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Abstract

Parton distribution functions (PDFs) and transverse momentum dependent
parton distribution functions (TMDPDFs) contain information about the
internal structure of hadrons and are important for describing high-energy
scattering processes. The first Mellin moments of these functions are rou-
tinely extracted by combining lattice gauge theory and operator product
expansion, while the large-momentum effective theory (LaMET) allows to
calculate their full functional form in certain kinematic regions which can
also be specified using LaMET. As the formulation of LaMET was a rather
recent one, many of its properties and applications still have to be worked
out more precisely. To this we contribute using CLS gauge ensembles.

A quark transversity PDF describes the correlation between the trans-
verse polarizations of a hadron and its quark constituents of specific flavor
and is barely constrained from experiments due to its chiral-odd nature. In
this work, the isovector quark transversity PDF of the proton is calculated
for various lattice spacings and pion masses, using proton momenta up to
2.8 GeV. The result is non-perturbatively renormalized in the hybrid scheme
and a controlled extrapolation to the continuum and physical pion mass, as
well as to infinite momentum, is performed. The final result agrees well with
global analyses.

As one of eight leading twist TMDPDFs, the quark Boer-Mulders func-
tion describes the coupling between quark spin and quark angular momen-
tum. Therefore, this barely known function is present also for an unpolar-
ized hadron such as the pion. This thesis shows an exploratory study of the
quark Boer-Mulders function of the pion, using three different lattice spac-
ings and pion momenta up to 1.84 GeV. Non-perturbative renormalization
is performed in the short distance ratio scheme, and the dependence on the
impact parameter b⊥ is fitted in order to compare the result across differ-
ent ensembles. A combined extrapolation to infinite momentum and to the
continuum is performed for various values of b⊥. It is found that the Boer-
Mulders function becomes too small to be determined at b⊥ ≈ 0.4 − 0.5fm.
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Chapter 1

Introduction

The universe as it is visible to us consists of atoms, whose cores are made
from protons and neutrons. In the 1960s, Murray Gell-Mann and George
Zweig proposed the idea that protons and neutrons are not in fact elemen-
tary particles, but are built from constituents called quarks [1, 2]. This idea
gained popularity over the following years and was substantiated in the late
1960s, as by scattering electrons off protons experimental proof for protons
consisting of smaller constituents was found [3]. A model where these com-
ponents are called partons was developed by Richard P. Feynman [4] and by
James Bjorken and Emmanuel Paschos [5] within the following year. Un-
til the early 1970s, quantum chromodynamics (QCD) was developed as a
non-abelian gauge theory to describe the quarks carrying color charge and
interacting through the strong force mediated by so-called gluons [6]. Quarks
are classified by flavor, and quarks of six different flavors (up, down, charm,
strange, top, bottom) have been discovered by now. Quarks form colorless
bound states, known as hadrons, where states with a (valence) quark and
antiquark are called mesons and states with three quarks are called baryons.

There are two broadly applicable techniques to perform QCD calculations:
At large virtualities, the strong coupling constant αs is small and perturba-
tive methods can be applied. However, perturbative QCD has limits and,
for example, the internal structure of hadrons is of non-perturbative nature,
since the characteristic virtualities are only of the order of the strong inter-
action scale ΛQCD. The second approach, lattice QCD, uses four-dimensional
Euclidean space-time lattices [7] to discretize QCD and estimate observables
as expecation values of operators with Monte Carlo methods. Time has to
be imaginary to enable lattice QCD simulations, and thus it is not possible
to directly calculate physical time dependence.

Within QCD, the hadronic structure is characterized by a variety of dis-
tribution functions, as shown in fig. 1.1. The simplest of those functions are
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Figure 1.1: Various functions that describe the distribution of partons inside
a hadron. The figure is taken from [8].

the parton densities, also called parton distribution functions (PDFs). They
are interpreted as probabilities of finding a parton (i.e. a quark or a gluon)
inside a hadron, with the parton carrying a fraction x of the hadronic mo-
mentum. Since PDFs only consider parton momenta collinear to the hadron’s
momentum, a natural generalization is given by transverse momentum de-
pendent parton distribution functions (TMDPDFs) [9, 10, 11, 12, 13, 14],
which also account for transverse momentum components of the partons (kT
in fig. 1.1), or the impact parameter (bT in fig. 1.1), which is the Fourier
conjugate to the transverse momentum component. In fig. 1.1, and often also
in the literature, TMDPDFs are referred to as TMDs, an abbreviation which
will not be used in this thesis in order to avoid confusion with other trans-
verse momentum dependent functions as for example transverse momentum
dependent wave functions (TMDWFs) [15, 16, 17] or transverse momentum
dependent fragmentation functions (TMDFFs) [9, 18, 19]. The variability
in nomenclature already indicates the wide range of the field of transverse
hadron structure and the fact that their investigation is still in a pioneering
stage.

High-energy colliders such as the Large Hadron Collider (LHC) at CERN
or the Electron-Ion Collider (EIC) [8, 20, 21] at BNL have been built, respec-
tively are planned to be build, where one of the goals is to gain information
about the aforementioned distribution functions. In general, PDFs can be
obtained with deep inelastic scattering (DIS) [3, 22], an inclusive process
where a lepton, for example an electron, scatters off a hadron, and only the
scattered lepton is observed, see fig. 1.2a. Information about TMDPDFs can
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Figure 1.2: (a): Illustration of deep inelastic scattering. A lepton l scatters
off a constituent quark q of the hadron h through the exchange of a virtual
photon γ∗. The hadronic final state X is unobserved. (b): Illustration of
a Drell-Yan process. The hadrons hA and hB collide and a quark q and
antiquark q̄ annihilate, creating a pair of lepton l and antilepton l̄ via the
exchange of a virtual photon γ∗. The hadronic final states X are unobserved.

only be found with semi-inclusive DIS (SIDIS), where the process is the same
as for DIS, but the final state of the hadron is also partially observed, or with
the Drell-Yan (DY) process. In DY, two hadrons collide and a quark and
antiquark annihilate, creating a lepton-antilepton pair through the exchange
of a virtual photon, see fig. 1.2b.

In recent years, technical advances have been made which enable using
polarized beams and or targets in experiments [23, 20, 21], opening up pos-
sibilities to study also the spin structure of hadrons. Examples for distribu-
tion functions concerning in particular the transverse spin structure are the
transversity PDF [24, 25] and the Boer-Mulders function [26]. The transver-
sity PDF can be interpreted as the probability to find a transversely polarized
parton with momentum fraction x in a transversely polarized hadron. The
Boer-Mulders function is a TMDPDF which is also present for an unpolarized
hadron as it describes the coupling between the spin and angular momentum
of the parton. Both functions are especially difficult to extract from exper-
iments and, therefore, poorly known, see sections 3.1 and 3.4.4, making it
even more important to gain knowledge about those distributions from first
principles with lattice QCD.

There are two main approaches to performing lattice QCD calculations:
On the one hand, it is possible to calculate well-known quantities such as
Mellin moments of PDFs [27, 28, 29, 30] and TMDPDFs [31, 32, 33, 34, 35]
and aim to improve the accuracy by increased statistics and better control
of systematic uncertainties. While these moments can be calculated on the
lattice since they only contain local operators, calculating distribution func-
tions directly with conventional lattice QCD methods is not possible since
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they involve time dependent correlators. More precisely, a lattice has a much
reduced symmetry group compared to continuous space time. Therefore, one
has to model PDFs etc. by just a few parameters of which typically at most
three or four can be determined. This modeling introduces ambiguities which
one would rather like to avoid. On the other hand, there are attempts to
extend the current range of calculable quantities by simulating the time de-
pendence of parton observables in alternative ways. A method that has been
successfully applied in multiple calculations in the last years [36, 37, 38, 39,
40, 41, 42] is large-momentum effective theory (LaMET) [43, 44] where ma-
trix elements of operators non-local in space are calculated on the lattice for
a hadron with large momentum and related to the needed matrix elements
non-local in time by perturbative QCD in the continuum.

The second approach is of course significantly more difficult than the first
one, but it offers the opportunity to calculate observables which are otherwise
not accessible through lattice QCD and also potentially not obtainable from
experiments. In this thesis, the LaMET framework is used to investigate
the isovector quark transversity PDF in the proton, as well as the quark
Boer-Mulders function in the pion, which both belong to the less known
distribution functions when compared to the other PDFs and TMDPDFs at
leading twist (dimension - spin).

The structure of this thesis is as follows: Basic principles of QCD in the
continuum and on the lattice, as well as methods to estimate observables
and their uncertainties in lattice QCD calculations are introduced in chapter
2. Chapter 3 establishes LaMET as a framework to perform calculations of
parton physics. PDFs and TMDPDFs are defined in sections 3.1 and 3.4,
respectively. LaMET in general is presented in section 3.2, and sections 3.3
and 3.5 focus on the theoretical details of calculating PDFs and TMDPDFs
with LaMET. Those details include for example the discussion of divergences
and renormalization, as well as the matching to physical light-cone quantities.
The technical details and results of the isovector quark transversity PDF
calculation for the proton with LaMET are presented in chapter 4. The
project is performed within the Lattice Parton Collaboration (LPC) and has
been published in [42]. The author of this thesis is one of the main authors
of the publication. Chapter 5 shows the analysis and results of the LaMET
study of the quark Boer-Mulders function in the pion, which is also performed
in collaboration with LPC. In chapter 6, both projects are summarized and
an outlook for possible future calculations is given.
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Chapter 2

Quantum Chromodynamics on
the lattice

The underlying theory for exploring the internal structure of hadrons in this
thesis is quantum chromodynamics. A short, non-comprehensive introduc-
tion to QCD in the continuum is given in section 2.1. The discretization
of QCD on a four-dimensional space-time lattice is discussed in section 2.2.
The implementation of fermions and gluons in subsection 2.2.1 is followed
by a derivation of the discrete QCD action used in this work in subsection
2.2.2. Gauge ensemble generation with Monte Carlo simulations is covered
in subsection 2.2.3, including a short discussion of twisted-mass reweighting
and the choice of boundary conditions. Methods that are commonly used in
lattice QCD measurements and data analysis are presented in section 2.3.
Section 2.4 introduces the gauge ensembles used in this thesis, which are
generated by the Coordinated Lattice Simulations effort.

2.1 QCD in the continuum
Quantum chromodynamics (QCD) is the quantum gauge field theory which
describes the strong interaction. The gauge theory is non-abelian and its
underlying symmetry group is SU(3).

Strong interaction takes place between massive spin-1
2 fermions called

quarks and massless spin-1 bosons called gluons. A quark with flavor f ,
space-time position x, Dirac index α and color index c is described by
the Dirac 4-spinor ψf (x)α,c, with possible Dirac and color indices being
α = 1, 2, 3, 4 and c = 1, 2, 3. This leads to a quark field ψf (x) having 12
independent components. Color and spinor indices are not considered in this
notation, and will be suppressed in the used notation.
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The six possible flavors of quarks are up, down, charm, strange, top and
bottom. In this list, the flavors are sorted from lightest to heaviest, where
in calculations usually only the lightest quark flavors are included, leading
for example to a number of flavors of Nf = 3, which is often written as
Nf = 2 + 1 in the case of equal up and down quark masses.

A gluon at space-time point x with color indices c and d and c, d =
1, 2, 3 is described by the vector gauge field Aµ(x)cd with Euclidean Lorentz-
index µ = 1, 2, 3, 4. Again, the color indices will be omitted in the following
description.

The action of quantum chromodynamics in continuum space-time is given
by

SQCD(ψ, ψ̄, Aµ) =
∑
f

∫
d4xψ̄f (x)

(
iγµDµ(x) −mf

)
ψf (x)

− 1
2g2

∫
d4xtr [Fµν(x)Fµν(x)] ,

(2.1)

where the first line of (2.1) constitutes the fermionic part with quark
fields ψ and ψ̄ = ψ†γ4. It contains a sum over all quarks with flavor f and
mass mf as well as the covariant derivative:

Dµ(x) = ∂µ + iAµ(x). (2.2)
The fermionic part of the action is invariant under the transformations

ψ(x) → ψ′(x) = Ω(x)ψ(x)
ψ̄(x) → ψ̄′(x) = ψ̄(x)Ω(x)†,

(2.3)

where Ω(x) are unitary matrices which fulfill Ω(x)† = Ω(x)−1 and have
unit determinant. In QCD, those complex matrices are the SU(3) matrices
with dimension 3×3. Note that the fermion field ψ(x) and Dµ(x)ψ(x) trans-
form in the same way. The invariance of the fermion action under the gauge
transformation (2.3) requires the following transformation property for the
gauge field:

Aµ(x) → A′
µ(x) = Ω(x)Aµ(x)Ω(x)† + i (∂µΩ(x)) Ω(x)†. (2.4)

The second line of (2.1) is the gluonic part of the QCD action which
contains the coupling strength g. The field strength tensor

Fµν(x) = −i [Dµ(x), Dν(x)] (2.5)
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is defined as a commutator of covariant derivatives. The trace in (2.1)
runs over color indices and guarantees the invariance of the gauge action
under gauge transformations.

It is possible to add a gauge-fixing term to the action in (2.1), introducing
a non-trivial additional Jacobian determinant, which is canceled by unphys-
ical auxiliary fields ξ, the so-called ghost fields. This procedure for gauge
fixing is called Faddeev-Popov method [45]. Since we focus on the calcula-
tion of gauge-invariant quantities in lattice QCD, this method is not further
discussed here.

Perturbative calculations of Feynman diagrams containing loops lead to
ultraviolet divergences. These divergences can be isolated in well-defined
expressions using a regularization scheme such as dimensional regularization.
In lattice QCD, which will be discussed in the following section, the lattice
spacing a is used as a cutoff regulator. After regularization, parameters are
rescaled such that all divergences cancel. This process called renormalization
does not set the results of a calculation to a distinct numerical value. To
fix this problem, a renormalization scheme such as the modified minimal
subtraction scheme (MS) [46] is usually chosen. This in turn leads to results
depending on the unphysical renormalization scale µ.

2.2 Concepts of QCD on the lattice

With the QCD action as in eq. (2.1), observables can be calculated as ex-
pectation values of operators O(ψ, ψ̄, Aµ)

⟨0|O|0⟩ = 1
Z

∫
D[ψ]D[ψ̄]D[Aµ]O

(
ψ, ψ̄, Aµ

)
eiSQCD(ψ,ψ̄,Aµ)

Z =
∫
D[ψ]D[ψ̄]D[Aµ]eiSQCD(ψ,ψ̄,Aµ),

(2.6)

where Z is the partition function. The expectation value is obtained by
evaluating the path integral over the fields ψ, ψ̄ and Aµ. The QCD action
enters in the weight eiSQCD(ψ,ψ̄,Aµ) for each of these possible configurations.

Perturbation theory can be applied in the high energy regime to calculate
observables, since the strong coupling αS = g2/4π gets small. In contrary,
when the energies approach the strong interaction scale ΛQCD or lower values,
αS diverges and other methods are needed to perform calculations.
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2.2.1 Formulation of fermions and gluons on the lattice
One approved method for non-perturbative calculations in QCD is the dis-
cretization of space-time on a four-dimensional lattice with spacing a, with

x = an (2.7)

being any space-time point. The vector n exists on a N3
s × Nt lattice

given by

Λ = {n | nµ ∈ {0, 1, ..., Ns − 1}, µ = 1, 2, 3;n4 ∈ {0, 1, ..., Nt − 1}}. (2.8)

Fermion fields ψ(n) are defined on the lattice sites only and are introduced
as Grassmann numbers to obey Fermi statistics. The gauge link Uµ(n) con-
nects the lattice point n with point n + µ̂, µ ∈ {1, 2, 3, 4} being a direction.
The gauge links are elements of SU(3) and transform under gauge transfor-
mations as

Uµ(n) → U ′
µ(n) = Ω(n)Uµ(n)Ω†(n+ µ̂). (2.9)

Forward and backward links can be related by U−µ(n) = U †(n − µ̂). In
order to formulate a discretized version of the QCD action given in eq. (2.1),
the partial derivative is expressed on the lattice in a symmetric way:

∂µψ(x) → 1
2a [ψ(n+ µ̂) − ψ(n− µ̂)] . (2.10)

Further details about the formulation of QCD on a lattice can be found
in [47]. Note that the action enters as eiSQCD in the expectation value given
in eq. (2.6). In order to perform simulations of QCD on the lattice, a Wick
rotation t → −it from Minkowski to Euclidean time is performed. This leads
to the exponential in eq. (2.6) becoming a real weight, making Monte Carlo
simulations possible.

2.2.2 Discretized version of the QCD action
To simulate QCD on a discrete lattice, a discretized version of the QCD
action is needed. It is built by combining a discrete formulation of the gauge
action with a discrete formulation of the fermion action. From the different
possible choices, the focus of this section lies on the Lüscher-Weisz gauge
action and Wilson-clover fermion action.
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Discrete gauge action

Since the discrete gauge action has to be invariant under gauge transforma-
tions, it is constructed from a gauge-invariant combination of link variables
Uµ(n). Considering the transformation properties in eq. (2.9), it is clear that
every closed path built of gauge links is invariant under gauge transforma-
tions. The plaquette, consisting of only four links, is the simplest choice:

Uµν(n) = Uµ(n)Uν(n+ µ̂)U−µ(n+ µ̂+ ν̂)U−ν(n+ ν̂). (2.11)

By constructing the sum over all plaquettes on a lattice, counting each one
with exactly one orientation and defining the inverse coupling as β = 6/g2,
the Wilson gauge action is expressed as

SG[U ] = β

3
∑
n∈Λ

∑
µ<ν

Re tr[1 − Uµν(n)]. (2.12)

It can be shown that this definition of the discrete gauge action ap-
proaches the continuum action up to O(a2).

Since lattice simulations use finite lattice spacings a, discretization errors
are present and should be reduced as far as possible. Discretization errors
can be lowered by adding specific terms to the action and matching their
coefficients such that the continuum limit is not changed. This procedure is
called Symanzik improvement [48, 49] and applying it to the Wilson gauge
action yields the tree-level improved Lüscher-Weisz gauge action SLWG [U ] [50,
51] with discretization effects of O(g2a2).

Discrete fermionic action

Using the fermion fields ψ(n) and gauge links Uµ(n), which have been intro-
duced in section 2.2.1, fermions in an external gauge field can be described
on the lattice using the naive fermion action:

SF [ψ, ψ̄, U ] =a4 ∑
n∈Λ

∑
f

ψ̄f (n)
( 4∑
µ=1

γµ

× Uµ(n)ψf (n+ µ̂) − U−µ(n)ψf (n− µ̂)
2a +mfψf (n)

)
.

(2.13)

The sum over quark flavors runs up to Nf . The gauge invariance of
this formulation of the action can be verified by using the transformation
properties of the fermion fields and links, and the relation U−µ(n) = U †(n−
µ̂).
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The naive fermion action can be rewritten in terms of the naive Dirac
operator D(n|m)αβab :

SF [ψ, ψ̄, U ] = a4 ∑
n,m∈Λ

∑
f

∑
a,b,α,β

ψ̄f (n)α,aDf (n|m)αβ
ab
ψf (m)β,b

Df (n|m)αβ
ab

=
4∑

µ=1

Uµ(n)abδn+µ̂,m − U−µ(n)abδn−µ̂,m

2a +mfδαβδabδnm.
(2.14)

The inverse D−1(n|m) of the Dirac operator is called quark propagator
and in the continuum case represents a single fermion, with D−1(n|m) having
exactly one pole. In the lattice formulation of QCD, the Dirac propagator
exhibits 15 additional poles corresponding to 15 unphysical fermions, which
are referred to as doublers.

To remove the doublers, Wilson suggested to add an additional term to
the Dirac operator, which leads to the doublers decoupling from the theory
as a → 0. Thus, by adding the so-called Wilson term, the continuum Dirac
operator is obtained in the continuum limit. Defining γ−µ = −γµ for µ =
1, 2, 3, 4, the Wilson Dirac operator can be written as

Df,Wilson(n|m)αβ
ab

=
(
mf + 4

a

)
δαβδabδnm − 1

2a
∑
±µ

(1 − γµ)αβUµ(n)abδn+µ̂,m,

(2.15)
and the Wilson fermion action takes the following form:

SWilson
F [ψ, ψ̄, U ] = a4 ∑

n,m∈Λ

∑
f

∑
a,b,α,β

ψ̄f (n)α,aDf,Wilson(n|m)αβ
ab
ψf (m)β,b.

(2.16)
The Wilson fermion action has discretization effects of O(a). As for the

discrete gauge action, Symanzik improvement can be used to reduce those.
An O(a)-improved Wilson fermion action is obtained by adding a so-called
clover term [52] to the action:

SWilson-clover
F [ψ, ψ̄, U ] = SWilson

F [ψ, ψ̄, U ] + cSWa
5 ∑
n∈Λ

∑
µ<ν

ψ̄(n)1
2σµνFµν(n)ψ(n).

(2.17)
The coefficient cSW is referred to as Sheikholeslami-Wohlert coefficient,

and a common choice for Fµν(n) is
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Fµν(n) = −i
8a2 (Qµν(n) −Qνµ(n))

Qµν(n) = Uµν(n) + Uν−µ + U−µ−ν + U−νµ.
(2.18)

In order to remove all O(a)-effects from the fermionic action, the coeffi-
cient cSW has to be determined non-perturbatively.

2.2.3 Generation of ensembles with Monte Carlo sim-
ulations

In the last section, a formulation of the QCD action on a finite lattice in Eu-
clidean space-time was derived, consisting of the Lüscher-Weisz gauge action
and the Wilson-clover fermion action:

SQCD[ψ, ψ̄, U ] = SLWG [U ] + SWilson-clover
F [ψ, ψ̄, U ]. (2.19)

Using this discretized form of the action, physical observables can be
calculated on the lattice by evaluating expectation values as in eq. (2.6). To
do so, the path integral is substituted by a sum over all field configurations
with given initial and final state, being |0⟩ in case of eq. (2.6).

Since the expression for the path integral contains a Boltzmann factor of
e−S, which depends on the fields, each configuration contributes to the sum
with a different weight. The configurations with large weights are of higher
importance in the sum, leading to the concept of importance sampling. The
sampling is performed according to the weights, and more configurations with
larger weight are generated during the simulations, using the Hybrid Monte
Carlo (HMC) algorithm [53].

The probability distribution according to which the gauge field configu-
rations are sampled is

P [U ] = 1
Z
e−SG[U ]∏

f

det[Df ]. (2.20)

The distribution contains a product over flavors of fermion determinants
det[Df ], which are identical to fermionic partition functions:

det[Df ] = ZF [U ] =
∫
D[ψf , ψ̄f ]e−SF [ψf ,ψ̄f ,U ]. (2.21)

Using the Matthews-Salam formula, it can be shown that the fermionic
partition functions are in fact determinants. A proof is found for example in
[47].

11



Since the fermion determinants function as weights in the probability
distribution in eq. (2.20), they have to be real and positive. Due to γ5-
hermiticity of the Dirac operator, the determinant is real. In the case of the
up and down quark having equal masses, i.e. mu = md = ml with ml being
the light quark mass, it can be shown that the light quark determinant is
positive [47].

A Markov process is used to find configurations with the correct proba-
bility distribution. The Markov chain begins from an arbitrary configuration
and stochastically evolves towards an area of configurations with large Boltz-
mann factor.

Twisted-mass reweighting

The generation of gauge fields can suffer from algorithmic instabilities when
especially light Wilson quarks are used. To stabilize the simulations, twisted-
mass reweighting [54] can be employed to separate the low modes of the Dirac
operator of the light quarks and exclude those modes from the simulations.

In case of mass-degenerate light quarks, the product of u and d quark
determinants can be formulated as one light quark determinant:

det[Du]det[Dd] = det[Dl]det[Dl] = det[D†
l ]det[Dl] = det[D†

lDl]. (2.22)

There are multiple choices for an exact factorization of the light quark
determinant

det[D†
lDl] = Wldet[D̃l

†
D̃l], (2.23)

where D̃l is a modified Dirac operator with shifted eigenvalue spectrum,
which is then used in the HMC algorithm to avoid instabilities. The reweight-
ing factor Wl has to be considered for every gauge configuration to compen-
sate for the modification of the Dirac operator. Details about possible modi-
fications and the calculation of reweighting factors can be found in [54]. The
practical implementation of reweighting in the data analysis will be discussed
in section 2.3.3.

