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A B S T R A C T

During the transition to motherhood, complex brain adaptations occur to ensure adequate maternal responses to 
offspring’ needs accompanied by reduced anxiety. Among others, the corticotropin-releasing factor (CRF) and 
oxytocin (OXT) systems have emerged as crucial regulators of these essential postpartum adaptations. Here, we 
investigated their roles within the nucleus accumbens shell (NAcSh), a central region of the reward and maternal 
circuits, in maternal neglect of lactating rats. Furthermore, we assessed the contribution of the local CRF system 
to anxiety-like behaviour, comparing lactating female, virgin female and male rats to evaluate potential sex- 
differences.

Increasing CRF receptor (CRF-R) 1 transmission via local CRF infusion in the NAcSh led to maternal neglect, 
reducing nursing and increasing self-directed behaviours. In turn, local CRF-R1 inhibition impaired maternal 
motivation. Intra-NAcSh Urocortin3 infusion did not promote maternal neglect but increased anxiety-like 
behaviour in lactating and virgin female rats, whereas CRF infusion had anxiogenic effects only in male rats. 
Crh-r1 mRNA expression was higher in male and lactating rats compared to virgin females; furthermore, male 
rats had increased Crh-bp mRNA expression compared to virgin female rats, only. Lastly, pharmacological ma-
nipulations of the OXT system did not affect maternal responses.

In conclusion, finely balanced CRF-R1 signalling in the NAcSh is required for the proper expression of 
maternal behaviours. Dampened CRF-R2 signalling prevents the onset of anxiety-like behaviour in female rats, 
whereas CRF-R1 plays a more prominent role in males, highlighting complex sex-differences of the CRF system’s 
regulation of anxiety within the NAcSh.

1. Introduction

The adequate expression of maternal behaviour is crucial for the 
development and survival of offspring. To ensure the onset of maternal 
responses, complex (neuro-)hormonal and functional/structural 
changes occur within the maternal brain, beginning during pregnancy 
and persisting throughout lactation (Dickens and Pawluski, 2018; Keller 
et al., 2019; Kinsley and Amory-Meyer, 2011; Navarro-Moreno et al., 
2022; Servin-Barthet et al., 2023). Among these adaptations are 
fine-tuned changes in neuropeptidergic systems, as we recently 

reviewed (Sanson et al., 2024a). For instance, the activity of the “pro--
maternal” oxytocin (OXT) system needs to increase, paralleled by a 
generally reduced reactivity of “anti-maternal” mediators, such as the 
members of the corticotropin-releasing factor family (protein, CRF; 
gene, Crh) (Klampfl and Bosch, 2019a; Sanson and Bosch, 2022; Sanson 
et al., 2024a). Indeed, stress responsiveness during the peripartum 
period is usually dampened (Brunton et al., 2008; Dickens and Pawluski, 
2018), and any perturbation of this state might carry severe conse-
quences for both the mother and her infant, impairing the quality of 
their bond.
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The CRF family includes four ligands (CRF and Urocortins, UCN1, 2 
and 3), which show different affinities for the two receptor subtypes, 
CRF receptor (CRF-R) 1 and 2 (Deussing and Chen, 2018). Furthermore, 
the CRF binding protein (CRF-BP) is a regulatory glycoprotein that binds 
and sequesters freely available CRF and UCN1, thereby preventing them 
from binding and activating CRF-R (Deussing and Chen, 2018; Ketchesin 
et al., 2017). The primary function of CRF is to activate the physiological 
responses to stress by initiating the hypothalamic-pituitary adrenal 
(HPA) axis cascade, thus acting as an anxiogenic and pro-depressive 
neuropeptide (Deussing and Chen, 2018). Furthermore, CRF-R and 
their ligands are widely distributed throughout the brain, including the 
nucleus accumbens (NAc) (Bangasser, 2013; Deussing and Chen, 2018). 
Interestingly, the activity of the CRF family is sexually dimorphic and 
can be influenced by estrogens (Bangasser, 2013; Bangasser and Val-
entino, 2012; Weathington et al., 2014; Wiersielis et al., 2016), high-
lighting the complexity of this system. During the postpartum period, 
increased signalling through brain CRF-R impairs aspects of maternal 
behaviour (for reviews, see (Klampfl and Bosch, 2019a; Sanson et al., 
2024a)). In contrast, as recently demonstrated by our group (Sanson 
et al., 2024c), hypothalamic CRF-BP contributes to the dampened HPA 
axis responsiveness typical of lactation (Brunton et al., 2008; Dickens 
and Pawluski, 2018; Slattery and Neumann, 2008). When the post-
partum CRF system is defective, this can potentially culminate in 
maternal neglect, one of the most prevalent forms of child maltreatment 
(Brown et al., 2023). Neglect is known to alter the cognitive, emotional, 
and social development of the infant, and increase vulnerability to 
mental disorders (Kisely et al., 2018; Nemeroff, 2016). Despite these 
alarming consequences for the infant, the neurobiological bases pro-
moting neglect are still not fully understood, and intervention strategies 
are still missing.

OXT is mainly produced in the supraoptic and paraventricular nu-
cleus (PVN) of the hypothalamus. By binding to its receptor (OXT-R) in 
the periphery, OXT controls physiological activities related to repro-
duction (Jurek and Neumann, 2018). Centrally, OXT modulates complex 
behavioural activities, such as affiliative, social and maternal behav-
iours, as well as stress responses (Menon and Neumann, 2023; Sanson 
and Bosch, 2022).

