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24 Abstract. Graphene spintronics is an emerging field of research that explores

25 the use of graphene’s extraordinary spin /and charge transport properties to

26 manipulate and control thefelectron spin\ degree of freedom for potential

27 applications in information processing and data storage. Particularly interesting

28 are graphene-based van-der-Waals heterostructures, which allow the creation of
tailored spintronic properties, emerging from proximity effects, without destroying

29 the unique Dirac states.. The possibility to induce customized spin-orbit and

30 exchange coupling in' graphenej,via band structure engineering, can lead to

31 topologically protected edgeistates for dissipationless electronics and spintronics.

32 In flat-band graphene materialsyin particular, magic-angle bilayer graphene and
rhombohedral {ABC stacked) trilayer graphene, the coupling between spin and

33 valley (orbital) degrees of freedom can be coupled by strong Coulomb interactions,

34 leading to a variety of fascinating correlated and superconducting phases. The

35 emerging isospin electronics;. combining both the electron spin and valley flavors,
can transform (the landscape of low-temperature electronics and lead to novel

36 functionalitiesgbased on quantum matter. This Perspective explores the latest

37 advancements in proximity effects, topological states, and correlated physics in

Yy
38 graphene-based' van der Waals heterostructures, discussing the fundamentals for
tential applications
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1. Introduction

Since the discovery of graphene, there has been tremendous interest in utilizing’it for
spintronics devices due to the extraordinary spin and charge transport properties of
the Dirac electrons, with theoretically predicted spin lifetimes of up to microséconds
and micrometer spin diffusion lengths [Il 2, B, 4]. After developing comprehensive
technological expertise during the last two decades, graphene devices have_started to
approach this theory ideal. The key ingredient is protecting graphene from degradation
in the ambient environment encapsulating it within isolating hBN layers. This leads
to ultraclean and sharp interfaces at the nanoscale, and spin lifetimes reaching/10
ns [2 5] 6]. =

Spintronics aims at gaining control over the spin degree of freedom, which is
challenging in graphene due to its weak intrinsic spin-orbit coupling,(SOC)[7, 8 [I].
In recent years, several efforts concentrated on making graphene ”spimyactive” [10].
To achieve this, graphene was combined with other 2D materials to significantly
modify the Dirac states via short-ranged proximity-induced'spin interactions [10} [11].
The most prominent examples are transition-metal dichalcogenides (TMDs), which
are layered semiconductors that, in addition to beingirather stable in air, feature
extraordinary optical properties (due to the robustrexciton binding), strong SOC
especially in the valence bands, and spin-valley locking enabled By the lack of inversion
but the presence of in-plane mirror symmetries [12, 13]. Within a graphene/TMD
heterostructure, the electronic wavefunctions of the two/materials overlap at the
interface, leading to what is termed the prozimity. spin-orbit effect: the strong SOC of
TMD bands is partially ”transferred” into graphenenThis is manifested as a spin-orbit
splitting of the low energy Dirac bands [14) [I5]" Similarly, when graphene is combined
with a 2D magnetic semiconductor (suchias,CraGesTeg or Crls), the Dirac states
experience proximity spin exchange splitting, which is comparable to the Zeeman
splitting due to an external magnetic field [I6]. The proximity spin-orbit and spin
exchange effects exemplify the pewer of van der Waals stacking and band structure
engineering.

In recent years, the 2D material playground has greatly expanded, offering now
a plethora of combination possibilities |17, [18]. By designing multilayer graphene-
based heterostructures, with custom=made proximity-induced spin interactions, novel
pseudohelical and chiral edgestatés may appear [19, [20], with potential applications
in dissipationless, electronics and spintronics. Beyond that, the relative twist
angle between the layers isibecoming a crucial parameter to tailor proximity
spin interactions [21,122, 23, 24, 25]. Finally, flat-band engineering of graphene
structures allows for ayvariety of correlated phases, such as Stoner isospin magnets,
intervalley coherence states, or possibly unconventional superconducting pairing, to
be observed [26, 27, 28,129, B0} [31]. Also here, proximity spin-orbit coupling seems
to be highly relevant;for example for stabilizing superconductivity [32, B3] and for
generating novel spin-valley couplings [34].

