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Giant DC-like residual current generated by subcycle laser pulses
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Experimental indications have been reported suggesting that laser pulses shining on materials with relativistic
dispersion can produce currents that survive long after the illumination has died out. Such residual currents, i.e.,
remnant currents, have applications in petahertz logical gates. The remnant currents’ strength strongly depends
on the pulse shape. We develop an analytical formula that allows one to optimize the pulse shape for remnant
current production; we predict remnant currents exceeding the values observed so far by up to five orders of
magnitude. This can be achieved by using single-cycle pulses instead of the previously employed multicycle
pulses. In fact, remnant currents can be almost as strong as the peak current under irradiation.

DOI: 10.1103/PhysRevResearch.6.043149

I. INTRODUCTION

The dynamics of currents induced by an ultrashort laser
pulse in a metal or semiconductor is strongly influenced by
the pulse’s shape and amplitude. Improvements in pulse-shape
engineering [1–6] have provided access to a plethora of phe-
nomena on subcycle timescales. Such phenomena include the
generation of high harmonics [2,7–15], dynamical Bloch os-
cillations [2,16,17], and ultrafast clocking of electron-electron
correlations [18]. With an eye on applications, it has been
proposed that pulse-shape engineering and the associated
control of microscopic currents should be viewed as a pre-
requisite of ultrafast light-wave electronics [1,19–31]. In this
context, experimental observations are of relevance, reporting
that suitable pumping pulses can produce a DC- like residual
or remnant current [19,32,33], which persists long after the
pumping pulse, whose duration typically is of the order of 10
to 100 fs, has died out. Experiments show a strong dependence
of remnant currents on the pulse shape and, in particular, on its
carrier-envelope phase (CEP) [34,35], in agreement with den-
sity matrix simulations [36]. As a corresponding application,
a petahertz logic gate [37] has been proposed.

In order to use remnant currents as an efficient tool for
light-wave driven electronics, the remnant amplitude per
incoming laser pulse should be maximized, for instance,
to reduce energy consumption. Given many pulse-shape
parameters—amplitude, carrier frequency, carrier-envelope
phase, pulse duration, etc.—and additional material param-
eters, it is not straightforward to find an optimal setup
to produce large-amplitude remnant currents. Pulse-shape
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optimization is most conveniently achieved if analytical
expressions are known that reflect transparent paramet-
ric dependencies. While the commonly used semiclassical
approximation to density matrix dynamics yields analytic for-
mulas, it fails to explain the phenomenon of remnant currents
[38]; a quantum mechanical analysis of the dynamics of non-
interacting Bloch electrons is required, while light can be
treated as a classical phenomenon.

In this work, we present an analysis that enables us to opti-
mize parameters for finding large-amplitude remnant currents.
A formula is derived from third-order perturbation theory
to the time evolution mediated by the semiconductor Bloch
equations (SBEs) [39–54]. In the limit of large effective damp-
ing, i.e., ω̃ := ω/γ < 1, with ω being the carrier frequency
and γ being the dephasing rate of the coherences, it adopts a
transparent form; the remnant current density j(∞) is given by

j(∞) = CE3
0F[s]{ê‖[1+O(ω̃)] + ê⊥O(ω̃)}

+ ê‖O
(
Ẽ4

0

) + ê⊥O
(
Ẽ4

0

)
, (1)

where C is a material-dependent constant, ê‖, ê⊥ with ê‖ ⊥ ê⊥
denote unit vectors; Ẽ0 := qσE0/kF is the small parameter
in the perturbative expansion, with q denoting the electron
charge, kF the Fermi vector as a typical length scale, σ the
duration, and E0 the amplitude of the linearly polarized tran-
sient electric field,

E(t ) := E (t ) ê‖ := E0 s(t ) ê‖. (2)

The functional F[s] in (1) depends on the pulse shape s(t ),
max |s(t )| = 1; examples of s(t ) are sketched in Figs. 1(a)
and 1(b). We show that the value of F[s] strongly depends
on s(t ); in particular, j(∞) can be three orders of magnitude
larger for single-cycle pulses [4,5] [Fig. 1(b)] compared to
multicycle pulses [Fig. 1(a)] that have previously been used
for generating remnant currents in experiments [34–37]. We
predict that the use of single-cycle pulses [4,5] will result in
remnant currents that are almost as strong as the transient
currents during illumination. We also show that the material
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FIG. 1. Illustration of (a) pulse parameters and (c) material pa-
rameters that influence remnant currents. (b) and (d) show optimal
parameters for producing large remnant currents. (a) Relevant pulse
parameters to model experimental pulses in ultrafast dynamics [[2,4–
6,15,19,33–35],[37,52,55,56]]: amplitude E0, frequency ω, CEP ϕ,
pulse length σ . (b) The single-cycle limit of these pulses with ϕ =
0 leading to the largest remnant currents. (c) Material parameters
of Dirac fermions: gap mz, Fermi vector kF, and Fermi level εF,
related to the Fermi velocity vF = εF/kF. (d) The limit of gapless
Dirac fermions, mz = 0, at half filling, εF = 0, produces the largest
remnants.

constant C strongly depends on the band structure; C is larger
for a gapless Dirac cone [Fig. 1(d)] compared to a massive
Dirac cone [Fig. 1(c)]. We also show that Eq. (1) for remnant
currents gives semiquantitative predictions in the case of large
field strength and weak damping, ω/γ > 1.

