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Analyzing longitudinal trait trajectories
using GWAS identifies genetic variants for
kidney function decline

SimonWiegrebe 1,2 , MathiasGorski 1, JaninaM.Herold 1, Klaus J. Stark 1,
Barbara Thorand3,4,5, Christian Gieger 3,4,6, Carsten A. Böger7,8,9,
Johannes Schödel 10, Florian Hartig11, Han Chen 12, Thomas W. Winkler 1,
Helmut Küchenhoff 2 & Iris M. Heid1

Understanding the genetics of kidney function decline, or trait change in
general, is hampered by scarce longitudinal data for GWAS (longGWAS) and
uncertainty about how to analyze such data. We use longitudinal UK Biobank
data for creatinine-based estimated glomerular filtration rate from 348,275
individuals to search for genetic variants associated with eGFR-decline. This
search was performed both among 595 variants previously associated with
eGFR in cross-sectional GWAS and genome-wide. We use seven statistical
approaches to analyze the UK Biobank data and simulated data, finding that a
linear mixed model is a powerful approach with unbiased effect estimates
which is viable for longGWAS. The linear mixed model identifies 13 indepen-
dent genetic variants associated with eGFR-decline, including 6 novel variants,
and links them to age-dependent eGFR-genetics. We demonstrate that age-
dependent and age-independent eGFR-genetics exhibit a differential pattern
regarding clinical progression traits and kidney-specific gene expression reg-
ulation.Overall, our results provide insights into kidney aging and linearmixed
model-based longGWAS generally.

Accelerateddecline of kidney function is a serious health burden: it can
lead to kidney failure, necessitating dialysis or kidney transplantation,
with high risk of early mortality1,2 and otherwise limited therapeutic
options. Kidney function is typically assessed by serum creatinine as
estimated glomerular filtration rate (eGFR). Age-related decline of
eGFR is on average −1mL/min/1.73m2/year in adult populations3, but

exhibits a high variability due to mechanisms that are still poorly
understood4.

Deciphering the genetic make-up of kidney function decline by
genome-wide association studies (GWAS) is a promising route to
understand thesemechanisms. Since genes in GWAS loci are candidates
for drug development5,6, GWAS can also help identify therapeutic
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options. Hundreds of genetic loci have been identified for association
with eGFR by large cross-sectional GWAS7,8. Cross-sectional associations
may arise through one allele associated with steeper eGFR-decline or
with lower eGFR-levels stable over time and age (Fig. 1a). Genes in
decline-associated loci might lead more directly to therapeutic options
to decelerate progression9. So far, only few genetic loci are known for
genome-wide significant association with eGFR-decline: one locus (two
variants in/near UMOD) in general populations (n=343,33910; seven
further loci among pre-selected variants at Bonferroni-corrected sig-
nificance) and three loci in patients with chronic kidney disease (CKD,
eGFR<60mL/min/1.73m2, n= 116,87011).

This reflects a general imbalance between well-studied genetics of
cross-sectional disease-related traits12 and less-studied genetics of
temporal trait change using longitudinal data: there are only few
robustly identified genetic variants for the temporal change of any
trait11,13,14. This is despite the high clinical relevance, as deteriorating
quantitative biomarkers are typically linked to disease onset and pro-
gression. The reason for this imbalance is arguably the scarcity of large
longitudinal data, but also substantial uncertainty about theappropriate
statistical approach that simultaneously achieves controlled type I error,
high power, unbiased effect estimation, and computational speed.

Emerging large-scale longitudinal data from biobanks that inte-
grate electronic health records (eHRs) set the stage for a new era of
longitudinal GWAS (“longGWAS”). LongGWAS can address multiple
questions, including the quest for genetics of trait variability15 or (here)
the quest for genetics of temporal trait change.

There are various options to model temporal trait change
(Fig. 1b): (i) a straightforward approach uses the difference divided
by time in-between two eGFR assessments (difference model); linear
mixed models (LMMs), a standard framework for longitudinal data16,
can model the trait: as (ii) function of time-since-baseline (time
model) or (iii) function of age (age model) with random intercepts
and random slopes accounting for their correlation (RI&RS)17 or
ignoring it (RI&RS uncorrelated; to improve identifiability18), or (iv)
with random intercepts only (RI-only; computationally easier). LMMs
can be applied to test genetic variants directly (one-stage LMM) or as
computationally much faster two-stage approach (using LMM to
generate “best linear unbiased predictors”, BLUPs, for person-
specific slopes, evaluated via linear regression11,19; BLUPs&LinReg).
Previous work applied the difference model10,20 or BLUPs&LinReg11,21,
which are readily applicable for longGWAS by standard software, but
cannot integrate individuals with = 1 trait assessment (“singletons”).
One-stage LMMs can integrate singletons but are computationally
challenging. So far, a systematic comparison between such approa-
ches has been lacking.

Here, we set out to understandmore about statistical approaches
to test genetic association with temporal trait change, with eGFR-
decline as rolemodel, and about the geneticsof eGFR-decline.Weused
simulated data and a UK Biobank (UKB) dataset on eGFR-trajectories
combining creatinine values derived from study-center visits and
eHRs22 (n~350K; >1.5 million eGFR assessments over up to 27 years).
Specifically, we (1) compared seven approaches regarding type I error,

Fig. 1 | Conceptual illustration of genetic variant association with eGFR over
time/age and phenotypicmodels. aGenetic variant (SNP) associations with eGFR
can arise through one allele (risk allele A) that accelerates eGFR-decline over time/
age (left) or lowers eGFR in a constant fashion over time/age (right) as compared to
theother allele (a). This suggests that genetic variants associatedwith eGFR-decline
are found among genetic variants associated with eGFR cross-sectionally. Shown is
a schematic for persons with A/a versus a/a. b Temporal change of eGFR can be
modeled in longitudinal data in various ways (phenotypic models): as (i) difference

between last and 1st eGFR value of a person (difference model; assessments in-
between 1st and last unused and thus depicted as circles); (ii) eGFR over time via
linear mixed model (LMM) with person-specific intercepts and slopes (LMM time
model RI&RS; time = 0 corresponds to an individual’s 1st eGFR assessment); (iii)
eGFR over age (LMM age model RI&RS); or (iv) eGFR over age without random
slopes (LMM age model RI-only; time model RI-only possible, but not applied/
shown). Shown is a schematic of the phenotypic modeling for two example
persons.
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power, and bias and (2) searched the UKB eGFR-trajectories data for
association with eGFR-decline. Since we hypothesized that eGFR-
decline genetics was a subset of cross-sectional eGFR genetics, we
searched for eGFR-decline association (2a) among 595 independent
variants across 424 loci known for association with eGFR from cross-
sectional GWAS8,23 (“595-search”), (2b) followed by longGWAS to
evaluate this hypothesis.

Results
UKB eGFR-trajectories exhibit an approximately linear decline
of −1mL/min/1.73m2/year
We analyzed unrelated European-ancestry UKB individuals without
acute kidney injury (AKI) or nephrectomy, excluding eGFR assess-
ments after onset of dialysis, kidney transplant, or end-stage kidney
disease (ESKD) (“Methods” section). Our analyzed UKB data consisted
of 149,263 individuals with ≥2 eGFR assessments per person (“UKB
150K”; median follow-up time= 8.4 years; m = 1,321,370 eGFR assess-
ments) or 348,275 individuals with ≥1 eGFR assessment (“UKB 350K”;
m = 1,520,382; Supplementary Fig. 1). UKB 350K was similar to 150K
regarding participant characteristics: 54%women, 1.2%CKDatbaseline
and 4.6% at any timepoint (eGFR < 60mL/min/1.73m2), baseline age
35–78 years, median baseline eGFR = 97mL/min/1.73m2 (Table 1). We
used UK10K/HRC-imputed allele dosages of 11.3 million single-
nucleotide polymorphisms (SNPs) and selected 595 variants known
for association with cross-sectional eGFR23 (“Methods” section).

