. Data is presented in Section 2.3, while the methodology

is described in Section 2.4. Our empirical results are discussed in Section 2.5 and Section 2.6

concludes.

2.2 Literature review

Concerning the special characteristics of LGD distributions, mainly advanced statistical methods

are applied. These include for example beta regression, mixture regression, and factorial

regression among many others, see, e.g., Gambetti et al. (2019) or Sopitpongstorn et al. (2021)

as recent examples. Due to the increased computational power and progress in academia,
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machine learning models become more and more apparent. They were used by academics

at the beginning, but become increasingly applied by practitioners and heavily discussed by

regulators. However, the vast majority of these studies focus only on mean estimates of LGDs,

see Bastos and Matos (2022); Kellner et al. (2022) or Gürtler and Zöllner (2023) for a recent

overview. Nagl et al. (2022) focus on the uncertainty quantification of machine learning models

for market-based LGDs and finds that the aleatoric uncertainty, i.e., uncertainty in the data itself,

is more significant than epistemic uncertainty, i.e., uncertainty due to a limited sample size. This

study emphasises the importance of estimating LGD distributions instead of just point estimates.

Focussing on the distribution of LGDs is not entirely new to the literature. Closely related to

our paper is Gambetti et al. (2019) who use a linear generalized beta regression to model the

distribution of market-based LGDs. However, they do not consider non-linearity in mean or

precision in their model. Furthermore, related to the contributions of our paper are Krüger

and Rösch (2017) and Kellner et al. (2022). They both estimate quantile regression or machine

learning-based extensions thereof, focusing on workout LGDs. They emphasize the importance

of accounting for distributional aspects in these LGDs. Their approaches require a sizable

dataset to reliably estimate multiple quantiles to describe a full distribution. Furthermore, some

papers use classical statistical models, such as mixture models for LGDs. Altman and Kalotay

(2014), Calabrese (2014), Kalotay and Altman (2017), and Betz et al. (2018) utilize these mixture

models, consisting of a combination of different distributions, to disaggregate the estimation of a

full conditional distribution into subparts. However, with an increasing number of components,

these models become less interpretable, and the drivers of LGDs are linearly connected to the

components, reducing flexibility. A novel approach proposed by Gürtler and Zöllner (2023)

suggests that the modality type of workout LGDs is crucial in determining the best estimation

method. Using cluster analysis, they identify three clusters/modality types suitable for their

sample. While this approach outperforms traditional models, it requires a sizable dataset, as

the entire dataset is divided into clusters, resulting in less data to fit various models. Overall,

the methods proposed to account for distributional aspects necessitate a considerable dataset

size, making them especially useful for workout LGDs, where data is typically much larger

compared to market-based LGDs as used in our paper.

Recent literature on LGD estimation has seen significant growth, particularly with the widespread

application of machine learning models. However, several gaps remain. Firstly, while many

studies concentrate on mean LGD predictions, they often overlook distributional characteristics,

including aleatoric uncertainty, identified as a primary source of uncertainty in LGD estimation

by Nagl et al. (2022). Moreover, approaches addressing distributional aspects are typically only
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viable for large datasets, such as workout LGDs, rather than market-based LGDs. Hence, this

paper aims to bridge this gap by synthesizing existing evidence and proposing a suitable method

for market-based LGDs. Secondly, there is a notable absence of studies focusing on potential

non-linearity in the shape of LGD distributions. Such non-linearities could significantly impact

scenario analysis by allowing for different distributional shapes across categories.

2.3 Data

We use bond loss given defaults from Moody’s Default and Recovery Database (Moody’s DRD).

The examined data contain 2,315 market-based LGDs and related bond characteristics ranging

from January 1990 until March 2021. Finding suitable drivers of market-based LGD’s mean

and precision is a challenging task. Gambetti et al. (2019) synthesizes the evidence of the

literature on important predictor variables. We follow Gambetti et al. (2019) and use the

same features as a starting point. The variables can be divided into three subgroups, bond

characteristics, macroeconomic, and uncertainty related determinants. The bond specific

characteristics are coupon rate, maturity, the seniority of the bond as well as the issuer’s

industrial sector. Furthermore, we include the severity of the default type, the defaulted amount

and a dummy variable which indicates whether the bond is backed by guarantees. We use several

macroeconomic related variables. These include the industrial production returns computed

monthly, the S&P 500 returns2 as well as the recession indicator3 provided by the National

Bureau of Economic Research. Furthermore, delinquency rates in commercial and industrial

loans4 are included quarterly. Following Gambetti et al. (2019), we gather the American default

rates from Moody’s database and control for withdrawal effects by using the number of defaults

registered in a given month divided by the number of firms followed in the same period. We

include both rates because delinquency is commonly used if a borrower misses a single payment.

Default is usually triggered when a borrower fails to keep up with the loan repayments agreed

upon or in some other way fails to fulfill the terms of the loan. Hence, both indices focus

on financial distress, but vary in degree and time dimensionality. The third set of variables

reflects different types of uncertainty. This may be of particular interest when the focus is on

the uncertainty around the estimated means, modeled via their precision. Therefore, we include

the VIX5, as a proxy for the uncertainty in the stock market. To reflect financial uncertainty

2 https://fred.stlouisfed.org/series/SP500
3 https://fred.stlouisfed.org/series/USREC
4 https://fred.stlouisfed.org/series/DRALACBS
5 https://fred.stlouisfed.org/series/VIXCLS
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the financial uncertainty index6 derived by Jurado et al. (2015) and Ludvigson et al. (2021) is

added. Furthermore, we take the policy uncertainty into account by extending the data set with

the news-based economic policy uncertainty7 provided by Baker et al. (2016). The last two

uncertainty measures are uncertainty based on forecast dispersion of the consumer price index8

to reflect the inflation and the expenditures of federal and state/local purchases9. Those rely on

the dispersion of forecasts computed from the Federal Reserve Bank of Philadelphia’s Survey of

Professional Forecasters. For further details on the variables, we refer to Gambetti et al. (2019).

Similar to Olson et al. (2021) all macroeconomic variables and uncertainty indices are lagged by

one quarter to ensure predictive properties.
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Figure 2.1: Histogram of LGDs

Similar to Görgen et al. (2022) Figure 2.1 shows the slightly negatively skewed bimodal dis-

tribution of the realized market-based LGDs in our sample. The average LGD is 61.40%. The

lowest LGD is only half a percent, while the highest one is close to 100%. Overall, we recover

the stylized empirical features of bond-related LGDs such as bounded support and skewed

distribution.

Taking a closer look at the correlations of the uncertainty measures in Table 2.1, one can observe

that the highest correlation is between VIX and financial uncertainty with a value of 76.64%.

The other correlations are moderate to low.

6 https://www.sydneyludvigson.com/macro-and-financial-uncertainty-indexes
7 http://www.policyuncertainty.com/global_monthly.html
8 https://www.philadelphiafed.org/surveys-and-data/real-time-data-research/

dispersion-forecasts
9 https://www.philadelphiafed.org/surveys-and-data/rfedgov
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Table 2.1: Upper triangle of the correlation matrix of uncertainty features in percentages

VIX Fin. unc. News-based EPU CPI unc. F.S.L. exp. unc.

VIX 100.00 76.64 40.14 41.24 12.34

Fin. unc. 100.00 27.17 47.54 -8.59

News-based EPU 100.00 29.48 -0.79

CPI unc. 100.00 7.62

F.S.L. exp. unc. 100.00

Notes: All displayed values are expressed as percentages.

As this database is often used for investigating market-based LGDs, different periods are

frequently used in the literature, see, e.g. Altman and Kalotay (2014); Kalotay and Altman

(2017); Hwang and Chu (2018); Gambetti et al. (2019); Hwang et al. (2020); Sopitpongstorn

et al. (2021) just to name a few.10 Therefore, stylized facts such as the LGD increasing for lower

seniority and differences for average LGDs across industries are well known. Hence, we move

the discussion of these facts to Appendix 2.A. Table 2.A.1 displays an overview of summarizing

statistics for the total dataset. Tables 2.A.2, 2.A.3 and 2.A.4 give an overview of the descriptive

statistics according to the seniority, industry sector and the default type.

2.4 Methods

The distribution of LGDs ranges from 0 to 1 and can be skewed and multimodal. As a starting

point, we rely on the beta regression because of its flexibility and the fact that the distribu-

tional assumption matches the range of the LGDs. We use the alternative definition with two

parameters 0 < µ < 1 and φ > 0 to model the LGD, Y , with support 0 < Y < 1. µ corresponds to

the mean of Y , whereas φ is the precision parameter. Following Ferrari and Cribari-Neto (2004)

the density of the beta distribution is:

f (y;µ,φ) =
Γ (φ)

Γ (µφ) · Γ ((1−µ)φ)
· yµφ−1 · (1− y)(1−µ)φ−1, (2.1)

where Γ (.) denotes the Gamma function. The parameters µ and φ can be linked to the first two

10 The actual number of observation varies between these studies as they do not use the same set of bond characteris-
tics. For example, Hwang and Chu (2018); Hwang et al. (2020) and Sopitpongstorn et al. (2021) report a higher
number of observations by not considering the coupon rate, contrary to Gambetti et al. (2019) and our approach.
However, the stylized descriptive facts remain comparable.
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central moments of Y by:

E(Y ) = µ (2.2)

V ar(Y ) =
µ(1−µ)

1 +φ
(2.3)

By Equation (2.3) we see, that for a fixed µ the variance decreases in φ. Especially the extension

to a generalized form, where the precision φ can be modeled as a dependent variable in addition

to the mean µ, is useful to analyze LGD uncertainty. To model the density in Equation (2.1) one

can formulate a regression model called the beta regression as stated by Ferrari and Cribari-Neto

(2004); Smithson and Verkuilen (2006); Simas et al. (2010). In this regression model, the input

variables are weighted by their regression coefficients and transformed to match the desired

support of µ and φ. Usually for µ the logistic and for φ the exponential function is used. The

regression coefficients are estimated by maximum likelihood optimization. In this approach,

µ and φ are modeled as a function of the explanatory variables. We maximize the sum of the

log-likelihood over N bonds of Equation (2.1), where yi represents the LGD of the i-th of N

bonds11:

LL(y1, ..., yN ;µ1, ...,µN ,φ1, ...,φN ) =
N∑
i=1

(log(Γ (φi))− log (Γ (µiφi))− log (Γ (1−µi)φi)+

(µiφi − 1)yi + ((1−µi)φi − 1)(1− yi) .

(2.4)

Despite the flexibility of the beta regression, it is limited in that the relationships between

the predictors and the dependent variable have to be specified beforehand. To resolve this

restriction we propose the Beta Regression Artificial Neural Network (BRANN) and its extension,

the Generalized Beta Regression Artificial Neural Network (G-BRANN).

Modeling approaches of beta regression neural networks

The potential modeling approaches to connect neural networks with the beta regression can

be divided into three cases. First, if the input variables are the same for both outputs, µ and

φ, a vanilla feed-forward neural network with two output neurons can be used12. This allows

interactions of the input variables between µ and φ. Hence, one would assume, that µ and φ can

be explained by the exact same variables, which can interact with each other. Second, this can

be relaxed by using skip connections, see, e.g., He et al. (2016). Hence, the input variables of one

11 Because some of the explanatory variables are bond-specific for each observation i, i=1,...,N, we also subscript µi
and φi in the log-likelihood.

12 For sparsity of notation, we skip subscripts for µ and φ here.
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parameter are a subset of the other and one would assume that µ and φ are driven by the same

dynamics. Third, the input variables for the two parameters can be different and do not need

to share any input variables. So each parameter can be modeled by a separate neural network,

a µ-sub-network and a φ-sub-network, and then merged together. This is the most flexible

approach, and, thus, we follow this path. In BRANN, which is based on a beta regression, φ is

modeled as a constant. So the φ -sub-network can be represented by a neural network with a

constant as input and no hidden layers. Similar to the beta regression, φ has to be a positive

value, thus, we impose a transformation ζ(.) which is the exponential function following Ferrari

and Cribari-Neto (2004).

BRANN

The µ-sub-network can consist of L layers, l = 1, ...,L with Kl neurons each. The first layer is

called the input layer. This layer takes the input matrix X ∈ RN×p, which typically consists

of N observations with p exogenous features, and feeds every observation into the network.

Each layer l takes as input the output of the previous layer ol−1 ∈ RKl−1×1 and weights it by

multiplying it with a weights matrix Wl ∈ RKl×Kl−1 and adding a bias vector bl ∈ RKl×1. The

weighted output of the previous layer is activated by a non-linear activation function ψ(.)

ol = ψ(Wlol−1 + bl) (2.5)

This produces the output ol of the current layer l. For the last layer L the weighted output of the

previous layer is activated by a function ι(.). Since the desired range for µ is between 0 and 1,

the logistic function is chosen for ι(.) to ensure the output of the µ-sub-network, oµ, stays in the

desired interval from 0 to 1.

oµ = ι(oL) =
1

1 + e−oL
≡ µ̂BRANN (2.6)

Since the φ parameter of BRANN is modeled as a constant, the φ-sub-network in BRANN can

be formalized as follows:

oφ = ζ(r) = ewφr+bφ ≡ φ̂BRANN (2.7)

with r ∈ R as the constant input, usually r = 1, wφ ∈ R and bφ ∈ R are weight and bias for r. In a

final step oµ and oφ are merged to get predictions of µ and φ.
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G-BRANN

For G-BRANN we use the same procedure as for BRANN, but increase the flexibility in the

φ-sub-network by allowing multiple input variables, that can differ from the input variables

of the µ-sub-network. Hence, we allow our model to incorporate non-linearity, which can be

different in the µ- and the φ-sub-network. Since the µ-sub-network is the same as in Equation

(2.6), only the φ-sub-network changes to a network with Z layers where z = 1, ...,Z.

oz = ψ(Wzoz−1 + bz) (2.8)

oφ = ζ(oZ ) ≡ φ̂G−BRANN (2.9)

Trainable activation functions

Outliers can impact the optimization tremendously and cause problems in the whole estimation

process. This is especially true for the φ-part and out-of-sample predictions. The usual link

function for the φ-part of the generalized beta regression is the exponential function to ensure

positivity of φ̂, but this link function can be too steep or too flat. Because we do not know the

best suiting link function, we choose a data-driven approach and give G-BRANN the flexibility

to learn the last activation function for φ from the data. We introduce three trainable activation

functions in the spirit of the Parametric Rectified Linear Unit by He et al. (2015). Hence, the

last activation function for φ, labeled as ζ(.), differs for G-BRANN. The first one, the trainable

exponential function (t-exp), can be modeled in terms of the exponential function, with the

addition that the steepness of the curve is defined by the parameter a. This trainable parameter

makes it possible for the G-BRANN to determine how steep the function should be in a data-

driven fashion. If a is equal to Euler’s number, the function results in the original link function.

The trainable exponential function with a as the trainable parameter can be calculated as

follows:

ζ(oZ ) = eoZ ·log(a) = aoZ (2.10)

The second function, trainable softplus (t-soft), is based on the softplus function with a steepness

parameter q. Analogous to the first function, the network can learn how steep the activation

function should be. The trainable softplus function with q as a trainable steepness parameter

can be represented as:

ζ(oZ ) =
log(1 + eq·oZ )

q
(2.11)
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The last activation function is called the trainable sigmoid function (t-sig), which is an extension

of the adjustable generalized sigmoid, as described in Apicella et al. (2021), as we introduce an

additional shifting parameter c. The sigmoid is bounded on the open interval from zero to one.

Because the φ parameter of a beta distribution can be any positive number a few adaptions have

to be made. A multiplicative constant h can be used to stretch the sigmoid function to the open

interval from zero to h, which can be any positive number. A common problem of the sigmoid

function is saturation. To resolve that, we introduce two additional trainable parameters. The

parameter s is the steepness parameter of the sigmoid function. For decreasing negative s the

sigmoid function tends toward a step function. The last parameter c is the shifting parameter.

This can be helpful if the output of the function tends towards the lower bound. Since zero is

the lower bound of the sigmoid function and the φ of a beta regression, the log-likelihood can

explode for very low φ.

The trainable logistic function with h, s, and c as height, scale, and shift parameters are defined

as:

ζ(oZ ) =
h

1 + es·oZ
+ c (2.12)

Graphical illustrations of the activation functions can be found in Figures 2.B.1, 2.B.2 and 2.B.3

in Appendix 2.B. Table 2.2 summarizes the proposed activation functions.

Table 2.2: Trainable activation functions

Function Formula Parameters

Trainable exponential function ζ(oZ ) = eoZ ·log(a) = aoZ a: Steepness parameter

Trainable softplus function ζ(oZ ) = log(1+eq·oZ )
q q: Steepness parameter

Trainable logistic function ζ(oZ ) = h
1+es·oZ + c

h: Height parameter

s: Scale parameter

c: Shift parameter

Notes: This table illustrates the different definitions of the novel trainable activation functions. Each of the parameters is trained

during the model fit and can be estimated data-driven.
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Figure 2.2: Graphical illustration BRANN and G-BRANN

Notes: This figure illustrates a stylized network structure of BRANN and G-BRANN. The advantage of these structures is that we

can allow different input variables for each of the distributional parameters of the beta distribution.

A simple graphical illustration of BRANN and G-BRANN with an arbitrary number of hidden

layers is provided in Figure 2.2. In this example we take the variables {x1,x2,x3,x4} as input

variables for modeling the µ-sub-network. Each input is weighted and non-linearly transformed

in the hidden layers. The φ-sub-network gets the constant input r, which usually has the

value r = 1 as the sub-network models φ by weighting the constant without a non-linear

transformation. This results in a constant φ for every observation. G-BRANN can consist of

the same µ-part, but this is not mandatory. The φ-part shares the input variable x3 with the µ-

sub-network, but has additional variables x5 and x7. These input variables are also non-linearly

transformed in the hidden layers. The objective function for both network types is the same as

for the beta regressions, defined in Equation (2.4). For stability reasons, we minimize the mean

of the negative log-likelihood instead of the sum, so the gradients do not tend to explode. For

every market-based LGD i, we model individual values of µ̂i and φ̂i . For BRANN and the linear

beta regression, φ̂i is constant for all observations.

Accumulated Local Effects plots

As BRANN and G-BRANN rely on neural networks, they are black-box by nature. However, the

body of literature focusing on explanation methods has grown fast. Bastos and Matos (2022)

provide a comprehensive overview of recent XAI techniques for credit risk. They show that

financial institutions can use these techniques to (probably) comply with regulatory concerns
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of recovery rate predictions. Similar conclusions are drawn by Kellner et al. (2022). We use

Accumulated Local Effect (ALE) Plots by Apley and Zhu (2020) to analyze BRANN and G-

BRANN. This method is a common choice for visualizing feature effects in credit risk. One

example is Bellotti et al. (2021), who use ALE plots on workout LGDs or Barbaglia et al. (2023)

also using ALE Plots to analyze the drivers of probability of defaults of European mortgage.

Multiple XAI methods, including ALE plots as well as Shapley values, are compared by Bastos

and Matos (2022).

To compute the ALE plots, we first divide the range Z of one specific predictor Xj ∈ RN×1,

where j = 1, . . . ,p, into a grid with k ∈ [0,1, . . . ,K], where K is the number of total bins. Following

Apley and Zhu (2020), Zk is chosen as the k
K quantile of the empirical distribution of Xj , where

Z0 is the minimum and ZK is the maximum. Let Sk define a set of observations that lies between

the boundaries Zk−1 and Zk. Furthermore, nk denotes the number of observations in Sk, and

k(Xj ) is an index that indicates in which bin a given value of Xj falls. The (uncentered) ALE can

then be written as:

gALE(Xj ) =
k(Xj )∑
k=1

nk
−1

∑
i∈Sk

[
f (Zk ,X\j,i)− f (Zk−1,X\j,i)

]
. (2.13)

X\j ∈ RN×p−1 defines the set of variables without the variable j and f (.) denotes the neural

network’s predictor before the final transformation. For each observation i we obtain a prediction

assuming Xj to be the upper and lower limit of the interval, i.e., Zk−1 and Zk , and calculate its

difference. These differences are summed over all observations in the bin and weighted by the

number of observations in that bin, nk , to obtain the (uncentered) local effect of Xj . Finally, we

accumulate these weighted summed differences up to a given value of Xj using the outer sum.

This result is centered such that the mean effect of Xj is zero:

ΘALE(Xj ) = gALE(Xj )−N−1
N∑
i=1

gALE(Xj,i) (2.14)

The ALE plots have many advantages. Among other things, they are fast to compute and

unbiased. Therefore, they can be used even if features are correlated in contrast to many other

XAI techniques, such as partial dependence plots, see Apley and Zhu (2020). ALE plots are

centered so that the mean effect of the features is zero. Therefore, the y-axis of the ALE can be

interpreted as the main effect of the independent variable at a certain point in comparison to

the average predicted value. Furthermore ALE plots provide a R2-like measure, which describes

up to which degree the prediction can be explained by main order, second order, etc. effects.

43



Chapter 2. Non-linearity and the distribution of market-based loss rates

The proposed R2
ALE,m by Apley and Zhu (2020) can be formalized as follows:

R2
ALE,m =

var{
∑
J({1,...,d},|J |≤mΘALE(XJ )}

var{f (X)}
(2.15)

where m describes up to which order of effects the R2
ALE is calculated. Therefore, it holds that

R2
ALE,d = 1. Nagl (2023) extended this approach by introducing R2

ALE,linear , which measures how

much linearity the prediction of the model contains. The R2
ALE,linear is defined as:

R2
ALE,linear =

var{
∑p
j=1Θ

linear
ALE (Xj )}

var{f (X)}
(2.16)

where Θlinear
ALE (Xj ) can be calculated by fitting a linear regression on ΘALE(Xj ), which are the first

order effects. Therefore, 1−R2
ALE,linear quantifies the degree of non-linearity in the prediction.