In thissperspective, we discuss and elaborate on proximity effects, their tunability
knobs, as well 'as on the emergence of topological states and correlated phases in
graphene-based heterostructures. We discuss current theoretical and experimental
work ‘and potential device applications. Finally, we provide an outlook on van-der-
Waals engineering beyond the currently considered graphene-based heterostructures.
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Z 2. Low Energy Physics of (Multilayer) Graphene

7 We begin by briefly reviewing the intrinsic and extrinsic spin-orbit effects in graphene
8 materials. Monolayer graphene consists of carbon atoms that are arranged in‘a
9 honeycomb lattice which comprises a triangular Bravais lattice with a two-fold atomic
10 basis in the unit cell [35]. The reciprocal space also consists of a hexagonal Brillouin
1 zone with two nonequivalent valleys K and K’ at the corners. The electronic band
12 structure of graphene near the Fermi level can be described by linearly dispersing
13 Dirac bands located at the Dirac points (K and K’ valleys). The Bloch states' of
14 the Dirac bands are almost exclusively formed by p,-orbitals and areelevant, for the
15 unique transport properties. Additionally, a tiny spectral gap of tens/of ;e Viis present,
16 see Fig. a), which is due to the intrinsic SOC that lifts the orbital dégeneracy; the
17 magnitude of this SOC splitting derives from the SOC of nominally unoceupied d-
18 orbitals which hybridize with the Dirac p, electrons [7].

19 When graphene is subject to a transverse (to the carbem,sheet) electric field,
20 inversion symmetry gets broken, and the eztrinsic Rashba'SOC appears, lifting the
21 remaining spin degeneracy of the bands. Similarly, when graphene is placed on a
22 substrate, a built-in field across the interface as well ag the hybridization across the
23 van der Waals gap can generate the Rashba field by sublattice.and inversion symmetry
24 breaking. However, proximity-induced phenomena also modify the intrinsic SOC,
25 leading to topologically distinct low-energy bands depending on the substrate and the
26 stacking, as discussed below.

27 Naturally occurring (Bernal) bilayer graphene consists of AB-stacked graphene
28 layers, with four atoms in the unit cell. “As for,the monolayer, the interesting
29 physics happens at the K and K’ valleys. The electronic band structure of bilayer
30 graphene derives from that of singlé-layer graphene, taking into account the interlayer
31 coupling [36]. In effect, this leads to parabolic bands that touch near the Fermi
32 level at the Dirac points. The layered structure offers a new functionality: layer
33 polarization of low energy bands. Indeed, the low-energy bands are formed by the
34 orbitals of non-dimer atoms ofsthe two layers. A transverse electric field introduces
35 a potential asymmetry in the layers and,therefore a band gap opens, see Fig. b).
36 Recent experiments could demonstrate ultraclean gate-tunable band gaps in hBN-
37 encapsulated bilayer grapliene of ipst6 120 meV [5].

38 Bilayer graphene is thus/predéstined for gate-defined quantum dots [37], [38] and
39 spin qubits [39, [37]. . In addition, bilayer graphene has recently attracted a lot of
40 attention, due to its correlated physics [26], [30 [32], which we address in more detail
41 below. Regarding the'spin proximity effects, in bilayer graphene we have the unique
42 situation that the layers can be individually proximitized due to the short-rangeness
43 of proximity effects combined. Combining proximity-induced spin interactions with
44 the layer polarization of the low energy bands allows to swap the spin interactions
45 fully electrically [40, 41].

46 Placing ene more layer, we build trilayer graphene, which comes in different
47 stackings [42|. Perhaps the most intriguing is rhombohedral trilayer graphene with
48 an ABC stacking sequence (predicted to be the most stable one [43]), having similar
49 low energy physics as AB bilayer graphene. In fact, the low energy bands are also
50 formed by non-dimer atoms of the outermost layers, leading to a gate-tunable band
51 gap, see Fig. (c) The bands feature a cone-like touching point away from the K
52 point, ‘extending into flat bands near K. Remarkably, correlation physics has been
53 observed in ABC trilayer graphene [44] [45], due to the flat low-energy bands near the
54
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Figure 1. Band structures, geometries, and low energy dispersions of mono-,
bi-, and trilayer graphene. (a) Band structuréof monolayer graphene. The inset
sketches the crystal structure, where the grey rhombus indicates the unit cell
with sublattices A and B. Below the band structure, we show the Brillouin zone
with relevant high-symmetry points. In addition, a,Z6om-in on the low energy
dispersion near K is shown, displaying the small spin-orbit gap. (b) The same as
(a), but for Bernal bilayer graphene. The low energy bands are formed by the
non-dimer atoms, indicated by redrand blue spheres in the crystal structure, as
well as projections in the dispersion.. Applying an external electric field opens a
band gap and activates the layer polarization of the low-energy bands. (c) The
same as (b), but for ABC trilayer graphene. The low-energy bands are formed by
the orbitals of the non-dimeratoms from the two outer layers, as indicated. The
layer polarization can beinduced by a gating field, similar to bilayer graphene.