Boundary conditions

To enable non-perturbative calculations of observables with lattice QCD, the
discrete space-time lattice is finite. Due to this finite nature of the lattice,
the behavior at the boundaries has to be well-defined.
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Periodic boundary conditions in all four directions are a common choice
since they preserve translational invariance. However, with decreasing lat-
tice spacing, the simulations can get trapped in a certain topological charge
sector, leading to a loss of ergodicity and biased results. This problem can
be avoided by imposing open boundary conditions in time for the gauge field
[55] when using small lattice spacings. This method for choosing the bound-
ary conditions is applied by the Coordinated Lattice Simulations (CLS) effort
[56], whose gauge ensembles are used for the projects presented in this thesis.

2.3 Methods in lattice QCD measurements
and analysis

After briefly having explained the generation of gauge configurations which
are used to calculate expectation values in lattice QCD, this section presents
certain methods that are used to obtain those expectation values and corre-
sponding error estimates in practice.

2.3.1 Propagator calculation

As introduced in eq. (2.6), observables in lattice QCD are calculated as
expectation values of operators. Those operators typically involve multiple
fermion and antifermion fields, and the corresponding fermionic expectation
values are related to quark propagators with Wick’s theorem, see for example
section 5.1.6. in [47]. As mentioned below eq. (2.14), the quark propagator
is the inverse of the Dirac operator. D−1(n|m) is a 12V × 12V matrix,
with V denoting the volume of the four-dimensional lattice. Each element
D−1(n|m)βαba connects a source with space-time position m, Dirac index α
and color index a with a sink with position n, Dirac index β and color index
b. The calculation and storage of the complete matrix, also called all-to-all
propagator, for each gauge configuration, is usually avoided.

Point sources

Following the notation of [47], the computation can be limited to a single
column of the propagator by taking into account a specific source position
m0 with Dirac index α0 and color index a0, resulting in a so-called point-to-all
propagator
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D−1(n|m0)βα0
ba0

=
∑
m,α,a

D−1(n|m)βα
ba
S

(m0,α0,a0)
0 (m)α

a

S
(m0,α0,a0)
0 (m)α

a
= δ(m−m0)δαα0δaa0 ,

(2.24)

where S0 is called point source. Eq. (2.24) is equivalent to a system of
equations DG = S with Dirac matrix D, desired propagator vector G and
source vector S. In the case of a point source, there are 12 equations to be
solved, one for each combination of Dirac and color indices. The propagator
can be calculated numerically with iterative methods, using for example a
multigrid algorithm [57, 58].

The three-point correlation functions, which will be defined in sections
4.2.2 and 5.2.2 for the transversity PDF and Boer-Mulders function, describe
propagation from a source at xsrc to a sink at xsnk with an operator inserted at
xins. The point-to-all propagator from xsrc to all other points of the lattice is
calculated as just described, and gives D−1(xsnk|xsrc). In addition, the three-
point correlation functions in general also involve all-to-all propagators.

Sequential method

To avoid the computationally expensive inversions needed to obtain the all-
to-all propagators, the sequential method was introduced in [59]. Here, the
technique is very briefly described for the pion. Due to γ5-hermiticity of
the quark propagator (see section 5.4.3. in [47] for details), only one all-
to-all propagator is needed. Instead of calculating the all-to-all propagator
D−1(xins|xsnk) which connects the sink with all insertion timeslices, the prod-
uct D−1(xins|xsnk)D−1(xsnk|xsrc) is substituted by the sequential propagator

Σ(xins, xsrc) =
∑
x⃗snk

e−ip⃗·(x⃗snk−x⃗src)D−1(xins|xsnk)D−1(xsnk|xsrc). (2.25)

The sequential propagator can be calculated by inversion of the Dirac
operator with the point-to-all propagator D−1(xsnk|xsrc) as source for the
inversion. A momentum phase e−ip⃗·(x⃗snk−x⃗src) is added to the source before
inversion for a non-zero final momentum p⃗. It is in general also possible to
use a sequential propagator as a source for a second sequential propagator.
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2.3.2 Smearing techniques

Momentum smearing for quark fields

Since hadrons are not pointlike, but extended objects, extended quark sources
and sinks are necessary to improve the overlap with the desired physical state.
This can be achieved for quarks at rest using for example Wuppertal quark
smearing [60, 61].

For calculating PDFs and TMDPDFs from the lattice, however, hadrons
have to carry non-zero momenta. In order to achieve adequate overlaps of
the wave functions of hadrons with their respective ground states even at
large momenta, the momentum smearing technique [62] can be employed.
This method is based on Wuppertal smearing, while modifying the smearing
procedure for a hadron with momentum p⃗. The quark smearing is applied
iteratively within hadronic sources or sinks, and the quark wave function is
built by

ψn+1(x) = 1
1 + 2dϵ

[
ψn(x) + ϵ

∑±d
j=±1U

smeared
j (x)eik⃗·⃗ĵψn(x+ aĵ)

]
. (2.26)

The space dimension is denoted by d, and ϵ is a positive parameter. The
gauge links U smeared are obtained by smearing the gauge fields, which will be
discussed in the following paragraph. By applying eq. (2.26) to the quark
fields, a fraction of the hadron momentum is distributed to the quarks. In
the free case, the best choice for the quark momentum k⃗ is k⃗ = p⃗/2 for
mesons with mass-degenerate valence quarks and k⃗ = p⃗/3 for baryons. For
the interacting case, when defining k⃗ = αp⃗, the optimal values of α found in
[62] are α ≈ 0.8 > 1/2 for the pion and α ≈ 0.45 > 1/3 for the proton.

Smearing of gauge fields

Since the gauge field fluctuates strongly over short distances on the lattice,
using the unmodified gauge field for the quark smearing could result in a
defective quark source or sink. The fluctuations can be softened with gauge
smearing.

APE smoothing A possible method for this is APE smoothing [63], where
the smeared link is obtained by averaging the unsmeared link Uµ(x) with its
surrounding staples. The procedure is iterative, and one step is described by

15



Un+1(x) = PSU(3)
(
αAPEUµ,n(x) + Sµ,n(x)

)
Sµ,n(x) =

∑
±ν ̸=µ

Uν(x)Uµ(x+ aν̂)U−ν(x+ aν̂ + aµ̂), (2.27)

where αAPE is a weight factor and

PSU(3) (V ) = X ∈ SU (3) (2.28)

is a back projection to SU(3) which maximizes Re tr
[
XV †

]
.

HYP smearing Another procedure for smearing the gauge fields is HYP
smearing [64]. A HYP smeared gauge link is constructed by mixing links
within hypercubes that are attached to the original link.

In order to avoid modifying the fermion action, smeared gauge fields are
not used for the computation of quark propagators.

2.3.3 Error estimation
The calculation of observables in lattice QCD as expectation values of oper-
ators was introduced with eq. (2.6). In practice, Nconf. gauge configurations
are used to obtain Nconf. measurements Ai of an observable:

A = {Ai | i = 0, ..., Nconf. − 1} . (2.29)

A set of twisted-mass reweighting factors, which were introduced in eq.
(2.23), has to be considered for those gauge configurations:

W = {Wi | i = 0, ..., Nconf. − 1} . (2.30)

Note that, compared to (2.23), the subscript l is omitted for better read-
ability. The mean of A, taking into account the reweighting factors, can be
written as

Ā =
∑
iWiAi∑
iWi

, i = 0, ..., Nconf. − 1. (2.31)

Naively, it could be expected that the error of A can be estimated using
the standard deviation

σ =
√√√√ 1
Nconf.

∑
i

(
WiAi − Ā

)2
. (2.32)
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However, the standard deviation as in eq. (2.32) is only accurate for nor-
mal distributions with a sample size going to infinity. A valid error estimation
for an observable computed on the lattice can be achieved using resampling
techniques such as jackknife or bootstrap resampling, which approximate the
underlying sampling distribution. Since those methods function with statisti-
cally independent data, it is important to remove correlations in the dataset
A. Typically, binning with bin size b is used, where Nb =

⌊
Nconf.
b

⌋
binned

measurements and reweighting factors

Ab =
{
Abj | j = 0, ..., Nb − 1

}
W b =

{
W b
j | j = 0, ..., Nb − 1

} (2.33)

are produced by taking the average of all data inside a bin

Abj =
∑
kWkAk∑
kWk

, k = jb, ..., jb+ b− 1

W b
j =

∑
k

Wk, k = jb, ..., jb+ b− 1.
(2.34)

Using the binned data Ab and reweighting factors W b, resampling tech-
niques can be applied to estimate the error of an observable A.

Bootstrap resampling

During bootstrap resampling, M samples are generated from the binned data:

Abootstrap =
{
Abootstrap
j | j = 0, ...,M − 1

}
. (2.35)

The number of samples can be chosen freely, and one sample Abootstrap
j

is obtained by randomly selecting Nb binned measurements and taking the
weighted average. Duplicates are possible during the selection. The boot-
strap error of A is given by

σbootstrap =

√√√√√ 1
M − 1

M−1∑
j=0

(
Abootstrap
j − A

bootstrap)2

A
bootstrap = 1

M

M−1∑
j=0

Abootstrap
j .

(2.36)
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Jackknife resampling

Another resampling method is the jackknife technique, which is a linear ap-
proximation of the bootstrap resampling. In jackknife resampling, Nb sam-
ples are obtained from the binned data:

Ajackknife =
{
Ajackknife
j | j = 0, ..., Nb − 1

}
. (2.37)

The number of jackknife samples equals the number of binned measure-
ments. A sample Ajackknife

j is generated by computing the weighted average of
all binned measurements Abi , leaving out the measurement with i = j. The
jackknife error of A is calculated as

σjackknife =

√√√√√Nb − 1
Nb

Nb−1∑
j=0

(
Ajackknife
j − A

jackknife)2

A
jackknife = 1

M

Nb−1∑
j=0

Ajackknife
j .

(2.38)

One of the advantages of resampling methods such as bootstrap and jack-
knife resampling is the applicability of those methods not only for error esti-
mation of primary, but also of secondary quantities. While primary quantities
are measured directly on the lattice, secondary quantities are extracted for
example by combining multiple primary quantities, or in fitting procedures.

Covariance matrix

The covariance matrix can be viewed as generalization of variance to multiple
dimensions. It is a square matrix containing the covariance values of each
pair of elements of a vector. The covariance matrix C of a vector x⃗ with
elements xi, i ∈ {1, 2, ..., n} is a n×n matrix. The diagonal of the covariance
matrix is equal to the variance σ2 of said vector, with σ being the standard
deviation introduced in eq. (2.32).

The elements of C can for example be obtained with bootstrap resam-
pling, and the element Cij is given by

Cij = 1
M − 1

M∑
k=0

(
xbootstrap
i,k − xbootstrap

i

) (
xbootstrap
j,k − xbootstrap

j

)
, (2.39)

where the number of bootstrap samples is denoted by M , xbootstrap
i,k is the

kth bootstrap sample of xi, and xbootstrap
i is the bootstrap mean of xi, see
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section 2.3.3. Calculating the covariance matrix for a vector with jackknife
resampling is done analogously, where the prefactor 1

M−1 is replaced with
Nb−1
Nb

, see eq. (2.38).

2.3.4 Fitting
To extract information from observables obtained with lattice QCD calcula-
tions, it is crucial to estimate those observables with functions that depend
on the lattice data as well as certain parameters. A set of parameters {p}
that allows for the best description of the data is found by minimizing the
χ2-functional. Following [65], the χ2-functional for data x⃗ with Gaussian
errors and correlations described by a covariance matrix C is given by

χ2({p}) =
∑
i,j

(xi − f(xi; {p}))
(
C−1

)
ij

(xj − f(xj; {p})) , (2.40)

where C−1 is the inverse of the covariance matrix, which is calculated for
example with bootstrap resampling as in eq. (2.39). By iteratively mini-
mizing χ2({p}) with respect to the parameters {p}, the best parameters to
describe the data with the function f(x; {p}) are found. For a fit that min-
imizes χ2({p}) as defined in eq. (2.40), the value of χ2/d.o.f., where d.o.f.
(degrees of freedom) is given by the number of fitted data points minus the
number of parameters p, is a measure of the fit quality. For uncorrelated data,
χ2/d.o.f. is expected to be 1. A value of χ2/d.o.f. that significantly differs
from 1 is either a sign of strong correlations between the data points or an
incorrect estimation of the correlations. Generally, either underestimated or
negatively correlated errors lead to χ2/d.o.f. being considerably larger than
1, while values of χ2/d.o.f. that are notably smaller than 1 can be the cause
of either overestimated or positively correlated errors [65].

In case the correlations between data points are not considered in the
fit, only the diagonal of the covariance matrix is taken into account and eq.
(2.40) simplifies to

χ2({p}) =
∑
i

(xi − f(xi; {p}))(
σbootstrap
i

)2 , (2.41)

with σbootstrap
i denoting the bootstrap error for data point xi, see eq.

(2.36). When performing the fit by minimizing eq. (2.41), the resulting
value for χ2/d.o.f. cannot directly be used as a measure of fit quality.
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ensemble β a[fm] Ns Nt bc mπ[MeV] Lsmπ

X650 3.34 0.098 48 48 p 338 8.1

H102 3.4 0.085 32 96 o 354 4.9

H105 3.4 0.085 32 96 o 281 3.9

C101 3.4 0.085 48 96 o 222 4.6

N203 3.55 0.064 48 128 o 348 5.4

N302 3.7 0.049 48 128 o 348 4.2

Table 2.1: Parameters of the CLS ensembles analyzed within this thesis.
Given are the inverse coupling β, the lattice spacing a, the geometry specified
by N3

s × Nt, the boundary conditions in temporal direction (p: periodic, o:
open), the pion mass and the dimensionless combination Lsmπ.

2.4 Gauge ensembles generated by the Coor-
dinated Lattice Simulations effort

CLS ensembles are generated with the tree-level improved Lüscher-Weisz
gauge action and 2+1 flavors of non-perturbatively O(a)-improved Wilson
fermions. The boundary conditions in spatial direction are periodic, while in
temporal direction either periodic or open boundary conditions are employed.

In order to facilitate a controlled limit to the continuum in the calculation
of the quark Boer-Mulders function of the pion (see section 5.7.7), and addi-
tionally also to the physical pion mass in the calculation of the transversity
PDF of the nucleon (see section 4.7.2), gauge ensembles with different lattice
spacings and pion masses are selected for the analysis in this thesis. The
specifications of these CLS ensembles are summarized in tab. 2.1.
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Chapter 3

Parton physics using
Large-Momentum Effective
Theory

This chapter introduces distribution functions that are key components for
the description of the internal hadron structure. In section 3.1, the par-
ton distribution function is introduced in the continuum as the longitudinal
momentum distribution of quarks and gluons inside a hadron. For many
years, it was not possible to calculate PDFs ab initio from the lattice, but
only the leading Mellin moments of PDFs. With large-momentum effective
theory, a framework which allows for a direct calculation on the lattice was
proposed [43, 44]. A short introduction to LaMET is given in section 3.2.
Section 3.3 focuses on the calculation of parton distribution functions from
lattice QCD with LaMET, discussing also renormalization and matching to
the light-cone PDFs. The generalization of PDFs to include longitudinal as
well as transverse parton momenta leads to the transverse momentum de-
pendent parton distribution function, whose continuum definition is given in
section 3.4. Details of the lattice calculation of TMDPDFs with LaMET are
covered in section 3.5.

The description and nomenclature in this chapter is guided by [66].

3.1 Parton distribution function in the con-
tinuum

In Feynman’s naive parton model [67], hadrons are composed of so-called
partons which are considered to be non-interacting due to large time dilation
in the fast moving hadron. The model was originally proposed [4, 5] to
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describe deep inelastic scattering (DIS), where a proton is probed using an
electron with high energy.

The scattering is best described in the Breit frame, where the proton
moves fast in z-direction with a large momentum component Pz:

Pµ =
(√

Q2

4x2
B

+M2, 0, 0, Q

2xB

)
. (3.1)

The virtual photon moves with qz = −Q in z-direction, M is the proton
mass and xB = Q2/(P · q) is the Bjorken scale.

The internal structure of protons with large momenta Pz ≫ ΛQCD resem-
bles that structure at Pz = ∞ [67]. The limit Pz → ∞ is approached in the
Bjorken limit Q2 → ∞, P · q → ∞. Details on Bjorken scaling can be found
in [5, 4].

In the parton model, the scattering of an electron off a proton is ap-
proximated by the scattering of the electron off a parton with longitudinal
momentum xPz, weighted by the probability of finding a parton with momen-
tum fraction 0 < x < 1 inside the proton. These probability distributions
can formally be expressed using parton distribution functions.

Most often, parton distribution functions are expressed using time-de-
pendent light-front (LF) correlators. The light-cone or light-front is defined
by t − z = const., and correlations of this type can straightforwardly be
characterized using two conjugate light-cone vectors

pµ = (A, 0, 0, A)

nµ = (1
2A, 0, 0,−

1
2A),

(3.2)

with parameter A. To further simplify the description of correlations on
the light-cone, light-front coordinates can be used:

ξµ = (ξ+, ξ−, ξ⃗⊥), ξ± = ξ0 ± ξ3
√

2
, ξ⃗⊥ = (ξ1, ξ2). (3.3)

The Dirac matrices γ± = (γ0 ± γ3)/
√

2 are defined analogously.
At twist-2, there are three different parton distribution functions describ-

ing the longitudinal momentum distributions of quarks in a proton, namely
the unpolarized, helicity and transversity PDF. The quark transversity PDF
of a proton describes the probability of finding a transversely polarized quark
with longitudinal momentum fraction x inside a transversely polarized pro-
ton. In terms of light-cone coordinates it reads [24, 25]
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δq(x, µ) =
∫ dξ−

4π e
−ixP+ξ−⟨PS⊥|ψ̄(ξ−)γ+γ⊥γ5W (ξ−, 0)ψ(0)|PS⊥⟩, (3.4)

where |PS⊥⟩ is a proton state with momentum P in z-direction and trans-
verse polarization S⊥, and µ is the renormalization scale in the MS scheme.
The quark field is denoted by ψ and gauge invariance is ensured by the gauge
link W (ξ−, 0) which runs along the light-cone direction:

W (ξ−, 0) = Pexp[ig
∫ 0

ξ−
du n · A(un)]. (3.5)

Path ordering is indicated by P . The transversity PDF as in eq. (3.4)
is supported for x ∈ [−1, 1]. For x < 0, the antiquark distribution δq̄(x) =
−δq(−x) can be defined.

Precise knowledge of all parton distribution functions is crucial for a deep
understanding of the inner proton structure and interpretation of experimen-
tal data. From the twist-2 PDFs, the transversity PDF is the least known
from experiment since it is chiral-odd and has to couple to another chiral-odd
quantity to be measurable [24, 68, 69]. This is only given for certain trans-
verse spin asymmetries in Drell-Yan processes and SIDIS, making it very
challenging to measure [70]. Global analyses of the transversity PDF have
been performed by fitting the experimental data [71, 72, 73, 74, 75, 76, 77,
78, 79, 80, 81, 70].

Since only few experimental results are available for the transversity PDF,
theoretical determinations are of great importance. However, since lattice
QCD is constructed in Euclidean space using imaginary time, time dependent
correlations as in eq. (3.4) cannot be calculated directly. Thus, for many
years, the theoretical approach to parton distribution functions was limited
to the computation of Mellin moments [27, 28, 29, 30]. While it is possible
to calculate the lowest few Mellin moments, including the tensor charge gT
[82, 83, 84, 85, 86], it is not feasible to calculate enough moments to model
the full x-dependence of PDFs.

Advances in theory have allowed ab initio calculations of PDFs in lattice
QCD. These approaches are namely the short-distance expansion defining
pseudo-PDFs [87, 88] and the large-momentum effective theory using quasi-
PDFs [43, 44]. Since this thesis focuses on calculations in LaMET, the next
section gives an introductory presentation of this theory.
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3.2 Large-Momentum Effective Theory

Large-momentum effective theory is based on the ideas of Feynman’s naive
parton model, especially on the assumption that the structure of a hadron
is independent of its momentum P if P is larger than the strong interaction
scale ΛQCD. Replacing a hadron at large momentum by a hadron at P =
∞, its constituents – the so-called partons – become non-interacting due to
infinite time-dilation.

This concept is utilized in LaMET by stating that parton distributions,
which are time dependent correlations at large hadron momenta, can be
determined by calculating time independent correlations at large, but finite,
hadron momenta P and taking the limit P → ∞. This approach has the
advantage that time independent correlations can be calculated in lattice
QCD, making the full x-dependence of parton distributions accessible from
theory.

To illustrate the connection between a hadron at large momentum P and
at infinite momentum, fig. 3.1 shows how a line segment in the frame of a
hadron moving with momentum P is affected by boosting the hadron to near
the light-cone.

Feynman’s parton model uses the infinite-momentum limit (P ≫ ΛUV) →
∞, while the physical limit is (ΛUV ≫ P ) → ∞. Due to UV divergences in
quantum field theories these two limits are not equivalent and the resulting
parton distributions and quasi-parton distributions differ. However, each
can be calculated from the other in continuum QCD, resulting in matching
functions.

A more technical description of large-momentum effective theory is given
in the following section by focusing on the calculation of parton distribution
functions in LaMET.

3.3 Parton distribution function from Lattice
QCD using Large-Momentum Effective
Theory

The core principle of large-momentum effective theory is to make the time
dependence of parton distributions such as PDFs accessible by using external
states with large momenta. In order to retrieve the quark transversity PDF
of a proton, which is defined by (3.4), from the lattice, a time independent,
momentum dependent quantity called quasi-PDF is defined:

24



Figure 3.1: A line segment of length z (green) in the frame of a hadron with
large momentum in z-direction. In the rest frame of the hadron, the segment
(orange) is viewed as approaching the light-cone, which is indicated by the
light-cone directions n and p. The two frames are connected by a Lorentz
boost with Lorentz factor γ, and the length of the segment after the boost is
γz.
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δq̃(x, Pz, 1/a) =
∫ dz

2πPze
ixzPz h̄(z, Pz, 1/a)

h̄(z, Pz, 1/a) = 1
2P0

⟨PS⊥|ψ̄(z)γtγ⊥γ5W (z, 0)ψ(0)|PS⊥⟩.
(3.6)

Pz denotes the proton momentum in z-direction and a is the lattice spac-
ing. In the gamma structure, γ⊥ = γx or γ⊥ = γy can be inserted, corre-
sponding to the direction of the transverse proton polarization. These differ-
ent choices of Euclidean operators lead to the same light-front PDF. W (z, 0)
is a straight gauge link in z-direction. The momentum factor in the first line
of eq. (3.6) stems from the differential dλ = Pzdz, while the factor 1/(2P0)
in the second line is canceled during renormalization. The time independent
matrix element h̄, also called quasi-light-front (quasi-LF) correlation, can be
calculated using lattice QCD.

The IR non-perturbative physics of the Euclidean quasi-PDF and the
PDF on the light-front is the same, and the differences between those two
quantities can be estimated by expanding the Pz-dependence of the quasi-
PDF

δq̃(y, Pz, µ) =
∫ 1

−1

dx

|x|
C
(
y

x
,
µ

xPz

)
δq(x, µ) + O

(
Λ2

QCD

(yPz)2 ,
Λ2

QCD

((1 − y)Pz)2

)
,

(3.7)
where y is the momentum fraction of the quark. The matching kernel C

contains only UV physics and is calculable perturbatively. Power corrections
are suppressed by the quark momentum yPz as well as by (1 − y)Pz. The
renormalization scale is denoted by µ. Details about renormalization will be
discussed in section 3.3.2.

By inverting eq. (3.7), the light-front PDF can be expressed in terms of
the quasi-PDF, which is crucial for LaMET calculations of PDFs and other
parton distributions. The inverted matching formula reads as follows:

δq(x, µ) =
∫ ∞

−∞

dy

|y|
C̃

(
x

y
,
µ

yPz

)
δq̃(y, Pz, µ) + O

(
Λ2

QCD

(xPz)2 ,
Λ2

QCD

((1 − x)Pz)2

)
.