All ALE plots are generated with a grid size of K = 10 and we calculate the ALE Plots for oL

(Equation(2.5)) and oZ (Equation (2.8)), i.e., before the final transformation in the output layer.

2.5 Results

2.5.1 Feature selection & model estimation

Feature selection

The selection of important drivers for market-based LGDs is not trivial. Therefore, we use the

selection of Gambetti et al. (2019) as a starting point of our analysis. However, as our study

additionally uses data after 2015 (about 7 years more), we follow an iterative process to select

the most relevant to our sample. We divide our data set randomly into an in-sample (80%)

and an out-of-sample (20%) groups. For the feature selection process, we further divide the

in-sample set into a training (70%) and testing set (30%). During this process, various feature

sets are calibrated on this training set and predictions are generated for the testing set. The

value of the loss function, i.e. the negative log-likelihood, on the testing set serves as metric

for the feature selection process. Therefore, we select our feature to be suitable to predict

out-of-sample data. Alternatively, we can use the same approach as Gambetti et al. (2019) and

follow a step-GAIC approach. Then, however, we would select our feature only on training data,

i.e. in-sample. As we want a model which can also predict out-of-sample/time data, we opt for
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selecting features by out-of-sample losses. Using AIC instead of the negative log-likelihood,

does not change our results.

Table 2.3: Selected variables for the sub-networks

Bond characteristics

Variable µ-sub-network φ-sub-network

Coupon rate X X

Maturity X X

Industry sector X X

Seniority X X

Default type X

Macroeconomic variables

Variable µ-sub-network φ-sub-network

Recession indicator X X

Industry production X X

S&P 500 Returns X X

Delinquency rates X

Default rate X X

Uncertainty measures

Variable µ-sub-network φ-sub-network

Financial uncertainty X X

CPI uncertainty X X

News-based EPU X

Uncertainty relative to

federal/state/local expenditures X

Notes: The NBER-based recession indicators for the United States are retrieved from the Federal Reserve Bank of St. Louis (FRED)

website as well as the industrial production and S&P 500 and the delinquency rate on All Loans. Following Gambetti et al. (2019),

we gather the American default rates from Moody’s database and control for withdrawal effects. The uncertainty measures are

retrieved from the author’s website. These include financial uncertainty (Jurado et al. (2015) and Ludvigson et al. (2021)), the

news-based EPU from Baker et al. (2016). Furthermore, we use survey-based proxies of uncertainty by including the inflation

uncertainty measure for the United States (CPI uncertainty) and a proxy of uncertainty relative to both federal and state/local

purchases.

Since the µ-part is well researched in terms of drivers, see Gambetti et al. (2019), we choose the

same variables for the µ-part, which are best performing in Gambetti et al. (2019).13 For the

φ-part we apply the forward selection algorithm using the generalized linear beta regression,

assuming the same selection for the µ-part from the previous step, following Gambetti et al.

(2019).14 Please note that the final set of features is robust to different splitting points in the

13 In contrast to Gambetti et al. (2019) we dropped the Real Gross Domestic Product(GDP) as it worsens the
performance considerably. This may partly be traced back to the recent crisis, where we observed large variations
in GDP but almost no variation in the resulting LGD in these quarters.

14 Alternatively, one could also use BRANN and G-BRANN for feature selection, but this would include a hyperpa-
rameter search in each step. As the aim of this paper is not to find the ultimate selection of drivers of market-based
LGDs, we think that our approach is sufficient. Overall our selection recovers recent findings by Sopitpongstorn
et al. (2021), Nazemi et al. (2021) and Bastos and Matos (2022).
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training (70%) and testing (30%) set. Table 2.3 shows the final variables for the µ- and φ-parts.

Model estimation

To find the optimal parameters for BRANN and G-BRANN, we conduct a random 5-fold

cross-validation of the training sample. In summary, we draw 500 different configurations

of hyperparameter values. Similar to Kellner et al. (2022) we adopt the multiple approach

to find the number of neurons in each subpart of our network. The baseline for the multiple

approach is (32, 16), i.e., we use maximum two hidden layers. In this approach we sample

a multiplier for the baseline network structure instead of directly sampling the number of

neurons in each hidden layer.15 The descending number of neurons in each hidden layer is

inspired by Gu et al. (2020). Furthermore, we use Stochastic Gradient Decent (SGD) as an

optimizer and ReLU as an activation function in all hidden layers, which is in line with the

literature, see, e.g., Gunnarsson et al. (2021) or Nagl et al. (2022). To increase the robustness

of our results, we fit every constellation 10 times and use the average of these repetitions in

the hyperparameter search. This eliminates the impact of the random weight initialization in

the first step of the training phase.16 Hyperparameters are the learning rate, the multiple, the

dropout rate, the number of hidden layers, and our novel trainable activation functions for

the φ-part in G-BRANN. In addition to that we include a MaxNorm kernel constraint of 3.0 as

recommended by Srivastava et al. (2014) for dropout in neural networks. The search space and

the final values are reported in Table 2.4.

Table 2.4: Setup and final values of the hyperparameter search

Parameter Distribution BRANN G-BRANN
µ-part µ-part φ-part

Learning rate U c ∼ [0.001,0.1] 0.0396 0.0091
Dropout rate U c ∼ [0.05,0.50] 0.4385 0.3435 0.3144
Hidden layer Ud ∼ [1,2] 2 2 2
Multiple Ud ∼ [1,8] 1 3 8
Activation function t-exp, t-sig, t-soft - - t-exp (α = 3.37)

Notes: The table shows different values for the hyperparameter search. U c labels the continuous uniform distribution, whereas
Ud labels the discrete uniform distribution. We observe that G-BRANN requires a wider network structure for the µ-part and a
wide and deep structure for the φ-part.

Interestingly, the estimated coefficient of the t-exp activation function differs to Euler’s number,

indicating that G-BRANN selects a different shape of this activation function to be optimal.17

15 For example, if we sample a multiplier of 4 in a two hidden layer network, we have (128, 64).
16 We find that 10 repetitions are enough in our setup. The differences in the means of 10 independent repetitions

are negligible, and, thus, we find our results robust and reproducible.
17 As robustness, we also conduct a hyperparameter search for G-BRANN where we use only the standard activation

function in the output layer of φ. Overall, the trainable activation function outperforms the standard functions
consistently.
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Table 2.5: Evaluation Metrics

(a) In Sample

Generalized linear

Beta Regression BRANN beta Regression G-BRANN

Σ Log-likelihood 747.470 1211.769 968.669 2085.335

∅ Log-likelihood 0.404 0.654 0.523 1.126

MSE 0.038 0.022 0.038 0.022

Pseudo-R2 0.464 0.688 0.447 0.636

(b) Out of Sample

Generalized linear

Beta Regression BRANN beta Regression G-BRANN

Σ Log-likelihood 165.536 232.737 227.342 300.546

∅ Log-likelihood 0.358 0.503 0.491 0.649

MSE 0.041 0.031 0.041 0.030

Pseudo-R2 0.403 0.549 0.398 0.538

Notes: This table shows the average performance metric of BRANN and G-BRANN over 100 repetitions and their linear coun-
terparts. The first row shows the sum of log-likelihood to be comparable to the literature. The second row shows the average
log-likelihood, whereas the third row shows the mean squared error. The last row displays the Pseudo-R2 following Ferrari and
Cribari-Neto (2004). We observe that the neural network related methods consistently outperform the linear models in every per-
formance metric. To remain comparability to Gambetti et al. (2019) we report the sum of the log-likelihood. Bold values indicate
the best, whereas underlined values the second best performance.

Our main metric for the performance comparison is the log-likelihood, as it measures the

performance concerning the distributional fit. However, we additionally include two common

metrics from the literature, namely the MSE and the Pseudo-R2 to assess how well the mean

estimates perform.18

Table 2.5 illustrates that BRANN and G-BRANN outperform their linear counterparts by a large

margin in terms of sum and mean log-likelihood. This also holds for MSE, and Pseudo-R2 in-

sample as well as out-of-sample. Bold values indicate the best value, underlined values indicate

the second best. Overall, the neural networks are first or second-best choice for every metric.

To remain comparable with Gambetti et al. (2019), we report the sum of the log-likelihood.

Hence, the values of the out-of-sample data set are smaller due to the smaller sample size.

Looking at the mean log-likelihood, we observe that the values are, as expected, slightly smaller

but comparable to the in-sample values. Overall, we see substantial improvements in the

18 The MSE measures the quadratic difference between true and predicted mean LGDs. The Pseudo-R2 is derived by
Ferrari and Cribari-Neto (2004) and quantifies the squared correlation between the linear predictors of the model
and the true realization.
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log-likelihood by the BRANN and G-BRANN models.

One might argue that the comparison of the “raw” likelihood is not fair as we do not control for

the larger number of parameters in the neural networks and we should rely on metrics like the

Akaike Information Criterion (AIC) instead. This could be the case for in-sample values due to

overfitting resulting in higher likelihood values. However, if we interpret this along with the

(mean) likelihood values of the out-of-sample data, we do not see evidence for overfitting as we

implemented various regularization techniques and rely on cross-validation. Furthermore, the

number of parameters in neural networks does not necessarily coincide with the complexity.

Recent literature shows that overparameterized neural networks even generalize better than

those with a lower number of parameters, see, e.g. Belkin et al. (2019) or Yang et al. (2020).

To counteract concerns that our results are not robust to an out-of-time exercise and in compari-

son to other well-known machine learning models, we conduct a robustness check in Appendix

2.C. The search space of possible hyperparameters including the final results can be found in

Table 2.C.1. As displayed in the subtables of Table 2.C.2 we observe that the superiority of (G-)

BRANN holds also for future predictions, and regarding the mean estimate, we observe similar

performance.

2.5.2 Drivers of µ and φ

Bond related drivers of µ

The following figures unveil the relationship between the selected variables and the predicted

mean of the LGD distribution. To allow a better comparison with the traditional approach,

i.e. linear models, we also add their relationship. Overall, the ALE plots in the µ-part from

G-BRANN and BRANN point in the same direction. Therefore, only the ALE plots of G-BRANN

are presented in the following.19 As the number of observations varies across the value range

of the drivers, areas with a low number of observations should be interpreted with caution.

Nonetheless, we have enhanced the robustness of our interpretations by refitting the models

and recalculating the ALE Plots 100 times.

19 The plots for BRANN as well as the plots of the control variables, such as industry sector, seniority, and default
type are available upon request.
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Figure 2.3: ALE plots of bond characteristics | µ
Notes: The figures show the ALE plots for G-BRANN in solid black and the generalized linear beta regression in dashed black. We

initialize the G-BRANN 100 times and calculate the final median ALE plots. We also include a rug plot at the bottom to visualize

the distribution of the underlying data.

Figure 2.3 shows that the slopes of the linear model (dashed line) coincide with the (linear)

evidence from the literature, i.e., LGD increases with maturity and decreases with coupon rate,

see, e.g., Gambetti et al. (2019). However, the ALE plots of G-BRANN reveal a more nuanced

picture. We observe that a higher maturity results in higher mean LGDs up to a certain point,

but this increasing effect vanishes for bonds with a maturity greater than roughly 20 years.

Generally, the positive relationship could be explained by sell-side pressure originating from

institutional investors who usually hold bonds with longer maturity, see Jankowitsch et al.

(2014). This effect decreases for maturities greater than 20 years and even gets negative. But

this negative effect could be due to the small number of bonds with very long maturities. For

BRANN the effect of the maturity is almost constant after the 10 years mark. For the coupon

rate, we observe a u-shaped relationship, as the LGD decreases for coupon rates up to 9%,

but increases afterwards. A negative relationship is plausible as bonds with a higher coupon

rate could be of higher value given there is a reasonable probability that all cash flows can be

collected during the resolution of the bond, see Jankowitsch et al. (2014). However, a higher

coupon rate also indicates higher risk, and, thus, for riskier bonds, the market expects higher

losses as the probability that all cash flows can be recovered may be lower.

Macroeconomic drivers of µ

Figure 2.4 shows that the default rate has the largest impact of the macroeconomic drivers

on market-based LGDs, which appears logarithmic. For S&P 500 returns the linear model

finds a (counterintuitive) positive relationship, whereas G-BRANN finds a (intuitive) negative

relationship. Similarly, higher industry production is associated with higher losses in the linear

model, but has a negative effect in the G-BRANN model. The last macroeconomic variable

delinquency rate has an intuitive positive sign in the linear model, but a counterintuitive relation

in the G-BRANN model. This is similar to Gambetti et al. (2019), where the delinquency rate
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has no significant impact in their best model. The counterintuitive sign might be due to

correlations in the macroeconomic variables. The problem of counterintuitive signs when

incorporating many of them is well-known in the credit risk literature. Figlewski et al. (2012)

find that many macroeconomic variables change their signs and have even statistically significant

counterintuitive signs if a large selection of them is included.
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Figure 2.4: ALE plots of macroeconomic variables | µ
Notes: The figures show the ALE plots for G-BRANN in solid black and the generalized linear beta regression in dashed black. We

initialize the G-BRANN 100 times and calculate the final median ALE plots. We also include a rug plot at the bottom to visualize

the distribution of the underlying data.

Uncertainty related drivers of µ

Figure 2.5 shows the ALE plots of uncertainty related variables. We find a substantial positive

impact of financial uncertainty, which is similar to Gambetti et al. (2019). The effect is linear in

G-BRANN and nearly identical with its linear counterpart. Financial uncertainty has the largest

effect of the uncertainty related drivers on market-based LGDs. For the text-related news-based

EPU index we find a positive relationship, which is close to the linear model from an index level

of 100 onwards. CPI uncertainty shows a U-shaped relation indicating that market-based LGDs

decrease for low levels of uncertainty but increase sharply after a certain point. FSL uncertainty

exhibits a negative effect, which is in line with the linear model, but in G-BRANN the effect is

more extreme up to a value of 2. Then its slope is similar to the linear counterpart. Overall, we

find larger non-linearities in uncertainty-related variables than in macroeconomic variables.
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Figure 2.5: ALE plots of uncertainty related variables | µ
Notes: The figures show the ALE plots for G-BRANN in solid black and the generalized linear beta regression in dashed black. We

initialize the G-BRANN 100 times and calculate the final median ALE plots. We also include a rug plot at the bottom to visualize

the distribution of the underlying data.

Bond related drivers of φ

Following the definition of precision φ, the estimated sign is inversely connected to the variance

of the LGDs. As a consequence of this an estimated negative effect increases the variance of the

resulting LGD distribution.
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Figure 2.6: ALE plots of bond characteristics | φ
Notes: The figures show the ALE plots for G-BRANN in solid black and the generalized linear beta regression in dashed black. We

initialize the G-BRANN 100 times and calculate the final median ALE plots. We also include a rug plot at the bottom to visualize

the distribution of the underlying data.
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Figure 2.6 shows the impact of the two bond characteristics. We find a small negative effect of

maturity on the precision of market-based LGDs. This implies that bonds with longer maturities

are associated with less variance in the LGD estimate. G-BRANN recovers an increasing effect

up to a certain coupon rate. Therefore for low coupon rates we have a negative effect on the

precision, which becomes less negative as the coupon rate approaches 5%. For coupon rates

between 5% and 10% we have a decreasing positive effect on the precision, which becomes

slightly negative for higher coupon rates. Due to the inverse relationship between precision and

variance we expect higher variances of the LGDs for low and high coupon rates.
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Figure 2.7: ALE plots of macroeconomic variables | φ
Notes: The figures show the ALE plots for G-BRANN in solid black and the generalized linear beta regression in dashed black. We

initialize the G-BRANN 100 times and calculate the final median ALE plots. We also include a rug plot at the bottom to visualize

the distribution of the underlying data.

Turning to the influence of the macroeconomy on the precision of market-based LGDs, Figure 2.7

illustrates their impact. We find a positive relationship between S&P 500 returns and precision,

implying that the variance decreases for higher returns. This is somewhat contrary to Gambetti

et al. (2019), but they used the level of the S&P 500 and not the (stationary) returns. This

positive relationship for very high returns can be partly explained as we included the recent

Covid-19 pandemic in our sample, where we observe large positive returns, although the LGD
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realization stagnated. The positive effect is less pronounced than its linear counterpart. For

default rates we have an increasing effect on the prediction for very small default rates, turning

negative afterwards, which is consistent with the linear model. For delinquency rates, we find a

similar picture as for the S&P 500 returns. The impact on the prediction has the same direction

as the linear model but is more conservative. The industry production has a small, constant

negative effect on average.

Uncertainty related drivers of φ
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Figure 2.8: ALE plots of uncertainty related variables | φ
Notes: The figures show the ALE plots for G-BRANN in solid black and the generalized linear beta regression in dashed black. We

initialize the G-BRANN 100 times and calculate the final median ALE plots. We also include a rug plot at the bottom to visualize

the distribution of the underlying data.

In our selection, only two uncertainty-related measures were selected for the final model. We

find that financial uncertainty has a almost linear effect on the precision, so that high financial

uncertainty corresponds to lower variance of the LGD estimation. For this variable the effect is

less strong than the effect modeled by the generalized linear beta regression. CPI uncertainty

on the other hand shows a negative trend for increasing uncertainty, but the overall effect is

comparable small.

Non-linearity in the estimation of µ and φ

ALE plots are a powerful tool to visualize the modeled effects of features on the prediction. Due

to the connection of ALE plots to a functional-ANOVA-like-decomposition ALE plots are capable

to quantify the goodness of fit to the prediction due to an arbitrary order of effects according to

Apley and Zhu (2020). We calculate the R2
ALE,1 for the parameter of the modeled distribution.

Therefore, we can measure how well the prediction can be approximated by the first order

(main) effects, which are visualized in Figures 2.3 to 2.8. For µ the R2
ALE,1,µ is 0.9017. This means,

that 90.17% of the prediction is due to (non-)linear main effects and only the remaining 9.83%
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are a result of (non)-linear higher order effects such as interactions. This picture changes for

φ. Here the R2
ALE,1,φ is 0.3531. Therefore, the most part of the prediction is due to (non-)linear

higher order effects. Using the R2
ALE,linear derived by Nagl (2023), we can divide the R2

ALE,1

further. As R2
ALE,linear measures the how well the prediction can be explained by linear first

order effects, the difference between R2
ALE,1 and R2

ALE,linear is the improved approximation by

non-linearity in the first order effects. For G-BRANN R2
ALE,linear,µ is 0.8590, which indicates

that the improvement in the first order effects by non-linearity is only about 4%. For the

precision parameter this becomes more pronounced. R2
ALE,linear,φ is only 0.1963, which means,

that 80.37% of the φ predictions is due to non-linearity and higher order effects. More specific

the increase due to non-linearity in the first order effects is more than 15%. Therefore, the

non-linearity has a tremendous effect for the estimation of φ even in the first order effects.

2.5.3 Scenario analysis

The remaining part of this section focuses on the implications of our findings for risk manage-

ment. As stated in Kellner et al. (2022) only considering the mean or median does not allow to

differentiate between risk profiles in a holistic way. Therefore, the whole distribution should be

taken into account to derive risk profiles across possible realizations of the LGD.

Assume a bank aims at investigating the implications of favorable and unfavorable scenarios in

their credit risk assessment. These scenarios can be easily derived using low and high quantiles

of individual LGD distributions, predicted by G-BRANN. To examine this, we compare the

trained beta regression and G-BRANN as described in Section 2.5.1 and predict the µ and φ

for every sample in the training data. Figure 2.9 shows the results for the different types of

seniority. To obtain a representative distribution of each of them, we take the the median µ and

φ for every seniority. The left hand side of Figure 2.9 shows the estimated distributions by the

beta regression and on the right side the distributions calculated by G-BRANN are displayed.

In the beta regression models all samples have the same value for φ, whereas G-BRANN allows

individual values of φ. Please recall that the overall fit of G-BRANN in terms of likelihood

is considerably higher compared to the beta regression. This holds also for every individual

category, such as seniority. Therefore, we are confident that the estimated distributions by

G-BRANN are superior as well.
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Beta Regression G-BRANN

Figure 2.9: Beta distributions per seniority
Notes: The figures show the representative beta distribution modeled by the beta regression and G-BRANN divided into the

seniorities. SB, SR, SS and SU refer to Senior Subordinated, Subordinated, Senior Secured and Senior Unsecured.

From a risk manager’s perspective a more differentiated picture across categories provides a

valuable information to derive individual risk profiles. Therefore, the less these distributions

overlap between categories, the more refined can the derived risk profiles be. Overall, using the

beta regression the distributions overlap more than using the G-BRANN. Therefore, G-BRANN

allows a more refined picture of the different distribution. Again, the fit in terms of likelihood

is superior for every category and, thus, the less overlapping distributions suit the data more.

To quantify this effect, we calculate the area where the distributions overlap. Since the integral

of these distributions is always one, the overlapping area is naturally bounded from zero to

one, where one means that one distribution envelops the other distribution. We calculate the

overlapping area for every pair of seniority levels. On average the overlapping area of the beta

regression is 0.7443 in contrast to 0.6402 for G-BRANN.

We redo the same analysis for the industry types. Typically, the LGDs vary across different

industries due to differences in collateralized assets or guarantees. Therefore, a risk manager

appreciates a models that allows for a clear distinction between LGDs in different industries.

Similar to the seniority, the fit of G-BRANN is superior in every industry compared to the beta

regression, which is currently industry standard.

Figure 2.10 shows the estimated distribution for the most common industries in our sam-

ple. Overall, we observe a similar picture. G-BRANN produces much more differentiated

distributions than the beta regression.
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Beta Regression G-BRANN

Figure 2.10: Beta distributions per industry type
Notes: The figures show the representative beta distribution modeled by the beta regression and G-BRANN divided into the

industry types. Here just a selection of industry types are shown.