Before evaluating genetic variants, we explored a potentially non-
linear relationship of eGFR with time and age, observing approximate
linearity and negligible difference by sex (Supplementary Fig. 2a–c).
This was more challenging for individuals with CKD, primarily due to
regression-to-the-mean effects at the start of trajectories and sparse
data at their end (Supplementary Fig. 2d). Assuming linearity, mean
annual eGFR-decline was comparable across approaches (−0.88 to
−1.08mL/min/1.73m2/year), with high variability of person-specific
slopes (standard deviation 0.66–0.95mL/min/1.73m2/year, Supple-
mentary Table 1 and Supplementary Note 1).

LMM age model RI&RS is a powerful approach with unbiased
genetic effect estimates
We considered seven approaches for genetic association analysis with
eGFR-decline (Supplementary Table 2, “Methods” section Eqs. (1–4)):

in data of individuals with ≥2 assessments over time, (i) difference
model, (ii–v) four one-stage LMMs (timemodel RI&RS, agemodel RI&RS,
age model RI&RS uncorrelated, age model RI-only), (vi) an LMM-based
two-stage approach (BLUPs&LinReg); in data adding singletons (i.e.,
individuals with =1 assessment), (vii) age model RI&RS.

We compared these approaches in simulated data using various
scenarios (simulation parameters corresponding to: eGFR-trajectories
as in UKB 350K, ~50% singletons; eGFR-trajectories in an external
cohort study, KORA-424, ~20% singletons; trajectories of another trait,
body mass index, BMI, in KORA-4; “Methods” section, Supplementary
Table 3). We found the following (Table 2 and Supplementary Table 4):
(i) type I error was inflated for age model RI-only and age model RI&RS
uncorrelated, indicating insufficient accounting for person-specific
slope variability. (ii) Power was better for one-stage LMMs compared
to difference model, but BLUPs&LinReg was the most powerful. When
adding singletons, not possiblewith differencemodelorBLUPs&LinReg,
theagemodel RI&RSbecamenearly as powerful asBLUPs&LinReg in the
UKB-based scenario. (iii) Biased effect estimates were observed for
BLUPs&LinReg in all scenarios (11%–38% shrinkage), in line with the
bias-variance trade-off known from regularization25 (Supplementary
Note 2), while estimates from age model RI&RS were unbiased.

Empirical data (UKB 150K, or 350K when adding singletons) cor-
roborated simulation findings regarding type I error (no control byage
model RI-only and RI&RS uncorrelated, Supplementary Fig. 3), power
(best for BLUPs&LinReg and age model RI&RS in UKB 350K), and bias
(BLUPs&LinReg: 38.5% shrinkage; Table 2, Supplementary Note 2,
Supplementary Fig. 4, Supplementary Data 1).

Altogether, among approaches with type I error control, BLUP-
s&LinReg showed the best power, but biased effect estimates. When
jointly aiming for good power and unbiased effect estimates, the
LMM age model RI&RS was preferable, particularly in the UKB 350K
dataset. We thus used the LMM age model RI&RS in UKB 350K in the
following.

Twelve genetic variants across ten loci identified for association
with eGFR-decline
Due to our hypothesis that genetics of eGFR-decline is a subset of
genetics of cross-sectional eGFR, we first focused on the 595 variants
known for cross-sectional eGFR-association23 and tested these for
association with eGFR-decline (“595-search”, LMM age model RI&RS in
UKB 350K). We identified 12 variants (Pdecline < 0.05/595 = 8.4 × 10−5, 6
with Pdecline < 5 × 10−8, Fig. 2a and Table 3): (i) 7 variants known for
eGFR-decline10 (near/in UMOD/PDILT (2), TPPP, C15orf54, FGF5, OVOL1,
and PRKAG2) and (ii) 5 variants novel for eGFR-decline: 1 independent
third UMOD/PDILT variant and 4 novel loci (near SDCCAG8, RRAGD,
GGT7, PRAG1). We raised the number of variants with Pdecline < 5 × 10−8

from two (UMOD/PDILT) to six (four loci, adding loci around TPPP,
C15orf54, SDCCAG8; Table 3). Results were robust upon various sensi-
tivity analyses (Supplementary Fig. 5 and “Methods” section).

The five novel variants were detected with a similar number of
individuals as in previous work10 (n ~ 350,000; CKDGen, difference
model) due to the age model, not with the difference model in UKB or
CKDGen or due to different multiple testing burdens (Table 3 and
Supplementary Data 1).

Among the nine variants previously identified for eGFR-decline10,
seven were identified here (Pdecline < 0.05/595), one additional variant
had Pdecline = 5.1 × 10−3 (directionally consistent; Supplementary
Table 5). We also confirmed variants near CPS1, SHROOM3, and GATM
as not associated with eGFR-decline (Pdecline ≥0.05, Supplementary
Table 5).

Validation in external data
We obtained support in independent longitudinal data: in three
population-based cohort studies from Germany, we had previously
reported an approximate linear relationship of eGFRover age26 (KORA-

Table 1 | Participant characteristics for UKB data on eGFR-
trajectories

UKB 150K UKB 350K

% (n) of women 53.7 (80,091) 53.7 (187,129)

Number of eGFR assess-
ments per person

6 (2–289) 1 (1–289)

Follow-up time [years] 8.4 (1.0–27.1) 0.0 (0.0–27.1)

Age at 1st assessment [years] 55.9 (35.0–76.4) 57.1 (35.0–78.2)

Age at last assess-
ment [years]

65.1 (37.0–79.7) 60.9 (36.0–79.7)

eGFR at 1st assessment [mL/
min/1.73m2]

98.0 (15.2–192.1) 97.4 (15.0–192.1)

eGFR at last assessment [mL/
min/1.73m2]

89.4 (15.0–198.6) 94.0 (15.0–198.6)

% (n) with CKD at 1st
assessment

0.7 (1038) 1.2 (4069)

% (n) with CKD at any
assessment

3.8 (13,116) 4.6 (16,147)

We show descriptive statistics for UKB individuals with ≥2 eGFR assessments (UKB 150K;
n = 149,263,m = 1,321,370) and for theextendeddata adding individualswith =1eGFR assessment
(UKB 350K: n = 348,275; m = 1,520,382). The 199,012 individuals with =1 eGFR assessment have
median age 58.2 (min–max 36.0–78.2) years and median eGFR 97.0 (min–max 15.0–159.6) mL/
min/1.73m2. CKD was defined as eGFR < 60mL/min/1.73m2. Shown is % (n) or median
(min–max).
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3: n = 2933, m = 3749; KORA-4: n = 3752, m = 9644; AugUR: n = 2397,
m = 3442). Baseline age was 35–84, 25–74, or 70–95 years with ~20
years (KORAs) or ~9 years of follow-up (AugUR). The %CKDwas higher
in these studies than in UKB: %CKD at baseline (eGFR < 60mL/min/

1.73m2) was 5.6%, 1.5%, and 21.5%, respectively, and %CKD at any
timepoint was 6.7%, 8.2%, and 26.1%. The 12-variant polygenic score in
combined KORA&AugUR data was significantly associated with eGFR-
decline (Pdecline = 0.013; age model RI&RS, “Methods” section).