(3.8)
The expansion can already converge at moderately large Pz, while large

momenta are especially important to suppress the power corrections in the
endpoint regions with small or large momentum fractions x. The next section
discusses what momenta are necessary to reach convergence in certain ranges
of x.
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3.3.1 Validity of the factorization formula
For the factorization formula in eq. (3.8) to be valid, higher twist contribu-
tions of order O

(
Λ2

QCD
(xPz)2

)
and O

(
Λ2

QCD
((1−x)Pz)2

)
need to be small. This entails

the following requirements for the range of momentum fractions x of the
quark inside a proton:

x ≫ ΛQCD

Pz
, x ≪ 1 − ΛQCD

Pz
. (3.9)

Wanting to draw conclusions about the possible range of values for x
raises the question of which proton momenta Pz can be reached in LaMET
calculations. This question can be answered by considering the resolution
with which a proton can be investigated on the lattice.

The size of a hadron is momentum dependent and varies with the frame.
In order to examine the internal structure of a proton in its rest frame, the
lattice spacing has to be considerably smaller than the inverse QCD scale,
i.e.

a ≪ Λ−1
QCD. (3.10)

Using the typical scale ΛQCD ≈ 200 MeV of non-perturbative QCD effects,
as well as

ℏc ≈ 0.1973 GeV fm, (3.11)

and natural units ℏ = c = 1, eq. (3.10) yields a ≪ 0.99 fm. Thus, a
lattice spacing of approximately a ≪ 0.2 fm is necessary to study a proton
at rest.

When the proton has non-zero momentum Pz, the condition in eq. (3.10)
changes due to Lorentz contraction of the proton in z-direction, and becomes

a ≪ (γΛQCD)−1 . (3.12)

The Lorentz boost factor

γ = 1√
1 − v2

c2

=

√√√√1 +
(
Pz
m0c

)2
(3.13)

for a proton with large momentum Pz = 5 GeV and rest mass m0 ≈
0.938 GeV is γ ≈ 5.4. Inserting γ in eq. (3.12) leads to the requirement
a ≪ 0.18 fm. Therefore a lattice spacing of a ≤ 0.037 fm, which is much
smaller than in the rest case, is needed to reach the same resolution.
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Simulating at such small lattice spacings requires a large amount of com-
puting resources and comes with various other challenges. One of those dif-
ficulties is the possibility of the topological charge being trapped in certain
sectors in the Monte Carlo simulations, see 2.2.3. Moreover, the signal-to-
noise ratio can decrease with small lattice spacings. In consequence, mak-
ing use of even smaller lattice spacings is currently not possible and even
Pmax
z = 5 GeV has not been reached in LaMET calculations so far.

Inserting Pz = 5 GeV in the condition for the momentum fraction in eq.
(3.9) gives x ≫ 0.04 and x ≪ 0.96. A currently more realistic value of Pz =
2.5 GeV yields x ≫ 0.08 and x ≪ 0.92, leading to the factorization being valid
in an approximate range of 0.1 < x < 0.9. The actual range of momentum
fractions where LaMET calculations are reliable of course depends on the
maximum momentum which is implemented in the specific calculation.

3.3.2 Renormalization of quasi-PDFs in the hybrid
scheme

The quasi-PDF defined in eq. (3.6) does not only depend on the proton
momentum Pz but also on lattice artifacts. In the quasi-LF correlation
h̄(z, Pz, 1/a), divergences both linear and logarithmic in the lattice spac-
ing a are present. Theoretically, these divergences should be canceled by
higher orders in the matching formula in eq. (3.8), however, in practice it is
necessary to apply non-perturbative renormalization.

In the past, various different possibilities for non-perturbative renormalza-
tion procedures were proposed, including [89, 90, 91]. Nevertheless, these ap-
proaches introduce unwanted IR effects in the quasi-LF correlation at large
distances z.

A solution which enables a valid non-perturbative renormalization at all
distances was introduced with the hybrid renormalization scheme [92], where
short and long distances are renormalized separately. At short distances, the
quasi-LF correlation is for example renormalized as in the ratio scheme [90,
93, 94], by dividing it by the same correlation in the rest frame. For long dis-
tances, self-renormalization [95] is employed, which removes UV divergences
while preserving IR physics.

The quasi-LF correlation renormalized in hybrid scheme is given by

h̃R(z, Pz) = h̃(z, Pz, 1/a)
h̃(z, Pz = 0, 1/a)

θ(zs − |z|) + ηs
h̃(z, Pz, 1/a)
ZR(z, 1/a) θ(|z| − zs), (3.14)

where the first and second term are the quasi-LF correlations that are
renormalized in the ratio scheme and using self-renormalization, respectively.
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The calculation of the renormalization factor ZR(z, 1/a) will be discussed in
this section. The short and long distance regions are separated at z = zs,
which is not a fixed length, and should be varied in the perturbative region to
find the ideal value which causes the least variation in the result. Continuity
of the renormalized quasi-LF correlation at z = zs is ensured by the factor
ηs = ZR(zs, 1/a)/h̃(zs, Pz = 0, 1/a). An additional normalization

h̃(z, Pz, 1/a) = h̄(z, Pz, 1/a)
h̄(z = 0, Pz, 1/a)

(3.15)

was introduced in eq. (3.14). Due to the normalization, integrating the
momentum distribution after Fourier transformation will result in 1 rather
than the proton isovector tensor charge gT . For the extraction of gT from
the matrix elements calculated in this work, see 4.4.

The renormalized quasi-LF correlation in eq. (3.14) does not explicitly
depend on the lattice spacing a, since the singular a-dependence is canceled
by the renormalization. However, remaining discretization effects need to
be taken into account by performing a continuum extrapolation, see section
4.7.2.

Self renormalization The renormalization factor ZR(z, 1/a) in the self
renormalization, which was introduced in eq. (3.14), is given by

ZR(z, 1/a) = h̃(z, 1/a)
h̃R(z)

h̃R(z) = exp[g(z) −m0z] = exp[g0(z)].
(3.16)

ZR(z, 1/a) is obtained in two steps. In the first step, to extract g(z), the
bare quasi-LF correlations h̃(z, Pz = 0, 1/a) in the rest frame are fitted with
a functional form following from perturbative QCD, which reads [95]

ln h̃(z, 1/a) = kz

a ln(aΛQCD) + g(z) + f(z)a2

+ 3CF
11 − 2Nf/3

ln
[

ln(1/(aΛQCD))
ln(µ/ΛQCD)

]
+ ln

[
1 + d

ln(aΛQCD)

]
.

(3.17)

The first term on the r.h.s. accounts for the linear divergence. The
second term g(z) = g0(z)+m0(z) consists of the contribution g0(z) containing
intrinsic non-perturbative physics and of the finite renormalon term m0z.
Discretization errors are included by f(z)a2. The remaining two terms come
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from the resummation of leading and sub-leading logarithmic divergences,
and only impact the overall normalization at different lattice spacings.

In the second step, after obtaining g(z) from fitting the bare matrix ele-
ments in the rest frame, m0 is determined. Since the factorization formula
given in eq. (3.8) is only valid in the MS scheme, the renormalized quasi-LF
correlation h̃R(z) needs to be equal to the short distance perturbative MS
result in the continuum, which is (see supplemental material of [42])

ZMS(z) = 1 + αsCF
2π (2 ln(z2µ2e2γE) + 2) (3.18)

at one-loop level. This leads to the following condition:

ZMS(z) = h̃R(z) = exp[g(z) −m0z]
lnZMS(z) = g(z) −m0z

m0z = g(z) − lnZMS(z).
(3.19)

Thus, m0 can be extracted by fitting g(z)− lnZMS(z) with m0z. Inserting
g(z) and m0 in eq. (3.16) gives the self renormalization factor.

3.3.3 One-loop matching kernel in the hybrid scheme

After extracting the quasi-LF correlation h̃(z, Pz, 1/a) from lattice calcula-
tions, which will be discussed in detail in section 4.3, and renormalizing it
in the hybrid scheme, a Fourier transformation is necessary to obtain the
quasi-PDF δq̃(x, Pz, 1/a) in momentum space, which is defined in eq. (3.6).
Through matching to the light-cone as in eq. (3.8), the final result for the
transversity PDF in the proton is obtained.

To obtain the one-loop matching kernel in the hybrid scheme, the match-
ing kernel in the ratio scheme needs to be calculated. In momentum space,
it reads [42]

Cr

(
x,
µ

pz

)
= δ (1 − x)+αsCF2π



[
2x

1−x ln x
x−1 − 2

1−x

]
+

x > 1[
2x

1−x

(
ln 4p2

z

µ2 + ln x(1 − x)
)

+ 2
]

+
0 < x < 1[

− 2x
1−x ln x

x−1 + 2
1−x

]
+

x < 0,
(3.20)

and in the hybrid scheme, it is given by [42]
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Ch

(
x,
µ

pz
, λs

)
= Cr

(
x,
µ

pz

)
+ δC

(
x,
µ

pz
, λs

)

= Cr

(
x,
µ

pz

)
+ αsCF

π

[
− 1

|1 − x|
+ 2Si((1 − x)λs)

π(1 − x)

]
+
.

(3.21)
In eq. (3.20) and eq. (3.21), pz denotes the momentum in z-direction of

an on-shell massless external quark state which was used for the derivation
in [42]. The long- and short-distance regions in the hybrid renormalization
are separated by λs, and Si indicates the sign function. A more detailed
derivation can be found in [42]. Similar calculations are performed in [96,
97], with results agreeing with the matching kernel given in eq. (3.20) and
eq. (3.21).

3.4 Transverse momentum dependent parton
distribution function in the continuum

After discussing parton distribution functions in sections 3.1 and 3.3, the
logical consequence is to introduce transverse momentum dependent par-
ton distribution functions (TMDPDFs) as a generalization of PDFs, with
TMDPDFs including not only longitudinal, but also transverse momenta of
partons.

TMDPDFs play a crucial role in the description of the hadronic structure.
They enable to access the 3D tomography of hadrons, which is in line with
the physical objective of the EIC. Detailed knowledge of TMDPDFs is also
exceptionally important for predicting observables in high-energy processes
where the transverse momenta of final state particles are measured. Exam-
ples for such processes are semi-inclusive deep inelastic scattering (SIDIS)
and the Drell-Yan (DY) process, which are investigated at the EIC as well
as the LHC.

At first, TMDPDFs have been established by Collins and Soper [9, 10,
11, 12, 13, 14] to describe the Drell-Yan process and electron-positron anni-
hilation. Decades later, they were generalized to also account for SIDIS [98,
99].

3.4.1 Definition of TMDPDFs
At leading twist, there exist eight different TMDPDFs, which can be ob-
tained through Lorentz decomposition of a parent TMD correlator, as will
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be discussed in section 3.4.3. This section introduces the transverse momen-
tum dependent parton distribution function in light-cone coordinates by the
example of the unpolarized TMDPDF. The Boer-Mulders function, which
is one of the main focus points of this thesis, will be introduced in section
3.4.3. Following the nomenclature of [66], the unpolarized TMDPDF can be
expressed as

f(x, k⃗⊥) = 1
2P+

∫ dλ

2π
d2⃗b⊥

(2π)2 e
−iλx+ik⃗⊥ ·⃗b⊥

× ⟨P |ψ̄(λn/2 + b⃗⊥)γ+W(λn/2 + b⃗⊥)ψ(−λn/2)|P ⟩,
(3.22)

with |P ⟩ being an unpolarized hadron state with momentum P in z-
direction and W(λn/2 + b⃗⊥) denoting a staple-shaped gauge link along the
light-cone direction nµ, which is defined as

W(ξ) = W †(ξ)W⊥W (−ξ · pn)

W (ξ) = Pexp
[
−ig

∫ −∞

0
dλn · A(ξ + λn)

]
.

(3.23)

The transverse gauge link W⊥ at infinity is needed for gauge invariance.
Compared to the collinear PDF, which was introduced in eq. (3.4)

through the example of the transversity PDF, the TMDPDF in eq. (3.22)
exhibits an additional dependence on the transverse parton momentum k⃗⊥,
with b⃗⊥ being the Fourier conjugate of k⃗⊥. A symmetric placement of the
quark and antiquark fields ψ, ψ̄ was chosen in eq. (3.22). Choosing to asym-
metrically position the fields at λn+ b⃗⊥ and 0 would lead to the same result.

Note that while the orientation of the staple-shaped gauge link does not
matter in the case of unpolarized TMDPDFs, there is a distinction when
TMDPDFs are spin dependent. The link W in eq. (3.22) is past-pointing,
matching the kinematics of the DY process. When describing SIDIS, a future-
pointing gauge link should be chosen.

3.4.2 Rapidity divergence
The infinitely long light-like gauge links in eq. (3.22) introduce the so-called
rapidity divergence. It stems from radiation of gluons collinear to those gauge
links and is not regularizable with standard UV regulators. The rapidity
divergence can, however, be regularized with various methods, which can
be classified as either on-light-cone regulators [100, 101, 102, 103, 104] or
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off-light-cone regulators [9, 98, 99]. While the gauge links stay along nµ

after on-light-cone regularization, the off-light-cone regularization removes
the rapidity divergence by choosing gauge links in a direction off the light-
cone.

Off-light-cone regularization is very well compatible with the ideas of
LaMET and is used in the lattice QCD calculations for the TMDPDF in
chapter 5. This subsection shortly discusses how to control rapidity diver-
gences in an on-light-cone scheme. For that, it is practical to include the
rapidity regulator when defining the TMDPDF. The light-cone TMDPDF
in coordinate space, where the staple-shaped gauge link along light-cone di-
rection nµ is regularized using the δ-regulator [102, 103] in light-cone minus
direction, reads

f(λ, b⊥, µ, δ
−/P+) = ⟨P |ψ̄(λn/2 + b⃗⊥)/nW(λn/2 + b⃗⊥)|δ−ψ(−λn/2)|P ⟩.

(3.24)
Note that due to rotational invariance, the TMDPDF depends only on

the absolute value b⊥ = |b⃗⊥|. The staple-shaped link in eq. (3.24) is defined
as in eq. (3.23), but uses gauge-links along light-cone direction nµ regularized
with the δ-regulator according to

W (ξ)|δ− = Pexp
[
−ig

∫ −∞

0
dλA+(ξ + λn)e− δ−

2P + |λ|
]
. (3.25)

The TMDPDF f(λ, b⊥, µ, δ
−/P+) diverges as δ− → 0.

Soft function

In on-light-cone schemes, rapidity divergences are multiplicative in coordi-
nate space [105], and can be removed by the soft function. Essentially, the
soft function is a cross section for color charges moving fast in two conjugate
light-cone directions, emitting soft gluons. The TMD soft function emerges
from factorization theorems for the Drell-Yan process [14, 106] and SIDIS
[99, 107]. For Drell-Yan, it is defined by [108, 109]

S(b⊥, µ, δ
+, δ−) =

tr⟨0|Wn(b⃗⊥)|δ+W†
p(b⃗⊥)|δ−|0⟩

Nc

. (3.26)

The TMD soft function contains two staple-shaped gauge links Wn and
Wp which lie along the light-cone directions nµ and pµ, respectively. In eq.
(3.26), Nc denotes the number of colors.

For small parameters δ+ and δ−, the soft function can be expressed in
terms of the rapidity dependent, non-perturbative Collins-Soper evolution
kernel K(b⊥, µ) [9] and a rapidity independent part D2(b⊥, µ) [66]:

33



S(b⊥, µ, δ
+, δ−) = eln µ2

2δ+δ−K(b⊥,µ)+D2(b⊥,µ). (3.27)

The soft function defined in eq. (3.26) and the Collins-Soper kernel and
rapidity independent function D2 introduced in eq. (3.27) satisfy the follow-
ing renormalization group equations (RGEs) [66]:

µ2 d

dµ2 lnS(b⊥, µ, δ
+, δ−) = −Γcusp(αs) ln µ2

2δ+δ− + γs(αs)

µ2 d

dµ2K(b⊥, µ) = −Γcusp(αs)

µ2 d

dµ2 D2(b⊥, µ) = γs(αs) −K(b⊥, µ).

(3.28)

In eq. (3.28), Γcusp(αs) denotes the cusp anomalous dimension [110] and
γs(αs) is the soft anomalous dimension [111].

Rapidity renormalization in on-light-cone regularization schemes

For TMDPDFs defined in an on-light-cone scheme, the soft function can be
used as a renormalization factor to cancel rapidity divergences, resulting in
a renormalized TMDPDF of the following form [112, 113]:

f(x, b⊥, µ, ζ) = lim
δ−→0

f(x, b⊥, µ, δ
−/P+)√

S(b⊥, µ, δ−e2yn , δ−)
. (3.29)

The numerator is obtained by Fourier-transforming eq. (3.24) to momen-
tum space, and the rapidity scale ζ is defined as

ζ = 2(xP+)2
e2yn , (3.30)

where yn is an arbitrarily chosen rapidity parameter. Since the soft func-
tion consists of two staple-shaped gauge links, see eq. (3.26), while the
numerator f(x, b⊥, µ, δ

−/P+) on the r.h.s. of eq. (3.29) contains only one
staple, the square root in eq. (3.29) ensures a proper cancelation of rapidity
divergences.

The dependence of the renormalized light-cone TMDPDF on the rapidity
scale is described by the Collins-Soper evolution equation

2ζ d
dζ
f(x, b⊥, µ, ζ) = K(b⊥, µ). (3.31)
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3.4.3 Decomposition of the TMD correlator in terms
of TMDPDFs

The unpolarized TMDPDF has been used to introduce TMDPDFs as a gen-
eralization of collinear PDFs in section 3.4.1 and discuss their divergences
and renormalization on the light-cone in section 3.4.2. As already men-
tioned, there are eight different TMDPDFs at leading twist, which will be
established in this section. The notation and argumentation of this section
is guided by [32].

Decomposition of the TMD correlator in momentum space The
unpolarized TMDPDF, which is also known as f1(x,k⊥, µ, ζ) in literature, is
one of eight TMDPDFs which emerge from the decomposition of the TMD
correlators Φ[Γ](x,k⊥, P, S, µ, ζ), Γ = γ+, γ+γ5, iσi+γ5, at leading twist. The
TMD correlators are decomposed into TMDPDFs as [114, 115, 116, 117]

Φ[γ+](x,k⊥, P, S, µ, ζ) = f1 −
[
ϵijkiSj
m

f⊥
1T

]
odd

Φ[γ+γ5](x,k⊥, P, S, µ, ζ) = Λg1 + k⊥ · S⊥

m
g1T

Φ[iσi+γ5](x,k⊥, P, S, µ, ζ) = Sih1 +

(
2kikj − k2

⊥δij
)
Sj

2m2 h⊥
1T

+ Λki
m
h⊥

1L +
[
ϵijkj
m

h⊥
1

]
odd

,

(3.32)

with m being the hadron mass and σµν = i
2 [γµ, γν ]. The helicity and

transverse spin component of the hadron are denoted by Λ and Si, respec-
tively. The indices i and j lie in the plane spanned by the transverse parton
momentum k⊥. The eight TMDPDFs occurring in eq. (3.32) (f1, g1, h1, g1T ,
h⊥

1L, h⊥
1T , f⊥

1T and h⊥
1 ) depend on x, k⊥, µ and ζ, but, for the sake of sim-

plicity, the dependence is not made explicit here. A more detailed discussion
and the decomposition of the TMD correlator in terms of Lorentz-invariant
amplitudes can be found in [32].

Fig. 3.2 shows a schematic illustration of the various TMDPDFs at lead-
ing twist, categorized by the polarization of the hadron and parton, respec-
tively.

As indicated by the brackets []odd in eq. (3.32), the Sivers function f⊥
1T

[118] and the Boer-Mulders function h⊥
1 [26] are time reversal odd (T-odd)

TMDPDFs. Both functions are related to the single transverse spin asymme-
try [26, 119, 120, 121]. While the Sivers function represents the unpolarized
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Figure 3.2: Schematic illustration of the eight different leading twist TMD-
PDFs f1, g1, h1, g1T , h⊥

1L, h⊥
1T , f⊥

1T and h⊥
1 . The dark green circles and arrows

represent hadrons and hadron polarization, while the light green circles and
arrows depict partons and their respective polarization.

parton distribution in a transversely polarized hadron, the Boer-Mulders
function describes the transverse polarization of partons in an unpolarized
hadron. The extraction of the quark Boer-Mulders function of a pion from
lattice QCD using LaMET will be the topic of chapter 5.

Decomposition of the TMD correlator in position space Since b⊥-
dependent matrix elements are obtained from the lattice, see 5.3, a decompo-
sition of the TMD correlator in b⊥-space is given here. Such a decomposition
is found by Fourier-transforming the decomposition in k⊥-space with respect
to k⊥. After setting the helicity as well as transverse spin components of
the hadron to zero for the Boer-Mulders case with an unpolarized hadron,
the decomposition of the TMD correlator in position space can be written as
[122]

Φ[iσi+γ5](x, b⊥, P, S = Λ = 0, µ, ζ) = iϵijb⊥jmh
⊥
1 (x, b⊥). (3.33)

In eq. (3.33), h⊥
1 (x, b⊥) denotes the Boer-Mulders function in b⊥-space.

Note that the tilde which is used in [122] to highlight the b⊥-dependence of
the Boer-Mulders function is omitted here to avoid confusion with the quasi-
observables in this thesis. This form of the decomposition will be needed
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when extracting the Boer-Mulders function from the lattice data, since the
factors b⊥ and m have to be considered. Note that h⊥

1 (x, b⊥) is a real function,
for an explicit check see for example the perturbative computation in [123],
where the function Eq in eq. (4.19) is real.

3.4.4 Previous TMDPDF determinations

Gaining knowledge about TMDPDFs is difficult and information about those
distribution functions is currently very limited. One main approach to study
TMDPDFs is fitting experimental data with models [124, 125, 78, 126, 127,
128, 129]. However, due to the deficient data, these global fits are not com-
pletely satisfactory. Even though in the future the EIC will add to the ex-
perimental data suitable for TMDPDF extractions, it is still very important
to investigate TMDPDFs from first principles. Theoretical determinations
in turn can also be used in the choice of models for the fits of experimental
data, or as test of those fits.

Until recently, the main approach to gain information about TMDPDFs
using lattice QCD has been to calculate Mellin moments of distribution func-
tions and use either these moments or ratios of these moments to extract for
example certain Lorentz-invariant amplitudes [31] or generalized shifts [32,
33, 34]. The Collins-Soper kernel can also be determined very efficiently
by studying ratios of Mellin moments [35]. But since a calculation beyond
the first few moments is currently not feasible, it is not possible to reliably
predict the x-dependence of TMDPDFs using Mellin moments.

From the eight TMDPDFs at leading twist, the Boer-Mulders function
h⊥

1 (x, b⊥) is one out of two distribution functions that also occur in an unpo-
larized hadron, which leads to special interest for this particular TMDPDF.
However, the insights gained so far from theoretical as well as phenomenologi-
cal studies are very limited. An analysis of lattice data as well as phenomeno-
logical models from 2008 [130] predicts similarities of the Boer-Mulders func-
tion for different hadrons. Similarities of the Boer-Mulders function and
Boer-Mulders shift across hadrons were also claimed in [131] and [33], re-
spectively, but could not be verified to this day with a direct calculation of
h⊥

1 (x, b⊥). Other studies include for example the lattice QCD calculation
of the generalized Boer-Mulders shift [32, 33, 34] and a determination of
the Boer-Mulders function from global fits to ATLAS data for the angular
coefficient A2 [132], which does not lead to significant constraints for h⊥

1 .
Similar to collinear PDFs, it is possible to investigate the full x-dependence
of TMDPDFs like h⊥

1 on the lattice using LaMET.

37



3.5 Transverse momentum dependent parton
distribution function from Lattice QCD
using Large-Momentum Effective Theory

This section describes the investigation of TMDPDFs on the lattice in LaMET,
which includes the definition of quasi-TMDPDFs in section 3.5.1 and a dis-
cussion of their renormalization in section 3.5.2. The Collins-Soper kernel
and soft function are the subjects of discussions in sections 3.5.3 and 3.5.4,
respectively. Both quantities are necessary for matching the quasi-TMDPDF
to the light-cone, see section 3.5.5.