Calculating the mean overlapping area the beta regression results in 0.6919 and G-BRANN

0.4444. The individual overlappings are even more different. G-BRANN predicts a distribution

for the Utilities sector that does not have any overlapping with the Nonbank Finance sector.

On the contrary, the beta regression shows a comparable large overlap. In our data, LGDs

from the Utilities sector have the lowest average LGD, whereas the Nonbank Finance sector has

the highest according to Table 2.A.3. Again, this shows that G-BRANN reflects the empirical

features of our data much better.

Lastly, risk managers do not only want to differentiate between industry types or seniorities, but

also between different macroeconomic states. Therefore, we provide a scenario analysis which

focuses on the economic surrounding. We choose three quarters with different average realized

LGDs. As “good” scenario we rely on the macroeconomic state in Q1 2004 with an average LGD

of 0.43, which is comparatively low. The “average” scenario is Q4 2005 with a mean LGD of

0.62 which is very close to the average of our whole dataset. The “bad” case is Q3 2008, which

is a quarter of the Global Financial Crisis that is reflected by the very large mean LGD of 0.90.

The “good”, “average” and “bad” states are also reflected by the macroeconomic variables, such

as the S&P 500 return or the US corp. default rate.

Figure 2.11 illustrates a clear separation between the good and the bad scenario for G-BRANN,

whereas the distributions modeled by the beta regression overlap by 0.3502 compared to 0.0095

for G-BRANN. Again, the fit in every macroeconomic state of G-BRANN is considerably better

than by the beta regression and, thus, this clear separation is more aligned with the data.

Furthermore, the clear separation between good and bad economic states is also economically
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more plausible.

Beta Regression G-BRANN

Figure 2.11: Beta distributions per macroeconomic states
Notes: The figures show the representative beta distribution modeled by the beta regression and G-BRANN divided into different

macroeconomic sates.

Figure 2.12: Degree of overlapping across the macroeconomic states
Notes: The figure shows the degree of overlapping of the representative beta distribution modeled by the beta regression and

G-BRANN divided into macroeconomic states.

Figure 2.12 visualizes the overlapping area of Figure 2.11 to allow for a easy comparison. We

observe that the difference between “average” and “bad”, the G-BRANN has less than half of

overlapping and for “good ” vs. “bad”, we see overlapping close to zero. Therefore, G-BRANN

offers a data-driven and flexible way to derive tailored scenario analysis for risk management

tasks and allows for a clear and economic plausible differentiation between macroeconomic
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states. The detailed results of every pairwise overlapping for every scenario analysis can be

found in Appendix 2.D in Figures 2.D.1 and 2.D.2.

2.6 Conclusion

In recent years a broad stream of literature emerged which shows that mean LGD estimates are

non-linearly connected to well-known drivers, see, e.g., Bastos and Matos (2022); Bellotti et al.

(2021); Nazemi et al. (2021); Olson et al. (2021); Sopitpongstorn et al. (2021) or Xia et al. (2021).

The drivers of the LGD distribution’s precision (variance) are considerably less investigated as

noted by Gambetti et al. (2019). They find that there are several variables with effect on the

precision by using a generalized linear beta regression. We extend this approach by allowing

non-linearity in mean and precision by combining the generalized linear beta regression with a

neural network structure. This allows us to incorporate these little-noticed characteristics such

as bounded support, skewed distribution, and heteroskedasticity directly into our modeling

framework. Furthermore, we derive novel trainable activation functions to address the bounded

support problem in the LGD distribution’s mean and precision. We implement a data-driven

way to characterize the actual shape of the precision predictions which increases the robustness.

By accessing Moody’s Default and Recovery Database from January 1990 until March 2021, we

incorporate the most recent evidence in market-based LGD realizations. We observe strong

non-linearity in the prediction of the precision parameter. Therefore, especially this parameter

benefits from non-linear modeling.

Modeling the precision and thus, the form of every obligor’s LGD distribution enhances the

capability of risk managers in several important ways. First, lower and high quantiles can be

used to derive good and bad scenarios in a data-driven way. Therefore, the impact of portfolio

losses beyond expectation values can be quantified. Hence, our approach provides a flexible and

data-driven tool to derive conservative estimates, i.e., higher quantiles, concerning regulator’s

margin of conservatism. Second, by comparing the individual distributions of obligors, risk

managers can reveal differences in the obligor’s risk profiles by comparing extreme losses, for

example in terms of Value-at-Risk (VaR). This enables banks to better quantify the riskiness of

their business in terms of potential losses. Our scenario analysis reveals that the distributions

modeled by the beta distribution lack of distinctiveness compared to G-BRANN. Thus, scenario

analysis with beta regression could lead to inadequate loss estimation. Furthermore, the

application of BRANN and G-BRANN to workout LGDs would be interesting, as they entail
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similar challenges. As the data on this kind of LGD is considerably larger, one could even

consider a multilevel approach by fitting our proposed methods on different seniority levels,

industry sectors or default types.20

Our approach of combining well-known statistical methods with neural networks and the

novel derived activation functions can not only be used for credit risk-related problems but to

more general and broader set of problems in business and economics, e.g., demand or retail

forecasting.

20 We thank an anonymous reviewer for suggesting this potential application of BRANN and G-BRANN.
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2.A Descriptive statistics

Table 2.A.1: Descriptive statistics of LGDs across the whole sample.

N Min. Median Mean Max St.Dev. Skewness

LGD 2315 0.50 68.00 61.40 99.99 28.11 -0.35

Notes : All displayed values except the sample size are expressed as percentages.

Table 2.A.1 shows the descriptive statistics of LGDs across the whole sample. Over the 2,315

LGDs we have a slightly negative skewed distribution with a median LGD of 68 %. The following

tables should provide an overview of the LGD distribution across the categorical values.

Table 2.A.2: Descriptive statistics of LGDs according to the seniority of the defaulted bond.

N Min. Median Mean Max St.Dev. Skewness

Senior Secured 195 0.50 47.5 49.42 99.25 28.91 0.0594

Senior Unsecured 1599 0.50 65.0 59.59 99.97 28.36 -0.2206

Senior Subordinated 360 0.50 79.0 72.02 99.99 23.87 -0.9923

Subordinated 161 0.87 74.0 70.17 99.87 23.74 -0.9030

Dividing the LGDs in their seniority the picture changes in a few regards. While the skewness

for senior secured and senior unsecured remains relatively close to zero, the skewness for

senior subordinated and subordinated decreases close to -1, which indicates moderate skewness.

Furthermore, the average LGD per category is different. Higher levels of seniority tend to have

lower LGDs on average and at median. For the industry sector there are differences as well.

High LGDs in particular can be observed for technology and for nonbank finance companies. By

far the lowest mean LGD with low standard deviations are located in the utility sector followed

by the banking companies. Those two sectors are the only sectors with highly positive skewness.

This low mean LGD in the utilities sector corresponds to the high recovery rates in Gambetti

et al. (2019). On the contrary low LGDs in the banking sector are quite different from the

observed ones by Gambetti et al. (2019), but one must take into account that the used sample

size in the banking sector in this paper is more than six times the sample size used in Gambetti

et al. (2019). The remaining industry sectors show slightly higher or similar LGDs to the average

LGD over the whole sample.
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Table 2.A.3: Descriptive statistics of LGDs according to the industry sector of the defaulted
bond.

N Min. Median Mean Max St.Dev. Skewness

Banking 276.0 7.92 28.96 35.52 99.75 19.13 2.6608

Capital Industries 471.0 0.75 72.50 66.58 99.87 25.51 -0.6049

Consumer Industries 307.0 0.50 71.50 63.78 99.99 26.07 -0.6349

Energy & Environment 296.0 0.50 66.25 63.37 99.97 24.12 -0.5381

Media & Publishing 164.0 1.00 56.50 55.70 99.99 28.96 -0.0344

Nonbank Finance 261.0 14.00 90.00 74.06 99.87 29.63 -1.3282

REIT 17.0 36.65 76.48 66.03 98.12 21.37 -0.0421

Retail & Distribution 164.0 0.50 68.25 63.85 99.50 25.45 -0.6727

Technology 224.0 1.00 79.75 71.46 99.62 25.34 -1.2007

Transportation 84.0 4.75 77.75 66.94 98.25 23.72 -0.8157

Utilities 51.0 6.25 16.00 18.84 80.00 12.65 2.7352

Conditioning the LGDs on the default type there are major differences compared to Table 2.A.1

noticeable. First of all, there are some default types, that barely occur. Some of them occur

only once or twice in the observed period of more than three decades. For the slightly bigger

categories it is visible that payment moratorium has the lowest average LGD and the smallest

standard division by far. The biggest category Chapter 11 shows the second highest average

LGD. Only Chapter 7 provides higher average LGD, but also a very small sample size. Most of

the conditional distributions are negatively skewed except the category distressed exchange,

which is moderately positive skewed and show low average LGDs.
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Table 2.A.4: Descriptive statistics of LGDs according to the default type

N Min. Median Mean Max St.Dev. Skewness

Chapter 11 749 0.75 85.00 73.84 99.99 25.14 -1.2891

Chapter 7 7 54.00 96.00 89.32 99.47 16.19 -2.2681

Distressed exchange 554 0.50 29.00 39.82 98.00 21.33 0.8111

Grace period default 26 2.00 49.94 46.17 92.00 22.22 -0.0041

Missed interest payment 700 1.00 73.50 66.70 99.99 24.19 -0.6654

Others 94 1.00 67.00 62.36 99.75 29.36 -0.3277

Payment moratorium 35 14.87 16.83 16.79 17.95 0.55 -1.8553

Prepackaged Chapter 11 150 0.50 76.75 65.41 99.64 28.81 -0.5668

Notes: For comparability some categories are displayed consolidated, but feed to the network separately.
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2.B Trainable activation functions

In the following the trainable activation functions from Section 2.4 are represented graphically.

Figure 2.B.1 illustrates the impact of the steepness parameter a. For a larger value for a, a = 3.37,

the curve is even steeper than the original exponential function. The value for Figure 2.B.1

is chosen according to the trained G-BRANN in Table 2.4. The trainable parameter q of the

trainable softplus function in Figure 2.B.2 controls for the curvature of the function. For

increasing q the trainable softplus function tends towards a relu activation function.

Figure 2.B.1: Trainable exponential function

Figure 2.B.2: Trainable softplus function

The last of the proposed trainable activation functions is the trainable sigmoid function. Setting

the parameters c = 0, s = −1 and h = 1 it results in the ordinary sigmoid function bounding the

output on an interval from 0 to 1. The parameter c shifts the function vertically as displayed
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by the upper function of Figure 2.B.3. Increasing the scale parameter s towards 0 the output

tends to flatten the input so that changes in the input less affect the output. The last parameter

h defines the upper bound of the output, so that the trainable sigmoid function can result in

higher values than the ordinary sigmoid function. The following figure compares the original

sigmoid function with the sigmoid function, which is trained for the robustness section. Here

the chosen parameters are c = 1.88, s = −1.45 and h = 2.68.

Figure 2.B.3: Trainable sigmoid function
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2.C Robustness

Overall, this paper does not seek to conduct a horse race and contributes to the literature by

finding a new best method of predicting market-based LGDs. Our aim is at the rationale behind

the drivers of mean LGDs and the drivers of the precision of the LGDs, which is considerably

less investigated. Hence, our neural networks can be seen as explanation models to unveil

drivers of the mean and variance of the market-based LGDs. We want to use these relations to

generate estimates in scenario analysis and derive implications. Therefore, they are not built

as a prediction model for predicting future mean LGDs, but as a non-parametric way to unveil

hidden relationships between drivers and the market-based LGD distribution. However, to

counteract the concerns that our derived neural networks are not suitable to predict future

realizations, we conduct an out-of-time benchmark exercise.

For this purpose we split the the whole sample into a training sample and a test sample. For

the training sample only LGDs until end of 2007 are used. The remaining observations act

therefore as an out-of-time sample. For BRANN, G-BRANN, Neural Networks and Random

Forests we optimized the hyperparameters using 5 fold cross-validation and run each fold 10

times to ensure stable results for every fold. For all models with hyperparameters we draw 500

constellations each by a random search approach. Table 2.C.1 shows the setup and the resulting

parameters for the robustness section.

For each model type we choose those hyperparameters, which return the lowest negative log-

likelihood or mean squared error (MSE), respectively, averaged over the 5 hold out folds. The

(extended) beta regression and (G-)BRANN are optimized by the mean of the negative log-

likelihood in Equation (2.4), while the objective of the remaining models is to minimize the

MSE. Since the Pseudo-R2 is based solely on the µ-part of the (extended) beta regression and

(G-)BRANN, which represents the predicted LGD, it can be calculated for all models. However,

this does not apply to the log-likelihood calculation. For the out-of-time comparison we form a

portfolio of 100 randomly drawn bonds and evaluate the MSE, Pseudo-R2 and, if possible, the

log-likelihood. This procedure was repeated 10 times and their average is provided in Table

2.C.2.

Comparing the values for the log-likelihood in- and out-of-time, we observe that in both samples

one of our neural network approaches outperform the linear beta regressions. Therefore, we

can argue that the good performance illustrated in Table 2.5 can be recovered when we focus

65



Chapter 2. Non-linearity and the distribution of market-based loss rates

Table 2.C.1: Setup and final values of the hyperparameter search - robustness

Model Parameter Distribution Final parameter

BRANN

Learning rate U c ∼ [0.001,0.1] 0.0893
Dropout rate U c ∼ [0.05,0.50] 0.3289
Hidden layer Ud ∼ [1,2] 1

Multiple Ud ∼ [1,8] 1

G-BRANN

Learning rate U c ∼ [0.001,0.1] 0.0636
Dropout rate µ U c ∼ [0.05,0.50] 0.4314
Dropout rate φ U c ∼ [0.05,0.50] 0.1827
Hidden layer µ Ud ∼ [1,2] 2
Hidden layer φ Ud ∼ [1,2] 2

Multiple µ Ud ∼ [1,8] 1
Multiple φ Ud ∼ [1,8] 7

Activation function t-exp, t-sig, t-soft t-sig

Neural Network

Learning rate U c ∼ [0.001,0.1] 0.0796
Dropout rate U c ∼ [0.05,0.50] 0.4951
Hidden layer Ud ∼ [1,2] 1

Multiple Ud ∼ [1,8] 6

Random Forest
Number trees Ud ∼ [10,250] 90
Splitsamples Ud ∼ [2,10] 3
Leafsamples Ud ∼ [1,10] 1

Regression Tree
Splitsamples Ud ∼ [2,10] 7
Leafsamples Ud ∼ [1,10] 10

Ridge Regression Regularizationparameter U c ∼ [0.0,10] 0.0023
Lasso Regression Regularizationparameter U c ∼ [0.0,0.02] 0.0001

Elastic Net
Ratio U c ∼ [0.0,1] 0.1711

Regularizationparameter U c ∼ [0.0,0.02] 0.0129

Notes: The table shows different values for the hyperparameter search. U c labels the continuous uniform distribution, whereas
Ud labels the discrete uniform distribution, in which the upper bound was excluded. For the random forest and the regression
tree the splitsamples and the leafsamples refer to the minimum number of samples to split respectively to include in a leaf.

on future predictions. Overall the non-linear models recover the distribution of market-based

LGDs best. While focusing only on the µ-part, i.e. only on mean predictions, we observe that the

Random Forest performs best in-sample and third best out-of-time. This is similar to findings in

the literature, see, e.g., Kaposty et al. (2020); Bellotti et al. (2021); Nazemi et al. (2021). However,

as previously noted, the aim of this paper is not to predict the mean of market-based LGDs

best as done by various studies, e.g., Bastos (2010); Loterman et al. (2012); Qi and Zhao (2011);

Bastos and Matos (2022); Olson et al. (2021); Nazemi et al. (2021) among many others. The

contribution of this paper is to model the precision of the market-based LGDs distribution in a

straightforward non-linear way, which is a novelty in the literature of LGD modeling.
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Table 2.C.2: Evaluation Metrics

(a) In Sample

Log-likelihood MSE Pseudo-R2

Beta Regression 434.178 0.039 0.433
BRANN 441.049 0.039 0.447
Generalized Beta Regression 487.562 0.039 0.423
G-BRANN 478.603 0.037 0.485
Neural Network - 0.045 0.398
Random Forest - 0.005 0.948
Regression Tree - 0.023 0.681
Linear Regression - 0.039 0.472
Ridge Regression - 0.040 0.459
Lasso Regression - 0.039 0.471
Elastic Net - 0.044 0.417

(b) Out of Time

Log-likelihood MSE Pseudo-R2

Beta Regression 15.723 0.057 0.339
BRANN 8.838 0.061 0.262
Generalized Beta Regression -21.463 0.056 0.361
G-BRANN 20.651 0.058 0.286
Neural Network - 0.115 0.173
Random Forest - 0.053 0.426
Regression Tree - 0.068 0.300
Linear Regression - 0.062 0.379
Ridge Regression - 0.052 0.450
Lasso Regression - 0.061 0.386
Elastic Net - 0.047 0.461

67



Chapter 2. Non-linearity and the distribution of market-based loss rates

2.D Scenario analysis

The following provides the detailed results of our scenario analysis in Section 2.5. The estimated

overlappings are illustrated via heatmaps. The lower triangle refers to the results of G-BRANN

and the upper triangle to the results of the beta regression. In general, a lower value refers to

less overlapping and vice versa.

Seniority Macroeconomic state

Figure 2.D.1: Overlappings | Seniority & Macroeconomic state
Notes: The figure show the overlapping of the estimated distributions of G-BRANN on the lower triangle and the beta regression

on the upper triangle. A lower value indicates less overlapping.

Figure 2.D.1 shows the overlapping estimates for the different seniority types and macroeco-

nomic states. Overall, we can see that G-BRANN has in every constellation a lower overlapping,

which implies that G-BRANN helps to differentiate between seniority and industry type better

than the standard beta regression. Please recall that the fit of G-BRANN is better in any seniority

type or macroeconomic state. Therefore, we argue that the less overlapping better represents

the underlying data.
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Figure 2.D.2: Overlappings | Industry
Notes: The figure show the overlapping of the estimated distributions of GBRANN on the lower triangle and the Beta Regression
on the upper triangle. A lower value indicates less overlapping.

Figure 2.D.2 shows the overlapping estimates for the different industry types. Interestingly,

G-BRANN shows very less overlapping for the banking industry with any other industry type.

On the contrary, the beta regression shows medium overlapping. It is well known that the

banking industry differs from other industry types due to their special business model and their

impact on financial stability. It seems that the difference is also visible in the LGD estimates in

our sample. Similar to Figure 2.D.1 G-BRANN shows considerable less overlappings and, thus,

allows for a better differentiation between industry types.
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Chapter 3

GAMME - Advances in Predictive Mean

Matching

This chapter corresponds to a working paper with the same name (submitted to The Scandinavian

Journal of Statistics, revised and resubmitted).

Abstract

Missing data is a widespread problem in almost any scientific and practical application. In-

correct imputation can bias results and make statistical inference invalid. In this study, we

propose a new imputation method the General Adaptive Mean Matching Estimator (GAMME)

to incorporate non-linearites and interactions in the well-known predictive mean matching

(PMM) method. We use a neural network to reveal non-linear structures and incorporate this

information into predictive mean matching utilizing an explainable artificial intelligence (XAI)

method namely Accumlated Local Effects (ALE) plots. This reduces bias in regression coeffi-

cients and corrects confidence intervals to allow valid statistical inference. The capabilities of

GAMME are demonstrated by benchmarking various state-of-the-art imputation methods in a

simulation study. To the best of our knowledge, we are the first to incorporate non-linearities in

the predictive mean matching framework via ALE plots.

Keywords: Missing Data, Multiple Imputation, Machine Learning, Explainable Artificial Intel-

ligence (XAI)

JEL classification: C15, C45
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3.1 Introduction

Missing data is a prominent problem in many scientific fields and in practice. Missing values can

contain potential important information which can not be taken into account. Many statistical

models or machine learning methods require complete data. Ignoring observations can reduce

the sample size to a large extent, which can introduce bias or worsen performance, especially

when models rely on large datasets like, e.g., neural networks (Alwosheel et al., 2018). One

common field of research for missing data are surveys, see, e.g., Rubin (2003) or official statistics

like in Boeschoten et al. (2019). Especially in these areas it is often needed to combine different

datasets, which can lead to missing values, and is handled via data fusion as in Rässler (2003).

King et al. (2001) report that in political science the data often suffers from high missing data

rates too. Missing data is also a problem in clinical trials, see Little et al. (2012). Bryzgalova

et al. (2024) analyze missing values in the context of firm characteristics and their impacts on

asset pricing. They find that missing values are present in more than 70% of the observations.

Therefore, deleting observations with missing values shrinks the whole dataset and lead to

ignoring potential useful observations. Baesens and Smedts (2023) emphasize the importance of

preprocessing the data including the handling of missing values for credit risk models. Improper

imputation can affect the final results which can from a scientific view lead to retraction of

a published paper, see, e.g., Su et al. (2023). The imputation of missing values results in a

complete dataset without deleting information. There are many approaches to impute missing

values. One common approach for continuous data is to use predictive mean matching (PMM)

with the drawback of considering only linear terms. This paper contributes to the literature by

extending PMM to account for non-linearity in the data without specifying the relationships

explicitly in advance. Furthermore, a heuristic is proposed to include interactions as well. Our

approach differs and outperforms current extension of PMM like Multiple Imputation through

XGBoost (MIXGB) by Deng and Lumley (2023). We use a neural network and the functional

decomposition property of Accumulated Local Effect (ALE) plots to create a predictive mean

matching approach, which has very low bias and high coverage rates for a non-linear data

generating process under missing completely at random and under missing at random. The

structure of this paper is as follows. In Section 3.2, we give an introduction to the terminology

of missing data and summarize the most relevant and state-of-the-art methods. Section 3.3

describes in detail our new method. The conducted simulation study can be found in Section

3.4 including the results. Section 3.5 concludes.
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3.2 Background

The following section introduces missing data mechanisms, which differ by their complexity.