This manuscript is organized as follows: Section II in-
troduces the SBE formalism to calculate remnant currents.
Section III provides a numerical illustration of remnant
currents computed from SBEs. In Sec. IV, we derive the
analytical expression for remnant currents, given by Eq. (1),
which is then applied in Sec. V to optimize pulse shapes and in
Sec. VI to discuss materials, in order to obtain large remnant
currents.

II. SBE FORMALISM FOR CALCULATING
TIME-DEPENDENT CURRENTS

To describe the dynamics of noninteracting Bloch elec-
trons, we employ the density-matrix-based SBE formalism
[11,39,41–54]. In the velocity gauge, the SBEs are given by[

i
∂

∂t
+ i(1 − δnn′ )γ − εnn′ (kt )

]
	nn′ (k, t )

= E(t )
∑

n

	nn(k, t )dnn′ (kt ) − dnn(kt )	nn′ (k, t ), (3)

adopting the nomenclature from Ref. [52]: The lattice-
periodic part of the Bloch eigenstates |nk〉〉 solves the
eigenvalue equation of the initial (unperturbed) Bloch Hamil-

tonian, h(k) |nk〉〉 = εn(k) |nk〉〉. The crystal momentum has a
time dependence stemming from minimal coupling,

kt := k − A(t ), A(t ) := −q
∫ t

t0

E(t ′)dt ′, (4)

where A(t ) can be interpreted as a vector potential.
εnn(kt ) := εn(kt ) − εn(kt ) is the energy difference of two
bands n, n at crystal momentum kt in the Brillouin zone
(BZ) and dnn(kt ) = q〈〈nkt |i∂kt |nkt〉〉 is the transition dipole
matrix element coupling to the electric driving field E(t ).
	nn′ (k, t ) := 〈〈nkt |ρ̂|n′kt〉〉 are the matrix elements of the den-
sity operator ρ̂. The diagonal elements of the density matrix
describe the occupation fn(kt , t ) of the nth band at kt in the
BZ. In the rest of the manuscript, we will use the following
notation:

fn(kt , t ) = 	nn(k, t ). (5)

Off-diagonal elements of the density matrix describe the abil-
ity of the system to maintain coherent superposition between
two states and thus are called coherences.

Many-body interactions, such as electron-electron or
electron-phonon scattering, lead to dephasing in electron
dynamics [42,54,57–59]. In the context of Eq. (3), de-
phasing dampens the off-diagonal density matrix elements
	nn′ (k, t ), n �= n′ towards zero. This damping is tradition-
ally modeled by phenomenological dephasing rates, γn,n′ (k)
[57,59–62], which here we take as independent of k and
the band indices: γnn′ (k) := γ = 1/T2 with n �= n′ and T2 is
the dephasing time. The typical values for T2 used in the
literature range from 1 to 100 fs [9,10,16,37,58,59,61–64].
The overall value is surprisingly short, partially on the scale
of the fastest intrinsic processes. Therefore, it has been ar-
gued that in addition to dephasing, γ could also account
for an incoherent average over different sample regions [58].
The relaxation of occupation numbers fn(kt , t ) towards the
ground-state occupation f (0)

n (k) requires reshuffling of energy
and, for this reason, inelastic scattering processes. Therefore,
the related timescale T1 differs from the dephasing time, typ-
ically, T2 	 T1. For topological surface states, T1 exceeds a
picosecond [20,65], and thus is even significantly longer than
the experimental pulse durations. Thus motivated, we will as-
sume a vanishing relaxation rate T −1

1 = 0 in our calculations.
In this limit, the remnant current is given by

j(∞) := lim
t→∞q

∑
n

∫
BZ

dk
(2π )d

∂kt εn(kt ) fn(kt , t ), (6)

where the limit of large times is characterized by the times
exceeding the pulse duration, t � σ and γ t � 1. In the case of
inversion symmetry and/or time-reversal invariance, the en-
ergy derivative in the integrand is odd in k. Correspondingly,
nonzero remnant currents arise from the odd components of
the final population lim

t→∞ fn(kt , t ).