The NAc is part of the ventral striatum and plays a prominent role 
within the brain reward circuit due to strong dopaminergic inputs 
(Floresco, 2015; Salgado and Kaplitt, 2015). Indeed, the NAc acts as an 
interface by integrating memory and emotional signals from the limbic 
system and translating them into motivated behaviours via the activa-
tion of motor effector sites (Floresco, 2015; Salgado and Kaplitt, 2015). 
Furthermore, the NAc is part of a complex neural network that modu-
lates the display of pup-directed responses and maternal behaviour 
(Numan et al., 2005; Stolzenberg et al., 2007; Dulac et al., 2014; Kuroda 
et al., 2020; Servin-Barthet et al., 2023; Smiley et al., 2019). Anatomi-
cally and biochemically heterogeneous, the NAc can be divided into a 
central core flanked by an outer shell. The two subregions show differ-
ential connectivity, suggesting that they may mediate different behav-
ioural responses (Brog et al., 1993; Floresco, 2015; Salgado and Kaplitt, 
2015). The NAc shell (NAcSh), specifically, mediates the reinforcing 
properties of novelty and rewards (Floresco, 2015; Salgado and Kaplitt, 
2015) and plays a role in maternal care, memory, and motivation 
(Numan, 2007; D’Cunha et al., 2011; Li and Fleming, 2003a, b; Witchey 
et al., 2024).

In this study, we hypothesised that altered neuropeptidergic trans-
mission in the NAcSh of lactating rats might impair maternal behaviour 
and increase anxiety-like behaviour. Thus, we studied the specific 
function of the CRF and OXT systems in the NAcSh in relation to these 
behaviours. First, we assessed the effects of acute bilateral modulation of 
these systems on maternal care and motivation. Additionally, we 
examined the involvement of the CRF and OXT systems on anxiety-like 
behaviour in lactating rats. To evaluate any sex-specific effect of the CRF 
system, we also studied anxiety-like behaviour in virgin female and male 
rats, alongside investigating potential sex differences in gene expression 

of CRF family members in the entire NAc.

2. Materials and methods

2.1. Animals

Virgin female Sprague-Dawley rats (230g–250g at arrival; Charles 
River Laboratories, Sulzfeld, Germany) were housed in groups of 3–4 
under standard laboratory conditions (12:12 h light/dark cycle; lights 
on at 07:00 a.m.; room temperature 22 ± 2 ◦C, 55 ± 5% relative hu-
midity), with ad libitum access to water and standard rat chow (ssniff- 
Spezialdiäten GmbH, Soest, Germany). To obtain lactating subjects, two 
virgin female rats were mated with one sexually experienced male 
Sprague-Dawley rat in Eurostandard type IV cages (40 × 60× 20 cm) 
until pregnancy was confirmed by the presence of sperm in vaginal 
smears (pregnancy day, PD1). Pregnant females were housed in groups 
of 3–4 until PD18, when they underwent stereotaxic surgery and were 
single housed in observational cages (Plexiglass; 38 × 22 × 35 cm) for 
undisturbed recovery and delivery. On the day of birth (lactation day, 
LD0), litters were culled to 8 pups with balanced sexes. To study anxiety- 
like behaviour, we included virgin females (in the pro-estrous phase, see 
2.5.3 for details; 230g–250g at arrival; Charles River Laboratories) and 
males (240g–260g at arrival; Charles River Laboratories), which were 
housed in groups of 3–4 of the same sex until stereotaxic surgery, after 
which they were single housed in observational cages. All rats were 
handled daily to familiarize them with the experimenters and the pro-
cedures, thereby reducing non-specific stress responses. To study gene 
expression of members of the CRF family, separate cohorts of lactating 
(LD5), virgin female (in the pro-estrous phase) and male rats were 
included in the studies.

The studies were conducted in accordance with the ARRIVE guide-
lines, the European regulations of animal experimentation (European 
Directive, 2010/63/EU) and were approved by the local government of 
Unterfranken (Bavaria, Germany). According to the 3-Rs principles, all 
efforts were made to minimise the number of animals used and to reduce 
their distress or suffering.

2.2. Experimental design

Before the behavioural experiments, each rat was randomly assigned 
to one of the treatment groups and received the same drug on each 
testing day. After acute treatment infusion, dams were returned to their 
home cage, and their behaviour was monitored after the corresponding 
lag time (see 2.4). In the first experiment (Fig. 1A), maternal care was 
assessed in the home cage on LD1 (see 2.5.1), maternal motivation was 
monitored on LD3 (2.5.2), and anxiety-like behaviour was assessed in 
the light-dark box (LDB) test on LD5 (2.5.3). The latter was com-
plemented by a follow-up experiment (Fig. 1B) that included only virgin 
female and male rats. In a separate cohort of rats (Fig. 1C), brains of 
lactating females (LD5), virgin females (pro-estrous phase) and male rats 
were collected for subsequent gene expression analysis with qPCR. 
Fig. 1D shows a representative histological image of a correct implan-
tation site (assessed as described in 2.6).

2.3. Surgical procedures

Rats underwent surgical procedures (pregnant rats on PD18 ± 1) 
under inhalation anaesthesia in semi-sterile conditions as previously 
described (Bosch et al., 2010). Stainless steel 23 G guide cannulas 
(length: 12 mm) were implanted 2 mm above the NAcSh (coordinates: 
anterior-posterior +1 mm, lateral ±3 mm, ventral − 5.3 mm from the 
skull surface, angle 17.5◦) (Paxinos and Watson, 2013).

2.4. Pharmacological manipulations

For acute bilateral local infusion, stainless steel 30 G infusion 

A. Sanson et al.                                                                                                                                                                                                                                 Neuropharmacology 265 (2025) 110256 

2 



cannulas (length: 14 mm) were connected via PE-50 tubing to 10 μL 
Hamilton syringes. The infusion cannula was lowered into the guide 
cannula and kept in place for approximately 30s during drug infusion. 
Per side, 0.5 μL of one of the following substances was infused (see 
Table 1 for concentrations, lag-times and suppliers). 

- vehicle (VEH; when used for OXT-R antagonist (OXT-A): sterile 
Ringer’s solution; pH adjusted to 7.4; B. Braun, Melsungen, Ger-
many; when used for drugs targeting the CRF system: sterile Ringer’s 
solution with 4% DMSO; pH adjusted to 7.4)

- OXT-A ((d(CH2)5
1, Tyr(Me)2, Thr4, Orn8, des-Gly-NH2

9)-vasotocin)
- human/rat CRF (primarily CRF-R1 agonist)

- CP-154,526 (selective CRF-R1 antagonist)

While CRF can bind to both CRF-R, it shows a 40X higher affinity for 
CRF-R1, thus, it is considered to act primarily on this subtype (Deussing 
and Chen, 2018; Hauger et al., 2003). Doses and lag-times between 
administration and behavioural experiments were based on previous 
studies (D’Anna and Gammie, 2009; Klampfl et al., 2016; Klampfl et al., 
2018; Lukas et al., 2013).