Fermi level, associated with van Hove singularities in the density of states.

3. Proximity Effects in Graphene Heterostructures

When different materials form\van der Waals heterostructures, their wavefunctions
weakly hybridize, leading to/proximity effects. Graphene, lacking intrinsic SOC and
magnetism, is a prime candidate for these effects, as its low-energy p, orbitals readily
hybridize with those of adjacent layers. In the following, we introduce the Hamiltonian
of Dirac electrons-in_proximitized graphene, which provides an effective description
for low-energy /physiess, In-addition, we review recent literature results that have
demonstratedidifferent proximity effects in graphene-based structures.

3.1. Emergent/Hamaltonian of prozimitized Graphene

The low-enérgy bands of spin-orbit and exchange proximitized graphene in the
vicigity of the eharge-neutrality point (Dirac point) can be modeled with the effective

Page 4 of 19
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> Hamiltonian considering p, orbitals only [46]

? H = orb+Hso+Hexv (]-)
8 How, = hop(kogky + oyky) + Ao, (2)
9 Hy, = MkMKO:S, + A\vzK00S, (3)
10 + AR5/ 2 (ks + 0y 5, )6l PR/ 2,

> How = Arooss + Aaro.s.. (4)
13 The Hamiltonian, H, has orbital, spin-orbital, and spin exchange| parts. The
14 orbital part, Hgp, describes gapped Dirac states, where vp is the Fermi, velocity
15 of Dirac electrons, A is the staggered potential (gap), o are the pseudospin Pauli
16 matrices operating on the sublattice A and B space, and k, and k, ‘arethe Cartesian
17 components of the electron wave vector measured from K (K%),»which parameter
18 k = 1(=1) for K(K’). The spin-orbit Hamiltonian Hy, consists ofya“Kane-Mele
19 (KM), a valley-Zeeman (VZ), and a Rashba (R) term. The{Kane-Mele term is also
20 called intrinsic SOC, as this was one of the initial terms_only |47]. However, Dirac
21 states in graphene on 2D spin-orbit material substrates are mostly valley-Zeeman like.
22 Only recently, the Rashba SOC term [47] 48] has beemextended toythe more general
23 form that obeys time reversal and threefold rotation.Cs symmetries [21] 22]. The
24 Rashba angle ¢r represents a sum of the geometric/angle and the quantum phase [49].
25 The exchange Hamiltonian Hey consists of ferro-land/antiferromagnetic terms. The
26 ferromagnetic (F) term describes a uniform effective lexchange field from a magnetic
27 substrate, similar to an external magnetic fieldithat leads'to a Zeeman splitting. The
28 antiferromagnetic (AF) term describes the non-umniformity of the exchange field that
29 the graphene sublattices experience. Depending on the surrounding materials, very
30 different band structure topologiescanvarise [10], see Fig. The extension of the
31 model to proximitized multilayer graphene systems is straighforward [42] [41]. Since
32 the proximity effects are short-ranged and limited to neighboring layers, it is sufficient
33 to consider only those layers ‘ashaffected.

34 Given a Hamiltonian for a specific class of systems, in this case graphene-
35 based heterostructures, the analysis process to extract the proximity-induced model
36 parameters from ab-initio calculations is'as follows. Calculate the proximitized low
37 energy Dirac bands in thefvicinity, of the K/K’ points, including spin and sublattice
38 expectation values, as well asdhe layer-resolved density of states. One typically finds
39 a small (1-10%) contribution from the surrounding layers in the Dirac bands, which
40 are usually formediby C p.-orbitals only. To extract the model parameters from the
41 first-principles data, one can employ a least-squares routine [50], taking into account
42 band energies, splittings, and spin and sublattice expectation values. In experiments,
43 the route is different, as the low energy dispersion is typically not directly accessible.
44 However, based en the above model Hamiltonian, several quantities can be calculated
45 or simulated and compared to experiments, such as Hanle spin relaxation [51] [52],
46 weak antilocalization  [53] [54], transverse magnetic focusing [55], and Landau-Level
47 spectroscopy’ [56].