3.5.1 Definition of quasi-TMDPDFs
When studying TMDPDFs from first principles with LaMET, the starting
point is the quasi-TMDPDF, which contains an equal-time matrix element
that can be calculated on the lattice. The subtracted quasi-Boer-Mulders
function in coordinate space reads

h̃⊥
1 (z, b⊥, Pz, a) = lim

L→∞

⟨P |ψ̄(b⊥n̂⊥)ΓWz(b⊥n̂⊥, zn̂z)ψ(zn̂z)|P ⟩√
ZE(2L+ z, b⊥, a)

, (3.34)

with z and b⊥ being the longitudinal and transverse separations of the
quark fields, and n̂z and n̂⊥ denoting the corresponding unit vectors. The
hadron moves with momentum P that has a large component Pz in z-
direction, and in the Boer-Mulders case, |P ⟩ denotes a unpolarized hadron
state. The bare matrix element in the numerator of eq. (3.34) contains a
gauge-invariant non-local quark bilinear operator, where two quark fields are
connected with a staple-shaped gauge link with extent L running along the
z-direction:

Wz(b⊥n̂⊥, zn̂z) = W †
z (Ln̂z + b⊥n̂⊥, b⊥n̂⊥)W⊥(Ln̂z + b⊥n̂⊥, Ln̂z)Wz(Ln̂z, zn̂z).

(3.35)
The staple is formed by straight Wilson lines Wz along the z-direction

and W⊥ along the transverse direction.
Since the time reversal odd Boer-Mulders function exists only due to

final state interactions in SIDIS or initial state interactions in the Drell-Yan
process, which break the symmetry under time reversal, symmetry-breaking
also needs to be introduced in the theoretical definition. This is achieved by
the directionality of the staple-shaped gauge link. For straight gauge links
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connecting the inserted quark fields, the Boer-Mulders function would vanish
[33].

The denominator of eq. (3.34) consists of the vacuum expectation value
of a two-dimensional rectangular Euclidean Wilson loop with length 2L + z
and width b⊥:

ZE(2L+ z, b⊥, a) = 1
Nc

tr⟨0|Wz(0, (2L+ z)n̂z)

×W †
⊥((2L+ z)n̂z + b⊥n̂⊥, (2L+ z)n̂z)

×W †
z (b⊥n̂⊥, b⊥n̂⊥ + (2L+ z)n̂z)W⊥(b⊥n̂⊥, 0)|0⟩.

(3.36)

After performing the limit L → ∞, the subtracted quasi-Boer-Mulders
function in eq. (3.34) does not depend on the length L of the staple. An
analysis of the L-dependence will be shown in section 5.4.2.

3.5.2 Renormalization of quasi-TMDPDFs in the short
distance ratio scheme

The matrix element in the numerator of eq. (3.34) is a bare quantity which
suffers from various divergences. Wilson line self energy leads to linear diver-
gence, while the staple-shaped Wilson link Wz(b⊥n̂⊥, zn̂z) introduces pinch-
pole singularity from the interactions between the two Wilson lines in z-
direction. Keeping the length L of the staple-shaped link finite regulates the
pinch-pole singularity.

Square root of the rectangular Euclidean Wilson loop

Both the linear divergence and pinch-pole singularity can be eliminated by
dividing by the square root of the rectangular Euclidean Wilson loop ZE(2L+
z, b⊥, a) [133, 134, 135, 92, 136]. In order to properly cancel those divergences,
the total length of the rectangular Wilson loop is chosen to be twice the total
length of the staple-shaped link used in the definition of the bare matrix
element in the numerator of eq. (3.34). The usage of ZE also gets rid of
unwanted contributions from the transverse gauge link W⊥ connecting the
two long Wilson lines along the z-direction at the endpoints.

Short distance ratio scheme

However, not all divergences are canceled by the square root of the rectangu-
lar Wilson loop ZE. The subtracted quasi-TMDPDF in eq. (3.34) still suf-
fers from logarithmic UV divergences, which stem from the endpoints of the
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Wilson links. Staple-shaped operators can be renormalized multiplicatively
[137], and there are different approaches for eliminating the logarithmic di-
vergence. In this thesis, we choose to divide the subtracted quasi-TMDPDF
with hadron momentum Pz and longitudinal and transverse separations z and
b⊥ of the quark fields by the subtracted quasi-TMDPDF at zero momentum
and short distances z0 and b⊥,0 [138]. The renormalized quasi-TMDPDF in
coordinate space can then be expressed as

h̃⊥,MS
1 (z, b⊥, Pz, µ) = h̃⊥

1 (z, b⊥, Pz, a)
ZO(z0, b⊥,0, a, µ) , (3.37)

where the logarithmic divergence factor ZO reads

ZO(z0, b⊥,0, a, µ) = h̃⊥
1 (z0, b⊥,0, Pz = 0, a)

h̃⊥,MS
1,pert.(z0, b⊥,0, Pz = 0, µ)

. (3.38)

Note that while the singular dependence on the lattice spacing a has been
canceled on the l.h.s. of eq. (3.37), lattice artifacts might still be present,
and are taken into account by extrapolating to the continuum, see section
5.7.7.

On the r.h.s. of eq. (3.38), the perturbative results h̃⊥,MS
1,pert.(z0, b⊥,0, Pz =

0, µ) are used to convert the renormalized quasi-TMDPDF to the MS scheme
[138]. The conversion is necessary since the quasi-TMDPDF will be matched
to the light-cone TMDPDF, see section 5.7, and the corresponding factoriza-
tion formula is only valid in the MS scheme.

The perturbative result h̃⊥,MS
1,pert.(z0, b⊥,0, Pz = 0, µ) on the r.h.s. of eq.

(3.38) is given by [138]1

h̃⊥,MS
1,pert.(z0,b⊥,0, Pz = 0, µ) = 1 + αSCF

2π

{1
2 + 3γE − 3 ln 2

+ 3
2 ln

[
µ2
(
b2

⊥,0 + z2
0

)]
− 2 z0

b⊥,0
arctan z0

b⊥,0

}
+ O(α2

S).
(3.39)

Short scales z0 and b⊥,0 have to be chosen in order for perturbation theory
to be valid. After conversion to the MS scheme, the dependence of the
renormalized quasi-TMDPDF h̃⊥,MS

1 (z, b⊥, Pz, z0, µ) in eq. (3.37) on b⊥,0 is
canceled, while a dependence on the renormalization scale µ is introduced.

1The calculation in [138] was carried out for the zero-momentum matrix element with
gamma structure Γ = γt, giving a result which is independent of the external hadron
state. At present, perturbative calculations are performed within LPC to verify that the
expression in eq. (3.39) is also valid for Γ = γ1γ3.
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After converting the renormalized quasi-TMDPDF in MS scheme to mo-
mentum space using a Fourier transformation with respect to z, the quasi-
TMDPDF satisfies the following RGE [9, 139, 140]

µ2 d

dµ2 ln h̃⊥,MS
1 (x, b⊥, µ, ζz) = γF (αs (µ)) , (3.40)

with γF being the anomalous dimension for the heavy-light quark current
[141, 142, 143]. In eq. (3.40), the explicit dependence on z0 is dropped, and
the dependence on the momentum Pz is replaced by a dependence on the
Collins-Soper scale ζz = (2xPz)2.

Renormalization group resummation2

The perturbative expression for the zero-momentum matrix element in eq.
(3.39) fulfills the renormalization group equation [39]

dh̃⊥,MS
1,pert.(z0, b⊥,0, 0, µ)

d log µ = γF (αs(µ))h̃⊥,MS
1,pert.(z0, b⊥,0, 0, µ), (3.41)

leading to logarithmic terms of the form log
[
µ2
(
b2

⊥,0 + z2
0

)
e2γE/4

]
being

present up to all orders in perturbation theory in h̃⊥,MS
1,pert.. Depending on the

values of µ and the short scales b⊥,0 and z0, the logarithmic terms become
relevant, and resumming them can improve the accuracy of the perturbative
result. The renormalization group resummation (RGR) is carried out by
solving eq. (3.41), leading to

h̃⊥,MS,RGR
1,pert. (z0, b⊥,0, 0, µ) = h̃⊥,MS

1,pert.(z0, b⊥,0, 0, µ) exp
[∫ αs(µ)

αs(µ0)
dα′γF (α′)

β (α′)

]
,

(3.42)
with h̃⊥,MS

1,pert.(z0, b⊥,0, 0, µ) being the fixed-order result given in eq. (3.39)
and the physical scale µ0 that is chosen during resummation. The one-loop,
or next-to-leading order (NLO), expressions for the anomalous dimension
γF (αs) of the heavy-light quark current and beta function β(αs) are given by

γF (αs) = γ0αs + γ1α
2
s

β(αs) = β0α
2
s + β1α

3
s.

(3.43)

2The work regarding renormalization group resummation which is presented in this the-
sis was done in close collaboration with Yushan Su, who also developed code for extracting
the NLO logarithmic divergence factors with RGR. The results which are presented in sec-
tion 5.4.3 are produced with code that the author has written, that was double-checked
against Yushan Su’s code.
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For obtaining the resummed renormalization factors presented in section
5.4.3, the coefficients γ0, γ1 from [144] and β0, β1 from [145] are used.

Since the logarithmic divergence factor in the short distance ratio scheme
is obtained using expressions from both lattice QCD and continuum pertur-
bation theory, the following two conditions have to be satisfied for (3.38)
giving a valid renormalization factor [41]:

• z0, b⊥,0 ≪ 1
ΛQCD

• b⊥,0 ≳ a.

The first condition ensures that b⊥,0 and z0 are UV scales for perturbation
theory to be valid and the second condition is needed so that the dependence
of the lattice object on b⊥,0 and z0 can be described by continuum theory.
When both conditions are satisfied, the logarithmic divergence factor should
only mildly depend on those short scales.

A consistency check is to extract ZO(z0, b⊥,0, a, µ) with different values of
b⊥,0 and z0 and try to identify a window where the divergence factor is almost
constant. Such a study is shown in section 5.4.3, where the renormalization
factors are extracted for various CLS ensembles with and without using RGR
for the perturbative expression for the zero-momentum matrix element at
NLO.

3.5.3 Momentum evolution equation for quasi-TMD-
PDFs

In contrast to light-cone TMDPDFs, whose rapidity divergences were dis-
cussed in 3.4.2, quasi-TMDPDFs do not suffer from rapidity divergences,
since no light-like gauge links are involved in their definitions. Instead of re-
quiring a separate rapidity regulator as in the light-cone case, the momentum
Pz can be viewed as an off-light-cone regulator for the quasi-TMDPDF.

When considering the momentum evolution equation for the quasi-TMD-
PDF h̃⊥,MS

1 [9, 139, 140]

Pz
d

dPz
ln h̃⊥,MS

1 (x, b⊥, µ, ζz) = K(b⊥, µ) + G
(
P 2
z

µ2

)
, (3.44)

its similarity to the rapidity evolution equation of the light-cone TMD-
PDF in eq. (3.31), also called Collins-Soper evolution equation, is apparent.
In eq. (3.44), K(b⊥, µ) is the Collins-Soper kernel, which is independent of
the rapidity regularization scheme. The perturbative term G

(
P 2

z

µ2

)
exists only

in the off-light-cone scheme.
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From eq. (3.44), it is obvious that in order to account for the Pz-
dependence of the quasi-TMDPDF,K(b⊥, µ) has to be included in the match-
ing to the light-cone TMDPDF at rapidity scale ζ. The non-perturbative
Collins-Soper kernel can be calculated on the lattice by considering ratios
of quasi-TMDPDFs [146], quasi-TMD wave functions [36, 147] or ratios of
Mellin moments of quasi-TMDPDFs [35] at different hadron momenta Pz.
At small b⊥, the Collins-Soper kernel can also be reliably determined from
global fits of Drell-Yan and SIDIS data [148, 149].

3.5.4 Off-light-cone soft function
In order for the matching between the quasi-TMDPDF and the light-cone
TMDPDF to be valid, rapidity regularization scheme dependence also has
to be considered. When using the same scheme for the unsubtracted light-
cone TMDPDF and the soft function, the renormalized TMDPDF, which is
defined in eq. (3.29), does not depend on the rapidity regularization scheme.
In contrast, the renormalized quasi-TMDPDF in eq. (3.37) uses the mo-
mentum Pz as an off-light-cone regulator and thus is scheme dependent. To
remove this dependence on the rapidity regularization scheme, a Euclidean
formulation of the soft function in the same off-light-cone scheme is crucial.
This TMD soft function can be extracted using lattice QCD as a form factor
of a boosted heavy-quark pair [150] or using a light meson form factor and a
quasi-TMD wave function [150, 36, 40]. It is also possible to perturbatively
calculate the off-light-cone soft function [151].

At large rapidities, the off-light-cone soft function can be written as [140]

S(b⊥, µ, Y, Y
′) = e(Y+Y ′)K(b⊥,µ)+D(b⊥,µ) + ..., (3.45)

where the rapidities of the off-light-cone vectors are denoted by Y and
Y ′. K(b⊥, µ) is the rapidity regularization scheme independent Collins-Soper
kernel, which also occurs in the momentum evolution equation of the quasi-
TMDPDF given in eq. (3.44), whereas D(b⊥, µ) is the rapidity independent
but scheme dependent part. From this, the reduced soft function is defined
as

Sr(b⊥, µ) ≡ e−D(b⊥,µ). (3.46)

In the matching formula between the quasi-TMDPDF and the light-cone
TMDPDF, the square root of the intrinsic soft function is used to cancel the
dependence on the rapidity regularization scheme, as will be discussed in the
following section 3.5.5.
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3.5.5 Matching of quasi-TMDPDF to light-cone TMD-
PDF

After extracting the quasi-TMDPDF, which was introduced in section 3.5.1,
from the lattice using equal-time matrix elements containing a staple-shaped
Wilson link, renormalizing the quasi-TMDPDF as described in section 3.5.2,
and performing a Fourier transformation to momentum space, the quasi-
TMDPDF can be matched to the light-cone.

As argued in sections 3.5.3 and 3.5.4, matching to the light-cone has
to include the Collins-Soper kernel K(b⊥, µ) and the reduced soft function
Sr(b⊥, µ). The difference between the regularization scheme independent
combination of the renormalized quasi-TMDPDF with the square root of the
reduced soft function, and the light-cone TMDPDF evolved to the desired
rapidity scale ζ using the Collins-Soper evolution equation, can be calculated
perturbatively, leading to the following factorization formula [140, 66]

h̃⊥,MS
1 (x, b⊥, µ, ζz)

√
Sr(b⊥, µ) = H

(
ζz
µ2

)
eK(b⊥,µ) 1

2 ln( ζz
ζ )

× h⊥′

1 (x, b⊥, µ, ζ) + O
(

Λ2
QCD

ζz
,
M2

ζz
,

1
b2

⊥ζz

)
.

(3.47)

Power-corrections are collected in the last term. The perturbative match-
ing kernel H

(
ζz

µ2

)
often is written in exponential form as H = eh. At NLO,

the kernel reads [151, 152, 66]

h(1)
(
ζz
µ2

)
= αsCF

2π

(
−2 + π2

12 + ln ζz
µ2 − 1

2 ln2 ζz
µ2

)
. (3.48)

As seen from eq. (3.48), the light-cone quantity h⊥′
1 (x, b⊥, µ, ζ) does not

include any dependence on the momentum Pz. The convergence of the results
for the light-cone Boer-Mulders function with Pz is studied in section 5.7.3.

After matching the quasi-TMDPDF h̃⊥,MS
1 (x, b⊥, µ, ζz) to the light-cone

in eq. (3.47), when considering the decomposition of the TMD correlator in
position space given in eq. (3.33), one obtains the quantity

h⊥′

1 (x, b⊥, µ, ζ) ≡ b⊥m · h⊥
1 (x, b⊥, µ, ζ). (3.49)

Thus, dividing the light-cone quantity h⊥′
1 by the transverse separation

b⊥ and hadron mass m is necessary to extract the Boer-Mulders function h⊥
1 .

Note that the factor of i appearing in eq. (3.33) cancels with the additional
factor of i being present in the TMD correlator in eq. (3.33) in comparison
with the gamma structure Γ = γ1γ3 used in this work, see section 5.2.2.
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Chapter 4

LaMET calculations for the
isovector quark transversity
PDF of the nucleon

After giving a short theoretical introduction to parton distribution functions
in chapter 3.1 and transverse momentum dependent parton distribution func-
tions in chapter 3.4, and presenting large-momentum effective theory as a
method to obtain those distribution functions from the lattice, see chapters
3.2, 3.3 and 3.5, the focus will now lie on the practical calculations to extract
PDFs and TMDPDFs with LaMET.

The subject of this chapter is the lattice QCD calculation of the isovector
quark transversity distribution δu(x)−δd(x) of the nucleon in the continuum
and physical mass limit with LaMET. The terms nucleon and proton are used
interchangeably in the following sections, since the nucleon interpolators will
be defined with the quark content of the proton in eq. (4.1). The calculation
of δu(x) − δd(x) is published in [42]. The author of this thesis is one of the
main authors of [42], and the project was done in close collaboration with
the co-authors. The figures from [42] are taken over with small alterations.

4.1 Gauge ensembles and setup
The CLS gauge ensembles used in the calculation of the quark transver-
sity PDF have been shown in tab. 2.1. These ensembles use the tree-level
improved Lüscher-Weisz gauge action and O(a)-improved Wilson fermion ac-
tion with Nf = 2 + 1 flavors, as introduced in chapter 2.2.2. Four different
lattice spacings a = {0.098, 0.085, 0.064, 0.049}fm and multiple pion masses
between 222 MeV and 354 MeV are employed in order to facilitate a controlled
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extrapolation to the continuum and to physical pion mass, see section 4.7.2.
Proton momenta up to 2.83 GeV enable taking the infinite momentum limit,
which is crucial when working with LaMET.

From each gauge ensemble, 500 configurations are used in the calcula-
tions, with the exception of X650, where 1500 configurations are utilized.
For the extraction of the zero-momentum matrix elements, which naturally
show a larger signal-to-noise ratio compared to non-zero-momentum data, a
smaller set of configurations is used for some ensembles, consisting of 350
configurations for H102 and 100 configurations for H105 and N203.

In order to improve the signal-to-noise ratio, two steps of APE smoothing
(see 2.3.2) are applied to the gauge fields, as well as momentum smearing of
the quark fields, as was discussed in 2.3.2.

4.2 Correlation functions
To extract the matrix element h̄(z, Pz, 1/a), which is included in the quasi-
PDF definition in eq. (3.6), from the lattice, correlation functions have to
be computed. To establish the correlation functions needed for the isovector
quark transversity PDF of the proton, the proton interpolators are defined
as follows [47]

NP (x) = ϵabcua(x)
(
ub(x)TCγ5dc(x)

)
N P (x) = ϵa′b′c′

(
ūb′(x)Cγ5d̄c′(x)T

)
ūa′(x),

(4.1)

where up and down quarks are represented by u(x) and d(x), respectively,
and x = (x⃗, t). The proton quark content is used to form the gauge-invariant
interpolators, which are color singlets. The terms in brackets form so-called
diquarks, using the charge conjugation matrix C, and the transposition acts
on the Dirac indices. The interpolators exhibit one open Dirac index, which
is not made explicit in eq. (4.1).

The proton interpolators defined in eq. (4.1) annihilate or create all states
which have the same quantum numbers as the proton. Using these interpo-
lators, the two-point and three-point correlation functions can be defined,
both of which are necessary to extract the isovector quark transversity PDF
of the proton from the lattice.

4.2.1 Two-point correlation function
For the two-point correlation function, a proton is created at space-time point
xsrc = (x⃗src, tsrc) and annihilated at space-time point xsnk = (x⃗snk, tsnk). With
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(a) Setup for the two-point function.

ψ

ψ

W

(b) Setup for the three-point function.

Figure 4.1: Simplified illustration of the lattice setup for calculating
the two-point function C2pt(Pz, tsep) (4.1a) and the three-point function
C3pt,Γ(Pz, tins, tsep, z) (4.1b) on the lattice. The nucleon source and sink carry
momentum Pz in z-direction. Quark propagators are depicted by blue lines,
while quark flavors are not made explicit. Fig. 4.1b: The sequential method
[59] is applied to calculate the shaded quark propagator. The inserted quark
and antiquark fields separated by z and the Wilson line connecting them are
shown in green.

the proton interpolators defined as in (4.1), and using the parity projector
P+ = 1

2(1 + γ4) to project onto positive parity, the two-point correlation
function is written as

C2pt(Pz, tsep) = a3P+
∑
x⃗snk

e−ip⃗·(x⃗snk−x⃗src)⟨NP (xsnk)N P (xsrc)⟩, (4.2)

where the momentum p⃗ is fixed by the Fourier transformation, and p⃗ =
(0, 0, Pz) only has a non-zero spatial component in z-direction. The two-point
function thus depends on Pz and on the temporal separation tsep = tsnk − tsrc
of the source and the sink. Setting tsrc = 0 is possible due to translational
invariance and aids to simplify the following calculations.

A simplified illustration of the nucleon two-point function setup on the
lattice is shown in fig. 4.1a. The nucleon source and sink carry momentum
Pz in z-direction. Quark flavors are not specified, since different contractions
lead to different types of diagrams. The contractions which are necessary for
the calculation of C2pt(Pz, tsep) are found using Wick’s theorem.
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Wick contractions Using Wick’s theorem, the two-point correlation func-
tion can be expressed in terms of quark propagators:

C2pt(Pz, tsep) = a3P+
∑
x⃗snk

e−ip⃗·(x⃗snk−x⃗src)ϵabcϵa′b′c′(Cγ5)βγ(Cγ5)β
′γ′

×Dγγ′

cc′ (xsnk, xsrc)
(
Uαβ′

ab′ (xsnk, xsrc)Uβα′

ba′ (xsnk, xsrc)

− Uαα′

aa′ (xsnk, xsrc)Uββ′

bb′ (xsnk, xsrc)
)
,

(4.3)

with U(xsnk, xsrc) and D(xsnk, xsrc) being the up and down quark propa-
gators for propagation from the source at position xsrc to the sink at position
xsnk. The propagators U = (Du)−1 and U = (Du)−1 are the inverse of the
Wilson Dirac operators introduced in eq. (2.15). Details about the calcula-
tion of quark propagators on the lattice can be found in section 2.3.1. For
the calculations in this project, the Chroma software suite [153] was used,
combined with a multigrid solver [57, 58] for inverting the Dirac operator.
Additional code needed to calculate the PDF matrix elements was developed
by Peng Sun and Xiaonu Xiong. The lattice calculations were performed at
the University of Regensburg using the high-performance computer Athene,
at the Leibniz Supercomputing Center with SuperMUC-NG, and at the High
Performance Computing Center of Central South University in Changsha,
China.

The propagator evaluations and contractions in eq. (4.3) are performed on
the gauge configurations of the ensembles of interest, see 2.1 for the ensemble
parameters. The proton momenta Pz and number of measurements on each
configuration are summarized in tab. 4.1.

To obtain the mean and error estimate for the proton two-point function,
statistical methods can be applied, see 2.3.3. In this project, binning with bin
size 5 is used for X650, while for the other ensembles the data is not binned.
Bootstrap resampling with 4000 samples is used to estimate the statistical
errors.

Spectral decomposition When inserting a full set of states

1 =
∑
n

1
2En

|n⟩⟨n| (4.4)

between the two interpolators in the two-point correlation function in eq.
(4.2), using translational invariance and inserting Euclidean time evolution
and space translation operators acting on the interpolators, the two-point
function can be expressed as
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Ensemble Pz[GeV] tsep/a zmax/a Nmeas./Nconf.

X650 {0, 1.84, 2.37, 2.63} {5, 7, 9} 18
1 (run 1)

2 (run 2)

H102 {0, 1.82, 2.27, 2.73} {7, 8, 9} 20 2

H105 {0, 1.82} {7, 8, 9} 20 2

C101 {0, 1.82} {6, 7, 8, 9} 20 2

N203 {0, 1.62, 2.02, 2.42, 2.83}
{10, 11, 12

13

14, 15}

30
4

8

16

N302 {0, 2.09, 2.62}
{10, 12

14

16, 18}

30
4

8

16

Table 4.1: Proton momenta Pz, source-sink separations tsep/a, maximum in-
sertion quark field separation zmax/a and number of measurements per con-
figuration for the ensembles used in the calculation for the quark transversity
PDF in the proton.