Table 2 | Performance of seven approaches to genetic association analyses for trait change in simulated and empirical
longitudinal data

Simulated data Empirical data

UKB scenario for eGFR-trajectories UKB eGFR-trajectories

Approaches T1E [%] (CI) Power [%] (CI) Bias [%] T1E [%] (CI) “Power” in 9 “Bias” in 9 Identified in 595

Without singletons

Difference model 5.1 (4.7, 5.5) 12.0 (11.4, 12.7) 0.6 4.9 (4.5; 5.3) 4/9 0.0 2 (2)

Time model RI&RS 4.7 (4.2, 5.1) 25.6 (24.7, 26.4) 0.0 4.8 (4.4; 5.2) 7/9 8.2 7 (2)

Age model RI&RS 4.8 (4.4, 5.3) 31.4 (30.5, 32.4) 0.7 5.0 (4.5; 5.4) 8/9 Reference 9 (2)

Age model RI&RS uncorr. 7.5 (7.0, 8.1) 38.8 (37.8, 39.8) 0.7 8.8 (8.2; 9.3) 8/9 0.7 13 (3)

Age model RI-only 32.4 (31.4, 33.3) 59.0 (58.1, 60.0) 0.6 43.1 (42.2; 44.1) 9/9 16.9 98 (41)

BLUPs&LinReg 5.3 (4.9, 5.8) 44.8 (43.9, 45.8) −37.7 5.0 (4.6; 5.5) 8/9 −38.5 13 (3)

Including singletons

Age model RI&RS 5.2 (4.8, 5.7) 44.1 (43.1, 45.1) 0.5 4.8 (4.3; 5.2) 8/9 0.2 12 (6)

We compared seven approaches (“Methods” section and Supplementary Table 2) regarding type I error, power, and bias: six approaches analyze individuals with ≥2 trait assessments over age/time
(no singletons, i.e., individualswith =1 trait assessment), the 7th approach repeats agemodel RI&RS including singletons. Simulations were based ondistributions of age, global/random trait effects,
and random error as in UKB 350K for eGFR and simulated genotypes (EAF = 30%; 10,000 simulation runs; “Methods” section and Supplementary Table 3). This scenario covers a setting as in UKB
(~50% singletons) for trajectories of a trait like eGFRwith prounouced age effect on trait. We show estimates of type I error (T1E), power, and bias from 10,000 simulation runs. In empirical analyses
using UKB 150K (no singletons) or 350K (including singletons), we showpermutation-based type I error, proxies of power and bias (based on 9 SNPs known for eGFR-decline10), and number of SNPs
identified with Pdecline < 0.05/595 (Pdecline< 5 × 10−8) among the 595 SNPs known for association with cross-sectional eGFR8.
Simulated data: T1E = proportion of SNPs with Pdecline < 0.05 across 10,000 simulated SNPs given zero true effect on decline, βdecline = 0 (95% CI using SEs from exact binomial test); Power =
proportion of SNPs with Pdecline < 0.05 across 10,000 simulated SNPs given true effect on decline, βdecline = −0.025 (95%CIs derived from SEs using exact binomial test); Bias = relative bias of effect

estimates given true effect on decline, βdecline = −0.025, derived as average (across 10,000 simulation runs) of (β̂decline−βdecline)/βdecline; Empirical data: T1E = proportion of SNPs with Pdecline < 0.05
among 10,000permutation-based “null-SNPs” using eGFR-trajectories ofUKB individuals (95%CIs usingSEs fromexact binomial test); “Power” in 9 = proportionof SNPsdirectionally consistentwith
Pdecline < 0.05 in UKB 150K (for agemodel RI&RS: additionally in UKB 350K) among the 9 SNPs known for eGFR-decline10; “Bias” in 9 = relative deviation of effect estimate from reference among the 9

SNPs known for eGFR-decline10 derived as average across the 9 SNPs of (β̂decline � β̂declineðreferenceÞ)/ β̂declineðreferenceÞ ; Identified in 595 = number of SNPs with Pdecline < 0.05/595 (in parentheses: with

Pdecline < 5 × 10−8) among 595 SNPs tested.

Fig. 2 | Twelve variants identified for eGFR-decline by focused search among
595 variants.We selected 595 SNPs previously reported for association with eGFR
in cross-sectional data23 and tested them for association with eGFR-decline using
the one-stage LMM age model RI&RS 350K (UKB 350K; n = 348,275, m = 1,520,382).
a Shown are P values (Pdecline) versus chromosomal position. We identified 12 var-
iants (10 loci) for eGFR-decline at Bonferroni(595)-corrected significance
(Pdecline < 0.05/595 = 8.4 × 10−5, brown dashed horizontal line; including 6 with
Pdecline < 5 × 10−8, red dashed horizontal line), consisting of 5 novel and 7 known
variants for eGFR-decline10 (blue or green, respectively). Also color-coded are two
variants known for eGFR-decline not identified here (orange) and three variants
known for not being associatedwith eGFR-decline (red)10. Variantswith smallminor

allele frequency (MAF < 5%) are shown as circles. b Shown are genetic effect sizes
for eGFR-decline (βdecline from LMM age model RI&RS 350K) versus effect sizes for
association with eGFR cross-sectionally (βcross-sectional: eGFR~sex, age, SNP, PCs;
eGFR from UKB baseline study-center assessment, n = 341,073). Color and symbol
codes are as in (a), additionally highlighting 11 stable-effect variants (black;
Pmain < 5 × 10−8, |βmain| > 0.50mL/min/1.73m2/allele; Pdecline≥0.1; |βdecline| < 0.005
and SEdecline < 0.005mL/min/1.73m2/allele and year) that include the CPS1 variant
(rs1047891; red in (a)). Effect allele was the cross-sectionally eGFR-lowering allele
(unconditioned analyses in EUR23). The exact numerical values are provided in
Supplementary Data 2.
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Decline-associated variants have little effect on eGFR for 40-
year-old individuals and large effects on 70-year-old individuals
in contrast to 11 stable-effect variants
When comparing directionality and size of variants’ effects on eGFR-
decline with effects on cross-sectional eGFR (UKB study-center base-
line, n = 341,073, aged 39–72 years), we found the 12 decline-
accelerating alleles to coincide with cross-sectionally eGFR-lowering
alleles (Fig. 2b, blue and green dots; Supplementary Data 2). One “bad”
allele lowered average eGFR by −0.012 to −0.060mL/min/1.73m2/year
compared to cross-sectional effects of −0.13 to −0.90mL/min/1.73m2

(Supplementary Data 3). We also observed variants with large cross-
sectional effects that had no association with eGFR-decline (e.g., CPS1
variant).

We extracted variants with large main effect on eGFR-levels and
no association with eGFR-decline (Pmain < 5 × 10−8, |βmain| > 0.50mL/
min/1.73m2 per allele, Pdecline ≥0.1, |βdecline| < 0.005 and
SEdecline < 0.005mL/min/1.73m2 per allele and year), yielding 11
“stable-effect” variants (including CPS1; Supplementary Data 3). Their
main effects, reflecting genetic effects on eGFR for 50-year-old indi-
viduals due to age-centering, were similar to cross-sectional effects
(βcross-sectional = −0.50 to −0.74mL/min/1.73m2; Fig. 2b, black dots).

We visualized the 12 + 11 SNP associations on eGFR-levels over
age (βmain + (age-50)*βdecline): the 12 decline-associated variants
showed age-dependent effects on eGFR, while the 11 stable-effect
variants showed age-independent effects (Fig. 3a). The large extent
of age-dependency for decline-associated variants was remarkable:
near-zero effects on eGFR-levels among 40-year-old (even
UMOD/PDILT; except PRAKG2), but large effects for 70-year-old
individuals, much larger than cross-sectionally (e.g., for UMOD/PDILT

rs77924615: −1.59 versus −0.90mL/min/1.73m2 per “bad” allele,
respectively; for rs854922 near RRAGD: −0.55 versus −0.28; Supple-
mentary Data 3). This suggests that age-dependent associations with
eGFR become effective mainly around the age of 40 years, while
stable associations are already effective before the age of 40 years
and age-independent thereafter.