Furthermore, we introduce well-known and state-of-the-art methods to handle missing data to

give an overview of the current literature.

3.2.1 Missing data mechanisms

To introduce the field of missing data, we first classify different types of missing data into

the missing data mechanisms. This systematization is founded by Rubin (1976) and classifies

missing data due to their complexity. Assume a data matrix Z and a binary matrix R, which

has the same dimension as Z. The elements of R, ri,q, indicates, whether the corresponding i-th

value of the q-th feature of Z, zi,q, is missing (Van Buuren, 2018, Ch. 2):

ri,q =


0 if zi,q is missing

1 if zi,q is observed
(3.1)

Therefore, Z can be divided into the observed and the missing part, Z = {Zobs,Zmiss}. Zmiss

contains every observation with missing values, the remaining observations are covered by Zobs.

Furthermore, these datasets can be divided into the dependent variable y and the independent

features X such that Zmiss = {Xmiss, ymiss} and Zobs = {Xobs, yobs}1. Following (Van Buuren, 2018,

Ch. 2) suppose a missing data model, which defines the probability to be missing for each

element of the data. This is notated as P r(R = 0|Zobs,Zmiss,θ) with θ as the parameters of the

missing data model. Then we can define observations as Missing Completely at Random (MCAR)

if the probability to be missing is unrelated to any observed or unobserved variable. To illustrate

this consider the following example. A survey is conducted in which age and income is collected.

Now suppose missing data in income due to technical problems. In this case the probability to

be missing is unrelated to age or income and this situation can therefore be classified as MCAR.

Under MCAR the missing data model can be written as, see (Van Buuren, 2018, Ch. 2):

P r(R = 0|Zobs,Zmiss,θ) = P r(R = 0|θ) (3.2)

1 The terminology of y and X often depends on the context. For an overview we refer to (Wooldridge, 2020, p. 21).
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This case is in general very handy, see, e.g., Carpenter and Smuk (2021), but it is often considered

as unreasonable, see, e.g, Little (1992); Liang and Wang (2023). To weaken the assumption of

MCAR, observations can be classified as Missing at Random (MAR), in which the probability

to be missing depends on Zobs and θ2. Considering the example above MAR holds if with

increasing age people are more likely to refuse to answer the question about their income. As

stated in (Van Buuren, 2018, Ch. 2) then for the missing data model it holds, that:

P r(R = 0|Zobs,Zmiss,θ) = P r(R = 0|Zobs,θ) (3.3)

Under MAR Zobs can be used to impute Zmiss, such that valid statistical inference can be

conducted. The last case is Missing Not at Random (MNAR), in which the probability to be

missing depends either on the missing value itself or on the missing value and some observed

values. In the survey example the missing values in income would be classified as MNAR if

people with higher income tend to refuse to disclose their income. Following (Van Buuren, 2018,

Ch. 2) we can formalize MNAR as:

P r(R = 0|Zobs,Zmiss,θ) = P r(R = 0|Zmiss,θ) or P r(R = 0|Zobs,Zmiss,θ) (3.4)

For MNAR special methods must be applied to overcome the problem of missing data, see,

e.g., Hammon and Zinn (2020); Hammon (2022). Prominent approaches to handle MNAR

are selection models, see, e.g., Heckman (1976) or pattern-mixture models, see, e.g., Glynn

et al. (1986); Little (1993). Since these approaches require additional assumptions and complex

models they are usually only used if the application of MAR imputation models is questionable.

3.2.2 Literature

Due to the broad application of missing data handling algorithms we give a overview of the

most prominent and well-known algorithms. Imputation methods can roughly be classified into

single imputation (SI) and multiple imputation (MI). Furthermore, there are methods which do

no imputation and only use observed cases. Most of them are likelihood based approaches. One

of the most widely used method in this category is the expectation maximization (EM) algorithm

by Dempster et al. (1977). The goal of this method is to find distributional parameters, usually

the parameters of a multivariate normal distribution, via iterating between the expectation step

2 Technically it can further be divide into the ignorable and nonignorable case. This is beyond the scope of this
paper. For further details, see, e.g., (Van Buuren, 2018, Ch. 2)
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(E-step) and the maximization step (M-step). This likelihood-based method imputes the missing

values in the E-step given the current imputation values. The M-step maximizes the likelihood

given the current values, which is the basis for the next E-step (Enders, 2022, pp. 112-114). For

an more in depth view on the EM algorithm, see, e.g., Dempster et al. (1977) or (Little and Rubin,

2019, pp. 185-212). Another approach which does no imputation is complete case analysis

(CCA). It is also known as listwise deletion and it is a fast and easy way to handle missing data.

This method deletes every observation in the dataset, which has at least one missing value. This

can lead to very small datasets and a huge information loss during this process. As stated in

Schafer and Graham (2002) in case of MCAR CCA is a valid option and can outperform single

or multiple imputation techniques due to its efficiency, but this holds not for every case. With

certain exceptions, if MAR holds CCA leads to biased estimates and incorrect standard errors.

To overcome the problem of discarding observations and reducing the sample size single

imputation (SI) can be applied. SI replaces each missing value by one single value. One common

approach is mean imputation, see, e.g., Lin and Tsai (2020). In this case the missing value of a

feature is replaced by the mean of the observed values of the feature. This results in a dataset

with the same size of the original dataset, but with a changed distribution of the feature, see

(Van Buuren, 2018, Ch. 1). An extension of mean imputation is conditional mean or regression

imputation. This replaces the missing values by the prediction of regressing the feature with

missing values on the remaining. Therefore, relationships can be taken into account, which

can improve the imputation, see (Van Buuren, 2018, Ch. 1). Regression imputation has the

drawback of only accounting for linear effects. Therefore, several approaches are invented using

tree-based methods to overcome this. Vateekul and Sarinnapakorn (2009) propose a two step

strategy, in which a classification tree is used to determine missing data patters and each pattern

is imputed with a regression tree. Stekhoven and Bühlmann (2012) propose an imputation

strategy which rely on iterative fitted random forests called MissForest. This random forests

can incorporate non-linear effects and interactions. More concretely, this method imputes the

missing values in the first place by an initial guess. Then a random forest is fitted on the

observed data and is used to predict the missing values. This procedure is repeated until a

stopping criterion is met. MissForest is a common choice in the context of missing data (Sun

et al., 2023). For an overview of tree-based imputation methods we refer to Tang and Ishwaran

(2017). Other approaches use neural networks to handle missing data. E.g., Choudhury and Pal

(2019) use an autoencoder to impute missing values. One of the most prominent imputation

approaches in the field of neural networks is the generative adversarial imputation network

(GAIN) by Yoon et al. (2018). This is an imputation technique, which utilizes the capabilities
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of generative adversarial networks (GANs) to model conditional distributions. GANs are a

type of generative models introduced by Goodfellow et al. (2014), in which two networks the

generator and the discriminator compete against each other. The goal here is for the generator

to produce synthetic observations, which can not be distinguished from real observations by the

discriminator. Yoon et al. (2018) adapt this behavior, such that the generator in GAIN imputes

the missing values conditioned on observed values and the discriminator should decide, if the

imputations are real observations. To accomplish that, an additional parameter is introduced,

which is necessary to model the data distribution uniquely. Another example for imputation

by GANs is MisGAN by Li et al. (2019). Here a GAN learns the distribution of the data in the

presence of missing data. Furthermore, it can be used as an imputation method for e.g. pictures.

For a broader overview of machine learning approaches to impute missing data we refer to

Emmanuel et al. (2021) or Sun et al. (2023). One advantage that SI methods have in common is

that the result is one completed dataset. Then the imputed values are handled as if they are the

true observed values.

As pointed out by (Van Buuren, 2018, Ch. 1) this often leads to an underestimation of standard

errors and therefore can produce incorrect statistical tests. To overcome the problems of

single imputation methods multiple imputation (MI) was proposed in the 1970s (Rubin, 2004).

Here the missing values are imputed multiple times to generate several complete datasets.

Each dataset is analyzed individually and the results can be pooled using the Rubin’s rules

(Van Buuren, 2018, Ch. 1). Another approach is to use multiple completed datasets sequentially

to train a neural network as in Han and Kang (2022) which improves predictive performance.

Many SI methods are extended to a multiple approach. One example is the bootstrap regression

imputation method that extends the previous introduced regression imputation. Following

(Van Buuren, 2018, Ch. 2) to estimate the regression coefficients a bootstrap sample is used

and the the residual variance σ̃2 is calculated. Using these coefficients the missing values

can be predicted. To make this imputation valid, to each imputed value a random draw of a

normal distribution with mean of zero and variance of σ̃2 is added. Another extension is called

Predictive Mean Matching (PMM) which uses a linear model to find similar observed values to

the corresponding missing values and uses the observed values as imputation values. The major

differences to the bootstrap regression imputation is that PMM has no distributional assumption

and imputes only observed values whereas bootstrap regression imputation assumes normally

distributed imputations and creates new values for imputing missing values. PMM is the basis

for the proposed method in this paper and is described in detail in Section 3.3.1. There are

different approaches to conduct PMM, see, e.g., (Van Buuren, 2018, Ch. 3). However, this
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approach has the drawback of not incorporating non-linearites or interactions, if not modeled

explicitly. Therefore, Deng and Lumley (2023) use XGBoost instead of a linear regression as

the underlying model. The uncertainty induced by the missing values is reflected by fitting the

XGBoost on a random subsample. To extend the tree-based approaches to multiple imputation

Doove et al. (2014) proposed a method which uses the classification and regression tree (CART)

algorithm in a PMM manner to model complex relationships like non-linearities and interactions.

To impute a value zi,q of the feature Zq a CART is trained to predict Zq conditioned on the

remaining variables of the dataset Z\q. Instead of imputing zi,q by the prediction Doove et al.

(2014) propose to sample from the observations in the terminal leave into which zi,q falls. The

authors extend this approach to random forests (RF) as well. Since a RF consist of multiple trees,

the terminal leaves of all trees have to be considered. Hence, every observation in the terminal

leaves in which zi,q falls for every tree is serves as a possible imputation. From these values one

is drawn randomly. For a broad overview of multiple imputation methods we refer to Murray

(2018).

3.3 Methodology

In this section we introduce the General Adaptive Mean Matching Estimator (GAMME), which

uses a neural network to model non-linearities and transfer these to the predictive mean

matching by utilizing accumulated local effect (ALE) plots.

3.3.1 Predictive mean matching

Predictive mean matching is a comparable fast imputation method which needs no distributional

assumptions. Since PMM is a non-parametric imputation approach it is fairly robust under

different distributional assumptions, see, e.g., Kleinke (2017). Furthermore, as shown in Vink

et al. (2014) PMM leads to plausible imputations even if the imputed data is semicontinuous.

From a practical point of view, it is the default imputation method for continuous data in the

popular R package mice, see Van Buuren and Groothuis-Oudshoorn (2011). As explained in

(Van Buuren, 2018, Ch. 3) this method replaces missing values by observed values of the same

feature, which are called donors. In a first step the data is divided in the observations with

missing values Zmiss and the fully observed ones Zobs. Furthermore, the number of donors d is

defined from which in the last step the imputation is sampled from. Subsequently, the observed
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values of the feature with missing values Zobsq are regressed on the fully observed variables Zobs\q

to obtain their prediction Ẑobsq . To account for the uncertainty due to missingness the dataset

is completed M times. Therefore, the regression of Zobsq on Zobs\q is repeated M times either

based on a bootstrap sample or fitted in a bayesian manner. The calculated coefficients of these

regressions β̃ are used to predict the missing values Zmissq resulting in Z̃missq . To determine which

observed value serves as a donor for a specific missing value, Ẑobsq and Z̃missq are compared based

on a metric, usually the absolute difference3. A set of d possible donors are created for every

missing value t which correspond to the d smallest distances between Ẑobsq and Z̃misst,q . From

this set one index r+ is randomly drawn. In a final step the corresponding observed value Zobsr+,q

replaces the missing value Zmisst,q . Despite the usage of predictive mean matching in practical

applications, see, e.g. Blazek et al. (2021), the literature on theoretical aspects of this approach is

sparse. However, Yang and Kim (2020) and Chlebicki et al. (2024) derive asymptotic properties

for PMM, that build the foundation for future research on this topic.

3.3.2 Neural network

Contrary to linear regressions as used in PMM, neural networks are capable of modeling

interactions and non-linearities. In fact, as shown in Hornik et al. (1989) a neural network

with just one hidden layer can approximate a function up to an arbitrary precision. Following

Apicella et al. (2021) feedforward neural networks usually consist of one input layer L0, one

or multiple hidden layer L1, ...,LS and one output layer LS+1. These layers are fully connected

by weights matrices Ws and bias terms bs, where Ws and bs are the connections between Ls−1

and Ls. Each hidden layer consists of a predefined number of neurons, which can differ across

the layers. The number of neurons in the output layer depends on the task the neural network

should perform. Each neuron performs a usually non-linear activation. To process the data

matrix X, it is fed into the input layer, weighted by W1 and b1 and non-linear activated by an

activation function a(.). Therefore, this can be written as:

A1 = a(XW1 + b1) (3.5)

with A1 as the activated weighted input data, which is the output of the first hidden layer and

the input for the second hidden layer. This procedure is done repeatedly until the information

reaches the output layer. The activation function in the output layer o(.) is used to meet a

3 In the literature this often referred as Type 1 matching, which is also the default case for PMM in mice, see
Van Buuren and Groothuis-Oudshoorn (2011).
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desired interval of the dependent variable y. The activation functions a(.) and o(.) are essential

to model non-linearites. If the activation functions are the identity function, then the whole

network consists of chained matrix multiplication and remains linear with respect to the input

(Goodfellow et al., 2016, p. 168). The output f (X) of a neural network with S hidden layers can

be formalized as:

f (X) = o(AS ) = o(a(AS−1WS + bS )) (3.6)

In the training process the weights and biases are updated via gradient descent.

3.3.3 Accumulated local effect (ALE) plots

Accumulated local effect plots are an XAI method introduced by Apley and Zhu (2020). The

goal here is to visualize the effect of each feature on the prediction of a model f . Compared to

the partial dependent plots ALE plots are fast to compute and are unbiased in the presence of

correlations. Following Apley and Zhu (2020) to calculate ALE plots for each feature Xq the

range of the feature is divided into H buckets, also known as grid size, where the upper and the

lower bound of the buckets correspond to the quantiles of the feature. For every bucket h each

observation xih,q of Xq, that falls into bucket h, the difference in the prediction is computed with

xih,q replaced by the lower and upper bound of bucket h uh−1,q and uh,q. The set of observations

in bucket h will be further denoted as Sh. For each bucket these differences are averaged and

accumulated to get the (uncentered) ALE, see, e.g., (Molnar, 2022, Ch. 8). As stated in Apley

and Zhu (2020) this can be formalized as:

gq,ALE(X) =
hq(X)∑
h=1

nh
−1

∑
Xi∈Sh

[
f (uh,q,Xi,\q)− f (uh−1,q,Xi,\q)

]
(3.7)

with Xi,\q being the observation i without the value of Xq, nh the cardinality of Sh and hq(X) a

function, that returns the index of the interval for each xih,q. gq,ALE(X) represents the vector of

ALE values containing the ALE values gq,ALE(Xi,q) for each observation i for feature q. Following

Apley and Zhu (2020) gq,ALE(X) is subtracted by the mean over the individual ALE values

gq,ALE(Xi,q). Therefore, the centered version Gq,ALE(X) has an average effect of zero:

Gq,ALE(X) = gq,ALE(X)−N−1
N∑
i=1

gq,ALE(Xi,q) (3.8)
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According to (Molnar, 2022, Ch. 8) the ALE values can be interpreted as difference to the average

prediction by changing the feature on the prediction f conditioned on a given observation.

3.3.4 GAMME

PMM has the advantage of imputing only observed and therefore reasonable values as well as

the speed of fitting regressions. On the contrary, this method is based on a linear regression,

which is not able to account for non-linearities, if not explicitly modeled. Hence, PMM can be

inferior to more flexible methods, see, e.g, Murray (2018). To incorporate non-linearities without

explicitly modeling them, one can use neural networks, but to account for the uncertainty they

must be either bayesian or fitted on a bootstrap sample, which eliminates the advantage of a

fast imputation. To overcome this problem, we propose to use the information modeled by a

neural network to incorporate that into the standard PMM procedure. Suppose for illustration a

data generating process of the following form:

y = γ0 +γ1X1 +γ2ζ(X2) + ε ε ∼N (0,1) (3.9)

with X1 being a feature with missing values, X2 a fully observed feature and y the fully observed

dependent variable. Let γ0 be the intercept and γ1 and γ2 the corresponding feature effects, ε

random noise and ζ(.) a non-linear function. Suppose the probability to be missing for each

element of X1 depends on X2 and y such that in the notation of Section 3.2.1 P r(RX1
= 0|X2, y)

holds. Following (Van Buuren, 2018, Ch. 3) in PMM X1 is regressed on the observed X2 and y.

Then for each to be completed dataset this regression is repeated but with taking into account

the uncertainty regarding the missingness, e.g., by fitting it on a bootstrap sample. But since X2

is modeled linearly the imputation model is misspecified and the imputation will be biased. To

correct this the imputation model have to take ζ(X2) instead of X2 into account.

Therefore, we propose GAMME to solve this problem. A detailed pseudo algorithm can be found

in Appendix 3.A in Algorithm 1. First a neural network is fitted to capture all relationships

between y and X. Since a neural network can only be fitted on fully observed values the neural

network is fitted on yobs and Xobs. The next step is to decompose the prediction into a additive

structure. Following Apley and Zhu (2020) ALE plots have this decomposition property, such
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that for the prediction f (X) it holds that4:

f (X) =
Q∑
q=1

Gq,ALE(X) (3.10)

with Gq,ALE(X) being the ALE values of the q-th out of Q features. As the ALE plots are able to

decompose the prediction, the neural network have to converge and be tuned carefully. Further-

more, GAMME assumes that the decomposition as specified in Equation (3.10) is sufficient to

decompose the prediction. If interactions should be taken into account, we refer to Section 3.3.5

for an extension of GAMME. As stated in Apley and Zhu (2020) effects of higher order are often

considered as less important than main and second order effects.

Since many imputation algorithms are designed to impute just one feature they have to be

extended. One common approach is to use fully conditional specification (FCS) as described in

Van Buuren et al. (2006). FCS uses a chained approach in a Gibbs Sampler fashion in which

the imputations are improved over the iterations. This extension is also used for GAMME to

extend PMM. For FCS the features are sorted by the proportion of missing values from high to

low. Subsequently, the dataset is imputed featurewise by random draws of the observed values

of the corresponding feature to create one initial fully observed dataset.

Figure 3.1: Illustrative example of the the ALE transformation
Notes: The figure shows an illustrative example of an ALE plot (solid line) and the ALE transformation. The observed value of

−2.75 (vertical dotted line) is replaced with the ALE value of 6.11 (horizontal dashed line).

The next steps have to be done for each to be completed dataset and iterations I . For every feature

with missing values k the current imputations are deleted to use PMM. The next steps are the

extension which allows GAMME to incorporate non-linearities. Every feature Xq but k and the

4 The decomposition by Apley and Zhu (2020) takes higher order effects into account to fully reproduce f (X). Since
we propose to detect the interactions and model them explicitly as described in Section 3.3.5 those are omitted in
Equation (3.10).
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dependent variable y are replaced with the corresponding ALE values Gq,ALE(X) as illustrated

in Figure 3.1 to obtain the transformed dataset Z∗(i−1). This allows us to use predictions of the

neural network, which is now linearized conditioned on the ALE values. Hence, this corrects the

misspecification and the PMM can be used with the standard linear model. Now the algorithm

proceeds with steps of PMM as described in, e.g. (Van Buuren, 2018, Ch. 3) but with Z∗(i−1)

instead of Z(i−1). Therefore, Z∗(i−1),obs
k is regressed on Z∗(i−1),obs

\k and predicts Z∗(i−1),obs
k to get

̂
Z
∗(i−1),obs
k . To account for the uncertainty due to missingness a bootstrap sample Z∗(i−1),obs,b is

drawn and used to regress Z∗(i−1),obs,b
k on Z∗(i−1),obs,b

\k to get β̃. These regression coefficients are

used to predict Z∗(i−1),miss
k resulting in

˜
Z
∗(i−1),miss
k . To find suitable donors, we use as distance

the absolute difference of every observation r of
̂

Z
∗(i−1),obs
k and t of

˜
Z
∗(i−1),miss
k in order to find

predictions that are similar to those of the missing values. Now we can define a set of donors for

every observation t as those observations with the d smallest distances. Subsequently one index

r+ is drawn randomly and the corresponding observed value Z(i−1)
r+,k is used as imputation.

In terms of the example above
̂

Z
∗(i−1),obs
k is estimated by:

X̂obs1 = β̂0 + β̂1G2,ALE(Xobs) + β̂2y
obs (3.11)

instead of:

X̂obs1 = β̂0 + β̂1X
obs
2 + β̂2y

obs (3.12)

The adaption for the bootstrap regression is analogous. Hence, β̂ and β̃ with GAMME contain

non-linear information by using the transformed values instead of the original features.