49



C2pt(Pz, tsep) = P+
∑
n

e−Entsep

2En
⟨Ω|NP |n⟩⟨n|N P |Ω⟩

∝ e−E0tsep
(
1 + O

(
e−∆Etsep

))
.

(4.5)

The proton interpolators NP = NP (⃗0, 0), N P = N P (⃗0, 0) are located at
space-time origin. The energy of the vacuum state |Ω⟩ is set to EΩ = 0. The
approximation in eq. (4.5) assumes a large source-sink separation tsep so that
the state with the lowest energy E0, which is the proton ground state, exhibits
the largest contribution in the spectral decomposition. Excited states are
suppressed exponentially at large tsep and are taken into account by the term
containing ∆E = E1 − E0.

Dispersion relation The proton ground and excited state energies depend
on the momentum of the proton. To extract the ground state energy E0, a
fit of the two-point correlation function with the following two-state fit form,
motivated by the spectral decomposition in eq. (4.5), is performed:

C2pt(Pz, tsep) = c4(Pz)e−E0(Pz)tsep(1 + c5(Pz)e−∆E(Pz)tsep). (4.6)

The two-point function is fitted for every ensemble and proton momentum
Pz, and the validity of the continuum dispersion relation

E(p⃗) =
√
m2 + p⃗2 (4.7)

with hadron mass m is tested by fitting the extracted energies E0(Pz)
with

E0(Pz) =
√
m2 + c1P 2

z + c2a2P 4
z , (4.8)

where m = E(Pz = 0). The term which is quadratic in the lattice spac-
ing parametrizes the discretization error. The fit results for the dispersion
relation on each ensemble are shown in fig. 4.2, where the error bands are
determined by fitting E0(Pz) with eq. (4.8) for each bootstrap sample and
estimating the uncertainty as described in section 2.3.3. The fitted energies
agree with the dispersion relation within 3σ.

4.2.2 Three-point correlation function
In order to extract the matrix element h̃(z, Pz, 1/a) from the lattice, a three-
point correlation function has to be evaluated in addition to the two-point
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Figure 4.2: Dispersion relation on ensembles X650, H102, N203, N302 with
roughly same pion mass of mπ ≈ 340 MeV (left panel) and on ensembles
H102, H105, C101 with same lattice spacing a = 0.085 fm (right panel) [42].

function defined in eq. (4.2). To obtain the three-point correlator, a proton
is created at xsrc, a non-local current of the form

OΓ(x, z) =ūa′′(x)ΓW (xz, xz + z)ua′′(x+ zn̂z)
− d̄a′′(x)ΓW (xz, xz + z)da′′(x+ zn̂z)

(4.9)

is inserted at xins = (x⃗ins, tins), and the proton is destroyed at xsnk. The
separation of the quark fields in z-direction is denoted as z. The fields are
connected with a gauge link W (xz, xz + z) in z-direction to ensure gauge
invariance. For the extraction of the isovector quark transversity PDF, the
isovector combination is used in the inserted current and the gamma structure
is chosen as Γ = γtγ⊥γ5 with ⊥= x.

The three-point function is then defined as

C3pt,Γ(Pz, tins, tsep, z) = a6P⊥
∑

x⃗snk,x⃗ins

e−ip⃗·(x⃗snk−x⃗src)

× ⟨NP (xsnk)OΓ(xins, z)N P (xsrc)⟩
, (4.10)

with P⊥ = −1(γ2γ3 + γ1γ5)/2 being the polarization operator for trans-
verse polarization in x-direction. A signal for the three-point correlation
function is only given for operator insertion times between the temporal po-
sitions of source and sink, i.e. tsrc < tins < tsnk.

A simplified illustration of the lattice setup for calculating the nucleon
three-point function C3pt,Γ(Pz, tins, tsep, z) is shown in fig. 4.1b. The nucleon
source and sink carry momentum Pz in z-direction. The sequential method
[59], see section 2.3.1, is applied to calculate the shaded quark propagator.
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The inserted quark and antiquark fields with longitudinal separation z in
z-direction are depicted in green with a gauge link connecting them. Quark
flavors are not made explicit, since different types of diagrams result from
the Wick contractions.

Wick contractions Analogously to the two-point function, the three-point
function can be expressed using quark propagators by applying Wick’s the-
orem. The expression for the isovector case is derived by considering the up
and down quark current insertion separately.

Starting with the up quark insertion, i.e. inserting the non-local current

OΓ,u(x, z) = ū′′
a(x)ΓW (xz, xz + z)u′′

a(x+ zn̂z) (4.11)

in the three-point function

Cu
3pt,Γ(Pz, tins, tsep, z) = a6P⊥

∑
x⃗snk,x⃗ins

e−ip⃗·(x⃗snk−x⃗src)ϵabcϵa′b′c′

× (Cγ5)βγ(Cγ5)β
′γ′

⟨uαa (xsnk)uβb (xsnk)dγc (xsnk)d̄α′′

a′′ (xins)Γ
×W (zsnk, zsrc)dα

′′

a′′ (xins + zn̂z)ūβ
′

b′ (xsrc)d̄γ
′

c′ (xsrc)ūα
′

a′ (xsrc)⟩,

(4.12)

and performing the Wick contractions, leads to

Cu
3pt,Γ(Pz, tins, tsep, z) = a6P⊥

∑
x⃗snk,x⃗ins

e−ip⃗·(x⃗snk−x⃗src)ϵabcϵa′b′c′(Cγ5)βγ(Cγ5)β
′γ′

×Dγγ′

cc′ (xsnk, xsrc)

×
(
Uαα′′

aa′′ (xsnk, xins)ΓW (zsnk, zsrc)Uα′′β′

a′′b′ (xins + zn̂z, xsrc)Uβα′

ba′ (xsnk, xsrc)

+ Uαβ′

ab′ (xsnk, xsrc)Uβα′′

ba′′ (xsnk, xins)ΓW (zsnk, zsrc)Uα′′α′

a′′a′ (xins + zn̂z, xsrc)
− Uαα′′

aa′′ (xsnk, xins)ΓW (zsnk, zsrc)Uα′′α′

a′′a′ (xins + zn̂z, xsrc)Uββ′

bb′ (xsnk, xsrc)
− Uαα′

aa′ (xsnk, xsrc)Uβα′′

ba′′ (xsnk, xins)ΓW (zsnk, zsrc)Uα′′β′

a′′b′ (xins + zn̂z, xsrc)

+ disconnected contributions
)
.

(4.13)

In the case of eq. (4.13), where a non-local operator has been inserted,
disconnected contributions consist of quark propagators which describe prop-
agation from xins to xins + zn̂z, i.e. they start and end at the same tins. Since
isospin symmetry is used, i.e. mu = md, propagators for up and down quark
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do not differ from each other, and those contributions cancel when calculat-
ing the isovector combination. The Wick contractions for the down quark
insertion with the non-local current

OΓ,d(x, z) = d̄′′
a(x)ΓW (xz, xz + z)d′′

a(x+ zn̂z) (4.14)
are performed analogously, but contain less terms, since for the proton

there is only one d quark line where the current can be inserted. The resulting
three-point function expressed in terms of quark propagators is

Cd
3pt,Γ(Pz, tins, tsep, z) = a6P⊥

∑
x⃗snk,x⃗ins

e−ip⃗·(x⃗snk−x⃗src)ϵabcϵa′b′c′(Cγ5)βγ(Cγ5)β
′γ′

×Dγα′′

ca′′ (xsnk, xins)ΓW (zsnk, zsrc)Dα′′γ′

a′′c′ (xins + n̂z, xsrc)

×
(
Uαβ′

ab′ (xsnk, xsrc)Uβα′

ba′ (xsnk, xsrc) − Uαα′

aa′ (xsnk, xsrc)Uββ′

bb′ (xsnk, xsrc)
)

+ disconnected contributions.
(4.15)

The isovector three-point function is constructed as

Cu−d
3pt,Γ(Pz, tins, tsep, z) = Cu

3pt,Γ(P z, tins, tsep, z) −Cd
3pt,Γ(P z, tins, tsep, z). (4.16)

The source-sink separations tsep/a and maximum separation zmax/a of
the inserted quark fields used for the calculation of Cu−d

3pt,Γ(Pz, tins, tsep, z) on
various gauge ensembles are listed in tab. 4.1. For the ensembles N203 and
N302 with smaller lattice spacings, the number of measurements is increased
for large source-sink separations to achieve a better signal-to-noise ratio.

Spectral decomposition Similar as for the two-point function, the spec-
tral decomposition can be performed for the three-point function defined in
eq. (4.10) by inserting two full sets of states:

C3pt(Pz, tins, tsep, z) = P⊥
∑
n,m

e−Entsepe−(Em−En)tins

4EnEm
× ⟨Ω|NP |n⟩⟨n|OΓ|m⟩⟨m|NP |Ω⟩.

(4.17)

When defining overlap factors as

An = ⟨|Ω|NP |n⟩,A∗
n = ⟨n|NP |Ω⟩, (4.18)
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and considering one generic excited state in addition to the proton ground
state, i.e. setting n = 0, 1 and m = 0, 1, the three-point correlation function
becomes

C3pt(Pz, tins, tsep, z) =|A0|2⟨0|OΓ|0⟩e−E0tsep + |A1|2⟨1|OΓ|1⟩e−E1tsep

+ A0A∗
1⟨0|OΓ|1⟩e−E0(tsep−tins)e−E1tins

+ A1A∗
0⟨1|OΓ|0⟩e−E1(tsep−tins)e−E0tins

.

(4.19)

For simplicity, the polarization operator is dropped in eq. (4.19). The
energies in eq. (4.17) and eq. (4.19) exhibit a dependence on Pz, which is
not made explicit.

4.3 Extraction of the ground state matrix el-
ement

The ground state matrix element necessary to extract the proton’s isovec-
tor quark transversity PDF is denoted by ⟨0|OΓ|0⟩ in (4.19), and is equal
to h̄(z, Pz, 1/a) in the definition of the quasi-PDF in eq. (3.6). To access
h̄(z, Pz, 1/a) from the two-point and three-point function data, the ratio

RΓ(Pz, tins, tsep, z) = C3pt(Pz, tins, tsep, z)
C2pt(Pz, tsep) (4.20)

is evaluated and a combined fit with the two-point function is performed.
The fit function to approximate C2pt(Pz, tsep) is given in (4.6), and the two-
state fit function for the ratio RΓ(Pz, tins, tsep, z) can be derived by considering
the spectral decomposition of the two- and three-point functions:

RΓ(Pz, tins, tsep, z) =
c0 + c1

[
e−∆E(tsep−tins) + e−∆Etins

]
+ c3e

−∆Etsep

1 + c5e−∆Etsep
. (4.21)

The ground state matrix element h̄(z, Pz, 1/a) is denoted by c0 in eq.
(4.21), where for better readability the dependence of the fit parameters
c0, c1, c3, c5 and ∆E on the lattice spacing a, momentum Pz and longitudinal
distance z is not made explicit. Note that the fit of RΓ(Pz, tins, tsep, z) is
performed for each value of z individually, leading to the z-dependence of all
parameters. The dependence of c5 and ∆E on z is only weak, since those
parameters are mainly fixed from the two-point function due to its data
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Figure 4.3: Examples for fitting the ratio RΓ(Pz, tins, tsep, z) to extract the
ground state matrix element h̄(z, Pz, 1/a). Shown are the results for the
real part of RΓ(Pz, tins, tsep, z) for the ensemble H102 with momenta Pz =
{0, 1.82, 2.27, 2.73}GeV and z = {0, 8}a [42].

points having smaller errors and hence larger weights when constructing χ2,
see section 2.3.4.

To suppress excited state contributions, the source-sink separations tsep
have to be as large as possible. However, the signal-to-noise ratio decays
with increasing tsep. To check whether excited state contamination is under
control, the matrix elements were fitted with different sets of source-sink
separations, leading to results that are consistent in statistical errors.

An example for fits of the ground state matrix element is shown in fig. 4.3,
where fits of the real part of the ratio RΓ(Pz, tins, tsep, z) are depicted for the
ensemble H102 with momenta Pz = {0, 1.82, 2.27, 2.73}GeV and z = {0, 8}a.
Due to increased errors of the ratio RΓ(Pz, tins, tsep, z) for larger source-sink
separations tsep, these data points have less impact on the fits.

Since the fits performed to extract the ground state matrix element take
correlations into account by minimizing χ2 as defined in eq. (2.40), χ2/d.o.f.
is a measure of the fit quality. Fig. 4.4 shows the histogram distribution of
χ2/d.o.f. for all combined two-state fits of the ratio RΓ(Pz, tins, tsep, z) and
the two-point function C2pt(Pz, tsep). The distribution from combining all
ensembles is depicted in addition to plotting the histograms for each ensemble
individually. The distributions are normalized so that the area underneath
each curve is 1. The values of χ2/d.o.f. are close to 1, indicating a high fit
quality, see section 2.3.4.

55



0.4 0.6 0.8 1. 1.2 1.4 1.6

0

1

2

3

4

5

0. 0.2 0.4 0.6 0.8 1.

0.

0.2

0.4

0.6

0.8

1.

Figure 4.4: Histograms of the χ2/d.o.f. of all combined two-state fits of ratio
and two-point function to extract the ground state matrix elements. The
distributions are shown for all ensembles individually, as well as combined,
and are normalized so that the area underneath each curve is 1 [42].

4.4 Nucleon isovector tensor charge
As a consistency check, the isovector nucleon tensor charge gT is extracted
from the bare matrix elements obtained in this work. The tensor charge is
equal to the first Mellin moment of the transversity PDF and can be written
as

gT ≡ guT − gdT = ZT
⟨PS⊥|ū(0)γtγ⊥γ5u(0) − d̄(0)γtγ⊥γ5d(0)|PS⊥⟩

⟨PS⊥|PS⊥⟩
, (4.22)

where the bare local matrix elements were extracted as described in the
previous section. The renormalization factors ZT are calculated in [82] for
all CLS ensembles used in this project, except for X650, which in turn is
excluded from the determination of gT . Since the definition of gT is Lorentz-
invariant, local matrix elements with zero-momentum as well as non-zero
momenta are included in the extraction of gT . The non-zero momenta used
to obtain gT are Pmax

z = 2.73 GeV for H102, Pmax
z = 1.82 GeV for H105,

Pmax
z = 1.82 GeV for C101, Pmax

z = 2.83 GeV for N203 and Pmax
z = 2.62 GeV

for N302 .
The resulting values g̃T (a,mπ, Pz) are extrapolated to the continuum and

physical pion mass with [82]

g̃T (a,mπ, Pz) = ḡT + c1m
2
π + c2m

2
π,phys lnmπ,phys + c3a

2 + c4a
2P 2

z . (4.23)
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The term a2P 2
z is included to account for discretization effects from the

matrix elements with non-zero momenta. The extrapolated result is

gT = ḡT + c1m
2
π + c2m

2
π,phys lnmπ,phys, (4.24)

and is given by gT = 1.018(68) in this work. The result is in good
agreement with the Mainz19 [82], FLAG21 [85] result of gT = 0.965(61) and
recent results from other groups [86, 84, 83].

4.5 Renormalization in the hybrid scheme1

After obtaining the bare ground state matrix elements h̄(z, Pz, 1/a) by fit-
ting two-point and three-point correlation functions, the matrix elements
are renormalized non-perturbatively in the hybrid scheme like described in
section 3.3.2. As in eq. (3.14), the bare matrix elements are renormalized
separately for short and long distances z. For short distances |z| < zs, the in-
verse of the bare proton matrix elements at Pz = 0 is used as renormalization
factor, combined with normalization with the local bare matrix element. The
distance zs separating short and long distances is chosen as zs = 0.3 fm and
varied down to a value of zs = 0.18 fm to include systematic uncertainties
from the choice of zs.

Renormalization factors for short distances
The bare matrix elements h̄(z, Pz = 0, 1/a), whose inverse is used for renor-
malization at short distances, are shown in fig. 4.5 for the gauge ensembles
X650, H102, N203 and N302. The imaginary parts are consistent with zero.

Renormalization factors for long distances
To renormalize the matrix elements at long distances |z| > zs, the self renor-
malization factor ZR(z, 1/a), which was introduced in eq. (3.16), is extracted.
In order to better follow the steps of the calculation, the reader is reminded
of the definition of ZR(z, 1/a):

ZR(z, 1/a) = h̃(z, 1/a)
h̃R(z)

h̃R(z) = exp[g(z) −m0z] = exp[g0(z)],
(4.25)

1The renormalization in this section was performed within LPC, mainly by Fei Yao,
and is presented for completeness.
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Figure 4.5: Real and imaginary parts of the bare matrix elements at Pz = 0
for the gauge ensembles X650, H102, N203 and N302 [42].

where the normalization h̃(z, Pz, 1/a) = h̄(z, Pz, 1/a)/h̄(z = 0, Pz, 1/a) is
used. The self renormalization factor is determined in two steps, where in
the first step g(z) is obtained by fitting the a-dependence of the bare nucleon
transversity matrix elements in the rest frame with the functional form given
in eq. (3.17) for different values of z. Fig. 4.6 shows the lattice data for the
bare matrix elements at Pz = 0 at various values of z and different lattice
spacings, as well as the fit result from fitting with eq. (3.17). The result
for the parameter k is k = 4.35(20) GeV−1 fm−1. In order to include higher-
order perturbative effects and remaining lattice artifacts, d and ΛQCD are
also treated as fit parameters [95]. The parameter ΛQCD is tuned for the
best fit and set to ΛQCD = 0.1 GeV. Since the parameter d is tuned in the
second step of the self renormalization procedure, its value is not quoted at
this point. Using eq. (3.17), g(z) is obtained.

The second step in the self renormalization process is the determination
of m0. Due to the condition g(z) − logZMS(z) = m0z from eq. (3.19), m0
can be obtained by subtracting the continuum short distance perturbative
renormalization factor in the MS scheme from g(z) and fitting with m0z+ b.
By tuning d in eq. (3.17), |b| is minimized. The fit for the determination of
m0 is depicted in fig. 4.7, where the data points g(z) − logZMS(z) as well
as the fit result from fitting with m0z + b are shown in the small-z region.
The resulting parameters are m0 = 0.560(85) fm−1, d = −0.066(70) and
b = −0.0015(140).

To show that the renormalized matrix element h̃R(z) is equal to the con-
tinuum perturbative MS result ZMS(z) at short distances z, both quantities
are plotted in fig. 4.8. The renormalized lattice matrix elements at Pz = 0
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Figure 4.6: Fit of the bare nucleon transversity matrix elements at Pz = 0
with eq. (3.17). The bare matrix elements from the lattice calculation at
different lattice spacings and values of z are represented by colored data
points. The fit result with parameters k = 4.350(20) GeV−1 fm−1 and ΛQCD =
0.1 GeV is shown as blue bands [42].
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Figure 4.7: Fit for determination of m0. The red data points are g(z) −
logZMS(z), and the blue band shows the fit with m0z + b. The resulting fit
parameters are m0 = 0.560(85) fm−1, d = −0.66(7) and b = −0.0015(140)
[42].
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Figure 4.8: Renormalized lattice matrix element h̃R(z) =
h̃(z, 1/a)/ZR(z, 1/a) at zero momentum for various lattice spacings
and values of z, depicted as colored points, together with a blue band
showing exp[g(z) − m0z] evaluated with the results of the fits described in
section 4.5. The perturbative one-loop result ZMS(z) is shown as dashed
line and agrees well with h̃R(z) at short distances, except for very small z,
where discretization effects gain importance [42].

are depicted for various lattice spacings, as well as exp[g(z)−m0z] evaluated
with the results of the fits described in this section, and ZMS(z) at one-loop.
The range of z in which zs is varied is shaded in blue. From the figure it is
evident that the renormalized matrix element agrees well with the continuum
MS result at short distances, except for very small z, where discretization
effects come into force.

Lattice results for renormalized quasi-LF correlations
After extracting the renormalization factors for short and long distances sep-
arately, the bare matrix elements can be renormalized. The renormalization
scale is chosen as µ = 2 GeV. The resulting renormalized quasi-LF correla-
tions for the ensembles X650, H102, N203 and N302 with almost equal pion
mass are shown in fig. 4.9 as a function of the quasi-LF distance λ = zPz.
Both real and imaginary parts of the renormalized matrix elements h̃R(λ, Pz)
are depicted for various values of the nucleon momentum Pz. As is appar-
ent from the figure, the convergence with increasing Pz is good. However,
excited-state contamination becomes more pronounced with increasing nu-
cleon momentum, leading to larger uncertainties. Due to substantial uncer-
tainties, especially compared to the other data sets, the Pz = 2.63 GeV data
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Figure 4.9: Real and imaginary parts of the renormalized matrix elements
h̃R(λ, Pz) at renormalization scale µ = 2 GeV as a function of the quasi-LF
distance λ = zPz. Shown are the ensembles X650, H102, N203 and N302
with nearly the same pion mass [42].
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Figure 4.10: Real and imaginary parts of the renormalized matrix elements
h̃R(λ, Pz) at renormalization scale µ = 2 GeV as a function of the quasi-LF
distance λ = zPz. The data is shown for the ensembles H102, H105 and
C101 with the same lattice spacing a = 0.085 fm. The nucleon momentum is
Pz = 1.82 GeV [42].

of X650 as well as Pz = 3.23 GeV data of N203 is excluded from the further
analysis.

To investigate the pion mass dependence of the renormalized quasi-LF
correlations, h̃R(λ, Pz) at Pz = 1.82 GeV is shown in fig. 4.10 for the ensem-
bles H102, H105 and C101 with pion masses of mπ = {354, 281, 222}MeV and
a = 0.085 fm. The renormalized results exhibit only a very minor dependence
on the pion mass.

4.6 Extrapolation for large quasi-LF distances
For matching the renormalized quasi-LF correlations to the light-cone, it is
necessary to perform a Fourier transformation to momentum space, which
requires h̃R(λ, Pz) at all distances λ. It is clearly visible in fig. 4.9 and fig.
4.10 that the errors of the renormalized quasi-LF correlations increase at
large λ. Fourier transforming the data after a simple truncation would lead
to unphysical oscillations in momentum space.

To circumvent this problem, the renormalized matrix elements calculated
on the lattice are supplemented with an extrapolation for large quasi-LF
distances λ. The extrapolation form [92]

h̃R(λ, Pz) =
[
c1

(iλ)a + e−iλ c2

(−iλ)b

]
e−λ/λ0 (4.26)

contains algebraic terms to reflect the power law behavior in the end point
region, as well as an exponential term accounting for the expected finite
correlation length λ0 at finite momentum. A large enough region λ ≥ λL
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Figure 4.11: Renormalized lattice matrix elements h̃R(λ, Pz) for N203 with
Pz = 1.63 GeV (blue data, left column) and Pz = 2.83 GeV (blue data, right
column) together with the results from extrapolating with eq. (4.26) (green
curves). The extrapolation shows good agreement with the lattice data in
the moderate-λ region and gives smooth curves with reduced errors in the
large-λ region [42].

with truncation value λL has to be selected in order to reliably determine
the extrapolation parameters c1, c2, a, b and λ0. Since the extrapolation is
performed individually for each lattice spacing, pion mass and momentum,
all parameters depend on a, mπ and Pz. For the sake of simplicity, these
dependencies are omitted in eq. (4.26).

As an example, fig. 4.11 shows the extrapolation of the renormalized
matrix elements h̃R(λ, Pz) for N203 at Pz = 1.63 GeV (left column) and
Pz = 2.83 GeV (right column). The truncation value is chosen as λL = 7
and varied down to λL = 4 for an approximation of the systematic error
from the fit with eq. (4.26). The extrapolation results agree well with the
renormalized lattice matrix elements in the region of moderately large λ and
yield a smooth curve with reduced errors in the large-λ region.

The extrapolation is expected to possibly alter the final PDF results in
the endpoint region with small and large x, which is conjugate to the large-λ
region [66]. However, this issue is currently not of large concern, since the
LaMET expansion breaks down in this region due to large power corrections,
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not allowing a reliable prediction anyways.