2.5. Behavioural assessment

2.5.1. Maternal care
Following an established protocol, maternal care was monitored on 

LD1 before and after drug infusion for 10s every 2nd min in 30-min 
blocks (Bosch and Neumann, 2008). The quality of maternal behav-
iour was measured by the occurrence of arched-back nursing (ABN) and 
licking and grooming (LG) (Bosch, 2011; Klampfl and Bosch, 2019b). 
Other nursing parameters included blanket posture, nursing while lying 
on the back or side, and hovering over the pups. These positions were 
summed up as “total nursing”. In addition, non-maternal behaviours, 
including self-grooming, were quantified as “off-nest” behaviour.

2.5.2. Maternal motivation
Maternal motivation was assessed using the modified pup retrieval 

test (PRT) following an established protocol (Bayerl et al., 2016). On the 
afternoon of LD2, a red plexiglass house (13 × 17 × 11 cm, opening 6 ×
8.5 cm) was introduced to the mother’s cage overnight for habituation. 
On LD3, the mother was moved to the testing room, and the red house 
and pups were removed 60 min prior to the test. Pups were kept as a 
whole litter in a box containing bedding from their home cage on a 
heating pad set at 32 ◦C. Immediately before the PRT, all pups were 
distributed in a new arena (54 × 34 × 31 cm) containing home cage 
bedding, and the house was placed at one of the short-edged walls. 
Following drug infusion, the mother was placed in the arena, and the 
behaviour was recorded for 15 min. The videos were manually analysed 
by an experienced observer blind to the treatments. The % of retrieved 
pups, the latencies to retrieve the first and last pups, and the % of dams 
retrieving all pups were analysed.

2.5.3. Anxiety-like behaviour
Anxiety-like behaviour of lactating rats (tested at LD5) as well as of 

virgin female and male rats (tested 5–10 days post-surgery, depending 
on the estrous cycle stage of the virgin females) was assessed in the LDB 
test as previously described (Crawley and Goodwin, 1980; Demarchi 
et al., 2023). Following drug infusion, each rat was placed in the centre 
of the light box, and behaviour was recorded for 10 min for later analysis 
by an experimenter blind to the treatment using EthoVision XT (Noldus, 
Wageningen, The Netherlands). The following parameters were ana-
lysed: % of time spent in the light box, number of transitions from the 
dark to the light box, and locomotor activity. All virgin female rats were 
tested in the pro-estrous phase, characterized by lower anxiety-like 
behaviour (Lovick and Zangrossi, 2021; Zuluaga et al., 2005). The 
estrous cycle stage of female rats was determined using vaginal smears 
over 7 days before surgery and again starting 2 days after surgical 
procedures. Phase predictions for the day of testing were confirmed 
immediately after the behavioural experiment.

Fig. 1. Experimental designs and representative histological picture of cannula 
placement 
Behavioural experimental timeline in (A) lactating rats and (B) virgin female 
and male rats. (C) Experimental timeline for brain collection in lactating female 
(upper line), virgin female and male (bottom line) rats. (D) Representative 
histological picture of cannula placement; coronal scheme from (Paxinos and 
Watson, 2013). Abbreviations: LD: lactation day, LDB: light-dark box, MC: 
maternal care, PD: pregnancy day, PRT: pup retrieval test.

Table 1 
Details of administered drugs.

Biological activity Substance Concentration Lag-time Company Cat. #

OXT-R antagonist OXT-A 0.1 μg/0.5 μL/side 10 min Provided by Dr. Manning /
CRF-R1 agonist CRF 1 μg/0.5 μL/side 10 min Tocris Bioscience 1151
CRF-R1 antagonist CP-154,526 0.4 μg/0.5 μL/side 10 min Tocris Bioscience 2779
CRF-R2 agonist UCN3 3 μg/0.5 μL/side 25 min Phoenix Pharmaceuticals 019–26
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2.6. Histology

At the end of the behavioural experiments, all animals were 
euthanised by an overdose of CO2 inhalation. For histological evaluation 
of cannula placements, 0.5 μL of ink was infused post-mortem via the 
cannulas. Brains were sectioned in 40 μm coronal sections using a 
Cryostat (CM3050S Leica Microsystem GmbH, Nussloch, Germany), 
slide-mounted, and Nissl-stained to identify the implantation sites. Rats 
with incorrect cannula placements were excluded from the statistical 
analyses.

2.7. Real-time qPCR

A separate cohort of lactating female (at LD5), virgin female (in the 
pro-estrous phase of the estrous cycle) and male rats were euthanised by 
decapitation after brief anaesthesia with CO2. Brains were removed and 
cut with a cryostat into coronal sections (1.70–0.70 mm from bregma 
(Paxinos and Watson, 2013),) of 250 μm containing the NAc, which was 
harvested using a 1 mm-diameter puncher and stored at − 80 ◦C until 
further processed. Due to technical limitations, a distinction between 
core and shell was not feasible; thus, the whole NAc was collected and 
analysed.

Total RNA was isolated using peqGold Trifast (VWR International, 
Radnor, USA) according to the manufacturer’s protocol. For mRNA 
analysis, 500 ng of total RNA per sample was reverse transcribed using 
Ultra Script 2.0 (PCR Biosystems, London, UK). Relative quantification 
of RNA levels was performed using PowerUp SYBR Green Master Mix 
(Thermo Fischer, Waltham, USA), with Glyceraldehyde-3-phosphate- 
dehydrogenase (Gapdh) used as the housekeeping gene. The targets 
and the sequences of all genes are listed in Table 2. Data were analysed 
following the 2^ΔCt method.