Robustness of findings regarding non-linear age effects and
eGFR-variability
The approaches applied here and by others10,11,20,21 assume linearity in
the global age effect on eGFR, the person-specific age effects on eGFR,
and the age effect on the SNP-association with eGFR (i.e., modeling
SNP-association with linear eGFR-decline). Allowing for non-linear
relationships (addingquadratic terms; “Methods” section) didnot alter
results for the 12 + 11 SNP associations with linear eGFR-decline (Sup-
plementary Fig. 6). Two variants, rs77924615 and rs13334589 in/
around UMOD/PDILT, showed a small, but significant association with
over-linear eGFR-decline (Supplementary Fig. 7; PSNPxage² < 0.05/
23 = 2.2 × 10−3; Supplementary Data 4). Further analyses for these two
variants pointed to 50 years as breakpoint for accelerated decline
(Pbreakpoint50 = 6.3 × 10−56 and 1.7 × 10−5, respectively; Pbreakpoint40 = 0.45
and 0.50, Pbreakpoint60 = 0.04 and 0.04; “Methods” section).

Longitudinal data have also been used to test for SNP associations
with trait variability15. When applying the model implemented in
TrajGWAS15 (“Methods” section), all 12 decline-associated variants, but
also 7 stable-effect variants were associated with eGFR-variability
(P < 0.05/23 = 2.2 × 10−3; Supplementary Fig. 8). Thus, association with
eGFR-variability answers a different question than association with
eGFR-decline.

Table 3 | Twelve variants identified for association with eGFR-decline using LMM age model RI&RS in the UKB 350K dataset

UKB 350K UKB 150K UKB 150K CKDGen (Gorski et al.)

age model RI&RS age model RI&RS difference model difference model

SNPID Locus EA betadecline Pdecline betadecline Pdecline betadecline Pdecline betadeclinea Pdecline

Identified variants that were known for eGFR-decline (directly or per proxy with r2 >0.8), Pdecline <0.05/595

rs77924615 UMOD/PDILT G −0.060 1.1E − 54 −0.059 2.2E − 32 −0.057 2.2E − 10 −0.074 5.3E − 38

rs13334589 UMOD/PDILT A −0.054 1.1E −42 −0.055 1.0E − 26 −0.060 3.8E − 11 −0.066 2.1E − 31

rs434215 TPPP A −0.026 4.3E − 12 −0.024 1.1E −06 −0.013 0.14 −0.020 3.7E −04

rs28857283 C15orf54 G −0.019 3.8E −09 −0.021 3.8E −07 −0.022 0.0026 −0.021 1.5E −06

rs4930319 OVOL1 C −0.014 1.3E −05 −0.012 0.0032 −0.013 0.090 −0.015 9.9E −04

rs10224002 PRKAG2 G −0.014 2.9E −05 −0.017 1.2E −04 −0.019 0.015 −0.020 7.0E −05

rs1458038 FGF5 C −0.014 5.3E −05 −0.015 7.5E −04 −0.014 0.068 −0.019 3.9E −05

Identified variants that were novel for eGFR-decline, Pdecline <0.05/595

rs74209810 UMOD/PDILT T −0.032 6.6E − 11 −0.031 9.4E −07 −0.035 0.0022 −0.017 0.028

rs2783971 SDCCAG8 A −0.018 1.1E −08 −0.019 2.9E −06 −0.021 0.0035 −0.005 0.21

rs854922 RRAGD A −0.024 7.5E −06 −0.026 2.7E −04 −0.022 0.073 0.006 0.42

rs2076668 GGT7 A −0.014 1.6E −05 −0.014 4.0E −04 −0.014 0.051 −0.005 0.24

rs2921093 PRAG1 T −0.012 7.3E −05 −0.012 0.0026 −0.014 0.056 0.003 0.46

Variants identified for eGFR-decline by Gorski et al., but not identified here, Pdecline ≥0.05/595

rs60503594 SPATA7 T −0.009 0.004 −0.008 0.056 −0.003 0.69 −0.020 5.5E −06

rs13064938 ACVR2B C −0.002 0.61 −0.001 0.78 −0.011 0.12 −0.013 3.0E −03

In the 595-search23, we identified 12 variants for association with eGFR-decline at Bonferroni-corrected significance (Pdecline< 0.05/595 = 8.4 × 10−5; LMM age model RI&RS; UKB 350K dataset,
n = 348,275, m = 1,520,382; Supplementary Data 1). Out of these 12 variants, 7 were known (identified previously for eGFR-decline10) and 5 were novel. Two variants identified previously were not
identified here (Pdecline ≥0.05/595). We compared the 12 + 2 variant results from age model RI&RS in UKB 350K with results from age model RI&RS in UKB 150K, difference model in UKB 150K, and
difference model in CKDGen10 (nCKDGen = 343,339, mCKDGen = 686,678), which identified 5/2/0/0 novel variants (4/1/0/0 loci) for eGFR-decline, respectively. Of note, 2 out of 9 variants previously
identified for eGFR-decline in CKDGen had been detected at Pdecline < 5 × 10−8 (1 locus, UMOD/PDILT); the others were derived from searching a set of pre-selected variants judged at Bonferroni-
corrected level (details in Supplementary Table 5). Shown are effect estimates (betadecline) and P values for eGFR-decline (Pdecline).
SNPID = variant identifier on GRCh37, Locus = nearest gene, EA = effect allele (cross-sectionally eGFR-lowering allele), betadecline and Pdecline = genetic effect and P value for eGFR-decline.
For the following SNPs identified for eGFR-decline by Gorski et al., a proxy variant is shown that was among the 595 SNPs: rs13334589 (proxy for rs34882080, r2 = 0.99), rs10224002 (proxy for
rs10254101, r2 = 0.99), rs13064938 (proxy for rs13095391, r2 = 0.84), rs60503594 (proxy for rs1028455, r2 = 0.94), rs1145084 (proxy for rs2453533, r2 = 0.99), and rs28817415 (proxy for rs9998485,
r2 = 0.49).
abetas from the CKDGen summary statistics were multiplied by (−1) to align direction. The loci are labeled by the nearest gene of the region lead variant.
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Decline-associated variants show SNP-by-age interaction in
cross-sectional data
Decline-associated SNPs should show SNP-by-age interaction in cross-
sectional data (UKB study-center baseline, n = 341,073; linear regres-
sion adjusted for sex, 20 principal components (PCs)): 10 of 12 showed
PSNPxage < 0.05; when compared to effects on eGFR-decline in long-
itudinal data, interaction effects were similar (−0.010 to −0.048mL/
min/1.73m2 per allele and year) and P values were larger, attributable
to reduced power (Supplementary Data 5). None of the 11 stable-effect
variants had PSNPxage < 0.05 with negative effect.

The cross-sectional data also gave us the opportunity to explore
whether the age-dependency of the 12 SNP associations with eGFRwas

explained by their interaction with diabetes, HbA1c, hypertension, or
systolic blood pressure (SBP). The SNP-by-age interaction effects
remained the same when including SNP-by-diabetes, SNP-by-HbA1c,
SNP-by-hypertension, or SNP-by-SBP interaction terms (Supplemen-
tary Fig. 9 and Supplementary Data 5).