III. NUMERICAL ILLUSTRATION
OF REMNANT CURRENTS

Before we sketch the analytical derivation, we present a
numerical simulation to illustrate remnant currents in a driven

043149-2



GIANT DC-LIKE RESIDUAL CURRENT GENERATED BY … PHYSICAL REVIEW RESEARCH 6, 043149 (2024)

FIG. 2. Current density j‖(t ) along the direction of the electric
field in a gapless Dirac band structure. The plot shows a residual
current j (∞)

‖ that strongly depends on the incoming pulse shape:
single node (Eantisym) vs double node (Esym). As shown, remnant
currents can be of the same order of magnitude as the transient
current. Triangles mark the times at which the occupations in Fig. 3
are evaluated. Inset: Electric field pulse from Eq. (19) with field
amplitude E0 = 0.5 MV/cm and pulse duration σ = 50 fs leading
to a carrier frequency of ≈6.4 THz. The Hamiltonian parameters are
chosen as typical values for a topological surface state [12,52]: Fermi
velocity vF = 0.43 nm/fs, Fermi energy εF = 0.2 eV above the min-
imum of the conduction band, vanishing mass mz = 0, implying a
timescale ε−1

F = 3.3 fs and a scale for the electric field amplitude
kFεF/q = 1.41 MV/cm. The dephasing time is T2 = 1/γ = 10 fs.

Dirac system with Hamiltonian

h(k) := vF(kxσy − kyσx ) + mzσz, (7)

where vF is the Fermi velocity and mz is the mass param-
eter. This model has been frequently employed to describe
the low-energy excitations of graphene [66], two-dimensional
semiconductors [67], and topological surface states [68]. For
computing remnant currents, we solve the SBE, given by
Eq. (3), on a discretized mesh approximating the Brillouin
zone using a fourth-order Runge-Kutta solver with discrete
time steps. Information about numerical convergence checks
can be found in Appendix D. For a detailed derivation and
information about the implementation of the SBE, we refer to
[52].

Figure 2 displays the current density parallel to the electric
field for a gapless Dirac cone, mz = 0, with E (t ) defined in
the inset; the perpendicular current vanishes [69]. As seen
there, the remnant current in the direction of the driving field,
j (∞)
‖ := j(∞) · ê‖, reaches the same magnitude as the peak of

| j‖(t )| and is, in this sense, gigantic. As we show in the
following, using single-cycle pulses with a CEP leading to
a suitable nodal structure is key to producing giant remnant
currents.

To further illustrate how remnant currents arise, in Fig. 3,
we show the time-dependent conduction band occupation
fc(k, t ) as a response to the pulses given in Fig. 2. The
interplay of Bloch acceleration of electrons via Eq. (4) and
interband excitations leads to residual population differences
at t → ∞; see Fig. 3. For the antisymmetric pulse (blue trace
of Fig. 2), the residual population is displayed in Fig. 3(e). It
shows a large asymmetry with respect to the ky axis, which,
via Eq. (6), is leading to the giant residual currents for the

FIG. 3. Time-dependent occupation of the conduction band
fc(k, t ) of the gapless Dirac cone driven by the two pulses shown
in the inset of Fig. 2. Occupations of the antisymmetric pulse (blue)
are shown in (a)–(e) at different times; the final occupation (e) is
asymmetric, leading to a large remnant current. Occupations of the
symmetric pulse (orange) are shown in (f)–(j) at different times; the
final occupation (j) is symmetric, suppressing the remnant current.
Time points are marked by triangles in Fig. 2.

blue trace in Fig. 2. In contrast, the symmetric pulse (orange
trace of Fig. 2) leads to the symmetric distribution of occu-
pations in Fig. 3(f) and, hence, zero residual currents. We
briefly discuss the effect of a finite T1 time. Introducing a
nonvanishing damping rate T −1

1 on the diagonal elements of
the density matrix implies the relaxation of the occupation
numbers to their equilibrium values at t � T1 and, hence,
remnant currents decay exponentially at longest times.

IV. POWER EXPANSION OF THE SBE

For the analysis of remnant currents as a function of pulse
shape and material parameters, we expand the time-dependent
density matrix 	(t ) in a dimensionless parameter proportional
to the electric field strength E0.

Straightforwardly, the leading term in this expansion is
of third order or higher in E0: remnant current amplitudes
cannot be linear in the driving field. This is because in linear
response j(t ) = ∫ t

−∞ σ (t − t ′)E(t ′)dt ′, the integral is domi-
nated by times t ∼ t ′ because of the limited memory of the
conductivity σ . Specifically, j vanishes at times t so large that
the peak time of E(t ) has passed by more than the memory
time. Further, for the inversion or time-reversal symmetric
models that we have in mind, remnant currents flip their sign
if E (t ) does, and therefore even-order terms in E0 cannot arise
[70].