48

49 3.2. Spin-Orbit Coupling

50 Perhaps.theanost natural way to induce SOC in graphene (while preserving the orbital
51 character of the Dirac cones) is to place it next to an insulator or semiconductor with
52 strong SOC. Metals would also induce strong spin interactions, but the Dirac states
gi wouldbe buried within the conduction bands of the proximitizing material.
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One of the first theoretical investigations, considering a graphene/MoSs bilayer,
found that the Dirac states of graphene are nicely preserved within the TMD band
gap [14]. Zooming in on the low energy bands at the Fermi level revealed that the
Dirac states are split on the order of 1 meV, see Fig. (a)7 which is giant compared
to the ~ 10 peV intrinsic SOC of graphene [7]. This induced splitting stems from
the proximity coupling of the monolayers, i. e., the wavefunctions hybridize acress the
van der Waals gap, such that both layers acquire properties of the othersmaterial.
In particular, TMDs consist of heavy atoms with large SOC, and the baad structure
shows sizable spin splittings (~ 100 meV in the valence bands). This SOC is partially
transferred to the p, orbitals of graphene. Analyzing the Dirac bands wavefu\nctions
in close vicinity of the charge neutrality point within such a heterostructure, one finds
that only about 1% of TMD states contribute, which is responsiblé for the meV-
scale splitting. Remarkably, the induced SOC is of valley-Zeeman typesstemming
from the spin-valley locking of the TMD, and not of Kane-Mele type as.in pristine
graphene. Additionally, a Rashba SOC emerges due to inversion,symmetry breaking
in the heterostructure. The valley-Zeeman SOC is often «alled Ising:SOC and refers
to a splitting of the graphene Dirac states at K, as if an external magnetic field would
be present, leading to a Zeeman-like band splitting. Due\to time-reversal symmetry,
the Dirac states at K’ are energetically the same, but have the opposite spin. Hence,
the charge carriers effectively experience the opposite magnetic field, i. e., a valley-
dependent Zeeman-like spin splitting arises.

By employing different TMDs, one can readily change the magnitude of proximity
SOC, see Fig. a,b). Eventually, when the spin-orbit splittings exceed the orbital
gap, one can tune the Dirac bands into an, inverted regime, as for the case of
graphene/WSey [57, 58]. With gentrolled alloying of the TMD, one can even
continuously tune the transition from normalite.inverted Dirac bands [59]. Due to the
short-rangeness of proximity effects, it is, typically enough to consider monolayers
in theory. However, band offsets and internal electric fields saturate in the few-
layer limit [60]. Further tunability knobs for proximity SOC in graphene/TMD
heterostructures are the twisteanglerand gating [24] 61, 25 [62], allowing to tailor
the valley-Zeeman and Rashba SOC. Experimental signatures of proximity SOC
in graphene are giant spin.relaxation anisotropy (spin pointing out of the plane
survives 10-100 longer than in-plame‘spins) [63] [64] [65] [66] [67) [68], the appearance
of (unconventional) spin-charge conversion [69] 25|, 62, [70l [7T], 58, [72], and weak anti-
localization [15] [68].

Similarly, other spin-orbit materials have also been considered to induce SOC in
graphene. In particular 3D topological insulators such as BisSes, BisTes, and ShoTes
can induce sizable SOC,in graphene [73, [74] [75] [76] on the order of few meV, tunable
by alloying [60,77] and the twist angle [78]. More recently, also ferroelectric SnTe was
considered, predicting giant and anisotropic spin-orbit splittings of Dirac bands [79].

3.8. FExchange Coupling

Magnetism “inm(hominally nonmagnetic) graphene can be induced by proximity
exchange coupling with a ferro- or antiferromagnet. As a consequence, the Dirac
bands.of graphene will split as if an external magnetic field were present. In contrast to
SOC, exchange coupling breaks time-reversal symmetry. Initial studies concentrated
on magnetic tunnel junctions, such as graphene/hBN/Co, which are still frequently
employed for electrical spin injection [52] [82] 83]. It turns out that the hBN tunnel