Differential pattern of association with clinical progression
traits between decline-associated versus stable-effect loci
Froma clinical perspective, rapid eGFR-decline or eGFR-decline inCKD
are of particular interest as surrogate for CKD progression3,27. Previous
workon thegenetics of theseprogression traits identifiedSNPs around
UMOD/PDILT, PRKAG2, and TPPP11,20,21,28, suggesting an overlap with

Fig. 3 | Differential pattern between decline-associated versus stable-effect loci
regarding age-dependency, clinical progression traits, and tissue-specific gene
expression regulation.We contrasted the 12 decline-associated variants versus 11
stable-effect variants and underlying loci. a Shown are genetic effects on eGFR for
40-, 50-, 60-, 70-year-old individuals using LMM age model RI&RS 350K (beta
derived as βmain + (age-50)*βdecline) for decline-associated variants (left; blue: novel,
green: known) and stable-effect variants (right; black). Effect allele was the cross-
sectionally eGFR-lowering allele23 (Supplementary Data 3). b We tested the 12 + 11
variants for association with two clinical progression traits using UKB 150K, rapid
decline (ncases = 1211, ncontrols = 63,392, logistic regression) and decline in CKD
(nCKD =13,116, mCKD = 116,944, LMM time model RI&RS; “Methods” section and

Supplementary Table 6). Significant enrichment (Penrich < 0.05) of directionally
consistent nominally significant associations was found among the 12 (left; 8/12, 4/
12), but not among the 11 SNPs (right; 0/11, 1/11). cWe evaluated genes in loci of the
12 + 11 variants regarding tissue-specific enrichment of differentially expressed
genes (DEGs): shown are enrichment P values in decline-associated loci (left, among
256 genes) and stable-associated loci (right, among 182 genes; using FUMA, testing
54 tissue types, showing top 25; “Methods” section). Significant enrichment for
DEGs (FDR <0.05, red) was found for decline-associated loci only in kidney cortex
(upregulated) and for stable-effect loci in various tissues (mostly downregulated,
e.g., in liver, heart, muscle, pancreas, kidney cortex).
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genetics of eGFR-decline in general population. We tested the 12 + 11
SNPs for association with rapid decline (ncases =1211, ncontrols = 63,392;
“Methods” section) and with eGFR-decline in the subset of individuals
with CKD (eGFR < 60mL/min/1.73m2, nckd = 13,116, mCKD = 116,944;
“Methods” section). The 12 decline-associated variants were enriched
for directionally consistent nominally significant associationwith rapid
decline and eGFR-decline in CKD (Penrich =1.6 × 10−8 or 2.2 × 10−3,
respectively), but the 11 stable-effect variants were not (Penrich = 1.0 or
0.43, respectively; Fig. 3b and Supplementary Table 6). Decline-
associated variants contributing to these enrichments were near
UMOD/PDILT (3), PRKAG2, and TPPP (confirmed for clinical progres-
sion traits), RRAGD, OVOL1, and C15orf54 (novel).

Both the 12 and 11 variants were enriched for association
with the odds of having CKD (ncases =16,147, ncontrols = 332,128;
Penrich = 2.4 × 10−16 and 9.8 × 10−11, respectively). Thus, decline-
associated versus stable-effect variants showed a similar relevance
for having/developing CKD, but a differential pattern for clinical pro-
gression traits.

Differential pattern of tissue-specific gene expression regulation
in decline-associated versus stable-effect loci
We were interested in likely causal genes and potentially differential
mechanisms implicated by the 12 decline-associated variants (10 loci)
versus the 11 stable-effect variants (9 loci).

We annotated biological and statistical features to 256 and 182
genes in these loci (“Methods” section; Supplementary Data 6). We
found accumulated evidence with ≥3 features for six genes to be likely
causal for decline-associated loci (UMOD, PRKAG2, SDCCAG8, RRAGD,
TPPP, FGF5) and for four genes for stable-effect loci (CPS1, SLC22A2,
SLC34A1, UNCX; Table 4 and Supplementary Note 3). For the high-
lighted 6 + 4 = 10 genes, the locus index variant was in or very near
(<25 kb) to the mapped gene and statistically highly likely the
association-driving variant (22%–100% probability). Common-variant
effects for Mendelian disease genes were found for both decline-
associated and stable-effect variants; two genes known for a role in
creatinine metabolism (creatinine production or tubular reuptake29,30)
mapped to stable-effect loci.

While pathway-enrichment analyses were inconclusive (using
Panther31,32, “Methods” section and Supplementary Note 3), analysis of
tissue-specific enrichment for differentially expressed genes (DEGs)
showed a strikingly differential pattern (using FUMA33, “Methods”
section): significant enrichment for DEGs (false discovery rate, FDR <
0.05) was found only in kidney cortex for decline-associated loci
(upregulated), yet in various tissues for stable-effect loci (mostly
downregulated; e.g., in heart, liver, muscle, pancreas, kidney cortex;
Fig. 3c). This suggests that decline-associated versus stable-effect loci
differentiate kidney-specific versus cross-organ regulation of gene
expression.

LMM-based longGWAS identifies five loci with genome-wide
significance highlighting MUC1 for eGFR-decline
We now applied the LMM age model RI&RS in UKB 350K using the
GMMAT/MAGEE34,35 implementation, which implements this model in
amore efficient way than lme4 (“Methods” section). We tested the 595
variants and corroborated that association statistics for both imple-
mentations, GMMAT/MAGEE versus lme4, were identical (Supple-
mentary Fig. 10 and Supplementary Data 7).

We used GMMAT/MAGEE to conduct a longGWAS, testing ~11
million autosomal variants (UK10K/HRC-imputed36, “Methods” sec-
tion). We obtained results within 5 days (256 cores, 1 TB RAM) with
little evidence for population stratification (lambda = 1.06).

We identified five loci associated with eGFR-decline at genome-
wide significance (GC-corrected Pdecline < 5 × 10−8, “Methods” section,
Fig. 4): the four loci already identified with Pdecline < 5 × 10−8 by the 595-
search and one additional locus (MTX1/MUC1, novel for eGFR-decline
compared to previous work10).

The lead variant of the MTX1/MUC1 locus, rs2075570
(Pdecline = 1.1 × 10−8), resided in the 424 loci known for cross-sectional
eGFR, but was not among or correlated to the 595 variants (Pcross-
sectional = 0.01 in Stanzick et al.23; Pcross-sectional = 0.80 in UKB; Supple-
mentary Fig. 11a, b). Breakpoint analyses suggest a complex age-
dependency of the rs2075570-association on eGFR (Supplementary
Fig. 11c). rs2075570modifies expression forMUC1 in tubolo-interstitial
tissue37, (FDR < 5%), which suggests MUC1, a well-known gene for rare

Table 4 | Genes supported as likely causal genes in decline-associated or stable-effect loci

Gene Indexvariant: location (probability to be causal) Index variant: functional consequence Known phenotype Locus type and novelty

Genes mapped to decline-associated loci

UMOD Near/in gene (100%, 13%, 6%)a eQTL(+) Mendelianb Novel 3rd signal

TPPP Nearest (90%) eQTL(+) Known decline

FGF5 Nearest (49%) eQTL(−) Known decline

PRKAG2 In gene (80%) Mendelianc Known decline

SDCCAG8 In gene (22%) Mendeliand Novel decline

RRAGD In gene (93%) 5′ UTR Mendeliane Novel decline

Genes mapped to stable-effect loci

CPS1 In gene (100%) Missense Creatinine Stable effect

SLC22A2 In gene (43%) Creatinine Stable effect

SLC34A1 in gene (100%) Mendelianf Stable effect

UNCX Nearest (61%) eQTL(+) Stable effect

We annotated 256 and 182 genes in 10 decline-associated and 9 stable-effect loci, respectively, for statistical and biological features: known human kidney disease (OMIM59 and other39,60); drug
target61; gene nearest to index variant62,67; mappedby variant >10% statistically likely causal23 that altered protein, protein abundancy, or gene expression in kidney tissue37,63,64 (eQTL, ± indicating up/
downregulation by eGFR-lowering allele; “Methods” section, Supplementary Data 6 andSupplementaryNote 3). Shown are the 10geneswith ≥3 features that supported the gene as likely causal for
the association, indicating key information on index variant (location, probability to be causal, functional consequence), gene (human kidney phenotype or role in creatininemetabolism), and locus
(known or novel for decline association, stable-effect locus).
eQTL expression quantitative trait locus in kidney tissue, 5′ UTR 5′ untranslated region.
aThree independent index variants in UMOD/PDILT locus.
bADTKD (autosomal dominant tubulo-interstitial kidney disease).
cGlycogen storage disease of heart with kidney involvement (renomegaly).
dBardet-Biedl syndrome 16 (retina-renal ciliopathy).
eRenal hypomagnesemia 7.
fFanconi Renotubular Syndrome 2.
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autosomal dominant tubulo-interstitial kidney disease38,39, as likely
causal gene.