The derivation of the analytical expression of remnant
currents, given by Eq. (1), starts with a matrix-vector for-
mulation of the SBE (3): Writing the density matrix as a
vector �(k, t ) = [	nn′ (k, t )]nn′ , with the double index nn′ as
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the vector index, we have

i
∂

∂t
�(k, t ) = (h(kt ) + V(kt , t ))�(k, t ), (8)

with matrices h and V defined via their matrix elements,

hnn′,mm′ := δnmδn′m′ [εnn′ (kt ) − iγ ],

Vnn′,mm′ := E(t )[δnmdm′n′ (kt ) − δn′m′dnm(kt )]. (9)

To perform a perturbative expansion in V, we transform
Eq. (8) into the interaction picture,

i
∂

∂t
�I (k, t ) = VI (kt , t )�I (k, t ), (10)

with

�I (k, t ) := ei
∫ t

t0
h(kt ′ )dt ′

�(k, t ),

VI (kt , t ) := ei
∫ t

t0
h(kt ′ )dt ′

V(kt , t )e−i
∫ t

t0
h(kt ′ )dt ′

. (11)

Here, we can neglect the time-ordering operator because
[h(kt ),h(kt ′ )] = 0. The initial condition of the system is
given by 	

(0)
I,i j (k) = 	i j (k, t0)δi j = f (0)

i (k)δi j . Time integra-
tion of Eq. (11) and iterative insertion of �I (k, t ) leads to a
series expansion in VI ,

�I (k, t ) = �(0)(k) + 1

i

∫ t

t0

dt1VI (kt1 , t1)�(0)(k)

−
∫ t

t0

dt1

∫ t1

t0

dt2VI (kt1 , t1)VI (kt2 , t2)�(0)(k)+ · · · .

(12)

Inserting Eq. (11) into Eq. (12), we observe that linear terms in
V do not change the occupations fn(kt , t ); including second-
order terms, given by Eq. (12), implies

fn(kt , t ) = f (0)
n (k) +

∑
n

[
f (0)
n (k) − f (0)

n (k)
]

×
∫ t

t0

dt1

∫ t1

t0

dt2
[
e[t2γ+iwnn(t2 )]−[t1γ+iwnn(t1 )]

× E(t1) · dnn(kt1 )E(t2) · dnn(kt2 )+c.c.
]+ O

{
[σE · d(kt )]

3
}
,

(13)

with wnn(t ) := ∫ t
t0

εnn(kt ′ ) dt ′ the integral of the kt -dependent
gap, E · d(kt ) the dipole coupling, and σ the pulse duration
appearing in Eq. (13) due to the time integrals in the pertur-
bative expansion. In particular, the occupation of the nth band
fn(kt , t ) changes as soon as [ f (0)

n (k) − f (0)
n (k)] is nonvanish-

ing.
Similar expansions of SBEs have already been employed

earlier to calculate higher-order responses to continuous driv-
ing [41,71–73]. This power-law expansion, however, only
holds true if the perturbation σE · d(kt ) can be assumed to
be small. This leads to the constraint on the Hamiltonian,
where the dipole moments need to be free of any divergence
or divergent terms have to be excluded in the BZ integral of
Eq. (6), for example, by choosing a nonzero Fermi energy εF.

We considerthe Markov regime with fast damping com-
pared to the typical rate of change of the electric field, i.e.,

ω̃ = ω/γ 	 1 if the rate of change is characterized mainly
by a single frequency ω. For the series of integrals, such
as displayed in Eq. (13), the Markov limit implies that all
times prior to t1 will be replaced by t1 in the integrand. The
remaining integrals can be performed analytically, where each
time integration produces a prefactor of the order of ω̃, so that
δ f (l )/δ f (2) ∝ ω̃l−2 for orders l = 3 or higher. Hence, terms of
order three or higher in the dipole coupling are subleading in
the Markov limit and will be ignored. The remaining terms
are

fn(kt , t ) = f (0)
n (k) +

∑
n

[
f (0)
n (k) − f (0)

n (k)
]

×
∫ t

t0

dt1
2
∣∣E (t1)d‖

nn(kt1 )
∣∣2

γ
[
1 + ε̃2

nn(kt1 )
] [1 + O(ω̃)]

+ O{[σE · d(kt )]
3}, (14)

where ε̃ := ε/γ and d‖
nn(k) := ê‖ · dnn(k). Further details

about the Markov regime can be found in Appendix B.
The driving field strength E0 enters the occupation dy-

namics, given by Eq. (14), explicitly in the numerator of
the integrand; it also enters in the argument kt= k − A(t ),
where it manifests in terms of order higher than two. The
small dimensionless parameter in the expansion of kt is Ẽ0 :=
E0qσ/kF, where the charge q and the pulse duration σ enter
due to the definition of A(t ) in Eq. (4) and the Fermi vector
kF due to the k derivative. In the presence of inversion or
time-reversal symmetry, the contribution of the order of E2

0
in fn is an even function and therefore the remnant current
corresponding to this order vanishes, as expected. A similar
symmetry argument can be used to see that all third-order
contributions proportional to [σE · d(k)]3 and contributions
up to cubic order in Ẽ0 to remnant currents orthogonal to the
driving field vanish.