Page 6 of 19
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29 Figure 2. Band structure topologies of proximitized graphene. Presented are
exemplary graphene-basedwvan der Waals heterostructures and their model band
30 structures, employing the Hamiltonian Eq. , together with realistic parameters
31 from Refs. [57} 23] [80}[81]. The.color of the bands represents the spin-z expectation
32 value. (a, b) MoSz and WSes, provide different proximity-induced SOC of
33 Rashba and valley-Zeeman types.. For MoSz (WSez) the Dirac states exhibit
a trivial (inverted) gap. Proximity SOC preserves time-reversal symmetry. (c,
34 d) Cr2GegTeg (MnPSeg). provides ferromagnetic = FM (antiferromagnetic =
35 AFM) proximity-induced exehange coupling. Proximity exchange breaks time-
36 reversal symmetry. (e) Doubly proximitized graphene displays both proximity
37 spin interactions:\I'he interplay of proximity SOC and exchange breaks the valley
degeneragy of Dirac bands. The low energy bands at K/K’ valleys are notably
38 different.
39
40 . . . Ca . . .
41 barrier shields the/Dirac bands from strong hybridization with the metallic orbitals,
42 but still allows soméramount/of exchange coupling to be transferred to the p, orbitals
43 of graphene [84]. Other earlier sources for proximity exchange in graphene were EuO,
44 EuS, and Yttrium-Iron-Garnet [85], [86, [87, [88], having either poor interface quality
45 or low Curie temperature to make a stronger impact.
46 Despite the success of the aforementioned tunnel spin injection geometries,
47 layered 2D _anagnets provide a viable alternative to induce exchange splitting for
48 Diraerelectrons, see Fig. c,d). Of particular interest are magnetic insulators or
49 semiconductors such as CraGesTeg [811 89, [16], CrIs [90, 011, [02] B3], or MnPSe; [20,
50 [B0]; which can modulate the band structure of graphene (or another nonmagnetic
51 material)pwithout significant charge transfer and without contributing additional
transpert channels. Remarkably, ferromagnetic and antiferromagnetic proximity-
52 P Vs g g p y
53 induced exchange coupling can be realized by 2D magnets, see Fig. (c,d). The
54
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only drawback for device applications is the Curie and Neel temperatures of those
2D magnets, as they are well below ambient conditions. Fortunately, there are
already metallic 2D magnets available, operating at room temperature, which arelong-
sought building blocks for next-generation low-power magnetoelectronic and spintronic
devices [94, [05]. Tt is perhaps only a matter of time until air-stable 2D magnetic
insulators are synthesized, providing room-temperature platforms for ”"magnetizing”
graphene.

Proximity exchange effects in graphene can be observed by quantum anomalous
Hall effect [96], magnetoresistance [97], or nonlocal spin transport experiments [87].
Remarkably, recent studies have demonstrated spin injection sand tl& giant
electrostatic control of spin polarization in exchange proximitized graphene on
antiferromagnetic CrSBr [98, [99]. These results are promising for the development
of gate-controllable spin valves and spin filters.

3.4. Proximity induced superconductivity

Proximity effects in condensed matter stem from supereconductivity. In a junction
formed by a normal metal and a superconductor/ithe Cooper’ pairs from the
superconductor can penetrate, within the coherence length, into the metal. Vice versa,
the superconducting pairing is somewhat reduced by the.conpact with the normal
conductor. The most spectacular demonstration of thé superconducting proximity is
the Josephson effect, in which the superconiducting pairing/persists through a barrier
(normal metal or insulator) connecting two superconducting electrodes.

While monolayer graphene does not' appear to support Cooper pairs at
experimentally accessible temperatures, supereconductivity can be induced by the
proximity effect. Experiments to!detectnthe proximity superconductivity include
gate-tunable supercurrent in graphene with Ti/Alcontacts [100], ballistic Josephson
effect [I0I] and supercurrent in the quantum Hall regime [I02] in graphene with
MoRe edge contacts, and Andreev reflection at the interface of superconducting-
graphene/normal-graphene in graphene/NbSes heterostructures [103].

The advantage of 2D superconductors, for proximitizing graphene, lies again
in the bond-free and atomically-sharp van der Waals interface. = Remarkably,
theoretical predictions report om twist-tunable proximity-induced superconductivity
in graphene/NbSe; [104], which isdn line with recent experiments [103]. Furthermore,
since NbSes; is a TMD'with large SOC, the twist-tunability of proximity-induced
SOC has been recently considered in graphene/NbSe; [105]. In addition, NbSesq
exhibits a charge density. wave phase that can be imprinted in graphene [106]. This
demonstrates thé complex interplay of several proximity effects in graphene/NbSes van
der Waals heterostructures, which is a potential playground to host chiral Majorana
fermions [I07]. Remarkably, graphene superconductivity emerges beyond monolayers,
as discussed below.