In total, we identified 13 independent variants (11 loci) for eGFR-
decline: 7 variants (5 loci) with Pdecline < 5 × 10−8 by longGWAS and/or
the 595-search and 6 variants (6 loci) by the 595-search (Pdecline < 0.05/
595; Supplementary Table 7). LongGWAS results also enabled us to
show full regional association signals for decline-associated loci, which
align well with respective signals from cross-sectional analyses (Sup-
plementary Fig. 12), except for the MTX/MUC1 signal (Supplementary
Fig. 11a).

Discussion
Based on UKB data on eGFR trajectories with >1.5 million datapoints
and the one-stage LMM age model RI&RS, we identified known and
novel SNP associations with eGFR-decline. Our results support the
hypothesis that decline-associated variants reside in loci known for
cross-sectional eGFR, but also that eGFR-decline associations can be
masked in cross-sectional data by age effects. Methodologically, we
showed that the one-stage LMM age model RI&RS was statistically
advantageous for this task and, implemented in GMMAT/MAGEE,
computationally viable for longGWAS. Importantly, it enabled the link
of genetics of eGFR-decline to age-dependent genetics of eGFR with
clinical and biological implications. Our work provides important
insights into the genetics of kidney function decline and into pros and
cons of statistical approaches for longGWAS.

With our results, we substantially raised the number of identified
loci for eGFR-decline ingeneral population, from810 to 11 (6 confirmed,
5 novel), and the number of genome-wide significant loci, from 1
(UMOD/PDILT) to 5. Biological annotation found evidence for three
novel decline-associated loci to capture common-variant-effects for
genes of rare Mendelian kidney diseases (SDCCAG8, RRAGD, and
MUC1), additional to the two such genes in known eGFR-decline loci
(UMOD, PRKAG2). The TPPP locus (known) was found to include a gene
encoding an approved drug against CKD progression40 (SLC9A3), but
TPPP was the statistically more likely causal gene21.

Our analyses also provide important insights into age-dependent
versus age-independent genetics of eGFR: previously, one UMOD

variant had been reported for age-dependent association with eGFR in
cross-sectional data (n = 24,63541). We found all but one decline-
associated variants with near-zero effects on eGFR for 40-year-old
(even forUMOD) and large effects in 70-year-old individuals with up to
twice the size of cross-sectional effects (e.g., near RRAGD). The
mechanisms underlying decline-associated variants thus appear to
become effectivemainly from the age of 40 years onwards, in linewith
physiological kidney aging42. In contrast, mechanisms underlying the
11 stable-effect variants apparently become effective before the age of
40years and remain age-independent thereafter. This underscored the
advantage of the LMMagemodel, which enables the generation of age-
appropriate genetic effects on eGFR that is not possible with difference
model, time model, or BLUPs&LinReg.

Age-dependent versus age-independent genetics of eGFR differ-
entiate biological processes and clinical implications: age-independent
eGFR genetics identified here imply pathological or physiological
processes affecting one’s predisposition to lower/higher eGFR at early
adulthood that are stable over time. Stable-effect variants were asso-
ciated with increased risk of CKD, but not with CKD progression. The
underlying genes showed differential expression in numerous tissues
including heart, liver, muscle, pancreas, and kidney, suggesting
mechanisms that affectmultiple organs. Stable-effect variantsmapped
to Mendelian kidney disease genes (SLC34A1), but also to creatinine
metabolism (CPS1, SLC22A229,30) in line with differential expression in
muscle.

Age-dependent eGFR genetics imply processes that are dynamic
over age, which can be mechanisms of kidney aging43–45 or age-
accumulating pathological events. In a dataset where individuals are
rather healthy and individuals with AKI excluded, like here in UKB46,
such pathological events could stem from age-accumulating external
stressors that are common on population-scale (such as diabetes and
hypertension34, (poly-)medication intake, infections, or age-related
decreased immune defense). However, in this UKB data, the age-
dependencyof genetic effects on eGFRwas independent of interaction
with diabetes or hypertension, which does not support a primary role
of diabetes or hypertension. The observed kidney-specificity of gene
expression regulation in decline-associated loci suggests kidney-

Fig. 4 | LongGWAS is viable with GMMAT/MAGEE and identifies five loci with
genome-wide significance for eGFR-decline. We conducted a genome-wide
search for genetic variant association with eGFR-decline (Pdecline, GC-corrected,
lambda= 1.06) using the LMM age model RI&RS 350K implemented in GMMAT/
MAGEE34,35 (UKB 350K; n = 348,275, m = 1,520,382; testing 11 million SNPs with
MAF≥0.5%, imputationquality INFO ≥0.6).aShown are association P values versus
chromosomal position. We identified five loci at genome-wide significance
(Pdecline < 5 × 10−8; red dashed horizontal line). Coloring highlights the overall 11 loci
identified for eGFR-decline: 10 loci around the 12 variants identified by 595-search

(Pdecline < 0.05/595 = 8.4 × 10−5, brown dashed horizontal line; 4 novel and 6 known
for eGFR-decline in blue or green, respectively), and one novel locus for eGFR-
decline now identified by longGWAS (cyan; lead variant rs2075570 in the 424 loci,
but not among the 595 variants). Loci were derived by clumping based on variant
position (d > 500kB between loci, “Methods” section). b Shown is the
Quantile–Quantile (QQ) plot comparing the distribution of observed Pdecline with
the distribution of Pdecline expected under the null hypothesis of “no association
with eGFR-decline” (green: all variants; cyan: excluding the 10 loci around the 12
decline-associated variants; black: excluding the 424 loci around the 595 variants).
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inherentmechanisms. Causal genes in decline-associated locimight be
compelling targets for the study of kidney aging mechanisms, like
physiological aging by nephron loss44, or subsequent remodeling of
remaining nephrons to compensate function4,45. Our results suggest an
overlap of eGFR-decline genetics in general population with genetics
of CKD progression, as many decline-associated variants were asso-
ciated with rapid decline or decline in CKD. However, challenges in
these analyses include potential index event bias47 when restricting to
CKD, bias in BLUPs used to define rapid decline, and limited sample
size for both. Future larger datasets may help understand the over-
lapping or discriminating processes of physiological kidney aging
versus processes that lead to progressive disease, which is considered
a promising route to identify therapeutic targets45.