2.8. Statistical analysis

Statistical analysis was conducted using GraphPad Prism10 
(GraphPad Software, Boston, USA). Normality and homogeneity of 
variance were tested using Shapiro-Wilk test and F-test, respectively. 
When normality was violated, non-parametric tests were used; if ho-
mogeneity of variance was violated, appropriate corrections were used. 
Statistical outliers were identified with Grubbs’ method and removed 
from analysis. Data were analysed using two-way ANOVA for repeated 
measures (factors: time, treatment), 1-way ANOVA, Kruskal-Wallis test, 
Brown-Forsythe ANOVA test, unpaired t-test, non-parametric Mann- 
Whitney test, or unpaired t-test with Welch’s correction. Where appro-
priate, post hoc comparisons were performed using Bonferroni or Dun-
nett’s T3 correction. Differences in the distribution of PRT latencies 
were analysed with Log-rank Mantel-Cox survival analysis (Salais-Lopez 
et al., 2021). Size effects were calculated with Cohen’s d coefficient and 
eta squared η2. Statistical significance was set at p ≤ 0.05, and a trend 
was accepted up to p = 0.07.

3. Results

3.1. CRF-R1 activation in the NAcSh impaired maternal care

We first studied the effects of CRF-R1, CRF-R2 and OXT-R manipu-
lations on maternal care. When analysing the effects of CRF infusion on 
total nursing (Fig. 2A), a 2-way repeated measures ANOVA revealed a 
significant main effect of time (F[4, 73] = 5.01; p < 0.01, η2 = 0.21) and 
treatment, with CRF reducing the occurrence of nursing (VEH = 10.4 ±
0.14, CRF = 7.1 ± 0.24; F[1, 18] = 8.38; p < 0.01, η2 = 0.32), while 
time × treatment interaction was not significant (F[6, 108] = 2.0; p =
0.072, η2 = 0.1). Interestingly, the CRF-treated dams showed a signifi-
cant increase in self-grooming (time: F[4, 67] = 5.16, p < 0.01, η2 =

0.23; treatment: F[1, 18] = 6.24, p < 0.05, η2 = 0.26; interaction: F[6, 
108] = 4.39, p < 0.001, η2 = 0.2; Fig. 2B). Specifically, the infusion of 
CRF significantly increased self-grooming at t30 compared to baseline 
(p < 0.05); however, when compared to VEH-treated rats at the same 
time point, this increase did not reach statistical significance (p =
0.064). Remarkably, infusion of CP-154,526 or UCN3 did not affect any 
aspects of maternal care (Fig. 2C–F and Table 3).

When analysing the nursing behaviour of OXT-A-treated dams 
(Fig. 2G), we found significant main effects of time (F[4, 87] = 5.5, p =
0.0004, η2 = 0.2) and treatment (F[1, 21] = 5.2, p = 0.034, η2 = 0.2), 
but not of their interaction (F[6, 126] = 0.76, p = 0.598, η2 = 0.03). No 
changes in self-grooming or other behaviours were observed in OXT-A- 
treated dams (Fig. 2H and Table 3).

3.2. Reduced CRF-R1 signalling in the NAcSh reduced maternal 
motivation

The effects of treatments on maternal motivation were assessed using 
the modified PRT. Only the infusion of CP-154,526 (CRF-R1 antagonist) 
impaired the onset of maternal motivation, as dams were slower to 
retrieve the first pup. The survival distributions of latency-to-first-pup 
retrieval for VEH- and CP-154,526-treated dams were significantly 
different (χ2 [1] = 4.1, p = 0.043; Fig. 3A), indicating that a lower 
percentage of CP-154,526-treated mothers (57%) retrieved the first pup. 
Furthermore, the latency to retrieve the first pup was increased (t[6] =
2.8; p = 0.029, Unpaired t-test with Welch’s correction, Cohen’s d = 1.5; 
Fig. 3B). No differences were found in the % of pups retrieved over time 
(data not shown). No further changes were observed with any other drug 
(data not shown).

3.3. CRF-R activation in the NAcSh modulated anxiety-like behaviour in 
a sex-specific manner

In lactating rats, the infusion of CRF (Fig. 4A, E) as well as OXT-A 
(Fig. 4D, H) had no effect on the time spent in the light compartment, 
or on the number of transitions from the dark to the light compartment 
(Student’s t-test, p > 0.05). The infusion of CP-154,526 reduced the 
number of transitions from the dark to the light box compared to VEH- 
treated dams (t[6] = 2.7, p = 0.035, Unpaired t-test with Welch’s 
correction, Cohen’s d = 1.6; Fig. 4F) but did not affect the time spent in 
the light compartment (Fig. 4B; p > 0.05). In contrast, UCN3 infusion 
significantly reduced the time spent in the light compartment compared 
to VEH-treated dams (Unpaired t-test, t[11] = 2.3, p = 0.039, d = 1.3; 
Fig. 4C, I), without influencing the number of transitions (Fig. 4G). Total 
locomotor activity was not affected by any treatments (data not shown).

To further investigate whether the effect of UCN3 infusion on 
anxiety-like behaviour is influenced by the reproductive state or 
depending on the sex, we tested CRF and UCN3 infusion in virgin female 
and male rats. Interestingly, in virgin female rats tested during the pro- 
estrous phase, the effect on anxiety-like behaviour (% time spent in the 
light compartment; 1-way ANOVA: F[2, 25] = 3.6, p = 0.043, η2 = 0.22) 
was similar to lactating rats. Acute activation of CRF-R2 via UCN3 
infusion significantly reduced the % of time spent in the light 

Table 2 
Primers forward and reverse sequences.

Gene Forward Reverse

Crh-r1 TCC ACT ACA TCT GAG ACC ATT 
CAG TAC A

TCC TGC CAC CGG CGC CAC CTC 
TTC CGG A

Crh-r2 ACA TCC GAG ACC CAG TA GGA CTG CAG GAA AGA GTT GA
Crh- 

bp
CTG CAG CTT TTC CAT CAT TT CAT CTT GGA GGT GTC CAG TC

Gapdh TGA TGA CAT CAA GAA GGT GG CAT TGT CAT ACC AGG AAA TGA 
G
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compartment compared to VEH-treated rats (p < 0.05, Bonferroni’s 
multiple comparisons; Fig. 5A, C), while the number of transitions did 
not differ between groups (Kruskal-Wallis test; H = 3.4, p > 0.05; 
Fig. 5B). Infusion of either CRF or UCN3 reduced locomotor activity 
compared to VEH-treated female rats (1-way ANOVA: F[2, 26] = 9.12, p 

= 0.001, η2 = 0.41; p < 0.01 for both drugs vs VEH, Bonferroni post hoc 
comparisons; VEH = 4025 cm ± 267 cm; CRF-R1 ago = 2463 cm ± 317 
cm; CRF-R2 ago = 2476 cm ± 284 cm).