3.5. Interplay of Proximity Effects

When graphene is encapsulated, one can either enhance or weaken proximity-induced
phenomena. | For example, when graphene is encapsulated by TMD layers, their
relative twist angle tunes the interference of proximity-induced SOC [49, [24]. Similarly,
when graphene is encapsulated by 2D magnets, their relative magnetizations and
twist angles can be used to tailor the proximity-induced exchange coupling [41], 23].

Page 8 of 19
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Figure 3. Left: Schematics of proximity physics in éncapsulated multilayer
17 graphene heterostructures. In multilayer graphene, only the outer layers are
18 subject to short-range proximity effects, stemming from 2D spin-erbit materials
19 or magnets. An external electric field is employed t6 tune the potentials (+V) of
20 the outermost graphene layers. Together with the layer polarization of the low

energy bands, see Fig. [l proximity spin splittings can be swapped from valence to
21 conduction band. Right: We show exemplary low energy model band structures
22 for bare bilayer graphene without and with electric field, as well as the switching
23 of proximity SOC from conduction to valence bands in WSes /bilayer-graphene.
24 The physics of differently proximitized bi- and trilayer graphene structures are
25 explained in more detail in Refs. [108], [109] 40} 42} m]’
26
27 The story becomes more complicated when different materials are employed for
28 encapsulation. For example, when graphene'is, doubly proximitized by a TMD and a
29 2D magnet, see Fig. e), the two spin interactions, spin-orbit and exchange coupling,
30 interfere with each other, break the valleyrdegeneracy, and serve as a playground
31 for gate-tunable spin-orbit torque [81], topological phases [20], spin qubits [110], and
32 correlated phases [111}[34]. In proximitized bi- and trilayer graphene, spin interactions
33 can be turned on and off, see Fig. 3| or even swapped fully electrically due to the
34 additional layer polarization [40; 41542, 108, [109], allowing for spin valve and filter
35 operations.
36 As already mentioned, ‘eertain 2D materials can induce multiple proximity
37 effects at the same time, Oneﬁcample are graphene/NbSey heterostructures, where
38 SOC [105], superconductivity'[104]; and a charge density wave phase [106] have been
39 imprinted to graphene by proximity. Recently, also graphene/TaSs heterostructures
40 have been investigated, simultaneously showing spin-orbit, exchange, and charge
41 density wave proximityneffects [I12]. The only requirement to induce multiple
42 proximity effect§ simultaneously is that the substrate hosts multiple spin interactions,
43 such as magnetic topological insulators MnBiyTey [113], topological superconductors
44 FeTe;_,Se, [114]; or magnetic TMDs [115].
45
46 4. Emergence of Topological States and Correlated Phases
47
48 Singe the discovery of correlated physics in magic-angle twisted bilayer graphene [26],
49 there have been numerous studies to understand its origin and the various flavors of
50 correlated states in multilayer graphene systems [27, 29] 116}, 117, IT8]. In addition,
51 since spin interactions have been induced by the proximity effect in graphene, there
52 is an increasing interest in the design of topological edge states for dissipationless
53 electronics and spintronics [19] [119] 20, (107, [120]. In the following, we further discuss
54
55
56
57
58
59
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these two branches of graphene physics.

4.1. Topological States

Topology in graphene dates back to the initial studies of Kane and Mele, avhich
predicted the quantum spin Hall effect due to the spin-orbit gap in gristine
graphene [47, [12I]. However, in experimentally relevant samples, Rashba_coupling,
staggered sublattice potential, and other proximity effects arise, typically/dominating
over the weak intrinsic SOC of tens of peV. Furthermore, the presence of electron-
hole puddles causes significant fluctuations in the Fermi level (10-100 mieV), making it
difficult to search for topological states within the spin-orbit gap of the intrinsie SOC.

It was soon realized that proximity effects could aid in designing more robust
topological states, as they can significantly enhance SOC accompanied by proximity
exchange and superconductivity, depending on the substrate [122] [123]» More recent
efforts concentrated on providing a unified picture of the topological nature of
proximitized graphene and the existence and character ofsprotected edge states [19]
107, 20, 119].

One of the first surprising observations was the faet, that the induced SOC, for
graphene on various substrates [124, [57 [60, [125], dspmostly of valley-Zeeman and
Rashba type, and not of Kane-Mele type as in pristine graphene [7.[8]. In fact, Kane-
Mele (sublattice even) intrinsic SOC manifests as quantum spin Hall states (QSHS)
characterized by nontrivial Z5 invariant, sée Fig. [4) while valley-Zeeman (sublattice-
odd) intrinsic SOC manifests as pseudohelical states with Z; = 0 [19]. Both of them
are robust against (time-reversal) impurity scattering and show helical edge currents in
narrow graphene zigzag ribbons, but the pseudohelical’states display pseudospin-spin
locking contrary to QSHS.