In summary, the surviving terms in the Markov limit lead
to Eq. (1), where the material constant is defined as

C := 2q2
∫

BZ

dk
(2π )d

∑
nn

[
f (0)
n (k) − f (0)

n (k)
]

× [∂k‖ ε̃n(k)]

1 + ε̃2
nn(k)

[
∂k‖

∣∣d‖
nn(k)

∣∣2 − ∣∣d‖
nn(k)

∣∣2 ∂k‖

∣∣ε̃nn(k)
∣∣2

1 + ε̃2
nn(k)

]
;

(15)

F[s] in Eq. (1) abbreviates the functional

F[s] :=
∫ ∞

t0

dt [s(t )]2
∫ t

t0

dt ′ s(t ′). (16)

Equation (1) is an expression for remnant currents given
as a double expansion in the field strength E0 and the in-
verse effective dephasing ω̃. For small field strengths and fast
dephasing relative to the electric field oscillation γ > ω, we
identify, for the parallel current,

ĵ (∞)
‖ = CF[s]E3

0 , (17)

as the leading contribution to the remnant currents.
We now discuss higher-order terms by comparing the ana-

lytics from Eq. (17) with numerically exact computations. By
comparing the numerically exact data j (∞)

‖ with the leading

043149-4



GIANT DC-LIKE RESIDUAL CURRENT GENERATED BY … PHYSICAL REVIEW RESEARCH 6, 043149 (2024)

FIG. 4. Comparison of the analytical, leading-order result ĵ (∞)
‖

of the remnant current, given by Eq. (17), and numerically exact
solutions j (∞)

‖ of Eq. (6) for a gapless Dirac system with Fermi

energy εF/γ = 3. (a) Ratio ĵ (∞)
‖ / j (∞)

‖ as a function of the field
strength E0 for different dephasing rates ω/γ . The evolution of this
deviation with increasing damping times ω/γ is plotted in (b) at
E0 = 4.5 × 10−4kFεF/q, which is deep in the cubic regime; see (a).
Simulation parameters are chosen as described in the caption of
Fig. 2.

contribution ĵ (∞)
‖ , Fig. 4 confirms the cubic field strength

dependence of remnant currents. As shown in Fig. 4(b), the
deviation between ĵ (∞)

‖ and j (∞)
‖ in the small field strength

limit is below 2% for all considered damping rates 0 <

ω/γ < 4. Figure 4(a) also shows that starting at a certain field
strength value, qE0/(kFεF) ≈ 0.02, higher-order terms start to
influence remnant currents and the approximations made in
the previous sections break down.

V. OPTIMIZING PULSE SHAPES

Analytics. In the integrand in Eq. (16), we identify two
factors: the first, s(t )2, is non-negative. Further, the second
factor,

∫ t
t0

dt ′s(t ′) = −A(t )/(qE0), represents an integral over
a function s(t ′) that can be interpreted as a normalized vector
potential. It can exhibit nodes, i.e., sign changes; see the inset
of Fig. 2. Depending on the nodal structure, the integrand
can be positive (inset, blue trace) or oscillating (inset, orange
trace); the latter implies partial cancellations in the main in-
tegral over the time t in Eq. (16). To produce large remnant
currents, pulse shapes with well-defined polarity of the vector
potential A(t ) are preferential in order to avoid cancellations.
The antisymmetrically shaped electric field (blue pulse in
the inset of Fig. 2) corresponds to A(t ) < 0 and represents a
typical example.

In the following, we will apply Eqs. (1) and (16) for a
systematic optimization of the pulse parameters with respect
to remnant current production. A general model for pulse
shapes considered in [[2,4–6,15,19,33–35],[37,52,55,56]] is

E (t ) := E0[cos(ωt + ϕ) + α] e−(t/σ )2
, (18)

FIG. 5. Remnant current j (∞)
‖ computed from SBE for varying

field strengths E0 for pulses with CEP of (a) ϕ = π/2 and (b) ϕ = 0.
Dashed lines are shown as a guide for the E 3

0 dependence. Inset:
Shape of electric field pulses. We choose a Dirac Hamiltonian with
parameters as described in the caption of Fig. 2. Blue traces cor-
respond to a sc pulse according to Eq. (19); orange and red traces
correspond to mc pulses according to Eq. (18).

with parameters CEP ϕ [74], frequency ω, and width parame-
ter σ [75]. The factor α := − e−(ωσ )2/4 cos(ϕ) is included to
satisfy lim

t→∞
∫ t
−∞ E(t ′)dt ′ = 0, which ensures gauge consis-

tency. In the limit ωσ � 1, Eq. (18) represents a multicycle
(mc) pulse. To model the single-cycle (sc) pulses employed
in Fig. 2, we evaluate Eq. (18) in the limit ωσ � π and then
substitute ω → 2/σ ,

E (t ) = E0{2 sin(ϕ) t/σ + cos(ϕ)[1 − 2(t/σ )2]} e−(t/σ )2
.