In male rats, 1-way ANOVA revealed a significant effect of the 
treatment on the % of time spent in the light compartment (F[2, 26] =

Fig. 2. Altered nursing and self-grooming following acute CRF-R1 activation within the NAcSh 
Total nursing (A, C, E, G) and self-grooming (B, D, F, H) behaviour were analysed in dams treated with (A, B) CRF (VEH n = 9; CRF n = 11), (C, D) CP-154,526 (VEH 
n = 7; CP-154,526 n = 9), (E, F) UCN3 (VEH n = 6; UCN3 n = 8), and (G, H) OXT-A (VEH n = 10; OXT-A n = 13). Data are presented as mean ± SEM. *p ≤ 0.05 vs 
respective basal; (#) p ≤ 0.07 vs VEH-treated rats, two-way repeated measures ANOVA followed by Bonferroni post hoc comparisons.
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5.46, p = 0.011, η2 = 0.29). In detail, CRF infusion induced a strong 
reduction of the % of time spent in the light compartment (p < 0.05 vs 
VEH group, Bonferroni post-hoc comparisons; Fig. 5D, F), while UCN3 
administration only tended to increase anxiety-like behaviour (p =

0.06). No differences were observed for the number of transitions (F[2, 
27] = 3.3; p = 0.053, η2 = 0.2 Fig. 5E), but 1-way ANOVA showed a 
significant effect of the treatment on locomotion (F[2, 27] = 7.2, p =
0.003, η2 = 0.35). Infusion of both CRF and UCN3 induced a significant 

Table 3 
Behavioural profile before (basal) and after acute treatment infusion into the NAcSh on LD1.

Behaviour Group Time [min]

Basal +30 +60 +90 +120 +300 +330

Arched-back nursing Vehicle 0.4 ± 0.2 0.2 ± 0.2 1 ± 0.4 1 ± 0.4 1 ± 0.3 0.6 ± 0.2 0.8 ± 0.2
CRF 0.8 ± 0.3 0.1 ± 0.1 0.5 ± 0.2 0.5 ± 0.4 0.4 ± 0.1 1 ± 0.4 0.6 ± 0.3

Vehicle 1 ± 0.4 0.1 ± 0.1 0.3 ± 0.3 0.4 ± 0.3 0.4 ± 0.2 0.4 ± 0.3 0.3 ± 0.3
CP-154,526 0.6 ± 0.2 0.2 ± 0.2 0.1 ± 0.1 0.2 ± 0.2 0.4 ± 0.4 0.5 ± 0.3 0.6 ± 0.3

Vehicle 2 ± 0.3 2 ± 1 2 ± 0.5 1 ± 1 2 ± 0.4 3 ± 0.4 2 ± 0.5
UCN3 2 ± 1 2 ± 0.4 1 ± 0.2 0.4 ± 0.2 1 ± 0.3 3 ± 1 2 ± 1

Vehicle 2 ± 0.5 1 ± 0.4 1 ± 0.3 1 ± 0.3 2 ± 1 2 ± 1 2 ± 1
OXT-A 2 ± 0.5 2 ± 1 2 ± 1 2 ± 0.6 2 ± 1 3 ± 1 2 ± 0.5

Blanket posture Vehicle 9 ± 1 6 ± 1 9 ± 1 11 ± 1 9 ± 1 11 ± 1 10 ± 1
CRF 8 ± 1 3 ± 1 5 ± 1 5 ± 2 7 ± 1 6 ± 2 8 ± 1

Vehicle 8 ± 1 11 ± 1 12 ± 1 11 ± 1 11 ± 1 10 ± 2 8 ± 2
CP-154,526 8 ± 2 9 ± 1 13 ± 1 10 ± 1 10 ± 1 8 ± 2 10 ± 1

Vehicle 8 ± 1 11 ± 1 10 ± 1 10 ± 1 11 ± 1 9 ± 1 7 ± 1
UCN3 8 ± 1 7 ± 1 9 ± 1 7 ± 2 8 ± 2 9 ± 1 8 ± 1

Vehicle 6 ± 1 4 ± 1 10 ± 1 9 ± 2 8 ± 1 9 ± 1 8 ± 2
OXT-A 9 ± 1 8 ± 1 10 ± 1 10 ± 1 9 ± 1 9 ± 1 9 ± 1

Licking/grooming Vehicle 2 ± 0.3 1 ± 0.2 2 ± 0.4 1 ± 0.3 2 ± 1 1 ± 0.2 1 ± 0.4
CRF 2 ± 0.4 1 ± 0.4 3 ± 0.4 1 ± 0.3 2 ± 0.5 1 ± 0.5 2 ± 0.5

Vehicle 2 ± 0.3 1 ± 0.3 1 ± 0.5 2 ± 1 1 ± 0.5 1 ± 1 1 ± 0.4
CP-154,526 2 ± 0.5 2 ± 0.4 1 ± 0.5 2 ± 0.5 2 ± 0.3 1 ± 0.4 2 ± 1

Vehicle 2 ± 0.3 1 ± 0.3 1 ± 0.4 2 ± 0.4 1 ± 0.4 1 ± 1 1 ± 1
UCN3 2 ± 0.2 1 ± 0.5 1 ± 0.3 1 ± 0.4 1 ± 0.5 2 ± 0.5 2 ± 0.4

Vehicle 1 ± 0.2 1 ± 1 2 ± 0.5 1 ± 0.4 2 ± 0.5 1 ± 0.4 1 ± 0.3
OXT-A 2 ± 0.2 1 ± 0.4 1 ± 0.2 1 ± 0.2 1 ± 0.4 1 ± 0.4 2 ± 0.4