Methodologically, weprovide important insights into the conduct
of longGWAS for eGFR-decline in adult population that are general-
izable to other datasets and traits in various ways. Our simulations
revealed that BLUPs&LinReg had excellent power and calibrated type I
error, but exhibited bias in effect estimates due to regularization25,48.
This may be acceptable for locus identification, but it is dis-
advantageous when the study aim is to interpret effect sizes or to use
them in meta-analyses. When looking for an unbiased estimator with
calibrated type I error, the LMM age model RI&RS is preferable. The
computational burden of this model is relatively high, but its imple-
mentation in GMMAT/MAGEE makes it viable for longGWAS in large
data, filling an important gap and complementing other longGWAS
software targeting trait variability (e.g., TrajGWAS15).

A furthermethodological aspect of our study that is generalizable
is modeling the longitudinal trait over age: it avoids the time model’s
differentiation between temporal effects before and after baseline,
which is unnecessary when baseline is a random timepoint that does
not mark an intervention. We recommend the age model for long-
GWAS on trait changewhen the trajectory start is random and the time
model when the trajectory start is informative, e.g., when analyzing
trait change in patients.

We acknowledge that we analyzed only individuals of European
ancestry and thus missed the APOL1 locus, identified by others
including African Ancestry11. Also, we relied on serum creatinine as
biomarker to assess kidney function, which depends on muscle mass,
and muscle mass declines by age49; this might have masked some of
the age-related eGFR-decline. Genes with a role in creatinine metabo-
lismwere captured by stable-effect loci (CPS129, SLC22A230). We did not
account for informative loss-to-follow-up or competing death; pre-
vious work using bivariate analyses found no impact of death as a
second outcome17. Our primary LMMassumed a linear change in eGFR
over age or time and derived SNP associations with linear eGFR-
decline, which we found reasonable in our data, but requires evalua-
tion in each setting.

Overall, our results provide important insights into age-
dependent genetics of kidney function, which can help understand
processes in kidney aging. Our methodological considerations, with
kidney function decline as role model, inform future longGWAS
regarding pros and cons of statistical approaches. Computationally
efficient longGWAS along with the emerging large-scale longitudinal
data from biobanks offer a promising route to understand the
dynamics of genetic associations for disease markers and underlying
mechanism.

Methods
Ethics
This UKB project was conducted under the application number 20272.
The AugUR study was approved by the Ethics Committee of the Uni-
versity of Regensburg, Germany (vote 12-101-0258). The KORA-S3
study was approved by the local authorities and conducted in accor-
dance with the data protection regulations as part of theWorld Health

Organization Monitoring Trends and Determinants in Cardiovascular
Disease (MONICA) Project. All other KORA studies were approved by
the EthicsCommittee of the BavarianChamber of Physicians (KORA-F3
EC Number 03097, KORA-S4 EC Number 99186, KORA-F4/FF4 EC
Number 06068, KORA-Fit EC Number 17040). All studies comply with
the 1964 Declaration of Helsinki and its later amendments, and all
participants provided written informed consent.

UKB eGFR-trajectories data
In UKB, an observational study of ~500,000 participants, we used
serum creatinine measurements from blood drawn at study-center
visits (centralized measurements, Enzymatic Beckman Coulter
AU5800). We obtained further serum creatinine values and informa-
tion on AKI, nephrectomy, dialysis, transplantation, and ESKD from
general practitioner eHRs22 (GP CTV3 and read V2 codes). We com-
bined eHR and study-center data and computed eGFR (ancestry-term-
free CKD-EPI 202150).

We included unrelated UKB participants of European ancestry51

without any eHR-record of AKI or nephrectomy and without eHR-
record of dialysis, kidney transplant, or ESKD prior to their first eGFR
assessment. We excluded eGFR assessments (i) before age of 35 years
or January 1st, 1990, (ii) at or after eHR-record of dialysis, (iii)
<6 months prior to, at or after eHR-record of kidney transplant or
ESKD, (iv) after prior eGFR<15mL/min/1.73m2, and (v) extreme values
(excluding absolute value > 10 residual SDs using LMM age model
RI&RS in UKB 350K; winsorizing remaining eGFR values <15 and
>200mL/min/1.73m2). We analyzed individuals with ≥2 eGFR assess-
ments ≥1 year apart (UKB 150K), and, where applicable, added indivi-
duals with =1 eGFR assessment (UKB 350K).

Data processing and statistical analyses were performed using
R-Software v4.0.452. All statistical tests applied were two-sided.

Genetic UKB data and pre-selection of genetic variants known
for cross-sectional association with eGFR
We used UKB genomic data imputed to HRC53,54 and UK10K haplo-
type reference panels55 and 20 genetic PCs from Pan-UKB project51.
We excluded variants with low imputation quality (Info < 0.6) or
MAF < 0.5%, yielding allele dosages of 11,321,495 genetic variants. We
selected 595 SNPs with genome-wide significant association with
cross-sectional eGFR (CKDGen&UKB, n = 1,201,92923): (i) 594 inde-
pendent index variants across 424 loci, (ii) one additional variant
(rs28857283 near C15orf54; Pcross-sectional = 1.9 × 10−8) capturing a nar-
rowly missed second signal in one of the 424 loci. The 595 SNPs
included the 9 SNPs (directly or proxy by r2 ≥0.8) previously identi-
fied for association with eGFR-decline (n = 343,33910). Effect allele
was the cross-sectionally eGFR-lowering allele (unconditioned ana-
lyses in EUR23).

Seven approaches to identify SNP associations with temporal
trait change
The following is stated for eGFR, but generalizes to any quantitative
trait. For all approaches, i denotes individuals (i= 1, . . . ,n), ni the
corresponding number of eGFR assessments (t = 1, . . . ,ni), agei, t and
eGFRi, t the age and eGFR at the tth timepoint, and SNPi the allele
dosage for a genetic variant (omitting indexing for the different SNPs).
All SNP-association models were adjusted for 20 PCs
(PC1, i, . . . , PC20, i) (omitted in the following equations). Error terms ϵi
or εi, t � N 0, σ2

� �
are i.i.d. (and independent of RI&RS). We tested the

SNPs for associationwith eGFR-decline by the following six approaches
in data of individuals with ≥2 eGFR assessments:
(i) difference model10,20,

eGFRi,ni
� eGFRi, 1

agei,ni
� agei, 1

=β0 +β1*SNPi + ϵi ð1Þ
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(ii) LMM time model RI&RS (with RI γ0i and RS γ1i from bivariate
normal distribution, allowing for correlation) that models eGFR-
levels as function of time-since-baseline (timei, t) and SNP-
association with eGFR-decline as timei, t*SNPi interaction, adjust-
ing for age-at-baseline (agei, 1),

eGFRi, t = β0 + β1 � sexi +β2 � agei, 1 +β3 � timei, t +β4 � SNPi

+β5 � timei, t � SNPi + γ0i + γ1i � timei, t + εi, t
ð2Þ

(iii) LMM age model RI&RS, equivalent to (2) but now modeling eGFR
as function of age-at-exam (agei,t) and SNP-association with eGFR-
decline as agei,t ∗ SNPi interaction:

eGFRi, t = β0 + β1 � sexi +β2 � agei, t +β3 � SNPi +β4 � agei, t � SNPi

+ γ0i + γ1i � agei, t + εi, t
ð3Þ

(iv) LMM age model RI&RS uncorrelated, where γ0i and γ1i are from
independent univariate normal distributions,

(v) LMM age model RI-only, without RS term:

eGFRi, t =β0 +β1 � sexi + β2 � agei, t + β3 � SNPi +β4 � agei, t
� SNPi + γ0i + εi, t

ð4Þ

(vi) BLUPs&LinReg11,21, a two-stage approach (a) estimating RS terms,
γ̂1i, via BLUPs based on LMM age model RI&RS (as in (3) without
SNP as covariate) and (b) using γ̂1i as outcome for SNP-association
via linear regression (as in (1)).