3.3.5 GAMME with interactions

In many areas of research and practical applications interaction effects are considered in the

modeling process to improve the model and get a deeper understanding of the data generating

process, see, e.g. Caprio et al. (2007); Spilimbergo (2009) or Havrylenko and Heger (2024). As

pointed out by Havrylenko and Heger (2024) one advantage of neural networks over classical

statistical models is the inherent modeling of interactions. One way to visualize these interac-

tions are second order ALE plots (Apley and Zhu, 2020). Similar to the ALE plots for individual

features second order ALE plots visualize the the effect of the interaction of two variables on the

prediction. These second order ALE plots show the isolated effect of the interaction without the

first order effect and are therefore a powerful tool to investigate modeled interactions. However,

according to (Molnar, 2022, Ch. 8) for some areas that cover only a few observations, e.g., at
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tails, these interactions can be unstable. This could lead to unreliable imputations especially

when all interactions are included. To overcome this drawback instead of using the second order

ALE plots directly and transform every possible pairwise interaction we use them as a heuristic

to reveal important interactions. This allows us to only take into account important interactions

and omit unimportant ones. For a first step a neural network is fitted on the fully observed

data Zobs to predict the dependent variable yobs. Afterwards, every pairwise interaction can

be examined by calculating second order ALE plots as presented in Figure 3.2. These plots

are based on a grid of ALE values representing the effect on the prediction for the specific

combination of the values of the interacting features. To rank the importance of the modeled

interactions the ALE values are squared to pronounce high effects and reduce low interactions.

For spurious interactions we observe that most ALE values are smaller than one as illustrated

in Figure 3.2a. On the contrary real interactions show much higher values as displayed in

Figure 3.2b. Therefore, squaring these values pronounce real interactions and reduce the effect

of spurious ones. Due to extreme values for example at the tails of features even spurious

interactions can have high effects on the prediction according to the second order ALE plots.

(a) Second order ALE plot - spurious inter-
action.

(b) Second order ALE plot - real interaction.

Figure 3.2: Illustrative example of second order ALE plots
Notes: The figure shows an illustrative example of second order ALE plots. The left plot shows a spurious interaction (X6 ·X8)
with only a weak effect on the prediction. The right plot shows an “real” interaction (X7 ·X8) that is part of the data generating
process and has great effect on the prediction.

Hence, we summarize the squared ALE values of the 2-D ALE interaction surface by calculating

the median instead of the mean to account for such outliers that we denote ν{q,j} for the

interaction between feature q and j. We order these medians ν ascending to rank important over

unimportant interactions. To determine a cut off value we use the Kneedle algorithm by Satopaa

et al. (2011). This method is a general approach to find the “knee” based on the maximum

curvature. All ν{q,j} that exceed this cut off values ϕ are modeled explicitly as the product of
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feature Xq and Xj and are added to the dataset5. Afterwards, GAMME can be applied to the

extended dataset as described in Section 3.3.4. We provide a pseudo algorithm, Algorithm 2, as

step by step guide in the Appendix 3.A.

3.4 Simulation study

To evaluate the capability of imputing missing values with GAMME and restoring statistical

inference a simulation study is conducted and compared to other popular imputation methods

including PMM as described in Section 3.3.1.

3.4.1 Simulation setup

In this simulation study we consider two data generating processes (DGPs). The first one uses

six independent features (X1,X2,X3,X4,X5,X6) iid∼ U (−3,3) to model the dependent variable y as

follows:

y = −2.5 +X1 +X2 +X3 +X4 +X2
5 + exp(X6) + ε ε ∼N (0,1) (3.13)

The second DGP extends Equation (3.13) by including interactions as well. Therefore, we

added two additional features X7 and X8 to the data. This results in eight independent features

(X1,X2,X3,X4,X5,X6,X7,X8) iid∼ U (−3,3). The extended DGP covers in addition to the main

effects of Equation (3.13) the interactions X3 ·X4 as well as X7 ·X8. Furthermore, we use different

coefficients for the interactions to check the capability of our ALE interaction detection heuristic

to find interactions of different strengths. Moreover, X7 and X8 have no main effect on y. This

allows us to check the capabilities of GAMME for insignificant main effects. Hence, the data

generating process can be formalized as follows:

y = −2.5 +X1 +X2 +X3 +X4 +X2
5 + exp(X6) +X3 ·X4 +

1
2
·X7 ·X8 + ε ε ∼N (0,1) (3.14)

Another interesting perspective are the interactions between features that contain missing values.

These constellations offers a whole strand of missing data literature since the imputation of such

5 Please note, that this heuristic will always find an interaction due to the kneedle algorithm always finding a
turning point. We highly recommend to manually decide if there are interactions based on the second order
ALE plots or due to an scientific assumption. If there interactions visible, one can use this heuristic to find the
interactions with the biggest effect on the prediction.
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missing values are not straight forward. There are some interesting approaches like passive

imputation, the just another variable (JAV) technique or the substantive model compatible full

conditional specification (SMCFCS). We refer to Seaman et al. (2012); Kim et al. (2015) and

(Van Buuren, 2018, Ch. 6) for an overview and leave this topic for future research.

For the feature X1 and X2 we induce missing values, the remaining features and the dependent

variable y are considered as complete. Following Deng and Lumley (2023) we define ξ1 with

ξi,1 = yi +Xi,3∀i and create the missing values in X1 as follows:

P r(RX1
= 0) =


0.6 if ξi,1 is in the top third of ξ1

0.1 if ξi,1 is in the middle third of ξ1

0.6 otherwise

(3.15)

Therefore the average proportion of missing values in X1 is roughly 43.33%. For X2 we use a

similar procedure and set ξ2 as ξi,2 = yi +Xi,4∀i. To study the impact of a smaller proportion of

missing values we decrease the probability to be missing such that the average proportion of

missing values in X2 is 20%:

P r(RX2
= 0) =


0.25 if ξi,2 is in the top third of ξ2

0.1 if ξi,2 is in the middle third of ξ2

0.25 otherwise

(3.16)

To model MCAR we randomly drop a fraction of p1 observations of X1 and a fraction of p2

observations of X2, which can be formalized as:

P r(RX1
= 0) = p1

P r(RX2
= 0) = p2

(3.17)

p1 and p2 are set to average proportion of missing values in the MAR case, such that the

simulations only differ in the missing data mechanisms. We choose 10,000 observations as

sample size as in Deng and Lumley (2023) and run this simulation 1,000 times. In every

simulation run each imputation approach replaces the missing values with their imputed values.

Based on these completed datasets the inference model is chosen according to the true data

generating process in Equation (3.13) or respectively in Equation (3.14). This ensures that

the calculated metrics and therefore the evaluation of the imputation approaches are solely

based on their imputed values and not on a misspecified inference model. The ALE plots are
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generated with a grid size of H = 1,000 for a refined picture of the effect for this sample size. To

investigate the robustness of GAMME we also conducted this simulation with standard normal

distributed features. Furthermore, we consider 2,000 observations as sample size to investigate

the properties of GAMME on a smaller sample with uniform and standard normal distributed

features. In the case of the smaller sample size grid sizes of H = 200 and H = 100 are used to

account for different number of buckets in the ALE plots.

3.4.2 Hyperparameters

Neural networks are very flexible and have multiple hyperparameters, which have to be set

before fitting the network. To find the best hyperparameters, a hyperparameter search is

conducted for the simulation via random search following Bergstra and Bengio (2012)6. For

that, we assign each parameter a distribution, from which we draw randomly 100 constellations.

Our network consists of four hyperparameters. The learning rate is the fraction of the gradient,

which is used to update the weights and biases. We use a continuous uniform distribution with

lower bound 0.0001 and 0.01 as upper bound. The bounds are chosen by dividing/ multiplying

the default learning rate 0.001 of the used optimizer adam, see Kingma and Ba (2017), by 10.

We consider one or two hidden layers, which are equally likely. To determine the number of

neurons we use a multiple approach following Kellner et al. (2022) or Nagl et al. (2022). As

baseline we use 32 neurons for the first hidden layer and 16 neurons for the second hidden

layer if the neural network has two hidden layers. The multiple is the factor by which the

baseline is multiplied. Therefore, a multiple of e.g. 3 results in neural network with 32 · 3 = 96

neurons if the neural network has one hidden layer and in the case of two hidden layers the

first hidden layer consists of 32 · 3 = 96 neurons and the second hidden layer of 16 · 3 = 48. We

use a discrete uniform distribution with whole numbers from 1 to 5. After a hidden layer we

include a dropout layer introduced by Srivastava et al. (2014) to regularize the neural network

and prevent overfitting. The dropout rate is drawn from a continuous uniform distribution with

lower bound 0.0 and upper bound 0.5. Furthermore, early stopping is applied as an additional

regularization method. We use three fold cross-validation on the first simulation and choose

the network constellation with the smallest average validation mean squared error as our final

hyperparameters, which are hold constant for the remaining simulation runs7. As activation

function we use the ReLU function.

6 Since the data generating process is the same for every simulation and differs only in the number of observations
and the proportion of missingness the results of the hyperparameter searches are quite similar.

7 To overcome random weight initialization every fold is fitted three times and the results of each fold are averaged.
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Besides GAMME GAIN also has parameters, which has to be chosen in advance. For GAIN we

follow Yoon et al. (2018) and use the official implementation8 with their set hyperparameters.

One hyperparameter α has to be evaluated via cross-validation. The same cross-validation as

for GAMME is used, despite evaluating the root mean squared error and using a grid search as

in Yoon et al. (2018). The parameter space for α is set to {0.1,0.5,1,2,10,100}.

3.4.3 Metrics

To compare the approaches we use the relative bias (RB) and the coverage rate (CR) which are

according to (Van Buuren, 2018, Ch. 2) appropriate metrics for evaluating imputation methods.

As shown in (Van Buuren, 2018, Ch. 2) the root mean squared error is not a useful metric since

it does not take into account the uncertainty due to missingness. The relative bias for a feature

Xq RBq is defined as:

RBq =
E(β̂q)− βq

βq
(3.18)

with β̂q as the estimated regression coefficients and βq as the true coefficient in the data generat-

ing process.

The coverage rate of feature Xq is the proportion of simulation runs in which βq lies in the

estimated confidence interval. In all simulations a 95% confidence interval is used. To evaluate

the metrics for the MI methods a linear regression in the sense of Equation (3.13) respectively

Equation (3.14) is fitted on each completed dataset. The estimated regression coefficients and

standard errors are pooled according to Rubin’s rules. Hence, the pooled regression results

are further analyzed identical to a singular regression. For the MI methods M = 10 is used to

produce M completed datasets. For the methods that rely on PMM (PMM, MIXGB, GAMME)

the imputations are drawn from a set of d = 5.

3.4.4 Results

We compare eleven methods to the proposed GAMME to determine the capabilities of imput-

ing such that the statistical inference is valid. To cover each class of missing data handling

approaches we consider in this paper four single imputation methods, five multiple imputa-

tion methods and one likelihood based method. Furthermore, we also consider complete case

8 https://github.com/jsyoon0823/GAIN
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analysis, which does no imputation but is the default case in many studies, see, e.g, King et al.

(2001). For the SI methods we use the mean and the regression imputation (Reg) which are a

common choice for imputation, see Lin and Tsai (2020). To extend the SI methods by complex

imputation methods we also compare MissForest which is a common choice across different

scientific areas like medicine or nature, see, e.g., Nusinovici et al. (2020); Knell et al. (2020);

Carmona et al. (2021); Gatti et al. (2021). Furthermore, GAIN is also taken into account to cover

imputation based on neural networks. As likelihood method the EM algorithm9 is considered

since it is an essential part of the missing data literature, see Lin and Tsai (2020). On the

multiple imputation side bootstrap regression imputation (BootReg) and CART as well as RF

imputation as the multiple imputation extensions to regression imputation and MissForest are

applied. Furthermore, PMM is used which is the linear counterpart and basis for the in this

paper proposed GAMME method. In addition to that MIXGB is considered as it is one of the

latest extensions to predictive mean matching which also incorporates non-linearities.

As stated in (Van Buuren, 2018, Ch. 1) the assumption of no relationship between the probability

of missingness and the features is frequently considered as not realistic. Therefore, we discuss

the MAR results in more detail. The first line of every table BD refers to before deletion and

represents the result for the case without missing values. The goal for an imputation method

is to produce results, which should be as close as possible to the before deletion case. All

results are rounded to two digits for the relative bias and one digit for the coverage rate. Hence,

column-wise a bold value indicates the best result, which is closest to the BD values, and a

underlined value represents the second best result. If multiple methods have the same top

ranking all of them are bold/ underlined.

Results without interactions

This subsection covers the results for the DGP as specified in Equation (3.13) that does only cover

main effects. Table 3.1 shows the relative bias for 10,000 observations under MAR. As expected

without missing values, the BD case, the bias is very close to zero. The complete case analysis in

the second line of the table results in comparable low bias except for β3. Mean imputation works

well for β1 and β2, but induces substantial bias in the remaining coefficients. We can see that

under MAR a few methods act quite similar. There is only a small difference in the results of EM,

9 The original EM algorithm aims to estimate distributional parameters in the presence of missing data. To compare
the EM algorithm with the other methods we use the R package missMethods by Rockel (2022), which applies
imputation based on the EM algorithm.
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BootReg and PMM. The regression imputation performs better for β1 and β2 but worse on the

remaining coefficients. One reason for the high bias can be that these methods construct their

imputation conditioned on the observed values, which gives the potential to perform well under

MAR, but only if the imputation model is capable of modeling the data generating process.

Since many of the imputation models rely solely on linear terms they potentially induce biased

imputations by over- or underestimating effects. The complex imputation methods reduce the

bias, especially in β5 and β6 which represent the coefficients for the non-linear components

of the data generation process in Equation (3.13), compared to the linear approaches but also

suffer from substantial bias. GAIN works especially well for β5 and β6 but results in high bias

in β1 and β2. CART, RF and MIXGB underestimate all coefficients by at least 2% except for

β6. MissForest underestimates all coefficients with no missing values and overestimates the

coefficients of those features that suffer from missing values. Furthermore, it is clearly visible,

that the proposed method GAMME has very low to no bias and dominates the other imputation

methods in this simulation since it has the lowest bias for every coefficient.

Table 3.1: Average relative bias in % for 10,000 observations (uniform) under MAR without
interactions

β0 β1 β2 β3 β4 β5 β6
BD 0.01 0.02 0.01 0.01 0.00 -0.02 0.00
CCA -2.56 -1.09 -1.10 -2.23 -1.34 -1.19 -0.67
Mean 3.95 -0.39 0.92 2.97 1.97 1.61 0.72
Reg -15.75 9.08 5.42 1.60 1.09 -10.14 -4.73
PMM -9.54 -30.13 -13.09 0.91 0.68 -6.38 -2.38
BootReg -10.30 -31.44 -13.61 0.97 0.70 -6.60 -3.06
CART -3.48 -20.03 -9.71 -2.97 -2.75 -2.51 -0.42
RF -4.18 -27.13 -12.65 -2.42 -2.46 -2.62 -0.61
EM -10.29 -31.45 -13.58 0.94 0.72 -6.60 -3.05
MissForest -5.74 12.84 3.36 -3.21 -3.30 -3.62 -0.79
MIXGB -4.07 -2.48 -2.44 -2.56 -2.19 -2.42 -0.65
GAIN 1.78 -12.98 -5.42 3.47 1.31 0.48 -0.38
GAMME -0.14 -0.29 -0.06 0.09 0.06 -0.11 -0.08

Notes: This table shows the results for 1,000 simulation runs. The best value for each coefficient is in bold and the second best
value is underlined. If multiple approaches result in the same value and are best or second best, they are all bold/ underlined.

Besides the bias an important property for an imputation method is to correct the standard

errors, which directly affects statistical significance. Therefore, Table 3.2 represents the coverage

rate across the 1,000 simulation runs. Here the major drawbacks of most imputation methods

get clear. BD offers coverage rates around 95%, which severs as benchmark for all other methods.

For CCA there is substantial drop in the coverage rate for all features. This also holds for mean

imputation which offers higher coverage rate for the features with missing values but there is a

further decrease in coverage for the fully observed features. Therefore, significance tests can
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Table 3.2: Coverage rate in % for 10,000 observations (uniform) under MAR without
interactions

β0 β1 β2 β3 β4 β5 β6
BD 93.5 95.0 92.8 95.1 94.3 94.2 94.8
CCA 27.0 73.8 73.7 28.8 65.0 41.6 52.7
Mean 7.4 98.4 89.6 14.6 48.8 29.5 48.0
Reg 0.0 0.0 0.3 52.5 65.3 0.0 0.0
PMM 0.0 0.0 0.0 95.3 96.6 0.0 0.0
BootReg 0.0 0.0 0.0 94.9 96.2 0.0 0.0
CART 20.9 0.0 0.0 24.2 30.3 7.1 81.1
RF 8.5 0.0 0.0 48.7 46.1 5.4 73.4
EM 0.0 0.0 0.0 85.5 88.4 0.0 0.0
MissForest 0.1 0.0 9.0 8.0 6.3 0.0 29.9
MIXGB 2.9 15.7 24.2 19.3 32.8 3.1 53.5
GAIN 18.9 14.7 16.4 17.4 21.9 46.1 21.3
GAMME 94.9 91.7 93.0 94.1 95.2 94.8 93.2

Notes: This table shows the results for 1,000 simulation runs. The best value for each coefficient is in bold and the second best
value is underlined. If multiple approaches result in the same value and are best or second best, they are all bold/ underlined.

not be trusted and should be avoided. Regression imputation, MissForest and GAIN offer low

coverage rates as they are all singe imputation methods. The linear MI methods BootReg and

PMM as well as EM have two coefficient whose coverage rates are near the desired result of BD.

This could be due to feature which are dominantly modeled by these imputation methods. The

complex MI methods CART, RF and MIXGB improves the coverage for β6 but are problematic

for the other coefficients. Only GAMME is able to restore the missing values such that the

coverage rate is close to the BD case. GAMME offers the best coverage rate for every feature but

one. For this particular variable GAMME ranks second best with only 1% less coverage rate

than the BD case. Therefore, GAMME offers the opportunity to have both desired properties:

low bias and high coverage rate.

The results of MCAR can be found in Tables 3.B.1 to 3.B.2 in Appendix 3.B. In this case CCA

performs best or second best. The reason for that is that according to Carpenter and Smuk

(2021) under MCAR CCA is identical to taking a random subsample from the original data,

which results in bias free regression coefficients. For mean imputation the regression coefficients

are only slightly worse than CCA. The linear methods model X3 and X4 well with low bias

but remain problematic for the features with a non-linear effect and for the features with

missing values. GAIN and MIXGB constantly underestimates the coefficients but less than the

linear approaches. The picture for MissForest is very similar to the MAR case. There is an

overestimation in the features with and an underestimation in the features without missing

values observable. On the other hand GAMME performs equally well with negligible bias.

This also holds for the coverage rates. Only CCA, mean imputation and GAMME can produce
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coverage rates similar to the BD case whereas CCA and mean imputation have a slight advantage.

The remaining imputation approaches have very low coverage rates especially for the features

with missing values. However, the coverage rates for the linear features X3 and X4 increased to

a high level near the desired BD case or even further for the linear imputation methods. Taking

the results from all simulations into account GAMME is the only method, which works very

good under MCAR and MAR for bias and coverage rate.

The detailed results for the normally distributed sample can be found in Tables 3.C.1 to 3.C.4

in the Appendix 3.C. The overall conclusion drawn on the uniform simulations still holds.

However, in some cases there are minor performance deteriorations, but GAMME still yields to

competitive results. The results for the small sample size can be found in Appendix 3.D and

3.E in which the results for the individual settings are displayed in Tables 3.D.1 to 3.E.4. The

reduced sample size decreases the performance of GAMME only slightly. The largest relative

bias of GAMME is −1.83% whereas in most cases the absolute relative bias is below 1%. In

terms of coverage rates GAMME still performs exceptionally well and provides the best trade of

between bias and coverage rates across all settings. The changes in the small sample results due

to the decrease of the grid size H are negligible..

Results with interactions

This subsection discusses the results for the second DGP as formalized in Equation (3.14).

We use the in Section 3.3.5 proposed heuristic to detect interactions between features. Our

simulation shows that both interactions X3 ·X4 and X7 ·X8 are successfully detected in almost

every simulation run. Since our approach serves only as a heuristic in a few simulation runs

additional spurious interactions is detected as well. In these cases this interaction is modeled

and added to the dataset. We decided to use this procedure as one would do it similarly in a

practical application in which the true data generating process is unknown. However, in the

rare cases that an interaction is detected that features X1 or X2 this interaction is not included

because as described above interaction with features that contain missing values need special

methods to take care of. These cases occurred with a maximum of 1.1.% and only for the small

sample size under normally distributed data. We leave this extension for future research.

The following Tables 3.3 and 3.4 describe the results for the second DGP with 10,000 uniformly

distributed observations under MAR. Comparing the average relative bias of the imputation

methods with the BD case in Table 3.3 we observed that using GAMME as an imputation

approach results in a very low bias across all coefficients. For the intercept only GAMME can
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provide a bias close to zero whereas all other imputation techniques results in a bias of at

least 2.60%. β1 and β2 are the coefficients for the features with missing values. Here GAMME

and mean imputation provide the lowest bias. Here we can observe, that most imputation

techniques have their highest biases in these two coefficients. For β3 and β4 GAMME offers the

best results but many imputation approaches have low biases in these coefficients. β5 and β6

are the coefficients for the non-linear features of the data generating process. We can see, that

GAMME provides the lowest bias and the imputation techniques that can handle non-linearities

also provide good results. β3,4 and β7,8 represent the coefficients for the interactions. Here

GAMME provides the lowest bias and GAIN the second best results. Since X7 and X8 have no

main effect the relative bias can not be calculated. The raw bias E(β̂q)− βq for q ∈ {7,8} is very

close to zero with a maximum of 0.01% for all imputation approaches and simulations and

therefore omitted in the bias tables.