(19)

The substitution ensures that the peak values of the mc versus
sc pulses match, so that the comparison of both is meaningful.

We evaluate the shape functional, given by Eq. (16), for the
mc and sc pulses, given by Eqs. (18) and (19), and obtain

F[s] = σ 2 sin(ϕ)

⎧⎨
⎩

2
√

π

3
√

3
for sc pulses

e−(ωσ )2/12

4
√

3/π ωσ
for mc pulses.

(20)

As seen here, mc pulses are exponentially suppressed as
compared to sc pulses. Further, largest remnant currents are
produced at a CEP ϕ = π/2.

Numerics. Figure 5 shows numerically calculated remnant
currents and confirms the analytical predictions made for the
limit of small field strengths: (i) As guided by the black dashed
line, we observe a cubic E0 dependence of remnant currents
for all shapes in the small field strength limit. (ii) The sc
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pulses produce remnant currents exceeding the ones of mc
pulses by orders of magnitude. (iii) To compare the effect of
different pulse lengths, we keep the number of half cycles, i.e.,
ωσ , invariant, while scaling σ . In this procedure, reducing the
pulse duration by one order of magnitude reduces the remnant
current in Fig. 5(a) by two orders of magnitude, as predicted
by the σ 2 dependence in Eq. (20). (iv) For pulses with a CEP
of ϕ = 0, the remnant current strength is suppressed. Taking
Eq. (20) at face value implies the absence of remnant currents;
nonzero values observed in Fig. 5(b) reflects terms of O(ω/γ )
that have been ignored when deriving Eq. (20). (v) Exploring
higher field strengths, we find that the predictions made from
analyzing the leading terms still hold in this regime: here, too,
sc pulses with a CEP of ϕ = π/2 lead to the largest remnant
currents out of all considered shapes.

Relation to experiments. In experiments about remnant
currents, pulse configurations comparable to the red trace in
the inset of Fig. 5(a) have been used [33–35]. According to
Eq. (20) and Fig. 5, the remnant currents’ strength can be
increased by up to five orders of magnitude as compared to
the experimental findings by employing single-cycle pulses
instead of multicycle pulses while keeping the peak field
strength constant.

VI. MATERIALS: REMNANT CURRENTS IN
TOPOLOGICAL SURFACE STATES AND TMDCs

For the case of a massive Dirac Hamiltonian, given by
Eq. (7), we obtain a closed expression for the material con-
stant C := C(ε̃F, m̃z ), with ε̃F := εF/γ and m̃z := mz/γ . The
full analytical expression of C is shown in Eq. (C1) in Ap-
pendix C.

The limiting case of zero mass mz = 0 and ε̃F � 1 may
serve to model a gapless topological surface state (TSS) [76]
and the material constant reads

CTSS = q4v2
F

32γ 2ε̃3
F

+ O
(
ε̃−4

F

)
. (21)

Note that CTSS diverges for ε̃F = 0, signalizing a breakdown
of the perturbative expansion.

Another limit, m̃z � 1 and ε̃F = 0 [77], models a monolayer
transition-metal dichalcogenide (TMDC) [67]. We obtain

CTMDC = q4v2
F

35γ 2m̃3
z

+ O
(
m̃−4

z

)
. (22)

To compare these materials, we consider the fraction

ĵ (∞)
‖ (TSS)

ĵ (∞)
‖ (TMDC)

= CTSS

CTMDC
≈ m3

z

ε3
F

, (23)

which is independent of the pulse shape. Using typical param-
eters εF = 0.2 eV [76], γ = (10 fs)−1 [58], mz = 2 eV [67],
and assuming vF to be equal in the TSS and the TMDC, we
estimate CTSS/CTMDC ≈ 103. In the case of strong doping, the
Fermi level can cut into the conduction band. In this case,
Eq. (C1) has to be expanded in the limit of large εF and large
mz. The leading terms are the same as in the TSS case, given
by Eq. (21); if the Fermi level cuts into the conduction band,
εF � mz and thus C � CTMDC.

In summary, a TSS (or graphene) is an ideal platform to
explore large remnant currents.

VII. CONCLUSION

In this work, we have performed combined analytical and
numerical analyses of steady-state (remnant) currents that
continue to flow in a material long after the driving laser pulse
has died out. We predict conditions under which remnant
currents can be of the same order of magnitude as the transient
current under driving. Moreover, remnant currents will be
orders of magnitude larger for single-cycle pulses compared
to the multicycle pulses that have been used in experimental
remnant current studies so far. Our prediction relies on an
analytical formula that we have derived. It explains the strong
dependence of remnant currents on laser pulse shape and
Hamiltonian parameters. We believe that our finding helps to
boost potential applications of remnant currents in ultrafast
electronics.