In a seventh approach, we repeated the age model RI&RS in
extended data adding individuals with =1 eGFR assessment (age model
RI&RS including singletons).

All approaches make use of the entire trajectories (ni ≥ 2; ni ≥ 1 for
the 7th approach), except the difference model which utilizes only two
values over time (e.g., 1st and last). For analyses, we divided age and
time by 10 and centered age at 50 years, ensuring appropriate scaling
for optimization of LMMs (re-scaling results for all presentations).
LMMs were fitted using lmer() (R-package lme456 v1.1.34; Powell’s
BOBYQA optimizer57).

Evaluating type I error, power, bias in effect sizes, and detect-
ability of eGFR-decline variants for the seven approaches
We simulated datasets for three phenotypic scenarios: (i) we used
observed age-at-exam for randomly sampled UKB 350K individuals
and simulation parameters (derived from UKB 350K, ~50% single-
tons); (ii + iii) we simulated a cohort study scenario (~20% attrition
between baseline and follow-up, 20% singletons) with simulation
parameters from the independent KORA-4 study26 for eGFR or BMI,
respectively (details on simulation parameters in Supplementary
Table 3). For each scenario, genotypes, random effects, and residual
errors were simulated (10,000 times), then phenotypes were gen-
erated according to Eq. (3) without sex effects, with true SNP-
association βchange. For each approach, we computed type I error
rates (proportion of nominally significant SNPs, Pchange < 0.05,
βchange = 0), power (proportion of nominally significant SNPs,
Pchange < 0.05, βchange ≠0), and bias (estimated genetic effect relative
to βchange ≠0).

To evaluate empirical type I error, we generated 10,000 “null-
SNPs” for UKB individuals (permutation of allele dosage of 500 out of
the 595 SNPs, 20 times) andderived, for eachapproach, theproportion
of SNPs with Pchange < 0.05 as type I error estimate. We computed
empirical power and bias based on the nine SNPs known for eGFR-
decline10 as proportion of SNPs directionally consistent (Pchange < 0.05;

power) and mean relative difference of observed genetic effects
compared to reference (bias). Finally, we derived detectability by
testing 595 SNPs for association with eGFR-decline (judged at
Pchange < 0.05/595 = 8.4 × 10−5).

Validation in external data
We used independent population-based longitudinal data from
three studies, KORA-3, KORA-4, and AugUR from Germany26.
Recruitment was via population registry, inviting randomly selected
inhabitants of Augsburg (KORAs) or Regensburg (AugUR) of
specific age range to participate. We tested the joint effect of iden-
tified decline-associated variants as PGS (sum of eGFR-decline-
accelerating alleles weighted by βdecline) for association with eGFR-
decline (age model RI&RS including singletons; adjusting for study
membership).

Allowing for non-linear age effects
The LMM framework enables alleviating the linearity assumptions by,
e.g., fitting 2nd degree polynomials for the relationships of age with (i)
global eGFR (adding age2), (ii) person-specific eGFR-trajectories (add-
ing age2 to the random effect), or (iii) SNP associations with eGFR
(adding SNP*age2). We added these quadratic terms to the original
model (LMM age model RI&RS in UKB 350K; eGFR~SNP, age, SNPxage,
sex, PCs, RI, RS) and explored their impact on the SNP-by-age effect
(i.e., SNP-association with linear eGFR-decline). For SNPs with
PSNPxage² < 0.05, we additionally conducted breakpoint analyses
(allowing for interval-wise linear relationships at 40, 50, and 60
years of age).

For eGFR-variability analyses, we used a generalized additive
model for location, scale and shape (GAMLSS)58 with µ(eGFR)~sex, age,
SNP, PCs and log(σ(eGFR))~sex, age, SNP, PCs.

Follow-up of identified variants regarding association with
clinical traits
Rapiddecline cases and controlswere defined as annualdecline < −3or
−1 to +1mL/min/1.73m2, respectively (based on estimated person-
specific slopes via BLUPs, Eq. (3) without SNP as covariate); SNPs were
tested for association with rapid decline via logistic regression
(adjusted for age-at-baseline, sex, PCs). For eGFR-decline in CKD, we
selected individuals with CKD (eGFR < 60mL/min/1.73m2) for at least
one timepoint, removing the eGFR-trajectory before the first such
timepoint; SNPs were tested for associationwith eGFR-decline in these
CKD individuals (LMM time model RI&RS, since now the first timepoint
is informative; Eq. (2)). UKB 150K was used, since these analyses
required ≥2 eGFR values over time.

We also tested SNPs for association with being in the CKD subset
(cases =CKD at any timepoint, controls = no CKD at any timepoint;
using UKB 350K) via logistic regression (adjusted for age-at-CKD-onset
or age-at-baseline, sex, PCs).

Follow-up of identified variants regarding biological relevance
Using KidneyGPS23, we annotated genes in identified loci for features
that supported them as likely causal: (i) Mendelian human kidney
disease (OMIM59 and other39,60), (ii) drug target for registered clinical
trials on kidney disease (Therapeutic Target Database61), (iii) nearest
gene to index variant62, (iv) gene mapped to variant statistically likely
to be causal (posterior probability of association ≥10%) which alters
protein (e.g., “missense”), protein abundance (e.g., 5′ UTR), or gene
expression in kidney tissue (eQTL, Neptune63, Susztak Lab37, GTExv864;
FDR < 5%). Notably, we used fine-mapping cross-sectionally assuming
association signals for eGFR-decline to coincide with cross-sectional
association signals as indicated previously10.

We searched genes in identified loci for enrichment of pathways
(Reactome version-85, Released 2023-05-25, using PANTHER 18.031,32)
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or tissue-specific enrichment of DEGs (MAGMA65 as GENE2FUNC in
FUMA 1.5.233 with default parameters, which evaluates 54 different
tissue types).

LongGWAS on eGFR-decline in UKB
We tested 11,321,495 autosomal variants from UK10K/HRC-imputed
UKB data36 using LMM age model RI&RS in UKB 350K via GMMAT
(v1.4.2)34 and MAGEE (v1.4.1)35. GMMAT/MAGEE provides an efficient
implementation of an LMM RI&RS. The computational efficiency is
obtained by estimating the LMM-based phenotypic variance-
covariance only once (GMMAT), which is then used by MAGEE to
efficiently test SNP associations. Analyses were adjusted for 20 PCs;
results were corrected for GC lambda66. We selected genetic variants
associated with eGFR-decline with GC-corrected Pdecline < 5 × 10−8.
Independent locus regions were defined by the variant with the
smallest Pdecline (lead variant) and variants nearby ±250kb (over-
lapping loci merged).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
This UKBiobank projectwas conducted under the application number
20272. UK Biobank is a publicly accessible database. Individual parti-
cipant data from UKB are available via the UK Biobank resource.
Individual participant data from KORA-3, KORA-4, and AugUR are not
publicly available due to data protection regulations and restrictions
imposed by the Ethics Committee of the Bavarian Chamber of Physi-
cians to protect participant privacy. However, data can be accessed
upon request through project agreements with KORA (https://
helmholtz-muenchen.managed-otrs.com/external) or AugUR
(augur@ukr.de). For the reproducibility of our results, we provide the
source code for the various statistical approaches applied here (see
“Code availability” section). We also provide the source code for the
simulation studies and for the real data analysis with GMMAT/MAGEE.
We provide genetic variant association summary statistics (see Sup-
plementary Data). Source data are provided with this paper.

Code availability
The code to run the seven approaches, the GMMAT/MAGEE analysis,
and the simulations is available on GitHub (www.github.com/genepi-
regensburg/UKB_KidneyFunctionDecline; https://doi.org/10.5281/
zenodo.13879592).
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