Table 3.3: Average relative bias in % for 10,000 observations (uniform) under MAR with
interactions

β0 β1 β2 β3 β4 β5 β6 β3,4 β7,8
BD -0.05 0.00 0.00 -0.02 -0.02 -0.01 -0.01 0.00 0.00
CCA -2.68 -0.79 -0.80 -1.69 -1.36 -1.06 -0.69 -0.61 -0.80
Mean 4.78 -0.12 0.56 2.26 2.04 1.51 0.88 0.69 1.01
Reg -7.98 6.98 3.60 0.48 1.39 -5.83 -2.55 -7.02 -6.66
PMM -5.09 -35.02 -15.78 0.29 0.87 -3.66 -1.43 -4.67 -4.36
BootReg -5.19 -35.54 -15.92 0.33 0.84 -3.74 -1.63 -4.50 -4.24
CART -2.60 -27.30 -12.36 -0.39 -0.17 -1.92 -0.24 -2.80 -9.26
RF -2.86 -33.87 -15.50 -0.48 -0.22 -1.81 -0.44 -2.27 -4.16
EM -5.19 -35.51 -15.92 0.34 0.84 -3.73 -1.63 -4.50 -4.29
MissForest -3.97 9.18 2.51 -0.59 -0.12 -2.71 -0.50 -3.65 -8.06
MIXGB -3.57 -10.74 -5.95 -1.61 -0.98 -1.71 -0.64 -4.73 -14.60
GAIN 3.68 -13.86 -6.20 5.02 3.60 1.06 0.48 0.29 0.54
GAMME -0.18 -0.38 -0.09 0.09 0.03 -0.05 -0.12 0.06 0.07

Notes: This table shows the results for 1,000 simulation runs. The best value for each coefficient is in bold and the second best
value is underlined. If multiple approaches result in the same value and are best or second best, they are all bold/ underlined.

Table 3.4 shows the results for the coverage rates in the setting with interactions for 10,000

uniformly distributed observations. For the intercept, β0, only GAMME is able to impute the

missing values such that the coverage is in an reasonable range. The second best result is

provided by CART with only 53.5%. Especially interesting are the results for β1 and β2. Here

we can observe, that GAMME and mean imputation provides good coverage rates exceeding

90%. For the linear features X3 and X4 many imputation approaches offer coverage rates near

the desired results of the BD case. For these coefficients the coverage rates drop for CCA and

mean imputation. GAMME still offers reasonable results with a maximum of 1.3% difference

91



Chapter 3. GAMME - Advances in Predictive Mean Matching

to the BD case. Similar to the case without interactions of the first DGP GAMME provides

the best coverage rates for the non-linear features X5 and X6. For these coefficients all other

imputation approaches provide only low coverage rates. For the interactions many imputation

approaches result in low coverage rates. That can be explained by the underlining models that

are mostly designed only covering main effects. For the more complex imputation techniques

only GAIN provides coverage rates exceeding 55%. CCA provides the second best results. Only

GAMME is capable of identifying the interactions in a reasonable way and include them in

the imputation process. Here the coverage rates are close to the desired results of the BD case.

Taking a look at the coverage rates for the features without a main effect, X7 and X8, most

imputation approaches offer coverage rates near the BD case. Interestingly GAIN has the lowest

coverage rates of about 26%. GAMME is able to lower the too high coverage rates of its linear

counterpart, PMM, resulting in a maximum difference to the BD results of only 1.2%.

Table 3.4: Coverage rate in % for 10,000 observations (uniform) under MAR with
interactions

β0 β1 β2 β3 β4 β5 β6 β3,4 β7,8 β7 β8
BD 95.2 95.3 96.3 94.6 95.1 94.6 94.8 94.6 94.9 94.4 94.7
CCA 25.9 83.6 84.9 54.2 65.9 53.7 49.0 77.7 86.7 95.4 95.3
Mean 2.2 98.9 94.1 36.6 47.8 33.7 33.9 76.3 85.5 95.7 94.6
Reg 0.0 0.0 10.3 81.7 63.2 0.0 0.0 0.0 0.0 85.1 85.1
PMM 4.4 0.0 0.0 98.3 94.5 0.0 12.3 0.0 8.7 98.9 98.5
BootReg 3.8 0.0 0.0 98.7 94.6 0.0 5.2 0.0 11.7 99.0 98.8
CART 53.5 0.0 0.0 93.9 95.7 28.9 89.6 2.8 0.0 97.0 96.4
RF 46.8 0.0 0.0 97.3 99.0 35.3 88.3 9.6 12.4 99.1 98.7
EM 2.3 0.0 0.0 92.9 87.1 0.0 3.2 0.0 8.0 95.6 95.3
MissForest 6.5 0.0 29.5 76.7 83.5 2.0 55.6 0.0 0.0 87.0 87.3
MIXGB 17.1 0.0 0.1 68.5 84.4 33.1 64.4 0.0 0.0 94.5 93.4
GAIN 20.1 7.5 14.4 17.4 20.9 46.8 24.6 55.7 76.1 26.1 26.4
GAMME 94.0 90.5 96.1 95.9 94.4 93.9 91.7 95.5 94.6 95.6 95.4

Notes: This table shows the results for 1,000 simulation runs. The best value for each coefficient is in bold and the second best
value is underlined. If multiple approaches result in the same value and are best or second best, they are all bold/ underlined.

Tables 3.F.1 and 3.F.2 in Appendix 3.F show the results for MCAR with interactions. Similar to

the DGP without interactions CCA offers the best results in terms of bias and coverage rates due

to its equivalence of taking a random subsample as described above. GAMME outperforms all

remaining imputation techniques besides mean imputation that is slightly better. This holds for

the bias as well as the coverage rates. Analogous to the MAR case all imputation approaches

but GAIN offers acceptable coverage rates for β7 and β8. In the case of normally distributed

observations the results change marginally. As indicated by Tables 3.G.1 and 3.G.2 in Appendix
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3.G under MAR GAMME offers the lowest bias for all nine coefficients. For the coverage rates

GAMME provides the best or second best values besides for β7 and β8. For those coefficients

the coverage rates are only 1% and 1.1% above the desired BD case. Changing the missing

data mechanism to MCAR GAMME still provides good results in both metrics as displayed in

Tables 3.G.3 and 3.G.4 in Appendix 3.G. The bias is with a maximum of −0.65% very low and

all coverage rates exceed 91%. Comparing those results to other imputation approaches we see,

that besides CCA and mean imputation GAMME is superior for almost every coefficient.

For robustness we challenge GAMME to impute on smaller datasets as well. The detailed results

can be found in Tables 3.H.1 to 3.I.4 in Appendix 3.H and 3.I. We observe, that the biases

increase and the coverage rates decrease slightly. In most constellations the absolute biases

remain below 1% and are always below 2.5%. For the coverage rates GAMME often offers results

close to the desired BD case and frequently outperforms most competitors especially for the

MAR mechanism. The changes in the small sample results due to the decrease of the grid size H

are negligible. Taking everything into account we can conclude that GAMME offers the best

trade off between low biases and high coverage rates.

3.5 Conclusion

This paper introduces a new method called GAMME to improve imputation and allow valid

statistical inference in the presence of non-linearities. Utilizing the ability of neural networks

to approximate well to any function, we can incorporate this knowledge into the well-known

predictive mean matching method. This can be achieved by using accumulated local effect plots

and their property of functional decomposition. Transforming the feature values reduces the

bias of regression coefficients and improves confidence intervals to draw statistical inference.

Furthermore, GAMME is also challenged on interacting features. For this we propose a heuristic

based on second order ALE plots to disentangle important from spurious interactions. These

interactions are modeled explicitly and added to the dataset on which GAMME is applied.

GAMME combines the field of machine learning by using neural networks with well established

classical statistical approaches the PMM to create a new imputation method. In multiple

simulations we show, that GAMME outperforms common imputation methods and advanced

machine learning imputation approaches in nearly every covered situation. This also holds

for the simulations featuring interactions. The proposed heuristic allows to reveal the real

interactions of the simulation study in almost every iteration. Even for the cases where spurious

interactions are modeled additionally the performance of GAMME remains exceptionally good.
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Taking into account missing completely at random and missing at random scenarios GAMME

provides the best trade off between unbiased regression coefficients and correct coverage rates

and can therefore be a useful imputation approach in many scientific and practical applications.

Future research could provide insights regarding non-linearities in the missing values and

mixed type data. Especially the extension to interactions with missing values is of great

importance. Forthcoming research could combine GAMME with existing extensions like the

just another variable approach by Von Hippel (2009) or passive imputation as it is described

in (Van Buuren, 2018, Ch. 6). Current more complex approaches like the substantive model

compatible full conditional specification by Bartlett et al. (2015) could provide a fruitful path in

further developments of GAMME. Furthermore, theoretical properties of imputation methods

are of great interest. Future research could build on the pioneering work of Yang and Kim

(2020) who derived asymptotic properties for the PMM imputation technique. Their approach

could provide a rewarding path for deriving such properties for methods, that build on PMM

like GAMME does.

94



Chapter 3. GAMME - Advances in Predictive Mean Matching

3.A Pseudocode

This section contains the pseudocode for the proposed method in Section 3.3.4 and its extension

in Section 3.3.5.

Algorithm 1 GAMME

Require: Dataset Z = {Zmiss,Zobs}; number of to be completed datasets M; number of itera-
tions I ; number of donors d; number of features with missing values K ; total number of
independent features Q.

1: Split Zobs into dependent variable yobs and independent features Xobs

2: Fit neural network on yobs and Xobs

3: for q in 1 to Q do
4: Gq,ALE(X)← Calculate ALE plot of feature q of Xobs

5: end for
6: Sort the features in Z from highest to lowest proportion of missing values
7: Z0← Create a copy of Z
8: for k in 1 to K do
9: Z0,miss

k ← Draw a random sample of Z0,obs
k as a initial imputation

10: end for
11: for m in 1 to M do
12: for i in 1 to I do
13: for k in 1 to K do
14: Z∗(i−1)← Create a copy of Z(i−1)

15: Z
∗(i−1)
k ← Delete the current imputation in Z∗(i−1)

k
16: for q in 1 to Q but k do
17: Z

∗(i−1)
q ← Replace every value in Z∗(i−1)

q with the corresponding ALE values
from the ALE plot Gq,ALE(X)10

18: end for
19: β̂ ← Regress Z∗(i−1),obs

k on Z∗(i−1),obs
\k

20:
̂

Z
∗(i−1),obs
k ← Z

∗(i−1),obs
\k β̂

21: Z∗(i−1),obs,b ← Draw a bootstrap sample of Z∗(i−1),obs

22: β̃ ← Regress Z∗(i−1),obs,b
k on Z∗(i−1),obs,b

\k

23:
˜

Z
∗(i−1),miss
k ← Z

∗(i−1),miss
\k β̃

24: For every observation r in
̂

Z
∗(i−1),obs
k and for every observation t in

˜
Z
∗(i−1),miss
k

calculate δr,t = | ̂
Z
∗(i−1),obs
r,k − ˜

Z
∗(i−1),miss
t,k |

25: for every t do
26: Find the d smallest distances out of δr,t
27: Draw randomly one index r+ from these distances
28: Z(i)← Z(i−1) with missing value Z(i−1)

t,k replaced with Z(i−1)
r+,k

29: end for
30: end for
31: end for
32: return Z(I) as the m-th imputed dataset
33: end for
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Algorithm 2 ALE interaction detection

Require: Dataset Z = {Zmiss,Zobs}; total number of independent features Q.
1: Split Zobs into dependent variable yobs and independent features Xobs

2: Fit neural network on yobs and Xobs

3: for q in 1 to Q − 1 do
4: for j in q+ 1 to Q do
5: G{q,j},ALE(X)← Calculate second order ALE plot for feature interaction between q

and j11

6: ν{q,j} ← Calculate the median of the squared ALE values for the second order ALE
plot med((G{q,j},ALE(X))2)

7: end for
8: end for
9: Sort ν ascending

10: Apply Kneedle to find the cut off value ϕ12

11: for q in 1 to Q − 1 do
12: for j in q+ 1 to Q do
13: if ν{q,j} > ϕ then
14: Z ← {Z,Xq ·Xj}
15: end if
16: end for
17: end for

10 An illustration of this transformation is displayed in Figure 3.1. If an observation lies between the upper and
lower bounds of an bucket, the corresponding ALE values are interpolated linearly.

11 Due to the instability of second order ALE plots for extreme values the grid size is reduced to K = 50 to cover
more observations in those buckets.

12 We used the following implementation to apply the Kneedle algorithm: https://github.com/arvkevi/kneed
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3.B Simulation results large sample (uniform) without interactions

Table 3.B.1: Average relative bias in % for 10,000 observations (uniform) under MCAR
without interactions

β0 β1 β2 β3 β4 β5 β6
BD 0.01 0.02 0.01 0.01 0.00 -0.02 0.00
CCA 0.01 0.05 -0.02 -0.01 -0.01 -0.02 0.01
Mean -0.06 0.03 0.03 0.01 0.03 -0.05 0.00
Reg -18.63 9.72 5.14 0.02 0.01 -11.40 -3.73
PMM -11.34 -30.34 -13.51 0.01 0.01 -7.31 -1.93
BootReg -11.98 -31.47 -14.00 0.02 0.01 -7.33 -2.40
CART -3.40 -18.99 -9.74 -2.83 -2.88 -2.44 -0.41
RF -4.35 -26.15 -12.74 -2.86 -2.86 -2.98 -0.64
EM -11.99 -31.48 -14.02 0.02 0.01 -7.33 -2.39
MissForest -6.01 13.91 3.05 -3.92 -3.95 -4.20 -0.84
MIXGB -3.26 -2.30 -2.49 -2.15 -2.18 -2.11 -0.51
GAIN -3.30 -10.54 -4.19 -0.76 -1.75 -1.37 -1.77
GAMME -0.15 -0.29 -0.10 0.01 0.00 -0.11 -0.03

Notes: This table shows the results for 1,000 simulation runs. The best value for each coefficient is in bold and the second best
value is underlined. If multiple approaches result in the same value and are best or second best, they are all bold/ underlined.

Table 3.B.2: Coverage rate in % for 10,000 observations (uniform) under MCAR without
interactions

β0 β1 β2 β3 β4 β5 β6
BD 93.5 95.0 92.8 95.1 94.3 94.2 94.8
CCA 94.6 94.7 95.2 95.6 95.0 95.7 95.4
Mean 92.8 99.4 96.2 95.1 95.5 94.2 94.6
Reg 0.0 0.0 0.0 85.1 85.1 0.0 0.0
PMM 0.0 0.0 0.0 99.0 98.7 0.0 0.4
BootReg 0.0 0.0 0.0 98.9 98.8 0.0 0.0
CART 18.6 0.0 0.0 24.0 22.5 5.1 80.7
RF 5.1 0.0 0.0 29.0 27.7 0.9 70.1
EM 0.0 0.0 0.0 93.9 94.4 0.0 0.0
MissForest 0.1 0.0 9.6 1.5 1.5 0.0 23.5
MIXGB 9.7 20.0 17.7 29.6 29.9 4.6 62.4
GAIN 20.6 15.4 19.6 34.0 31.4 54.3 24.8
GAMME 95.1 92.0 94.7 96.0 94.1 94.8 93.8

Notes: This table shows the results for 1,000 simulation runs. The best value for each coefficient is in bold and the second best
value is underlined. If multiple approaches result in the same value and are best or second best, they are all bold/ underlined.
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3.C Simulation results large sample (normal) without interactions

Table 3.C.1: Average relative bias in % for 10,000 observations (normal) under MAR without
interactions

β0 β1 β2 β3 β4 β5 β6
BD 0.00 0.01 -0.02 -0.05 -0.05 0.01 0.03
CCA -2.82 -4.09 -4.12 -7.42 -4.84 -2.97 -1.85
Mean 1.34 -2.38 0.63 3.14 2.23 1.22 0.68
Reg -8.95 17.13 9.32 3.26 2.07 -14.22 -7.21
PMM -3.36 -20.02 -8.00 2.01 1.26 -7.27 -1.40
BootReg -5.84 -25.44 -10.85 1.92 1.29 -9.21 -4.66
CART -1.23 -15.51 -7.52 -2.71 -2.27 -2.40 -0.49
RF -1.60 -22.20 -10.28 -2.62 -2.41 -2.54 -0.81
EM -5.80 -25.44 -10.84 1.94 1.27 -9.15 -4.64
MissForest -2.20 20.34 6.29 -3.66 -3.30 -3.62 -1.10
MIXGB -0.93 -0.32 -0.60 -1.24 -1.01 -1.32 -0.49
GAIN -0.34 -14.69 -4.93 5.09 2.15 0.64 -0.34
GAMME -0.01 -0.79 -0.47 0.13 -0.06 -0.30 0.23

Notes: This table shows the results for 1,000 simulation runs. The best value for each coefficient is in bold and the second best
value is underlined. If multiple approaches result in the same value and are best or second best, they are all bold/ underlined.

Table 3.C.2: Coverage rate in % for 10,000 observations (normal) under MAR without
interactions

β0 β1 β2 β3 β4 β5 β6
BD 95.5 94.8 95.5 94.5 93.9 95.7 95.3
CCA 9.9 20.1 18.3 0.5 11.0 22.3 35.7
Mean 58.0 77.0 95.1 31.7 61.6 72.5 79.7
Reg 0.0 0.0 0.0 26.6 51.7 0.0 0.0
PMM 2.6 0.0 0.1 77.7 89.9 0.0 48.3
BootReg 0.2 0.0 0.0 79.0 89.8 0.0 0.5
CART 65.0 0.0 0.0 50.9 61.3 33.0 86.3
RF 50.7 0.0 0.0 56.7 62.5 31.6 78.7
EM 0.0 0.0 0.0 65.9 80.4 0.0 0.2
MissForest 12.7 0.0 1.1 16.0 20.2 3.7 41.5
MIXGB 73.0 93.6 91.4 78.5 84.4 65.5 80.8
GAIN 33.3 8.3 25.4 16.6 27.7 63.9 33.4
GAMME 94.3 88.9 95.3 94.7 94.3 93.9 90.4

Notes: This table shows the results for 1,000 simulation runs. The best value for each coefficient is in bold and the second best
value is underlined. If multiple approaches result in the same value and are best or second best, they are all bold/ underlined.
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Table 3.C.3: Average relative bias in % for 10,000 observations (normal) under MCAR
without interactions

β0 β1 β2 β3 β4 β5 β6
BD 0.00 0.01 -0.02 -0.05 -0.05 0.01 0.03
CCA 0.01 0.02 -0.05 -0.02 -0.07 0.01 0.04
Mean 0.00 0.02 -0.02 -0.08 -0.06 -0.01 0.01
Reg -8.48 17.78 8.21 -0.05 -0.05 -12.64 -5.21
PMM -3.72 -19.40 -8.72 -0.05 -0.05 -7.51 -1.07
BootReg -5.45 -26.17 -11.69 -0.08 -0.05 -8.12 -3.34
CART -1.20 -13.99 -7.29 -2.27 -2.33 -2.40 -0.47
RF -1.58 -20.33 -10.25 -2.76 -2.78 -2.76 -0.84
EM -5.41 -26.21 -11.68 -0.07 -0.04 -8.09 -3.33
MissForest -2.13 21.61 6.10 -3.75 -3.79 -3.91 -1.13
MIXGB -0.78 0.55 -0.38 -0.92 -0.94 -1.20 -0.41
GAIN -1.84 -12.10 -7.79 -3.11 -2.77 -0.85 -2.08
GAMME 0.07 -0.51 -0.26 -0.05 -0.07 -0.19 0.22

Notes: This table shows the results for 1,000 simulation runs. The best value for each coefficient is in bold and the second best
value is underlined. If multiple approaches result in the same value and are best or second best, they are all bold/ underlined.

Table 3.C.4: Coverage rate in % for 10,000 observations (normal) under MCAR without
interactions

β0 β1 β2 β3 β4 β5 β6
BD 95.5 94.8 95.5 94.5 93.9 95.7 95.3
CCA 95.6 94.6 94.7 93.3 93.8 96.1 94.9
Mean 93.5 97.7 97.5 94.5 95.1 95.6 94.8
Reg 0.0 0.0 0.1 83.8 85.6 0.0 0.0
PMM 0.8 0.0 0.0 97.2 97.2 0.0 65.3
BootReg 0.2 0.0 0.0 97.3 97.4 0.1 1.7
CART 65.5 0.0 0.0 61.1 58.0 29.1 87.1
RF 49.6 0.0 0.0 51.5 49.9 19.9 77.0
EM 0.0 0.0 0.0 91.6 92.1 0.0 1.1
MissForest 11.9 0.0 0.4 12.1 10.5 0.5 39.0
MIXGB 76.5 91.4 92.7 85.0 85.6 71.5 84.1
GAIN 28.7 18.9 19.6 31.7 30.4 76.8 28.9
GAMME 94.3 92.2 94.0 94.6 95.3 93.9 93.4

Notes: This table shows the results for 1,000 simulation runs. The best value for each coefficient is in bold and the second best
value is underlined. If multiple approaches result in the same value and are best or second best, they are all bold/ underlined.
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3.D Simulation results small sample (uniform) without interactions

Table 3.D.1: Average relative bias in % for 2,000 observations (uniform) under MAR without
interactions

β0 β1 β2 β3 β4 β5 β6
BD 0.01 -0.02 0.01 -0.05 -0.07 -0.01 0.01
CCA -2.52 -1.12 -1.10 -2.32 -1.41 -1.18 -0.62
Mean 4.07 -0.40 0.87 2.97 1.91 1.63 0.77
Reg -15.63 8.95 5.38 1.61 1.14 -10.12 -4.70
PMM -9.56 -30.30 -13.10 0.90 0.65 -6.38 -2.35
BootReg -10.21 -31.55 -13.56 0.99 0.66 -6.59 -3.03
CART -4.41 -25.93 -11.80 -3.03 -2.89 -3.06 -0.49
RF -4.17 -32.28 -14.48 -2.01 -2.11 -2.47 -0.66
EM -10.28 -31.41 -13.55 0.96 0.67 -6.64 -3.02
MissForest -5.65 8.40 2.23 -2.56 -2.68 -3.38 -0.82
MIXGB -3.35 0.40 -0.09 -1.49 -1.12 -1.87 -0.56
GAIN 2.17 -8.64 -3.37 4.96 2.55 0.50 -0.33
GAMME (H=200) -0.26 -0.90 -0.20 0.43 0.23 -0.01 -0.40
GAMME (H=100) -0.26 -0.89 -0.19 0.43 0.25 0.00 -0.42

Notes: This table shows the results for 1,000 simulation runs. The best value for each coefficient is in bold and the second best
value is underlined. If multiple approaches result in the same value and are best or second best, they are all bold/ underlined.
GAMME (H=100) serves as a robustness to GAMME (H=200) and is not considered for the ranking.