For all SBE simulations, we have used our program pack-
age CUED, that is freely available from github [78]. All inputs
and outputs of CUED used for this work are available on
zenodo [79], together with the code version that has been used
for generating the inputs and outputs.
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APPENDIX A: NATURAL UNITS OF REMNANT
CURRENTS

In all calculations, we have set h̄ = 1. The small parameter
of the perturbative expansion in the field strengths in Eq. (1)
is Ẽ0 = qσE0/kF. However, as the pulse duration σ is a vari-
able parameter in our analysis, we choose ε−1

F as the natural
timescale of our problem. With the Fermi vector kF as the
typical length scale of the problem, the natural units to express
electric fields is qE (t )/(kFεF). For the current density, given
by Eq. (6), the BZ integral can be compared with the square
of the Fermi vector k2

F and the derivative of the band energy
can be related to εF/kF. Therefore, a natural way to express
the remnant current density is j (∞)/(qkFεF).
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FIG. 6. Convergence check for Fig. 2. Colored lines are the
data plotted in the main part with 800 × 144 points, a BZ size of
1.89 × 0.95 Å−1, and an integration time step of 0.01 fs. Dashed
lines are overconverged data with 1080 × 288 points, a BZ size of
2.27 × 1.13 Å−1, and an integration time step of 0.008 fs.

APPENDIX B: MARKOV REGIME OF SECOND-ORDER
OCCUPATION CHANGES

For sufficiently large damping γ , only times where t2 is
close to t1 are contributing to the t2 integral from Eq. (13).
This can be seen following the arguments below.

Expanding wi j (t2) − wi j (t1) in the exponent for small
t := t2 − t1 enables us to evaluate the t2 integral in the
leading order in t . To do so, we introduce D(t1, t2) := E(t1) ·
dnn(kt1 )E(t2) · dnn(kt2 ) to shorten the notation and expand the
exponent around t ,∫ t

t0

dt1

∫ t1

t0

dt2e(t2−t1 )γ+i[w(t2 )−w(t1 )]D(t1, t2)

=
∫ t

t0

dt1

∫ 0

t0−t1

dtetγ+i[w(t+t1 )−w(t1 )]+ln [D(t1,t+t1 )]

=
∫ t

t0

dt1

∫ 0

t0−t1

dt et[γ+iẇ(t1 )]+ 1
2 iẅ(t1 )t2

× eln D(t1,t1 )+∂t ln [D(t1,t1+t )|t=0]t

× e
1
2 ∂2

t ln [D(t1,t1+t )]2
|t=0t2+O(t3 ). (B1)

Introducing

γ
(1)

eff (t1) := γ + iẇ(t1) + ∂t ln[D(t1, t1 + t )|t=0], (B2)

γ
(2)

eff (t1) := 1
2

{
iẅ(t1) + ∂2

t ln [D(t1, t1 + t )]2
|t=0

}
, (B3)

we can write the integral as

∫ t

t0

dt1

∫ 0

t0−t1

dteγ
(1)
eff (t1 )t+γ

(2)
eff t2+O(t3 )D(t1, t1)

=
∫ t

t0

dt1
1 − e(t0−t1 )γ (1)

eff (t1 )

γ
(1)

eff (t1)
D(t1, t1)

[
1 + O

( ∣∣γ (2)
eff

∣∣∣∣γ (1)
eff

∣∣2

)]

=
∫ t

t0

dt1
D(t1, t1)

γ
(1)

eff

[
1 + O

( ∣∣γ (2)
eff

∣∣∣∣γ (1)
eff

∣∣2

)]
. (B4)

FIG. 7. Convergence check for Fig. 4. Crosses are the data
plotted in the main part with 800 × 360 points and a BZ
size of 1.89 × 0.95 Å−1 for E0 � 1.0 MV/cm = 0.71kFεF/q, and
2400 × 504 points and a BZ size of 11.34 × 2.65 Å−1 for E0 >

1.0 MV/cm = 0.71kFεF/q. The integration time step for all pulses
with width 50 fs and CEP ϕ = 0 was 0.01 fs, and 0.005 fs for all
other pulses. Circles are overconverged with 1200 × 504 points and
a BZ size of 2.27 × 1.13 Å−1 for E0 � 1.0 MV/cm = 0.71kFεF/q,
and 3000 × 648 points and a BZ size of 13.23 × 3.02 Å−1 for E0 >

1.0 MV/cm = 0.71kFεF/q. The integration time step for all pulses
with width 50 fs and CEP ϕ = 0 was 0.008 fs, and 0.004 fs for all
other pulses.