Off-nest Vehicle 4 ± 1 6 ± 1 2 ± 1 1 ± 0.4 3 ± 1 1 ± 1 2 ± 1
CRF 3 ± 1 8 ± 1 5 ± 1 6 ± 2 4 ± 1 5 ± 2 5 ± 2

Vehicle 3 ± 1 2 ± 1 1 ± 1 1 ± 1 1 ± 0.5 2 ± 1 5 ± 2
CP-154,526 3 ± 1 3 ± 1 1 ± 1 2 ± 1 1 ± 0.5 4 ± 2 3 ± 1

Vehicle 2 ± 1 1 ± 0.4 2 ± 1 1 ± 1 1 ± 1 1 ± 1 4 ± 1
UCN3 2 ± 1 5 ± 1 4 ± 2 6 ± 2 5 ± 2 1 ± 0.4 2 ± 1

Vehicle 4 ± 1 8 ± 1 1 ± 0.6 3 ± 1 2 ± 1 3 ± 1 4 ± 2
OXT-A 2 ± 1 3 ± 1 0.5 ± 0.3 1 ± 0.3 2 ± 1 1 ± 1 2 ± 1

Fig. 3. Reduced maternal motivation following acute CRF-R1 inhibition within the NAcSh 
(A) Survival curve indicating the cumulative percentage of dams retrieving the first pup and (B) latency to retrieve the first pup. Data are presented as mean ± SEM. 
*p ≤ 0.05, Log-rank Mantel-Cox test; #p ≤ 0.05 vs VEH-treated rats, Unpaired t-test with Welch’s correction.
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reduction in locomotor activity compared to VEH-treated rats (p < 0.05 
and p < 0.01, respectively; VEH = 3221 cm ± 314 cm; CRF-R1 ago =
1961 cm ± 203 cm; CRF-R2 ago = 2041 cm ± 261 cm).

3.4. mRNA expression of CRF family members in the NAc was sexually 
dimorphic

We measured the expression levels of Crh-r1, Crh-r2 and Crh-bp in the 
entire NAc, comparing lactating, virgin female, and male rats. Crh-r1 
showed differential expression among the three groups (Brown-Forsythe 
ANOVA test: F[2, 16] = 9.69, p = 0.002, η2 = 0.55; Fig. 6A). Specifically, 
both lactating female and male rats showed higher Crh-r1 mRNA levels 
in the NAc compared to virgin female rats in the pro-estrus phase 
(lactating: p < 0.05; males: p < 0.001; Dunnett’s T3 multiple compari-
sons). While the expression levels of Crh-r2 mRNA did not differ 
significantly (H = 5.3, p = 0.067, Kruskal-Wallis test; Fig. 6B), mRNA 
levels of Crh-bp differed among the tested groups (1-way ANOVA; F[2, 

21] = 6.8, p = 0.005, η2 = 0.39; Fig. 6C). Specifically, male rats had 
significantly higher Crh-bp mRNA levels compared to virgin female rats 
(p < 0.01, Bonferroni’s multiple comparisons), while no differences 
were observed when compared to lactating rats (p > 0.05, Bonferroni’s 
multiple comparisons).

4. Discussion

Mothers neglecting their infant is one of the most prevalent forms of 
child maltreatment, which can drastically affect the overall develop-
ment and mental health of the child (Brown et al., 2023; Kisely et al., 
2018). In recent years, animal research has provided evidence that brain 
alterations in neuropeptide signalling may contribute to the onset of 
neglectful behaviours (as we recently reviewed in (Sanson et al., 
2024a)). In the present study, we aimed to advance our understanding of 
the consequences of altered neuropeptidergic transmission on pup 
neglect, focusing on the NAcSh as a central region of maternal and 

Fig. 4. Increased maternal anxiety-like behaviour following acute CRF-R2 activation within the NAcSh 
(A–D) Percentage of time spent in the light compartment of the LDB and (E–H) number of transitions from the dark to the light compartment in dams treated with (A, 
E) CRF; (B, F) CP-154,526; (C, G) UCN3; (D, H) OXT-A. (I) Representative heatmaps of the time spent in both compartments of the LDB in lactating rats treated with 
vehicle (VEH) or UCN3. Data are presented as mean ± SEM. #p ≤ 0.05 vs VEH-treated rats, Unpaired t-test with or without Welch’s correction.
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reward circuits (Numan et al., 2005; Stolzenberg et al., 2007; Dulac 
et al., 2014; Floresco, 2015; Salgado and Kaplitt, 2015; Servin-Barthet 
et al., 2023). Specifically, we identified CRF-R1 as a crucial modulator of 

maternal care and motivation, while CRF-R2 predominantly regulated 
anxiety-like behaviour in females, regardless of the reproductive state. 
Interestingly, local CRF infusion had anxiogenic effects in males, only. 

Fig. 5. Sex-specific effects of acute CRF-R activation in the NAcSh on anxiety-like behaviour 
(A, D) Percentage of time spent in the light compartment of the LDB, (B, E) number of transitions from the dark to the light compartment of the LDB in (A, B) virgin 
female and (D, E) male rats following infusion of vehicle (VEH), CRF or UCN3. Representative heatmaps of the time spent in both compartments of the LDB in (C) 
virgin female and (F) male rats following infusion of VEH, CRF or UCN3. Data are presented as mean ± SEM. (#) p ≤ 0.07; #p ≤ 0.05 vs VEH-treated rats, 1-way 
ANOVA followed by Bonferroni’s post hoc comparisons.

Fig. 6. Reduced Crh-r1 and Crh-bp mRNA expression in the NAc of virgin female rats 
Relative mRNA levels of (A) Crh-r1, (B) Crh-r2 and (C) Crh-bp in the whole NAc of lactating, virgin female and male rats. Data are expressed as relative levels vs 
lactating animals, and are presented as mean ± SEM. 
*p ≤ 0.05, **p ≤ 0.01 vs virgin female group; Brown-Forsythe ANOVA test followed by Dunnett’s T3 multiple comparisons (A) or 1-way ANOVA followed by 
Bonferroni’s multiple comparisons (C).
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This sex difference was paralleled by higher Crh-r1 mRNA expression in 
the NAc of male and lactating female rats compared to virgin females, as 
well as higher Crh-bp mRNA expression in males versus virgins. In 
contrast to the modulatory actions of the CRF system, our data suggests 
that the OXT system in the NAcSh plays a marginal role in the context of 
maternal care and anxiety.