Once magnetic proximity effects are induced in graphene, in addition to proximity
SOC, quantum anomalous Hall states (QAHS) can arise [20], which are characterized
by Chern number C. Proximity exchange coupling in graphene can be ferromagnetic,
antiferromagnetic, or ferrimagnetich[23], [80], while proximity SOC can be of Kane-
Mele, valley-Zeeman, and Rashba typen[14, [126], providing a broad phase space to
potentially observe QAHS with, Chern numbers C = 1, 2. Finally, when graphene is
in the QAHS phase and proximity superconductivity is added, also chiral topological
superconductor phases ¢an form [107].

Until now, no clear vidence exists for a QSHS in graphene, even when
proximitized. Sigmatures of \@SHS have only been observed in the presence a of
very large magnetic field [127]. One of the first more clear demonstrations has
been made when graphene is decorated with BisTes nanoparticles, locally enhancing
SOC [128]. One of the obstacles, that hinders the observation of topological states
in (proximitized),graphene is the size of the topological gap. Even, when proximity
effects arefat play, the gap is typically small compared to other disturbing factors
like the thermal enérgyrand electron-hole puddles [129] [130]. In multilayer graphene
structures,iit has been reported that topologically protected states have been realized
in proximitizedibilayer [I31] and pentalayer graphene [132].

4.2,  Correlated Phases

A prerequisite for the formation of correlated phases in graphene-based structures is
van-Hove singularities (peaks in the density of states), corresponding to flat bands

Page 10 of 19
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Figure 44 (a) Real space representation of a single quantum spin Hall state
(QSHS),/localized at:the edges, along with the energy spectrum of a zigzag
graphene nanoribbon in the presence of Kane-Mele SOC. The color indicates
the spin-expectation value (red = spin up, blue = spin down). The relevant
states.are indicated in the spectrum. (b) The same as (a), but for valley-Zeeman
SOC, resulting in pseudo-helical states (PHS), accompanied by a spin-flip at the
armchair edges. (c) Sketch of pseudo-helical states in graphene proximitized by a
strong spin-orbit material, e.g., WSes. Figures (a) and (b) adapted from Ref. [I9].

in the ele¢tronic dispersion with minimum Fermi velocity, leading to large electron-
electron interactions, seenF'ig. ol The first demonstration of correlated physics was in
magic-angle‘twisted bilayer graphene (MATBG) in 2018 [26] [133]. For small (~ 1°)
twist angles, bilayer graphene exhibits flat bands near zero Fermi energy, resulting in
correlated insulator behavior and superconductivity upon different filling factors of the
moiré Brillouin zone. Several experimental and theoretical efforts aimed to understand
the correlation physics in MATBG [33], [134] 28, [135], 136, 137, 138, 139, 140, 141,

142, M43\ 144l 145 146]. It turned out that a relatively simple real space picture,
based on localized heavy fermions at AA stacking regions, combined with delocalized
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semimetallic conduction band states, captures the ground state and topological physics
very well [I47, 27]. This is a prime example of reformulating an initial highly complex
problem into a relatively simple model language. Nevertheless, flat bands are already
intrinsically present in multilayer graphene systems, such as bernal bilayer graphene
and rhombohedral trilayer graphene. Experiments and theory have demonstrated,
that also in these systems correlated behavior arises, with [32, [34] [IT1], 148 149}, and
without [30] [3T], [44] [45] 150, [151) 152] proximity coupling to other 2D materials. In
fact, it appears that the proximity-induced valley-Zeeman SOC, origindting froms a
TMD, even stabilizes superconducting phases in AB and ABC graphene multilayer
systems [32], 153}, (154}, 155}, [156].

~

100
75
50

25 6=1.02° p=1.12

Energy [meV]
o

|
\ 4

Figure 5. Left: Bilayer graphene twisted at small angles (~ 1°) shows a long
range moiré pattern. Lattice relaxation plays an important role in the formation
of localized states at AA Stacking regions [146]. Middle: The low energy dispersion
at 6 = 1.02°, calculated from an exact continuum model [I145], features flat bands
near zero Fermi energy, being well separated from dispersive bands at higher
energies. Right: By small twist angle deviations (~ 0.1°) from the 'magic’ angle,
the low energy bands recover their 'dispersiveness and correlated behavior gets
quenched.