4.7 Light-cone proton isovector quark trans-
versity distribution

After the renormalized lattice matrix elements are supplemented with ex-
trapolated results for large distances λ, the quasi-LF correlations can be
Fourier transformed to momentum space, yielding quasi-distributions in x-
space. The light-cone transversity PDF δq(x, Pz, a,mπ) for different gauge
ensembles and proton momenta is then obtained by perturbative matching
with the one-loop matching kernel in the hybrid scheme given in eq. (3.21).

4.7.1 Dependence on proton momentum, pion mass
and lattice spacing

To picture the dependence of δq(x, Pz, a,mπ) on the proton momentum Pz,
fig. 4.12 shows the light-cone isovector transversity PDF of the proton for
the gauge ensembles X650, H102, N203 and N302 with various values of Pz.
The ensembles selected for display have almost equal pion mass. As can be
seen from the figure, the results exhibit a good convergence with increasing
momentum.

The pion mass dependence of the light-cone transversity PDF is investi-
gated by comparing δq(x, Pz, a,mπ) for the ensembles H102, H105 and C101
with a lattice spacing of a = 0.085 fm and Pz = 1.82 GeV in fig. 4.13a. The
dependence on the pion mass is found to be very mild, as the chosen data
sets are almost compatible within errors.

The lattice spacing dependence of δq(x, Pz, a,mπ) is explored in fig. 4.13b
by showing the light-cone transversity PDF for the ensembles X650, H102,
N203 and N302 with almost equal pion mass. As it is not possible to entirely
disentangle the a-dependence and Pz-dependence, the largest momentum Pz
which yields reasonably small errors is chosen for each ensemble. The en-
semble X650 (purple curve) with the coarsest lattice spacing does not show
good agreement with the other distributions, indicating the presence of dis-
cretization effects. With decreasing lattice spacing, the results converge, and
the transversity PDF for N203 (blue curve) and N302 (green curve) agrees
within error bars.
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Figure 4.12: Momentum dependence of the isovector quark transversity PDF
of the proton at renormalization scale µ = 2 GeV. Shown are the ensembles
X650 (upper left), H102 (lower left), N203 (upper right) and N302 (lower
right). Data which is excluded from further analysis due to large uncertainties
is indicated by grey bands [42].
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(a) Pion mass dependence [42].
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(b) Lattice spacing dependence [42].

Figure 4.13: Pion mass (4.13a) and lattice spacing (4.13b) dependence of
the isovector quark transversity PDF of the proton at renormalization scale
µ = 2 GeV. The proton momentum chosen for investigation of the pion
mass dependence is Pz = 1.82 GeV. For exploring the a-dependence, the
ensembles X650 (purple), H102 (orange), N203 (blue) and N302 (green) with
almost equal pion mass are chosen [42].

4.7.2 Combined infinite momentum, physical pion mass
and continuum extrapolation

Having extracted the light-cone isovector transversity PDF of the proton for
multiple different finite proton momenta, an extrapolation to infinite momen-
tum is performed to ensure the validity of the LaMET factorization formula
given in eq. (3.8). Since the calculation is not performed at the physical
point, the results are extrapolated to the physical pion mass mπ,phys. A con-
tinuum extrapolation is carried out to remove lattice artifacts. Since for our
setup it is not possible to use the same proton momenta for gauge ensembles
with different lattice spacings, the Pz-dependence and a-dependence can-
not straightforwardly be disentangled. To resolve this issue, the transversity
PDF in the infinite momentum, physical pion mass and continuum limit is
extracted by a combined extrapolation with the following form

δq(x, Pz, a,mπ) =1 − g′m2
π ln (m2

π/µ
2
0) +m2

πk(x)
1 − g′m2

π ln (m2
π/µ

2
0)

×
[
δq0(x) + a2f(x) + a2P 2

z h(x) + g(x, a)
P 2
z

]
,

(4.27)

with δq(x, Pz, a,mπ) on the l.h.s. denoting the light-cone transversity
PDF for ensembles with different lattice spacings and pion masses, as well

66



as different proton momenta. The form of eq. (4.27) is guided by the study
in [154] and includes the chiral logarithm g′m2

π ln (m2
π/µ

2
0) with µ0 = 1 GeV

and g′ = − (4g2
A + 1) /

[
2 (4πfπ)2

]
in the pion mass extrapolation, with fπ ≈

93 MeV, and gA ≈ 1 being the axial charge of the nucleon. Because CLS
ensembles are used in this work, the term m2

πk(x) is included [155]. The
denominator in eq. (4.27) is chosen since the results for the transversity
PDF are normalized to the nucleon isovector tensor charge gT [154]. The
terms a2f(x) and a2P 2

z h(x) account for discretization effects, while g(x, a)/P 2
z

specifies the dependence of the power correction on Pz.
When performing the combined extrapolation, the term a2P 2

z h(x) is zero
within errors. The term a2f(x), which already has been accounted for in
the self renormalization, see eq. (3.17), is also close to zero. The dominant
uncertainty from the extrapolation stems from g(x, a)/P 2

z .
The final extrapolated result for the transversity PDF is given by

δq(x) =
1 − g′m2

π ln
(
m2
π,phys/µ

2
0

)
+m2

π,physk(x)
1 − g′m2

π,phys ln
(
m2
π,phys/µ

2
0

) δq0(x). (4.28)

4.7.3 Final result and comparison with JAM
The final result for the isovector quark transversity PDF δu(x)−δd(x) of the
proton obtained at µ = 2 GeV, zs = 0.3 fm and λL = 7, normalized by the
nucleon isovector tensor charge gT , is shown in fig. 4.14 as blue curve. The
error band includes both statistical and systematic uncertainties, which will
be discussed at a later point in this section.

Comparison of final result with global analyses The result of this
work is compared to global analyses of the JAM collaboration, namely JAM20
[81] and JAM22 [70], in fig. 4.14. The JAM22 analysis gives an update to
JAM20, as it includes new data sets and also constraints from lattice QCD
tensor charge calculations and the Soffer bound. Due to those global QCD
analysis results being especially sensitive to the chosen data sets and con-
straints, the difference between JAM22 and JAM20 is seen as a systematic
uncertainty from the global fits. The result of this work lies between the two
global analyses, showing ∼ 2σ agreement with both curves, and is consistent
with zero in the negative-x region. The shaded bands for x ∈ [−0.1, 0.1]
and x ∈ [0.9, 1] in fig. 4.14 indicate the region where the LaMET expan-
sion breaks down and predictions are not reliable, considering the largest
momentum of Pz = 2.83 GeV in this analysis (see section 3.3.1).
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Figure 4.14: Isovector quark transversity PDF of the proton at renormal-
ization scale µ = 2 GeV after extrapolation to the continuum, physical pion
mass and infinite momentum limit with eq. (4.27). The result of this work,
normalized to the nucleon isovector tensor charge gT , is shown in blue and
compared to the JAM20 [81] and JAM22 [70] global fits [42].

Discussion of uncertainties The final result for the isovector quark trans-
versity PDF of the proton in this work contains statistical as well as different
systematic uncertainties, which are added in quadrature to give the full un-
certainty. Fig. 4.15 shows the size of the errors from different sources as
non-overlapping bands. The statistical uncertainty is estimated using boot-
strap resampling with 4000 samples, as well as error propagation for the
combined extrapolation. Four different sources of systematic uncertainties
are considered, the first of which is from the combined continuum, physical
mass and infinite momentum extrapolation. The difference between the ex-
trapolated PDF result and the PDF for N302 and Pz = 2.62 GeV is used to
approximate this error. Secondly, renormalization scale dependence is con-
sidered by varying µ from 2 GeV to 3 GeV and using the difference in the
PDF result as systematic uncertainty. The third source of systematic errors
is the choice of zs in the hybrid renormalization scheme. To estimate the
corresponding uncertainty, zs is varied from 0.3 fm to 0.18 fm. Lastly, the
value of λL in the extrapolation of the renormalized matrix elements to large
distances λ is chosen as λL = 4 instead of λL = 7 to use the difference of the
results as an error estimate.
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Figure 4.15: Different sources of uncertainties for the isovector quark
transversity PDF of the proton with their estimated size depicted as non-
overlapping bands. The central value is obtained with µ = 2 GeV, zs = 0.3 fm
and λL = 7 [42].
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Chapter 5

LaMET calculations for the
isovector quark Boer-Mulders
function of the pion

After having extracted the isovector quark transversity PDF of the proton
with LaMET in chapter 4, this chapter will focus on the LaMET calculation
of the quark Boer-Mulders function h⊥

1 (x, b⊥, µ, ζ) of the pion. Since TMD-
PDF calculations on the lattice are just starting, in this work we investigate
the pion, for which the signal-to-noise ratio is expected to be better than for
other hadrons. The nucleon case is phenomenologically more relevant but is
not part of this thesis. As mentioned in section 3.4, TMDPDF calculations
are more involved than PDF calculations since TMDPDFs depend in addition
on the transverse separation of the quark fields. The Boer-Mulders function
in particular is not well constrained from experiments and the theoretical pre-
dictions are very limited, see section 3.4.4. Due to those circumstances, the
calculation performed in this chapter is not only very tedious and resource
consuming, but also highly exploratory.

5.1 Gauge ensembles and setup
For this project, the CLS gauge ensembles X650, H102 and N203, which
have been introduced in section 2.4 and whose parameters can be found
in tab. 2.1, are used to calculate the quark Boer-Mulders function in the
pion. Due to the exploratory nature of this calculation, and also taking into
account the mild pion mass dependence of the transversity PDF found in
section 4.7.1, ensembles with almost equal pion masses mπ ≈ {338−354}MeV
are selected. Lattice spacings of a = {0.098, 0.085, 0.064}fm allow for a
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Ensemble Pz[GeV] Nconf. Nmeas./Nconf.

X650 {0, 0.53, 0.79, 1.05, 1.32, 1.58, 1.84} 1892 4

H102 {0, 0.91, 1.37, 1.82} 1008 8

N203
{0, 0.81,

1.21, 1.61}

500

1543

8

8

Table 5.1: Pion momenta Pz, number of gauge configurations and number
of individual measurements per configuration for the ensembles used in the
calculation of the quark Boer-Mulders function in the pion.

controlled continuum extrapolation, see section 5.7.7, while more computing
resources are needed to also extrapolate to the physical pion mass in the
future. Pion momenta up to Pz = 1.84 GeV are employed in the analysis,
as higher momentum data suffers from significant noise and would require
additional computing resources to achieve larger statistics.

For better signal, one step of HYP smearing is applied to the gauge fields,
and momentum smearing is used for the quark fields (see section 2.3.2). Eight
sources are placed on the lattice, while, in addition, the source positions are
modified to perform multiple measurements with a single gauge configura-
tion. The pion momenta, number of configurations and number of individual
measurements per configuration used for each CLS ensemble are given in tab.
5.1. For N203, a smaller number of gauge configurations is used in the calcu-
lations for the lowest momentum and zero-momentum case, since a sufficient
signal can already be seen with that smaller subset of configurations.

5.2 Correlation functions
As for the calculation of the transversity PDF in chapter 4, the calculation of
correlation functions on the lattice is necessary to extract the matrix elements
needed for the quasi-Boer-Mulders function introduced in 3.5.1. Since in
this project the Boer-Mulders function is calculated for a pion, the pion
interpolators are used to form the correlators. The pion isotriplet contains
two charged pions π+ and π− with annihilation operators [47]

Nπ+(x) = d̄αc (x)(γ5)αβuβc (x)
Nπ−(x) = ūαc (x)(γ5)αβdβc (x),

(5.1)
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with space-time coordinate x = (x⃗, t), and a neutral pion with annihila-
tion operator [47]

Nπ0(x) = 1√
2

(ū(x)γ5u(x) − d̄(x)γ5d(x)). (5.2)

Dirac and color indices are omitted in eq. (5.2) and in the following
equations. The operators in eq. (5.1) and eq. (5.2) have negative parity
and represent color singlets. Besides the annihilation operators which an-
nihilate all states with the same quantum numbers as the respective pion
state, creation operators are necessary to form correlation functions. Focus-
ing on the charged pion π−, the creation operator is found by calculating the
conjugation N †

π−(x) of the interpolator, leading to

N π−(x) = d̄(x)γ5u(x) = Nπ+(x), (5.3)

which is equal to the annihilation operator for π+.

5.2.1 Two-point correlation function

Following the same procedure as for the proton two-point correlation func-
tion defined in eq. (4.2), the two-point function for the pion is constructed
from the corresponding interpolators by creating a pion at the source xsrc =
(x⃗src, tsrc) and annihilating it at the sink xsnk = (x⃗snk, tsnk). Not specifying a
particular pion interpolator, but using Nπ = {Nπ+ ,Nπ− ,Nπ0}, the two-point
correlator is written as

Cπ
2pt(Pz, tsep) = a3 ∑

x⃗snk

e−ip⃗·(x⃗snk−x⃗src)⟨Nπ(xsnk)N π(xsrc)⟩, (5.4)

with the spatial momentum p⃗ = (0, 0, Pz) being non-zero only in z-
direction. As in eq. (4.2), the temporal source position tsrc is set to zero.
Since all pion interpolators have definite (negative) parity, no parity projec-
tion is needed in the definition of the correlation functions.

A schematic illustration of the lattice setup for calculating the pion two-
point function on the lattice is shown in fig. 5.1a, where quark flavors are not
specified. The pion source and sink carry momentum Pz in z-direction. One
of the quark propagators runs in opposed direction to the other one. This
is made plausible by applying Wick’s theorem to identify the contractions
which are needed to calculate Cπ

2pt(Pz, tsep) for the pion on the lattice.
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(a) Two-point function setup.

ψ
ψ

(b) Three-point function setup.

Figure 5.1: Schematic illustration of the lattice calculation of the
two-point function Cπ

2pt(Pz, tsep) (5.1a) and the three-point function
Cπ

3pt(Pz, tins, tsep, z, b⊥, L) (5.1b) needed for extracting the pion Boer-Mulders
function. The pion source and sink have momentum Pz in z-direction. Quark
propagators are shown as blue lines, not explicitly stating the quark flavors.
For the pion case, the correlators contain one propagator in the opposite
direction. Fig. 5.1b: The sequential method [59] is applied to calculate the
shaded quark propagator. The inserted quark and antiquark fields that are
separated by z in longitudinal and by b⊥ in transverse direction, as well as
the staple-shaped Wilson link connecting them, are shown in green. The
quark and antiquark fields are both inserted at tins, an offset in t-direction
is used in the figure for better visibility. The point xins where z = b⊥ = 0 is
marked in orange.
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Wick contractions With the interpolator for the charged pion π−, using
Wick’s theorem, the two-point correlation function can be written in terms
of quark propagators as

Cπ+

2pt(Pz, tsep) = −a3 ∑
x⃗snk

e−i·p⃗·(x⃗snk−x⃗src)tr [γ5U(xsrc, xsnk)γ5D(xsnk, xsrc)] .

(5.5)
For exact isospin symmetry, the propagators U = D are equal, leading

to the same two-point functions for both charged pions. When performing
the Wick contractions for the neutral pion π0, disconnected pieces occur.
Those contributions cancel each other when isospin symmetry is assumed,
leading to the same two-point correlation function as for the charged pions.
According to these considerations, when mu = md,

Cπ
2pt(Pz, tsep) = Cπ+

2pt(Pz, tsep) = Cπ−

2pt(Pz, tsep) = Cπ0

2pt(Pz, tsep), (5.6)

leading to a mass-degenerate pion triplet.
The CLS gauge configurations and pion momenta Pz used to calculate

the correlation functions are shown in tab. 5.1. As for the calculation of the
nucleon isovector transversity PDF described in chapter 4, the Chroma soft-
ware suite [153] combined with a multigrid solver [57, 58] is used to perform
the lattice calculations for the pion Boer-Mulders function. The additional
code, to calculate for example the TMDPDF matrix element or rectangular
Euclidean Wilson loop, was developed by Qi-An Zhang within LPC. The
lattice calculations for this project were performed at the University of Re-
gensburg using the high-performance computer Athene and at the Leibniz
Supercomputing Center with SuperMUC-NG.

For obtaining an estimate of the statistical errors of the correlation func-
tions in this project, binning with a bin size of 5 combined with bootstrap
resampling using 800 samples is applied. The bootstrap samples are kept
during the entire analysis.

Spectral decomposition As described in section 4.2.1 for the proton two-
point function, performing a spectral decomposition for the pion two-point
function Cπ

2pt(Pz, tsep) in eq. (5.4) yields

Cπ
2pt(Pz, tsep) ∝ e−E0tsep

(
1 + O

(
e−∆Etsep

))
, (5.7)

with the energy E0 of the pion ground state and ∆E = E1 − E0 being
the energy difference between the pion ground and first excited state.

75



Ensemble Pz[GeV] tmin
sep /a tmax

sep /a

X650 0 3 10

0.53 6 15

0.79 5 15

1.05 5 15

1.32 3 11

1.58 3 10

1.84 2 10

H102 0 6 12

0.91 7 13

1.37 7 13

1.82 7 13

N203 0 11 19

0.81 13 19

1.21 11 17

1.61 11 17

Table 5.2: Fit ranges used in the two-state fit with eq. (4.6) of the pion
two-point function for each ensemble and Pz, given by the minimum and
maximum source-sink separation tmin

sep /a and tmax
sep /a.
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Figure 5.2: Dispersion relation on ensembles X650, H102 and N203. The
ground state energies E0 that are extracted from fitting the pion two-point
function with eq. (4.6) are shown together with the results from fitting the
dispersion relation with eq. (5.8).

Dispersion relation To extract the pion ground state energy from the
two-point correlation function for each momentum Pz, the data is fitted with
the same two-state fit form which was introduced in eq. (4.6) for the nucleon,
resulting in E0(Pz). The minimum and maximum values of tsep that are used
in the fit of Cπ

2pt(Pz, tsep) for each ensemble and momentum are given in tab.
5.2. Again, the validity of the continuum dispersion relation is tested with a
fit of the extracted energies E0 with

E0(Pz) =
√
m2
π + c1P 2

z + c2a2P 4
z , (5.8)

as already introduced in eq. (4.8) for the nucleon. The pion mass mπ =
E(Pz = 0) is obtained from the fit of the pion two-point function at zero
momentum. The dispersion relation for X650, H102 and N203 is depicted in
fig. 5.2, where E0 extracted from fitting the two-point function with eq. (4.6)
is shown together with the result from fitting the dispersion relation with eq.
(5.8). The pion masses from fitting Cπ

2pt(Pz = 0, tsep) using the two-state fit
and parameters c1, c2 from fitting the dispersion relation are given in tab.
5.3.
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Ensemble mπ[GeV] c1 c2

X650 0.334(1) 0.972(18) 0.111(50)

H102 0.364(1) 1.028(36) 0.093(38)

N203 0.342(4) 1.079(29) −0.0093(30)

Table 5.3: Pion mass from two-state fit of Cπ
2pt(Pz = 0, tsep) with eq. (4.6)

and parameters c1, c2 from fitting the dispersion relation with eq. (5.8).

5.2.2 Three-point correlation function
To obtain the subtracted quasi-Boer-Mulders function h̃⊥

1 (z, b⊥, Pz, a) defined
in eq. (3.34), the bare matrix element

h̃⊥,0
1 (z, b⊥, Pz, a, L) ≡ ⟨P |ψ̄(b⊥n̂⊥)ΓWz(b⊥n̂⊥, zn̂z)ψ(zn̂z)|P ⟩, (5.9)

which was introduced in the numerator of eq. (3.34), has to be extracted
from lattice calculations. For that reason, a three-point correlation function
is calculated, where a pion is created at xsrc, a non-local current

OΓ(x, z, b⊥, L) = ψ̄(x+ b⊥n̂⊥)ΓWz(x+ b⊥n̂⊥, x+ zn̂z)ψ(x+ zn̂z) (5.10)

is inserted at xins = (x⃗ins, tins), and the pion is destroyed at xsnk. The
quark and antiquark fields in the non-local current are separated by z in lon-
gitudinal, i.e. z-direction, and by b⊥ in transverse direction. The transverse
direction is chosen as ⊥= x, and for the gamma structure, Γ = γ1γ3 is used.
This choice is made by considering the composition of the TMD correlator
in b⊥-space, see eq. (3.33), and setting + = 0, i = 2 and j = 1. The fields
ψ̄, ψ are connected with a staple-shaped gauge link Wz with extent L along
z-direction, which was introduced in eq. (3.35).

With the general pion interpolator Nπ, the three-point correlation func-
tion is defined as

Cπ
3pt(Pz, tins, tsep, z, b⊥,L) = a6 ∑

x⃗snk,x⃗ins

e−ip⃗·(x⃗snk−x⃗src)

× ⟨Nπ(xsnk)OΓ(xins, z, b⊥, L)N π(xsrc)⟩.
(5.11)

Fig. 5.1b shows a simplified illustration of the lattice setup for calculating
the three-point function Cπ

3pt(Pz, tins, tsep, z, b⊥, L) for the pion. Source and
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sink carry momentum Pz in z-direction. Quark flavors are not made explicit.
The lower blue line depicts a quark propagator in opposite direction to the
other propagators, which follows from the Wick contractions. The sequen-
tial method [59], see section 2.3.1, is applied to calculate the shaded quark
propagator. Quark and antiquark fields are depicted in green and are both
inserted at tins, where an offset in t-direction is used for better visibility in
the figure. ψ and ψ̄ are separated by z in longitudinal and by b⊥ in trans-
verse direction, connected by a staple-shaped link with extent L, which is
also drawn in green.

Wick contractions As for the two-point function, Wick’s theorem is used
to express C3pt(Pz, tins, tsep, z, b⊥, L) in terms of quark propagators. Using
the negatively charged pion π− with up quark current insertion, i.e. setting
ψ̄ = ū and ψ = u in eq. (5.10), gives

Cπ−,u
3pt (Pz, tins, tsep, z, b⊥, L) = −a6 ∑

x⃗snk,x⃗ins

e−ip⃗·(x⃗snk−x⃗src)

×
{
tr
[
γ5D(xsnk, xsrc)γ5U(xsrc, xins + b⊥n̂⊥)γ1γ3Wz(xins + b⊥n̂⊥, xins + zn̂z)

U(xins + zn̂z, xsnk)
]

−tr
[
γ5D(xsnk, xsrc)γ5U(xsrc, xsnk)γ1γ3Wz(xins + b⊥n̂⊥, xins + zn̂z)

U(xins + zn̂z, xins + b⊥ + n̂⊥)
]}
.

(5.12)

The contractions for π− with down quark current insertion, i.e. ψ̄ = d̄
and ψ = d in eq. (5.10), read

Cπ−,d
3pt (Pz, tins, tsep, z, b⊥, L) = −a6 ∑

x⃗snk,x⃗ins

e−ip⃗·(x⃗snk−x⃗src)

×
{
tr
[
γ5U(xsrc, xsnk)γ5D(xsnk, xins + b⊥n̂⊥)γ1γ3Wz(xins + b⊥n̂⊥, xins + zn̂z)

D(xins + zn̂z, xsrc)
]

−tr
[
γ5U(xsrc, xsnk)γ5D(xsnk, xsrc)γ1γ3Wz(xins + b⊥n̂⊥, xins + zn̂z)

D(xins + zn̂z, xins + b⊥n̂⊥)
]}
.

(5.13)

The second contraction in eq. (5.12) as well as in eq. (5.13) contains
a propagator which starts and ends at the same time coordinate tins. This
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Ensemble tsep/a zmax/a b⊥,max/a L/a

X650 {6,7,8,9,10} 18 7 {8,10}

H102 {7,8,9,10,11,12} 22 8 {8,10}

N203 {9,11,13,15,17} 28 9 {10,12}

Table 5.4: Source-sink separations tsep/a, maximum longitudinal separation
zmax/a and transverse separation b⊥,max/a of the inserted quark fields, and
extent L/a of the staple-shaped Wilson link connecting the inserted quark
fields in the calculation of the pion Boer-Mulders function.

contribution is equivalent for up and down quark insertion in the case of
exact isospin symmetry where U = D. Again, as for the contractions of the
pion two-point function, the pion contractions in eq. (5.12) and eq. (5.13)
each contain one quark propagator pointing in opposite direction compared
to the other propagators.