Subtle brain adaptations occur during the peripartum period as 
prerequisites for becoming maternal. In fact, maternal behaviour is a 
strong, deep-rooted behaviour in females (Bridges, 2015). The present 
data suggest that this firm behaviour can be impaired by CRF infusion 
within the NAcSh, promoting pup neglect as shown by reduced nursing 
(Fig. 2A, main effect of treatment) and increased self-grooming behav-
iour (Fig. 2B), as we hypothesised. These findings regarding the 
anti-maternal properties of the brain CRF system align with previous 
research demonstrating that central (Almeida et al., 1994) or local 
infusion of CRF in brain regions such as the bed nucleus of the stria 
terminalis (BNST) (Creutzberg et al., 2020; Klampfl et al., 2016) or the 
medial preoptic area (MPOA) (Klampfl et al., 2018) facilitates pup 
neglect. Moreover, CRF administration in the NAcSh increased 
self-grooming behaviour, as previously demonstrated in male rats 
(Holahan et al., 1997). A comparable effect was observed in rat mothers 
after acute infusion of CRF either centrally (Almeida et al., 1994) or 
locally in the MPOA (Klampfl et al., 2018). Enhanced self-grooming 
behaviour might represent a stereotypic response to heightened stress 
system activation (Holahan et al., 1997; Kalueff et al., 2016), thus our 
data imply that the presence of pups is insufficient to overcome this 
stereotypical response to heightened stress system activation. Further-
more, it may indicate that maternal behaviour shifts from pup care to 
self-care, as observed following central administration of an OXT-R 
antagonist (Pedersen and Boccia, 2003), suggesting that (hyper-)acti-
vation of CRF-R in the NAcSh reduces the overall engagement in 
pup-directed activities. In fact, cues and stimuli from pups that are 
perceived as rewarding during early lactation (Ferris et al., 2005; Lee 
et al., 2000) may be disrupted by the acute hyperactivation of CRF-R1 
signalling within the NAcSh.

Infusion of CP-154,526 (a selective CRF-R1 antagonist) did not affect 
the expression of any pup care parameter (Fig. 2C–D and Table 3). Since 
CRF system activity is generally dampened during lactation (Klampfl 
and Bosch, 2019a), further reduction of its signalling under undisturbed 
conditions via the receptor antagonist infusion does not translate into 
any discernible effects on pup care. However, when CRF-R1 are un-
available for binding due to the presence of the CRF-R1 antagonist, the 
endogenous CRF could potentially bind to and activate CRF-R2 
(Deussing and Chen, 2018). We can exclude this is influencing pup 
care, as even infusion of a selective CRF-R2 agonist did not alter 
maternal care (Fig. 2E–F and Table 3). Additionally, we demonstrated 
that intra-NAcSh acute inhibition of CRF-R1 followed by CRF adminis-
tration has distinct effects on maternal aggression and pup care after 
stress compared to CRF administration alone (Sanson et al., 2024b), thus 
proving that CRF effects in the NAcSh of lactating rats are driven solely 
by CRF-R1 activation. To comply with the 3-Rs principles, we did not 
assess the effects of a CRF-R2 antagonist under non-stress conditions, 
considering that CRF-R2 primarily mediates late adaptive responses to 
stressors (Dedic et al., 2018) by dampening CRF-R1 activity (Bale et al., 
2002), and that CRF signalling is generally reduced during lactation 
(Klampfl and Bosch, 2019a). Together, these findings suggest that 
intra-NAcSh activity of CRF-R is suppressed under undisturbed, 
non-stressed conditions in lactation, as previously described for other 
brain regions (Klampfl et al., 2013, 2016, 2018). Although we infused a 
high concentration of CRF to reveal behavioural phenotypes during the 
postpartum period, dose-dependent effects of CRF on maternal behav-
iour could be investigated in future studies.

The behaviour of dams infused with OXT-A did not differ from VEH- 
treated mothers (Fig. 2G–H, Table 3). This indicates that undisturbed 
OXT-R signalling is not required for maintaining established maternal 
care, as already discussed for the MPOA and BNST (Bosch et al., 2010). 

However, activation of the local OXT-R in the NAcSh is necessary for the 
onset of maternal behaviour in lactating mice (Witchey et al., 2024). 
Furthermore, disrupted OXT-R signalling within the NAcSh of lactating 
rats can impair maternal memory consolidation, delaying the 
re-establishment of maternal behaviour upon exposure to foster pups 
after 10 days of pup isolation (D’Cunha et al., 2011). Previous studies 
reported the involvement of the OXT and OXT-R within the NAc in social 
behaviour and cognition in male mice (Dolen et al., 2013; Dolen and 
Malenka, 2014), as well as in male and female mandarin voles (Microtus 
mandarinus) (Yu et al., 2016). Together with the present findings in 
lactating rats, it appears that the OXT-R transmission in the NAc pri-
marily drives affiliative behaviours between conspecifics, while playing 
a marginal role in pup-directed activities once maternal behaviour is 
established.