Table 3.D.2: Coverage rate in % for 2,000 observations (uniform) under MAR without
interactions

β0 β1 β2 β3 β4 β5 β6
BD 95.9 94.0 94.9 95.2 94.7 95.2 96.1
CCA 80.3 91.5 91.0 78.5 89.6 85.1 86.6
Mean 63.8 99.4 96.3 72.7 87.1 80.7 82.8
Reg 0.0 3.9 31.5 76.7 78.9 0.0 0.1
PMM 17.0 0.0 0.0 97.5 98.2 3.5 39.6
BootReg 9.1 0.0 0.0 97.3 98.4 2.2 19.6
CART 67.7 0.0 0.3 76.8 79.8 54.5 90.9
RF 79.0 0.0 0.0 92.8 91.9 77.2 93.1
EM 4.6 0.0 0.0 91.3 93.5 1.4 9.3
MissForest 29.5 5.1 72.5 63.8 63.7 27.4 64.4
MIXGB 65.4 93.9 92.0 82.4 85.8 65.6 79.7
GAIN 50.2 32.5 39.4 38.6 47.4 76.2 50.7
GAMME (H=200) 94.3 90.6 95.0 94.2 95.4 96.5 88.7
GAMME (H=100) 95.3 91.4 96.2 93.9 94.3 95.4 87.9

Notes: This table shows the results for 1,000 simulation runs. The best value for each coefficient is in bold and the second best
value is underlined. If multiple approaches result in the same value and are best or second best, they are all bold/ underlined.
GAMME (H=100) serves as a robustness to GAMME (H=200) and is not considered for the ranking.
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Table 3.D.3: Average relative bias in % for 2,000 observations (uniform) under MCAR
without interactions

β0 β1 β2 β3 β4 β5 β6
BD 0.01 -0.02 0.01 -0.05 -0.07 -0.01 0.01
CCA -0.04 0.01 0.04 -0.02 -0.10 -0.03 -0.03
Mean 0.00 0.08 0.07 -0.09 -0.18 -0.03 0.00
Reg -18.67 9.69 5.16 -0.14 -0.16 -11.42 -3.79
PMM -11.46 -30.36 -13.50 -0.11 -0.13 -7.32 -1.95
BootReg -12.02 -31.45 -13.99 -0.12 -0.15 -7.36 -2.44
CART -4.44 -24.89 -12.15 -3.31 -3.43 -3.19 -0.51
RF -4.69 -31.53 -14.79 -2.80 -2.89 -3.11 -0.81
EM -12.05 -31.37 -13.94 -0.05 -0.14 -7.35 -2.45
MissForest -6.50 9.42 1.67 -3.87 -3.91 -4.39 -1.08
MIXGB -3.13 1.25 -0.45 -1.74 -1.78 -1.96 -0.59
GAIN -4.16 -7.95 -5.98 -2.12 -2.32 -1.43 -1.93
GAMME (H=200) -0.36 -0.82 -0.31 -0.09 -0.13 -0.19 -0.13
GAMME (H=100) -0.39 -0.85 -0.29 -0.11 -0.09 -0.20 -0.14

Notes: This table shows the results for 1,000 simulation runs. The best value for each coefficient is in bold and the second best
value is underlined. If multiple approaches result in the same value and are best or second best, they are all bold/ underlined.
GAMME (H=100) serves as a robustness to GAMME (H=200) and is not considered for the ranking.

Table 3.D.4: Coverage rate in % for 2,000 observations (uniform) under MCAR without
interactions

β0 β1 β2 β3 β4 β5 β6
BD 95.9 94.0 94.9 95.2 94.7 95.2 96.1
CCA 94.2 94.5 95.5 93.6 94.5 94.3 95.5
Mean 92.7 99.7 96.9 95.0 95.9 95.2 95.9
Reg 0.0 1.8 35.5 84.4 85.3 0.0 0.5
PMM 3.9 0.0 0.1 99.1 99.3 0.8 52.6
BootReg 1.9 0.0 0.1 98.2 99.0 0.4 32.4
CART 66.5 0.0 0.1 74.2 72.4 50.2 93.4
RF 72.6 0.0 0.0 88.1 86.0 61.5 92.8
EM 1.6 0.0 0.0 94.5 95.2 0.4 23.1
MissForest 20.6 1.6 78.0 45.4 45.0 10.4 60.2
MIXGB 64.6 90.2 90.9 79.8 79.6 58.5 80.6
GAIN 51.2 39.3 34.3 49.4 50.8 78.6 44.5
GAMME (H=200) 95.3 90.8 95.2 95.3 95.9 93.8 94.4
GAMME (H=100) 94.8 91.4 94.6 95.4 96.3 94.1 94.8

Notes: This table shows the results for 1,000 simulation runs. The best value for each coefficient is in bold and the second best
value is underlined. If multiple approaches result in the same value and are best or second best, they are all bold/ underlined.
GAMME (H=100) serves as a robustness to GAMME (H=200) and is not considered for the ranking.
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3.E Simulation results small sample (normal) without interactions

Table 3.E.1: Average relative bias in % for 2,000 observations (normal) under MAR without
interactions

β0 β1 β2 β3 β4 β5 β6
BD 0.02 0.06 -0.02 -0.04 -0.09 0.05 0.01
CCA -2.94 -3.96 -4.08 -7.46 -4.94 -3.15 -1.91
Mean 1.31 -2.23 0.67 3.23 2.13 1.25 0.65
Reg -9.16 17.33 9.43 3.30 1.85 -14.53 -7.37
PMM -3.53 -20.39 -8.10 2.06 1.10 -7.29 -1.60
BootReg -6.05 -25.04 -10.68 1.93 1.07 -9.52 -4.88
CART -1.82 -20.75 -9.46 -3.09 -2.68 -3.14 -0.84
RF -1.79 -27.12 -12.06 -2.45 -2.44 -2.59 -1.04
EM -5.95 -25.19 -10.53 2.02 1.11 -9.33 -4.76
MissForest -2.50 15.85 4.84 -3.36 -3.23 -3.71 -1.43
MIXGB -1.45 3.31 1.70 -1.38 -1.07 -1.88 -0.80
GAIN -0.97 -15.24 -7.26 1.99 -0.22 -0.36 -1.67
GAMME (H=200) -0.53 -1.83 -0.77 0.60 0.20 -0.94 -0.28
GAMME (H=100) -0.54 -1.80 -0.75 0.56 0.16 -0.95 -0.26

Notes: This table shows the results for 1,000 simulation runs. The best value for each coefficient is in bold and the second best
value is underlined. If multiple approaches result in the same value and are best or second best, they are all bold/ underlined.
GAMME (H=100) serves as a robustness to GAMME (H=200) and is not considered for the ranking.

Table 3.E.2: Coverage rate in % for 2,000 observations (normal) under MAR without
interactions

β0 β1 β2 β3 β4 β5 β6
BD 93.8 94.7 96.6 94.0 95.2 94.5 95.1
CCA 67.2 76.2 76.1 43.6 67.0 74.6 80.2
Mean 85.6 95.2 96.2 79.3 89.1 90.5 91.6
Reg 1.5 0.6 13.7 66.4 78.7 0.1 4.0
PMM 60.1 0.0 39.0 93.2 96.1 12.1 82.6
BootReg 18.8 0.0 14.7 94.0 96.1 5.7 28.3
CART 80.4 0.0 17.7 82.4 84.7 68.9 89.5
RF 85.3 0.0 4.0 90.5 89.7 82.1 91.6
EM 12.2 0.0 7.7 83.8 88.9 3.5 18.6
MissForest 56.1 0.0 54.1 64.6 66.8 44.2 66.9
MIXGB 76.9 74.7 87.0 85.4 86.7 76.9 81.5
GAIN 53.7 27.7 43.2 39.2 44.3 82.4 50.6
GAMME (H=200) 91.1 88.8 96.0 94.8 94.6 90.7 89.1
GAMME (H=100) 91.7 88.4 96.4 93.9 94.8 89.0 89.3

Notes: This table shows the results for 1,000 simulation runs. The best value for each coefficient is in bold and the second best
value is underlined. If multiple approaches result in the same value and are best or second best, they are all bold/ underlined.
GAMME (H=100) serves as a robustness to GAMME (H=200) and is not considered for the ranking.
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Table 3.E.3: Average relative bias in % for 2,000 observations (normal) under MCAR without
interactions

β0 β1 β2 β3 β4 β5 β6
BD 0.02 0.06 -0.02 -0.04 -0.09 0.05 0.01
CCA 0.11 0.18 -0.01 -0.11 -0.17 0.15 0.03
Mean 0.02 0.13 0.03 -0.04 -0.14 0.01 -0.01
Reg -8.64 17.88 8.24 -0.06 -0.11 -12.87 -5.43
PMM -3.82 -19.86 -8.92 -0.09 -0.13 -7.47 -1.23
BootReg -5.62 -25.70 -11.52 -0.08 -0.12 -8.38 -3.57
CART -1.67 -19.01 -9.48 -2.82 -2.88 -3.25 -0.74
RF -1.80 -25.46 -12.29 -2.90 -3.02 -2.92 -1.12
EM -5.58 -25.83 -11.44 -0.05 -0.14 -8.29 -3.49
MissForest -2.45 17.12 4.14 -4.00 -4.12 -4.25 -1.53
MIXGB -1.15 5.12 1.80 -1.02 -1.10 -1.81 -0.67
GAIN -2.94 -9.27 -7.06 -3.66 -3.62 -1.36 -2.47
GAMME (H=200) -0.06 -1.63 -0.86 -0.18 -0.23 -0.48 0.04
GAMME (H=100) -0.06 -1.62 -0.86 -0.14 -0.22 -0.46 0.05

Notes: This table shows the results for 1,000 simulation runs. The best value for each coefficient is in bold and the second best
value is underlined. If multiple approaches result in the same value and are best or second best, they are all bold/ underlined.
GAMME (H=100) serves as a robustness to GAMME (H=200) and is not considered for the ranking.

Table 3.E.4: Coverage rate in % for 2,000 observations (normal) under MCAR without
interactions

β0 β1 β2 β3 β4 β5 β6
BD 93.8 94.7 96.6 94.0 95.2 94.5 95.1
CCA 94.9 94.8 95.1 94.0 94.1 94.2 95.9
Mean 92.6 97.7 96.9 95.4 94.7 94.6 94.9
Reg 1.9 0.3 23.4 85.6 86.2 0.1 11.0
PMM 57.4 0.0 31.7 96.4 97.0 8.2 87.8
BootReg 19.3 0.0 8.4 98.0 97.3 6.2 45.5
CART 85.1 0.0 15.2 82.7 84.4 67.3 90.5
RF 87.4 0.0 2.8 88.5 87.2 78.3 90.5
EM 15.1 0.0 5.0 93.1 93.3 5.1 37.9
MissForest 55.8 0.0 60.8 58.9 57.1 36.2 66.3
MIXGB 82.2 50.2 83.2 87.1 87.8 77.1 83.6
GAIN 50.8 45.5 37.4 50.6 50.5 85.4 48.7
GAMME (H=200) 93.4 88.4 94.7 95.2 94.1 92.9 92.1
GAMME (H=100) 92.9 89.1 94.6 94.7 94.8 92.2 92.0

Notes: This table shows the results for 1,000 simulation runs. The best value for each coefficient is in bold and the second best
value is underlined. If multiple approaches result in the same value and are best or second best, they are all bold/ underlined.
GAMME (H=100) serves as a robustness to GAMME (H=200) and is not considered for the ranking.
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3.F Simulation results large sample (uniform) with interactions

Table 3.F.1: Average relative bias in % for 10,000 observations (uniform) under MCAR with
interactions

β0 β1 β2 β3 β4 β5 β6 β3,4 β7,8
BD -0.01 0.00 0.01 0.03 -0.02 -0.01 0.01 -0.02 0.03
CCA -0.04 0.00 0.01 0.02 0.00 -0.02 0.01 -0.01 -0.01
Mean 0.03 0.01 0.02 0.04 -0.01 0.01 -0.01 -0.02 0.06
Reg -11.30 7.51 3.90 0.06 -0.05 -6.91 -2.28 -6.94 -6.87
PMM -6.97 -35.33 -15.96 0.06 -0.03 -4.35 -1.31 -4.51 -4.44
BootReg -7.20 -35.52 -16.04 0.05 -0.03 -4.38 -1.45 -4.42 -4.33
CART -2.71 -26.52 -12.44 -0.34 -0.43 -1.97 -0.30 -2.90 -9.94
RF -3.66 -33.47 -15.61 -0.81 -0.88 -2.36 -0.65 -2.48 -4.52
EM -7.17 -35.50 -16.02 0.06 -0.01 -4.36 -1.45 -4.42 -4.34
MissForest -4.99 9.92 2.29 -0.94 -1.03 -3.42 -0.73 -3.94 -8.67
MIXGB -2.49 -10.34 -5.83 -0.72 -0.78 -1.48 -0.44 -4.68 -15.89
GAIN -3.18 -8.06 -5.74 -1.94 -2.07 -0.71 -1.71 -0.73 -0.65
GAMME -0.19 -0.38 -0.13 0.01 -0.01 -0.11 -0.04 -0.02 -0.01

Notes: This table shows the results for 1,000 simulation runs. The best value for each coefficient is in bold and the second best
value is underlined. If multiple approaches result in the same value and are best or second best, they are all bold/ underlined.

Table 3.F.2: Coverage rate in % for 10,000 observations (uniform) under MCAR with
interactions

β0 β1 β2 β3 β4 β5 β6 β3,4 β7,8 β7 β8
BD 95.0 94.3 94.7 95.2 94.8 95.2 93.7 95.3 92.8 95.3 95.1
CCA 94.6 95.1 93.8 95.1 95.4 93.1 94.8 94.6 93.3 94.5 93.7
Mean 92.5 99.0 97.9 95.6 95.2 94.9 95.1 96.0 95.0 94.6 94.9
Reg 0.0 0.0 5.5 85.9 86.1 0.0 0.0 0.0 0.0 83.8 86.4
PMM 0.0 0.0 0.0 98.5 99.1 0.0 15.0 0.0 8.4 98.8 99.2
BootReg 0.0 0.0 0.0 98.4 98.8 0.0 8.5 0.0 10.3 98.4 99.1
CART 45.6 0.0 0.0 96.6 96.2 21.8 91.6 0.3 0.0 97.9 97.5
RF 22.8 0.0 0.0 94.9 93.9 11.5 75.4 2.8 6.0 98.4 98.5
EM 0.0 0.0 0.0 94.5 95.1 0.0 5.9 0.0 7.9 94.5 95.3
MissForest 1.1 0.0 32.8 72.5 69.5 0.1 38.2 0.0 0.0 86.6 89.3
MIXGB 44.2 0.0 0.0 89.6 88.6 42.3 78.4 0.0 0.0 94.6 96.3
GAIN 34.2 15.3 20.9 29.8 29.2 75.9 25.5 75.9 88.2 28.9 31.2
GAMME 95.0 88.8 95.0 95.6 95.7 94.5 94.4 96.1 93.3 94.6 95.1

Notes: This table shows the results for 1,000 simulation runs. The best value for each coefficient is in bold and the second best
value is underlined. If multiple approaches result in the same value and are best or second best, they are all bold/ underlined.
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3.G Simulation results large sample (normal) with interactions

Table 3.G.1: Average relative bias in % for 10,000 observations (normal) under MAR with
interactions

β0 β1 β2 β3 β4 β5 β6 β3,4 β7,8
BD -0.01 0.03 0.02 -0.05 -0.05 -0.01 -0.02 -0.02 -0.08
CCA -3.34 -3.71 -3.72 -6.74 -4.92 -3.28 -2.02 -1.75 -3.64
Mean 1.84 -2.06 0.66 2.84 2.36 1.37 0.69 0.54 1.53
Reg -6.35 15.27 8.27 2.01 2.29 -11.04 -5.60 -11.43 -10.10
PMM -2.29 -25.50 -10.66 0.88 1.26 -5.62 -1.20 -9.12 -8.39
BootReg -4.11 -28.49 -12.28 1.19 1.38 -7.06 -3.61 -7.30 -6.57
CART -1.25 -19.14 -8.73 -1.37 -0.99 -2.41 -0.50 -3.91 -12.22
RF -1.51 -27.00 -12.23 -1.61 -1.18 -2.22 -0.86 -3.27 -6.04
EM -4.10 -28.46 -12.28 1.22 1.39 -7.03 -3.58 -7.27 -6.51
MissForest -2.19 18.34 5.71 -2.41 -1.63 -3.54 -1.14 -5.57 -11.96
MIXGB -1.29 -2.82 -1.75 -1.17 -0.62 -1.54 -0.73 -5.22 -13.24
GAIN 0.71 -13.01 -4.37 4.74 2.83 0.89 -0.41 0.27 1.03
GAMME -0.04 -0.86 -0.35 0.17 0.05 -0.44 0.27 -0.05 -0.01

Notes: This table shows the results for 1,000 simulation runs. The best value for each coefficient is in bold and the second best
value is underlined. If multiple approaches result in the same value and are best or second best, they are all bold/ underlined.

Table 3.G.2: Coverage rate in % for 10,000 observations (normal) under MAR with
interactions

β0 β1 β2 β3 β4 β5 β6 β3,4 β7,8 β7 β8
BD 95.6 94.4 94.7 94.9 94.7 95.6 94.3 94.0 94.0 95.8 94.9
CCA 2.4 29.0 28.1 0.4 9.2 16.6 28.7 79.1 75.1 95.0 96.0
Mean 31.7 82.4 94.4 40.3 55.1 68.6 77.3 92.6 90.1 95.9 95.1
Reg 0.1 0.0 0.0 56.0 48.6 0.0 0.1 0.0 1.4 86.2 86.9
PMM 27.5 0.0 0.0 94.9 91.0 0.0 59.8 0.0 14.3 98.1 96.8
BootReg 0.9 0.0 0.0 93.5 89.0 0.1 1.0 0.2 35.9 98.0 97.8
CART 66.0 0.0 0.0 84.6 88.6 32.9 83.5 20.7 0.2 97.6 96.2
RF 58.8 0.0 0.0 83.7 89.5 43.8 77.1 39.3 43.7 98.1 97.3
EM 0.4 0.0 0.0 82.9 78.4 0.0 0.3 0.0 31.6 93.8 93.4
MissForest 13.1 0.0 2.8 40.9 59.4 3.6 42.2 1.3 0.0 88.2 89.5
MIXGB 58.0 44.5 72.0 83.0 89.9 60.7 73.1 4.9 0.2 93.3 94.4
GAIN 39.9 7.0 30.4 17.5 26.2 67.6 33.3 82.4 88.2 38.9 39.7
GAMME 93.7 88.0 93.3 94.5 94.5 91.7 91.3 94.6 94.7 96.8 96.0

Notes: This table shows the results for 1,000 simulation runs. The best value for each coefficient is in bold and the second best
value is underlined. If multiple approaches result in the same value and are best or second best, they are all bold/ underlined.
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Table 3.G.3: Average relative bias in % for 10,000 observations (normal) under MCAR with
interactions

β0 β1 β2 β3 β4 β5 β6 β3,4 β7,8
BD 0.02 0.02 -0.03 -0.04 0.06 -0.01 0.01 0.02 -0.04
CCA 0.01 0.01 -0.02 -0.04 0.06 -0.05 0.01 0.00 -0.10
Mean 0.02 0.01 -0.04 -0.05 0.06 0.01 -0.02 0.02 -0.03
Reg -6.87 15.78 7.27 -0.01 0.06 -10.23 -4.27 -10.23 -10.29
PMM -3.04 -24.90 -11.18 -0.03 0.05 -5.97 -1.00 -8.39 -8.82
BootReg -4.38 -28.85 -13.00 -0.02 0.07 -6.51 -2.74 -6.51 -6.56
CART -1.19 -17.48 -8.66 -1.24 -1.12 -2.40 -0.47 -3.40 -12.99
RF -1.59 -25.47 -12.36 -1.90 -1.80 -2.62 -0.93 -3.20 -6.63
EM -4.38 -28.86 -12.97 -0.07 0.04 -6.51 -2.72 -6.47 -6.50
MissForest -2.15 19.49 5.35 -2.45 -2.35 -3.96 -1.11 -5.21 -12.78
MIXGB -0.86 -1.97 -1.71 -0.56 -0.49 -1.32 -0.48 -4.79 -15.13
GAIN -2.54 -8.60 -7.47 -3.44 -2.93 -0.68 -2.12 -0.68 -0.72
GAMME 0.14 -0.65 -0.36 -0.06 0.04 -0.21 0.27 -0.07 -0.18

Notes: This table shows the results for 1,000 simulation runs. The best value for each coefficient is in bold and the second best
value is underlined. If multiple approaches result in the same value and are best or second best, they are all bold/ underlined.