5. Perspectives and Challenges for Theory and Experiment

Proximity effects in 2D, materials have by now been firmly established. Aided by
structural engineering—stacking (twisting, straining—as well as gating and doping,
proximity effects can, effectively alter the spin, magnetic, and superconducting
properties of 2Dsmaterials. #Given the vast choices of layered materials [17, [Ig],
including strong spin-orbit materials, magnets, superconductors, ferroelectric, and
topological miaterials, it is not surprising that we still know very little about their
various combinations.

For theory; one challenge is to develop realistic models for proximity effects which
necessarily involve|large supercells, strained to generate commensurate structures.
Strainsean cause problems in determining accurate proximity parameters, but also
stagking. Furthermore, the effective Hamiltonians describing the proximity effects are
useful for making qualitative predictions, but it is not clear how far one can push them
invdescribing experimental structures. For example, a van der Waals stack contains
a spatially varying registry of atoms, each atom feeling a different environment from
the proximitizing material. It is expected that the proximity effects will then result
imva _spatially non-uniform pattern, so that spin-orbit and exchange couplings should

Page 12 of 19
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> vary throughout the lattice. Determination of such a pattern, both theoretically and
6 experimentally, would certainly be highly valuable.

7 In fact, graphene-based van der Waals heterostructures have already ‘epened
8 new avenues for many scientific and technological advances in spintronic devices;
9 such as tunnel junctions [I57, [158], optospintronics devices [159, [14) 160}, 10]{ spin-
10 logic devices [I61], spin transistors [I08], and spin-orbit torque magnetic “andom
1 access memories [162] 163, 164, 165, 166, 167]. All these technologiestrely on
12 the proximity coupling of the layers. Another challenge lies in predicting material
13 combinations that optimize specific functionalities. For instance, large, tunneling
14 magnetoresistance requires compatible Bloch states between tunneling electrons.and
15 barrier conduction states. A systematic understanding of such material chafacteristics
16 is still lacking. Moreover, while theoretical predictions have beensmade for spin-orbit
17 engineering involving TMDs and topological insulators (discussed imythe main text),
18 experimental verification, particularly for the vanishing valley-Zeeman eoupling at 30°
19 twist angle in graphene/TMD heterostructures, remains elusive:, We anticipate that
20 high-throughput Al tools will prove valuable in future spin-orbit engineering and the
21 discovery of optimal material combinations for spin-dependent tunneling.

22 After an initial period of slow progress, researchers are now reporting significant
23 advancements in the experimental realization of spin-orbithtorques [162] [163] [164]
24 165, 166, 167]. Given their immense technological selevanee, there is a strong
25 push to achieve efficient magnetization switching by/passing a current through the
26 heterostructure. Many questions remain{open. How fast could the switching be?
27 Can it be controlled by gating? What is the. magnetization damping coefficient? For
28 theory and experiment, it is important to find \out what is the relevant mechanism of
29 the torque. Is the spin accumulation,coming from the charge-to-spin conversion or is
30 it the proximity spin-orbit exchange in.the magnet\from a strong SOC material? Such
31 questions are relevant, since in ultrathin samples it is not expected that transverse (to
32 the sheets) spin Hall currentsswould flow, enabling the torque. Also, it is not obvious
33 what is the role of defects in providing the necessary damping torque.

34 Twist angle is a great toel”in designing new functional materials. In magnets,
35 twisted heterostructures could give us platforms for topological magnetic excitations
36 (skyrmions), and modulate the magneto tunneling effects, as in a recent experiment
37 [168, 169]. It is also notfyet experimentally confirmed that twisting can profoundly
38 change the proximity effect (8ay, flip the proximity spin polarization).

39 Correlated phases pose perhaps most challenges, but also perspectives. The origin
40 of superconducting pairing is an outstanding puzzle, and the question if SOC can
41 stabilize superconductivity issstill open. New possibilities for spintronics arise from
42 the possibility ¢f isospin (spin and valley) engineering. Isospin polarization results in
43 orbital magnetism, which can be manipulated electrically by gating and by electrical
44 currents. To.whatextent can the isospin be manipulated by external fields similarly to
45 the electron spin being controlled magnetically? Can valley-Zeeman coupling lead to a
46 coherent, coupling between, the two flavors? Can proximity spin exchange stabilize the
47 triplet.component/(if present) in graphene superconductors? The potential of isospin
48 manipulation to enable new functionalities is vast and highly anticipated.
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