Blocking intra-NAcSh CRF-R1 impaired mothers’ motivation to 
retrieve their pups (Fig. 3). This not only confirms the general 
involvement of the NAcSh in maternal motivation (Numan et al., 2005; 
Li and Fleming, 2003b), but, to our knowledge, provides the first evi-
dence for significant involvement of CRF-R1 signalling in pup retrieval 
behaviour. Interestingly, Lemos et al. demonstrated that acute CRF in-
fusions in the NAc represent an appetitive stimulus for male mice linked 
to dopamine release (Lemos et al., 2012) while Pecina et al. showed that 
intra-NAcSh CRF infusions can enhance motivation to seek rewards in 
male rats (Pecina et al., 2006). Similarly, optogenetic stimulation of 
CRF+ neurons in the NAc increases reward-related motivation in male 
and female rats (Baumgartner et al., 2021). Hence, in a novel and 
potentially challenging environment, a certain amount of NAcSh 
CRF-R1 signalling seems necessary for the correct interpretation of pups’ 
cues as appetitive and for the consequent initiation of motivated 
retrieval behaviour. In support, Crh-r1 mRNA levels in the NAc were 
increased during lactation compared to a nulliparous state (Fig. 6), and 
local CRF-R activation induces dopamine release in lactating rats 
(Sanson et al., 2024b). Thus, the arousal induced by increased CRF-R1 
signalling during exposure to this context might be rewarding and 
facilitate maternal motivation, which differs from the observed effects 
on maternal care in the home cage, a familiar and non-challenging 
environment. Furthermore, the NAc sends inhibitory projections to the 
ventral pallidum (Floresco, 2015; Salgado and Kaplitt, 2015), which, 
among other reward-related functions (Smith et al., 2009), is thought to 
translate motivational cues into goal-directed motor outputs (Mogenson 
et al., 1980; Mogenson and Yang, 1991). Interestingly, optogenetic 
stimulation of CRF+ neurons in the NAcSh increases Fos expression in 
regions linked to reward processing, including the ventral pallidum 
(Baumgartner et al., 2021). Additionally, NAc CRF+ neurons primarily 
project to the ventral pallidum and CRF release from NAc neurons is 
necessary for reward learning (Eckenwiler et al., 2024). Thus, it is 
feasible that reduced CRF-R1 transmission in the NAcSh might affect this 
downstream pathway, inhibiting the ventral pallidum and impairing the 
motivated motor response necessary to initiate pup retrieval (Numan 
et al., 2005). This hypothesis is further supported by the reduced 
number of transitions observed in the LDB (Fig. 4F), suggesting that 
acute CRF-R1 antagonist infusion (CP-154,526) reduced the initiation of 
innate exploratory behaviour, without affecting overall anxiety-related 
behaviour. However, further studies are needed to address the 
involvement of the CRF system in this circuitry in the context of 
maternal motivation. Altogether, the data highlight that finely tuned 
intra-NAcSh CRF-R1 transmission is essential for the correct display of 
different maternal behaviours.

In rats, the lactating period is characterized by reduced anxiety-like 
behaviour (Bosch, 2011; Lonstein, 2007; Neumann, 2001; Pereira et al., 
2005). Evidence suggests that the presence of pups can reduce 
anxiety-like behaviour in the elevated plus maze in both lactating and 
sensitized, ovariectomized virgin rats (Pereira et al., 2005). In the pre-
sent study, we identified a reproductive state-independent but 
sex-specific modulation of anxiety-like behaviour via the two CRF-R 
subtypes. Specifically, only CRF-R2 activation via UCN3 infusion acted 

A. Sanson et al.                                                                                                                                                                                                                                 Neuropharmacology 265 (2025) 110256 

9 



anxiogenic in female rats, regardless of the reproductive state (Figs. 4 
and 5). All virgin female rats were tested in the pro-estrous phase, which 
is characterized by reduced anxiety-like behaviour (Lovick and Zan-
grossi, 2021; Zuluaga et al., 2005) allowing for distinct detection of 
potentially anxiogenic treatment properties. Conversely, in male rats 
CRF infusion in the NAcSh induced an anxiety-like phenotype con-
firming previous studies (Chen et al., 2012). To our knowledge, this is 
the first evidence for sex-specific modulation of an anxiety-like pheno-
type by CRF-R in the NAcSh. It is well established that the CRF system is 
sexually dimorphic, modulated by estrogens, and that different intra-
cellular signalling pathways can be activated in male and female rats 
(Bangasser, 2013; Bangasser and Valentino, 2012; Weathington et al., 
2014; Wiersielis et al., 2016), which could explain the differential effects 
of CRF-R activation on anxiety-like behaviour. To further investigate 
this aspect, we measured mRNA expression levels of Crh-r1, Crh-r2 and 
Crh-bp in the entire NAc, comparing lactating, virgin female and male 
rats (Fig. 6). Interestingly, lactating female and male rats showed 
increased mRNA expression of Crh-r1 compared to virgin females, while 
male rats also showed increased Crh-bp mRNA levels compared to virgin 
female rats. Since CRF-BP sequesters CRF and reduces CRF-R signalling 
(Ketchesin et al., 2017), the increased Crh-bp mRNA levels observed in 
male rats suggests that, under physiological conditions, CRF-R signalling 
is dampened. In the present experiment with acute, hyper-physiological 
infusion of CRF, CRF-BP might have been saturated, resulting in acti-
vation of CRF-R1 predominantly, which in turn induced anxiety-like 
behaviour. Additionally, in a novel and challenging environment like 
the LDB, release of CRF from stress-related brain regions (Itoga et al., 
2019) might occur differently between male and female rats, potentially 
explaining the differential effects of CRF-R activation on anxiety-like 
behaviour. However further studies are needed to better characterize 
this aspect.

5. Conclusions

Our study provides new insights into the complex brain adaptations 
during the postpartum period and the impact of perturbations in finely 
balanced neuropeptide systems on infant neglect. Specifically, we 
demonstrated that the NAcSh, a reward-related region, is significantly 
involved in various aspects of maternal behaviour via the CRF system. 
CRF-R1 transmission plays a crucial role in maternal care and motiva-
tion but is distinct from anxiety-like behaviour. Anxiety appears to be 
controlled by CRF-R in a sex-dependent manner: CRF-R2 activation 
facilitated anxiety-like behaviour in female rats, independent of their 
reproductive state, whereas CRF-R1 mediated an anxious phenotype in 
males. Furthermore, mRNA expression of CRF family members was 
sexually dimorphic in the entire NAc, with lactating female and male 
rats showing increased Crh-r1 mRNA expression compared to virgin 
females, while Crh-bp mRNA levels were elevated in male rats compared 
to virgin females only. Taken together, CRF-R1 and -R2 transmission in 
the NAcSh must be finely balanced in the postpartum brain to enable 
appropriate maternal caretaking and prevent neglect of the young.
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