Table 3.G.4: Coverage rate in % for 10,000 observations (normal) under MCAR with
interactions

β0 β1 β2 β3 β4 β5 β6 β3,4 β7,8 β7 β8
BD 95.5 96.2 94.8 95.8 94.1 95.6 96.0 94.8 95.0 95.5 95.7
CCA 94.5 96.4 95.1 95.3 95.0 95.1 95.4 95.3 93.8 95.4 96.4
Mean 93.5 98.2 95.9 95.4 94.9 95.3 96.3 94.4 95.3 95.2 94.7
Reg 0.0 0.0 0.2 86.6 86.4 0.0 0.2 0.0 1.2 87.0 86.0
PMM 4.5 0.0 0.0 98.0 97.3 0.0 72.3 0.0 8.8 96.8 97.3
BootReg 0.1 0.0 0.0 98.6 97.4 0.2 4.6 1.1 37.3 97.9 97.5
CART 68.2 0.0 0.0 84.8 87.4 29.1 86.3 31.4 0.2 97.6 96.6
RF 52.3 0.0 0.0 75.3 78.3 23.7 75.2 39.5 33.4 98.2 97.7
EM 0.1 0.0 0.0 93.5 93.5 0.0 4.0 0.7 30.7 93.8 94.2
MissForest 11.8 0.0 3.6 39.3 40.9 0.9 42.6 1.7 0.0 89.9 88.6
MIXGB 75.7 70.2 75.5 91.3 91.7 67.9 83.4 4.6 0.0 94.0 94.3
GAIN 29.4 19.6 23.0 30.6 32.8 84.6 27.3 87.3 93.3 34.3 34.0
GAMME 93.7 91.2 94.3 95.8 94.8 94.4 92.4 95.1 94.8 95.8 96.6

Notes: This table shows the results for 1,000 simulation runs. The best value for each coefficient is in bold and the second best
value is underlined. If multiple approaches result in the same value and are best or second best, they are all bold/ underlined.
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3.H Simulation results small sample (uniform) with interactions

Table 3.H.1: Average relative bias in % for 2,000 observations (uniform) under MAR with
interactions

β0 β1 β2 β3 β4 β5 β6 β3,4 β7,8
BD 0.00 0.00 -0.03 0.02 0.01 -0.01 0.02 -0.01 0.01
CCA -2.65 -0.78 -0.89 -1.73 -1.32 -1.07 -0.67 -0.68 -0.79
Mean 4.66 -0.11 0.49 2.23 2.00 1.42 0.89 0.70 0.95
Reg -8.19 6.96 3.60 0.47 1.53 -5.94 -2.56 -7.09 -6.77
PMM -5.21 -34.98 -15.75 0.26 0.91 -3.71 -1.44 -4.65 -4.37
BootReg -5.32 -35.51 -15.91 0.32 0.87 -3.82 -1.65 -4.55 -4.34
CART -3.09 -31.55 -14.20 -0.56 -0.22 -2.15 -0.31 -3.29 -6.54
RF -2.41 -36.98 -16.78 -0.39 -0.12 -1.49 -0.44 -2.09 -2.82
EM -5.31 -35.29 -15.86 0.35 0.84 -3.81 -1.64 -4.56 -4.37
MissForest -3.67 5.02 1.27 -0.53 0.05 -2.35 -0.52 -3.58 -5.34
MIXGB -2.82 -8.54 -3.72 -1.04 -0.17 -1.28 -0.53 -5.11 -8.16
GAIN 2.65 -13.74 -5.51 3.47 3.35 0.72 0.25 0.03 0.22
GAMME (H=200) -0.21 -1.19 -0.38 0.46 0.44 0.16 -0.62 0.12 0.18
GAMME (H=100) -0.21 -1.16 -0.34 0.44 0.42 0.17 -0.62 0.12 0.20

Notes: This table shows the results for 1,000 simulation runs. The best value for each coefficient is in bold and the second best
value is underlined. If multiple approaches result in the same value and are best or second best, they are all bold/ underlined.
GAMME (H=100) serves as a robustness to GAMME (H=200) and is not considered for the ranking.

Table 3.H.2: Coverage rate in % for 2,000 observations (uniform) under MAR with
interactions

β0 β1 β2 β3 β4 β5 β6 β3,4 β7,8 β7 β8
BD 94.5 95.8 94.6 95.5 92.5 94.4 95.3 95.3 93.9 95.5 94.0
CCA 77.5 93.2 92.0 86.3 89.6 86.7 88.0 92.0 94.0 94.2 95.2
Mean 54.8 99.2 97.8 82.4 84.0 83.8 78.4 91.2 94.2 94.3 95.4
Reg 12.8 24.0 62.0 82.8 78.3 1.6 16.7 0.1 19.4 84.8 84.6
PMM 70.7 0.0 0.0 98.4 98.2 47.5 77.5 17.6 78.3 98.9 99.2
BootReg 68.7 0.0 0.0 98.3 98.3 43.4 72.8 18.7 79.2 99.3 98.8
CART 84.6 0.0 0.1 95.4 96.5 78.9 93.7 44.4 39.5 97.5 98.0
RF 92.9 0.0 0.0 98.1 98.9 93.6 97.2 80.3 93.3 98.5 98.9
EM 52.3 0.0 0.0 94.6 91.9 33.2 56.5 13.4 68.5 94.3 95.0
MissForest 59.0 48.8 84.7 87.2 86.8 54.5 74.5 18.7 35.2 89.9 90.0
MIXGB 77.6 6.4 64.6 88.8 91.9 83.4 85.2 5.7 12.2 94.8 94.1
GAIN 43.4 22.7 35.4 39.2 38.2 81.6 47.5 82.2 91.8 46.3 45.1
GAMME (H=200) 94.6 89.2 95.2 94.3 94.9 94.9 83.9 95.0 95.5 94.8 96.4
GAMME (H=100) 94.4 88.2 95.4 94.0 93.1 94.5 85.0 95.1 95.1 95.1 97.0

Notes: This table shows the results for 1,000 simulation runs. The best value for each coefficient is in bold and the second best
value is underlined. If multiple approaches result in the same value and are best or second best, they are all bold/ underlined.
GAMME (H=100) serves as a robustness to GAMME (H=200) and is not considered for the ranking.

107



Chapter 3. GAMME - Advances in Predictive Mean Matching

Table 3.H.3: Average relative bias in % for 2,000 observations (uniform) under MCAR with
interactions

β0 β1 β2 β3 β4 β5 β6 β3,4 β7,8
BD 0.00 0.00 -0.03 0.02 0.01 -0.01 0.02 -0.01 0.01
CCA 0.02 -0.07 -0.01 0.04 0.03 0.00 0.01 -0.01 0.01
Mean 0.12 -0.02 0.01 0.01 0.00 0.02 0.01 -0.01 0.04
Reg -11.25 7.48 3.96 0.00 0.03 -6.92 -2.28 -6.95 -6.91
PMM -6.90 -35.35 -15.92 0.02 0.01 -4.32 -1.29 -4.47 -4.41
BootReg -7.13 -35.54 -15.98 0.01 0.00 -4.38 -1.45 -4.42 -4.39
CART -3.38 -31.07 -14.27 -0.65 -0.62 -2.41 -0.43 -3.34 -7.06
RF -3.43 -36.75 -16.93 -0.97 -1.00 -2.10 -0.75 -2.24 -3.10
EM -7.10 -35.38 -16.01 -0.03 -0.01 -4.39 -1.42 -4.42 -4.39
MissForest -4.99 5.53 1.05 -1.26 -1.20 -3.24 -0.97 -3.82 -5.83
MIXGB -2.62 -7.84 -3.94 -0.55 -0.52 -1.51 -0.60 -5.22 -9.11
GAIN -2.82 -8.75 -5.57 -2.09 -2.10 -0.75 -1.63 -0.78 -0.72
GAMME (H=200) -0.43 -1.14 -0.51 0.01 -0.03 -0.25 -0.13 -0.03 -0.06
GAMME (H=100) -0.45 -1.16 -0.50 0.00 -0.04 -0.25 -0.14 -0.05 -0.06

Notes: This table shows the results for 1,000 simulation runs. The best value for each coefficient is in bold and the second best
value is underlined. If multiple approaches result in the same value and are best or second best, they are all bold/ underlined.
GAMME (H=100) serves as a robustness to GAMME (H=200) and is not considered for the ranking.

Table 3.H.4: Coverage rate in % for 2,000 observations (uniform) under MCAR with
interactions

β0 β1 β2 β3 β4 β5 β6 β3,4 β7,8 β7 β8
BD 94.5 95.8 94.6 95.5 92.5 94.4 95.3 95.3 93.9 95.5 94.0
CCA 94.7 96.7 94.9 94.4 94.2 94.8 94.6 96.1 93.4 94.9 94.3
Mean 91.9 99.3 97.2 94.2 95.5 95.3 96.3 96.0 94.8 96.0 93.8
Reg 1.0 19.1 53.9 85.3 85.9 0.0 19.6 0.0 17.0 86.8 87.5
PMM 46.4 0.0 0.0 98.5 98.7 30.1 82.3 17.8 78.0 99.3 98.4
BootReg 42.8 0.0 0.0 98.6 99.1 29.3 77.6 19.0 78.1 99.4 98.6
CART 82.6 0.0 0.0 96.4 96.8 72.3 95.5 40.5 34.5 98.4 97.2
RF 86.0 0.0 0.0 97.4 98.4 85.9 94.0 77.1 90.8 99.3 98.5
EM 31.4 0.0 0.0 94.8 94.7 22.6 65.2 13.7 67.3 95.1 93.5
MissForest 42.3 40.7 86.6 82.6 84.2 31.7 68.1 11.2 30.3 91.0 91.7
MIXGB 81.5 12.5 62.1 92.2 91.2 82.0 85.9 3.2 7.4 93.3 94.7
GAIN 63.9 34.4 30.9 43.9 45.4 90.7 44.0 88.2 93.1 44.0 43.0
GAMME (H=200) 94.4 88.4 94.8 94.6 94.2 94.5 94.3 95.7 94.0 95.6 95.4
GAMME (H=100) 94.6 88.5 94.2 94.5 94.3 94.6 94.3 96.3 93.8 96.2 96.2

Notes: This table shows the results for 1,000 simulation runs. The best value for each coefficient is in bold and the second best
value is underlined. If multiple approaches result in the same value and are best or second best, they are all bold/ underlined.
GAMME (H=100) serves as a robustness to GAMME (H=200) and is not considered for the ranking.
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Chapter 3. GAMME - Advances in Predictive Mean Matching

3.I Simulation Results small sample (normal) with interactions

Table 3.I.1: Average relative bias in % for 2,000 observations (normal) under MAR with
interactions

β0 β1 β2 β3 β4 β5 β6 β3,4 β7,8
BD -0.01 0.12 -0.01 0.04 0.10 -0.02 0.01 0.04 -0.20
CCA -3.35 -3.74 -3.66 -6.64 -4.76 -3.20 -2.14 -1.79 -3.83
Mean 1.77 -2.06 0.69 3.04 2.40 1.24 0.71 0.65 1.25
Reg -6.47 15.30 8.35 2.04 2.40 -11.33 -5.64 -11.52 -10.44
PMM -2.47 -25.85 -10.74 1.08 1.41 -5.72 -1.36 -8.75 -8.36
BootReg -4.29 -28.26 -12.13 1.28 1.46 -7.42 -3.70 -7.44 -6.99
CART -1.73 -24.04 -10.73 -1.67 -1.01 -2.99 -0.76 -4.47 -9.52
RF -1.46 -31.28 -13.82 -1.25 -0.94 -2.08 -0.90 -3.08 -4.58
EM -4.22 -28.28 -12.12 1.30 1.41 -7.27 -3.65 -7.37 -6.89
MissForest -2.31 13.58 4.20 -2.26 -1.34 -3.46 -1.31 -5.72 -8.88
MIXGB -1.63 0.53 0.90 -1.14 -0.13 -1.94 -0.95 -6.65 -9.66
GAIN -0.55 -12.48 -5.09 1.65 0.64 -0.23 -1.68 -0.65 -0.31
GAMME (H=200) -0.62 -2.49 -0.88 0.76 0.57 -0.99 -0.55 -0.15 -0.34
GAMME (H=100) -0.60 -2.50 -0.91 0.79 0.60 -1.02 -0.50 -0.11 -0.24

Notes: This table shows the results for 1,000 simulation runs. The best value for each coefficient is in bold and the second best
value is underlined. If multiple approaches result in the same value and are best or second best, they are all bold/ underlined.
GAMME (H=100) serves as a robustness to GAMME (H=200) and is not considered for the ranking.

Table 3.I.2: Coverage rate in % for 2,000 observations (normal) under MAR with
interactions

β0 β1 β2 β3 β4 β5 β6 β3,4 β7,8 β7 β8
BD 95.7 94.8 94.3 93.8 96.2 95.3 94.8 95.8 95.1 95.6 95.1
CCA 60.1 77.1 80.4 52.9 71.9 76.1 77.1 91.6 90.9 95.6 94.5
Mean 82.6 94.8 96.0 81.0 87.2 90.5 91.2 94.2 95.2 95.3 95.1
Reg 7.5 1.6 22.1 76.5 75.7 0.6 10.0 2.3 47.0 87.4 87.9
PMM 81.1 0.0 14.0 95.1 96.8 30.0 88.8 23.3 78.7 97.8 97.2
BootReg 44.2 0.0 6.3 95.4 97.1 13.6 46.4 40.4 85.1 97.3 97.6
CART 83.4 0.0 9.5 90.9 94.7 72.3 90.5 71.7 68.8 96.3 96.6
RF 91.2 0.0 0.9 96.2 98.1 89.1 93.8 89.1 92.8 97.9 96.9
EM 34.7 0.0 3.5 89.9 92.2 10.8 33.6 31.5 77.7 94.3 94.5
MissForest 62.0 2.1 61.1 75.8 86.2 48.7 71.0 41.8 57.8 91.8 91.9
MIXGB 78.7 92.6 89.5 87.6 91.5 78.3 81.5 38.2 56.9 92.6 93.2
GAIN 66.5 31.5 49.3 40.6 50.5 86.6 52.4 88.8 94.1 60.8 60.0
GAMME (H=200) 91.6 83.4 93.7 93.8 95.3 91.8 88.2 95.8 95.7 96.0 95.8
GAMME (H=100) 91.5 83.2 94.6 94.5 96.1 91.1 88.4 96.1 95.6 95.8 95.9

Notes: This table shows the results for 1,000 simulation runs. The best value for each coefficient is in bold and the second best
value is underlined. If multiple approaches result in the same value and are best or second best, they are all bold/ underlined.
GAMME (H=100) serves as a robustness to GAMME (H=200) and is not considered for the ranking.
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Table 3.I.3: Average relative bias in % for 2,000 observations (normal) under MCAR with
interactions

β0 β1 β2 β3 β4 β5 β6 β3,4 β7,8
BD -0.01 0.12 -0.01 0.04 0.10 -0.02 0.01 0.04 -0.20
CCA 0.02 0.13 -0.11 -0.08 0.06 -0.04 0.03 0.05 -0.56
Mean -0.04 0.12 -0.05 0.18 0.04 -0.07 -0.03 -0.01 -0.43
Reg -6.98 15.84 7.21 0.16 0.05 -10.41 -4.32 -10.35 -10.70
PMM -3.23 -25.38 -11.38 0.19 0.05 -6.02 -1.14 -8.12 -8.92
BootReg -4.53 -28.68 -12.89 0.18 0.04 -6.75 -2.81 -6.65 -7.08
CART -1.66 -22.46 -10.80 -1.41 -1.50 -3.22 -0.72 -4.23 -10.31
RF -1.70 -29.86 -14.14 -1.79 -1.92 -2.61 -1.10 -3.13 -5.33
EM -4.50 -28.64 -12.97 0.19 -0.03 -6.70 -2.79 -6.55 -6.88
MissForest -2.46 14.70 3.39 -2.63 -2.74 -4.12 -1.52 -5.61 -9.83
MIXGB -1.34 2.48 0.69 -0.50 -0.57 -1.98 -0.75 -6.38 -11.29
GAIN -2.78 -8.81 -6.96 -3.89 -3.78 -1.26 -2.53 -1.28 -1.72
GAMME (H=200) -0.12 -2.24 -1.18 0.00 0.02 -0.58 0.06 -0.32 -0.88
GAMME (H=100) -0.13 -2.24 -1.22 0.00 0.01 -0.60 0.06 -0.38 -0.96

Notes: This table shows the results for 1,000 simulation runs. The best value for each coefficient is in bold and the second best
value is underlined. If multiple approaches result in the same value and are best or second best, they are all bold/ underlined.
GAMME (H=100) serves as a robustness to GAMME (H=200) and is not considered for the ranking.

Table 3.I.4: Coverage rate in % for 2,000 observations (normal) under MCAR with
interactions

β0 β1 β2 β3 β4 β5 β6 β3,4 β7,8 β7 β8
BD 95.7 94.8 94.3 93.8 96.2 95.3 94.8 95.8 95.1 95.6 95.1
CCA 94.1 95.2 94.6 94.3 95.4 95.7 94.4 94.5 94.2 95.7 94.8
Mean 92.8 97.4 96.5 93.9 96.3 94.7 95.6 95.1 94.9 95.5 95.5
Reg 3.6 1.1 33.6 85.8 86.4 0.6 20.3 4.7 45.1 88.0 85.3
PMM 66.6 0.0 8.9 97.0 98.3 25.1 90.4 26.7 75.8 97.9 98.1
BootReg 37.4 0.0 3.1 97.1 98.5 16.7 60.0 47.0 84.3 98.1 97.6
CART 86.3 0.0 8.1 92.8 94.7 68.8 91.4 73.8 62.8 97.0 96.6
RF 88.8 0.0 1.0 94.3 96.3 81.9 92.0 89.0 90.9 97.9 97.9
EM 28.6 0.0 1.4 93.0 95.3 14.3 49.4 41.1 78.2 94.4 93.5
MissForest 57.6 0.9 72.2 74.6 75.5 40.3 67.8 38.4 49.1 89.2 89.2
MIXGB 81.1 83.3 91.7 88.9 92.1 76.5 84.8 35.6 45.1 91.4 90.4
GAIN 55.7 49.8 42.3 51.4 49.1 87.2 50.4 92.1 93.1 58.5 61.2
GAMME (H=200) 93.9 85.7 93.5 94.9 96.8 93.4 90.6 93.7 94.9 97.1 95.3
GAMME (H=100) 93.2 85.4 93.4 95.5 97.1 93.7 90.5 95.6 94.4 97.5 95.2

Notes: This table shows the results for 1,000 simulation runs. The best value for each coefficient is in bold and the second best
value is underlined. If multiple approaches result in the same value and are best or second best, they are all bold/ underlined.
GAMME (H=100) serves as a robustness to GAMME (H=200) and is not considered for the ranking.
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Conclusion

Summary

This thesis focuses on various aspects of uncertainty in the application of machine learning.

In the first research paper Quantifying uncertainty of machine learning methods for loss given

default (see Chapter 1) a uncertainty-aware machine learning technique the deep evidential

regression is applied to market-based LGDs. This approach divides the uncertainty that is

associated with the prediction of the LGDs into aleatoric and epistemic uncertainty. The results

document that the proportion of the aleatoric uncertainty is by far larger than the proportion of

epistemic uncertainty. This fact is subjected to the second research paper Non-linearity and the

distribution of market-based loss rates (see Chapter 2) that combines the beta regression and neural

networks to model LGDs. The precision parameter of this distributions is closely related to the

variance of the modeled distribution. The empirical analysis finds that the vast majority of the

feature effects are non-linear for the precision parameter. This flexible approach improves the

distributional fit that stresses the importance of adequately modeling the precision parameter.

The third and last research paper GAMME - Advances in Predictive Mean Matching (see Chapter 3)

focus on a different perspective of uncertainty. Imputation approaches often suffer from two

the problems: linearity and single imputation. Despite there are approaches that addresses

those problems, most of them lead to invalid statistical inference. The novel approach GAMME

that is proposed in the third research paper combines a powerful imputation technique the

predictive mean matching with the flexibility of a neural network. In a large simulation study

that captures missing completely at random and missing at random GAMME offers the best

trade of between unbiased parameters and valid confidence intervals.
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Conclusion

Discussion and outlook

The topic of this thesis is of high relevance for risk management and financial institutions.

The first research paper as presented in Chapter 1 studies the uncertainty that is associated

with modeling LGDs. It is an important step in a deeper understanding of LGDs and the

challenges that comes with it. The applied method relies on the deep evidential regression

that assumes a normally distributed dependent variable. Despite this is not true for LGDs

the deep evidential regression provides competitive results. Future research could extend

this framework to different distributional assumptions and still provide the separation of

aleatoric and epistemic uncertainty. Furthermore, a comparison regarding different uncertainty

estimation techniques like Monte Carlo Dropout by Gal and Ghahramani (2016), ensemble

approaches like in Lakshminarayanan et al. (2017) and fully bayesian methods could provide a

fruitful area of research to get a deeper understanding of uncertainty. One key result of this

paper is that the proportion of aleatoric uncertainty is much larger than the proportion of

epistemic uncertainty. These results are based on the dataset that contains market-based LGDs.

Another interesting aspect would be the application to workout LGDs.

The market-based LGDs are often assumed to be beta distributed. Therefore, the application

of the beta regression is a common choice. The paper in Chapter 2 extends this method by

combining the beta regression with a neural network. Future research could apply this flexible

approach to workout LGDs. Since those can be negative or greater than one, G-BRANN as

presented in Chapter 2 should be extended by using e.g. a four parameter beta distribution

(Carnahan, 1989) or using a mixture density network (Bishop, 1994).

Spotting light on uncertainty from different point of view, the last research paper (see Chapter 3)

deals with missing data by introducing a novel imputation technique GAMME based on ALE

plots and PMM. The conducted simulation study provides initial results for the effectiveness

of GAMME under MCAR and MAR. Future research could derive statistical properties of

this method and further improve this approach by extending it to mixed type data as well as

classification tasks, that could offer a wide range of applications. Another interesting aspect

would be the performance under MNAR. Furthermore, extensions regarding the matching can

be studied. One possible extension could be to match predicted distributions instead of only

means. This could be archived by matching multiple quantiles and use those as a basis to impute

missing values.
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