The source-sink separations, maximum longitudinal and transverse sep-
aration of the inserted quark fields as well as the extent of the staple-
shaped Wilson link connecting the inserted quark fields in the calculation
of Cπ

3pt(Pz, tins, tsep, z, b⊥, L) are listed in tab. 5.4. The momenta and gauge
configurations used in the calculation were already shown in tab. 5.1. A
smaller subset of configurations was used to calculate the three-point func-
tion for a larger variety of L and examine the L-dependence of the subtracted
quasi-Boer-Mulders function, which will be discussed in section 5.4.2.

Spectral decomposition As described for the nucleon transversity PDF
in section 4.2.2, a spectral decomposition of the pion three-point correlator
Cπ

3pt(Pz, tins, tsep, z, b⊥, L) given by eq. (5.11) is performed in order to iden-
tify a fit function for extracting the bare matrix element h̃⊥,0

1 (z, b⊥, Pz, a, L)
defined in eq. (5.9). As the decomposition is analogous to the nucleon case,
it is not repeated here.

5.3 Extraction of the ground state matrix el-
ement

To obtain the pion Boer-Mulders function from the correlators calculated on
the lattice, the bare ground state matrix element h̃⊥,0

1 (z, b⊥, Pz, a, L) defined
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in eq. (5.9) is necessary. As was done for the transversity PDF in section 4.3,
a ratio of three-point and two-point correlation functions is fitted in combi-
nation with the two-point function in order to extract the desired matrix
element. Compared to the PDF case, the ratio

RΓ(Pz, tins, tsep, z, b⊥, L) =
Cπ

3pt(Pz, tins, tsep, z, b⊥, L)
Cπ

2pt(Pz, tsep) (5.14)

for the determination of the pion Boer-Mulders function additionally de-
pends on the transverse separation b⊥ of the inserted quark fields, and on
the extent L of the staple-shaped gauge link connecting them. Therefore, a
larger number of individual fits has to be performed and the fit parameters
show an additional dependence on b⊥ and L. The ratio defined in eq. (5.14)
is fitted with

RΓ(Pz, tins, tsep, z, b⊥, L) =
c0 + c1

[
e−∆E(tsep−tins) + e−∆Etins

]
+ c3e

−∆Etsep

1 + c5e−∆Etsep
,

(5.15)
where the dependence of the fit parameters c0, c1, c3, c5 and ∆E on a,

Pz and z is not made explicit. As for the transversity PDF extraction, see
section 4.3, c5 and ∆E are mainly fixed from the two-point function. The
parameters c0, c1 and c3 additionally depend on b⊥ and L, with the depen-
dence being omitted in eq. (5.15) for better readability. The fit parameter
c0(z, b⊥, Pz, a, L) ≡ h̃⊥,0

1 (z, b⊥, Pz, a, L) is the desired bare ground state ma-
trix element.

The fit ranges of the two-point function in the combined fit are the same
as given in tab. 5.2. For all ensembles, the contact points tins = 0 and
tins = tsep of the ratios are excluded from the fit, while for N203 the points
tins = 1 and tins = tsep − 1 are also excluded. Correlated fits, which minimize
χ2 as defined in eq. (2.40), are used to extract the bare ground state matrix
element h̃⊥,0

1 (z, b⊥, Pz, a, L), and the correlations are kept during the entire
analysis. Examples for fits of the ratio RΓ(Pz, tins, tsep, z, b⊥, L) are shown in
fig. 5.3, fig. 5.4, and fig. 5.5 for X650, H102 and N203, respectively. In order
to portray the quality of the data realistically, the largest momentum used in
the analysis is shown in addition to a smaller value of Pz for each ensemble.
For each largest momentum, not all available source-sink separations are
used in the fits. The data points with large tsep have larger uncertainties,
and including them in the fits does not significantly alter the results.

For X650, the real parts of the ratio RΓ for the combinations (Pz, b⊥) =
(0.79GeV, 1a), (Pz, b⊥) = (1.58GeV, 3a) as well as the real and imaginary
parts for (Pz, b⊥) = (0.79GeV, 3a) are depicted. For all cases, z = (1, 3, 5)a
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Figure 5.3: Examples for fits of the ratio RΓ(Pz, tins, tsep, z, b⊥, L) with eq.
(5.15) to extract the bare ground state matrix element h̃⊥,0

1 (z, b⊥, Pz, a, L)
for X650. The real parts of (Pz, b⊥) = (0.79GeV, 1a) (first row), (Pz, b⊥) =
(1.58GeV, 3a) (fourth row), as well as the real (second row) and imaginary
(third row) parts of (Pz, b⊥) = (0.79GeV, 3a) are depicted. For all cases,
z = (1, 3, 5)a and L = 8a are shown.
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Figure 5.4: Examples for fits of the ratio RΓ(Pz, tins, tsep, z, b⊥, L) with eq.
(5.15) to extract the bare ground state matrix element h̃⊥,0

1 (z, b⊥, Pz, a, L)
for H102. The real parts of (Pz, b⊥) = (0.91GeV, 1a) (first row), (Pz, b⊥) =
(1.82GeV, 3a) (fourth row), as well as the real (second row) and imaginary
(third row) parts of (Pz, b⊥) = (0.91GeV, 3a) are depicted. For all cases,
z = (1, 3, 5)a and L = 8a are shown.
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Figure 5.5: Examples for fits of the ratio RΓ(Pz, tins, tsep, z, b⊥, L) with eq.
(5.15) to extract the bare ground state matrix element h̃⊥,0

1 (z, b⊥, Pz, a, L)
for N203. The real parts of (Pz, b⊥) = (0.81GeV, 1a) (first row), (Pz, b⊥) =
(1.61GeV, 3a) (fourth row), as well as the real (second row) and imaginary
(third row) parts of (Pz, b⊥) = (0.81GeV, 3a) are depicted. For all cases,
z = (1, 4, 7)a and L = 10a are shown.
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Figure 5.6: Histograms of χ2/d.o.f. of all two-state fits of the ratio combined
with the two-point function to extract the bare ground state matrix elements
h̃⊥,0

1 (z, b⊥, Pz, a, L). The distributions are also shown for the ensembles indi-
vidually and are normalized to 1.

and L = 8a are shown. The depicted imaginary parts are at least an order
of magnitude smaller than the real parts.

In the case of H102, the real parts of RΓ for (Pz, b⊥) = (0.91GeV, 1a),
(Pz, b⊥) = (1.82GeV, 3a), and the real and imaginary parts of (Pz, b⊥) =
(0.91GeV, 3a) are depicted. For all cases mentioned, z = (1, 3, 5)a and L = 8a
are shown. The imaginarys part in fig. 5.4 are consistent with zero in 2σ.

Examples for fits of the ratio for N203 are shown in fig. 5.5. The real
parts for (Pz, b⊥) = (0.81GeV, 1a), (Pz, b⊥) = (1.61GeV, 3a) as well as the
real and imaginary parts for (Pz, b⊥) = (0.81GeV, 3a) are depicted. For all
cases, z = (1, 4, 7)a and L = 10a are shown.

To inspect the fit quality of the combined two-state fits of the ratio
RΓ(Pz, tins, tsep, z, b⊥, L) and two-point function Cπ

2pt(Pz, tsep), fig. 5.6 shows
the histogram of χ2/d.o.f. (normalized to 1) for all ensembles combined, as
well as individually. The values of χ2/d.o.f. lie in a reasonable range.

5.4 Renormalization in the short distance ra-
tio scheme

The bare ground state matrix elements h̃⊥,0
1 (z, b⊥, Pz, a, L) are renormalized

in the short distance ratio scheme, as described in section 3.5.2. For obtaining
the renormalized matrix elements, it is necessary to construct the subtracted
quasi-Boer-Mulders function h̃⊥

1 (z, b⊥, Pz, a), which was defined in eq. (3.34),
to eliminate the linear divergence and pinch-pole singularity.
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Figure 5.7: Fit of the rectangular Euclidean Wilson loop ZE(2L + z, b⊥, a)
with eq. (5.16) for X650, H102 and N203, and various values of b⊥. The
fitted results and fit ranges are indicated by solid lines.

5.4.1 Fit of the rectangular Wilson loop
A rectangular Euclidean Wilson loop ZE(2L+z, b⊥, a) with length 2L+z and
width b⊥ is included in the definition of the subtracted quasi-Boer-Mulders
function. The loop is calculated on the lattice for all gauge configurations
available for X650, H102 and N203, see tab. 5.1. The signal-to-noise ratio of
ZE(2L+z, b⊥, a) decays rapidly with increasing 2L+z and b⊥, possibly even
leading to negative central values, which make the square root in eq. (3.34)
ill-defined. To solve this problem, the Wilson loop is fitted with [138]

ZE(2L+ z, b⊥, a) = c(b⊥, a)e−V (b⊥,a)(2L+z) (5.16)
for various values of b⊥ for each ensemble and extrapolated to large 2L+z.

The fit parameter V (b⊥, a) in eq. (5.16) is the static QCD potential. Fig.
5.7 illustrates the fit of ZE for X650, H102 and N203 for different values of
b⊥.

5.4.2 Dependence of the subtracted quasi-TMDPDF
on the staple-link length

The subtracted quasi-TMDPDF h̃⊥
1 (z, b⊥, Pz, a) defined in eq. (3.34) is de-

termined by dividing the bare matrix elements by the square root of the
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Figure 5.8: Real parts Re[h̃⊥,0
1 (z, b⊥, Pz, a, L)] of the bare matrix elements

divided by the square root of the rectangular Wilson loop for X650, H102
and N203 with limited statistics for various values of L. Momenta of Pz =
0.53 GeV, Pz = 0.91 GeV and Pz = 0.81 GeV are chosen for X650, H102
and N203, respectively, while b⊥ = 1a and z = {0, 2, 4, 6, 8}a are shown for
all ensembles. The data points are shifted in horizontal direction for better
visibility.

extrapolated rectangular Wilson loop. In order for the subtracted quasi-
TMDPDF to be well-defined, it should not depend on the length L of the
staple-shaped Wilson link. A plateau of h̃⊥

1 (z, b⊥, Pz, a) is expected for in-
creasing values of L, where it is ensured that the staple link extends outside
the hadron.

To investigate the L-dependence of the subtracted quasi-Boer-Mulders
function, three-point correlation functions are calculated for various values of
L on smaller subsets of configurations for each ensemble. For H102, 100 con-
figurations with eight measurements per configuration were analyzed, while
for N203, 25 configurations with eight measurements per configuration were
used. All available configurations were used for X650, with one measurement
for each configuration. In order to find a signal with limited statistics, small
momenta of Pz = 0.53 GeV, Pz = 0.91 GeV and Pz = 0.81 GeV were utilized
in the calculations for X650, H102 and N203, respectively.

The results for the subtracted matrix elements obtained with limited
statistics for different link lengths, z = {0, 2, 4, 6, 8}a and b⊥ = 1a are shown
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in fig. 5.8. Only the real parts are depicted, since the imaginary parts are
consistent with zero. The minimum value of Lmin = 2a and the step size of
2a are the same for each ensemble, while the maximum value of L is chosen
as Lmax = 12a for X650, Lmax = 14a for H102 and Lmax = 16a for N203.
As is apparent from the figure, the L-dependence of the subtracted matrix
elements is weak, a plateau is found for all ensembles and values of z. Since
the signal becomes worse with increasing L, values of L = 8a for X650 and
H102, as well as L = 10a for N203 are chosen for the calculation with full
statistics.

5.4.3 Calculation of renormalization factors
After obtaining the subtracted matrix elements h̃⊥

1 (z, b⊥, Pz, a) for all en-
sembles, and verifying that they are not dependent on L, the matrix ele-
ments need to be renormalized to eliminate logarithmic UV divergences. As
described in section 3.5.2, the renormalization factors ZO(z0, b⊥,0, a) are ex-
tracted in the short distance ratio scheme at next-to-leading order using the
continuum perturbative zero-momentum matrix element h̃⊥,MS

1,pert.(z0, b⊥,0, Pz =
0, µ) given in eq. (3.39) at renormalization scale µ = 2 GeV.

The NLO renormalization factors for various values of z0 and b⊥,0 for
X650, H102 and N203 are shown in the left panel of fig. 5.9. For X650
and H102 there is no window in which ZO(z0, b⊥,0, a, µ) is independent of z0
and b⊥,0. For N203, a window is found for b⊥,0 = {2, 3}a and z0 = {0, 1}a.
The renormalization factor for N203 and b⊥,0 = 1a does not lie inside this
window, indicating the presence of discretization effects.

When applying renormalization group resummation, which was intro-
duced in section 3.5.2, in the determination of the factors ZO(z0, b⊥,0, a, µ), a
window in which ZO is independent of b⊥,0 and z0 can be identified for X650,
H102, as well as for N203. The right panel of fig. 5.9 shows the renormal-
ization factors calculated with the zero-momentum perturbative continuum
matrix element resummed at NLO according to eq. (3.42) for X650, H102
and N203. The physical scale is chosen as µ0 = r · 2e−γE/

√
b2

⊥,0 + z2
0 with

prefactor r = 1. To estimate the uncertainty from RGR, r is varied from 0.8
to 1.2, leading to a systematic uncertainty that is included in the errorbars
in the right panel of fig. 5.9, in addition to the statistical uncertainty.

Windows of constant ZO(z0, b⊥,0, a, µ) are found at b⊥,0 = {2, 3}a, z0 =
{0, 1, 2}a for X650, at b⊥,0 = {2, 3}a, z0 = {0, 1}a for H102, and at b⊥,0 =
{2, 3}a, z0 = {0, 1, 2}a for N203. The renormalization factors for b⊥,0 = 1a
do not lie in the windows of constant ZO, again indicating the presence of
discretization effects.
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Figure 5.9: NLO renormalization factors ZO(z0, b⊥,0, a, µ) at scale µ = 2 GeV
for X650, H102 and N203 with various values of b⊥,0 and z0. The left panel
shows ZO determined without RGR as in eq. (3.38), while the right panel
shows the results for ZO obtained with RGR according to eq. (3.42), where
the error includes the statistical uncertainty as well as the systematic uncer-
tainty from varying the prefactor r of µ0 in the resummation between 0.8 and
1.2. The data points are shifted in horizontal direction for better visibility.
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The final renormalization factors used for the analysis in this thesis are
obtained by averaging ZO over the regions that were just mentioned. The
resulting values for each ensemble are

ZNLO+RGR
O,X650 = 1.199(16)(43),

ZNLO+RGR
O,H102 = 1.405(20)(38),

ZNLO+RGR
O,N203 = 1.469(32)(17),

(5.17)

with the first error being the statistical uncertainty estimated with boot-
strap resampling and the second error arising from the scale variation in
RGR.

5.5 Extrapolation for large quasi-LF distances
With the renormalization factors calculated in the short distance ratio scheme
for each ensemble, the renormalized quasi-TMDPDF h̃⊥,MS

1 (z, b⊥, Pz, µ) in
coordinate space defined in eq. (3.37) is obtained for various momenta Pz,
transverse distances b⊥ and λ = zPz. For large values of λ, the renormalized
quasi-TMDPDF decays to zero, but uncertainties are substantial, especially
for large b⊥ and Pz. Truncating the data in the Fourier transformation would
lead to unphysical oscillations of the distributions in momentum space. Thus,
as was done for the transversity PDF in section 4.6, an extrapolation is used
for large values of λ. The extrapolation form of the quasi-PDF, given in eq.
(4.26), is adopted for quasi-TMDPDFs by allowing all parameters to depend
on b⊥. The fits for different Pz and b⊥ are performed individually.

Examples for the extrapolation of the renormalized matrix elements for
large λ are given in fig. 5.10. The upper panel shows the real (left) and
imaginary (right) parts of h̃⊥,MS

1 (z, b⊥, Pz, µ) for N203 with Pz = 0.81 GeV
and b⊥ = 2a together with the result after extrapolation in green and the
fit region shaded in gray. The fit result is shown for all λ where the data
is substituted with the extrapolation in the further steps of the analysis.
The extrapolation gives a smooth curve with reduced errors for large λ, and
it was verified that it reproduces the original data in the region of smaller
λ. The lower panel of fig. 5.10 depicts the extrapolation of the real part
of the renormalized matrix elements for N203 and b⊥ = 2a for the larger
momenta of Pz = 1.21 GeV (left) and Pz = 1.61 GeV (right). The uncertain-
ties of h̃⊥,MS

1 (z, b⊥, Pz, µ) get larger with increasing Pz, making the use of an
extrapolation even more crucial.
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Figure 5.10: Extrapolation of h̃⊥,MS
1 (z, b⊥, Pz, µ) with eq. (4.26) for large λ =

zPz. The original data is depicted in blue, the fit regions are shaded in gray,
and the results of the extrapolation are shown in green. The extrapolated
results are used for the further analysis in the region where they are depicted
in the figure. Upper panel: Real (left) and imaginary (right) parts of h̃⊥,MS

1

for N203, b⊥ = 2a, Pz = 0.81 GeV. Lower panel: Real part of h̃⊥,MS
1 for N203,

b⊥ = 2a with momentum Pz = 1.21 GeV (left) and Pz = 1.61 GeV (right).
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Figure 5.11: Renormalized quasi-TMDPDF h̃⊥,MS
1 (x, b⊥, Pz, µ) in momentum

space for N203, Pz = 1.21 GeV and b⊥ = 3a. The case where only the real
part of the coordinate space distribution is used in the Fourier transformation
is shown in turquoise, the case including both the real and imaginary part
in the Fourier transformation is shown in pink.

5.6 Fourier transformation to x-space

Before matching the renormalized quasi-Boer-Mulders function to the light-
cone, the results are Fourier transformed to momentum space, yielding distri-
butions h̃⊥,MS

1 (x, b⊥, Pz, µ) for various ensembles, Pz and values of b⊥. Since
the mean value of the imaginary part of the coordinate space distributions is
at least an order of magnitude smaller than the corresponding real part, and
zero within errors in most cases, a proper treatment of the imaginary part
has to be found. In this thesis, the imaginary part is treated as systematic
uncertainty. In the cases where Im[h̃⊥,MS

1 (z, b⊥, Pz, µ)] is not compatible with
zero within errors, the Fourier transformation is performed twice, omitting
and including the imaginary part. The result from the transformation with-
out Im[h̃⊥,MS

1 (z, b⊥, Pz, µ)] is used as mean value for the following analysis,
while the difference between both cases is viewed as systematic uncertainty.

As an example, fig. 5.11 shows the renormalized quasi-Boer-Mulders
function h̃⊥,MS

1 (x, b⊥, Pz, µ) in momentum space for N203, Pz = 1.21 GeV
and b⊥ = 3a. The resulting momentum space distribution after Fourier
transforming without and with the imaginary part are shown in turquoise
and pink, respectively. The difference between both cases is largest for large
x.
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Figure 5.12: Reduced soft function Sr(b⊥, µ) (left) and Collins-Soper Kernel
K(b⊥,µ) (right) from [40] calculated for X650 at one-loop and scale µ =
2 GeV. Statistical errors are used for both quantities. The results from
linear interpolation are shown in blue.

5.7 Light-cone quark Boer-Mulders function
of the pion

The final results for the pion Boer-Mulders function on the light-cone are
attained by matching the renormalized quasi-distributions h̃⊥,MS

1 (z, b⊥, µ, ξz)
in momentum space to the light-cone distributions according to eq. (3.47)
and dividing by b⊥ and by the pion mass mπ. Note that the dependence of the
renormalized quasi-distributions on the momentum Pz has been substituted
with a dependence on the Collins-Soper scale ζz = (2xPz)2.

5.7.1 Reduced soft function and Collins-Soper kernel

The matching to the light-cone involves the Collins-Soper kernel K(b⊥, µ)
and reduced soft function Sr(b⊥, µ) that were introduced in sections 3.5.3
and 3.5.4, respectively. In this work, the results for both quantities are taken
from the one-loop calculation on X650 with scale µ = 2 GeV in [40]. The
data with statistical errors from [40] is shown in fig. 5.12 in red. Since CLS
ensembles with three different lattice spacings are used in the calculation of
the Boer-Mulders function of the pion in this thesis, a linear interpolation of
Sr(b⊥, µ) and K(b⊥, µ) is performed to access those quantities at all values
of b⊥ that are needed to match the quasi-distributions to the light-cone. The
results of the linear interpolation are shown in blue in fig. 5.12. Systematic
uncertainties of K(b⊥, µ) that are quoted in [40] are not included here.
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Figure 5.13: Comparison of the quasi-TMDPDF h̃⊥,MS
1 (x, b⊥, µ, ζz) before

matching and the light-cone distribution h⊥′
1 (x, b⊥, µ, ζ) after matching ac-

cording to eq. (3.47). The quantity h⊥′
1 (x, b⊥, µ, ζ) is not yet divided by

b⊥mπ). Shown are N203, Pz = 1.21 GeV, b⊥ = 2a (upper left) and b⊥ = 3a
(upper right) as well as Pz = 1.61 GeV, b⊥ = 2a (lower left) and b⊥ = 3a
(lower right). The regions x ∈ [0, 0.15] and x ∈ [0.85, 1] are shaded in gray to
indicate the range where the LaMET factorization becomes unreliable due
to power corrections.
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5.7.2 Comparison of results before and after matching
to the light-cone

The comparison of the quasi-TMDPDF h̃⊥,MS
1 (x, b⊥, µ, ζz) and the light-cone

quantity h⊥′
1 (x, b⊥, µ, ζ) is shown in fig. 5.13 for N203, Pz = 1.21 GeV,

b⊥ = 2a (upper left) and b⊥ = 3a (upper right) as well as Pz = 1.61 GeV,
b⊥ = 2a (lower left) and b⊥ = 3a (lower right). The result h⊥′

1 (x, b⊥, µ, ζ) af-
ter matching is obtained using eq. (3.47) with rapidity scale ζ = 4 GeV2 and
is not yet divided by b⊥mπ. The errors of the quasi-distribution in the figure
contain statistical errors as well as the uncertainty from the scale variation
in the renormalization group resummation for determining the renormaliza-
tion factor. The errors of the light-cone results h⊥′

1 (x, b⊥, µ, ζ) additionally
contain uncertainties from the reduced soft function and Collins-Soper ker-
nel. In the case of Pz = 1.61 GeV, b⊥ = 3a, the systematic uncertainty
from including the imaginary part of the renormalized matrix element in the
Fourier transformation to momentum space is also incorporated. The re-
gions x ∈ [0, 0.15] and x ∈ [0.85, 1] are shaded in gray to indicate the range
where the LaMET factorization becomes unreliable, see section 3.3.1. The
maximum momentum Pz = 1.84 GeV was inserted in eq. (3.9) and through
rounding conservatively, the range of valid x was estimated.

As can be seen from fig. 5.13, the matching mainly affects the results in
the small-x region, while results before and after matching are compatible
within errors in the region where the LaMET factorization is reliable.

5.7.3 Momentum dependence of the light-cone Boer-
Mulders function

In LaMET calculations, convergence of the results with increasing Pz is cru-
cial to ensure that the momenta used in the calculations are large enough
for the LaMET factorization to be valid. The momentum dependence of
the Boer-Mulders function h⊥

1 (x, b⊥, µ, ζ) at renormalization scale µ = 2 GeV
and rapidity scale ζ = 4 GeV2 after matching according to eq. (3.47) and
dividing by b⊥mπ is shown in fig. 5.14, fig. 5.15 and fig. 5.16 for X650, H102
and N203, respectively. The errors include statistical as well as systematic
uncertainties, which will be discussed in 5.7.4.

For better visibility, the largest momentum Pz = 1.84 GeV for X650 is not
included in fig. 5.14 due to its significant errors. The data at Pz = 1.84 GeV
is fully compatible with the results for Pz = 1.58 GeV, thus no information
would be gained by displaying the data for the largest momentum.