For a large γ
(1)

eff , the factor e(t0−t1 )γ (1)
eff (t1 ) has a sharp peak around

t1 = t0 and is negligible for (t1 − t0)γ (1)
eff (t1) � 1. D(t1, t1) is

a function of the electric field pulse, which starts at t0. If we
assume a slowly increasing pulse, we have D ≈ 0 for those
times, where the exponential function is not negligible. Thus,
if the peaks of e(t0−t1 )γ (1)

eff (t1 ) and D(t1, t1) are well separated, the
integral containing the exponential in Eq. (B4) is negligible
compared to the integral of D(t1, t1)/γ (1)

eff , justifying the last
step in Eq. (B4). This is the case for all pulses that we consider
in the main part of the manuscript. Lastly, we can expand
1/γ

(1)
eff in the limit of large γ , utilizing that ∂t D(t, t ) ∝ ω,

which is the typical frequency of the driving field. Keeping
only leading terms in ω/γ , as terms of O(|γ (2)

eff |/|γ (1)
eff |2) are

also at least of O(ω/γ ), we can simplify the remaining inte-
gral by

∫ t

t0

dt1
D(t1, t1)

γ
(1)

eff (t1)

[
1 + O

( ∣∣γ (2)
eff

∣∣∣∣γ (1)
eff

∣∣2

)]

=
∫ t

t0

dt1
D(t1, t1)

γ + iẇ(t1)
[1 + O(ω/γ )]. (B5)

Reinserting the definition of D(t1, t2) and ẇ(t1) = ε(kt1 ) then
leads to Eq. (14) in the main part of the manuscript. In the case
of zero off-diagonal damping (γ = 0), we cannot perform the
simplifications done in the last step and have to use γ

(1)
eff (t1)

to approximate the density matrix elements. In this work,
however, we will always assume nonzero damping, γ > 0.
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FIG. 8. Convergence check for Fig. 5. Crosses are the data
plotted in the main part; circles are the overconverged data. The
convergence parameters are the same as in Fig. 7.

APPENDIX C: MATERIAL-DEPENDENT CONSTANT FOR
DIRAC HAMILTONIANS

In this section, we evaluate the material-dependent con-
stant C from Eq. (15) for a massive Dirac cone Hamiltonian
from Eq. (7). At zero temperature, the initial occupation
	cc(k, t0) is either 1, if |k| � kF, or 0, if |k| > kF and
	vv (k, t0) = 1. As all terms in Eq. (15) are proportional to
[	vv (k, t0) − 	cc(k, t0)], we can transform the BZ integral
into polar coordinates and set the lower limit of the radial
integral to kF. Substituting ε̃F := kFvF/γ and m̃z := mz/γ and

ζ :=
√

ε̃2
F + m̃2

z , we obtain a closed expression for C:

C(ε̃F, m̃z ) = q4v2
F

240γ 2ζ 6
(
1 + 4ε̃2

F + 4m̃2
z

)
π

× { − 64m̃4
z − 76m̃6

z − 2880m̃10
z

+ (−160m̃2
z − 356m̃4

z + 480m̃6
z − 8640m̃8

z

)
ε̃2

F

+ (−60 − 460m̃2
z + 960m̃4

z − 8640m̃6
z

)
ε̃4

F

+ (−180 + 480m̃2
z − 2880m̃4

z

)
ε̃6

F

+ (
48m̃4

z − 8m̃2
z + 3

)
ζ 5

(
4ε̃2

F + 4m̃2
z + 1

)
× [15π − 30 tan−1(2ζ )]

}
. (C1)

For a gapless Dirac cone, we have

C(ε̃F, m̃z = 0) = q4v2
F

16γ 2ε̃F
(
1 + 4ε̃2

F

)
π

× [
12πε̃3

F − 12ε̃2
F + 3πε̃F − 4

− 6
(
4ε̃3

F + ε̃F
)

tan−1(2ε̃F)
]
. (C2)

APPENDIX D: COMPUTATIONAL DETAILS

For the Brillouin zone sampling, we employ Monkhorst-
Pack meshes [80]. We carefully checked convergence of the
Monkhorst-Pack mesh, reaching converged results for meshes
with a density of up to 322 500 k points per Å−2 and BZ
sizes of up to 11.34 × 2.65 Å−1. Time integration is per-
formed using a fourth-order Runge-Kutta solver with time
steps of at least 0.005 fs. We show in Figs. 6–8 that in-
creasing the BZ size and k-point density, and decreasing the
time step of the integration, do not change the values of our
calculations

We employ an electric field that is linearly polarized in
the x direction. Unless otherwise stated, we employ a gap-
less Dirac cone with an equilibrium band occupation of a
Fermi-Dirac distribution with an Fermi level of 0.2 eV at zero
temperature. The off-diagonal dephasing rate γ for all plots
besides Fig. 4 is chosen to be 10−1 fs [58].
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