Also note that the smallest momentum Pz = 0.81 GeV for N203 is calcu-
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Figure 5.14: The momentum dependence of the extracted light-cone Boer-
Mulders function h⊥

1 (x, b⊥, µ, ζ) at scales µ = 2 GeV and ζ = 4 GeV2 on
X650 for b⊥ = {1, 2, 3, 4, 5, 6}a. The regions x ∈ [0, 0.15] and x ∈ [0.85, 1] are
shaded in gray to indicate the range where the LaMET factorization becomes
unreliable. Statistical and systematic uncertainties are included in the errors.
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Figure 5.15: The momentum dependence of the extracted light-cone Boer-
Mulders function h⊥

1 (x, b⊥, µ, ζ) at scales µ = 2 GeV and ζ = 4 GeV2 on
H102 for b⊥ = {1, 2, 3, 4, 5, 6}a. The regions x ∈ [0, 0.15] and x ∈ [0.85, 1] are
shaded in gray to indicate the range where the LaMET factorization becomes
unreliable. Statistical and systematic uncertainties are included in the errors.
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Figure 5.16: The momentum dependence of the extracted light-cone Boer-
Mulders function h⊥

1 (x, b⊥, µ, ζ) at scales µ = 2 GeV and ζ = 4 GeV2 on N203
for b⊥ = {1, 2, 3, 4, 5, 6, 7}a. The regions x ∈ [0, 0.15] and x ∈ [0.85, 1] are
shaded in gray to indicate the range where the LaMET factorization becomes
unreliable. Statistical and systematic uncertainties are included in the errors.
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lated with limited statistics (see tab. 5.1) compared to the other momenta
of N203 to save computing resources. This explains the increased errors for
Pz = 0.81 GeV that are especially prominent in the results for b⊥ ≥ 3a in fig.
5.16.

Overall, good convergence of the pion Boer-Mulders function with in-
creasing Pz is found. Some cases with small b⊥ are exceptions, with X650,
b⊥ = 1a being the most notable occurrence of not fully convergent behavior.
Discretization effects become important for this coarse lattice and small b⊥,
explaining the lack of convergence. Generally, the errors increase rapidly
with larger Pz, while the case of N203 with Pz = 0.81 GeV is an exception to
this trend due to the already mentioned smaller statistics. For most cases,
h⊥

1 (x, b⊥, µ, ζ) is compatible with zero at x = 1 within errors for the largest
momenta displayed in fig. 5.14, fig. 5.15, and fig. 5.16 for each ensemble. Ex-
ceptions are the case of b⊥ = 1a for all ensembles and b⊥ = {2, 3}a for X650.
That is again attributed to discretization effects, which are especially large
for the coarse lattice of X650. Overall, the Boer-Mulders function decays to
zero with increasing b⊥, which is the expected behavior (see the discussion
about the b⊥-dependence of the Boer-Mulders function in section 5.7.5).

5.7.4 Estimation of systematic uncertainties
As already mentioned in section 5.7.2, the determination of the pion Boer-
Mulders function h⊥

1 (x, b⊥, µ, ζ) does not only consider statistical errors, but
also systematic uncertainties from different sources, including

• the propagation of the error of the reduced soft function from [40]
(section 5.7.1),

• the propagation of the error of the Collins-Soper kernel from [40] (sec-
tion 5.7.1),

• varying the scale in the renormalization group resummation for the
determination of the renormalization factors (section 5.4.3),

• including the non-zero imaginary part of the renormalized matrix ele-
ments in the Fourier transformation (section 5.6).

As an example for comparing the statistical and systematic errors, fig.
5.17 shows the ratios of different uncertainties and the central value of the
light-cone Boer-Mulders function for N203 at b⊥ = 3a and Pz = 1.21 GeV.
The statistical error is the dominating one, and both the statistical uncer-
tainty as well as the uncertainty from including Im[h̃⊥,MS

1 ] in the Fourier
transformation increase for large x.
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Figure 5.17: Ratios of various uncertainties and central value of the light-cone
Boer-Mulders function for N203 at b⊥ = 3a and Pz = 1.21 GeV. Included are
the statistical error as well as systematic uncertainties from: (1) reduced soft
function [40], (2) Collins-Soper kernel [40], (3) scale variation in the RGR for
determining ZO, and (4) including Im[h̃⊥,MS

1 ] in the Fourier transformation.

5.7.5 Fit of the b⊥-dependence
One goal of this project is the comparison of the Boer-Mulders function for
CLS ensembles with mπ ≈ 340−350GeV and different lattice spacings. How-
ever, comparing h⊥

1 (x, b⊥, µ, ζ) calculated at different a is not straightforward,
as the values of b⊥ available for different gauge ensembles are not equal in
physical units. To fit the b⊥-dependence of the Boer-Mulders function and
interpolate it, two different fit forms are selected:

h⊥
1 (x, b⊥) = c1(x, Pz, a)e−c2(x,Pz ,a)·b2

⊥ (5.18)

h⊥
1 (x, b⊥) = c1(x, Pz, a)

cosh[c2(x, Pz, a) · b⊥] . (5.19)

Eq. (5.18), which is guided by the global fits of the Pavia group e.g.
in [156], will be referred to as ’gauß’ and eq. (5.19), which is inspired by
[132], will be referred to as ’cosh’ in the following. The chosen fit forms are
simplified compared to the ones in [156] and [132], since the quality of the
data and the number of different b⊥ in this work do not allow for a fit with
more parameters. The fit is performed for each ensemble and momentum
individually, as well as for various values of x with step size 0.005. This
leads to the parameters c1 and c2 being dependent on a, Pz and x, while the
remaining dependence of the Boer-Mulders function on Pz and a is not made
explicit on the l.h.s. of eqs. (5.18) and (5.19).

Fig. 5.18 shows the fit of the b⊥-dependence of the Boer-Mulders function
calculated on X650 with Pz = 1.58 GeV and x = {0.2, 0.3, 0.4, 0.5, 0.6, 0.7}
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Figure 5.18: Fits of the b⊥-dependence of the Boer-Mulders function calcu-
lated on X650 with Pz = 1.58 GeV and x = {0.2, 0.3, 0.4, 0.5, 0.6, 0.7}. Eq.
(5.18) is used to fit the lattice data shown in pink. The fit results are shown
as dashed blue lines, while the shaded blue regions depict a linear interpola-
tion of the errors from the lattice determination of h⊥

1 (x, b⊥, µ, ζ). Statistical
and systematic uncertainties are included in the errors.

using eq. (5.18). Since the error bars of h⊥
1 (x, b⊥, µ, ζ) include both statistical

and systematic errors, an uncorrelated fit of the b⊥-dependence is performed.
In order to not artificially reduce the errors of the Boer-Mulders function,
the uncertainties of h⊥

1 (x, b⊥, µ, ζ) are linearly interpolated instead of using
the error from the fit. As seen from the figure, the Boer-Mulders function
calculated on X650 with Pz = 1.58 GeV is consistent with zero within errors
for b⊥ ≳ 0.5 fm. The fit parameters c1 and c2 obtained from the fits shown
in fig. 5.16 are given in tab. 5.5. The parameter c1 is clearly x-dependent,
which is expected since the Boer-Mulders function overall decays with x → 1.
The parameter c2 exhibits larger relative errors compared to c1, especially
for larger x, and agrees within errors across the different values of x shown
in fig. 5.18.

The choice of the fit form does not have a large impact on the results.
As an example, fig. 5.19 shows the fit of the b⊥-dependence of h⊥

1 (x, b⊥, µ, ζ)
for X650, Pz = 1.58 GeV and x = 0.2, comparing the fit results using eq.
(5.18) (’gauß’) and eq. (5.19) (’cosh’). Since, as mentioned above, the error
bands result from linear interpolation of the uncertainties of the lattice Boer-
Mulders function, they are identical for both fits. The difference in the fit
result is negligible and fits with eq. (5.18) (’gauß’) are used to compare the
Boer-Mulders function of different ensembles in section 5.7.6.
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x c1 c2

0.2 0.93(15) 4.06(77)

0.3 0.71(11) 3.16(63)

0.4 0.55(8) 3.22(82)

0.5 0.42(6) 3.82 ± 1.24

0.6 0.33(5) 4.68 ± 1.73

0.7 0.27(4) 5.82 ± 2.06

Table 5.5: Results for the fit parameters c1 and c2 from fitting the b⊥-
dependence of the Boer-Mulders function for X650 and Pz = 1.58 GeV for
various values of x with eq. (5.18). The corresponding fits are shown in fig.
5.18
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Figure 5.19: Fit of the b⊥-dependence of h⊥
1 (x, b⊥, µ, ζ) for X650, Pz =

1.58 GeV and x = 0.2, comparing the fit results using eq. (5.18) (’gauß’,
shown in blue) and eq. (5.19) (’cosh’, shown in orange). The error bands re-
sult from linear interpolation of the uncertainties of the lattice Boer-Mulders
function, thus being equal for both fits. Statistical and systematic uncertain-
ties are included in the errors.
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5.7.6 Lattice spacing dependence of the light-cone Boer-
Mulders function

After fitting the b⊥-dependence of the light-cone Boer-Mulders function with
eq. (5.18) as described in section 5.7.5, the results of h⊥

1 (x, b⊥, µ, ζ) can be
compared for different ensembles.

Fig. 5.20 shows h⊥
1 (x, b⊥, µ, ζ) at scales µ = 2 GeV and ζ = 4 GeV2

for X650 with Pz = 1.58 GeV, for H102 with Pz = 1.37 GeV and for N203
with Pz = 1.21 GeV. Values of b⊥ = {0.1, 0.2, 0.3, 0.4, 0.5}fm are chosen for
display. The regions x ∈ [0, 0.15] and x ∈ [0.85, 1] are shaded in gray to
indicate the range where the LaMET factorization becomes unreliable due
to power corrections. Statistical and systematic uncertainties are included
in the errors, see section 5.7.4 for sources of systematic uncertainties. For
better visibility, the second largest momentum is chosen for display for each
ensemble. The data for the larger momenta of Pz = 1.84 GeV for X650, Pz =
1.82 GeV for H102 and Pz = 1.61 GeV for N203 exhibit large uncertainties,
while overall being compatible with the data for smaller momenta, see section
5.7.3. As seen from fig. 5.20, the results for different ensembles agree with
each other within uncertainties. The Boer-Mulders function h⊥

1 (x, b⊥, µ, ζ)
for different ensembles decays to zero for b⊥ ≈ 0.4 − 0.5fm

5.7.7 Combined infinite momentum and continuum ex-
trapolation

The different lattice spacings and pion momenta used in the calculation of
the light-cone Boer-Mulders function h⊥

1 (x, b⊥, µ, ζ) of the pion enable an
extrapolation to infinite momentum as well as to the continuum, ensuring
the validity of the LaMET factorization formula and removing lattice arti-
facts. As for the extrapolation of the isovector quark transversity PDF of
the proton described in section 4.7.2, disentangling the Pz-dependence and
a-dependence is not directly possible. Therefore, a combined extrapolation
with the following form is used

h⊥
1 (x, b⊥, Pz, a) = h⊥

1,0(x, b⊥)+a2f(x, b⊥)+a2P 2
z h(x, b⊥)+ g(x, b⊥, a)

P 2
z

, (5.20)

where h⊥
1 (x, b⊥, Pz, a) on the l.h.s. is the light-cone Boer-Mulders function

for different lattice spacings and pion momenta, obtained for specific values
of b⊥ by fitting the b⊥-dependence as described in section 5.7.5 with eq.
(5.18). Discretization effects are accounted for by the terms a2f(x, b⊥) and
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Figure 5.20: Comparison of the extracted light-cone Boer-Mulders function
for different ensembles. h⊥

1 (x, b⊥, µ, ζ) at scales µ = 2 GeV and ζ = 4 GeV2

is shown for X650 with Pz = 1.58 GeV, for H102 with Pz = 1.37 GeV
and for N203 with Pz = 1.21 GeV. The results are obtained by fit-
ting the b⊥-dependence of h⊥

1 (x, b⊥, µ, ζ) with eq. (5.18), and values of
b⊥ = {0.1, 0.2, 0.3, 0.4, 0.5}fm are chosen for display. The regions x ∈ [0, 0.15]
and x ∈ [0.85, 1] are shaded in gray to indicate the range where the LaMET
factorization becomes unreliable due to power corrections. Statistical and
systematic uncertainties are included in the errors.
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a2P 2
z h(x, b⊥), while g(x, b⊥, a)/P 2

z specifies the dependence of the power cor-
rection on Pz. An explicit a-dependence is kept in the parameter g(x, b⊥, a).
The final result for the Boer-Mulders function after extrapolation is given by
h⊥

1,0(x, b⊥).
The extrapolation form in eq. (5.20) is the same as in the case of extrap-

olating the transversity PDF to the infinite momentum, physical pion mass
and continuum limit using eq. (4.27), except that in eq. (5.20) all parame-
ters also depend on b⊥ and the pion mass dependence is not considered for
the Boer-Mulders function. Including the dependence on mπ is not necessary
in the case of the ensembles X650, H102 and N203 with almost equal pion
masses. Extrapolating to the physical pion mass would require a calculation
of the Boer-Mulders function for at least two additional gauge ensembles
with significantly different pion masses, which goes beyond the scope of the
present study. Also, when considering the mild pion mass dependence of the
transversity PDF as shown in section 4.7.1 , an extrapolation to the phys-
ical pion mass is not expected to substantially alter the final results of the
Boer-Mulders function.

The fit of the Boer-Mulders function with eq. (5.20) is performed for 200
values of x between 0 and 1, and for all bootstrap samples. All pion momenta
(except the zero momentum data) and lattice spacings that are given in tab.
5.1 are used for the extrapolation. Fig. 5.21 shows the resulting fit param-
eters with bootstrap errors for b⊥ = 0.2 fm (left) and b⊥ = 0.4 fm (right).
Since the parameter g(x, b⊥, a) explicitly depends on a, different parameters
g1(x, b⊥), g2(x, b⊥) and g3(x, b⊥) are depicted in the figure, corresponding to
a = {0.098, 0.085, 0.064}fm, respectively. As seen in fig. 5.21, the parameter
f(x, b⊥) is the smallest compared to the other parameters. For b⊥ = 0.2 fm,
the parameters h(x, b⊥) and g1,2,3(x, b⊥) are of notable size with significant
errors, while for b⊥ = 0.4 fm their values and uncertainties decrease consid-
erably. This might indicate discretization effects being present for smaller
values of b⊥.

Fig. 5.22 shows the uncertainty from the combined infinite momen-
tum and continuum extrapolation of the light-cone Boer-Mulders function
h⊥

1 (x, b⊥, µ, ζ) with eq. (5.20), which is calculated by subtracting the ex-
trapolated result from the result for N203, Pz = 1.61 GeV, for b⊥ = 0.2 fm
(left) and b⊥ = 0.4 fm (right). The uncertainty from the extrapolation is
compared to the statistical error obtained from the bootstrap samples, and
the systematic error composed as described in section 5.7.4. The systematic
uncertainty of the extrapolated result, which is shown in blue in fig. 5.22,
is calculated as the difference between the extrapolated result and the fit
result with the systematic error being added to the data before fitting. All
uncertainties are shown as non-overlapping bands. As seen from the figure,

105



0.0 0.2 0.4 0.6 0.8 1.0
x

0.010

0.005

0.000

0.005
b = 0.2fm

0.0 0.2 0.4 0.6 0.8 1.0
x

0.010

0.008

0.006

0.004

0.002

0.000

b = 0.4fm

0.0 0.2 0.4 0.6 0.8 1.0
x

0.3

0.2

0.1

0.0

h
(x

)

b = 0.2fm

0.0 0.2 0.4 0.6 0.8 1.0
x

0.03

0.02

0.01

0.00

h
(x

)

b = 0.4fm

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.1

0.2

0.3

0.4

0.5
b = 0.2fm

a = 0.098 fm

0.0 0.2 0.4 0.6 0.8 1.0
x

0.02

0.00

0.02

b = 0.4fm

a = 0.098 fm

0.0 0.2 0.4 0.6 0.8 1.0
x

0.00

0.02

0.04

0.06

0.08

0.10
b = 0.2fm

a = 0.085 fm

0.0 0.2 0.4 0.6 0.8 1.0
x

0.03

0.02

0.01

0.00

0.01

0.02
b = 0.4fm

a = 0.085 fm

0.0 0.2 0.4 0.6 0.8 1.0
x

0.00

0.05

0.10

0.15

0.20

b = 0.2fm

a = 0.064 fm

0.0 0.2 0.4 0.6 0.8 1.0
x

0.02

0.00

0.02

0.04

b = 0.4fm

a = 0.064 fm

f(
x)

[G
e
V

2
]

f(
x)

[G
e
V

2
]

g
1
(x

) [
G

e
V

2
]

g
1
(x

) [
G

e
V

2
]

g
2
(x

) [
G

e
V

2
]

g
2
(x

) [
G

e
V

2
]

g
3
(x

) [
G

e
V

2
]

g
3
(x

) [
G

e
V

2
]

Figure 5.21: Fit parameters f(x, b⊥), h(x, b⊥), g1(x, b⊥), g2(x, b⊥) and
g3(x, b⊥) for b⊥ = 0.2 fm (left) and b⊥ = 0.4 fm (right) resulting from fit-
ting the light-cone Boer-Mulders function with eq. (5.20). The fit allows for
the parameter g(x, b⊥, a) to depend on a, yielding the parameters g1(x, b⊥),
g2(x, b⊥) and g3(x, b⊥) for a = {0.098, 0.085, 0.064}fm, respectively.
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Figure 5.22: Demonstration of the uncertainty resulting from the combined
infinite momentum and continuum extrapolation of the light-cone Boer-
Mulders function h⊥

1 (x, b⊥, µ, ζ) with eq. (5.20) for b⊥ = 0.2 fm (left) and
b⊥ = 0.4 fm (right). The uncertainty from the extrapolation is obtained
as the difference between the extrapolated result and the light-cone Boer-
Mulders function for N203, Pz = 1.61 GeV, and put in relation to the statis-
tical error and the systematic error, which includes the different sources of
uncertainties listed in section 5.7.4. All uncertainties are depicted as non-
overlapping bands. The regions x ∈ [0, 0.15] and x ∈ [0.85, 1] are shaded in
gray to indicate the range where the LaMET factorization becomes unreli-
able due to power corrections.

the error from extrapolating to the infinite momentum and continuum limit
is larger for smaller values of b⊥.

The final results for the light-cone Boer-Mulders function h⊥
1 (x, b⊥, µ, ζ)

at scales µ = 2 GeV and ζ = 4 GeV2 after extrapolation to infinite momentum
and to the continuum are shown in fig. 5.23 for b⊥ = {0.1, 0.2, 0.3, 0.4, 0.5}fm,
together with the results for h⊥

1 (x, b⊥, µ, ζ) that were shown in fig. 5.20. The
uncertainties of the extrapolated results are obtained by adding the statistical
(bootstrap) error, the error from extrapolating, and the combined systematic
error, all of which are shown in fig. 5.22 for b⊥ = {0.2, 0.4}fm, in quadrature.
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Figure 5.23: Final results for the light-cone Boer-Mulders function at scales
µ = 2 GeV and ζ = 4 GeV2 after infinite momentum and continuum extrap-
olation with eq. (5.20), together with h⊥

1 (x, b⊥, µ, ζ) for different ensembles
as already shown in fig. 5.20. The errors include the statistical uncertainty,
the systematic errors as listed in section 5.7.4, and the uncertainty from
extrapolating, obtained as the difference from the extrapolated result and
the light-cone Boer-Mulders function for N203, Pz = 1.61 GeV. The regions
x ∈ [0, 0.15] and x ∈ [0.85, 1] are shaded in gray to indicate the range where
the LaMET factorization becomes unreliable due to power corrections.
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Chapter 6

Conclusion and Outlook

In this thesis, the author has presented two independent projects both aim-
ing for a better understanding of the internal transverse spin structure of
hadrons. Two different distribution functions which are relatively unknown
from experiments were calculated in the framework of large-momentum ef-
fective theory [43, 44, 66].

As presented in chapter 4, the isovector quark transversity distribution
δu(x) − δd(x) in the proton was calculated for CLS ensembles with four dif-
ferent lattice spacings a = {0.098, 0.085, 0.064, 0.049}fm and pion masses be-
tween 220 MeV and 350 MeV with proton momenta up to 2.8 GeV. The bare
matrix elements were fitted using a two-state combined fit of the two-point
function and ratio of three-point and two-point function. Renormalization
was performed in the hybrid scheme, and an extrapolation for large quasi-
light-front distances was used to avoid unphysical oscillations in the momen-
tum space. After Fourier transforming the data, the light-cone transversity
PDF was obtained with NLO matching for various different lattice spacings,
pion masses and proton momenta Pz, allowing to study dependencies of the
data on those parameters. Good convergence of the results with increasing
Pz is found, which is crucial for the LaMET factorization to be valid. The
pion mass dependence is only very mild. Discretization effects are found to be
important for the coarsest lattice of X650, while the other ensembles show
convergent behavior with decreasing values of the lattice spacing a. Since
it is not possible to completely disentangle the dependence on a and Pz, a
combined infinite momentum, physical pion mass and continuum extrapo-
lation was performed as described in section 4.7.2. The final result for the
isovector quark transversity PDF, which includes various sources of statisti-
cal and systematic uncertainties, lies between the global fits of experimental
data from JAM20 [81] and JAM22 [70], agreeing within 2σ with both results,
thus constituting a reliable prediction of the transversity PDF from lattice
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QCD.
The nucleon isovector tensor charge (first Mellin moment) was extracted

as a consistency check from the local matrix elements. The result of gT =
1.018(68) given in section 4.23 was obtained by extrapolating to the contin-
uum and physical pion mass and agrees well with the Mainz19 [82], FLAG21
[85] and other recent results [86, 84, 83].

This extraction of the isovector quark transversity distribution in the
proton was published in [42]. The author of this thesis is one of the main
authors of the publication and the project was done in close collaboration
with the co-authors.

The second project presented in this thesis is a natural extension of
the transversity PDF calculation and is also using the LaMET framework.
The work described in chapter 5 is the first lattice QCD extraction of the
quark Boer-Mulders function h⊥

1 (x, b⊥) of the pion, which is one of the eight
leading twist transverse momentum dependent PDFs, and thus addition-
ally depends on the Fourier conjugate b⊥ of the transverse momentum k⊥.
The calculations were performed for CLS ensembles with three different lat-
tice spacings a = {0.098, 0.085, 0.064}fm and almost constant pion mass
mπ ≈ {340 − 350}MeV with pion momenta up to 1.84 GeV. Two-point
and three-point functions were calculated, where the latter involve a staple-
shaped gauge link with width b⊥ and longitudinal extent L, see section 5.2.
The bare matrix elements were extracted by fitting the two-point function
and ratio of three-point and two-point function with the same functional
form as in the PDF case, however the number of fits performed is larger
due to the additional parameter b⊥. As described in section 5.4, the square
root of a rectangular Euclidean Wilson loop was used to eliminate the linear
divergence and pinch-pole singularity. A plateau in L was found in the data
after division by this square root, see section 5.4.2. Additional renormaliza-
tion was performed in the short distance ratio scheme, and renormalization
group resummation was used when calculating the renormalization factors.
The renormalized matrix elements were extrapolated for large quasi-light-
front distances and Fourier-transformed to momentum space. The reduced
soft function and Collins-Soper kernel from [40] and NLO matching kernel
[151, 152, 66] were used to obtain the results for h⊥

1 (x, b⊥) on the light-cone,
see section 5.7. The data is convergent with increasing momentum Pz, ex-
cept for small values of b⊥ where discretization effects become important. To
compare the different ensembles, the b⊥-dependence of h⊥

1 (x, b⊥) was fitted
as described in section 5.7.5. A controlled extrapolation to infinite momen-
tum and to the continuum was performed as described in section 5.7.7. The
Boer-Mulders function decays to zero for b⊥ ≈ 0.4 − 0.5fm.

Even though the calculation was performed with up to 790,016 measure-
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ments (for N203, Pz = {1.21, 1.61}GeV), the uncertainties of the resulting
Boer-Mulders function are rather large. However, the determination in this
project is of high relevance since the Boer-Mulders function is basically un-
known so far, and much more difficult to calculate compared to PDFs, which
is why we analyzed the quark Boer-Mulders function in the pion for which
the signal-to-noise ratio is expected to be better than for the nucleon. (In
fact, ours is the first really successful lattice calculation of this type.). Obvi-
ously, a more detailed study of h⊥

1 (x, b⊥) with larger statistics, higher values
of Pz, finer lattices and different pion masses is highly desirable. Currently,
work is performed within the Regensburg group of high energy physics1 for
adapting the code to run efficiently on GPUs, which would allow for the
required larger scale computer time applications in the future.

1primarily by Tobias Sizmann and Prof. Dr. Christoph Lehner
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